1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "clang/CodeGen/SwiftCallingConv.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 /***/
44 
45 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
46   switch (CC) {
47   default: return llvm::CallingConv::C;
48   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
49   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
50   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
51   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
52   case CC_Win64: return llvm::CallingConv::Win64;
53   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
54   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
55   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
56   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
57   // TODO: Add support for __pascal to LLVM.
58   case CC_X86Pascal: return llvm::CallingConv::C;
59   // TODO: Add support for __vectorcall to LLVM.
60   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
61   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69 
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
71 /// qualification. Either or both of RD and MD may be null. A null RD indicates
72 /// that there is no meaningful 'this' type, and a null MD can occur when
73 /// calling a method pointer.
74 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
75                                          const CXXMethodDecl *MD) {
76   QualType RecTy;
77   if (RD)
78     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
79   else
80     RecTy = Context.VoidTy;
81 
82   if (MD)
83     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
84   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
85 }
86 
87 /// Returns the canonical formal type of the given C++ method.
88 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
89   return MD->getType()->getCanonicalTypeUnqualified()
90            .getAs<FunctionProtoType>();
91 }
92 
93 /// Returns the "extra-canonicalized" return type, which discards
94 /// qualifiers on the return type.  Codegen doesn't care about them,
95 /// and it makes ABI code a little easier to be able to assume that
96 /// all parameter and return types are top-level unqualified.
97 static CanQualType GetReturnType(QualType RetTy) {
98   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
99 }
100 
101 /// Arrange the argument and result information for a value of the given
102 /// unprototyped freestanding function type.
103 const CGFunctionInfo &
104 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
105   // When translating an unprototyped function type, always use a
106   // variadic type.
107   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
108                                  /*instanceMethod=*/false,
109                                  /*chainCall=*/false, None,
110                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
111 }
112 
113 static void addExtParameterInfosForCall(
114          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
115                                         const FunctionProtoType *proto,
116                                         unsigned prefixArgs,
117                                         unsigned totalArgs) {
118   assert(proto->hasExtParameterInfos());
119   assert(paramInfos.size() <= prefixArgs);
120   assert(proto->getNumParams() + prefixArgs <= totalArgs);
121 
122   paramInfos.reserve(totalArgs);
123 
124   // Add default infos for any prefix args that don't already have infos.
125   paramInfos.resize(prefixArgs);
126 
127   // Add infos for the prototype.
128   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
129     paramInfos.push_back(ParamInfo);
130     // pass_object_size params have no parameter info.
131     if (ParamInfo.hasPassObjectSize())
132       paramInfos.emplace_back();
133   }
134 
135   assert(paramInfos.size() <= totalArgs &&
136          "Did we forget to insert pass_object_size args?");
137   // Add default infos for the variadic and/or suffix arguments.
138   paramInfos.resize(totalArgs);
139 }
140 
141 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
142 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
143 static void appendParameterTypes(const CodeGenTypes &CGT,
144                                  SmallVectorImpl<CanQualType> &prefix,
145               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
146                                  CanQual<FunctionProtoType> FPT) {
147   // Fast path: don't touch param info if we don't need to.
148   if (!FPT->hasExtParameterInfos()) {
149     assert(paramInfos.empty() &&
150            "We have paramInfos, but the prototype doesn't?");
151     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
152     return;
153   }
154 
155   unsigned PrefixSize = prefix.size();
156   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
157   // parameters; the only thing that can change this is the presence of
158   // pass_object_size. So, we preallocate for the common case.
159   prefix.reserve(prefix.size() + FPT->getNumParams());
160 
161   auto ExtInfos = FPT->getExtParameterInfos();
162   assert(ExtInfos.size() == FPT->getNumParams());
163   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
164     prefix.push_back(FPT->getParamType(I));
165     if (ExtInfos[I].hasPassObjectSize())
166       prefix.push_back(CGT.getContext().getSizeType());
167   }
168 
169   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
170                               prefix.size());
171 }
172 
173 /// Arrange the LLVM function layout for a value of the given function
174 /// type, on top of any implicit parameters already stored.
175 static const CGFunctionInfo &
176 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
177                         SmallVectorImpl<CanQualType> &prefix,
178                         CanQual<FunctionProtoType> FTP) {
179   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
180   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
181   // FIXME: Kill copy.
182   appendParameterTypes(CGT, prefix, paramInfos, FTP);
183   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
184 
185   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
186                                      /*chainCall=*/false, prefix,
187                                      FTP->getExtInfo(), paramInfos,
188                                      Required);
189 }
190 
191 /// Arrange the argument and result information for a value of the
192 /// given freestanding function type.
193 const CGFunctionInfo &
194 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
195   SmallVector<CanQualType, 16> argTypes;
196   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
197                                    FTP);
198 }
199 
200 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
201   // Set the appropriate calling convention for the Function.
202   if (D->hasAttr<StdCallAttr>())
203     return CC_X86StdCall;
204 
205   if (D->hasAttr<FastCallAttr>())
206     return CC_X86FastCall;
207 
208   if (D->hasAttr<RegCallAttr>())
209     return CC_X86RegCall;
210 
211   if (D->hasAttr<ThisCallAttr>())
212     return CC_X86ThisCall;
213 
214   if (D->hasAttr<VectorCallAttr>())
215     return CC_X86VectorCall;
216 
217   if (D->hasAttr<PascalAttr>())
218     return CC_X86Pascal;
219 
220   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
221     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
222 
223   if (D->hasAttr<AArch64VectorPcsAttr>())
224     return CC_AArch64VectorCall;
225 
226   if (D->hasAttr<IntelOclBiccAttr>())
227     return CC_IntelOclBicc;
228 
229   if (D->hasAttr<MSABIAttr>())
230     return IsWindows ? CC_C : CC_Win64;
231 
232   if (D->hasAttr<SysVABIAttr>())
233     return IsWindows ? CC_X86_64SysV : CC_C;
234 
235   if (D->hasAttr<PreserveMostAttr>())
236     return CC_PreserveMost;
237 
238   if (D->hasAttr<PreserveAllAttr>())
239     return CC_PreserveAll;
240 
241   return CC_C;
242 }
243 
244 /// Arrange the argument and result information for a call to an
245 /// unknown C++ non-static member function of the given abstract type.
246 /// (A null RD means we don't have any meaningful "this" argument type,
247 ///  so fall back to a generic pointer type).
248 /// The member function must be an ordinary function, i.e. not a
249 /// constructor or destructor.
250 const CGFunctionInfo &
251 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
252                                    const FunctionProtoType *FTP,
253                                    const CXXMethodDecl *MD) {
254   SmallVector<CanQualType, 16> argTypes;
255 
256   // Add the 'this' pointer.
257   argTypes.push_back(DeriveThisType(RD, MD));
258 
259   return ::arrangeLLVMFunctionInfo(
260       *this, true, argTypes,
261       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
262 }
263 
264 /// Set calling convention for CUDA/HIP kernel.
265 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
266                                            const FunctionDecl *FD) {
267   if (FD->hasAttr<CUDAGlobalAttr>()) {
268     const FunctionType *FT = FTy->getAs<FunctionType>();
269     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
270     FTy = FT->getCanonicalTypeUnqualified();
271   }
272 }
273 
274 /// Arrange the argument and result information for a declaration or
275 /// definition of the given C++ non-static member function.  The
276 /// member function must be an ordinary function, i.e. not a
277 /// constructor or destructor.
278 const CGFunctionInfo &
279 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
280   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
281   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
282 
283   CanQualType FT = GetFormalType(MD).getAs<Type>();
284   setCUDAKernelCallingConvention(FT, CGM, MD);
285   auto prototype = FT.getAs<FunctionProtoType>();
286 
287   if (MD->isInstance()) {
288     // The abstract case is perfectly fine.
289     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
290     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
291   }
292 
293   return arrangeFreeFunctionType(prototype);
294 }
295 
296 bool CodeGenTypes::inheritingCtorHasParams(
297     const InheritedConstructor &Inherited, CXXCtorType Type) {
298   // Parameters are unnecessary if we're constructing a base class subobject
299   // and the inherited constructor lives in a virtual base.
300   return Type == Ctor_Complete ||
301          !Inherited.getShadowDecl()->constructsVirtualBase() ||
302          !Target.getCXXABI().hasConstructorVariants();
303 }
304 
305 const CGFunctionInfo &
306 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
307   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
308 
309   SmallVector<CanQualType, 16> argTypes;
310   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
311   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
312 
313   bool PassParams = true;
314 
315   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
316     // A base class inheriting constructor doesn't get forwarded arguments
317     // needed to construct a virtual base (or base class thereof).
318     if (auto Inherited = CD->getInheritedConstructor())
319       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
320   }
321 
322   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
323 
324   // Add the formal parameters.
325   if (PassParams)
326     appendParameterTypes(*this, argTypes, paramInfos, FTP);
327 
328   CGCXXABI::AddedStructorArgs AddedArgs =
329       TheCXXABI.buildStructorSignature(GD, argTypes);
330   if (!paramInfos.empty()) {
331     // Note: prefix implies after the first param.
332     if (AddedArgs.Prefix)
333       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
334                         FunctionProtoType::ExtParameterInfo{});
335     if (AddedArgs.Suffix)
336       paramInfos.append(AddedArgs.Suffix,
337                         FunctionProtoType::ExtParameterInfo{});
338   }
339 
340   RequiredArgs required =
341       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
342                                       : RequiredArgs::All);
343 
344   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
345   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
346                                ? argTypes.front()
347                                : TheCXXABI.hasMostDerivedReturn(GD)
348                                      ? CGM.getContext().VoidPtrTy
349                                      : Context.VoidTy;
350   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
351                                  /*chainCall=*/false, argTypes, extInfo,
352                                  paramInfos, required);
353 }
354 
355 static SmallVector<CanQualType, 16>
356 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
357   SmallVector<CanQualType, 16> argTypes;
358   for (auto &arg : args)
359     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
360   return argTypes;
361 }
362 
363 static SmallVector<CanQualType, 16>
364 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
365   SmallVector<CanQualType, 16> argTypes;
366   for (auto &arg : args)
367     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
368   return argTypes;
369 }
370 
371 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
372 getExtParameterInfosForCall(const FunctionProtoType *proto,
373                             unsigned prefixArgs, unsigned totalArgs) {
374   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
375   if (proto->hasExtParameterInfos()) {
376     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
377   }
378   return result;
379 }
380 
381 /// Arrange a call to a C++ method, passing the given arguments.
382 ///
383 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
384 /// parameter.
385 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
386 /// args.
387 /// PassProtoArgs indicates whether `args` has args for the parameters in the
388 /// given CXXConstructorDecl.
389 const CGFunctionInfo &
390 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
391                                         const CXXConstructorDecl *D,
392                                         CXXCtorType CtorKind,
393                                         unsigned ExtraPrefixArgs,
394                                         unsigned ExtraSuffixArgs,
395                                         bool PassProtoArgs) {
396   // FIXME: Kill copy.
397   SmallVector<CanQualType, 16> ArgTypes;
398   for (const auto &Arg : args)
399     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
400 
401   // +1 for implicit this, which should always be args[0].
402   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
403 
404   CanQual<FunctionProtoType> FPT = GetFormalType(D);
405   RequiredArgs Required = PassProtoArgs
406                               ? RequiredArgs::forPrototypePlus(
407                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
408                               : RequiredArgs::All;
409 
410   GlobalDecl GD(D, CtorKind);
411   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
412                                ? ArgTypes.front()
413                                : TheCXXABI.hasMostDerivedReturn(GD)
414                                      ? CGM.getContext().VoidPtrTy
415                                      : Context.VoidTy;
416 
417   FunctionType::ExtInfo Info = FPT->getExtInfo();
418   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
419   // If the prototype args are elided, we should only have ABI-specific args,
420   // which never have param info.
421   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
422     // ABI-specific suffix arguments are treated the same as variadic arguments.
423     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
424                                 ArgTypes.size());
425   }
426   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
427                                  /*chainCall=*/false, ArgTypes, Info,
428                                  ParamInfos, Required);
429 }
430 
431 /// Arrange the argument and result information for the declaration or
432 /// definition of the given function.
433 const CGFunctionInfo &
434 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
435   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
436     if (MD->isInstance())
437       return arrangeCXXMethodDeclaration(MD);
438 
439   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
440 
441   assert(isa<FunctionType>(FTy));
442   setCUDAKernelCallingConvention(FTy, CGM, FD);
443 
444   // When declaring a function without a prototype, always use a
445   // non-variadic type.
446   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
447     return arrangeLLVMFunctionInfo(
448         noProto->getReturnType(), /*instanceMethod=*/false,
449         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
450   }
451 
452   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
453 }
454 
455 /// Arrange the argument and result information for the declaration or
456 /// definition of an Objective-C method.
457 const CGFunctionInfo &
458 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
459   // It happens that this is the same as a call with no optional
460   // arguments, except also using the formal 'self' type.
461   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
462 }
463 
464 /// Arrange the argument and result information for the function type
465 /// through which to perform a send to the given Objective-C method,
466 /// using the given receiver type.  The receiver type is not always
467 /// the 'self' type of the method or even an Objective-C pointer type.
468 /// This is *not* the right method for actually performing such a
469 /// message send, due to the possibility of optional arguments.
470 const CGFunctionInfo &
471 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
472                                               QualType receiverType) {
473   SmallVector<CanQualType, 16> argTys;
474   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
475   argTys.push_back(Context.getCanonicalParamType(receiverType));
476   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
477   // FIXME: Kill copy?
478   for (const auto *I : MD->parameters()) {
479     argTys.push_back(Context.getCanonicalParamType(I->getType()));
480     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
481         I->hasAttr<NoEscapeAttr>());
482     extParamInfos.push_back(extParamInfo);
483   }
484 
485   FunctionType::ExtInfo einfo;
486   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
487   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
488 
489   if (getContext().getLangOpts().ObjCAutoRefCount &&
490       MD->hasAttr<NSReturnsRetainedAttr>())
491     einfo = einfo.withProducesResult(true);
492 
493   RequiredArgs required =
494     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
495 
496   return arrangeLLVMFunctionInfo(
497       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
498       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
499 }
500 
501 const CGFunctionInfo &
502 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
503                                                  const CallArgList &args) {
504   auto argTypes = getArgTypesForCall(Context, args);
505   FunctionType::ExtInfo einfo;
506 
507   return arrangeLLVMFunctionInfo(
508       GetReturnType(returnType), /*instanceMethod=*/false,
509       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
510 }
511 
512 const CGFunctionInfo &
513 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
514   // FIXME: Do we need to handle ObjCMethodDecl?
515   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
516 
517   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
518       isa<CXXDestructorDecl>(GD.getDecl()))
519     return arrangeCXXStructorDeclaration(GD);
520 
521   return arrangeFunctionDeclaration(FD);
522 }
523 
524 /// Arrange a thunk that takes 'this' as the first parameter followed by
525 /// varargs.  Return a void pointer, regardless of the actual return type.
526 /// The body of the thunk will end in a musttail call to a function of the
527 /// correct type, and the caller will bitcast the function to the correct
528 /// prototype.
529 const CGFunctionInfo &
530 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
531   assert(MD->isVirtual() && "only methods have thunks");
532   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
533   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
534   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
535                                  /*chainCall=*/false, ArgTys,
536                                  FTP->getExtInfo(), {}, RequiredArgs(1));
537 }
538 
539 const CGFunctionInfo &
540 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
541                                    CXXCtorType CT) {
542   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
543 
544   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
545   SmallVector<CanQualType, 2> ArgTys;
546   const CXXRecordDecl *RD = CD->getParent();
547   ArgTys.push_back(DeriveThisType(RD, CD));
548   if (CT == Ctor_CopyingClosure)
549     ArgTys.push_back(*FTP->param_type_begin());
550   if (RD->getNumVBases() > 0)
551     ArgTys.push_back(Context.IntTy);
552   CallingConv CC = Context.getDefaultCallingConvention(
553       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
554   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
555                                  /*chainCall=*/false, ArgTys,
556                                  FunctionType::ExtInfo(CC), {},
557                                  RequiredArgs::All);
558 }
559 
560 /// Arrange a call as unto a free function, except possibly with an
561 /// additional number of formal parameters considered required.
562 static const CGFunctionInfo &
563 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
564                             CodeGenModule &CGM,
565                             const CallArgList &args,
566                             const FunctionType *fnType,
567                             unsigned numExtraRequiredArgs,
568                             bool chainCall) {
569   assert(args.size() >= numExtraRequiredArgs);
570 
571   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
572 
573   // In most cases, there are no optional arguments.
574   RequiredArgs required = RequiredArgs::All;
575 
576   // If we have a variadic prototype, the required arguments are the
577   // extra prefix plus the arguments in the prototype.
578   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
579     if (proto->isVariadic())
580       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
581 
582     if (proto->hasExtParameterInfos())
583       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
584                                   args.size());
585 
586   // If we don't have a prototype at all, but we're supposed to
587   // explicitly use the variadic convention for unprototyped calls,
588   // treat all of the arguments as required but preserve the nominal
589   // possibility of variadics.
590   } else if (CGM.getTargetCodeGenInfo()
591                 .isNoProtoCallVariadic(args,
592                                        cast<FunctionNoProtoType>(fnType))) {
593     required = RequiredArgs(args.size());
594   }
595 
596   // FIXME: Kill copy.
597   SmallVector<CanQualType, 16> argTypes;
598   for (const auto &arg : args)
599     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
600   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
601                                      /*instanceMethod=*/false, chainCall,
602                                      argTypes, fnType->getExtInfo(), paramInfos,
603                                      required);
604 }
605 
606 /// Figure out the rules for calling a function with the given formal
607 /// type using the given arguments.  The arguments are necessary
608 /// because the function might be unprototyped, in which case it's
609 /// target-dependent in crazy ways.
610 const CGFunctionInfo &
611 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
612                                       const FunctionType *fnType,
613                                       bool chainCall) {
614   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
615                                      chainCall ? 1 : 0, chainCall);
616 }
617 
618 /// A block function is essentially a free function with an
619 /// extra implicit argument.
