1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 using namespace clang; 37 using namespace CodeGen; 38 39 /***/ 40 41 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 42 switch (CC) { 43 default: return llvm::CallingConv::C; 44 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 45 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 46 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 47 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 48 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 49 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 50 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 51 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 52 // TODO: Add support for __pascal to LLVM. 53 case CC_X86Pascal: return llvm::CallingConv::C; 54 // TODO: Add support for __vectorcall to LLVM. 55 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 56 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 57 case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL; 58 } 59 } 60 61 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 62 /// qualification. 63 /// FIXME: address space qualification? 64 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 65 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 66 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 67 } 68 69 /// Returns the canonical formal type of the given C++ method. 70 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 71 return MD->getType()->getCanonicalTypeUnqualified() 72 .getAs<FunctionProtoType>(); 73 } 74 75 /// Returns the "extra-canonicalized" return type, which discards 76 /// qualifiers on the return type. Codegen doesn't care about them, 77 /// and it makes ABI code a little easier to be able to assume that 78 /// all parameter and return types are top-level unqualified. 79 static CanQualType GetReturnType(QualType RetTy) { 80 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 81 } 82 83 /// Arrange the argument and result information for a value of the given 84 /// unprototyped freestanding function type. 85 const CGFunctionInfo & 86 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 87 // When translating an unprototyped function type, always use a 88 // variadic type. 89 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 90 /*instanceMethod=*/false, 91 /*chainCall=*/false, None, 92 FTNP->getExtInfo(), RequiredArgs(0)); 93 } 94 95 /// Arrange the LLVM function layout for a value of the given function 96 /// type, on top of any implicit parameters already stored. 97 static const CGFunctionInfo & 98 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 99 SmallVectorImpl<CanQualType> &prefix, 100 CanQual<FunctionProtoType> FTP) { 101 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 102 // FIXME: Kill copy. 103 prefix.append(FTP->param_type_begin(), FTP->param_type_end()); 104 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 105 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 106 /*chainCall=*/false, prefix, 107 FTP->getExtInfo(), required); 108 } 109 110 /// Arrange the argument and result information for a value of the 111 /// given freestanding function type. 112 const CGFunctionInfo & 113 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 114 SmallVector<CanQualType, 16> argTypes; 115 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 116 FTP); 117 } 118 119 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 120 // Set the appropriate calling convention for the Function. 121 if (D->hasAttr<StdCallAttr>()) 122 return CC_X86StdCall; 123 124 if (D->hasAttr<FastCallAttr>()) 125 return CC_X86FastCall; 126 127 if (D->hasAttr<ThisCallAttr>()) 128 return CC_X86ThisCall; 129 130 if (D->hasAttr<VectorCallAttr>()) 131 return CC_X86VectorCall; 132 133 if (D->hasAttr<PascalAttr>()) 134 return CC_X86Pascal; 135 136 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 137 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 138 139 if (D->hasAttr<IntelOclBiccAttr>()) 140 return CC_IntelOclBicc; 141 142 if (D->hasAttr<MSABIAttr>()) 143 return IsWindows ? CC_C : CC_X86_64Win64; 144 145 if (D->hasAttr<SysVABIAttr>()) 146 return IsWindows ? CC_X86_64SysV : CC_C; 147 148 return CC_C; 149 } 150 151 /// Arrange the argument and result information for a call to an 152 /// unknown C++ non-static member function of the given abstract type. 153 /// (Zero value of RD means we don't have any meaningful "this" argument type, 154 /// so fall back to a generic pointer type). 155 /// The member function must be an ordinary function, i.e. not a 156 /// constructor or destructor. 157 const CGFunctionInfo & 158 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 159 const FunctionProtoType *FTP) { 160 SmallVector<CanQualType, 16> argTypes; 161 162 // Add the 'this' pointer. 163 if (RD) 164 argTypes.push_back(GetThisType(Context, RD)); 165 else 166 argTypes.push_back(Context.VoidPtrTy); 167 168 return ::arrangeLLVMFunctionInfo( 169 *this, true, argTypes, 170 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 171 } 172 173 /// Arrange the argument and result information for a declaration or 174 /// definition of the given C++ non-static member function. The 175 /// member function must be an ordinary function, i.e. not a 176 /// constructor or destructor. 177 const CGFunctionInfo & 178 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 179 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 180 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 181 182 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 183 184 if (MD->isInstance()) { 185 // The abstract case is perfectly fine. 186 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 187 return arrangeCXXMethodType(ThisType, prototype.getTypePtr()); 188 } 189 190 return arrangeFreeFunctionType(prototype); 191 } 192 193 const CGFunctionInfo & 194 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 195 StructorType Type) { 196 197 SmallVector<CanQualType, 16> argTypes; 198 argTypes.push_back(GetThisType(Context, MD->getParent())); 199 200 GlobalDecl GD; 201 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 202 GD = GlobalDecl(CD, toCXXCtorType(Type)); 203 } else { 204 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 205 GD = GlobalDecl(DD, toCXXDtorType(Type)); 206 } 207 208 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 209 210 // Add the formal parameters. 211 argTypes.append(FTP->param_type_begin(), FTP->param_type_end()); 212 213 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 214 215 RequiredArgs required = 216 (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All); 217 218 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 219 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 220 ? argTypes.front() 221 : TheCXXABI.hasMostDerivedReturn(GD) 222 ? CGM.getContext().VoidPtrTy 223 : Context.VoidTy; 224 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 225 /*chainCall=*/false, argTypes, extInfo, 226 required); 227 } 228 229 /// Arrange a call to a C++ method, passing the given arguments. 230 const CGFunctionInfo & 231 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 232 const CXXConstructorDecl *D, 233 CXXCtorType CtorKind, 234 unsigned ExtraArgs) { 235 // FIXME: Kill copy. 236 SmallVector<CanQualType, 16> ArgTypes; 237 for (const auto &Arg : args) 238 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 239 240 CanQual<FunctionProtoType> FPT = GetFormalType(D); 241 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs); 242 GlobalDecl GD(D, CtorKind); 243 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 244 ? ArgTypes.front() 245 : TheCXXABI.hasMostDerivedReturn(GD) 246 ? CGM.getContext().VoidPtrTy 247 : Context.VoidTy; 248 249 FunctionType::ExtInfo Info = FPT->getExtInfo(); 250 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 251 /*chainCall=*/false, ArgTypes, Info, 252 Required); 253 } 254 255 /// Arrange the argument and result information for the declaration or 256 /// definition of the given function. 257 const CGFunctionInfo & 258 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 259 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 260 if (MD->isInstance()) 261 return arrangeCXXMethodDeclaration(MD); 262 263 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 264 265 assert(isa<FunctionType>(FTy)); 266 267 // When declaring a function without a prototype, always use a 268 // non-variadic type. 269 if (isa<FunctionNoProtoType>(FTy)) { 270 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 271 return arrangeLLVMFunctionInfo( 272 noProto->getReturnType(), /*instanceMethod=*/false, 273 /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All); 274 } 275 276 assert(isa<FunctionProtoType>(FTy)); 277 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 278 } 279 280 /// Arrange the argument and result information for the declaration or 281 /// definition of an Objective-C method. 282 const CGFunctionInfo & 283 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 284 // It happens that this is the same as a call with no optional 285 // arguments, except also using the formal 'self' type. 286 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 287 } 288 289 /// Arrange the argument and result information for the function type 290 /// through which to perform a send to the given Objective-C method, 291 /// using the given receiver type. The receiver type is not always 292 /// the 'self' type of the method or even an Objective-C pointer type. 293 /// This is *not* the right method for actually performing such a 294 /// message send, due to the possibility of optional arguments. 295 const CGFunctionInfo & 296 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 297 QualType receiverType) { 298 SmallVector<CanQualType, 16> argTys; 299 argTys.push_back(Context.getCanonicalParamType(receiverType)); 300 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 301 // FIXME: Kill copy? 302 for (const auto *I : MD->params()) { 303 argTys.push_back(Context.getCanonicalParamType(I->getType())); 304 } 305 306 FunctionType::ExtInfo einfo; 307 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 308 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 309 310 if (getContext().getLangOpts().ObjCAutoRefCount && 311 MD->hasAttr<NSReturnsRetainedAttr>()) 312 einfo = einfo.withProducesResult(true); 313 314 RequiredArgs required = 315 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 316 317 return arrangeLLVMFunctionInfo( 318 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 319 /*chainCall=*/false, argTys, einfo, required); 320 } 321 322 const CGFunctionInfo & 323 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 324 // FIXME: Do we need to handle ObjCMethodDecl? 325 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 326 327 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 328 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 329 330 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 331 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 332 333 return arrangeFunctionDeclaration(FD); 334 } 335 336 /// Arrange a thunk that takes 'this' as the first parameter followed by 337 /// varargs. Return a void pointer, regardless of the actual return type. 338 /// The body of the thunk will end in a musttail call to a function of the 339 /// correct type, and the caller will bitcast the function to the correct 340 /// prototype. 341 const CGFunctionInfo & 342 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 343 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 344 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 345 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 346 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 347 /*chainCall=*/false, ArgTys, 348 FTP->getExtInfo(), RequiredArgs(1)); 349 } 350 351 const CGFunctionInfo & 352 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 353 CXXCtorType CT) { 354 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 355 356 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 357 SmallVector<CanQualType, 2> ArgTys; 358 const CXXRecordDecl *RD = CD->getParent(); 359 ArgTys.push_back(GetThisType(Context, RD)); 360 if (CT == Ctor_CopyingClosure) 361 ArgTys.push_back(*FTP->param_type_begin()); 362 if (RD->getNumVBases() > 0) 363 ArgTys.push_back(Context.IntTy); 364 CallingConv CC = Context.getDefaultCallingConvention( 365 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 366 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 367 /*chainCall=*/false, ArgTys, 368 FunctionType::ExtInfo(CC), RequiredArgs::All); 369 } 370 371 /// Arrange a call as unto a free function, except possibly with an 372 /// additional number of formal parameters considered required. 373 static const CGFunctionInfo & 374 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 375 CodeGenModule &CGM, 376 const CallArgList &args, 377 const FunctionType *fnType, 378 unsigned numExtraRequiredArgs, 379 bool chainCall) { 380 assert(args.size() >= numExtraRequiredArgs); 381 382 // In most cases, there are no optional arguments. 383 RequiredArgs required = RequiredArgs::All; 384 385 // If we have a variadic prototype, the required arguments are the 386 // extra prefix plus the arguments in the prototype. 387 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 388 if (proto->isVariadic()) 389 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 390 391 // If we don't have a prototype at all, but we're supposed to 392 // explicitly use the variadic convention for unprototyped calls, 393 // treat all of the arguments as required but preserve the nominal 394 // possibility of variadics. 395 } else if (CGM.getTargetCodeGenInfo() 396 .isNoProtoCallVariadic(args, 397 cast<FunctionNoProtoType>(fnType))) { 398 required = RequiredArgs(args.size()); 399 } 400 401 // FIXME: Kill copy. 402 SmallVector<CanQualType, 16> argTypes; 403 for (const auto &arg : args) 404 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 405 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 406 /*instanceMethod=*/false, chainCall, 407 argTypes, fnType->getExtInfo(), required); 408 } 409 410 /// Figure out the rules for calling a function with the given formal 411 /// type using the given arguments. The arguments are necessary 412 /// because the function might be unprototyped, in which case it's 413 /// target-dependent in crazy ways. 414 const CGFunctionInfo & 415 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 416 const FunctionType *fnType, 417 bool chainCall) { 418 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 419 chainCall ? 1 : 0, chainCall); 420 } 421 422 /// A block function call is essentially a free-function call with an 423 /// extra implicit argument. 424 const CGFunctionInfo & 425 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 426 const FunctionType *fnType) { 427 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 428 /*chainCall=*/false); 429 } 430 431 const CGFunctionInfo & 432 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 433 const CallArgList &args, 434 FunctionType::ExtInfo info, 435 RequiredArgs required) { 436 // FIXME: Kill copy. 437 SmallVector<CanQualType, 16> argTypes; 438 for (const auto &Arg : args) 439 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 440 return arrangeLLVMFunctionInfo( 441 GetReturnType(resultType), /*instanceMethod=*/false, 442 /*chainCall=*/false, argTypes, info, required); 443 } 444 445 /// Arrange a call to a C++ method, passing the given arguments. 