1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 using namespace clang;
37 using namespace CodeGen;
38 
39 /***/
40 
41 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
42   switch (CC) {
43   default: return llvm::CallingConv::C;
44   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
45   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
46   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
47   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
48   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
49   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
50   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
51   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
52   // TODO: Add support for __pascal to LLVM.
53   case CC_X86Pascal: return llvm::CallingConv::C;
54   // TODO: Add support for __vectorcall to LLVM.
55   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
56   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
57   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
58   }
59 }
60 
61 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
62 /// qualification.
63 /// FIXME: address space qualification?
64 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
65   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
66   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
67 }
68 
69 /// Returns the canonical formal type of the given C++ method.
70 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
71   return MD->getType()->getCanonicalTypeUnqualified()
72            .getAs<FunctionProtoType>();
73 }
74 
75 /// Returns the "extra-canonicalized" return type, which discards
76 /// qualifiers on the return type.  Codegen doesn't care about them,
77 /// and it makes ABI code a little easier to be able to assume that
78 /// all parameter and return types are top-level unqualified.
79 static CanQualType GetReturnType(QualType RetTy) {
80   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
81 }
82 
83 /// Arrange the argument and result information for a value of the given
84 /// unprototyped freestanding function type.
85 const CGFunctionInfo &
86 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
87   // When translating an unprototyped function type, always use a
88   // variadic type.
89   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
90                                  /*instanceMethod=*/false,
91                                  /*chainCall=*/false, None,
92                                  FTNP->getExtInfo(), RequiredArgs(0));
93 }
94 
95 /// Arrange the LLVM function layout for a value of the given function
96 /// type, on top of any implicit parameters already stored.
97 static const CGFunctionInfo &
98 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
99                         SmallVectorImpl<CanQualType> &prefix,
100                         CanQual<FunctionProtoType> FTP) {
101   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
102   // FIXME: Kill copy.
103   prefix.append(FTP->param_type_begin(), FTP->param_type_end());
104   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
105   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
106                                      /*chainCall=*/false, prefix,
107                                      FTP->getExtInfo(), required);
108 }
109 
110 /// Arrange the argument and result information for a value of the
111 /// given freestanding function type.
112 const CGFunctionInfo &
113 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
114   SmallVector<CanQualType, 16> argTypes;
115   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
116                                    FTP);
117 }
118 
119 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
120   // Set the appropriate calling convention for the Function.
121   if (D->hasAttr<StdCallAttr>())
122     return CC_X86StdCall;
123 
124   if (D->hasAttr<FastCallAttr>())
125     return CC_X86FastCall;
126 
127   if (D->hasAttr<ThisCallAttr>())
128     return CC_X86ThisCall;
129 
130   if (D->hasAttr<VectorCallAttr>())
131     return CC_X86VectorCall;
132 
133   if (D->hasAttr<PascalAttr>())
134     return CC_X86Pascal;
135 
136   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
137     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
138 
139   if (D->hasAttr<IntelOclBiccAttr>())
140     return CC_IntelOclBicc;
141 
142   if (D->hasAttr<MSABIAttr>())
143     return IsWindows ? CC_C : CC_X86_64Win64;
144 
145   if (D->hasAttr<SysVABIAttr>())
146     return IsWindows ? CC_X86_64SysV : CC_C;
147 
148   return CC_C;
149 }
150 
151 /// Arrange the argument and result information for a call to an
152 /// unknown C++ non-static member function of the given abstract type.
153 /// (Zero value of RD means we don't have any meaningful "this" argument type,
154 ///  so fall back to a generic pointer type).
155 /// The member function must be an ordinary function, i.e. not a
156 /// constructor or destructor.
157 const CGFunctionInfo &
158 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
159                                    const FunctionProtoType *FTP) {
160   SmallVector<CanQualType, 16> argTypes;
161 
162   // Add the 'this' pointer.
163   if (RD)
164     argTypes.push_back(GetThisType(Context, RD));
165   else
166     argTypes.push_back(Context.VoidPtrTy);
167 
168   return ::arrangeLLVMFunctionInfo(
169       *this, true, argTypes,
170       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
171 }
172 
173 /// Arrange the argument and result information for a declaration or
174 /// definition of the given C++ non-static member function.  The
175 /// member function must be an ordinary function, i.e. not a
176 /// constructor or destructor.