620 const CGFunctionInfo &
621 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
622                                        const FunctionType *fnType) {
623   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
624                                      /*chainCall=*/false);
625 }
626 
627 const CGFunctionInfo &
628 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
629                                               const FunctionArgList &params) {
630   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
631   auto argTypes = getArgTypesForDeclaration(Context, params);
632 
633   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
634                                  /*instanceMethod*/ false, /*chainCall*/ false,
635                                  argTypes, proto->getExtInfo(), paramInfos,
636                                  RequiredArgs::forPrototypePlus(proto, 1));
637 }
638 
639 const CGFunctionInfo &
640 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
641                                          const CallArgList &args) {
642   // FIXME: Kill copy.
643   SmallVector<CanQualType, 16> argTypes;
644   for (const auto &Arg : args)
645     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
646   return arrangeLLVMFunctionInfo(
647       GetReturnType(resultType), /*instanceMethod=*/false,
648       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
649       /*paramInfos=*/ {}, RequiredArgs::All);
650 }
651 
652 const CGFunctionInfo &
653 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
654                                                 const FunctionArgList &args) {
655   auto argTypes = getArgTypesForDeclaration(Context, args);
656 
657   return arrangeLLVMFunctionInfo(
658       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
659       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
660 }
661 
662 const CGFunctionInfo &
663 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
664                                               ArrayRef<CanQualType> argTypes) {
665   return arrangeLLVMFunctionInfo(
666       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
667       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
668 }
669 
670 /// Arrange a call to a C++ method, passing the given arguments.
671 ///
672 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
673 /// does not count `this`.
674 const CGFunctionInfo &
675 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
676                                    const FunctionProtoType *proto,
677                                    RequiredArgs required,
678                                    unsigned numPrefixArgs) {
679   assert(numPrefixArgs + 1 <= args.size() &&
680          "Emitting a call with less args than the required prefix?");
681   // Add one to account for `this`. It's a bit awkward here, but we don't count
682   // `this` in similar places elsewhere.
683   auto paramInfos =
684     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
685 
686   // FIXME: Kill copy.
687   auto argTypes = getArgTypesForCall(Context, args);
688 
689   FunctionType::ExtInfo info = proto->getExtInfo();
690   return arrangeLLVMFunctionInfo(
691       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
692       /*chainCall=*/false, argTypes, info, paramInfos, required);
693 }
694 
695 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
696   return arrangeLLVMFunctionInfo(
697       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
698       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
699 }
700 
701 const CGFunctionInfo &
702 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
703                           const CallArgList &args) {
704   assert(signature.arg_size() <= args.size());
705   if (signature.arg_size() == args.size())
706     return signature;
707 
708   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
709   auto sigParamInfos = signature.getExtParameterInfos();
710   if (!sigParamInfos.empty()) {
711     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
712     paramInfos.resize(args.size());
713   }
714 
715   auto argTypes = getArgTypesForCall(Context, args);
716 
717   assert(signature.getRequiredArgs().allowsOptionalArgs());
718   return arrangeLLVMFunctionInfo(signature.getReturnType(),
719                                  signature.isInstanceMethod(),
720                                  signature.isChainCall(),
721                                  argTypes,
722                                  signature.getExtInfo(),
723                                  paramInfos,
724                                  signature.getRequiredArgs());
725 }
726 
727 namespace clang {
728 namespace CodeGen {
729 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
730 }
731 }
732 
733 /// Arrange the argument and result information for an abstract value
734 /// of a given function type.  This is the method which all of the
735 /// above functions ultimately defer to.
736 const CGFunctionInfo &
737 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
738                                       bool instanceMethod,
739                                       bool chainCall,
740                                       ArrayRef<CanQualType> argTypes,
741                                       FunctionType::ExtInfo info,
742                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
743                                       RequiredArgs required) {
744   assert(llvm::all_of(argTypes,
745                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
746 
747   // Lookup or create unique function info.
748   llvm::FoldingSetNodeID ID;
749   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
750                           required, resultType, argTypes);
751 
752   void *insertPos = nullptr;
753   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
754   if (FI)
755     return *FI;
756 
757   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
758 
759   // Construct the function info.  We co-allocate the ArgInfos.
760   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
761                               paramInfos, resultType, argTypes, required);
762   FunctionInfos.InsertNode(FI, insertPos);
763 
764   bool inserted = FunctionsBeingProcessed.insert(FI).second;
765   (void)inserted;
766   assert(inserted && "Recursively being processed?");
767 
768   // Compute ABI information.
769   if (CC == llvm::CallingConv::SPIR_KERNEL) {
770     // Force target independent argument handling for the host visible
771     // kernel functions.
772     computeSPIRKernelABIInfo(CGM, *FI);
773   } else if (info.getCC() == CC_Swift) {
774     swiftcall::computeABIInfo(CGM, *FI);
775   } else {
776     getABIInfo().computeInfo(*FI);
777   }
778 
779   // Loop over all of the computed argument and return value info.  If any of
780   // them are direct or extend without a specified coerce type, specify the
781   // default now.
782   ABIArgInfo &retInfo = FI->getReturnInfo();
783   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
784     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
785 
786   for (auto &I : FI->arguments())
787     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
788       I.info.setCoerceToType(ConvertType(I.type));
789 
790   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
791   assert(erased && "Not in set?");
792 
793   return *FI;
794 }
795 
796 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
797                                        bool instanceMethod,
798                                        bool chainCall,
799                                        const FunctionType::ExtInfo &info,
800                                        ArrayRef<ExtParameterInfo> paramInfos,
801                                        CanQualType resultType,
802                                        ArrayRef<CanQualType> argTypes,
803                                        RequiredArgs required) {
804   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
805   assert(!required.allowsOptionalArgs() ||
806          required.getNumRequiredArgs() <= argTypes.size());
807 
808   void *buffer =
809     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
810                                   argTypes.size() + 1, paramInfos.size()));
811 
812   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
813   FI->CallingConvention = llvmCC;
814   FI->EffectiveCallingConvention = llvmCC;
815   FI->ASTCallingConvention = info.getCC();
816   FI->InstanceMethod = instanceMethod;
817   FI->ChainCall = chainCall;
818   FI->NoReturn = info.getNoReturn();
819   FI->ReturnsRetained = info.getProducesResult();
820   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
821   FI->NoCfCheck = info.getNoCfCheck();
822   FI->Required = required;
823   FI->HasRegParm = info.getHasRegParm();
824   FI->RegParm = info.getRegParm();
825   FI->ArgStruct = nullptr;
826   FI->ArgStructAlign = 0;
827   FI->NumArgs = argTypes.size();
828   FI->HasExtParameterInfos = !paramInfos.empty();
829   FI->getArgsBuffer()[0].type = resultType;
830   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
831     FI->getArgsBuffer()[i + 1].type = argTypes[i];
832   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
833     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
834   return FI;
835 }
836 
837 /***/
838 
839 namespace {
840 // ABIArgInfo::Expand implementation.
841 
842 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
843 struct TypeExpansion {
844   enum TypeExpansionKind {
845     // Elements of constant arrays are expanded recursively.
846     TEK_ConstantArray,
847     // Record fields are expanded recursively (but if record is a union, only
848     // the field with the largest size is expanded).
849     TEK_Record,
850     // For complex types, real and imaginary parts are expanded recursively.
851     TEK_Complex,
852     // All other types are not expandable.
853     TEK_None
854   };
855 
856   const TypeExpansionKind Kind;
857 
858   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
859   virtual ~TypeExpansion() {}
860 };
861 
862 struct ConstantArrayExpansion : TypeExpansion {
863   QualType EltTy;
864   uint64_t NumElts;
865 
866   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
867       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
868   static bool classof(const TypeExpansion *TE) {
869     return TE->Kind == TEK_ConstantArray;
870   }
871 };
872 
873 struct RecordExpansion : TypeExpansion {
874   SmallVector<const CXXBaseSpecifier *, 1> Bases;
875 
876   SmallVector<const FieldDecl *, 1> Fields;
877 
878   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
879                   SmallVector<const FieldDecl *, 1> &&Fields)
880       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
881         Fields(std::move(Fields)) {}
882   static bool classof(const TypeExpansion *TE) {
883     return TE->Kind == TEK_Record;
884   }
885 };
886 
887 struct ComplexExpansion : TypeExpansion {
888   QualType EltTy;
889 
890   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
891   static bool classof(const TypeExpansion *TE) {
892     return TE->Kind == TEK_Complex;
893   }
894 };
895 
896 struct NoExpansion : TypeExpansion {
897   NoExpansion() : TypeExpansion(TEK_None) {}
898   static bool classof(const TypeExpansion *TE) {
899     return TE->Kind == TEK_None;
900   }
901 };
902 }  // namespace
903 
904 static std::unique_ptr<TypeExpansion>
905 getTypeExpansion(QualType Ty, const ASTContext &Context) {
906   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
907     return std::make_unique<ConstantArrayExpansion>(
908         AT->getElementType(), AT->getSize().getZExtValue());
909   }
910   if (const RecordType *RT = Ty->getAs<RecordType>()) {
911     SmallVector<const CXXBaseSpecifier *, 1> Bases;
912     SmallVector<const FieldDecl *, 1> Fields;
913     const RecordDecl *RD = RT->getDecl();
914     assert(!RD->hasFlexibleArrayMember() &&
915            "Cannot expand structure with flexible array.");
916     if (RD->isUnion()) {
917       // Unions can be here only in degenerative cases - all the fields are same
918       // after flattening. Thus we have to use the "largest" field.
919       const FieldDecl *LargestFD = nullptr;
920       CharUnits UnionSize = CharUnits::Zero();
921 
922       for (const auto *FD : RD->fields()) {
923         if (FD->isZeroLengthBitField(Context))
924           continue;
925         assert(!FD->isBitField() &&
926                "Cannot expand structure with bit-field members.");
927         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
928         if (UnionSize < FieldSize) {
929           UnionSize = FieldSize;
930           LargestFD = FD;
931         }
932       }
933       if (LargestFD)
934         Fields.push_back(LargestFD);
935     } else {
936       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
937         assert(!CXXRD->isDynamicClass() &&
938                "cannot expand vtable pointers in dynamic classes");
939         for (const CXXBaseSpecifier &BS : CXXRD->bases())
940           Bases.push_back(&BS);
941       }
942 
943       for (const auto *FD : RD->fields()) {
944         if (FD->isZeroLengthBitField(Context))
945           continue;
946         assert(!FD->isBitField() &&
947                "Cannot expand structure with bit-field members.");
948         Fields.push_back(FD);
949       }
950     }
951     return std::make_unique<RecordExpansion>(std::move(Bases),
952                                               std::move(Fields));
953   }
954   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
955     return std::make_unique<ComplexExpansion>(CT->getElementType());
956   }
957   return std::make_unique<NoExpansion>();
958 }
959 
960 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
961   auto Exp = getTypeExpansion(Ty, Context);
962   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
963     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
964   }
965   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
966     int Res = 0;
967     for (auto BS : RExp->Bases)
968       Res += getExpansionSize(BS->getType(), Context);
969     for (auto FD : RExp->Fields)
970       Res += getExpansionSize(FD->getType(), Context);
971     return Res;
972   }
973   if (isa<ComplexExpansion>(Exp.get()))
974     return 2;
975   assert(isa<NoExpansion>(Exp.get()));
976   return 1;
977 }
978 
979 void
980 CodeGenTypes::getExpandedTypes(QualType Ty,
981                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
982   auto Exp = getTypeExpansion(Ty, Context);
983   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
984     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
985       getExpandedTypes(CAExp->EltTy, TI);
986     }
987   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
988     for (auto BS : RExp->Bases)
989       getExpandedTypes(BS->getType(), TI);
990     for (auto FD : RExp->Fields)
991       getExpandedTypes(FD->getType(), TI);
992   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
993     llvm::Type *EltTy = ConvertType(CExp->EltTy);
994     *TI++ = EltTy;
995     *TI++ = EltTy;
996   } else {
997     assert(isa<NoExpansion>(Exp.get()));
998     *TI++ = ConvertType(Ty);
999   }
1000 }
1001 
1002 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1003                                       ConstantArrayExpansion *CAE,
1004                                       Address BaseAddr,
1005                                       llvm::function_ref<void(Address)> Fn) {
1006   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1007   CharUnits EltAlign =
1008     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1009 
1010   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1011     llvm::Value *EltAddr =
1012       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1013     Fn(Address(EltAddr, EltAlign));
1014   }
1015 }
1016 
1017 void CodeGenFunction::ExpandTypeFromArgs(
1018     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1019   assert(LV.isSimple() &&
1020          "Unexpected non-simple lvalue during struct expansion.");
1021 
1022   auto Exp = getTypeExpansion(Ty, getContext());
1023   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1024     forConstantArrayExpansion(
1025         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1026           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1027           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1028         });
1029   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1030     Address This = LV.getAddress(*this);
1031     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1032       // Perform a single step derived-to-base conversion.
1033       Address Base =
1034           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1035                                 /*NullCheckValue=*/false, SourceLocation());
1036       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1037 
1038       // Recurse onto bases.
1039       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1040     }
1041     for (auto FD : RExp->Fields) {
1042       // FIXME: What are the right qualifiers here?
1043       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1044       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1045     }
1046   } else if (isa<ComplexExpansion>(Exp.get())) {
1047     auto realValue = *AI++;
1048     auto imagValue = *AI++;
1049     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1050   } else {
1051     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1052     // primitive store.
1053     assert(isa<NoExpansion>(Exp.get()));
1054     if (LV.isBitField())
1055       EmitStoreThroughLValue(RValue::get(*AI++), LV);
1056     else
1057       EmitStoreOfScalar(*AI++, LV);
1058   }
1059 }
1060 
1061 void CodeGenFunction::ExpandTypeToArgs(
1062     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1063     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1064   auto Exp = getTypeExpansion(Ty, getContext());
1065   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1066     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1067                                    : Arg.getKnownRValue().getAggregateAddress();
1068     forConstantArrayExpansion(
1069         *this, CAExp, Addr, [&](Address EltAddr) {
1070           CallArg EltArg = CallArg(
1071               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1072               CAExp->EltTy);
1073           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1074                            IRCallArgPos);
1075         });
1076   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1077     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1078                                    : Arg.getKnownRValue().getAggregateAddress();
1079     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1080       // Perform a single step derived-to-base conversion.
1081       Address Base =
1082           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1083                                 /*NullCheckValue=*/false, SourceLocation());
1084       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1085 
1086       // Recurse onto bases.
1087       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1088                        IRCallArgPos);
1089     }
1090 
1091     LValue LV = MakeAddrLValue(This, Ty);
1092     for (auto FD : RExp->Fields) {
1093       CallArg FldArg =
1094           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1095       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1096                        IRCallArgPos);
1097     }
1098   } else if (isa<ComplexExpansion>(Exp.get())) {
1099     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1100     IRCallArgs[IRCallArgPos++] = CV.first;
1101     IRCallArgs[IRCallArgPos++] = CV.second;
1102   } else {
1103     assert(isa<NoExpansion>(Exp.get()));
1104     auto RV = Arg.getKnownRValue();
1105     assert(RV.isScalar() &&
1106            "Unexpected non-scalar rvalue during struct expansion.");
1107 
1108     // Insert a bitcast as needed.
1109     llvm::Value *V = RV.getScalarVal();
1110     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1111         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1112       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1113 
1114     IRCallArgs[IRCallArgPos++] = V;
1115   }
1116 }
1117 
1118 /// Create a temporary allocation for the purposes of coercion.
1119 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1120                                            CharUnits MinAlign) {
1121   // Don't use an alignment that's worse than what LLVM would prefer.
1122   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1123   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1124 
1125   return CGF.CreateTempAlloca(Ty, Align);
1126 }
1127 
1128 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1129 /// accessing some number of bytes out of it, try to gep into the struct to get
1130 /// at its inner goodness.  Dive as deep as possible without entering an element
1131 /// with an in-memory size smaller than DstSize.
1132 static Address
1133 EnterStructPointerForCoercedAccess(Address SrcPtr,
1134                                    llvm::StructType *SrcSTy,
1135                                    uint64_t DstSize, CodeGenFunction &CGF) {
1136   // We can't dive into a zero-element struct.
1137   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1138 
1139   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1140 
1141   // If the first elt is at least as large as what we're looking for, or if the
1142   // first element is the same size as the whole struct, we can enter it. The
1143   // comparison must be made on the store size and not the alloca size. Using
1144   // the alloca size may overstate the size of the load.
1145   uint64_t FirstEltSize =
1146     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1147   if (FirstEltSize < DstSize &&
1148       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1149     return SrcPtr;
1150 
1151   // GEP into the first element.
1152   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1153 
1154   // If the first element is a struct, recurse.
1155   llvm::Type *SrcTy = SrcPtr.getElementType();
1156   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1157     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1158 
1159   return SrcPtr;
1160 }
1161 
1162 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1163 /// are either integers or pointers.  This does a truncation of the value if it
1164 /// is too large or a zero extension if it is too small.
1165 ///
1166 /// This behaves as if the value were coerced through memory, so on big-endian
1167 /// targets the high bits are preserved in a truncation, while little-endian
1168 /// targets preserve the low bits.
1169 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1170                                              llvm::Type *Ty,
1171                                              CodeGenFunction &CGF) {
1172   if (Val->getType() == Ty)
1173     return Val;
1174 
1175   if (isa<llvm::PointerType>(Val->getType())) {
1176     // If this is Pointer->Pointer avoid conversion to and from int.
1177     if (isa<llvm::PointerType>(Ty))
1178       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1179 
1180     // Convert the pointer to an integer so we can play with its width.
1181     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1182   }
1183 
1184   llvm::Type *DestIntTy = Ty;
1185   if (isa<llvm::PointerType>(DestIntTy))
1186     DestIntTy = CGF.IntPtrTy;
1187 
1188   if (Val->getType() != DestIntTy) {
1189     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1190     if (DL.isBigEndian()) {
1191       // Preserve the high bits on big-endian targets.
1192       // That is what memory coercion does.
1193       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1194       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1195 
1196       if (SrcSize > DstSize) {
1197         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1198         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1199       } else {
1200         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1201         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1202       }
1203     } else {
1204       // Little-endian targets preserve the low bits. No shifts required.