446 const CGFunctionInfo & 447 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 448 const FunctionProtoType *FPT, 449 RequiredArgs required) { 450 // FIXME: Kill copy. 451 SmallVector<CanQualType, 16> argTypes; 452 for (const auto &Arg : args) 453 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 454 455 FunctionType::ExtInfo info = FPT->getExtInfo(); 456 return arrangeLLVMFunctionInfo( 457 GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true, 458 /*chainCall=*/false, argTypes, info, required); 459 } 460 461 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration( 462 QualType resultType, const FunctionArgList &args, 463 const FunctionType::ExtInfo &info, bool isVariadic) { 464 // FIXME: Kill copy. 465 SmallVector<CanQualType, 16> argTypes; 466 for (auto Arg : args) 467 argTypes.push_back(Context.getCanonicalParamType(Arg->getType())); 468 469 RequiredArgs required = 470 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 471 return arrangeLLVMFunctionInfo( 472 GetReturnType(resultType), /*instanceMethod=*/false, 473 /*chainCall=*/false, argTypes, info, required); 474 } 475 476 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 477 return arrangeLLVMFunctionInfo( 478 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 479 None, FunctionType::ExtInfo(), RequiredArgs::All); 480 } 481 482 /// Arrange the argument and result information for an abstract value 483 /// of a given function type. This is the method which all of the 484 /// above functions ultimately defer to. 485 const CGFunctionInfo & 486 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 487 bool instanceMethod, 488 bool chainCall, 489 ArrayRef<CanQualType> argTypes, 490 FunctionType::ExtInfo info, 491 RequiredArgs required) { 492 assert(std::all_of(argTypes.begin(), argTypes.end(), 493 std::mem_fun_ref(&CanQualType::isCanonicalAsParam))); 494 495 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 496 497 // Lookup or create unique function info. 498 llvm::FoldingSetNodeID ID; 499 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required, 500 resultType, argTypes); 501 502 void *insertPos = nullptr; 503 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 504 if (FI) 505 return *FI; 506 507 // Construct the function info. We co-allocate the ArgInfos. 508 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 509 resultType, argTypes, required); 510 FunctionInfos.InsertNode(FI, insertPos); 511 512 bool inserted = FunctionsBeingProcessed.insert(FI).second; 513 (void)inserted; 514 assert(inserted && "Recursively being processed?"); 515 516 // Compute ABI information. 517 getABIInfo().computeInfo(*FI); 518 519 // Loop over all of the computed argument and return value info. If any of 520 // them are direct or extend without a specified coerce type, specify the 521 // default now. 522 ABIArgInfo &retInfo = FI->getReturnInfo(); 523 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 524 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 525 526 for (auto &I : FI->arguments()) 527 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 528 I.info.setCoerceToType(ConvertType(I.type)); 529 530 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 531 assert(erased && "Not in set?"); 532 533 return *FI; 534 } 535 536 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 537 bool instanceMethod, 538 bool chainCall, 539 const FunctionType::ExtInfo &info, 540 CanQualType resultType, 541 ArrayRef<CanQualType> argTypes, 542 RequiredArgs required) { 543 void *buffer = operator new(sizeof(CGFunctionInfo) + 544 sizeof(ArgInfo) * (argTypes.size() + 1)); 545 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 546 FI->CallingConvention = llvmCC; 547 FI->EffectiveCallingConvention = llvmCC; 548 FI->ASTCallingConvention = info.getCC(); 549 FI->InstanceMethod = instanceMethod; 550 FI->ChainCall = chainCall; 551 FI->NoReturn = info.getNoReturn(); 552 FI->ReturnsRetained = info.getProducesResult(); 553 FI->Required = required; 554 FI->HasRegParm = info.getHasRegParm(); 555 FI->RegParm = info.getRegParm(); 556 FI->ArgStruct = nullptr; 557 FI->ArgStructAlign = 0; 558 FI->NumArgs = argTypes.size(); 559 FI->getArgsBuffer()[0].type = resultType; 560 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 561 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 562 return FI; 563 } 564 565 /***/ 566 567 namespace { 568 // ABIArgInfo::Expand implementation. 569 570 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 571 struct TypeExpansion { 572 enum TypeExpansionKind { 573 // Elements of constant arrays are expanded recursively. 574 TEK_ConstantArray, 575 // Record fields are expanded recursively (but if record is a union, only 576 // the field with the largest size is expanded). 577 TEK_Record, 578 // For complex types, real and imaginary parts are expanded recursively. 579 TEK_Complex, 580 // All other types are not expandable. 581 TEK_None 582 }; 583 584 const TypeExpansionKind Kind; 585 586 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 587 virtual ~TypeExpansion() {} 588 }; 589 590 struct ConstantArrayExpansion : TypeExpansion { 591 QualType EltTy; 592 uint64_t NumElts; 593 594 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 595 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 596 static bool classof(const TypeExpansion *TE) { 597 return TE->Kind == TEK_ConstantArray; 598 } 599 }; 600 601 struct RecordExpansion : TypeExpansion { 602 SmallVector<const CXXBaseSpecifier *, 1> Bases; 603 604 SmallVector<const FieldDecl *, 1> Fields; 605 606 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 607 SmallVector<const FieldDecl *, 1> &&Fields) 608 : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {} 609 static bool classof(const TypeExpansion *TE) { 610 return TE->Kind == TEK_Record; 611 } 612 }; 613 614 struct ComplexExpansion : TypeExpansion { 615 QualType EltTy; 616 617 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 618 static bool classof(const TypeExpansion *TE) { 619 return TE->Kind == TEK_Complex; 620 } 621 }; 622 623 struct NoExpansion : TypeExpansion { 624 NoExpansion() : TypeExpansion(TEK_None) {} 625 static bool classof(const TypeExpansion *TE) { 626 return TE->Kind == TEK_None; 627 } 628 }; 629 } // namespace 630 631 static std::unique_ptr<TypeExpansion> 632 getTypeExpansion(QualType Ty, const ASTContext &Context) { 633 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 634 return llvm::make_unique<ConstantArrayExpansion>( 635 AT->getElementType(), AT->getSize().getZExtValue()); 636 } 637 if (const RecordType *RT = Ty->getAs<RecordType>()) { 638 SmallVector<const CXXBaseSpecifier *, 1> Bases; 639 SmallVector<const FieldDecl *, 1> Fields; 640 const RecordDecl *RD = RT->getDecl(); 641 assert(!RD->hasFlexibleArrayMember() && 642 "Cannot expand structure with flexible array."); 643 if (RD->isUnion()) { 644 // Unions can be here only in degenerative cases - all the fields are same 645 // after flattening. Thus we have to use the "largest" field. 646 const FieldDecl *LargestFD = nullptr; 647 CharUnits UnionSize = CharUnits::Zero(); 648 649 for (const auto *FD : RD->fields()) { 650 // Skip zero length bitfields. 651 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 652 continue; 653 assert(!FD->isBitField() && 654 "Cannot expand structure with bit-field members."); 655 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 656 if (UnionSize < FieldSize) { 657 UnionSize = FieldSize; 658 LargestFD = FD; 659 } 660 } 661 if (LargestFD) 662 Fields.push_back(LargestFD); 663 } else { 664 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 665 assert(!CXXRD->isDynamicClass() && 666 "cannot expand vtable pointers in dynamic classes"); 667 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 668 Bases.push_back(&BS); 669 } 670 671 for (const auto *FD : RD->fields()) { 672 // Skip zero length bitfields. 673 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 674 continue; 675 assert(!FD->isBitField() && 676 "Cannot expand structure with bit-field members."); 677 Fields.push_back(FD); 678 } 679 } 680 return llvm::make_unique<RecordExpansion>(std::move(Bases), 681 std::move(Fields)); 682 } 683 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 684 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 685 } 686 return llvm::make_unique<NoExpansion>(); 687 } 688 689 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 690 auto Exp = getTypeExpansion(Ty, Context); 691 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 692 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 693 } 694 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 695 int Res = 0; 696 for (auto BS : RExp->Bases) 697 Res += getExpansionSize(BS->getType(), Context); 698 for (auto FD : RExp->Fields) 699 Res += getExpansionSize(FD->getType(), Context); 700 return Res; 701 } 702 if (isa<ComplexExpansion>(Exp.get())) 703 return 2; 704 assert(isa<NoExpansion>(Exp.get())); 705 return 1; 706 } 707 708 void 709 CodeGenTypes::getExpandedTypes(QualType Ty, 710 SmallVectorImpl<llvm::Type *>::iterator &TI) { 711 auto Exp = getTypeExpansion(Ty, Context); 712 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 713 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 714 getExpandedTypes(CAExp->EltTy, TI); 715 } 716 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 717 for (auto BS : RExp->Bases) 718 getExpandedTypes(BS->getType(), TI); 719 for (auto FD : RExp->Fields) 720 getExpandedTypes(FD->getType(), TI); 721 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 722 llvm::Type *EltTy = ConvertType(CExp->EltTy); 723 *TI++ = EltTy; 724 *TI++ = EltTy; 725 } else { 726 assert(isa<NoExpansion>(Exp.get())); 727 *TI++ = ConvertType(Ty); 728 } 729 } 730 731 static void forConstantArrayExpansion(CodeGenFunction &CGF, 732 ConstantArrayExpansion *CAE, 733 Address BaseAddr, 734 llvm::function_ref<void(Address)> Fn) { 735 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 736 CharUnits EltAlign = 737 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 738 739 for (int i = 0, n = CAE->NumElts; i < n; i++) { 740 llvm::Value *EltAddr = 741 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 742 Fn(Address(EltAddr, EltAlign)); 743 } 744 } 745 746 void CodeGenFunction::ExpandTypeFromArgs( 747 QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) { 748 assert(LV.isSimple() && 749 "Unexpected non-simple lvalue during struct expansion."); 750 751 auto Exp = getTypeExpansion(Ty, getContext()); 752 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 753 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 754 [&](Address EltAddr) { 755 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 756 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 757 }); 758 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 759 Address This = LV.getAddress(); 760 for (const CXXBaseSpecifier *BS : RExp->Bases) { 761 // Perform a single step derived-to-base conversion. 762 Address Base = 763 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 764 /*NullCheckValue=*/false, SourceLocation()); 765 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 766 767 // Recurse onto bases. 768 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 769 } 770 for (auto FD : RExp->Fields) { 771 // FIXME: What are the right qualifiers here? 772 LValue SubLV = EmitLValueForField(LV, FD); 773 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 774 } 775 } else if (isa<ComplexExpansion>(Exp.get())) { 776 auto realValue = *AI++; 777 auto imagValue = *AI++; 778 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 779 } else { 780 assert(isa<NoExpansion>(Exp.get())); 781 EmitStoreThroughLValue(RValue::get(*AI++), LV); 782 } 783 } 784 785 void CodeGenFunction::ExpandTypeToArgs( 786 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 787 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 788 auto Exp = getTypeExpansion(Ty, getContext()); 789 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 790 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 791 [&](Address EltAddr) { 792 RValue EltRV = 793 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 794 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 795 }); 796 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 797 Address This = RV.getAggregateAddress(); 798 for (const CXXBaseSpecifier *BS : RExp->Bases) { 799 // Perform a single step derived-to-base conversion. 800 Address Base = 801 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 802 /*NullCheckValue=*/false, SourceLocation()); 803 RValue BaseRV = RValue::getAggregate(Base); 804 805 // Recurse onto bases. 806 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 807 IRCallArgPos); 808 } 809 810 LValue LV = MakeAddrLValue(This, Ty); 811 for (auto FD : RExp->Fields) { 812 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 813 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 814 IRCallArgPos); 815 } 816 } else if (isa<ComplexExpansion>(Exp.get())) { 817 ComplexPairTy CV = RV.getComplexVal(); 818 IRCallArgs[IRCallArgPos++] = CV.first; 819 IRCallArgs[IRCallArgPos++] = CV.second; 820 } else { 821 assert(isa<NoExpansion>(Exp.get())); 822 assert(RV.isScalar() && 823 "Unexpected non-scalar rvalue during struct expansion."); 824 825 // Insert a bitcast as needed. 826 llvm::Value *V = RV.getScalarVal(); 827 if (IRCallArgPos < IRFuncTy->getNumParams() && 828 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 829 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 830 831 IRCallArgs[IRCallArgPos++] = V; 832 } 833 } 834 835 /// Create a temporary allocation for the purposes of coercion. 836 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 837 CharUnits MinAlign) { 838 // Don't use an alignment that's worse than what LLVM would prefer. 839 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 840 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 841 842 return CGF.CreateTempAlloca(Ty, Align); 843 } 844 845 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 846 /// accessing some number of bytes out of it, try to gep into the struct to get 847 /// at its inner goodness. Dive as deep as possible without entering an element 848 /// with an in-memory size smaller than DstSize. 849 static Address 850 EnterStructPointerForCoercedAccess(Address SrcPtr, 851 llvm::StructType *SrcSTy, 852 uint64_t DstSize, CodeGenFunction &CGF) { 853 // We can't dive into a zero-element struct. 854 if (SrcSTy->getNumElements() == 0) return SrcPtr; 855 856 llvm::Type *FirstElt = SrcSTy->getElementType(0); 857 858 // If the first elt is at least as large as what we're looking for, or if the 859 // first element is the same size as the whole struct, we can enter it. The 860 // comparison must be made on the store size and not the alloca size. Using 861 // the alloca size may overstate the size of the load. 862 uint64_t FirstEltSize = 863 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 864 if (FirstEltSize < DstSize && 865 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 866 return SrcPtr; 867 868 // GEP into the first element. 869 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 870 871 // If the first element is a struct, recurse. 872 llvm::Type *SrcTy = SrcPtr.getElementType(); 873 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 874 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 875 876 return SrcPtr; 877 } 878 879 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 880 /// are either integers or pointers. This does a truncation of the value if it 881 /// is too large or a zero extension if it is too small. 882 /// 883 /// This behaves as if the value were coerced through memory, so on big-endian 884 /// targets the high bits are preserved in a truncation, while little-endian 885 /// targets preserve the low bits. 886 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 887 llvm::Type *Ty, 888 CodeGenFunction &CGF) { 889 if (Val->getType() == Ty) 890 return Val; 891 892 if (isa<llvm::PointerType>(Val->getType())) { 893 // If this is Pointer->Pointer avoid conversion to and from int. 894 if (isa<llvm::PointerType>(Ty)) 895 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 896 897 // Convert the pointer to an integer so we can play with its width. 898 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 899 } 900 901 llvm::Type *DestIntTy = Ty; 902 if (isa<llvm::PointerType>(DestIntTy)) 903 DestIntTy = CGF.IntPtrTy; 904 905 if (Val->getType() != DestIntTy) { 906 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 907 if (DL.isBigEndian()) { 908 // Preserve the high bits on big-endian targets. 909 // That is what memory coercion does. 910 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 911 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 912 913 if (SrcSize > DstSize) { 914 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 915 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 916 } else { 917 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 918 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 919 } 920 } else { 921 // Little-endian targets preserve the low bits. No shifts required. 