177 const CGFunctionInfo &
178 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
179   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
180   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
181 
182   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
183 
184   if (MD->isInstance()) {
185     // The abstract case is perfectly fine.
186     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
187     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
188   }
189 
190   return arrangeFreeFunctionType(prototype);
191 }
192 
193 const CGFunctionInfo &
194 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
195                                             StructorType Type) {
196 
197   SmallVector<CanQualType, 16> argTypes;
198   argTypes.push_back(GetThisType(Context, MD->getParent()));
199 
200   GlobalDecl GD;
201   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
202     GD = GlobalDecl(CD, toCXXCtorType(Type));
203   } else {
204     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
205     GD = GlobalDecl(DD, toCXXDtorType(Type));
206   }
207 
208   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
209 
210   // Add the formal parameters.
211   argTypes.append(FTP->param_type_begin(), FTP->param_type_end());
212 
213   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
214 
215   RequiredArgs required =
216       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
217 
218   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
219   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
220                                ? argTypes.front()
221                                : TheCXXABI.hasMostDerivedReturn(GD)
222                                      ? CGM.getContext().VoidPtrTy
223                                      : Context.VoidTy;
224   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
225                                  /*chainCall=*/false, argTypes, extInfo,
226                                  required);
227 }
228 
229 /// Arrange a call to a C++ method, passing the given arguments.
230 const CGFunctionInfo &
231 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
232                                         const CXXConstructorDecl *D,
233                                         CXXCtorType CtorKind,
234                                         unsigned ExtraArgs) {
235   // FIXME: Kill copy.
236   SmallVector<CanQualType, 16> ArgTypes;
237   for (const auto &Arg : args)
238     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
239 
240   CanQual<FunctionProtoType> FPT = GetFormalType(D);
241   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
242   GlobalDecl GD(D, CtorKind);
243   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
244                                ? ArgTypes.front()
245                                : TheCXXABI.hasMostDerivedReturn(GD)
246                                      ? CGM.getContext().VoidPtrTy
247                                      : Context.VoidTy;
248 
249   FunctionType::ExtInfo Info = FPT->getExtInfo();
250   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
251                                  /*chainCall=*/false, ArgTypes, Info,
252                                  Required);
253 }
254 
255 /// Arrange the argument and result information for the declaration or
256 /// definition of the given function.
257 const CGFunctionInfo &
258 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
259   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
260     if (MD->isInstance())
261       return arrangeCXXMethodDeclaration(MD);
262 
263   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
264 
265   assert(isa<FunctionType>(FTy));
266 
267   // When declaring a function without a prototype, always use a
268   // non-variadic type.
269   if (isa<FunctionNoProtoType>(FTy)) {
270     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
271     return arrangeLLVMFunctionInfo(
272         noProto->getReturnType(), /*instanceMethod=*/false,
273         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
274   }
275 
276   assert(isa<FunctionProtoType>(FTy));
277   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
278 }
279 
280 /// Arrange the argument and result information for the declaration or
281 /// definition of an Objective-C method.
282 const CGFunctionInfo &
283 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
284   // It happens that this is the same as a call with no optional
285   // arguments, except also using the formal 'self' type.
286   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
287 }
288 
289 /// Arrange the argument and result information for the function type
290 /// through which to perform a send to the given Objective-C method,
291 /// using the given receiver type.  The receiver type is not always
292 /// the 'self' type of the method or even an Objective-C pointer type.
293 /// This is *not* the right method for actually performing such a
294 /// message send, due to the possibility of optional arguments.
295 const CGFunctionInfo &
296 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
297                                               QualType receiverType) {
298   SmallVector<CanQualType, 16> argTys;
299   argTys.push_back(Context.getCanonicalParamType(receiverType));
300   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
301   // FIXME: Kill copy?
302   for (const auto *I : MD->params()) {
303     argTys.push_back(Context.getCanonicalParamType(I->getType()));
304   }
305 
306   FunctionType::ExtInfo einfo;
307   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
308   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
309 
310   if (getContext().getLangOpts().ObjCAutoRefCount &&
311       MD->hasAttr<NSReturnsRetainedAttr>())
312     einfo = einfo.withProducesResult(true);
313 
314   RequiredArgs required =
315     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
316 
317   return arrangeLLVMFunctionInfo(
318       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
319       /*chainCall=*/false, argTys, einfo, required);
320 }
321 
322 const CGFunctionInfo &
323 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
324   // FIXME: Do we need to handle ObjCMethodDecl?