1205       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1206     }
1207   }
1208 
1209   if (isa<llvm::PointerType>(Ty))
1210     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1211   return Val;
1212 }
1213 
1214 
1215 
1216 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1217 /// a pointer to an object of type \arg Ty, known to be aligned to
1218 /// \arg SrcAlign bytes.
1219 ///
1220 /// This safely handles the case when the src type is smaller than the
1221 /// destination type; in this situation the values of bits which not
1222 /// present in the src are undefined.
1223 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1224                                       CodeGenFunction &CGF) {
1225   llvm::Type *SrcTy = Src.getElementType();
1226 
1227   // If SrcTy and Ty are the same, just do a load.
1228   if (SrcTy == Ty)
1229     return CGF.Builder.CreateLoad(Src);
1230 
1231   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1232 
1233   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1234     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1235     SrcTy = Src.getType()->getElementType();
1236   }
1237 
1238   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1239 
1240   // If the source and destination are integer or pointer types, just do an
1241   // extension or truncation to the desired type.
1242   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1243       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1244     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1245     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1246   }
1247 
1248   // If load is legal, just bitcast the src pointer.
1249   if (SrcSize >= DstSize) {
1250     // Generally SrcSize is never greater than DstSize, since this means we are
1251     // losing bits. However, this can happen in cases where the structure has
1252     // additional padding, for example due to a user specified alignment.
1253     //
1254     // FIXME: Assert that we aren't truncating non-padding bits when have access
1255     // to that information.
1256     Src = CGF.Builder.CreateBitCast(Src,
1257                                     Ty->getPointerTo(Src.getAddressSpace()));
1258     return CGF.Builder.CreateLoad(Src);
1259   }
1260 
1261   // Otherwise do coercion through memory. This is stupid, but simple.
1262   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1263   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1264   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1265   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1266       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1267       false);
1268   return CGF.Builder.CreateLoad(Tmp);
1269 }
1270 
1271 // Function to store a first-class aggregate into memory.  We prefer to
1272 // store the elements rather than the aggregate to be more friendly to
1273 // fast-isel.
1274 // FIXME: Do we need to recurse here?
1275 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1276                           Address Dest, bool DestIsVolatile) {
1277   // Prefer scalar stores to first-class aggregate stores.
1278   if (llvm::StructType *STy =
1279         dyn_cast<llvm::StructType>(Val->getType())) {
1280     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1281       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
1282       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1283       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1284     }
1285   } else {
1286     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1287   }
1288 }
1289 
1290 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1291 /// where the source and destination may have different types.  The
1292 /// destination is known to be aligned to \arg DstAlign bytes.
1293 ///
1294 /// This safely handles the case when the src type is larger than the
1295 /// destination type; the upper bits of the src will be lost.
1296 static void CreateCoercedStore(llvm::Value *Src,
1297                                Address Dst,
1298                                bool DstIsVolatile,
1299                                CodeGenFunction &CGF) {
1300   llvm::Type *SrcTy = Src->getType();
1301   llvm::Type *DstTy = Dst.getType()->getElementType();
1302   if (SrcTy == DstTy) {
1303     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1304     return;
1305   }
1306 
1307   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1308 
1309   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1310     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1311     DstTy = Dst.getType()->getElementType();
1312   }
1313 
1314   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1315   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1316   if (SrcPtrTy && DstPtrTy &&
1317       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1318     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1319     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1320     return;
1321   }
1322 
1323   // If the source and destination are integer or pointer types, just do an
1324   // extension or truncation to the desired type.
1325   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1326       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1327     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1328     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1329     return;
1330   }
1331 
1332   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1333 
1334   // If store is legal, just bitcast the src pointer.
1335   if (SrcSize <= DstSize) {
1336     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1337     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1338   } else {
1339     // Otherwise do coercion through memory. This is stupid, but
1340     // simple.
1341 
1342     // Generally SrcSize is never greater than DstSize, since this means we are
1343     // losing bits. However, this can happen in cases where the structure has
1344     // additional padding, for example due to a user specified alignment.
1345     //
1346     // FIXME: Assert that we aren't truncating non-padding bits when have access
1347     // to that information.
1348     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1349     CGF.Builder.CreateStore(Src, Tmp);
1350     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1351     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1352     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1353         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1354         false);
1355   }
1356 }
1357 
1358 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1359                                    const ABIArgInfo &info) {
1360   if (unsigned offset = info.getDirectOffset()) {
1361     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1362     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1363                                              CharUnits::fromQuantity(offset));
1364     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1365   }
1366   return addr;
1367 }
1368 
1369 namespace {
1370 
1371 /// Encapsulates information about the way function arguments from
1372 /// CGFunctionInfo should be passed to actual LLVM IR function.
1373 class ClangToLLVMArgMapping {
1374   static const unsigned InvalidIndex = ~0U;
1375   unsigned InallocaArgNo;
1376   unsigned SRetArgNo;
1377   unsigned TotalIRArgs;
1378 
1379   /// Arguments of LLVM IR function corresponding to single Clang argument.
1380   struct IRArgs {
1381     unsigned PaddingArgIndex;
1382     // Argument is expanded to IR arguments at positions
1383     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1384     unsigned FirstArgIndex;
1385     unsigned NumberOfArgs;
1386 
1387     IRArgs()
1388         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1389           NumberOfArgs(0) {}
1390   };
1391 
1392   SmallVector<IRArgs, 8> ArgInfo;
1393 
1394 public:
1395   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1396                         bool OnlyRequiredArgs = false)
1397       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1398         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1399     construct(Context, FI, OnlyRequiredArgs);
1400   }
1401 
1402   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1403   unsigned getInallocaArgNo() const {
1404     assert(hasInallocaArg());
1405     return InallocaArgNo;
1406   }
1407 
1408   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1409   unsigned getSRetArgNo() const {
1410     assert(hasSRetArg());
1411     return SRetArgNo;
1412   }
1413 
1414   unsigned totalIRArgs() const { return TotalIRArgs; }
1415 
1416   bool hasPaddingArg(unsigned ArgNo) const {
1417     assert(ArgNo < ArgInfo.size());
1418     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1419   }
1420   unsigned getPaddingArgNo(unsigned ArgNo) const {
1421     assert(hasPaddingArg(ArgNo));
1422     return ArgInfo[ArgNo].PaddingArgIndex;
1423   }
1424 
1425   /// Returns index of first IR argument corresponding to ArgNo, and their
1426   /// quantity.
1427   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1428     assert(ArgNo < ArgInfo.size());
1429     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1430                           ArgInfo[ArgNo].NumberOfArgs);
1431   }
1432 
1433 private:
1434   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1435                  bool OnlyRequiredArgs);
1436 };
1437 
1438 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1439                                       const CGFunctionInfo &FI,
1440                                       bool OnlyRequiredArgs) {
1441   unsigned IRArgNo = 0;
1442   bool SwapThisWithSRet = false;
1443   const ABIArgInfo &RetAI = FI.getReturnInfo();
1444 
1445   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1446     SwapThisWithSRet = RetAI.isSRetAfterThis();
1447     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1448   }
1449 
1450   unsigned ArgNo = 0;
1451   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1452   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1453        ++I, ++ArgNo) {
1454     assert(I != FI.arg_end());
1455     QualType ArgType = I->type;
1456     const ABIArgInfo &AI = I->info;
1457     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1458     auto &IRArgs = ArgInfo[ArgNo];
1459 
1460     if (AI.getPaddingType())
1461       IRArgs.PaddingArgIndex = IRArgNo++;
1462 
1463     switch (AI.getKind()) {
1464     case ABIArgInfo::Extend:
1465     case ABIArgInfo::Direct: {
1466       // FIXME: handle sseregparm someday...
1467       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1468       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1469         IRArgs.NumberOfArgs = STy->getNumElements();
1470       } else {
1471         IRArgs.NumberOfArgs = 1;
1472       }
1473       break;
1474     }
1475     case ABIArgInfo::Indirect:
1476       IRArgs.NumberOfArgs = 1;
1477       break;
1478     case ABIArgInfo::Ignore:
1479     case ABIArgInfo::InAlloca:
1480       // ignore and inalloca doesn't have matching LLVM parameters.
1481       IRArgs.NumberOfArgs = 0;
1482       break;
1483     case ABIArgInfo::CoerceAndExpand:
1484       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1485       break;
1486     case ABIArgInfo::Expand:
1487       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1488       break;
1489     }
1490 
1491     if (IRArgs.NumberOfArgs > 0) {
1492       IRArgs.FirstArgIndex = IRArgNo;
1493       IRArgNo += IRArgs.NumberOfArgs;
1494     }
1495 
1496     // Skip over the sret parameter when it comes second.  We already handled it
1497     // above.
1498     if (IRArgNo == 1 && SwapThisWithSRet)
1499       IRArgNo++;
1500   }
1501   assert(ArgNo == ArgInfo.size());
1502 
1503   if (FI.usesInAlloca())
1504     InallocaArgNo = IRArgNo++;
1505 
1506   TotalIRArgs = IRArgNo;
1507 }
1508 }  // namespace
1509 
1510 /***/
1511 
1512 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1513   const auto &RI = FI.getReturnInfo();
1514   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1515 }
1516 
1517 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1518   return ReturnTypeUsesSRet(FI) &&
1519          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1520 }
1521 
1522 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1523   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1524     switch (BT->getKind()) {
1525     default:
1526       return false;
1527     case BuiltinType::Float:
1528       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1529     case BuiltinType::Double:
1530       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1531     case BuiltinType::LongDouble:
1532       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1533     }
1534   }
1535 
1536   return false;
1537 }
1538 
1539 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1540   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1541     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1542       if (BT->getKind() == BuiltinType::LongDouble)
1543         return getTarget().useObjCFP2RetForComplexLongDouble();
1544     }
1545   }
1546 
1547   return false;
1548 }
1549 
1550 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1551   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1552   return GetFunctionType(FI);
1553 }
1554 
1555 llvm::FunctionType *
1556 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1557 
1558   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1559   (void)Inserted;
1560   assert(Inserted && "Recursively being processed?");
1561 
1562   llvm::Type *resultType = nullptr;
1563   const ABIArgInfo &retAI = FI.getReturnInfo();
1564   switch (retAI.getKind()) {
1565   case ABIArgInfo::Expand:
1566     llvm_unreachable("Invalid ABI kind for return argument");
1567 
1568   case ABIArgInfo::Extend:
1569   case ABIArgInfo::Direct:
1570     resultType = retAI.getCoerceToType();
1571     break;
1572 
1573   case ABIArgInfo::InAlloca:
1574     if (retAI.getInAllocaSRet()) {
1575       // sret things on win32 aren't void, they return the sret pointer.
1576       QualType ret = FI.getReturnType();
1577       llvm::Type *ty = ConvertType(ret);
1578       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1579       resultType = llvm::PointerType::get(ty, addressSpace);
1580     } else {
1581       resultType = llvm::Type::getVoidTy(getLLVMContext());
1582     }
1583     break;
1584 
1585   case ABIArgInfo::Indirect:
1586   case ABIArgInfo::Ignore:
1587     resultType = llvm::Type::getVoidTy(getLLVMContext());
1588     break;
1589 
1590   case ABIArgInfo::CoerceAndExpand:
1591     resultType = retAI.getUnpaddedCoerceAndExpandType();
1592     break;
1593   }
1594 
1595   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1596   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1597 
1598   // Add type for sret argument.
1599   if (IRFunctionArgs.hasSRetArg()) {
1600     QualType Ret = FI.getReturnType();
1601     llvm::Type *Ty = ConvertType(Ret);
1602     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1603     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1604         llvm::PointerType::get(Ty, AddressSpace);
1605   }
1606 
1607   // Add type for inalloca argument.
1608   if (IRFunctionArgs.hasInallocaArg()) {
1609     auto ArgStruct = FI.getArgStruct();
1610     assert(ArgStruct);
1611     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1612   }
1613 
1614   // Add in all of the required arguments.
1615   unsigned ArgNo = 0;
1616   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1617                                      ie = it + FI.getNumRequiredArgs();
1618   for (; it != ie; ++it, ++ArgNo) {
1619     const ABIArgInfo &ArgInfo = it->info;
1620 
1621     // Insert a padding type to ensure proper alignment.
1622     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1623       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1624           ArgInfo.getPaddingType();
1625 
1626     unsigned FirstIRArg, NumIRArgs;
1627     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1628 
1629     switch (ArgInfo.getKind()) {
1630     case ABIArgInfo::Ignore:
1631     case ABIArgInfo::InAlloca:
1632       assert(NumIRArgs == 0);
1633       break;
1634 
1635     case ABIArgInfo::Indirect: {
1636       assert(NumIRArgs == 1);
1637       // indirect arguments are always on the stack, which is alloca addr space.
1638       llvm::Type *LTy = ConvertTypeForMem(it->type);
1639       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1640           CGM.getDataLayout().getAllocaAddrSpace());
1641       break;
1642     }
1643 
1644     case ABIArgInfo::Extend:
1645     case ABIArgInfo::Direct: {
1646       // Fast-isel and the optimizer generally like scalar values better than
1647       // FCAs, so we flatten them if this is safe to do for this argument.
1648       llvm::Type *argType = ArgInfo.getCoerceToType();
1649       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1650       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1651         assert(NumIRArgs == st->getNumElements());
1652         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1653           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1654       } else {
1655         assert(NumIRArgs == 1);
1656         ArgTypes[FirstIRArg] = argType;
1657       }
1658       break;
1659     }
1660 
1661     case ABIArgInfo::CoerceAndExpand: {
1662       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1663       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1664         *ArgTypesIter++ = EltTy;
1665       }
1666       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1667       break;
1668     }
1669 
1670     case ABIArgInfo::Expand:
1671       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1672       getExpandedTypes(it->type, ArgTypesIter);
1673       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1674       break;
1675     }
1676   }
1677 
1678   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1679   assert(Erased && "Not in set?");
1680 
1681   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1682 }
1683 
1684 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1685   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1686   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1687 
1688   if (!isFuncTypeConvertible(FPT))
1689     return llvm::StructType::get(getLLVMContext());
1690 
1691   return GetFunctionType(GD);
1692 }
1693 
1694 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1695                                                llvm::AttrBuilder &FuncAttrs,
1696                                                const FunctionProtoType *FPT) {
1697   if (!FPT)
1698     return;
1699 
1700   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1701       FPT->isNothrow())
1702     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1703 }
1704 
1705 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1706                                                bool AttrOnCallSite,
1707                                                llvm::AttrBuilder &FuncAttrs) {
1708   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1709   if (!HasOptnone) {
1710     if (CodeGenOpts.OptimizeSize)
1711       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1712     if (CodeGenOpts.OptimizeSize == 2)
1713       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1714   }
1715 
1716   if (CodeGenOpts.DisableRedZone)
1717     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1718   if (CodeGenOpts.IndirectTlsSegRefs)
1719     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1720   if (CodeGenOpts.NoImplicitFloat)
1721     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1722 
1723   if (AttrOnCallSite) {
1724     // Attributes that should go on the call site only.
1725     if (!CodeGenOpts.SimplifyLibCalls ||
1726         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1727       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1728     if (!CodeGenOpts.TrapFuncName.empty())
1729       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1730   } else {
1731     StringRef FpKind;
1732     switch (CodeGenOpts.getFramePointer()) {
1733     case CodeGenOptions::FramePointerKind::None:
1734       FpKind = "none";
1735       break;
1736     case CodeGenOptions::FramePointerKind::NonLeaf:
1737       FpKind = "non-leaf";
1738       break;
1739     case CodeGenOptions::FramePointerKind::All:
1740       FpKind = "all";
1741       break;
1742     }
1743     FuncAttrs.addAttribute("frame-pointer", FpKind);
1744 
1745     FuncAttrs.addAttribute("less-precise-fpmad",
1746                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1747 
1748     if (CodeGenOpts.NullPointerIsValid)
1749       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1750     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::Invalid)
1751       FuncAttrs.addAttribute("denormal-fp-math",
1752                              llvm::denormalModeName(CodeGenOpts.FPDenormalMode));
1753 
1754     FuncAttrs.addAttribute("no-trapping-math",
1755                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1756 
1757     // Strict (compliant) code is the default, so only add this attribute to
1758     // indicate that we are trying to workaround a problem case.
1759     if (!CodeGenOpts.StrictFloatCastOverflow)
1760       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1761 
1762     // TODO: Are these all needed?
1763     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1764     FuncAttrs.addAttribute("no-infs-fp-math",
1765                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1766     FuncAttrs.addAttribute("no-nans-fp-math",
1767                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1768     FuncAttrs.addAttribute("unsafe-fp-math",
1769                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1770     FuncAttrs.addAttribute("use-soft-float",
1771                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1772     FuncAttrs.addAttribute("stack-protector-buffer-size",
1773                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1774     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1775                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1776     FuncAttrs.addAttribute(
1777         "correctly-rounded-divide-sqrt-fp-math",
1778         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1779 
1780     if (getLangOpts().OpenCL)
1781       FuncAttrs.addAttribute("denorms-are-zero",
1782                              llvm::toStringRef(CodeGenOpts.FlushDenorm));
1783 
1784     // TODO: Reciprocal estimate codegen options should apply to instructions?
1785     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1786     if (!Recips.empty())
1787       FuncAttrs.addAttribute("reciprocal-estimates",
1788                              llvm::join(Recips, ","));
1789 
1790     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1791         CodeGenOpts.PreferVectorWidth != "none")
1792       FuncAttrs.addAttribute("prefer-vector-width",
1793                              CodeGenOpts.PreferVectorWidth);
1794 
1795     if (CodeGenOpts.StackRealignment)
1796       FuncAttrs.addAttribute("stackrealign");
1797     if (CodeGenOpts.Backchain)
1798       FuncAttrs.addAttribute("backchain");
1799 
1800     if (CodeGenOpts.SpeculativeLoadHardening)
1801       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1802   }
1803 
1804   if (getLangOpts().assumeFunctionsAreConvergent()) {
1805     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1806     // convergent (meaning, they may call an intrinsically convergent op, such
1807     // as __syncthreads() / barrier(), and so can't have certain optimizations
1808     // applied around them).  LLVM will remove this attribute where it safely
1809     // can.
1810     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1811   }
1812 
1813   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1814     // Exceptions aren't supported in CUDA device code.