922 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 923 } 924 } 925 926 if (isa<llvm::PointerType>(Ty)) 927 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 928 return Val; 929 } 930 931 932 933 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 934 /// a pointer to an object of type \arg Ty, known to be aligned to 935 /// \arg SrcAlign bytes. 936 /// 937 /// This safely handles the case when the src type is smaller than the 938 /// destination type; in this situation the values of bits which not 939 /// present in the src are undefined. 940 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 941 CodeGenFunction &CGF) { 942 llvm::Type *SrcTy = Src.getElementType(); 943 944 // If SrcTy and Ty are the same, just do a load. 945 if (SrcTy == Ty) 946 return CGF.Builder.CreateLoad(Src); 947 948 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 949 950 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 951 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 952 SrcTy = Src.getType()->getElementType(); 953 } 954 955 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 956 957 // If the source and destination are integer or pointer types, just do an 958 // extension or truncation to the desired type. 959 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 960 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 961 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 962 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 963 } 964 965 // If load is legal, just bitcast the src pointer. 966 if (SrcSize >= DstSize) { 967 // Generally SrcSize is never greater than DstSize, since this means we are 968 // losing bits. However, this can happen in cases where the structure has 969 // additional padding, for example due to a user specified alignment. 970 // 971 // FIXME: Assert that we aren't truncating non-padding bits when have access 972 // to that information. 973 Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty)); 974 return CGF.Builder.CreateLoad(Src); 975 } 976 977 // Otherwise do coercion through memory. This is stupid, but simple. 978 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 979 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 980 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 981 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 982 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 983 false); 984 return CGF.Builder.CreateLoad(Tmp); 985 } 986 987 // Function to store a first-class aggregate into memory. We prefer to 988 // store the elements rather than the aggregate to be more friendly to 989 // fast-isel. 990 // FIXME: Do we need to recurse here? 991 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 992 Address Dest, bool DestIsVolatile) { 993 // Prefer scalar stores to first-class aggregate stores. 994 if (llvm::StructType *STy = 995 dyn_cast<llvm::StructType>(Val->getType())) { 996 const llvm::StructLayout *Layout = 997 CGF.CGM.getDataLayout().getStructLayout(STy); 998 999 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1000 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1001 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1002 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1003 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1004 } 1005 } else { 1006 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1007 } 1008 } 1009 1010 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1011 /// where the source and destination may have different types. The 1012 /// destination is known to be aligned to \arg DstAlign bytes. 1013 /// 1014 /// This safely handles the case when the src type is larger than the 1015 /// destination type; the upper bits of the src will be lost. 1016 static void CreateCoercedStore(llvm::Value *Src, 1017 Address Dst, 1018 bool DstIsVolatile, 1019 CodeGenFunction &CGF) { 1020 llvm::Type *SrcTy = Src->getType(); 1021 llvm::Type *DstTy = Dst.getType()->getElementType(); 1022 if (SrcTy == DstTy) { 1023 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1024 return; 1025 } 1026 1027 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1028 1029 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1030 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1031 DstTy = Dst.getType()->getElementType(); 1032 } 1033 1034 // If the source and destination are integer or pointer types, just do an 1035 // extension or truncation to the desired type. 1036 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1037 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1038 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1039 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1040 return; 1041 } 1042 1043 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1044 1045 // If store is legal, just bitcast the src pointer. 1046 if (SrcSize <= DstSize) { 1047 Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy)); 1048 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1049 } else { 1050 // Otherwise do coercion through memory. This is stupid, but 1051 // simple. 1052 1053 // Generally SrcSize is never greater than DstSize, since this means we are 1054 // losing bits. However, this can happen in cases where the structure has 1055 // additional padding, for example due to a user specified alignment. 1056 // 1057 // FIXME: Assert that we aren't truncating non-padding bits when have access 1058 // to that information. 1059 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1060 CGF.Builder.CreateStore(Src, Tmp); 1061 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1062 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1063 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1064 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1065 false); 1066 } 1067 } 1068 1069 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1070 const ABIArgInfo &info) { 1071 if (unsigned offset = info.getDirectOffset()) { 1072 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1073 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1074 CharUnits::fromQuantity(offset)); 1075 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1076 } 1077 return addr; 1078 } 1079 1080 namespace { 1081 1082 /// Encapsulates information about the way function arguments from 1083 /// CGFunctionInfo should be passed to actual LLVM IR function. 1084 class ClangToLLVMArgMapping { 1085 static const unsigned InvalidIndex = ~0U; 1086 unsigned InallocaArgNo; 1087 unsigned SRetArgNo; 1088 unsigned TotalIRArgs; 1089 1090 /// Arguments of LLVM IR function corresponding to single Clang argument. 1091 struct IRArgs { 1092 unsigned PaddingArgIndex; 1093 // Argument is expanded to IR arguments at positions 1094 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1095 unsigned FirstArgIndex; 1096 unsigned NumberOfArgs; 1097 1098 IRArgs() 1099 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1100 NumberOfArgs(0) {} 1101 }; 1102 1103 SmallVector<IRArgs, 8> ArgInfo; 1104 1105 public: 1106 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1107 bool OnlyRequiredArgs = false) 1108 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1109 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1110 construct(Context, FI, OnlyRequiredArgs); 1111 } 1112 1113 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1114 unsigned getInallocaArgNo() const { 1115 assert(hasInallocaArg()); 1116 return InallocaArgNo; 1117 } 1118 1119 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1120 unsigned getSRetArgNo() const { 1121 assert(hasSRetArg()); 1122 return SRetArgNo; 1123 } 1124 1125 unsigned totalIRArgs() const { return TotalIRArgs; } 1126 1127 bool hasPaddingArg(unsigned ArgNo) const { 1128 assert(ArgNo < ArgInfo.size()); 1129 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1130 } 1131 unsigned getPaddingArgNo(unsigned ArgNo) const { 1132 assert(hasPaddingArg(ArgNo)); 1133 return ArgInfo[ArgNo].PaddingArgIndex; 1134 } 1135 1136 /// Returns index of first IR argument corresponding to ArgNo, and their 1137 /// quantity. 1138 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1139 assert(ArgNo < ArgInfo.size()); 1140 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1141 ArgInfo[ArgNo].NumberOfArgs); 1142 } 1143 1144 private: 1145 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1146 bool OnlyRequiredArgs); 1147 }; 1148 1149 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1150 const CGFunctionInfo &FI, 1151 bool OnlyRequiredArgs) { 1152 unsigned IRArgNo = 0; 1153 bool SwapThisWithSRet = false; 1154 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1155 1156 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1157 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1158 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1159 } 1160 1161 unsigned ArgNo = 0; 1162 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1163 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1164 ++I, ++ArgNo) { 1165 assert(I != FI.arg_end()); 1166 QualType ArgType = I->type; 1167 const ABIArgInfo &AI = I->info; 1168 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1169 auto &IRArgs = ArgInfo[ArgNo]; 1170 1171 if (AI.getPaddingType()) 1172 IRArgs.PaddingArgIndex = IRArgNo++; 1173 1174 switch (AI.getKind()) { 1175 case ABIArgInfo::Extend: 1176 case ABIArgInfo::Direct: { 1177 // FIXME: handle sseregparm someday... 1178 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1179 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1180 IRArgs.NumberOfArgs = STy->getNumElements(); 1181 } else { 1182 IRArgs.NumberOfArgs = 1; 1183 } 1184 break; 1185 } 1186 case ABIArgInfo::Indirect: 1187 IRArgs.NumberOfArgs = 1; 1188 break; 1189 case ABIArgInfo::Ignore: 1190 case ABIArgInfo::InAlloca: 1191 // ignore and inalloca doesn't have matching LLVM parameters. 1192 IRArgs.NumberOfArgs = 0; 1193 break; 1194 case ABIArgInfo::Expand: { 1195 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1196 break; 1197 } 1198 } 1199 1200 if (IRArgs.NumberOfArgs > 0) { 1201 IRArgs.FirstArgIndex = IRArgNo; 1202 IRArgNo += IRArgs.NumberOfArgs; 1203 } 1204 1205 // Skip over the sret parameter when it comes second. We already handled it 1206 // above. 1207 if (IRArgNo == 1 && SwapThisWithSRet) 1208 IRArgNo++; 1209 } 1210 assert(ArgNo == ArgInfo.size()); 1211 1212 if (FI.usesInAlloca()) 1213 InallocaArgNo = IRArgNo++; 1214 1215 TotalIRArgs = IRArgNo; 1216 } 1217 } // namespace 1218 1219 /***/ 1220 1221 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1222 return FI.getReturnInfo().isIndirect(); 1223 } 1224 1225 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1226 return ReturnTypeUsesSRet(FI) && 1227 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1228 } 1229 1230 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1231 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1232 switch (BT->getKind()) { 1233 default: 1234 return false; 1235 case BuiltinType::Float: 1236 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1237 case BuiltinType::Double: 1238 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1239 case BuiltinType::LongDouble: 1240 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1241 } 1242 } 1243 1244 return false; 1245 } 1246 1247 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1248 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1249 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1250 if (BT->getKind() == BuiltinType::LongDouble) 1251 return getTarget().useObjCFP2RetForComplexLongDouble(); 1252 } 1253 } 1254 1255 return false; 1256 } 1257 1258 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1259 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1260 return GetFunctionType(FI); 1261 } 1262 1263 llvm::FunctionType * 1264 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1265 1266 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1267 (void)Inserted; 1268 assert(Inserted && "Recursively being processed?"); 1269 1270 llvm::Type *resultType = nullptr; 1271 const ABIArgInfo &retAI = FI.getReturnInfo(); 1272 switch (retAI.getKind()) { 1273 case ABIArgInfo::Expand: 1274 llvm_unreachable("Invalid ABI kind for return argument"); 1275 1276 case ABIArgInfo::Extend: 1277 case ABIArgInfo::Direct: 1278 resultType = retAI.getCoerceToType(); 1279 break; 1280 1281 case ABIArgInfo::InAlloca: 1282 if (retAI.getInAllocaSRet()) { 1283 // sret things on win32 aren't void, they return the sret pointer. 1284 QualType ret = FI.getReturnType(); 1285 llvm::Type *ty = ConvertType(ret); 1286 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1287 resultType = llvm::PointerType::get(ty, addressSpace); 1288 } else { 1289 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1290 } 1291 break; 1292 1293 case ABIArgInfo::Indirect: 1294 case ABIArgInfo::Ignore: 1295 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1296 break; 1297 } 1298 1299 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1300 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1301 1302 // Add type for sret argument. 1303 if (IRFunctionArgs.hasSRetArg()) { 1304 QualType Ret = FI.getReturnType(); 1305 llvm::Type *Ty = ConvertType(Ret); 1306 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1307 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1308 llvm::PointerType::get(Ty, AddressSpace); 1309 } 1310 1311 // Add type for inalloca argument. 1312 if (IRFunctionArgs.hasInallocaArg()) { 1313 auto ArgStruct = FI.getArgStruct(); 1314 assert(ArgStruct); 1315 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1316 } 1317 1318 // Add in all of the required arguments. 1319 unsigned ArgNo = 0; 1320 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1321 ie = it + FI.getNumRequiredArgs(); 1322 for (; it != ie; ++it, ++ArgNo) { 1323 const ABIArgInfo &ArgInfo = it->info; 1324 1325 // Insert a padding type to ensure proper alignment. 1326 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1327 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1328 ArgInfo.getPaddingType(); 1329 1330 unsigned FirstIRArg, NumIRArgs; 1331 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1332 1333 switch (ArgInfo.getKind()) { 1334 case ABIArgInfo::Ignore: 1335 case ABIArgInfo::InAlloca: 1336 assert(NumIRArgs == 0); 1337 break; 1338 1339 case ABIArgInfo::Indirect: { 1340 assert(NumIRArgs == 1); 1341 // indirect arguments are always on the stack, which is addr space #0. 1342 llvm::Type *LTy = ConvertTypeForMem(it->type); 1343 ArgTypes[FirstIRArg] = LTy->getPointerTo(); 1344 break; 1345 } 1346 1347 case ABIArgInfo::Extend: 1348 case ABIArgInfo::Direct: { 1349 // Fast-isel and the optimizer generally like scalar values better than 1350 // FCAs, so we flatten them if this is safe to do for this argument. 1351 llvm::Type *argType = ArgInfo.getCoerceToType(); 1352 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1353 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1354 assert(NumIRArgs == st->getNumElements()); 1355 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1356 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1357 } else { 1358 assert(NumIRArgs == 1); 1359 ArgTypes[FirstIRArg] = argType; 1360 } 1361 break; 1362 } 1363 1364 case ABIArgInfo::Expand: 1365 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1366 getExpandedTypes(it->type, ArgTypesIter); 1367 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1368 break; 1369 } 1370 } 1371 1372 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1373 assert(Erased && "Not in set?"); 1374 1375 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1376 } 1377 1378 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1379 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1380 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1381 1382 if (!isFuncTypeConvertible(FPT)) 1383 return llvm::StructType::get(getLLVMContext()); 1384 1385 const CGFunctionInfo *Info; 1386 if (isa<CXXDestructorDecl>(MD)) 1387 Info = 1388 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1389 else 1390 Info = &arrangeCXXMethodDeclaration(MD); 1391 return GetFunctionType(*Info); 1392 } 1393 1394 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 1395 const Decl *TargetDecl, 1396 AttributeListType &PAL, 1397 unsigned &CallingConv, 1398 bool AttrOnCallSite) { 1399 llvm::AttrBuilder FuncAttrs; 1400 llvm::AttrBuilder RetAttrs; 1401 bool HasOptnone = false; 1402 1403 CallingConv = FI.getEffectiveCallingConvention(); 1404 1405 if (FI.isNoReturn()) 1406 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1407 1408 // FIXME: handle sseregparm someday... 