325   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
326 
327   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
328     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
329 
330   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
331     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
332 
333   return arrangeFunctionDeclaration(FD);
334 }
335 
336 /// Arrange a thunk that takes 'this' as the first parameter followed by
337 /// varargs.  Return a void pointer, regardless of the actual return type.
338 /// The body of the thunk will end in a musttail call to a function of the
339 /// correct type, and the caller will bitcast the function to the correct
340 /// prototype.
341 const CGFunctionInfo &
342 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
343   assert(MD->isVirtual() && "only virtual memptrs have thunks");
344   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
345   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
346   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
347                                  /*chainCall=*/false, ArgTys,
348                                  FTP->getExtInfo(), RequiredArgs(1));
349 }
350 
351 const CGFunctionInfo &
352 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
353                                    CXXCtorType CT) {
354   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
355 
356   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
357   SmallVector<CanQualType, 2> ArgTys;
358   const CXXRecordDecl *RD = CD->getParent();
359   ArgTys.push_back(GetThisType(Context, RD));
360   if (CT == Ctor_CopyingClosure)
361     ArgTys.push_back(*FTP->param_type_begin());
362   if (RD->getNumVBases() > 0)
363     ArgTys.push_back(Context.IntTy);
364   CallingConv CC = Context.getDefaultCallingConvention(
365       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
366   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
367                                  /*chainCall=*/false, ArgTys,
368                                  FunctionType::ExtInfo(CC), RequiredArgs::All);
369 }
370 
371 /// Arrange a call as unto a free function, except possibly with an
372 /// additional number of formal parameters considered required.
373 static const CGFunctionInfo &
374 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
375                             CodeGenModule &CGM,
376                             const CallArgList &args,
377                             const FunctionType *fnType,
378                             unsigned numExtraRequiredArgs,
379                             bool chainCall) {
380   assert(args.size() >= numExtraRequiredArgs);
381 
382   // In most cases, there are no optional arguments.
383   RequiredArgs required = RequiredArgs::All;
384 
385   // If we have a variadic prototype, the required arguments are the
386   // extra prefix plus the arguments in the prototype.
387   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
388     if (proto->isVariadic())
389       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
390 
391   // If we don't have a prototype at all, but we're supposed to
392   // explicitly use the variadic convention for unprototyped calls,
393   // treat all of the arguments as required but preserve the nominal
394   // possibility of variadics.
395   } else if (CGM.getTargetCodeGenInfo()
396                 .isNoProtoCallVariadic(args,
397                                        cast<FunctionNoProtoType>(fnType))) {
398     required = RequiredArgs(args.size());
399   }
400 
401   // FIXME: Kill copy.
402   SmallVector<CanQualType, 16> argTypes;
403   for (const auto &arg : args)
404     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
405   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
406                                      /*instanceMethod=*/false, chainCall,
407                                      argTypes, fnType->getExtInfo(), required);
408 }
409 
410 /// Figure out the rules for calling a function with the given formal
411 /// type using the given arguments.  The arguments are necessary
412 /// because the function might be unprototyped, in which case it's
413 /// target-dependent in crazy ways.
414 const CGFunctionInfo &
415 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
416                                       const FunctionType *fnType,
417                                       bool chainCall) {
418   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
419                                      chainCall ? 1 : 0, chainCall);
420 }
421 
422 /// A block function call is essentially a free-function call with an
423 /// extra implicit argument.
424 const CGFunctionInfo &
425 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
426                                        const FunctionType *fnType) {
427   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
428                                      /*chainCall=*/false);
429 }
430 
431 const CGFunctionInfo &
432 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
433                                       const CallArgList &args,
434                                       FunctionType::ExtInfo info,
435                                       RequiredArgs required) {
436   // FIXME: Kill copy.
437   SmallVector<CanQualType, 16> argTypes;
438   for (const auto &Arg : args)
439     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
440   return arrangeLLVMFunctionInfo(
441       GetReturnType(resultType), /*instanceMethod=*/false,
442       /*chainCall=*/false, argTypes, info, required);
443 }
444 
445 /// Arrange a call to a C++ method, passing the given arguments.