1815     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1816 
1817     // Respect -fcuda-flush-denormals-to-zero.
1818     if (CodeGenOpts.FlushDenorm)
1819       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1820   }
1821 
1822   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1823     StringRef Var, Value;
1824     std::tie(Var, Value) = Attr.split('=');
1825     FuncAttrs.addAttribute(Var, Value);
1826   }
1827 }
1828 
1829 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1830   llvm::AttrBuilder FuncAttrs;
1831   ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(),
1832                              /* AttrOnCallSite = */ false, FuncAttrs);
1833   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1834 }
1835 
1836 void CodeGenModule::ConstructAttributeList(
1837     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1838     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1839   llvm::AttrBuilder FuncAttrs;
1840   llvm::AttrBuilder RetAttrs;
1841 
1842   CallingConv = FI.getEffectiveCallingConvention();
1843   if (FI.isNoReturn())
1844     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1845 
1846   // If we have information about the function prototype, we can learn
1847   // attributes from there.
1848   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1849                                      CalleeInfo.getCalleeFunctionProtoType());
1850 
1851   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1852 
1853   bool HasOptnone = false;
1854   // FIXME: handle sseregparm someday...
1855   if (TargetDecl) {
1856     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1857       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1858     if (TargetDecl->hasAttr<NoThrowAttr>())
1859       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1860     if (TargetDecl->hasAttr<NoReturnAttr>())
1861       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1862     if (TargetDecl->hasAttr<ColdAttr>())
1863       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1864     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1865       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1866     if (TargetDecl->hasAttr<ConvergentAttr>())
1867       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1868 
1869     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1870       AddAttributesFromFunctionProtoType(
1871           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1872       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1873       const bool IsVirtualCall = MD && MD->isVirtual();
1874       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1875       // virtual function. These attributes are not inherited by overloads.
1876       if (!(AttrOnCallSite && IsVirtualCall)) {
1877         if (Fn->isNoReturn())
1878           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1879 
1880         if (const auto *NBA = TargetDecl->getAttr<NoBuiltinAttr>()) {
1881           bool HasWildcard = llvm::is_contained(NBA->builtinNames(), "*");
1882           if (HasWildcard)
1883             FuncAttrs.addAttribute("no-builtins");
1884           else
1885             for (StringRef BuiltinName : NBA->builtinNames()) {
1886               SmallString<32> AttributeName;
1887               AttributeName += "no-builtin-";
1888               AttributeName += BuiltinName;
1889               FuncAttrs.addAttribute(AttributeName);
1890             }
1891         }
1892       }
1893     }
1894 
1895     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1896     if (TargetDecl->hasAttr<ConstAttr>()) {
1897       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1898       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1899     } else if (TargetDecl->hasAttr<PureAttr>()) {
1900       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1901       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1902     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1903       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1904       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1905     }
1906     if (TargetDecl->hasAttr<RestrictAttr>())
1907       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1908     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1909         !CodeGenOpts.NullPointerIsValid)
1910       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1911     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1912       FuncAttrs.addAttribute("no_caller_saved_registers");
1913     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1914       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1915 
1916     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1917     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1918       Optional<unsigned> NumElemsParam;
1919       if (AllocSize->getNumElemsParam().isValid())
1920         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1921       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1922                                  NumElemsParam);
1923     }
1924   }
1925 
1926   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1927 
1928   // This must run after constructing the default function attribute list
1929   // to ensure that the speculative load hardening attribute is removed
1930   // in the case where the -mspeculative-load-hardening flag was passed.
1931   if (TargetDecl) {
1932     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1933       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1934     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1935       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1936   }
1937 
1938   if (CodeGenOpts.EnableSegmentedStacks &&
1939       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1940     FuncAttrs.addAttribute("split-stack");
1941 
1942   // Add NonLazyBind attribute to function declarations when -fno-plt
1943   // is used.
1944   if (TargetDecl && CodeGenOpts.NoPLT) {
1945     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1946       if (!Fn->isDefined() && !AttrOnCallSite) {
1947         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1948       }
1949     }
1950   }
1951 
1952   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1953     if (getLangOpts().OpenCLVersion <= 120) {
1954       // OpenCL v1.2 Work groups are always uniform
1955       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1956     } else {
1957       // OpenCL v2.0 Work groups may be whether uniform or not.
1958       // '-cl-uniform-work-group-size' compile option gets a hint
1959       // to the compiler that the global work-size be a multiple of
1960       // the work-group size specified to clEnqueueNDRangeKernel
1961       // (i.e. work groups are uniform).
1962       FuncAttrs.addAttribute("uniform-work-group-size",
1963                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1964     }
1965   }
1966 
1967   if (!AttrOnCallSite) {
1968     bool DisableTailCalls = false;
1969 
1970     if (CodeGenOpts.DisableTailCalls)
1971       DisableTailCalls = true;
1972     else if (TargetDecl) {
1973       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1974           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1975         DisableTailCalls = true;
1976       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1977         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1978           if (!BD->doesNotEscape())
1979             DisableTailCalls = true;
1980       }
1981     }
1982 
1983     FuncAttrs.addAttribute("disable-tail-calls",
1984                            llvm::toStringRef(DisableTailCalls));
1985     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1986   }
1987 
1988   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1989 
1990   QualType RetTy = FI.getReturnType();
1991   const ABIArgInfo &RetAI = FI.getReturnInfo();
1992   switch (RetAI.getKind()) {
1993   case ABIArgInfo::Extend:
1994     if (RetAI.isSignExt())
1995       RetAttrs.addAttribute(llvm::Attribute::SExt);
1996     else
1997       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1998     LLVM_FALLTHROUGH;
1999   case ABIArgInfo::Direct:
2000     if (RetAI.getInReg())
2001       RetAttrs.addAttribute(llvm::Attribute::InReg);
2002     break;
2003   case ABIArgInfo::Ignore:
2004     break;
2005 
2006   case ABIArgInfo::InAlloca:
2007   case ABIArgInfo::Indirect: {
2008     // inalloca and sret disable readnone and readonly
2009     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2010       .removeAttribute(llvm::Attribute::ReadNone);
2011     break;
2012   }
2013 
2014   case ABIArgInfo::CoerceAndExpand:
2015     break;
2016 
2017   case ABIArgInfo::Expand:
2018     llvm_unreachable("Invalid ABI kind for return argument");
2019   }
2020 
2021   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2022     QualType PTy = RefTy->getPointeeType();
2023     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2024       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2025                                         .getQuantity());
2026     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2027              !CodeGenOpts.NullPointerIsValid)
2028       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2029   }
2030 
2031   bool hasUsedSRet = false;
2032   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2033 
2034   // Attach attributes to sret.
2035   if (IRFunctionArgs.hasSRetArg()) {
2036     llvm::AttrBuilder SRETAttrs;
2037     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2038     hasUsedSRet = true;
2039     if (RetAI.getInReg())
2040       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2041     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2042         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2043   }
2044 
2045   // Attach attributes to inalloca argument.
2046   if (IRFunctionArgs.hasInallocaArg()) {
2047     llvm::AttrBuilder Attrs;
2048     Attrs.addAttribute(llvm::Attribute::InAlloca);
2049     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2050         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2051   }
2052 
2053   unsigned ArgNo = 0;
2054   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2055                                           E = FI.arg_end();
2056        I != E; ++I, ++ArgNo) {
2057     QualType ParamType = I->type;
2058     const ABIArgInfo &AI = I->info;
2059     llvm::AttrBuilder Attrs;
2060 
2061     // Add attribute for padding argument, if necessary.
2062     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2063       if (AI.getPaddingInReg()) {
2064         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2065             llvm::AttributeSet::get(
2066                 getLLVMContext(),
2067                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2068       }
2069     }
2070 
2071     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2072     // have the corresponding parameter variable.  It doesn't make
2073     // sense to do it here because parameters are so messed up.
2074     switch (AI.getKind()) {
2075     case ABIArgInfo::Extend:
2076       if (AI.isSignExt())
2077         Attrs.addAttribute(llvm::Attribute::SExt);
2078       else
2079         Attrs.addAttribute(llvm::Attribute::ZExt);
2080       LLVM_FALLTHROUGH;
2081     case ABIArgInfo::Direct:
2082       if (ArgNo == 0 && FI.isChainCall())
2083         Attrs.addAttribute(llvm::Attribute::Nest);
2084       else if (AI.getInReg())
2085         Attrs.addAttribute(llvm::Attribute::InReg);
2086       break;
2087 
2088     case ABIArgInfo::Indirect: {
2089       if (AI.getInReg())
2090         Attrs.addAttribute(llvm::Attribute::InReg);
2091 
2092       if (AI.getIndirectByVal())
2093         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2094 
2095       CharUnits Align = AI.getIndirectAlign();
2096 
2097       // In a byval argument, it is important that the required
2098       // alignment of the type is honored, as LLVM might be creating a
2099       // *new* stack object, and needs to know what alignment to give
2100       // it. (Sometimes it can deduce a sensible alignment on its own,
2101       // but not if clang decides it must emit a packed struct, or the
2102       // user specifies increased alignment requirements.)
2103       //
2104       // This is different from indirect *not* byval, where the object
2105       // exists already, and the align attribute is purely
2106       // informative.
2107       assert(!Align.isZero());
2108 
2109       // For now, only add this when we have a byval argument.
2110       // TODO: be less lazy about updating test cases.
2111       if (AI.getIndirectByVal())
2112         Attrs.addAlignmentAttr(Align.getQuantity());
2113 
2114       // byval disables readnone and readonly.
2115       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2116         .removeAttribute(llvm::Attribute::ReadNone);
2117       break;
2118     }
2119     case ABIArgInfo::Ignore:
2120     case ABIArgInfo::Expand:
2121     case ABIArgInfo::CoerceAndExpand:
2122       break;
2123 
2124     case ABIArgInfo::InAlloca:
2125       // inalloca disables readnone and readonly.
2126       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2127           .removeAttribute(llvm::Attribute::ReadNone);
2128       continue;
2129     }
2130 
2131     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2132       QualType PTy = RefTy->getPointeeType();
2133       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2134         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2135                                        .getQuantity());
2136       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2137                !CodeGenOpts.NullPointerIsValid)
2138         Attrs.addAttribute(llvm::Attribute::NonNull);
2139     }
2140 
2141     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2142     case ParameterABI::Ordinary:
2143       break;
2144 
2145     case ParameterABI::SwiftIndirectResult: {
2146       // Add 'sret' if we haven't already used it for something, but
2147       // only if the result is void.
2148       if (!hasUsedSRet && RetTy->isVoidType()) {
2149         Attrs.addAttribute(llvm::Attribute::StructRet);
2150         hasUsedSRet = true;
2151       }
2152 
2153       // Add 'noalias' in either case.
2154       Attrs.addAttribute(llvm::Attribute::NoAlias);
2155 
2156       // Add 'dereferenceable' and 'alignment'.
2157       auto PTy = ParamType->getPointeeType();
2158       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2159         auto info = getContext().getTypeInfoInChars(PTy);
2160         Attrs.addDereferenceableAttr(info.first.getQuantity());
2161         Attrs.addAttribute(llvm::Attribute::getWithAlignment(
2162             getLLVMContext(), info.second.getAsAlign()));
2163       }
2164       break;
2165     }
2166 
2167     case ParameterABI::SwiftErrorResult:
2168       Attrs.addAttribute(llvm::Attribute::SwiftError);
2169       break;
2170 
2171     case ParameterABI::SwiftContext:
2172       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2173       break;
2174     }
2175 
2176     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2177       Attrs.addAttribute(llvm::Attribute::NoCapture);
2178 
2179     if (Attrs.hasAttributes()) {
2180       unsigned FirstIRArg, NumIRArgs;
2181       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2182       for (unsigned i = 0; i < NumIRArgs; i++)
2183         ArgAttrs[FirstIRArg + i] =
2184             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2185     }
2186   }
2187   assert(ArgNo == FI.arg_size());
2188 
2189   AttrList = llvm::AttributeList::get(
2190       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2191       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2192 }
2193 
2194 /// An argument came in as a promoted argument; demote it back to its
2195 /// declared type.
2196 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2197                                          const VarDecl *var,
2198                                          llvm::Value *value) {
2199   llvm::Type *varType = CGF.ConvertType(var->getType());
2200 
2201   // This can happen with promotions that actually don't change the
2202   // underlying type, like the enum promotions.
2203   if (value->getType() == varType) return value;
2204 
2205   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2206          && "unexpected promotion type");
2207 
2208   if (isa<llvm::IntegerType>(varType))
2209     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2210 
2211   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2212 }
2213 
2214 /// Returns the attribute (either parameter attribute, or function
2215 /// attribute), which declares argument ArgNo to be non-null.
2216 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2217                                          QualType ArgType, unsigned ArgNo) {
2218   // FIXME: __attribute__((nonnull)) can also be applied to:
2219   //   - references to pointers, where the pointee is known to be
2220   //     nonnull (apparently a Clang extension)
2221   //   - transparent unions containing pointers
2222   // In the former case, LLVM IR cannot represent the constraint. In
2223   // the latter case, we have no guarantee that the transparent union
2224   // is in fact passed as a pointer.
2225   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2226     return nullptr;
2227   // First, check attribute on parameter itself.
2228   if (PVD) {
2229     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2230       return ParmNNAttr;
2231   }
2232   // Check function attributes.
2233   if (!FD)
2234     return nullptr;
2235   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2236     if (NNAttr->isNonNull(ArgNo))
2237       return NNAttr;
2238   }
2239   return nullptr;
2240 }
2241 
2242 namespace {
2243   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2244     Address Temp;
2245     Address Arg;
2246     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2247     void Emit(CodeGenFunction &CGF, Flags flags) override {
2248       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2249       CGF.Builder.CreateStore(errorValue, Arg);
2250     }
2251   };
2252 }
2253 
2254 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2255                                          llvm::Function *Fn,
2256                                          const FunctionArgList &Args) {
2257   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2258     // Naked functions don't have prologues.
2259     return;
2260 
2261   // If this is an implicit-return-zero function, go ahead and
2262   // initialize the return value.  TODO: it might be nice to have
2263   // a more general mechanism for this that didn't require synthesized
2264   // return statements.
2265   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2266     if (FD->hasImplicitReturnZero()) {
2267       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2268       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2269       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2270       Builder.CreateStore(Zero, ReturnValue);
2271     }
2272   }
2273 
2274   // FIXME: We no longer need the types from FunctionArgList; lift up and
2275   // simplify.
2276 
2277   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2278   // Flattened function arguments.
2279   SmallVector<llvm::Value *, 16> FnArgs;
2280   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2281   for (auto &Arg : Fn->args()) {
2282     FnArgs.push_back(&Arg);
2283   }
2284   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2285 
2286   // If we're using inalloca, all the memory arguments are GEPs off of the last
2287   // parameter, which is a pointer to the complete memory area.
2288   Address ArgStruct = Address::invalid();
2289   if (IRFunctionArgs.hasInallocaArg()) {
2290     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2291                         FI.getArgStructAlignment());
2292 
2293     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2294   }
2295 
2296   // Name the struct return parameter.
2297   if (IRFunctionArgs.hasSRetArg()) {
2298     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2299     AI->setName("agg.result");
2300     AI->addAttr(llvm::Attribute::NoAlias);
2301   }
2302 
2303   // Track if we received the parameter as a pointer (indirect, byval, or
2304   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2305   // into a local alloca for us.
2306   SmallVector<ParamValue, 16> ArgVals;
2307   ArgVals.reserve(Args.size());
2308 
2309   // Create a pointer value for every parameter declaration.  This usually
2310   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2311   // any cleanups or do anything that might unwind.  We do that separately, so
2312   // we can push the cleanups in the correct order for the ABI.
2313   assert(FI.arg_size() == Args.size() &&
2314          "Mismatch between function signature & arguments.");
2315   unsigned ArgNo = 0;
2316   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2317   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2318        i != e; ++i, ++info_it, ++ArgNo) {
2319     const VarDecl *Arg = *i;
2320     const ABIArgInfo &ArgI = info_it->info;
2321 
2322     bool isPromoted =
2323       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2324     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2325     // the parameter is promoted. In this case we convert to
2326     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2327     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2328     assert(hasScalarEvaluationKind(Ty) ==
2329            hasScalarEvaluationKind(Arg->getType()));
2330 
2331     unsigned FirstIRArg, NumIRArgs;
2332     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2333 
2334     switch (ArgI.getKind()) {
2335     case ABIArgInfo::InAlloca: {
2336       assert(NumIRArgs == 0);
2337       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2338       Address V =
2339           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2340       ArgVals.push_back(ParamValue::forIndirect(V));
2341       break;
2342     }
2343 
2344     case ABIArgInfo::Indirect: {
2345       assert(NumIRArgs == 1);
2346       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2347 
2348       if (!hasScalarEvaluationKind(Ty)) {
2349         // Aggregates and complex variables are accessed by reference.  All we
2350         // need to do is realign the value, if requested.
2351         Address V = ParamAddr;
2352         if (ArgI.getIndirectRealign()) {
2353           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2354 
2355           // Copy from the incoming argument pointer to the temporary with the
2356           // appropriate alignment.
2357           //
2358           // FIXME: We should have a common utility for generating an aggregate
2359           // copy.
2360           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2361           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2362           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2363           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2364           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2365           V = AlignedTemp;
2366         }
2367         ArgVals.push_back(ParamValue::forIndirect(V));
2368       } else {
2369         // Load scalar value from indirect argument.
2370         llvm::Value *V =
2371             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2372 
2373         if (isPromoted)
2374           V = emitArgumentDemotion(*this, Arg, V);
2375         ArgVals.push_back(ParamValue::forDirect(V));
2376       }
2377       break;
2378     }
2379 
2380     case ABIArgInfo::Extend:
2381     case ABIArgInfo::Direct: {
2382 
2383       // If we have the trivial case, handle it with no muss and fuss.