1409 if (TargetDecl) { 1410 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1411 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1412 if (TargetDecl->hasAttr<NoThrowAttr>()) 1413 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1414 if (TargetDecl->hasAttr<NoReturnAttr>()) 1415 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1416 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1417 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1418 1419 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1420 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 1421 if (FPT && !isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1422 FPT->isNothrow(getContext())) 1423 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1424 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1425 // These attributes are not inherited by overloads. 1426 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1427 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1428 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1429 } 1430 1431 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1432 if (TargetDecl->hasAttr<ConstAttr>()) { 1433 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1434 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1435 } else if (TargetDecl->hasAttr<PureAttr>()) { 1436 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1437 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1438 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1439 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1440 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1441 } 1442 if (TargetDecl->hasAttr<RestrictAttr>()) 1443 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1444 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1445 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1446 1447 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1448 } 1449 1450 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1451 if (!HasOptnone) { 1452 if (CodeGenOpts.OptimizeSize) 1453 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1454 if (CodeGenOpts.OptimizeSize == 2) 1455 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1456 } 1457 1458 if (CodeGenOpts.DisableRedZone) 1459 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1460 if (CodeGenOpts.NoImplicitFloat) 1461 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1462 if (CodeGenOpts.EnableSegmentedStacks && 1463 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1464 FuncAttrs.addAttribute("split-stack"); 1465 1466 if (AttrOnCallSite) { 1467 // Attributes that should go on the call site only. 1468 if (!CodeGenOpts.SimplifyLibCalls) 1469 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1470 if (!CodeGenOpts.TrapFuncName.empty()) 1471 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1472 } else { 1473 // Attributes that should go on the function, but not the call site. 1474 if (!CodeGenOpts.DisableFPElim) { 1475 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1476 } else if (CodeGenOpts.OmitLeafFramePointer) { 1477 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1478 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1479 } else { 1480 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1481 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1482 } 1483 1484 bool DisableTailCalls = 1485 CodeGenOpts.DisableTailCalls || 1486 (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>()); 1487 FuncAttrs.addAttribute("disable-tail-calls", 1488 llvm::toStringRef(DisableTailCalls)); 1489 1490 FuncAttrs.addAttribute("less-precise-fpmad", 1491 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1492 FuncAttrs.addAttribute("no-infs-fp-math", 1493 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1494 FuncAttrs.addAttribute("no-nans-fp-math", 1495 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1496 FuncAttrs.addAttribute("unsafe-fp-math", 1497 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1498 FuncAttrs.addAttribute("use-soft-float", 1499 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1500 FuncAttrs.addAttribute("stack-protector-buffer-size", 1501 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1502 1503 if (CodeGenOpts.StackRealignment) 1504 FuncAttrs.addAttribute("stackrealign"); 1505 1506 // Add target-cpu and target-features attributes to functions. If 1507 // we have a decl for the function and it has a target attribute then 1508 // parse that and add it to the feature set. 1509 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1510 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1511 if (FD && FD->hasAttr<TargetAttr>()) { 1512 llvm::StringMap<bool> FeatureMap; 1513 getFunctionFeatureMap(FeatureMap, FD); 1514 1515 // Produce the canonical string for this set of features. 1516 std::vector<std::string> Features; 1517 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1518 ie = FeatureMap.end(); 1519 it != ie; ++it) 1520 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1521 1522 // Now add the target-cpu and target-features to the function. 1523 // While we populated the feature map above, we still need to 1524 // get and parse the target attribute so we can get the cpu for 1525 // the function. 1526 const auto *TD = FD->getAttr<TargetAttr>(); 1527 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1528 if (ParsedAttr.second != "") 1529 TargetCPU = ParsedAttr.second; 1530 if (TargetCPU != "") 1531 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1532 if (!Features.empty()) { 1533 std::sort(Features.begin(), Features.end()); 1534 FuncAttrs.addAttribute( 1535 "target-features", 1536 llvm::join(Features.begin(), Features.end(), ",")); 1537 } 1538 } else { 1539 // Otherwise just add the existing target cpu and target features to the 1540 // function. 1541 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1542 if (TargetCPU != "") 1543 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1544 if (!Features.empty()) { 1545 std::sort(Features.begin(), Features.end()); 1546 FuncAttrs.addAttribute( 1547 "target-features", 1548 llvm::join(Features.begin(), Features.end(), ",")); 1549 } 1550 } 1551 } 1552 1553 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1554 1555 QualType RetTy = FI.getReturnType(); 1556 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1557 switch (RetAI.getKind()) { 1558 case ABIArgInfo::Extend: 1559 if (RetTy->hasSignedIntegerRepresentation()) 1560 RetAttrs.addAttribute(llvm::Attribute::SExt); 1561 else if (RetTy->hasUnsignedIntegerRepresentation()) 1562 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1563 // FALL THROUGH 1564 case ABIArgInfo::Direct: 1565 if (RetAI.getInReg()) 1566 RetAttrs.addAttribute(llvm::Attribute::InReg); 1567 break; 1568 case ABIArgInfo::Ignore: 1569 break; 1570 1571 case ABIArgInfo::InAlloca: 1572 case ABIArgInfo::Indirect: { 1573 // inalloca and sret disable readnone and readonly 1574 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1575 .removeAttribute(llvm::Attribute::ReadNone); 1576 break; 1577 } 1578 1579 case ABIArgInfo::Expand: 1580 llvm_unreachable("Invalid ABI kind for return argument"); 1581 } 1582 1583 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1584 QualType PTy = RefTy->getPointeeType(); 1585 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1586 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1587 .getQuantity()); 1588 else if (getContext().getTargetAddressSpace(PTy) == 0) 1589 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1590 } 1591 1592 // Attach return attributes. 1593 if (RetAttrs.hasAttributes()) { 1594 PAL.push_back(llvm::AttributeSet::get( 1595 getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs)); 1596 } 1597 1598 // Attach attributes to sret. 1599 if (IRFunctionArgs.hasSRetArg()) { 1600 llvm::AttrBuilder SRETAttrs; 1601 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1602 if (RetAI.getInReg()) 1603 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1604 PAL.push_back(llvm::AttributeSet::get( 1605 getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs)); 1606 } 1607 1608 // Attach attributes to inalloca argument. 1609 if (IRFunctionArgs.hasInallocaArg()) { 1610 llvm::AttrBuilder Attrs; 1611 Attrs.addAttribute(llvm::Attribute::InAlloca); 1612 PAL.push_back(llvm::AttributeSet::get( 1613 getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs)); 1614 } 1615 1616 unsigned ArgNo = 0; 1617 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1618 E = FI.arg_end(); 1619 I != E; ++I, ++ArgNo) { 1620 QualType ParamType = I->type; 1621 const ABIArgInfo &AI = I->info; 1622 llvm::AttrBuilder Attrs; 1623 1624 // Add attribute for padding argument, if necessary. 1625 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1626 if (AI.getPaddingInReg()) 1627 PAL.push_back(llvm::AttributeSet::get( 1628 getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1, 1629 llvm::Attribute::InReg)); 1630 } 1631 1632 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1633 // have the corresponding parameter variable. It doesn't make 1634 // sense to do it here because parameters are so messed up. 1635 switch (AI.getKind()) { 1636 case ABIArgInfo::Extend: 1637 if (ParamType->isSignedIntegerOrEnumerationType()) 1638 Attrs.addAttribute(llvm::Attribute::SExt); 1639 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1640 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1641 Attrs.addAttribute(llvm::Attribute::SExt); 1642 else 1643 Attrs.addAttribute(llvm::Attribute::ZExt); 1644 } 1645 // FALL THROUGH 1646 case ABIArgInfo::Direct: 1647 if (ArgNo == 0 && FI.isChainCall()) 1648 Attrs.addAttribute(llvm::Attribute::Nest); 1649 else if (AI.getInReg()) 1650 Attrs.addAttribute(llvm::Attribute::InReg); 1651 break; 1652 1653 case ABIArgInfo::Indirect: { 1654 if (AI.getInReg()) 1655 Attrs.addAttribute(llvm::Attribute::InReg); 1656 1657 if (AI.getIndirectByVal()) 1658 Attrs.addAttribute(llvm::Attribute::ByVal); 1659 1660 CharUnits Align = AI.getIndirectAlign(); 1661 1662 // In a byval argument, it is important that the required 1663 // alignment of the type is honored, as LLVM might be creating a 1664 // *new* stack object, and needs to know what alignment to give 1665 // it. (Sometimes it can deduce a sensible alignment on its own, 1666 // but not if clang decides it must emit a packed struct, or the 1667 // user specifies increased alignment requirements.) 1668 // 1669 // This is different from indirect *not* byval, where the object 1670 // exists already, and the align attribute is purely 1671 // informative. 1672 assert(!Align.isZero()); 1673 1674 // For now, only add this when we have a byval argument. 1675 // TODO: be less lazy about updating test cases. 1676 if (AI.getIndirectByVal()) 1677 Attrs.addAlignmentAttr(Align.getQuantity()); 1678 1679 // byval disables readnone and readonly. 1680 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1681 .removeAttribute(llvm::Attribute::ReadNone); 1682 break; 1683 } 1684 case ABIArgInfo::Ignore: 1685 case ABIArgInfo::Expand: 1686 continue; 1687 1688 case ABIArgInfo::InAlloca: 1689 // inalloca disables readnone and readonly. 1690 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1691 .removeAttribute(llvm::Attribute::ReadNone); 1692 continue; 1693 } 1694 1695 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 1696 QualType PTy = RefTy->getPointeeType(); 1697 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1698 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1699 .getQuantity()); 1700 else if (getContext().getTargetAddressSpace(PTy) == 0) 1701 Attrs.addAttribute(llvm::Attribute::NonNull); 1702 } 1703 1704 if (Attrs.hasAttributes()) { 1705 unsigned FirstIRArg, NumIRArgs; 1706 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1707 for (unsigned i = 0; i < NumIRArgs; i++) 1708 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), 1709 FirstIRArg + i + 1, Attrs)); 1710 } 1711 } 1712 assert(ArgNo == FI.arg_size()); 1713 1714 if (FuncAttrs.hasAttributes()) 1715 PAL.push_back(llvm:: 1716 AttributeSet::get(getLLVMContext(), 1717 llvm::AttributeSet::FunctionIndex, 1718 FuncAttrs)); 1719 } 1720 1721 /// An argument came in as a promoted argument; demote it back to its 1722 /// declared type. 1723 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1724 const VarDecl *var, 1725 llvm::Value *value) { 1726 llvm::Type *varType = CGF.ConvertType(var->getType()); 1727 1728 // This can happen with promotions that actually don't change the 1729 // underlying type, like the enum promotions. 1730 if (value->getType() == varType) return value; 1731 1732 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1733 && "unexpected promotion type"); 1734 1735 if (isa<llvm::IntegerType>(varType)) 1736 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1737 1738 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1739 } 1740 1741 /// Returns the attribute (either parameter attribute, or function 1742 /// attribute), which declares argument ArgNo to be non-null. 1743 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 1744 QualType ArgType, unsigned ArgNo) { 1745 // FIXME: __attribute__((nonnull)) can also be applied to: 1746 // - references to pointers, where the pointee is known to be 1747 // nonnull (apparently a Clang extension) 1748 // - transparent unions containing pointers 1749 // In the former case, LLVM IR cannot represent the constraint. In 1750 // the latter case, we have no guarantee that the transparent union 1751 // is in fact passed as a pointer. 1752 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 1753 return nullptr; 1754 // First, check attribute on parameter itself. 1755 if (PVD) { 1756 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 1757 return ParmNNAttr; 1758 } 1759 // Check function attributes. 1760 if (!FD) 1761 return nullptr; 1762 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 1763 if (NNAttr->isNonNull(ArgNo)) 1764 return NNAttr; 1765 } 1766 return nullptr; 1767 } 1768 1769 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1770 llvm::Function *Fn, 1771 const FunctionArgList &Args) { 1772 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 1773 // Naked functions don't have prologues. 1774 return; 1775 1776 // If this is an implicit-return-zero function, go ahead and 1777 // initialize the return value. TODO: it might be nice to have 1778 // a more general mechanism for this that didn't require synthesized 1779 // return statements. 1780 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 1781 if (FD->hasImplicitReturnZero()) { 1782 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 1783 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1784 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1785 Builder.CreateStore(Zero, ReturnValue); 1786 } 1787 } 1788 1789 // FIXME: We no longer need the types from FunctionArgList; lift up and 1790 // simplify. 1791 1792 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 1793 // Flattened function arguments. 1794 SmallVector<llvm::Argument *, 16> FnArgs; 1795 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 1796 for (auto &Arg : Fn->args()) { 1797 FnArgs.push_back(&Arg); 1798 } 1799 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 1800 1801 // If we're using inalloca, all the memory arguments are GEPs off of the last 1802 // parameter, which is a pointer to the complete memory area. 1803 Address ArgStruct = Address::invalid(); 1804 const llvm::StructLayout *ArgStructLayout = nullptr; 1805 if (IRFunctionArgs.hasInallocaArg()) { 1806 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 1807 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 1808 FI.getArgStructAlignment()); 1809 1810 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 1811 } 1812 1813 // Name the struct return parameter. 