446 const CGFunctionInfo &
447 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
448                                    const FunctionProtoType *FPT,
449                                    RequiredArgs required) {
450   // FIXME: Kill copy.
451   SmallVector<CanQualType, 16> argTypes;
452   for (const auto &Arg : args)
453     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
454 
455   FunctionType::ExtInfo info = FPT->getExtInfo();
456   return arrangeLLVMFunctionInfo(
457       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
458       /*chainCall=*/false, argTypes, info, required);
459 }
460 
461 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
462     QualType resultType, const FunctionArgList &args,
463     const FunctionType::ExtInfo &info, bool isVariadic) {
464   // FIXME: Kill copy.
465   SmallVector<CanQualType, 16> argTypes;
466   for (auto Arg : args)
467     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
468 
469   RequiredArgs required =
470     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
471   return arrangeLLVMFunctionInfo(
472       GetReturnType(resultType), /*instanceMethod=*/false,
473       /*chainCall=*/false, argTypes, info, required);
474 }
475 
476 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
477   return arrangeLLVMFunctionInfo(
478       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
479       None, FunctionType::ExtInfo(), RequiredArgs::All);
480 }
481 
482 /// Arrange the argument and result information for an abstract value
483 /// of a given function type.  This is the method which all of the
484 /// above functions ultimately defer to.
485 const CGFunctionInfo &
486 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
487                                       bool instanceMethod,
488                                       bool chainCall,
489                                       ArrayRef<CanQualType> argTypes,
490                                       FunctionType::ExtInfo info,
491                                       RequiredArgs required) {
492   assert(std::all_of(argTypes.begin(), argTypes.end(),
493                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
494 
495   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
496 
497   // Lookup or create unique function info.
498   llvm::FoldingSetNodeID ID;
499   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
500                           resultType, argTypes);
501 
502   void *insertPos = nullptr;
503   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
504   if (FI)
505     return *FI;
506 
507   // Construct the function info.  We co-allocate the ArgInfos.
508   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
509                               resultType, argTypes, required);
510   FunctionInfos.InsertNode(FI, insertPos);
511 
512   bool inserted = FunctionsBeingProcessed.insert(FI).second;
513   (void)inserted;
514   assert(inserted && "Recursively being processed?");
515 
516   // Compute ABI information.
517   getABIInfo().computeInfo(*FI);
518 
519   // Loop over all of the computed argument and return value info.  If any of
520   // them are direct or extend without a specified coerce type, specify the
521   // default now.
522   ABIArgInfo &retInfo = FI->getReturnInfo();
523   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
524     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
525 
526   for (auto &I : FI->arguments())
527     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
528       I.info.setCoerceToType(ConvertType(I.type));
529 
530   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
531   assert(erased && "Not in set?");
532 
533   return *FI;
534 }
535 
536 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
537                                        bool instanceMethod,
538                                        bool chainCall,
539                                        const FunctionType::ExtInfo &info,
540                                        CanQualType resultType,
541                                        ArrayRef<CanQualType> argTypes,
542                                        RequiredArgs required) {
543   void *buffer = operator new(sizeof(CGFunctionInfo) +
544                               sizeof(ArgInfo) * (argTypes.size() + 1));
545   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
546   FI->CallingConvention = llvmCC;
547   FI->EffectiveCallingConvention = llvmCC;
548   FI->ASTCallingConvention = info.getCC();
549   FI->InstanceMethod = instanceMethod;
550   FI->ChainCall = chainCall;
551   FI->NoReturn = info.getNoReturn();
552   FI->ReturnsRetained = info.getProducesResult();
553   FI->Required = required;
554   FI->HasRegParm = info.getHasRegParm();
555   FI->RegParm = info.getRegParm();
556   FI->ArgStruct = nullptr;
557   FI->ArgStructAlign = 0;
558   FI->NumArgs = argTypes.size();
559   FI->getArgsBuffer()[0].type = resultType;
560   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
561     FI->getArgsBuffer()[i + 1].type = argTypes[i];
562   return FI;
563 }
564 
565 /***/
566 
567 namespace {
568 // ABIArgInfo::Expand implementation.