2384       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2385           ArgI.getCoerceToType() == ConvertType(Ty) &&
2386           ArgI.getDirectOffset() == 0) {
2387         assert(NumIRArgs == 1);
2388         llvm::Value *V = FnArgs[FirstIRArg];
2389         auto AI = cast<llvm::Argument>(V);
2390 
2391         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2392           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2393                              PVD->getFunctionScopeIndex()) &&
2394               !CGM.getCodeGenOpts().NullPointerIsValid)
2395             AI->addAttr(llvm::Attribute::NonNull);
2396 
2397           QualType OTy = PVD->getOriginalType();
2398           if (const auto *ArrTy =
2399               getContext().getAsConstantArrayType(OTy)) {
2400             // A C99 array parameter declaration with the static keyword also
2401             // indicates dereferenceability, and if the size is constant we can
2402             // use the dereferenceable attribute (which requires the size in
2403             // bytes).
2404             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2405               QualType ETy = ArrTy->getElementType();
2406               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2407               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2408                   ArrSize) {
2409                 llvm::AttrBuilder Attrs;
2410                 Attrs.addDereferenceableAttr(
2411                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2412                 AI->addAttrs(Attrs);
2413               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2414                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2415                 AI->addAttr(llvm::Attribute::NonNull);
2416               }
2417             }
2418           } else if (const auto *ArrTy =
2419                      getContext().getAsVariableArrayType(OTy)) {
2420             // For C99 VLAs with the static keyword, we don't know the size so
2421             // we can't use the dereferenceable attribute, but in addrspace(0)
2422             // we know that it must be nonnull.
2423             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2424                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2425                 !CGM.getCodeGenOpts().NullPointerIsValid)
2426               AI->addAttr(llvm::Attribute::NonNull);
2427           }
2428 
2429           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2430           if (!AVAttr)
2431             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2432               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2433           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2434             // If alignment-assumption sanitizer is enabled, we do *not* add
2435             // alignment attribute here, but emit normal alignment assumption,
2436             // so the UBSAN check could function.
2437             llvm::Value *AlignmentValue =
2438               EmitScalarExpr(AVAttr->getAlignment());
2439             llvm::ConstantInt *AlignmentCI =
2440               cast<llvm::ConstantInt>(AlignmentValue);
2441             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2442                                           +llvm::Value::MaximumAlignment);
2443             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2444           }
2445         }
2446 
2447         if (Arg->getType().isRestrictQualified())
2448           AI->addAttr(llvm::Attribute::NoAlias);
2449 
2450         // LLVM expects swifterror parameters to be used in very restricted
2451         // ways.  Copy the value into a less-restricted temporary.
2452         if (FI.getExtParameterInfo(ArgNo).getABI()
2453               == ParameterABI::SwiftErrorResult) {
2454           QualType pointeeTy = Ty->getPointeeType();
2455           assert(pointeeTy->isPointerType());
2456           Address temp =
2457             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2458           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2459           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2460           Builder.CreateStore(incomingErrorValue, temp);
2461           V = temp.getPointer();
2462 
2463           // Push a cleanup to copy the value back at the end of the function.
2464           // The convention does not guarantee that the value will be written
2465           // back if the function exits with an unwind exception.
2466           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2467         }
2468 
2469         // Ensure the argument is the correct type.
2470         if (V->getType() != ArgI.getCoerceToType())
2471           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2472 
2473         if (isPromoted)
2474           V = emitArgumentDemotion(*this, Arg, V);
2475 
2476         // Because of merging of function types from multiple decls it is
2477         // possible for the type of an argument to not match the corresponding
2478         // type in the function type. Since we are codegening the callee
2479         // in here, add a cast to the argument type.
2480         llvm::Type *LTy = ConvertType(Arg->getType());
2481         if (V->getType() != LTy)
2482           V = Builder.CreateBitCast(V, LTy);
2483 
2484         ArgVals.push_back(ParamValue::forDirect(V));
2485         break;
2486       }
2487 
2488       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2489                                      Arg->getName());
2490 
2491       // Pointer to store into.
2492       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2493 
2494       // Fast-isel and the optimizer generally like scalar values better than
2495       // FCAs, so we flatten them if this is safe to do for this argument.
2496       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2497       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2498           STy->getNumElements() > 1) {
2499         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2500         llvm::Type *DstTy = Ptr.getElementType();
2501         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2502 
2503         Address AddrToStoreInto = Address::invalid();
2504         if (SrcSize <= DstSize) {
2505           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2506         } else {
2507           AddrToStoreInto =
2508             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2509         }
2510 
2511         assert(STy->getNumElements() == NumIRArgs);
2512         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2513           auto AI = FnArgs[FirstIRArg + i];
2514           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2515           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2516           Builder.CreateStore(AI, EltPtr);
2517         }
2518 
2519         if (SrcSize > DstSize) {
2520           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2521         }
2522 
2523       } else {
2524         // Simple case, just do a coerced store of the argument into the alloca.
2525         assert(NumIRArgs == 1);
2526         auto AI = FnArgs[FirstIRArg];
2527         AI->setName(Arg->getName() + ".coerce");
2528         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2529       }
2530 
2531       // Match to what EmitParmDecl is expecting for this type.
2532       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2533         llvm::Value *V =
2534             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2535         if (isPromoted)
2536           V = emitArgumentDemotion(*this, Arg, V);
2537         ArgVals.push_back(ParamValue::forDirect(V));
2538       } else {
2539         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2540       }
2541       break;
2542     }
2543 
2544     case ABIArgInfo::CoerceAndExpand: {
2545       // Reconstruct into a temporary.
2546       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2547       ArgVals.push_back(ParamValue::forIndirect(alloca));
2548 
2549       auto coercionType = ArgI.getCoerceAndExpandType();
2550       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2551 
2552       unsigned argIndex = FirstIRArg;
2553       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2554         llvm::Type *eltType = coercionType->getElementType(i);
2555         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2556           continue;
2557 
2558         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2559         auto elt = FnArgs[argIndex++];
2560         Builder.CreateStore(elt, eltAddr);
2561       }
2562       assert(argIndex == FirstIRArg + NumIRArgs);
2563       break;
2564     }
2565 
2566     case ABIArgInfo::Expand: {
2567       // If this structure was expanded into multiple arguments then
2568       // we need to create a temporary and reconstruct it from the
2569       // arguments.
2570       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2571       LValue LV = MakeAddrLValue(Alloca, Ty);
2572       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2573 
2574       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2575       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2576       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2577       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2578         auto AI = FnArgs[FirstIRArg + i];
2579         AI->setName(Arg->getName() + "." + Twine(i));
2580       }
2581       break;
2582     }
2583 
2584     case ABIArgInfo::Ignore:
2585       assert(NumIRArgs == 0);
2586       // Initialize the local variable appropriately.
2587       if (!hasScalarEvaluationKind(Ty)) {
2588         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2589       } else {
2590         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2591         ArgVals.push_back(ParamValue::forDirect(U));
2592       }
2593       break;
2594     }
2595   }
2596 
2597   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2598     for (int I = Args.size() - 1; I >= 0; --I)
2599       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2600   } else {
2601     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2602       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2603   }
2604 }
2605 
2606 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2607   while (insn->use_empty()) {
2608     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2609     if (!bitcast) return;
2610 
2611     // This is "safe" because we would have used a ConstantExpr otherwise.
2612     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2613     bitcast->eraseFromParent();
2614   }
2615 }
2616 
2617 /// Try to emit a fused autorelease of a return result.
2618 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2619                                                     llvm::Value *result) {
2620   // We must be immediately followed the cast.
2621   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2622   if (BB->empty()) return nullptr;
2623   if (&BB->back() != result) return nullptr;
2624 
2625   llvm::Type *resultType = result->getType();
2626 
2627   // result is in a BasicBlock and is therefore an Instruction.
2628   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2629 
2630   SmallVector<llvm::Instruction *, 4> InstsToKill;
2631 
2632   // Look for:
2633   //  %generator = bitcast %type1* %generator2 to %type2*
2634   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2635     // We would have emitted this as a constant if the operand weren't
2636     // an Instruction.
2637     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2638 
2639     // Require the generator to be immediately followed by the cast.
2640     if (generator->getNextNode() != bitcast)
2641       return nullptr;
2642 
2643     InstsToKill.push_back(bitcast);
2644   }
2645 
2646   // Look for:
2647   //   %generator = call i8* @objc_retain(i8* %originalResult)
2648   // or
2649   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2650   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2651   if (!call) return nullptr;
2652 
2653   bool doRetainAutorelease;
2654 
2655   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2656     doRetainAutorelease = true;
2657   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2658                                           .objc_retainAutoreleasedReturnValue) {
2659     doRetainAutorelease = false;
2660 
2661     // If we emitted an assembly marker for this call (and the
2662     // ARCEntrypoints field should have been set if so), go looking
2663     // for that call.  If we can't find it, we can't do this
2664     // optimization.  But it should always be the immediately previous
2665     // instruction, unless we needed bitcasts around the call.
2666     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2667       llvm::Instruction *prev = call->getPrevNode();
2668       assert(prev);
2669       if (isa<llvm::BitCastInst>(prev)) {
2670         prev = prev->getPrevNode();
2671         assert(prev);
2672       }
2673       assert(isa<llvm::CallInst>(prev));
2674       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2675                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2676       InstsToKill.push_back(prev);
2677     }
2678   } else {
2679     return nullptr;
2680   }
2681 
2682   result = call->getArgOperand(0);
2683   InstsToKill.push_back(call);
2684 
2685   // Keep killing bitcasts, for sanity.  Note that we no longer care
2686   // about precise ordering as long as there's exactly one use.
2687   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2688     if (!bitcast->hasOneUse()) break;
2689     InstsToKill.push_back(bitcast);
2690     result = bitcast->getOperand(0);
2691   }
2692 
2693   // Delete all the unnecessary instructions, from latest to earliest.
2694   for (auto *I : InstsToKill)
2695     I->eraseFromParent();
2696 
2697   // Do the fused retain/autorelease if we were asked to.
2698   if (doRetainAutorelease)
2699     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2700 
2701   // Cast back to the result type.
2702   return CGF.Builder.CreateBitCast(result, resultType);
2703 }
2704 
2705 /// If this is a +1 of the value of an immutable 'self', remove it.
2706 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2707                                           llvm::Value *result) {
2708   // This is only applicable to a method with an immutable 'self'.
2709   const ObjCMethodDecl *method =
2710     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2711   if (!method) return nullptr;
2712   const VarDecl *self = method->getSelfDecl();
2713   if (!self->getType().isConstQualified()) return nullptr;
2714 
2715   // Look for a retain call.
2716   llvm::CallInst *retainCall =
2717     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2718   if (!retainCall ||
2719       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2720     return nullptr;
2721 
2722   // Look for an ordinary load of 'self'.
2723   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2724   llvm::LoadInst *load =
2725     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2726   if (!load || load->isAtomic() || load->isVolatile() ||
2727       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2728     return nullptr;
2729 
2730   // Okay!  Burn it all down.  This relies for correctness on the
2731   // assumption that the retain is emitted as part of the return and
2732   // that thereafter everything is used "linearly".
2733   llvm::Type *resultType = result->getType();
2734   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2735   assert(retainCall->use_empty());
2736   retainCall->eraseFromParent();
2737   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2738 
2739   return CGF.Builder.CreateBitCast(load, resultType);
2740 }
2741 
2742 /// Emit an ARC autorelease of the result of a function.
2743 ///
2744 /// \return the value to actually return from the function
2745 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2746                                             llvm::Value *result) {
2747   // If we're returning 'self', kill the initial retain.  This is a
2748   // heuristic attempt to "encourage correctness" in the really unfortunate
2749   // case where we have a return of self during a dealloc and we desperately
2750   // need to avoid the possible autorelease.
2751   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2752     return self;
2753 
2754   // At -O0, try to emit a fused retain/autorelease.
2755   if (CGF.shouldUseFusedARCCalls())
2756     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2757       return fused;
2758 
2759   return CGF.EmitARCAutoreleaseReturnValue(result);
2760 }
2761 
2762 /// Heuristically search for a dominating store to the return-value slot.
2763 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2764   // Check if a User is a store which pointerOperand is the ReturnValue.
2765   // We are looking for stores to the ReturnValue, not for stores of the
2766   // ReturnValue to some other location.
2767   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2768     auto *SI = dyn_cast<llvm::StoreInst>(U);
2769     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2770       return nullptr;
2771     // These aren't actually possible for non-coerced returns, and we
2772     // only care about non-coerced returns on this code path.
2773     assert(!SI->isAtomic() && !SI->isVolatile());
2774     return SI;
2775   };
2776   // If there are multiple uses of the return-value slot, just check
2777   // for something immediately preceding the IP.  Sometimes this can
2778   // happen with how we generate implicit-returns; it can also happen
2779   // with noreturn cleanups.
2780   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2781     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2782     if (IP->empty()) return nullptr;
2783     llvm::Instruction *I = &IP->back();
2784 
2785     // Skip lifetime markers
2786     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2787                                             IE = IP->rend();
2788          II != IE; ++II) {
2789       if (llvm::IntrinsicInst *Intrinsic =
2790               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2791         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2792           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2793           ++II;
2794           if (II == IE)
2795             break;
2796           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2797             continue;
2798         }
2799       }
2800       I = &*II;
2801       break;
2802     }
2803 
2804     return GetStoreIfValid(I);
2805   }
2806 
2807   llvm::StoreInst *store =
2808       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2809   if (!store) return nullptr;
2810 
2811   // Now do a first-and-dirty dominance check: just walk up the
2812   // single-predecessors chain from the current insertion point.
2813   llvm::BasicBlock *StoreBB = store->getParent();
2814   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2815   while (IP != StoreBB) {
2816     if (!(IP = IP->getSinglePredecessor()))
2817       return nullptr;
2818   }
2819 
2820   // Okay, the store's basic block dominates the insertion point; we
2821   // can do our thing.
2822   return store;
2823 }
2824 
2825 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2826                                          bool EmitRetDbgLoc,
2827                                          SourceLocation EndLoc) {
2828   if (FI.isNoReturn()) {
2829     // Noreturn functions don't return.
2830     EmitUnreachable(EndLoc);
2831     return;
2832   }
2833 
2834   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2835     // Naked functions don't have epilogues.
2836     Builder.CreateUnreachable();
2837     return;
2838   }
2839 
2840   // Functions with no result always return void.
2841   if (!ReturnValue.isValid()) {
2842     Builder.CreateRetVoid();
2843     return;
2844   }
2845 
2846   llvm::DebugLoc RetDbgLoc;
2847   llvm::Value *RV = nullptr;
2848   QualType RetTy = FI.getReturnType();
2849   const ABIArgInfo &RetAI = FI.getReturnInfo();
2850 
2851   switch (RetAI.getKind()) {
2852   case ABIArgInfo::InAlloca:
2853     // Aggregrates get evaluated directly into the destination.  Sometimes we
2854     // need to return the sret value in a register, though.
2855     assert(hasAggregateEvaluationKind(RetTy));
2856     if (RetAI.getInAllocaSRet()) {
2857       llvm::Function::arg_iterator EI = CurFn->arg_end();
2858       --EI;
2859       llvm::Value *ArgStruct = &*EI;
2860       llvm::Value *SRet = Builder.CreateStructGEP(
2861           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2862       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2863     }
2864     break;
2865 
2866   case ABIArgInfo::Indirect: {
2867     auto AI = CurFn->arg_begin();
2868     if (RetAI.isSRetAfterThis())
2869       ++AI;
2870     switch (getEvaluationKind(RetTy)) {
2871     case TEK_Complex: {
2872       ComplexPairTy RT =
2873         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2874       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2875                          /*isInit*/ true);
2876       break;
2877     }
2878     case TEK_Aggregate:
2879       // Do nothing; aggregrates get evaluated directly into the destination.
2880       break;
2881     case TEK_Scalar:
2882       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2883                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2884                         /*isInit*/ true);
2885       break;
2886     }
2887     break;
2888   }
2889 
2890   case ABIArgInfo::Extend:
2891   case ABIArgInfo::Direct:
2892     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2893         RetAI.getDirectOffset() == 0) {
2894       // The internal return value temp always will have pointer-to-return-type
2895       // type, just do a load.
2896 
2897       // If there is a dominating store to ReturnValue, we can elide
2898       // the load, zap the store, and usually zap the alloca.
2899       if (llvm::StoreInst *SI =
2900               findDominatingStoreToReturnValue(*this)) {
2901         // Reuse the debug location from the store unless there is
2902         // cleanup code to be emitted between the store and return
2903         // instruction.
2904         if (EmitRetDbgLoc && !AutoreleaseResult)
2905           RetDbgLoc = SI->getDebugLoc();
2906         // Get the stored value and nuke the now-dead store.
2907         RV = SI->getValueOperand();
2908         SI->eraseFromParent();
2909 
2910       // Otherwise, we have to do a simple load.
2911       } else {
2912         RV = Builder.CreateLoad(ReturnValue);
2913       }
2914     } else {
2915       // If the value is offset in memory, apply the offset now.
2916       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2917 
2918       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2919     }
2920 
2921     // In ARC, end functions that return a retainable type with a call
2922     // to objc_autoreleaseReturnValue.
2923     if (AutoreleaseResult) {
2924 #ifndef NDEBUG
2925       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2926       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2927       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2928       // CurCodeDecl or BlockInfo.
2929       QualType RT;
2930 
2931       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2932         RT = FD->getReturnType();
2933       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2934         RT = MD->getReturnType();
2935       else if (isa<BlockDecl>(CurCodeDecl))
2936         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2937       else
2938         llvm_unreachable("Unexpected function/method type");
2939 
2940       assert(getLangOpts().ObjCAutoRefCount &&
2941              !FI.isReturnsRetained() &&
2942              RT->isObjCRetainableType());
2943 #endif
2944       RV = emitAutoreleaseOfResult(*this, RV);
2945     }
2946 
2947     break;
2948 
2949   case ABIArgInfo::Ignore:
2950     break;
2951 
2952   case ABIArgInfo::CoerceAndExpand: {
2953     auto coercionType = RetAI.getCoerceAndExpandType();
2954 
2955     // Load all of the coerced elements out into results.
2956     llvm::SmallVector<llvm::Value*, 4> results;
2957     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2958     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2959       auto coercedEltType = coercionType->getElementType(i);
2960       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2961         continue;
2962 
2963       auto eltAddr = Builder.CreateStructGEP(addr, i);
2964       auto elt = Builder.CreateLoad(eltAddr);
2965       results.push_back(elt);
2966     }
2967 
2968     // If we have one result, it's the single direct result type.