1814 if (IRFunctionArgs.hasSRetArg()) { 1815 auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()]; 1816 AI->setName("agg.result"); 1817 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1, 1818 llvm::Attribute::NoAlias)); 1819 } 1820 1821 // Track if we received the parameter as a pointer (indirect, byval, or 1822 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 1823 // into a local alloca for us. 1824 SmallVector<ParamValue, 16> ArgVals; 1825 ArgVals.reserve(Args.size()); 1826 1827 // Create a pointer value for every parameter declaration. This usually 1828 // entails copying one or more LLVM IR arguments into an alloca. Don't push 1829 // any cleanups or do anything that might unwind. We do that separately, so 1830 // we can push the cleanups in the correct order for the ABI. 1831 assert(FI.arg_size() == Args.size() && 1832 "Mismatch between function signature & arguments."); 1833 unsigned ArgNo = 0; 1834 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1835 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1836 i != e; ++i, ++info_it, ++ArgNo) { 1837 const VarDecl *Arg = *i; 1838 QualType Ty = info_it->type; 1839 const ABIArgInfo &ArgI = info_it->info; 1840 1841 bool isPromoted = 1842 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1843 1844 unsigned FirstIRArg, NumIRArgs; 1845 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1846 1847 switch (ArgI.getKind()) { 1848 case ABIArgInfo::InAlloca: { 1849 assert(NumIRArgs == 0); 1850 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 1851 CharUnits FieldOffset = 1852 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 1853 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 1854 Arg->getName()); 1855 ArgVals.push_back(ParamValue::forIndirect(V)); 1856 break; 1857 } 1858 1859 case ABIArgInfo::Indirect: { 1860 assert(NumIRArgs == 1); 1861 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 1862 1863 if (!hasScalarEvaluationKind(Ty)) { 1864 // Aggregates and complex variables are accessed by reference. All we 1865 // need to do is realign the value, if requested. 1866 Address V = ParamAddr; 1867 if (ArgI.getIndirectRealign()) { 1868 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 1869 1870 // Copy from the incoming argument pointer to the temporary with the 1871 // appropriate alignment. 1872 // 1873 // FIXME: We should have a common utility for generating an aggregate 1874 // copy. 1875 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1876 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 1877 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 1878 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 1879 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 1880 V = AlignedTemp; 1881 } 1882 ArgVals.push_back(ParamValue::forIndirect(V)); 1883 } else { 1884 // Load scalar value from indirect argument. 1885 llvm::Value *V = 1886 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 1887 1888 if (isPromoted) 1889 V = emitArgumentDemotion(*this, Arg, V); 1890 ArgVals.push_back(ParamValue::forDirect(V)); 1891 } 1892 break; 1893 } 1894 1895 case ABIArgInfo::Extend: 1896 case ABIArgInfo::Direct: { 1897 1898 // If we have the trivial case, handle it with no muss and fuss. 1899 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1900 ArgI.getCoerceToType() == ConvertType(Ty) && 1901 ArgI.getDirectOffset() == 0) { 1902 assert(NumIRArgs == 1); 1903 auto AI = FnArgs[FirstIRArg]; 1904 llvm::Value *V = AI; 1905 1906 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 1907 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 1908 PVD->getFunctionScopeIndex())) 1909 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1910 AI->getArgNo() + 1, 1911 llvm::Attribute::NonNull)); 1912 1913 QualType OTy = PVD->getOriginalType(); 1914 if (const auto *ArrTy = 1915 getContext().getAsConstantArrayType(OTy)) { 1916 // A C99 array parameter declaration with the static keyword also 1917 // indicates dereferenceability, and if the size is constant we can 1918 // use the dereferenceable attribute (which requires the size in 1919 // bytes). 1920 if (ArrTy->getSizeModifier() == ArrayType::Static) { 1921 QualType ETy = ArrTy->getElementType(); 1922 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 1923 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 1924 ArrSize) { 1925 llvm::AttrBuilder Attrs; 1926 Attrs.addDereferenceableAttr( 1927 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 1928 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1929 AI->getArgNo() + 1, Attrs)); 1930 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 1931 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1932 AI->getArgNo() + 1, 1933 llvm::Attribute::NonNull)); 1934 } 1935 } 1936 } else if (const auto *ArrTy = 1937 getContext().getAsVariableArrayType(OTy)) { 1938 // For C99 VLAs with the static keyword, we don't know the size so 1939 // we can't use the dereferenceable attribute, but in addrspace(0) 1940 // we know that it must be nonnull. 1941 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 1942 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 1943 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1944 AI->getArgNo() + 1, 1945 llvm::Attribute::NonNull)); 1946 } 1947 1948 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 1949 if (!AVAttr) 1950 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 1951 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 1952 if (AVAttr) { 1953 llvm::Value *AlignmentValue = 1954 EmitScalarExpr(AVAttr->getAlignment()); 1955 llvm::ConstantInt *AlignmentCI = 1956 cast<llvm::ConstantInt>(AlignmentValue); 1957 unsigned Alignment = 1958 std::min((unsigned) AlignmentCI->getZExtValue(), 1959 +llvm::Value::MaximumAlignment); 1960 1961 llvm::AttrBuilder Attrs; 1962 Attrs.addAlignmentAttr(Alignment); 1963 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1964 AI->getArgNo() + 1, Attrs)); 1965 } 1966 } 1967 1968 if (Arg->getType().isRestrictQualified()) 1969 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1970 AI->getArgNo() + 1, 1971 llvm::Attribute::NoAlias)); 1972 1973 // Ensure the argument is the correct type. 1974 if (V->getType() != ArgI.getCoerceToType()) 1975 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1976 1977 if (isPromoted) 1978 V = emitArgumentDemotion(*this, Arg, V); 1979 1980 if (const CXXMethodDecl *MD = 1981 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 1982 if (MD->isVirtual() && Arg == CXXABIThisDecl) 1983 V = CGM.getCXXABI(). 1984 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V); 1985 } 1986 1987 // Because of merging of function types from multiple decls it is 1988 // possible for the type of an argument to not match the corresponding 1989 // type in the function type. Since we are codegening the callee 1990 // in here, add a cast to the argument type. 1991 llvm::Type *LTy = ConvertType(Arg->getType()); 1992 if (V->getType() != LTy) 1993 V = Builder.CreateBitCast(V, LTy); 1994 1995 ArgVals.push_back(ParamValue::forDirect(V)); 1996 break; 1997 } 1998 1999 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2000 Arg->getName()); 2001 2002 // Pointer to store into. 2003 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2004 2005 // Fast-isel and the optimizer generally like scalar values better than 2006 // FCAs, so we flatten them if this is safe to do for this argument. 2007 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2008 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2009 STy->getNumElements() > 1) { 2010 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2011 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2012 llvm::Type *DstTy = Ptr.getElementType(); 2013 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2014 2015 Address AddrToStoreInto = Address::invalid(); 2016 if (SrcSize <= DstSize) { 2017 AddrToStoreInto = 2018 Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 2019 } else { 2020 AddrToStoreInto = 2021 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2022 } 2023 2024 assert(STy->getNumElements() == NumIRArgs); 2025 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2026 auto AI = FnArgs[FirstIRArg + i]; 2027 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2028 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2029 Address EltPtr = 2030 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2031 Builder.CreateStore(AI, EltPtr); 2032 } 2033 2034 if (SrcSize > DstSize) { 2035 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2036 } 2037 2038 } else { 2039 // Simple case, just do a coerced store of the argument into the alloca. 2040 assert(NumIRArgs == 1); 2041 auto AI = FnArgs[FirstIRArg]; 2042 AI->setName(Arg->getName() + ".coerce"); 2043 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2044 } 2045 2046 // Match to what EmitParmDecl is expecting for this type. 2047 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2048 llvm::Value *V = 2049 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2050 if (isPromoted) 2051 V = emitArgumentDemotion(*this, Arg, V); 2052 ArgVals.push_back(ParamValue::forDirect(V)); 2053 } else { 2054 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2055 } 2056 break; 2057 } 2058 2059 case ABIArgInfo::Expand: { 2060 // If this structure was expanded into multiple arguments then 2061 // we need to create a temporary and reconstruct it from the 2062 // arguments. 2063 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2064 LValue LV = MakeAddrLValue(Alloca, Ty); 2065 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2066 2067 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2068 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2069 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2070 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2071 auto AI = FnArgs[FirstIRArg + i]; 2072 AI->setName(Arg->getName() + "." + Twine(i)); 2073 } 2074 break; 2075 } 2076 2077 case ABIArgInfo::Ignore: 2078 assert(NumIRArgs == 0); 2079 // Initialize the local variable appropriately. 2080 if (!hasScalarEvaluationKind(Ty)) { 2081 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2082 } else { 2083 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2084 ArgVals.push_back(ParamValue::forDirect(U)); 2085 } 2086 break; 2087 } 2088 } 2089 2090 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2091 for (int I = Args.size() - 1; I >= 0; --I) 2092 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2093 } else { 2094 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2095 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2096 } 2097 } 2098 2099 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2100 while (insn->use_empty()) { 2101 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2102 if (!bitcast) return; 2103 2104 // This is "safe" because we would have used a ConstantExpr otherwise. 2105 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2106 bitcast->eraseFromParent(); 2107 } 2108 } 2109 2110 /// Try to emit a fused autorelease of a return result. 2111 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2112 llvm::Value *result) { 2113 // We must be immediately followed the cast. 2114 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2115 if (BB->empty()) return nullptr; 2116 if (&BB->back() != result) return nullptr; 2117 2118 llvm::Type *resultType = result->getType(); 2119 2120 // result is in a BasicBlock and is therefore an Instruction. 2121 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2122 2123 SmallVector<llvm::Instruction*,4> insnsToKill; 2124 2125 // Look for: 2126 // %generator = bitcast %type1* %generator2 to %type2* 2127 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2128 // We would have emitted this as a constant if the operand weren't 2129 // an Instruction. 2130 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2131 2132 // Require the generator to be immediately followed by the cast. 2133 if (generator->getNextNode() != bitcast) 2134 return nullptr; 2135 2136 insnsToKill.push_back(bitcast); 2137 } 2138 2139 // Look for: 2140 // %generator = call i8* @objc_retain(i8* %originalResult) 2141 // or 2142 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2143 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2144 if (!call) return nullptr; 2145 2146 bool doRetainAutorelease; 2147 2148 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2149 doRetainAutorelease = true; 2150 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2151 .objc_retainAutoreleasedReturnValue) { 2152 doRetainAutorelease = false; 2153 2154 // If we emitted an assembly marker for this call (and the 2155 // ARCEntrypoints field should have been set if so), go looking 2156 // for that call. If we can't find it, we can't do this 2157 // optimization. But it should always be the immediately previous 2158 // instruction, unless we needed bitcasts around the call. 2159 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2160 llvm::Instruction *prev = call->getPrevNode(); 2161 assert(prev); 2162 if (isa<llvm::BitCastInst>(prev)) { 2163 prev = prev->getPrevNode(); 2164 assert(prev); 2165 } 2166 assert(isa<llvm::CallInst>(prev)); 2167 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2168 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2169 insnsToKill.push_back(prev); 2170 } 2171 } else { 2172 return nullptr; 2173 } 2174 2175 result = call->getArgOperand(0); 2176 insnsToKill.push_back(call); 2177 2178 // Keep killing bitcasts, for sanity. Note that we no longer care 2179 // about precise ordering as long as there's exactly one use. 2180 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2181 if (!bitcast->hasOneUse()) break; 2182 insnsToKill.push_back(bitcast); 2183 result = bitcast->getOperand(0); 2184 } 2185 2186 // Delete all the unnecessary instructions, from latest to earliest. 2187 for (SmallVectorImpl<llvm::Instruction*>::iterator 2188 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 2189 (*i)->eraseFromParent(); 2190 2191 // Do the fused retain/autorelease if we were asked to. 2192 if (doRetainAutorelease) 2193 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2194 2195 // Cast back to the result type. 2196 return CGF.Builder.CreateBitCast(result, resultType); 2197 } 2198 2199 /// If this is a +1 of the value of an immutable 'self', remove it. 2200 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2201 llvm::Value *result) { 2202 // This is only applicable to a method with an immutable 'self'. 2203 const ObjCMethodDecl *method = 2204 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2205 if (!method) return nullptr; 2206 const VarDecl *self = method->getSelfDecl(); 2207 if (!self->getType().isConstQualified()) return nullptr; 2208 2209 // Look for a retain call. 2210 llvm::CallInst *retainCall = 2211 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2212 if (!retainCall || 2213 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2214 return nullptr; 2215 2216 // Look for an ordinary load of 'self'. 2217 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2218 llvm::LoadInst *load = 2219 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2220 if (!load || load->isAtomic() || load->isVolatile() || 2221 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2222 return nullptr; 2223 2224 // Okay! Burn it all down. This relies for correctness on the 2225 // assumption that the retain is emitted as part of the return and 2226 // that thereafter everything is used "linearly". 2227 llvm::Type *resultType = result->getType(); 2228 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2229 assert(retainCall->use_empty()); 2230 retainCall->eraseFromParent(); 2231 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2232 2233 return CGF.Builder.CreateBitCast(load, resultType); 2234 } 2235 2236 /// Emit an ARC autorelease of the result of a function. 2237 /// 2238 /// \return the value to actually return from the function 2239 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2240 llvm::Value *result) { 2241 // If we're returning 'self', kill the initial retain. This is a 2242 // heuristic attempt to "encourage correctness" in the really unfortunate 2243 // case where we have a return of self during a dealloc and we desperately 2244 // need to avoid the possible autorelease. 2245 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2246 return self; 2247 2248 // At -O0, try to emit a fused retain/autorelease. 2249 if (CGF.shouldUseFusedARCCalls()) 2250 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2251 return fused; 2252 2253 return CGF.EmitARCAutoreleaseReturnValue(result); 2254 } 2255 2256 /// Heuristically search for a dominating store to the return-value slot. 2257 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2258 // Check if a User is a store which pointerOperand is the ReturnValue. 