569 
570 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
571 struct TypeExpansion {
572   enum TypeExpansionKind {
573     // Elements of constant arrays are expanded recursively.
574     TEK_ConstantArray,
575     // Record fields are expanded recursively (but if record is a union, only
576     // the field with the largest size is expanded).
577     TEK_Record,
578     // For complex types, real and imaginary parts are expanded recursively.
579     TEK_Complex,
580     // All other types are not expandable.
581     TEK_None
582   };
583 
584   const TypeExpansionKind Kind;
585 
586   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
587   virtual ~TypeExpansion() {}
588 };
589 
590 struct ConstantArrayExpansion : TypeExpansion {
591   QualType EltTy;
592   uint64_t NumElts;
593 
594   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
595       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
596   static bool classof(const TypeExpansion *TE) {
597     return TE->Kind == TEK_ConstantArray;
598   }
599 };
600 
601 struct RecordExpansion : TypeExpansion {
602   SmallVector<const CXXBaseSpecifier *, 1> Bases;
603 
604   SmallVector<const FieldDecl *, 1> Fields;
605 
606   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
607                   SmallVector<const FieldDecl *, 1> &&Fields)
608       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
609   static bool classof(const TypeExpansion *TE) {
610     return TE->Kind == TEK_Record;
611   }
612 };
613 
614 struct ComplexExpansion : TypeExpansion {
615   QualType EltTy;
616 
617   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
618   static bool classof(const TypeExpansion *TE) {
619     return TE->Kind == TEK_Complex;
620   }
621 };
622 
623 struct NoExpansion : TypeExpansion {
624   NoExpansion() : TypeExpansion(TEK_None) {}
625   static bool classof(const TypeExpansion *TE) {
626     return TE->Kind == TEK_None;
627   }
628 };
629 }  // namespace
630 
631 static std::unique_ptr<TypeExpansion>
632 getTypeExpansion(QualType Ty, const ASTContext &Context) {
633   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
634     return llvm::make_unique<ConstantArrayExpansion>(
635         AT->getElementType(), AT->getSize().getZExtValue());
636   }
637   if (const RecordType *RT = Ty->getAs<RecordType>()) {
638     SmallVector<const CXXBaseSpecifier *, 1> Bases;
639     SmallVector<const FieldDecl *, 1> Fields;
640     const RecordDecl *RD = RT->getDecl();
641     assert(!RD->hasFlexibleArrayMember() &&
642            "Cannot expand structure with flexible array.");
643     if (RD->isUnion()) {
644       // Unions can be here only in degenerative cases - all the fields are same
645       // after flattening. Thus we have to use the "largest" field.
646       const FieldDecl *LargestFD = nullptr;
647       CharUnits UnionSize = CharUnits::Zero();
648 
649       for (const auto *FD : RD->fields()) {
650         // Skip zero length bitfields.
651         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
652           continue;
653         assert(!FD->isBitField() &&
654                "Cannot expand structure with bit-field members.");
655         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
656         if (UnionSize < FieldSize) {
657           UnionSize = FieldSize;
658           LargestFD = FD;
659         }
660       }
661       if (LargestFD)
662         Fields.push_back(LargestFD);
663     } else {
664       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
665         assert(!CXXRD->isDynamicClass() &&
666                "cannot expand vtable pointers in dynamic classes");
667         for (const CXXBaseSpecifier &BS : CXXRD->bases())
668           Bases.push_back(&BS);
669       }
670 
671       for (const auto *FD : RD->fields()) {
672         // Skip zero length bitfields.