2969     if (results.size() == 1) {
2970       RV = results[0];
2971 
2972     // Otherwise, we need to make a first-class aggregate.
2973     } else {
2974       // Construct a return type that lacks padding elements.
2975       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2976 
2977       RV = llvm::UndefValue::get(returnType);
2978       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2979         RV = Builder.CreateInsertValue(RV, results[i], i);
2980       }
2981     }
2982     break;
2983   }
2984 
2985   case ABIArgInfo::Expand:
2986     llvm_unreachable("Invalid ABI kind for return argument");
2987   }
2988 
2989   llvm::Instruction *Ret;
2990   if (RV) {
2991     EmitReturnValueCheck(RV);
2992     Ret = Builder.CreateRet(RV);
2993   } else {
2994     Ret = Builder.CreateRetVoid();
2995   }
2996 
2997   if (RetDbgLoc)
2998     Ret->setDebugLoc(std::move(RetDbgLoc));
2999 }
3000 
3001 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3002   // A current decl may not be available when emitting vtable thunks.
3003   if (!CurCodeDecl)
3004     return;
3005 
3006   ReturnsNonNullAttr *RetNNAttr = nullptr;
3007   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3008     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3009 
3010   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3011     return;
3012 
3013   // Prefer the returns_nonnull attribute if it's present.
3014   SourceLocation AttrLoc;
3015   SanitizerMask CheckKind;
3016   SanitizerHandler Handler;
3017   if (RetNNAttr) {
3018     assert(!requiresReturnValueNullabilityCheck() &&
3019            "Cannot check nullability and the nonnull attribute");
3020     AttrLoc = RetNNAttr->getLocation();
3021     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3022     Handler = SanitizerHandler::NonnullReturn;
3023   } else {
3024     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3025       if (auto *TSI = DD->getTypeSourceInfo())
3026         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3027           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3028     CheckKind = SanitizerKind::NullabilityReturn;
3029     Handler = SanitizerHandler::NullabilityReturn;
3030   }
3031 
3032   SanitizerScope SanScope(this);
3033 
3034   // Make sure the "return" source location is valid. If we're checking a
3035   // nullability annotation, make sure the preconditions for the check are met.
3036   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3037   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3038   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3039   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3040   if (requiresReturnValueNullabilityCheck())
3041     CanNullCheck =
3042         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3043   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3044   EmitBlock(Check);
3045 
3046   // Now do the null check.
3047   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3048   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3049   llvm::Value *DynamicData[] = {SLocPtr};
3050   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3051 
3052   EmitBlock(NoCheck);
3053 
3054 #ifndef NDEBUG
3055   // The return location should not be used after the check has been emitted.
3056   ReturnLocation = Address::invalid();
3057 #endif
3058 }
3059 
3060 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3061   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3062   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3063 }
3064 
3065 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3066                                           QualType Ty) {
3067   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3068   // placeholders.
3069   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3070   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3071   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3072 
3073   // FIXME: When we generate this IR in one pass, we shouldn't need
3074   // this win32-specific alignment hack.
3075   CharUnits Align = CharUnits::fromQuantity(4);
3076   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3077 
3078   return AggValueSlot::forAddr(Address(Placeholder, Align),
3079                                Ty.getQualifiers(),
3080                                AggValueSlot::IsNotDestructed,
3081                                AggValueSlot::DoesNotNeedGCBarriers,
3082                                AggValueSlot::IsNotAliased,
3083                                AggValueSlot::DoesNotOverlap);
3084 }
3085 
3086 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3087                                           const VarDecl *param,
3088                                           SourceLocation loc) {
3089   // StartFunction converted the ABI-lowered parameter(s) into a
3090   // local alloca.  We need to turn that into an r-value suitable
3091   // for EmitCall.
3092   Address local = GetAddrOfLocalVar(param);
3093 
3094   QualType type = param->getType();
3095 
3096   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3097     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3098   }
3099 
3100   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3101   // but the argument needs to be the original pointer.
3102   if (type->isReferenceType()) {
3103     args.add(RValue::get(Builder.CreateLoad(local)), type);
3104 
3105   // In ARC, move out of consumed arguments so that the release cleanup
3106   // entered by StartFunction doesn't cause an over-release.  This isn't
3107   // optimal -O0 code generation, but it should get cleaned up when
3108   // optimization is enabled.  This also assumes that delegate calls are
3109   // performed exactly once for a set of arguments, but that should be safe.
3110   } else if (getLangOpts().ObjCAutoRefCount &&
3111              param->hasAttr<NSConsumedAttr>() &&
3112              type->isObjCRetainableType()) {
3113     llvm::Value *ptr = Builder.CreateLoad(local);
3114     auto null =
3115       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3116     Builder.CreateStore(null, local);
3117     args.add(RValue::get(ptr), type);
3118 
3119   // For the most part, we just need to load the alloca, except that
3120   // aggregate r-values are actually pointers to temporaries.
3121   } else {
3122     args.add(convertTempToRValue(local, type, loc), type);
3123   }
3124 
3125   // Deactivate the cleanup for the callee-destructed param that was pushed.
3126   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3127       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3128       param->needsDestruction(getContext())) {
3129     EHScopeStack::stable_iterator cleanup =
3130         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3131     assert(cleanup.isValid() &&
3132            "cleanup for callee-destructed param not recorded");
3133     // This unreachable is a temporary marker which will be removed later.
3134     llvm::Instruction *isActive = Builder.CreateUnreachable();
3135     args.addArgCleanupDeactivation(cleanup, isActive);
3136   }
3137 }
3138 
3139 static bool isProvablyNull(llvm::Value *addr) {
3140   return isa<llvm::ConstantPointerNull>(addr);
3141 }
3142 
3143 /// Emit the actual writing-back of a writeback.
3144 static void emitWriteback(CodeGenFunction &CGF,
3145                           const CallArgList::Writeback &writeback) {
3146   const LValue &srcLV = writeback.Source;
3147   Address srcAddr = srcLV.getAddress(CGF);
3148   assert(!isProvablyNull(srcAddr.getPointer()) &&
3149          "shouldn't have writeback for provably null argument");
3150 
3151   llvm::BasicBlock *contBB = nullptr;
3152 
3153   // If the argument wasn't provably non-null, we need to null check
3154   // before doing the store.
3155   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3156                                               CGF.CGM.getDataLayout());
3157   if (!provablyNonNull) {
3158     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3159     contBB = CGF.createBasicBlock("icr.done");
3160 
3161     llvm::Value *isNull =
3162       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3163     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3164     CGF.EmitBlock(writebackBB);
3165   }
3166 
3167   // Load the value to writeback.
3168   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3169 
3170   // Cast it back, in case we're writing an id to a Foo* or something.
3171   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3172                                     "icr.writeback-cast");
3173 
3174   // Perform the writeback.
3175 
3176   // If we have a "to use" value, it's something we need to emit a use
3177   // of.  This has to be carefully threaded in: if it's done after the
3178   // release it's potentially undefined behavior (and the optimizer
3179   // will ignore it), and if it happens before the retain then the
3180   // optimizer could move the release there.
3181   if (writeback.ToUse) {
3182     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3183 
3184     // Retain the new value.  No need to block-copy here:  the block's
3185     // being passed up the stack.
3186     value = CGF.EmitARCRetainNonBlock(value);
3187 
3188     // Emit the intrinsic use here.
3189     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3190 
3191     // Load the old value (primitively).
3192     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3193 
3194     // Put the new value in place (primitively).
3195     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3196 
3197     // Release the old value.
3198     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3199 
3200   // Otherwise, we can just do a normal lvalue store.
3201   } else {
3202     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3203   }
3204 
3205   // Jump to the continuation block.
3206   if (!provablyNonNull)
3207     CGF.EmitBlock(contBB);
3208 }
3209 
3210 static void emitWritebacks(CodeGenFunction &CGF,
3211                            const CallArgList &args) {
3212   for (const auto &I : args.writebacks())
3213     emitWriteback(CGF, I);
3214 }
3215 
3216 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3217                                             const CallArgList &CallArgs) {
3218   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3219     CallArgs.getCleanupsToDeactivate();
3220   // Iterate in reverse to increase the likelihood of popping the cleanup.
3221   for (const auto &I : llvm::reverse(Cleanups)) {
3222     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3223     I.IsActiveIP->eraseFromParent();
3224   }
3225 }
3226 
3227 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3228   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3229     if (uop->getOpcode() == UO_AddrOf)
3230       return uop->getSubExpr();
3231   return nullptr;
3232 }
3233 
3234 /// Emit an argument that's being passed call-by-writeback.  That is,
3235 /// we are passing the address of an __autoreleased temporary; it
3236 /// might be copy-initialized with the current value of the given
3237 /// address, but it will definitely be copied out of after the call.
3238 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3239                              const ObjCIndirectCopyRestoreExpr *CRE) {
3240   LValue srcLV;
3241 
3242   // Make an optimistic effort to emit the address as an l-value.
3243   // This can fail if the argument expression is more complicated.
3244   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3245     srcLV = CGF.EmitLValue(lvExpr);
3246 
3247   // Otherwise, just emit it as a scalar.
3248   } else {
3249     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3250 
3251     QualType srcAddrType =
3252       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3253     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3254   }
3255   Address srcAddr = srcLV.getAddress(CGF);
3256 
3257   // The dest and src types don't necessarily match in LLVM terms
3258   // because of the crazy ObjC compatibility rules.
3259 
3260   llvm::PointerType *destType =
3261     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3262 
3263   // If the address is a constant null, just pass the appropriate null.
3264   if (isProvablyNull(srcAddr.getPointer())) {
3265     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3266              CRE->getType());
3267     return;
3268   }
3269 
3270   // Create the temporary.
3271   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3272                                       CGF.getPointerAlign(),
3273                                       "icr.temp");
3274   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3275   // and that cleanup will be conditional if we can't prove that the l-value
3276   // isn't null, so we need to register a dominating point so that the cleanups
3277   // system will make valid IR.
3278   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3279 
3280   // Zero-initialize it if we're not doing a copy-initialization.
3281   bool shouldCopy = CRE->shouldCopy();
3282   if (!shouldCopy) {
3283     llvm::Value *null =
3284       llvm::ConstantPointerNull::get(
3285         cast<llvm::PointerType>(destType->getElementType()));
3286     CGF.Builder.CreateStore(null, temp);
3287   }
3288 
3289   llvm::BasicBlock *contBB = nullptr;
3290   llvm::BasicBlock *originBB = nullptr;
3291 
3292   // If the address is *not* known to be non-null, we need to switch.
3293   llvm::Value *finalArgument;
3294 
3295   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3296                                               CGF.CGM.getDataLayout());
3297   if (provablyNonNull) {
3298     finalArgument = temp.getPointer();
3299   } else {
3300     llvm::Value *isNull =
3301       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3302 
3303     finalArgument = CGF.Builder.CreateSelect(isNull,
3304                                    llvm::ConstantPointerNull::get(destType),
3305                                              temp.getPointer(), "icr.argument");
3306 
3307     // If we need to copy, then the load has to be conditional, which
3308     // means we need control flow.
3309     if (shouldCopy) {
3310       originBB = CGF.Builder.GetInsertBlock();
3311       contBB = CGF.createBasicBlock("icr.cont");
3312       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3313       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3314       CGF.EmitBlock(copyBB);
3315       condEval.begin(CGF);
3316     }
3317   }
3318 
3319   llvm::Value *valueToUse = nullptr;
3320 
3321   // Perform a copy if necessary.
3322   if (shouldCopy) {
3323     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3324     assert(srcRV.isScalar());
3325 
3326     llvm::Value *src = srcRV.getScalarVal();
3327     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3328                                     "icr.cast");
3329 
3330     // Use an ordinary store, not a store-to-lvalue.
3331     CGF.Builder.CreateStore(src, temp);
3332 
3333     // If optimization is enabled, and the value was held in a
3334     // __strong variable, we need to tell the optimizer that this
3335     // value has to stay alive until we're doing the store back.
3336     // This is because the temporary is effectively unretained,
3337     // and so otherwise we can violate the high-level semantics.
3338     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3339         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3340       valueToUse = src;
3341     }
3342   }
3343 
3344   // Finish the control flow if we needed it.
3345   if (shouldCopy && !provablyNonNull) {
3346     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3347     CGF.EmitBlock(contBB);
3348 
3349     // Make a phi for the value to intrinsically use.
3350     if (valueToUse) {
3351       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3352                                                       "icr.to-use");
3353       phiToUse->addIncoming(valueToUse, copyBB);
3354       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3355                             originBB);
3356       valueToUse = phiToUse;
3357     }
3358 
3359     condEval.end(CGF);
3360   }
3361 
3362   args.addWriteback(srcLV, temp, valueToUse);
3363   args.add(RValue::get(finalArgument), CRE->getType());
3364 }
3365 
3366 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3367   assert(!StackBase);
3368 
3369   // Save the stack.
3370   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3371   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3372 }
3373 
3374 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3375   if (StackBase) {
3376     // Restore the stack after the call.
3377     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3378     CGF.Builder.CreateCall(F, StackBase);
3379   }
3380 }
3381 
3382 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3383                                           SourceLocation ArgLoc,
3384                                           AbstractCallee AC,
3385                                           unsigned ParmNum) {
3386   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3387                          SanOpts.has(SanitizerKind::NullabilityArg)))
3388     return;
3389 
3390   // The param decl may be missing in a variadic function.
3391   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3392   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3393 
3394   // Prefer the nonnull attribute if it's present.
3395   const NonNullAttr *NNAttr = nullptr;
3396   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3397     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3398 
3399   bool CanCheckNullability = false;
3400   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3401     auto Nullability = PVD->getType()->getNullability(getContext());
3402     CanCheckNullability = Nullability &&
3403                           *Nullability == NullabilityKind::NonNull &&
3404                           PVD->getTypeSourceInfo();
3405   }
3406 
3407   if (!NNAttr && !CanCheckNullability)
3408     return;
3409 
3410   SourceLocation AttrLoc;
3411   SanitizerMask CheckKind;
3412   SanitizerHandler Handler;
3413   if (NNAttr) {
3414     AttrLoc = NNAttr->getLocation();
3415     CheckKind = SanitizerKind::NonnullAttribute;
3416     Handler = SanitizerHandler::NonnullArg;
3417   } else {
3418     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3419     CheckKind = SanitizerKind::NullabilityArg;
3420     Handler = SanitizerHandler::NullabilityArg;
3421   }
3422 
3423   SanitizerScope SanScope(this);
3424   assert(RV.isScalar());
3425   llvm::Value *V = RV.getScalarVal();
3426   llvm::Value *Cond =
3427       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3428   llvm::Constant *StaticData[] = {
3429       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3430       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3431   };
3432   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3433 }
3434 
3435 void CodeGenFunction::EmitCallArgs(
3436     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3437     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3438     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3439   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3440 
3441   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3442   // because arguments are destroyed left to right in the callee. As a special
3443   // case, there are certain language constructs that require left-to-right
3444   // evaluation, and in those cases we consider the evaluation order requirement
3445   // to trump the "destruction order is reverse construction order" guarantee.
3446   bool LeftToRight =
3447       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3448           ? Order == EvaluationOrder::ForceLeftToRight
3449           : Order != EvaluationOrder::ForceRightToLeft;
3450 
3451   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3452                                          RValue EmittedArg) {
3453     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3454       return;
3455     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3456     if (PS == nullptr)
3457       return;
3458 
3459     const auto &Context = getContext();
3460     auto SizeTy = Context.getSizeType();
3461     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3462     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3463     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3464                                                      EmittedArg.getScalarVal(),
3465                                                      PS->isDynamic());
3466     Args.add(RValue::get(V), SizeTy);
3467     // If we're emitting args in reverse, be sure to do so with
3468     // pass_object_size, as well.
3469     if (!LeftToRight)
3470       std::swap(Args.back(), *(&Args.back() - 1));
3471   };
3472 
3473   // Insert a stack save if we're going to need any inalloca args.
3474   bool HasInAllocaArgs = false;
3475   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3476     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3477          I != E && !HasInAllocaArgs; ++I)
3478       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3479     if (HasInAllocaArgs) {
3480       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3481       Args.allocateArgumentMemory(*this);
3482     }
3483   }
3484 
3485   // Evaluate each argument in the appropriate order.
3486   size_t CallArgsStart = Args.size();
3487   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3488     unsigned Idx = LeftToRight ? I : E - I - 1;
3489     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3490     unsigned InitialArgSize = Args.size();
3491     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3492     // the argument and parameter match or the objc method is parameterized.
3493     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3494             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3495                                                 ArgTypes[Idx]) ||
3496             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3497              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3498            "Argument and parameter types don't match");
3499     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3500     // In particular, we depend on it being the last arg in Args, and the
3501     // objectsize bits depend on there only being one arg if !LeftToRight.
3502     assert(InitialArgSize + 1 == Args.size() &&
3503            "The code below depends on only adding one arg per EmitCallArg");
3504     (void)InitialArgSize;
3505     // Since pointer argument are never emitted as LValue, it is safe to emit
3506     // non-null argument check for r-value only.
3507     if (!Args.back().hasLValue()) {
3508       RValue RVArg = Args.back().getKnownRValue();
3509       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3510                           ParamsToSkip + Idx);
3511       // @llvm.objectsize should never have side-effects and shouldn't need
3512       // destruction/cleanups, so we can safely "emit" it after its arg,
3513       // regardless of right-to-leftness
3514       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3515     }
3516   }
3517 
3518   if (!LeftToRight) {
3519     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3520     // IR function.