2259 // We are looking for stores to the ReturnValue, not for stores of the 2260 // ReturnValue to some other location. 2261 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2262 auto *SI = dyn_cast<llvm::StoreInst>(U); 2263 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2264 return nullptr; 2265 // These aren't actually possible for non-coerced returns, and we 2266 // only care about non-coerced returns on this code path. 2267 assert(!SI->isAtomic() && !SI->isVolatile()); 2268 return SI; 2269 }; 2270 // If there are multiple uses of the return-value slot, just check 2271 // for something immediately preceding the IP. Sometimes this can 2272 // happen with how we generate implicit-returns; it can also happen 2273 // with noreturn cleanups. 2274 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2275 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2276 if (IP->empty()) return nullptr; 2277 llvm::Instruction *I = &IP->back(); 2278 2279 // Skip lifetime markers 2280 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2281 IE = IP->rend(); 2282 II != IE; ++II) { 2283 if (llvm::IntrinsicInst *Intrinsic = 2284 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2285 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2286 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2287 ++II; 2288 if (II == IE) 2289 break; 2290 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2291 continue; 2292 } 2293 } 2294 I = &*II; 2295 break; 2296 } 2297 2298 return GetStoreIfValid(I); 2299 } 2300 2301 llvm::StoreInst *store = 2302 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2303 if (!store) return nullptr; 2304 2305 // Now do a first-and-dirty dominance check: just walk up the 2306 // single-predecessors chain from the current insertion point. 2307 llvm::BasicBlock *StoreBB = store->getParent(); 2308 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2309 while (IP != StoreBB) { 2310 if (!(IP = IP->getSinglePredecessor())) 2311 return nullptr; 2312 } 2313 2314 // Okay, the store's basic block dominates the insertion point; we 2315 // can do our thing. 2316 return store; 2317 } 2318 2319 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2320 bool EmitRetDbgLoc, 2321 SourceLocation EndLoc) { 2322 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2323 // Naked functions don't have epilogues. 2324 Builder.CreateUnreachable(); 2325 return; 2326 } 2327 2328 // Functions with no result always return void. 2329 if (!ReturnValue.isValid()) { 2330 Builder.CreateRetVoid(); 2331 return; 2332 } 2333 2334 llvm::DebugLoc RetDbgLoc; 2335 llvm::Value *RV = nullptr; 2336 QualType RetTy = FI.getReturnType(); 2337 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2338 2339 switch (RetAI.getKind()) { 2340 case ABIArgInfo::InAlloca: 2341 // Aggregrates get evaluated directly into the destination. Sometimes we 2342 // need to return the sret value in a register, though. 2343 assert(hasAggregateEvaluationKind(RetTy)); 2344 if (RetAI.getInAllocaSRet()) { 2345 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2346 --EI; 2347 llvm::Value *ArgStruct = &*EI; 2348 llvm::Value *SRet = Builder.CreateStructGEP( 2349 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2350 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2351 } 2352 break; 2353 2354 case ABIArgInfo::Indirect: { 2355 auto AI = CurFn->arg_begin(); 2356 if (RetAI.isSRetAfterThis()) 2357 ++AI; 2358 switch (getEvaluationKind(RetTy)) { 2359 case TEK_Complex: { 2360 ComplexPairTy RT = 2361 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2362 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2363 /*isInit*/ true); 2364 break; 2365 } 2366 case TEK_Aggregate: 2367 // Do nothing; aggregrates get evaluated directly into the destination. 2368 break; 2369 case TEK_Scalar: 2370 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2371 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2372 /*isInit*/ true); 2373 break; 2374 } 2375 break; 2376 } 2377 2378 case ABIArgInfo::Extend: 2379 case ABIArgInfo::Direct: 2380 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2381 RetAI.getDirectOffset() == 0) { 2382 // The internal return value temp always will have pointer-to-return-type 2383 // type, just do a load. 2384 2385 // If there is a dominating store to ReturnValue, we can elide 2386 // the load, zap the store, and usually zap the alloca. 2387 if (llvm::StoreInst *SI = 2388 findDominatingStoreToReturnValue(*this)) { 2389 // Reuse the debug location from the store unless there is 2390 // cleanup code to be emitted between the store and return 2391 // instruction. 2392 if (EmitRetDbgLoc && !AutoreleaseResult) 2393 RetDbgLoc = SI->getDebugLoc(); 2394 // Get the stored value and nuke the now-dead store. 2395 RV = SI->getValueOperand(); 2396 SI->eraseFromParent(); 2397 2398 // If that was the only use of the return value, nuke it as well now. 2399 auto returnValueInst = ReturnValue.getPointer(); 2400 if (returnValueInst->use_empty()) { 2401 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2402 alloca->eraseFromParent(); 2403 ReturnValue = Address::invalid(); 2404 } 2405 } 2406 2407 // Otherwise, we have to do a simple load. 2408 } else { 2409 RV = Builder.CreateLoad(ReturnValue); 2410 } 2411 } else { 2412 // If the value is offset in memory, apply the offset now. 2413 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2414 2415 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2416 } 2417 2418 // In ARC, end functions that return a retainable type with a call 2419 // to objc_autoreleaseReturnValue. 2420 if (AutoreleaseResult) { 2421 assert(getLangOpts().ObjCAutoRefCount && 2422 !FI.isReturnsRetained() && 2423 RetTy->isObjCRetainableType()); 2424 RV = emitAutoreleaseOfResult(*this, RV); 2425 } 2426 2427 break; 2428 2429 case ABIArgInfo::Ignore: 2430 break; 2431 2432 case ABIArgInfo::Expand: 2433 llvm_unreachable("Invalid ABI kind for return argument"); 2434 } 2435 2436 llvm::Instruction *Ret; 2437 if (RV) { 2438 if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) { 2439 if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) { 2440 SanitizerScope SanScope(this); 2441 llvm::Value *Cond = Builder.CreateICmpNE( 2442 RV, llvm::Constant::getNullValue(RV->getType())); 2443 llvm::Constant *StaticData[] = { 2444 EmitCheckSourceLocation(EndLoc), 2445 EmitCheckSourceLocation(RetNNAttr->getLocation()), 2446 }; 2447 EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute), 2448 "nonnull_return", StaticData, None); 2449 } 2450 } 2451 Ret = Builder.CreateRet(RV); 2452 } else { 2453 Ret = Builder.CreateRetVoid(); 2454 } 2455 2456 if (RetDbgLoc) 2457 Ret->setDebugLoc(std::move(RetDbgLoc)); 2458 } 2459 2460 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2461 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2462 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2463 } 2464 2465 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2466 QualType Ty) { 2467 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2468 // placeholders. 2469 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2470 llvm::Value *Placeholder = 2471 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo()); 2472 Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder); 2473 2474 // FIXME: When we generate this IR in one pass, we shouldn't need 2475 // this win32-specific alignment hack. 2476 CharUnits Align = CharUnits::fromQuantity(4); 2477 2478 return AggValueSlot::forAddr(Address(Placeholder, Align), 2479 Ty.getQualifiers(), 2480 AggValueSlot::IsNotDestructed, 2481 AggValueSlot::DoesNotNeedGCBarriers, 2482 AggValueSlot::IsNotAliased); 2483 } 2484 2485 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 2486 const VarDecl *param, 2487 SourceLocation loc) { 2488 // StartFunction converted the ABI-lowered parameter(s) into a 2489 // local alloca. We need to turn that into an r-value suitable 2490 // for EmitCall. 2491 Address local = GetAddrOfLocalVar(param); 2492 2493 QualType type = param->getType(); 2494 2495 // For the most part, we just need to load the alloca, except: 2496 // 1) aggregate r-values are actually pointers to temporaries, and 2497 // 2) references to non-scalars are pointers directly to the aggregate. 2498 // I don't know why references to scalars are different here. 2499 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 2500 if (!hasScalarEvaluationKind(ref->getPointeeType())) 2501 return args.add(RValue::getAggregate(local), type); 2502 2503 // Locals which are references to scalars are represented 2504 // with allocas holding the pointer. 2505 return args.add(RValue::get(Builder.CreateLoad(local)), type); 2506 } 2507 2508 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 2509 "cannot emit delegate call arguments for inalloca arguments!"); 2510 2511 args.add(convertTempToRValue(local, type, loc), type); 2512 } 2513 2514 static bool isProvablyNull(llvm::Value *addr) { 2515 return isa<llvm::ConstantPointerNull>(addr); 2516 } 2517 2518 static bool isProvablyNonNull(llvm::Value *addr) { 2519 return isa<llvm::AllocaInst>(addr); 2520 } 2521 2522 /// Emit the actual writing-back of a writeback. 2523 static void emitWriteback(CodeGenFunction &CGF, 2524 const CallArgList::Writeback &writeback) { 2525 const LValue &srcLV = writeback.Source; 2526 Address srcAddr = srcLV.getAddress(); 2527 assert(!isProvablyNull(srcAddr.getPointer()) && 2528 "shouldn't have writeback for provably null argument"); 2529 2530 llvm::BasicBlock *contBB = nullptr; 2531 2532 // If the argument wasn't provably non-null, we need to null check 2533 // before doing the store. 2534 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 2535 if (!provablyNonNull) { 2536 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 2537 contBB = CGF.createBasicBlock("icr.done"); 2538 2539 llvm::Value *isNull = 2540 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2541 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 2542 CGF.EmitBlock(writebackBB); 2543 } 2544 2545 // Load the value to writeback. 2546 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 2547 2548 // Cast it back, in case we're writing an id to a Foo* or something. 2549 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 2550 "icr.writeback-cast"); 2551 2552 // Perform the writeback. 2553 2554 // If we have a "to use" value, it's something we need to emit a use 2555 // of. This has to be carefully threaded in: if it's done after the 2556 // release it's potentially undefined behavior (and the optimizer 2557 // will ignore it), and if it happens before the retain then the 2558 // optimizer could move the release there. 2559 if (writeback.ToUse) { 2560 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 2561 2562 // Retain the new value. No need to block-copy here: the block's 2563 // being passed up the stack. 2564 value = CGF.EmitARCRetainNonBlock(value); 2565 2566 // Emit the intrinsic use here. 2567 CGF.EmitARCIntrinsicUse(writeback.ToUse); 2568 2569 // Load the old value (primitively). 2570 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 2571 2572 // Put the new value in place (primitively). 2573 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 2574 2575 // Release the old value. 2576 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 2577 2578 // Otherwise, we can just do a normal lvalue store. 2579 } else { 2580 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 2581 } 2582 2583 // Jump to the continuation block. 2584 if (!provablyNonNull) 2585 CGF.EmitBlock(contBB); 2586 } 2587 2588 static void emitWritebacks(CodeGenFunction &CGF, 2589 const CallArgList &args) { 2590 for (const auto &I : args.writebacks()) 2591 emitWriteback(CGF, I); 2592 } 2593 2594 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 2595 const CallArgList &CallArgs) { 2596 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 2597 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 2598 CallArgs.getCleanupsToDeactivate(); 2599 // Iterate in reverse to increase the likelihood of popping the cleanup. 2600 for (const auto &I : llvm::reverse(Cleanups)) { 2601 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 2602 I.IsActiveIP->eraseFromParent(); 2603 } 2604 } 2605 2606 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 2607 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 2608 if (uop->getOpcode() == UO_AddrOf) 2609 return uop->getSubExpr(); 2610 return nullptr; 2611 } 2612 2613 /// Emit an argument that's being passed call-by-writeback. That is, 2614 /// we are passing the address of an __autoreleased temporary; it 2615 /// might be copy-initialized with the current value of the given 2616 /// address, but it will definitely be copied out of after the call. 2617 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 2618 const ObjCIndirectCopyRestoreExpr *CRE) { 2619 LValue srcLV; 2620 2621 // Make an optimistic effort to emit the address as an l-value. 2622 // This can fail if the argument expression is more complicated. 2623 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 2624 srcLV = CGF.EmitLValue(lvExpr); 2625 2626 // Otherwise, just emit it as a scalar. 2627 } else { 2628 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 2629 2630 QualType srcAddrType = 2631 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 2632 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 2633 } 2634 Address srcAddr = srcLV.getAddress(); 2635 2636 // The dest and src types don't necessarily match in LLVM terms 2637 // because of the crazy ObjC compatibility rules. 2638 2639 llvm::PointerType *destType = 2640 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 2641 2642 // If the address is a constant null, just pass the appropriate null. 2643 if (isProvablyNull(srcAddr.getPointer())) { 2644 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 2645 CRE->getType()); 2646 return; 2647 } 2648 2649 // Create the temporary. 2650 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 2651 CGF.getPointerAlign(), 2652 "icr.temp"); 2653 // Loading an l-value can introduce a cleanup if the l-value is __weak, 2654 // and that cleanup will be conditional if we can't prove that the l-value 2655 // isn't null, so we need to register a dominating point so that the cleanups 2656 // system will make valid IR. 2657 CodeGenFunction::ConditionalEvaluation condEval(CGF); 2658 2659 // Zero-initialize it if we're not doing a copy-initialization. 2660 bool shouldCopy = CRE->shouldCopy(); 2661 if (!shouldCopy) { 2662 llvm::Value *null = 2663 llvm::ConstantPointerNull::get( 2664 cast<llvm::PointerType>(destType->getElementType())); 2665 CGF.Builder.CreateStore(null, temp); 2666 } 2667 2668 llvm::BasicBlock *contBB = nullptr; 2669 llvm::BasicBlock *originBB = nullptr; 2670 2671 // If the address is *not* known to be non-null, we need to switch. 2672 llvm::Value *finalArgument; 2673 2674 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 2675 if (provablyNonNull) { 2676 finalArgument = temp.getPointer(); 2677 } else { 2678 llvm::Value *isNull = 2679 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2680 2681 finalArgument = CGF.Builder.CreateSelect(isNull, 2682 llvm::ConstantPointerNull::get(destType), 2683 temp.getPointer(), "icr.argument"); 2684 2685 // If we need to copy, then the load has to be conditional, which 2686 // means we need control flow. 2687 if (shouldCopy) { 2688 originBB = CGF.Builder.GetInsertBlock(); 2689 contBB = CGF.createBasicBlock("icr.cont"); 2690 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 2691 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 2692 CGF.EmitBlock(copyBB); 2693 condEval.begin(CGF); 2694 } 2695 } 2696 2697 llvm::Value *valueToUse = nullptr; 2698 2699 // Perform a copy if necessary. 2700 if (shouldCopy) { 2701 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 2702 assert(srcRV.isScalar()); 2703 2704 llvm::Value *src = srcRV.getScalarVal(); 2705 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 2706 "icr.cast"); 2707 2708 // Use an ordinary store, not a store-to-lvalue. 