673         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
674           continue;
675         assert(!FD->isBitField() &&
676                "Cannot expand structure with bit-field members.");
677         Fields.push_back(FD);
678       }
679     }
680     return llvm::make_unique<RecordExpansion>(std::move(Bases),
681                                               std::move(Fields));
682   }
683   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
684     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
685   }
686   return llvm::make_unique<NoExpansion>();
687 }
688 
689 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
690   auto Exp = getTypeExpansion(Ty, Context);
691   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
692     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
693   }
694   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
695     int Res = 0;
696     for (auto BS : RExp->Bases)
697       Res += getExpansionSize(BS->getType(), Context);
698     for (auto FD : RExp->Fields)
699       Res += getExpansionSize(FD->getType(), Context);
700     return Res;
701   }
702   if (isa<ComplexExpansion>(Exp.get()))
703     return 2;
704   assert(isa<NoExpansion>(Exp.get()));
705   return 1;
706 }
707 
708 void
709 CodeGenTypes::getExpandedTypes(QualType Ty,
710                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
711   auto Exp = getTypeExpansion(Ty, Context);
712   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
713     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
714       getExpandedTypes(CAExp->EltTy, TI);
715     }
716   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
717     for (auto BS : RExp->Bases)
718       getExpandedTypes(BS->getType(), TI);
719     for (auto FD : RExp->Fields)
720       getExpandedTypes(FD->getType(), TI);
721   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
722     llvm::Type *EltTy = ConvertType(CExp->EltTy);
723     *TI++ = EltTy;
724     *TI++ = EltTy;
725   } else {
726     assert(isa<NoExpansion>(Exp.get()));
727     *TI++ = ConvertType(Ty);
728   }
729 }
730 
731 static void forConstantArrayExpansion(CodeGenFunction &CGF,
732                                       ConstantArrayExpansion *CAE,
733                                       Address BaseAddr,
734                                       llvm::function_ref<void(Address)> Fn) {
735   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
736   CharUnits EltAlign =
737     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
738 
739   for (int i = 0, n = CAE->NumElts; i < n; i++) {
740     llvm::Value *EltAddr =
741       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
742     Fn(Address(EltAddr, EltAlign));
743   }
744 }
745 
746 void CodeGenFunction::ExpandTypeFromArgs(
747     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
748   assert(LV.isSimple() &&
749          "Unexpected non-simple lvalue during struct expansion.");
750 
751   auto Exp = getTypeExpansion(Ty, getContext());
752   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
753     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
754                               [&](Address EltAddr) {
755       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
756       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
757     });
758   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
759     Address This = LV.getAddress();
760     for (const CXXBaseSpecifier *BS : RExp->Bases) {
761       // Perform a single step derived-to-base conversion.
762       Address Base =
763           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
764                                 /*NullCheckValue=*/false, SourceLocation());
765       LValue SubLV = MakeAddrLValue(Base, BS->getType());
766 
767       // Recurse onto bases.
768       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
769     }
770     for (auto FD : RExp->Fields) {
771       // FIXME: What are the right qualifiers here?
772       LValue SubLV = EmitLValueForField(LV, FD);
773       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
774     }
775   } else if (isa<ComplexExpansion>(Exp.get())) {
776     auto realValue = *AI++;
777     auto imagValue = *AI++;
778     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
779   } else {
780     assert(isa<NoExpansion>(Exp.get()));
781     EmitStoreThroughLValue(RValue::get(*AI++), LV);
782   }
783 }
784 
785 void CodeGenFunction::ExpandTypeToArgs(
786     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
787     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
788   auto Exp = getTypeExpansion(Ty, getContext());
789   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
790     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
791                               [&](Address EltAddr) {
792       RValue EltRV =
793           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
794       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
795     });
796   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
797     Address This = RV.getAggregateAddress();
798     for (const CXXBaseSpecifier *BS : RExp->Bases) {
799       // Perform a single step derived-to-base conversion.
800       Address Base =
801           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
802                                 /*NullCheckValue=*/false, SourceLocation());
803       RValue BaseRV = RValue::getAggregate(Base);
804 
805       // Recurse onto bases.
806       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
807                        IRCallArgPos);
808     }
809 
810     LValue LV = MakeAddrLValue(This, Ty);
811     for (auto FD : RExp->Fields) {
812       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
813       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
814                        IRCallArgPos);
815     }
816   } else if (isa<ComplexExpansion>(Exp.get())) {
817     ComplexPairTy CV = RV.getComplexVal();
818     IRCallArgs[IRCallArgPos++] = CV.first;
819     IRCallArgs[IRCallArgPos++] = CV.second;
820   } else {
821     assert(isa<NoExpansion>(Exp.get()));
822     assert(RV.isScalar() &&
823            "Unexpected non-scalar rvalue during struct expansion.");
824 
825     // Insert a bitcast as needed.
826     llvm::Value *V = RV.getScalarVal();
827     if (IRCallArgPos < IRFuncTy->getNumParams() &&
828         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
829       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
830 
831     IRCallArgs[IRCallArgPos++] = V;
832   }
833 }
834 
835 /// Create a temporary allocation for the purposes of coercion.