3521     std::reverse(Args.begin() + CallArgsStart, Args.end());
3522   }
3523 }
3524 
3525 namespace {
3526 
3527 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3528   DestroyUnpassedArg(Address Addr, QualType Ty)
3529       : Addr(Addr), Ty(Ty) {}
3530 
3531   Address Addr;
3532   QualType Ty;
3533 
3534   void Emit(CodeGenFunction &CGF, Flags flags) override {
3535     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3536     if (DtorKind == QualType::DK_cxx_destructor) {
3537       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3538       assert(!Dtor->isTrivial());
3539       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3540                                 /*Delegating=*/false, Addr, Ty);
3541     } else {
3542       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3543     }
3544   }
3545 };
3546 
3547 struct DisableDebugLocationUpdates {
3548   CodeGenFunction &CGF;
3549   bool disabledDebugInfo;
3550   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3551     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3552       CGF.disableDebugInfo();
3553   }
3554   ~DisableDebugLocationUpdates() {
3555     if (disabledDebugInfo)
3556       CGF.enableDebugInfo();
3557   }
3558 };
3559 
3560 } // end anonymous namespace
3561 
3562 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3563   if (!HasLV)
3564     return RV;
3565   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3566   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3567                         LV.isVolatile());
3568   IsUsed = true;
3569   return RValue::getAggregate(Copy.getAddress(CGF));
3570 }
3571 
3572 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3573   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3574   if (!HasLV && RV.isScalar())
3575     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3576   else if (!HasLV && RV.isComplex())
3577     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3578   else {
3579     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3580     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3581     // We assume that call args are never copied into subobjects.
3582     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3583                           HasLV ? LV.isVolatileQualified()
3584                                 : RV.isVolatileQualified());
3585   }
3586   IsUsed = true;
3587 }
3588 
3589 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3590                                   QualType type) {
3591   DisableDebugLocationUpdates Dis(*this, E);
3592   if (const ObjCIndirectCopyRestoreExpr *CRE
3593         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3594     assert(getLangOpts().ObjCAutoRefCount);
3595     return emitWritebackArg(*this, args, CRE);
3596   }
3597 
3598   assert(type->isReferenceType() == E->isGLValue() &&
3599          "reference binding to unmaterialized r-value!");
3600 
3601   if (E->isGLValue()) {
3602     assert(E->getObjectKind() == OK_Ordinary);
3603     return args.add(EmitReferenceBindingToExpr(E), type);
3604   }
3605 
3606   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3607 
3608   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3609   // However, we still have to push an EH-only cleanup in case we unwind before
3610   // we make it to the call.
3611   if (HasAggregateEvalKind &&
3612       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3613     // If we're using inalloca, use the argument memory.  Otherwise, use a
3614     // temporary.
3615     AggValueSlot Slot;
3616     if (args.isUsingInAlloca())
3617       Slot = createPlaceholderSlot(*this, type);
3618     else
3619       Slot = CreateAggTemp(type, "agg.tmp");
3620 
3621     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3622     if (const auto *RD = type->getAsCXXRecordDecl())
3623       DestroyedInCallee = RD->hasNonTrivialDestructor();
3624     else
3625       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3626 
3627     if (DestroyedInCallee)
3628       Slot.setExternallyDestructed();
3629 
3630     EmitAggExpr(E, Slot);
3631     RValue RV = Slot.asRValue();
3632     args.add(RV, type);
3633 
3634     if (DestroyedInCallee && NeedsEHCleanup) {
3635       // Create a no-op GEP between the placeholder and the cleanup so we can
3636       // RAUW it successfully.  It also serves as a marker of the first
3637       // instruction where the cleanup is active.
3638       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3639                                               type);
3640       // This unreachable is a temporary marker which will be removed later.
3641       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3642       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3643     }
3644     return;
3645   }
3646 
3647   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3648       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3649     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3650     assert(L.isSimple());
3651     args.addUncopiedAggregate(L, type);
3652     return;
3653   }
3654 
3655   args.add(EmitAnyExprToTemp(E), type);
3656 }
3657 
3658 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3659   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3660   // implicitly widens null pointer constants that are arguments to varargs
3661   // functions to pointer-sized ints.
3662   if (!getTarget().getTriple().isOSWindows())
3663     return Arg->getType();
3664 
3665   if (Arg->getType()->isIntegerType() &&
3666       getContext().getTypeSize(Arg->getType()) <
3667           getContext().getTargetInfo().getPointerWidth(0) &&
3668       Arg->isNullPointerConstant(getContext(),
3669                                  Expr::NPC_ValueDependentIsNotNull)) {
3670     return getContext().getIntPtrType();
3671   }
3672 
3673   return Arg->getType();
3674 }
3675 
3676 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3677 // optimizer it can aggressively ignore unwind edges.
3678 void
3679 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3680   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3681       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3682     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3683                       CGM.getNoObjCARCExceptionsMetadata());
3684 }
3685 
3686 /// Emits a call to the given no-arguments nounwind runtime function.
3687 llvm::CallInst *
3688 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3689                                          const llvm::Twine &name) {
3690   return EmitNounwindRuntimeCall(callee, None, name);
3691 }
3692 
3693 /// Emits a call to the given nounwind runtime function.
3694 llvm::CallInst *
3695 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3696                                          ArrayRef<llvm::Value *> args,
3697                                          const llvm::Twine &name) {
3698   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3699   call->setDoesNotThrow();
3700   return call;
3701 }
3702 
3703 /// Emits a simple call (never an invoke) to the given no-arguments
3704 /// runtime function.
3705 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3706                                                  const llvm::Twine &name) {
3707   return EmitRuntimeCall(callee, None, name);
3708 }
3709 
3710 // Calls which may throw must have operand bundles indicating which funclet
3711 // they are nested within.
3712 SmallVector<llvm::OperandBundleDef, 1>
3713 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3714   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3715   // There is no need for a funclet operand bundle if we aren't inside a
3716   // funclet.
3717   if (!CurrentFuncletPad)
3718     return BundleList;
3719 
3720   // Skip intrinsics which cannot throw.
3721   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3722   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3723     return BundleList;
3724 
3725   BundleList.emplace_back("funclet", CurrentFuncletPad);
3726   return BundleList;
3727 }
3728 
3729 /// Emits a simple call (never an invoke) to the given runtime function.
3730 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3731                                                  ArrayRef<llvm::Value *> args,
3732                                                  const llvm::Twine &name) {
3733   llvm::CallInst *call = Builder.CreateCall(
3734       callee, args, getBundlesForFunclet(callee.getCallee()), name);
3735   call->setCallingConv(getRuntimeCC());
3736   return call;
3737 }
3738 
3739 /// Emits a call or invoke to the given noreturn runtime function.
3740 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
3741     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
3742   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3743       getBundlesForFunclet(callee.getCallee());
3744 
3745   if (getInvokeDest()) {
3746     llvm::InvokeInst *invoke =
3747       Builder.CreateInvoke(callee,
3748                            getUnreachableBlock(),
3749                            getInvokeDest(),
3750                            args,
3751                            BundleList);
3752     invoke->setDoesNotReturn();
3753     invoke->setCallingConv(getRuntimeCC());
3754   } else {
3755     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3756     call->setDoesNotReturn();
3757     call->setCallingConv(getRuntimeCC());
3758     Builder.CreateUnreachable();
3759   }
3760 }
3761 
3762 /// Emits a call or invoke instruction to the given nullary runtime function.
3763 llvm::CallBase *
3764 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3765                                          const Twine &name) {
3766   return EmitRuntimeCallOrInvoke(callee, None, name);
3767 }
3768 
3769 /// Emits a call or invoke instruction to the given runtime function.
3770 llvm::CallBase *
3771 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3772                                          ArrayRef<llvm::Value *> args,
3773                                          const Twine &name) {
3774   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
3775   call->setCallingConv(getRuntimeCC());
3776   return call;
3777 }
3778 
3779 /// Emits a call or invoke instruction to the given function, depending
3780 /// on the current state of the EH stack.
3781 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
3782                                                   ArrayRef<llvm::Value *> Args,
3783                                                   const Twine &Name) {
3784   llvm::BasicBlock *InvokeDest = getInvokeDest();
3785   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3786       getBundlesForFunclet(Callee.getCallee());
3787 
3788   llvm::CallBase *Inst;
3789   if (!InvokeDest)
3790     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3791   else {
3792     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3793     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3794                                 Name);
3795     EmitBlock(ContBB);
3796   }
3797 
3798   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3799   // optimizer it can aggressively ignore unwind edges.
3800   if (CGM.getLangOpts().ObjCAutoRefCount)
3801     AddObjCARCExceptionMetadata(Inst);
3802 
3803   return Inst;
3804 }
3805 
3806 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3807                                                   llvm::Value *New) {
3808   DeferredReplacements.push_back(std::make_pair(Old, New));
3809 }
3810 
3811 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3812                                  const CGCallee &Callee,
3813                                  ReturnValueSlot ReturnValue,
3814                                  const CallArgList &CallArgs,
3815                                  llvm::CallBase **callOrInvoke,
3816                                  SourceLocation Loc) {
3817   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3818 
3819   assert(Callee.isOrdinary() || Callee.isVirtual());
3820 
3821   // Handle struct-return functions by passing a pointer to the
3822   // location that we would like to return into.
3823   QualType RetTy = CallInfo.getReturnType();
3824   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3825 
3826   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
3827 
3828   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
3829   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
3830     // We can only guarantee that a function is called from the correct
3831     // context/function based on the appropriate target attributes,
3832     // so only check in the case where we have both always_inline and target
3833     // since otherwise we could be making a conditional call after a check for
3834     // the proper cpu features (and it won't cause code generation issues due to
3835     // function based code generation).
3836     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
3837         TargetDecl->hasAttr<TargetAttr>())
3838       checkTargetFeatures(Loc, FD);
3839 
3840 #ifndef NDEBUG
3841   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
3842     // For an inalloca varargs function, we don't expect CallInfo to match the
3843     // function pointer's type, because the inalloca struct a will have extra
3844     // fields in it for the varargs parameters.  Code later in this function
3845     // bitcasts the function pointer to the type derived from CallInfo.
3846     //
3847     // In other cases, we assert that the types match up (until pointers stop
3848     // having pointee types).
3849     llvm::Type *TypeFromVal;
3850     if (Callee.isVirtual())
3851       TypeFromVal = Callee.getVirtualFunctionType();
3852     else
3853       TypeFromVal =
3854           Callee.getFunctionPointer()->getType()->getPointerElementType();
3855     assert(IRFuncTy == TypeFromVal);
3856   }
3857 #endif
3858 
3859   // 1. Set up the arguments.
3860 
3861   // If we're using inalloca, insert the allocation after the stack save.
3862   // FIXME: Do this earlier rather than hacking it in here!
3863   Address ArgMemory = Address::invalid();
3864   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3865     const llvm::DataLayout &DL = CGM.getDataLayout();
3866     llvm::Instruction *IP = CallArgs.getStackBase();
3867     llvm::AllocaInst *AI;
3868     if (IP) {
3869       IP = IP->getNextNode();
3870       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3871                                 "argmem", IP);
3872     } else {
3873       AI = CreateTempAlloca(ArgStruct, "argmem");
3874     }
3875     auto Align = CallInfo.getArgStructAlignment();
3876     AI->setAlignment(Align.getAsAlign());
3877     AI->setUsedWithInAlloca(true);
3878     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3879     ArgMemory = Address(AI, Align);
3880   }
3881 
3882   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3883   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3884 
3885   // If the call returns a temporary with struct return, create a temporary
3886   // alloca to hold the result, unless one is given to us.
3887   Address SRetPtr = Address::invalid();
3888   Address SRetAlloca = Address::invalid();
3889   llvm::Value *UnusedReturnSizePtr = nullptr;
3890   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3891     if (!ReturnValue.isNull()) {
3892       SRetPtr = ReturnValue.getValue();
3893     } else {
3894       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3895       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3896         uint64_t size =
3897             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3898         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3899       }
3900     }
3901     if (IRFunctionArgs.hasSRetArg()) {
3902       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3903     } else if (RetAI.isInAlloca()) {
3904       Address Addr =
3905           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
3906       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3907     }
3908   }
3909 
3910   Address swiftErrorTemp = Address::invalid();
3911   Address swiftErrorArg = Address::invalid();
3912 
3913   // When passing arguments using temporary allocas, we need to add the
3914   // appropriate lifetime markers. This vector keeps track of all the lifetime
3915   // markers that need to be ended right after the call.
3916   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
3917 
3918   // Translate all of the arguments as necessary to match the IR lowering.
3919   assert(CallInfo.arg_size() == CallArgs.size() &&
3920          "Mismatch between function signature & arguments.");
3921   unsigned ArgNo = 0;
3922   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3923   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3924        I != E; ++I, ++info_it, ++ArgNo) {
3925     const ABIArgInfo &ArgInfo = info_it->info;
3926 
3927     // Insert a padding argument to ensure proper alignment.
3928     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3929       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3930           llvm::UndefValue::get(ArgInfo.getPaddingType());
3931 
3932     unsigned FirstIRArg, NumIRArgs;
3933     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3934 
3935     switch (ArgInfo.getKind()) {
3936     case ABIArgInfo::InAlloca: {
3937       assert(NumIRArgs == 0);
3938       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3939       if (I->isAggregate()) {
3940         // Replace the placeholder with the appropriate argument slot GEP.
3941         Address Addr = I->hasLValue()
3942                            ? I->getKnownLValue().getAddress(*this)
3943                            : I->getKnownRValue().getAggregateAddress();
3944         llvm::Instruction *Placeholder =
3945             cast<llvm::Instruction>(Addr.getPointer());
3946         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3947         Builder.SetInsertPoint(Placeholder);
3948         Addr =
3949             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3950         Builder.restoreIP(IP);
3951         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3952       } else {
3953         // Store the RValue into the argument struct.
3954         Address Addr =
3955             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3956         unsigned AS = Addr.getType()->getPointerAddressSpace();
3957         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3958         // There are some cases where a trivial bitcast is not avoidable.  The
3959         // definition of a type later in a translation unit may change it's type
3960         // from {}* to (%struct.foo*)*.
3961         if (Addr.getType() != MemType)
3962           Addr = Builder.CreateBitCast(Addr, MemType);
3963         I->copyInto(*this, Addr);
3964       }
3965       break;
3966     }
3967 
3968     case ABIArgInfo::Indirect: {
3969       assert(NumIRArgs == 1);
3970       if (!I->isAggregate()) {
3971         // Make a temporary alloca to pass the argument.
3972         Address Addr = CreateMemTempWithoutCast(
3973             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3974         IRCallArgs[FirstIRArg] = Addr.getPointer();
3975 
3976         I->copyInto(*this, Addr);
3977       } else {
3978         // We want to avoid creating an unnecessary temporary+copy here;
3979         // however, we need one in three cases:
3980         // 1. If the argument is not byval, and we are required to copy the
3981         //    source.  (This case doesn't occur on any common architecture.)
3982         // 2. If the argument is byval, RV is not sufficiently aligned, and
3983         //    we cannot force it to be sufficiently aligned.
3984         // 3. If the argument is byval, but RV is not located in default
3985         //    or alloca address space.
3986         Address Addr = I->hasLValue()
3987                            ? I->getKnownLValue().getAddress(*this)
3988                            : I->getKnownRValue().getAggregateAddress();
3989         llvm::Value *V = Addr.getPointer();
3990         CharUnits Align = ArgInfo.getIndirectAlign();
3991         const llvm::DataLayout *TD = &CGM.getDataLayout();
3992 
3993         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3994                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3995                     TD->getAllocaAddrSpace()) &&
3996                "indirect argument must be in alloca address space");
3997 
3998         bool NeedCopy = false;
3999 
4000         if (Addr.getAlignment() < Align &&
4001             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
4002                 Align.getQuantity()) {
4003           NeedCopy = true;
4004         } else if (I->hasLValue()) {
4005           auto LV = I->getKnownLValue();
4006           auto AS = LV.getAddressSpace();
4007 
4008           if (!ArgInfo.getIndirectByVal() ||
4009               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4010             NeedCopy = true;
4011           }
4012           if (!getLangOpts().OpenCL) {
4013             if ((ArgInfo.getIndirectByVal() &&
4014                 (AS != LangAS::Default &&
4015                  AS != CGM.getASTAllocaAddressSpace()))) {
4016               NeedCopy = true;
4017             }
4018           }
4019           // For OpenCL even if RV is located in default or alloca address space
4020           // we don't want to perform address space cast for it.
4021           else if ((ArgInfo.getIndirectByVal() &&
4022                     Addr.getType()->getAddressSpace() != IRFuncTy->
4023                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4024             NeedCopy = true;
4025           }
4026         }
4027 
4028         if (NeedCopy) {
4029           // Create an aligned temporary, and copy to it.
4030           Address AI = CreateMemTempWithoutCast(
4031               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4032           IRCallArgs[FirstIRArg] = AI.getPointer();
4033 
4034           // Emit lifetime markers for the temporary alloca.
4035           uint64_t ByvalTempElementSize =
4036               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4037           llvm::Value *LifetimeSize =
4038               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4039 
4040           // Add cleanup code to emit the end lifetime marker after the call.
4041           if (LifetimeSize) // In case we disabled lifetime markers.
4042             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4043 
4044           // Generate the copy.
4045           I->copyInto(*this, AI);
4046         } else {
4047           // Skip the extra memcpy call.
4048           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4049               CGM.getDataLayout().getAllocaAddrSpace());
4050           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4051               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4052               true);
4053         }
4054       }
4055       break;
4056     }
4057 
4058     case ABIArgInfo::Ignore:
4059       assert(NumIRArgs == 0);
4060       break;
4061 
4062     case ABIArgInfo::Extend:
4063     case ABIArgInfo::Direct: {
4064       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4065           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4066           ArgInfo.getDirectOffset() == 0) {
4067         assert(NumIRArgs == 1);
4068         llvm::Value *V;
4069         if (!I->isAggregate())
4070           V = I->getKnownRValue().getScalarVal();
4071         else
4072           V = Builder.CreateLoad(
4073               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4074                              : I->getKnownRValue().getAggregateAddress());
4075 
4076         // Implement swifterror by copying into a new swifterror argument.
4077         // We'll write back in the normal path out of the call.
4078         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4079               == ParameterABI::SwiftErrorResult) {
4080           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4081 
4082           QualType pointeeTy = I->Ty->getPointeeType();
4083           swiftErrorArg =
4084             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4085 
4086           swiftErrorTemp =
4087             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4088           V = swiftErrorTemp.getPointer();
4089           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4090 
4091           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4092           Builder.CreateStore(errorValue, swiftErrorTemp);
4093         }
4094 
4095         // We might have to widen integers, but we should never truncate.