2709 CGF.Builder.CreateStore(src, temp); 2710 2711 // If optimization is enabled, and the value was held in a 2712 // __strong variable, we need to tell the optimizer that this 2713 // value has to stay alive until we're doing the store back. 2714 // This is because the temporary is effectively unretained, 2715 // and so otherwise we can violate the high-level semantics. 2716 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 2717 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 2718 valueToUse = src; 2719 } 2720 } 2721 2722 // Finish the control flow if we needed it. 2723 if (shouldCopy && !provablyNonNull) { 2724 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 2725 CGF.EmitBlock(contBB); 2726 2727 // Make a phi for the value to intrinsically use. 2728 if (valueToUse) { 2729 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 2730 "icr.to-use"); 2731 phiToUse->addIncoming(valueToUse, copyBB); 2732 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 2733 originBB); 2734 valueToUse = phiToUse; 2735 } 2736 2737 condEval.end(CGF); 2738 } 2739 2740 args.addWriteback(srcLV, temp, valueToUse); 2741 args.add(RValue::get(finalArgument), CRE->getType()); 2742 } 2743 2744 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 2745 assert(!StackBase && !StackCleanup.isValid()); 2746 2747 // Save the stack. 2748 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 2749 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 2750 } 2751 2752 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 2753 if (StackBase) { 2754 // Restore the stack after the call. 2755 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 2756 CGF.Builder.CreateCall(F, StackBase); 2757 } 2758 } 2759 2760 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 2761 SourceLocation ArgLoc, 2762 const FunctionDecl *FD, 2763 unsigned ParmNum) { 2764 if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD) 2765 return; 2766 auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr; 2767 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 2768 auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo); 2769 if (!NNAttr) 2770 return; 2771 SanitizerScope SanScope(this); 2772 assert(RV.isScalar()); 2773 llvm::Value *V = RV.getScalarVal(); 2774 llvm::Value *Cond = 2775 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 2776 llvm::Constant *StaticData[] = { 2777 EmitCheckSourceLocation(ArgLoc), 2778 EmitCheckSourceLocation(NNAttr->getLocation()), 2779 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 2780 }; 2781 EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute), 2782 "nonnull_arg", StaticData, None); 2783 } 2784 2785 void CodeGenFunction::EmitCallArgs( 2786 CallArgList &Args, ArrayRef<QualType> ArgTypes, 2787 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 2788 const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) { 2789 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 2790 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 2791 // because arguments are destroyed left to right in the callee. 2792 if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2793 // Insert a stack save if we're going to need any inalloca args. 2794 bool HasInAllocaArgs = false; 2795 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 2796 I != E && !HasInAllocaArgs; ++I) 2797 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 2798 if (HasInAllocaArgs) { 2799 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 2800 Args.allocateArgumentMemory(*this); 2801 } 2802 2803 // Evaluate each argument. 2804 size_t CallArgsStart = Args.size(); 2805 for (int I = ArgTypes.size() - 1; I >= 0; --I) { 2806 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 2807 EmitCallArg(Args, *Arg, ArgTypes[I]); 2808 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 2809 CalleeDecl, ParamsToSkip + I); 2810 } 2811 2812 // Un-reverse the arguments we just evaluated so they match up with the LLVM 2813 // IR function. 2814 std::reverse(Args.begin() + CallArgsStart, Args.end()); 2815 return; 2816 } 2817 2818 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 2819 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 2820 assert(Arg != ArgRange.end()); 2821 EmitCallArg(Args, *Arg, ArgTypes[I]); 2822 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 2823 CalleeDecl, ParamsToSkip + I); 2824 } 2825 } 2826 2827 namespace { 2828 2829 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 2830 DestroyUnpassedArg(Address Addr, QualType Ty) 2831 : Addr(Addr), Ty(Ty) {} 2832 2833 Address Addr; 2834 QualType Ty; 2835 2836 void Emit(CodeGenFunction &CGF, Flags flags) override { 2837 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 2838 assert(!Dtor->isTrivial()); 2839 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 2840 /*Delegating=*/false, Addr); 2841 } 2842 }; 2843 2844 struct DisableDebugLocationUpdates { 2845 CodeGenFunction &CGF; 2846 bool disabledDebugInfo; 2847 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 2848 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 2849 CGF.disableDebugInfo(); 2850 } 2851 ~DisableDebugLocationUpdates() { 2852 if (disabledDebugInfo) 2853 CGF.enableDebugInfo(); 2854 } 2855 }; 2856 2857 } // end anonymous namespace 2858 2859 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 2860 QualType type) { 2861 DisableDebugLocationUpdates Dis(*this, E); 2862 if (const ObjCIndirectCopyRestoreExpr *CRE 2863 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 2864 assert(getLangOpts().ObjCAutoRefCount); 2865 assert(getContext().hasSameType(E->getType(), type)); 2866 return emitWritebackArg(*this, args, CRE); 2867 } 2868 2869 assert(type->isReferenceType() == E->isGLValue() && 2870 "reference binding to unmaterialized r-value!"); 2871 2872 if (E->isGLValue()) { 2873 assert(E->getObjectKind() == OK_Ordinary); 2874 return args.add(EmitReferenceBindingToExpr(E), type); 2875 } 2876 2877 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 2878 2879 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 2880 // However, we still have to push an EH-only cleanup in case we unwind before 2881 // we make it to the call. 2882 if (HasAggregateEvalKind && 2883 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2884 // If we're using inalloca, use the argument memory. Otherwise, use a 2885 // temporary. 2886 AggValueSlot Slot; 2887 if (args.isUsingInAlloca()) 2888 Slot = createPlaceholderSlot(*this, type); 2889 else 2890 Slot = CreateAggTemp(type, "agg.tmp"); 2891 2892 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2893 bool DestroyedInCallee = 2894 RD && RD->hasNonTrivialDestructor() && 2895 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 2896 if (DestroyedInCallee) 2897 Slot.setExternallyDestructed(); 2898 2899 EmitAggExpr(E, Slot); 2900 RValue RV = Slot.asRValue(); 2901 args.add(RV, type); 2902 2903 if (DestroyedInCallee) { 2904 // Create a no-op GEP between the placeholder and the cleanup so we can 2905 // RAUW it successfully. It also serves as a marker of the first 2906 // instruction where the cleanup is active. 2907 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 2908 type); 2909 // This unreachable is a temporary marker which will be removed later. 2910 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 2911 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 2912 } 2913 return; 2914 } 2915 2916 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 2917 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 2918 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 2919 assert(L.isSimple()); 2920 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 2921 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 2922 } else { 2923 // We can't represent a misaligned lvalue in the CallArgList, so copy 2924 // to an aligned temporary now. 2925 Address tmp = CreateMemTemp(type); 2926 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 2927 args.add(RValue::getAggregate(tmp), type); 2928 } 2929 return; 2930 } 2931 2932 args.add(EmitAnyExprToTemp(E), type); 2933 } 2934 2935 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 2936 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 2937 // implicitly widens null pointer constants that are arguments to varargs 2938 // functions to pointer-sized ints. 2939 if (!getTarget().getTriple().isOSWindows()) 2940 return Arg->getType(); 2941 2942 if (Arg->getType()->isIntegerType() && 2943 getContext().getTypeSize(Arg->getType()) < 2944 getContext().getTargetInfo().getPointerWidth(0) && 2945 Arg->isNullPointerConstant(getContext(), 2946 Expr::NPC_ValueDependentIsNotNull)) { 2947 return getContext().getIntPtrType(); 2948 } 2949 2950 return Arg->getType(); 2951 } 2952 2953 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2954 // optimizer it can aggressively ignore unwind edges. 2955 void 2956 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 2957 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 2958 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 2959 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 2960 CGM.getNoObjCARCExceptionsMetadata()); 2961 } 2962 2963 /// Emits a call to the given no-arguments nounwind runtime function. 2964 llvm::CallInst * 2965 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2966 const llvm::Twine &name) { 2967 return EmitNounwindRuntimeCall(callee, None, name); 2968 } 2969 2970 /// Emits a call to the given nounwind runtime function. 2971 llvm::CallInst * 2972 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2973 ArrayRef<llvm::Value*> args, 2974 const llvm::Twine &name) { 2975 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 2976 call->setDoesNotThrow(); 2977 return call; 2978 } 2979 2980 /// Emits a simple call (never an invoke) to the given no-arguments 2981 /// runtime function. 2982 llvm::CallInst * 2983 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2984 const llvm::Twine &name) { 2985 return EmitRuntimeCall(callee, None, name); 2986 } 2987 2988 /// Emits a simple call (never an invoke) to the given runtime 2989 /// function. 2990 llvm::CallInst * 2991 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2992 ArrayRef<llvm::Value*> args, 2993 const llvm::Twine &name) { 2994 llvm::CallInst *call = Builder.CreateCall(callee, args, name); 2995 call->setCallingConv(getRuntimeCC()); 2996 return call; 2997 } 2998 2999 /// Emits a call or invoke to the given noreturn runtime function. 3000 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3001 ArrayRef<llvm::Value*> args) { 3002 if (getInvokeDest()) { 3003 llvm::InvokeInst *invoke = 3004 Builder.CreateInvoke(callee, 3005 getUnreachableBlock(), 3006 getInvokeDest(), 3007 args); 3008 invoke->setDoesNotReturn(); 3009 invoke->setCallingConv(getRuntimeCC()); 3010 } else { 3011 llvm::CallInst *call = Builder.CreateCall(callee, args); 3012 call->setDoesNotReturn(); 3013 call->setCallingConv(getRuntimeCC()); 3014 Builder.CreateUnreachable(); 3015 } 3016 } 3017 3018 /// Emits a call or invoke instruction to the given nullary runtime 3019 /// function. 3020 llvm::CallSite 3021 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3022 const Twine &name) { 3023 return EmitRuntimeCallOrInvoke(callee, None, name); 3024 } 3025 3026 /// Emits a call or invoke instruction to the given runtime function. 3027 llvm::CallSite 3028 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3029 ArrayRef<llvm::Value*> args, 3030 const Twine &name) { 3031 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3032 callSite.setCallingConv(getRuntimeCC()); 3033 return callSite; 3034 } 3035 3036 /// Emits a call or invoke instruction to the given function, depending 3037 /// on the current state of the EH stack. 3038 llvm::CallSite 3039 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3040 ArrayRef<llvm::Value *> Args, 3041 const Twine &Name) { 3042 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3043 3044 llvm::Instruction *Inst; 3045 if (!InvokeDest) 3046 Inst = Builder.CreateCall(Callee, Args, Name); 3047 else { 3048 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3049 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 3050 EmitBlock(ContBB); 3051 } 3052 3053 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3054 // optimizer it can aggressively ignore unwind edges. 3055 if (CGM.getLangOpts().ObjCAutoRefCount) 3056 AddObjCARCExceptionMetadata(Inst); 3057 3058 return llvm::CallSite(Inst); 3059 } 3060 3061 /// \brief Store a non-aggregate value to an address to initialize it. For 3062 /// initialization, a non-atomic store will be used. 3063 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3064 LValue Dst) { 3065 if (Src.isScalar()) 3066 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3067 else 3068 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3069 } 3070 3071 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3072 llvm::Value *New) { 3073 DeferredReplacements.push_back(std::make_pair(Old, New)); 3074 } 3075 3076 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3077 llvm::Value *Callee, 3078 ReturnValueSlot ReturnValue, 3079 const CallArgList &CallArgs, 3080 const Decl *TargetDecl, 3081 llvm::Instruction **callOrInvoke) { 3082 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3083 3084 // Handle struct-return functions by passing a pointer to the 3085 // location that we would like to return into. 3086 QualType RetTy = CallInfo.getReturnType(); 3087 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3088 3089 llvm::FunctionType *IRFuncTy = 3090 cast<llvm::FunctionType>( 3091 cast<llvm::PointerType>(Callee->getType())->getElementType()); 3092 3093 // If we're using inalloca, insert the allocation after the stack save. 3094 // FIXME: Do this earlier rather than hacking it in here! 3095 Address ArgMemory = Address::invalid(); 3096 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3097 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3098 ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct); 3099 llvm::Instruction *IP = CallArgs.getStackBase(); 3100 llvm::AllocaInst *AI; 3101 if (IP) { 3102 IP = IP->getNextNode(); 3103 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP); 3104 } else { 3105 AI = CreateTempAlloca(ArgStruct, "argmem"); 3106 } 3107 auto Align = CallInfo.getArgStructAlignment(); 3108 AI->setAlignment(Align.getQuantity()); 3109 AI->setUsedWithInAlloca(true); 3110 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3111 ArgMemory = Address(AI, Align); 3112 } 3113 3114 // Helper function to drill into the inalloca allocation. 3115 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3116 auto FieldOffset = 3117 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3118 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3119 }; 3120 3121 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3122 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3123 3124 // If the call returns a temporary with struct return, create a temporary 3125 // alloca to hold the result, unless one is given to us. 3126 Address SRetPtr = Address::invalid(); 3127 size_t UnusedReturnSize = 0; 3128 if (RetAI.isIndirect() || RetAI.isInAlloca()) { 3129 if (!ReturnValue.isNull()) { 3130 SRetPtr = ReturnValue.getValue(); 3131 } else { 3132 SRetPtr = CreateMemTemp(RetTy); 3133 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3134 uint64_t size = 3135 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3136 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3137 UnusedReturnSize = size; 3138 } 3139 } 3140 if (IRFunctionArgs.hasSRetArg()) { 3141 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3142 } else { 3143 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3144 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3145 } 3146 } 3147 3148 assert(CallInfo.arg_size() == CallArgs.size() && 3149 "Mismatch between function signature & arguments."); 3150 unsigned ArgNo = 0; 3151 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3152 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3153 I != E; ++I, ++info_it, ++ArgNo) { 3154 const ABIArgInfo &ArgInfo = info_it->info; 3155 RValue RV = I->RV; 3156 3157 // Insert a padding argument to ensure proper alignment. 