4096         if (ArgInfo.getCoerceToType() != V->getType() &&
4097             V->getType()->isIntegerTy())
4098           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4099 
4100         // If the argument doesn't match, perform a bitcast to coerce it.  This
4101         // can happen due to trivial type mismatches.
4102         if (FirstIRArg < IRFuncTy->getNumParams() &&
4103             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4104           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4105 
4106         IRCallArgs[FirstIRArg] = V;
4107         break;
4108       }
4109 
4110       // FIXME: Avoid the conversion through memory if possible.
4111       Address Src = Address::invalid();
4112       if (!I->isAggregate()) {
4113         Src = CreateMemTemp(I->Ty, "coerce");
4114         I->copyInto(*this, Src);
4115       } else {
4116         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4117                              : I->getKnownRValue().getAggregateAddress();
4118       }
4119 
4120       // If the value is offset in memory, apply the offset now.
4121       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4122 
4123       // Fast-isel and the optimizer generally like scalar values better than
4124       // FCAs, so we flatten them if this is safe to do for this argument.
4125       llvm::StructType *STy =
4126             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4127       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4128         llvm::Type *SrcTy = Src.getType()->getElementType();
4129         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4130         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4131 
4132         // If the source type is smaller than the destination type of the
4133         // coerce-to logic, copy the source value into a temp alloca the size
4134         // of the destination type to allow loading all of it. The bits past
4135         // the source value are left undef.
4136         if (SrcSize < DstSize) {
4137           Address TempAlloca
4138             = CreateTempAlloca(STy, Src.getAlignment(),
4139                                Src.getName() + ".coerce");
4140           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4141           Src = TempAlloca;
4142         } else {
4143           Src = Builder.CreateBitCast(Src,
4144                                       STy->getPointerTo(Src.getAddressSpace()));
4145         }
4146 
4147         assert(NumIRArgs == STy->getNumElements());
4148         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4149           Address EltPtr = Builder.CreateStructGEP(Src, i);
4150           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4151           IRCallArgs[FirstIRArg + i] = LI;
4152         }
4153       } else {
4154         // In the simple case, just pass the coerced loaded value.
4155         assert(NumIRArgs == 1);
4156         IRCallArgs[FirstIRArg] =
4157           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4158       }
4159 
4160       break;
4161     }
4162 
4163     case ABIArgInfo::CoerceAndExpand: {
4164       auto coercionType = ArgInfo.getCoerceAndExpandType();
4165       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4166 
4167       llvm::Value *tempSize = nullptr;
4168       Address addr = Address::invalid();
4169       Address AllocaAddr = Address::invalid();
4170       if (I->isAggregate()) {
4171         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4172                               : I->getKnownRValue().getAggregateAddress();
4173 
4174       } else {
4175         RValue RV = I->getKnownRValue();
4176         assert(RV.isScalar()); // complex should always just be direct
4177 
4178         llvm::Type *scalarType = RV.getScalarVal()->getType();
4179         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4180         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4181 
4182         // Materialize to a temporary.
4183         addr = CreateTempAlloca(
4184             RV.getScalarVal()->getType(),
4185             CharUnits::fromQuantity(std::max(
4186                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4187             "tmp",
4188             /*ArraySize=*/nullptr, &AllocaAddr);
4189         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4190 
4191         Builder.CreateStore(RV.getScalarVal(), addr);
4192       }
4193 
4194       addr = Builder.CreateElementBitCast(addr, coercionType);
4195 
4196       unsigned IRArgPos = FirstIRArg;
4197       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4198         llvm::Type *eltType = coercionType->getElementType(i);
4199         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4200         Address eltAddr = Builder.CreateStructGEP(addr, i);
4201         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4202         IRCallArgs[IRArgPos++] = elt;
4203       }
4204       assert(IRArgPos == FirstIRArg + NumIRArgs);
4205 
4206       if (tempSize) {
4207         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4208       }
4209 
4210       break;
4211     }
4212 
4213     case ABIArgInfo::Expand:
4214       unsigned IRArgPos = FirstIRArg;
4215       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4216       assert(IRArgPos == FirstIRArg + NumIRArgs);
4217       break;
4218     }
4219   }
4220 
4221   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4222   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4223 
4224   // If we're using inalloca, set up that argument.
4225   if (ArgMemory.isValid()) {
4226     llvm::Value *Arg = ArgMemory.getPointer();
4227     if (CallInfo.isVariadic()) {
4228       // When passing non-POD arguments by value to variadic functions, we will
4229       // end up with a variadic prototype and an inalloca call site.  In such
4230       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4231       // the callee.
4232       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4233       CalleePtr =
4234           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4235     } else {
4236       llvm::Type *LastParamTy =
4237           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4238       if (Arg->getType() != LastParamTy) {
4239 #ifndef NDEBUG
4240         // Assert that these structs have equivalent element types.
4241         llvm::StructType *FullTy = CallInfo.getArgStruct();
4242         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4243             cast<llvm::PointerType>(LastParamTy)->getElementType());
4244         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4245         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4246                                                 DE = DeclaredTy->element_end(),
4247                                                 FI = FullTy->element_begin();
4248              DI != DE; ++DI, ++FI)
4249           assert(*DI == *FI);
4250 #endif
4251         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4252       }
4253     }
4254     assert(IRFunctionArgs.hasInallocaArg());
4255     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4256   }
4257 
4258   // 2. Prepare the function pointer.
4259 
4260   // If the callee is a bitcast of a non-variadic function to have a
4261   // variadic function pointer type, check to see if we can remove the
4262   // bitcast.  This comes up with unprototyped functions.
4263   //
4264   // This makes the IR nicer, but more importantly it ensures that we
4265   // can inline the function at -O0 if it is marked always_inline.
4266   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4267                                    llvm::Value *Ptr) -> llvm::Function * {
4268     if (!CalleeFT->isVarArg())
4269       return nullptr;
4270 
4271     // Get underlying value if it's a bitcast
4272     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4273       if (CE->getOpcode() == llvm::Instruction::BitCast)
4274         Ptr = CE->getOperand(0);
4275     }
4276 
4277     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4278     if (!OrigFn)
4279       return nullptr;
4280 
4281     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4282 
4283     // If the original type is variadic, or if any of the component types
4284     // disagree, we cannot remove the cast.
4285     if (OrigFT->isVarArg() ||
4286         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4287         OrigFT->getReturnType() != CalleeFT->getReturnType())
4288       return nullptr;
4289 
4290     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4291       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4292         return nullptr;
4293 
4294     return OrigFn;
4295   };
4296 
4297   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4298     CalleePtr = OrigFn;
4299     IRFuncTy = OrigFn->getFunctionType();
4300   }
4301 
4302   // 3. Perform the actual call.
4303 
4304   // Deactivate any cleanups that we're supposed to do immediately before
4305   // the call.
4306   if (!CallArgs.getCleanupsToDeactivate().empty())
4307     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4308 
4309   // Assert that the arguments we computed match up.  The IR verifier
4310   // will catch this, but this is a common enough source of problems
4311   // during IRGen changes that it's way better for debugging to catch
4312   // it ourselves here.
4313 #ifndef NDEBUG
4314   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4315   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4316     // Inalloca argument can have different type.
4317     if (IRFunctionArgs.hasInallocaArg() &&
4318         i == IRFunctionArgs.getInallocaArgNo())
4319       continue;
4320     if (i < IRFuncTy->getNumParams())
4321       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4322   }
4323 #endif
4324 
4325   // Update the largest vector width if any arguments have vector types.
4326   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4327     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4328       LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
4329                                    VT->getPrimitiveSizeInBits().getFixedSize());
4330   }
4331 
4332   // Compute the calling convention and attributes.
4333   unsigned CallingConv;
4334   llvm::AttributeList Attrs;
4335   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4336                              Callee.getAbstractInfo(), Attrs, CallingConv,
4337                              /*AttrOnCallSite=*/true);
4338 
4339   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4340     if (FD->usesFPIntrin())
4341       // All calls within a strictfp function are marked strictfp
4342       Attrs =
4343         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4344                            llvm::Attribute::StrictFP);
4345 
4346   // Apply some call-site-specific attributes.
4347   // TODO: work this into building the attribute set.
4348 
4349   // Apply always_inline to all calls within flatten functions.
4350   // FIXME: should this really take priority over __try, below?
4351   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4352       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4353     Attrs =
4354         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4355                            llvm::Attribute::AlwaysInline);
4356   }
4357 
4358   // Disable inlining inside SEH __try blocks.
4359   if (isSEHTryScope()) {
4360     Attrs =
4361         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4362                            llvm::Attribute::NoInline);
4363   }
4364 
4365   // Decide whether to use a call or an invoke.
4366   bool CannotThrow;
4367   if (currentFunctionUsesSEHTry()) {
4368     // SEH cares about asynchronous exceptions, so everything can "throw."
4369     CannotThrow = false;
4370   } else if (isCleanupPadScope() &&
4371              EHPersonality::get(*this).isMSVCXXPersonality()) {
4372     // The MSVC++ personality will implicitly terminate the program if an
4373     // exception is thrown during a cleanup outside of a try/catch.
4374     // We don't need to model anything in IR to get this behavior.
4375     CannotThrow = true;
4376   } else {
4377     // Otherwise, nounwind call sites will never throw.
4378     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4379                                      llvm::Attribute::NoUnwind);
4380   }
4381 
4382   // If we made a temporary, be sure to clean up after ourselves. Note that we
4383   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4384   // pop this cleanup later on. Being eager about this is OK, since this
4385   // temporary is 'invisible' outside of the callee.
4386   if (UnusedReturnSizePtr)
4387     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4388                                          UnusedReturnSizePtr);
4389 
4390   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4391 
4392   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4393       getBundlesForFunclet(CalleePtr);
4394 
4395   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4396     if (FD->usesFPIntrin())
4397       // All calls within a strictfp function are marked strictfp
4398       Attrs =
4399         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4400                            llvm::Attribute::StrictFP);
4401 
4402   // Emit the actual call/invoke instruction.
4403   llvm::CallBase *CI;
4404   if (!InvokeDest) {
4405     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4406   } else {
4407     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4408     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4409                               BundleList);
4410     EmitBlock(Cont);
4411   }
4412   if (callOrInvoke)
4413     *callOrInvoke = CI;
4414 
4415   // Apply the attributes and calling convention.
4416   CI->setAttributes(Attrs);
4417   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4418 
4419   // Apply various metadata.
4420 
4421   if (!CI->getType()->isVoidTy())
4422     CI->setName("call");
4423 
4424   // Update largest vector width from the return type.
4425   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4426     LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
4427                                   VT->getPrimitiveSizeInBits().getFixedSize());
4428 
4429   // Insert instrumentation or attach profile metadata at indirect call sites.
4430   // For more details, see the comment before the definition of
4431   // IPVK_IndirectCallTarget in InstrProfData.inc.
4432   if (!CI->getCalledFunction())
4433     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4434                      CI, CalleePtr);
4435 
4436   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4437   // optimizer it can aggressively ignore unwind edges.
4438   if (CGM.getLangOpts().ObjCAutoRefCount)
4439     AddObjCARCExceptionMetadata(CI);
4440 
4441   // Suppress tail calls if requested.
4442   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4443     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4444       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4445   }
4446 
4447   // Add metadata for calls to MSAllocator functions
4448   if (getDebugInfo() && TargetDecl &&
4449       TargetDecl->hasAttr<MSAllocatorAttr>())
4450     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc);
4451 
4452   // 4. Finish the call.
4453 
4454   // If the call doesn't return, finish the basic block and clear the
4455   // insertion point; this allows the rest of IRGen to discard
4456   // unreachable code.
4457   if (CI->doesNotReturn()) {
4458     if (UnusedReturnSizePtr)
4459       PopCleanupBlock();
4460 
4461     // Strip away the noreturn attribute to better diagnose unreachable UB.
4462     if (SanOpts.has(SanitizerKind::Unreachable)) {
4463       // Also remove from function since CallBase::hasFnAttr additionally checks
4464       // attributes of the called function.
4465       if (auto *F = CI->getCalledFunction())
4466         F->removeFnAttr(llvm::Attribute::NoReturn);
4467       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4468                           llvm::Attribute::NoReturn);
4469 
4470       // Avoid incompatibility with ASan which relies on the `noreturn`
4471       // attribute to insert handler calls.
4472       if (SanOpts.hasOneOf(SanitizerKind::Address |
4473                            SanitizerKind::KernelAddress)) {
4474         SanitizerScope SanScope(this);
4475         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4476         Builder.SetInsertPoint(CI);
4477         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4478         llvm::FunctionCallee Fn =
4479             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4480         EmitNounwindRuntimeCall(Fn);
4481       }
4482     }
4483 
4484     EmitUnreachable(Loc);
4485     Builder.ClearInsertionPoint();
4486 
4487     // FIXME: For now, emit a dummy basic block because expr emitters in
4488     // generally are not ready to handle emitting expressions at unreachable
4489     // points.
4490     EnsureInsertPoint();
4491 
4492     // Return a reasonable RValue.
4493     return GetUndefRValue(RetTy);
4494   }
4495 
4496   // Perform the swifterror writeback.
4497   if (swiftErrorTemp.isValid()) {
4498     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4499     Builder.CreateStore(errorResult, swiftErrorArg);
4500   }
4501 
4502   // Emit any call-associated writebacks immediately.  Arguably this
4503   // should happen after any return-value munging.
4504   if (CallArgs.hasWritebacks())
4505     emitWritebacks(*this, CallArgs);
4506 
4507   // The stack cleanup for inalloca arguments has to run out of the normal
4508   // lexical order, so deactivate it and run it manually here.
4509   CallArgs.freeArgumentMemory(*this);
4510 
4511   // Extract the return value.
4512   RValue Ret = [&] {
4513     switch (RetAI.getKind()) {
4514     case ABIArgInfo::CoerceAndExpand: {
4515       auto coercionType = RetAI.getCoerceAndExpandType();
4516 
4517       Address addr = SRetPtr;
4518       addr = Builder.CreateElementBitCast(addr, coercionType);
4519 
4520       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4521       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4522 
4523       unsigned unpaddedIndex = 0;
4524       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4525         llvm::Type *eltType = coercionType->getElementType(i);
4526         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4527         Address eltAddr = Builder.CreateStructGEP(addr, i);
4528         llvm::Value *elt = CI;
4529         if (requiresExtract)
4530           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4531         else
4532           assert(unpaddedIndex == 0);
4533         Builder.CreateStore(elt, eltAddr);
4534       }
4535       // FALLTHROUGH
4536       LLVM_FALLTHROUGH;
4537     }
4538 
4539     case ABIArgInfo::InAlloca:
4540     case ABIArgInfo::Indirect: {
4541       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4542       if (UnusedReturnSizePtr)
4543         PopCleanupBlock();
4544       return ret;
4545     }
4546 
4547     case ABIArgInfo::Ignore:
4548       // If we are ignoring an argument that had a result, make sure to
4549       // construct the appropriate return value for our caller.
4550       return GetUndefRValue(RetTy);
4551 
4552     case ABIArgInfo::Extend:
4553     case ABIArgInfo::Direct: {
4554       llvm::Type *RetIRTy = ConvertType(RetTy);
4555       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4556         switch (getEvaluationKind(RetTy)) {
4557         case TEK_Complex: {
4558           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4559           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4560           return RValue::getComplex(std::make_pair(Real, Imag));
4561         }
4562         case TEK_Aggregate: {
4563           Address DestPtr = ReturnValue.getValue();
4564           bool DestIsVolatile = ReturnValue.isVolatile();
4565 
4566           if (!DestPtr.isValid()) {
4567             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4568             DestIsVolatile = false;
4569           }
4570           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4571           return RValue::getAggregate(DestPtr);
4572         }
4573         case TEK_Scalar: {
4574           // If the argument doesn't match, perform a bitcast to coerce it.  This
4575           // can happen due to trivial type mismatches.
4576           llvm::Value *V = CI;
4577           if (V->getType() != RetIRTy)
4578             V = Builder.CreateBitCast(V, RetIRTy);
4579           return RValue::get(V);
4580         }
4581         }
4582         llvm_unreachable("bad evaluation kind");
4583       }
4584 
4585       Address DestPtr = ReturnValue.getValue();
4586       bool DestIsVolatile = ReturnValue.isVolatile();
4587 
4588       if (!DestPtr.isValid()) {
4589         DestPtr = CreateMemTemp(RetTy, "coerce");
4590         DestIsVolatile = false;
4591       }
4592 
4593       // If the value is offset in memory, apply the offset now.
4594       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4595       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4596 
4597       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4598     }
4599 
4600     case ABIArgInfo::Expand:
4601       llvm_unreachable("Invalid ABI kind for return argument");
4602     }
4603 
4604     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4605   } ();
4606 
4607   // Emit the assume_aligned check on the return value.
4608   if (Ret.isScalar() && TargetDecl) {
4609     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4610       llvm::Value *OffsetValue = nullptr;
4611       if (const auto *Offset = AA->getOffset())
4612         OffsetValue = EmitScalarExpr(Offset);
4613 
4614       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4615       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4616       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4617                               AlignmentCI, OffsetValue);
4618     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4619       llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()]
4620                                       .getRValue(*this)
4621                                       .getScalarVal();
4622       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4623                               AlignmentVal);
4624     }
4625   }
4626 
4627   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
4628   // we can't use the full cleanup mechanism.
4629   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
4630     LifetimeEnd.Emit(*this, /*Flags=*/{});
4631 
4632   return Ret;
4633 }
4634 
4635 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4636   if (isVirtual()) {
4637     const CallExpr *CE = getVirtualCallExpr();
4638     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4639         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
4640         CE ? CE->getBeginLoc() : SourceLocation());
4641   }
4642 
4643   return *this;
4644 }
4645 
4646 /* VarArg handling */
4647 
4648 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4649   VAListAddr = VE->isMicrosoftABI()
4650                  ? EmitMSVAListRef(VE->getSubExpr())
4651                  : EmitVAListRef(VE->getSubExpr());
4652   QualType Ty = VE->getType();
4653   if (VE->isMicrosoftABI())
4654     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4655   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4656 }
4657