3158 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3159 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3160 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3161 3162 unsigned FirstIRArg, NumIRArgs; 3163 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3164 3165 switch (ArgInfo.getKind()) { 3166 case ABIArgInfo::InAlloca: { 3167 assert(NumIRArgs == 0); 3168 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3169 if (RV.isAggregate()) { 3170 // Replace the placeholder with the appropriate argument slot GEP. 3171 llvm::Instruction *Placeholder = 3172 cast<llvm::Instruction>(RV.getAggregatePointer()); 3173 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3174 Builder.SetInsertPoint(Placeholder); 3175 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3176 Builder.restoreIP(IP); 3177 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3178 } else { 3179 // Store the RValue into the argument struct. 3180 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3181 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3182 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3183 // There are some cases where a trivial bitcast is not avoidable. The 3184 // definition of a type later in a translation unit may change it's type 3185 // from {}* to (%struct.foo*)*. 3186 if (Addr.getType() != MemType) 3187 Addr = Builder.CreateBitCast(Addr, MemType); 3188 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3189 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3190 } 3191 break; 3192 } 3193 3194 case ABIArgInfo::Indirect: { 3195 assert(NumIRArgs == 1); 3196 if (RV.isScalar() || RV.isComplex()) { 3197 // Make a temporary alloca to pass the argument. 3198 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3199 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3200 3201 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3202 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3203 } else { 3204 // We want to avoid creating an unnecessary temporary+copy here; 3205 // however, we need one in three cases: 3206 // 1. If the argument is not byval, and we are required to copy the 3207 // source. (This case doesn't occur on any common architecture.) 3208 // 2. If the argument is byval, RV is not sufficiently aligned, and 3209 // we cannot force it to be sufficiently aligned. 3210 // 3. If the argument is byval, but RV is located in an address space 3211 // different than that of the argument (0). 3212 Address Addr = RV.getAggregateAddress(); 3213 CharUnits Align = ArgInfo.getIndirectAlign(); 3214 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3215 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3216 const unsigned ArgAddrSpace = 3217 (FirstIRArg < IRFuncTy->getNumParams() 3218 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3219 : 0); 3220 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3221 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3222 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3223 Align.getQuantity(), *TD) 3224 < Align.getQuantity()) || 3225 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3226 // Create an aligned temporary, and copy to it. 3227 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3228 IRCallArgs[FirstIRArg] = AI.getPointer(); 3229 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3230 } else { 3231 // Skip the extra memcpy call. 3232 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3233 } 3234 } 3235 break; 3236 } 3237 3238 case ABIArgInfo::Ignore: 3239 assert(NumIRArgs == 0); 3240 break; 3241 3242 case ABIArgInfo::Extend: 3243 case ABIArgInfo::Direct: { 3244 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3245 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3246 ArgInfo.getDirectOffset() == 0) { 3247 assert(NumIRArgs == 1); 3248 llvm::Value *V; 3249 if (RV.isScalar()) 3250 V = RV.getScalarVal(); 3251 else 3252 V = Builder.CreateLoad(RV.getAggregateAddress()); 3253 3254 // We might have to widen integers, but we should never truncate. 3255 if (ArgInfo.getCoerceToType() != V->getType() && 3256 V->getType()->isIntegerTy()) 3257 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3258 3259 // If the argument doesn't match, perform a bitcast to coerce it. This 3260 // can happen due to trivial type mismatches. 3261 if (FirstIRArg < IRFuncTy->getNumParams() && 3262 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3263 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3264 IRCallArgs[FirstIRArg] = V; 3265 break; 3266 } 3267 3268 // FIXME: Avoid the conversion through memory if possible. 3269 Address Src = Address::invalid(); 3270 if (RV.isScalar() || RV.isComplex()) { 3271 Src = CreateMemTemp(I->Ty, "coerce"); 3272 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3273 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3274 } else { 3275 Src = RV.getAggregateAddress(); 3276 } 3277 3278 // If the value is offset in memory, apply the offset now. 3279 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3280 3281 // Fast-isel and the optimizer generally like scalar values better than 3282 // FCAs, so we flatten them if this is safe to do for this argument. 3283 llvm::StructType *STy = 3284 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3285 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3286 llvm::Type *SrcTy = Src.getType()->getElementType(); 3287 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3288 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3289 3290 // If the source type is smaller than the destination type of the 3291 // coerce-to logic, copy the source value into a temp alloca the size 3292 // of the destination type to allow loading all of it. The bits past 3293 // the source value are left undef. 3294 if (SrcSize < DstSize) { 3295 Address TempAlloca 3296 = CreateTempAlloca(STy, Src.getAlignment(), 3297 Src.getName() + ".coerce"); 3298 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3299 Src = TempAlloca; 3300 } else { 3301 Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy)); 3302 } 3303 3304 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3305 assert(NumIRArgs == STy->getNumElements()); 3306 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3307 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3308 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3309 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3310 IRCallArgs[FirstIRArg + i] = LI; 3311 } 3312 } else { 3313 // In the simple case, just pass the coerced loaded value. 3314 assert(NumIRArgs == 1); 3315 IRCallArgs[FirstIRArg] = 3316 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3317 } 3318 3319 break; 3320 } 3321 3322 case ABIArgInfo::Expand: 3323 unsigned IRArgPos = FirstIRArg; 3324 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 3325 assert(IRArgPos == FirstIRArg + NumIRArgs); 3326 break; 3327 } 3328 } 3329 3330 if (ArgMemory.isValid()) { 3331 llvm::Value *Arg = ArgMemory.getPointer(); 3332 if (CallInfo.isVariadic()) { 3333 // When passing non-POD arguments by value to variadic functions, we will 3334 // end up with a variadic prototype and an inalloca call site. In such 3335 // cases, we can't do any parameter mismatch checks. Give up and bitcast 3336 // the callee. 3337 unsigned CalleeAS = 3338 cast<llvm::PointerType>(Callee->getType())->getAddressSpace(); 3339 Callee = Builder.CreateBitCast( 3340 Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS)); 3341 } else { 3342 llvm::Type *LastParamTy = 3343 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 3344 if (Arg->getType() != LastParamTy) { 3345 #ifndef NDEBUG 3346 // Assert that these structs have equivalent element types. 3347 llvm::StructType *FullTy = CallInfo.getArgStruct(); 3348 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 3349 cast<llvm::PointerType>(LastParamTy)->getElementType()); 3350 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 3351 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 3352 DE = DeclaredTy->element_end(), 3353 FI = FullTy->element_begin(); 3354 DI != DE; ++DI, ++FI) 3355 assert(*DI == *FI); 3356 #endif 3357 Arg = Builder.CreateBitCast(Arg, LastParamTy); 3358 } 3359 } 3360 assert(IRFunctionArgs.hasInallocaArg()); 3361 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 3362 } 3363 3364 if (!CallArgs.getCleanupsToDeactivate().empty()) 3365 deactivateArgCleanupsBeforeCall(*this, CallArgs); 3366 3367 // If the callee is a bitcast of a function to a varargs pointer to function 3368 // type, check to see if we can remove the bitcast. This handles some cases 3369 // with unprototyped functions. 3370 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 3371 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 3372 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 3373 llvm::FunctionType *CurFT = 3374 cast<llvm::FunctionType>(CurPT->getElementType()); 3375 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 3376 3377 if (CE->getOpcode() == llvm::Instruction::BitCast && 3378 ActualFT->getReturnType() == CurFT->getReturnType() && 3379 ActualFT->getNumParams() == CurFT->getNumParams() && 3380 ActualFT->getNumParams() == IRCallArgs.size() && 3381 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 3382 bool ArgsMatch = true; 3383 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 3384 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 3385 ArgsMatch = false; 3386 break; 3387 } 3388 3389 // Strip the cast if we can get away with it. This is a nice cleanup, 3390 // but also allows us to inline the function at -O0 if it is marked 3391 // always_inline. 3392 if (ArgsMatch) 3393 Callee = CalleeF; 3394 } 3395 } 3396 3397 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 3398 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 3399 // Inalloca argument can have different type. 3400 if (IRFunctionArgs.hasInallocaArg() && 3401 i == IRFunctionArgs.getInallocaArgNo()) 3402 continue; 3403 if (i < IRFuncTy->getNumParams()) 3404 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 3405 } 3406 3407 unsigned CallingConv; 3408 CodeGen::AttributeListType AttributeList; 3409 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, 3410 CallingConv, true); 3411 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 3412 AttributeList); 3413 3414 llvm::BasicBlock *InvokeDest = nullptr; 3415 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 3416 llvm::Attribute::NoUnwind) || 3417 currentFunctionUsesSEHTry()) 3418 InvokeDest = getInvokeDest(); 3419 3420 llvm::CallSite CS; 3421 if (!InvokeDest) { 3422 CS = Builder.CreateCall(Callee, IRCallArgs); 3423 } else { 3424 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 3425 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs); 3426 EmitBlock(Cont); 3427 } 3428 if (callOrInvoke) 3429 *callOrInvoke = CS.getInstruction(); 3430 3431 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 3432 !CS.hasFnAttr(llvm::Attribute::NoInline)) 3433 Attrs = 3434 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3435 llvm::Attribute::AlwaysInline); 3436 3437 // Disable inlining inside SEH __try blocks and cleanup funclets. None of the 3438 // funclet EH personalities that clang supports have tables that are 3439 // expressive enough to describe catching an exception inside a cleanup. 3440 // __CxxFrameHandler3, for example, will terminate the program without 3441 // catching it. 3442 // FIXME: Move this decision to the LLVM inliner. Before we can do that, the 3443 // inliner needs to know if a given call site is part of a cleanuppad. 3444 if (isSEHTryScope() || isCleanupPadScope()) 3445 Attrs = 3446 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3447 llvm::Attribute::NoInline); 3448 3449 CS.setAttributes(Attrs); 3450 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 3451 3452 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3453 // optimizer it can aggressively ignore unwind edges. 3454 if (CGM.getLangOpts().ObjCAutoRefCount) 3455 AddObjCARCExceptionMetadata(CS.getInstruction()); 3456 3457 // If the call doesn't return, finish the basic block and clear the 3458 // insertion point; this allows the rest of IRgen to discard 3459 // unreachable code. 3460 if (CS.doesNotReturn()) { 3461 if (UnusedReturnSize) 3462 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3463 SRetPtr.getPointer()); 3464 3465 Builder.CreateUnreachable(); 3466 Builder.ClearInsertionPoint(); 3467 3468 // FIXME: For now, emit a dummy basic block because expr emitters in 3469 // generally are not ready to handle emitting expressions at unreachable 3470 // points. 3471 EnsureInsertPoint(); 3472 3473 // Return a reasonable RValue. 3474 return GetUndefRValue(RetTy); 3475 } 3476 3477 llvm::Instruction *CI = CS.getInstruction(); 3478 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 3479 CI->setName("call"); 3480 3481 // Emit any writebacks immediately. Arguably this should happen 3482 // after any return-value munging. 3483 if (CallArgs.hasWritebacks()) 3484 emitWritebacks(*this, CallArgs); 3485 3486 // The stack cleanup for inalloca arguments has to run out of the normal 3487 // lexical order, so deactivate it and run it manually here. 3488 CallArgs.freeArgumentMemory(*this); 3489 3490 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) 3491 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 3492 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 3493 3494 RValue Ret = [&] { 3495 switch (RetAI.getKind()) { 3496 case ABIArgInfo::InAlloca: 3497 case ABIArgInfo::Indirect: { 3498 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 3499 if (UnusedReturnSize) 3500 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3501 SRetPtr.getPointer()); 3502 return ret; 3503 } 3504 3505 case ABIArgInfo::Ignore: 3506 // If we are ignoring an argument that had a result, make sure to 3507 // construct the appropriate return value for our caller. 3508 return GetUndefRValue(RetTy); 3509 3510 case ABIArgInfo::Extend: 3511 case ABIArgInfo::Direct: { 3512 llvm::Type *RetIRTy = ConvertType(RetTy); 3513 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 3514 switch (getEvaluationKind(RetTy)) { 3515 case TEK_Complex: { 3516 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 3517 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 3518 return RValue::getComplex(std::make_pair(Real, Imag)); 3519 } 3520 case TEK_Aggregate: { 3521 Address DestPtr = ReturnValue.getValue(); 3522 bool DestIsVolatile = ReturnValue.isVolatile(); 3523 3524 if (!DestPtr.isValid()) { 3525 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 3526 DestIsVolatile = false; 3527 } 3528 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 3529 return RValue::getAggregate(DestPtr); 3530 } 3531 case TEK_Scalar: { 3532 // If the argument doesn't match, perform a bitcast to coerce it. This 3533 // can happen due to trivial type mismatches. 3534 llvm::Value *V = CI; 3535 if (V->getType() != RetIRTy) 3536 V = Builder.CreateBitCast(V, RetIRTy); 3537 return RValue::get(V); 3538 } 3539 } 3540 llvm_unreachable("bad evaluation kind"); 3541 } 3542 3543 Address DestPtr = ReturnValue.getValue(); 3544 bool DestIsVolatile = ReturnValue.isVolatile(); 3545 3546 if (!DestPtr.isValid()) { 3547 DestPtr = CreateMemTemp(RetTy, "coerce"); 3548 DestIsVolatile = false; 3549 } 3550 3551 // If the value is offset in memory, apply the offset now. 3552 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 3553 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 3554 3555 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 3556 } 3557 3558 case ABIArgInfo::Expand: 3559 llvm_unreachable("Invalid ABI kind for return argument"); 3560 } 3561 3562 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 3563 } (); 3564 3565 if (Ret.isScalar() && TargetDecl) { 3566 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 3567 llvm::Value *OffsetValue = nullptr; 3568 if (const auto *Offset = AA->getOffset()) 3569 OffsetValue = EmitScalarExpr(Offset); 3570 3571 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 3572 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 3573 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 3574 OffsetValue); 3575 } 3576 } 3577 3578 return Ret; 3579 } 3580 3581 /* VarArg handling */ 3582 3583 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 3584 VAListAddr = VE->isMicrosoftABI() 3585 ? EmitMSVAListRef(VE->getSubExpr()) 3586 : EmitVAListRef(VE->getSubExpr()); 3587 QualType Ty = VE->getType(); 3588 if (VE->isMicrosoftABI()) 3589 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 3590 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 3591 } 3592