836 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
837                                            CharUnits MinAlign) {
838   // Don't use an alignment that's worse than what LLVM would prefer.
839   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
840   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
841 
842   return CGF.CreateTempAlloca(Ty, Align);
843 }
844 
845 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
846 /// accessing some number of bytes out of it, try to gep into the struct to get
847 /// at its inner goodness.  Dive as deep as possible without entering an element
848 /// with an in-memory size smaller than DstSize.
849 static Address
850 EnterStructPointerForCoercedAccess(Address SrcPtr,
851                                    llvm::StructType *SrcSTy,
852                                    uint64_t DstSize, CodeGenFunction &CGF) {
853   // We can't dive into a zero-element struct.
854   if (SrcSTy->getNumElements() == 0) return SrcPtr;
855 
856   llvm::Type *FirstElt = SrcSTy->getElementType(0);
857 
858   // If the first elt is at least as large as what we're looking for, or if the
859   // first element is the same size as the whole struct, we can enter it. The
860   // comparison must be made on the store size and not the alloca size. Using
861   // the alloca size may overstate the size of the load.
862   uint64_t FirstEltSize =
863     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
864   if (FirstEltSize < DstSize &&
865       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
866     return SrcPtr;
867 
868   // GEP into the first element.
869   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
870 
871   // If the first element is a struct, recurse.
872   llvm::Type *SrcTy = SrcPtr.getElementType();
873   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
874     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
875 
876   return SrcPtr;
877 }
878 
879 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
880 /// are either integers or pointers.  This does a truncation of the value if it
881 /// is too large or a zero extension if it is too small.
882 ///
883 /// This behaves as if the value were coerced through memory, so on big-endian
884 /// targets the high bits are preserved in a truncation, while little-endian
885 /// targets preserve the low bits.
886 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
887                                              llvm::Type *Ty,
888                                              CodeGenFunction &CGF) {
889   if (Val->getType() == Ty)
890     return Val;
891 
892   if (isa<llvm::PointerType>(Val->getType())) {
893     // If this is Pointer->Pointer avoid conversion to and from int.
894     if (isa<llvm::PointerType>(Ty))
895       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
896 
897     // Convert the pointer to an integer so we can play with its width.
898     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
899   }
900 
901   llvm::Type *DestIntTy = Ty;
902   if (isa<llvm::PointerType>(DestIntTy))
903     DestIntTy = CGF.IntPtrTy;
904 
905   if (Val->getType() != DestIntTy) {
906     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
907     if (DL.isBigEndian()) {
908       // Preserve the high bits on big-endian targets.
909       // That is what memory coercion does.
910       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
911       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
912 
913       if (SrcSize > DstSize) {
914         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
915         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
916       } else {
917         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
918         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
919       }
920     } else {
921       // Little-endian targets preserve the low bits. No shifts required.
922       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
923     }
924   }
925 
926   if (isa<llvm::PointerType>(Ty))
927     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
928   return Val;
929 }
930 
931 
932 
933 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
934 /// a pointer to an object of type \arg Ty, known to be aligned to
935 /// \arg SrcAlign bytes.
936 ///
937 /// This safely handles the case when the src type is smaller than the
938 /// destination type; in this situation the values of bits which not
939 /// present in the src are undefined.
940 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
941                                       CodeGenFunction &CGF) {
942   llvm::Type *SrcTy = Src.getElementType();
943 
944   // If SrcTy and Ty are the same, just do a load.
945   if (SrcTy == Ty)
946     return CGF.Builder.CreateLoad(Src);
947 
948   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
949 
950   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
951     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
952     SrcTy = Src.getType()->getElementType();
953   }
954 
955   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
956 
957   // If the source and destination are integer or pointer types, just do an
958   // extension or truncation to the desired type.
959   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
960       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
961     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
962     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
963   }
964 
965   // If load is legal, just bitcast the src pointer.
966   if (SrcSize >= DstSize) {
967     // Generally SrcSize is never greater than DstSize, since this means we are
968     // losing bits. However, this can happen in cases where the structure has
969     // additional padding, for example due to a user specified alignment.
970     //
971     // FIXME: Assert that we aren't truncating non-padding bits when have access
972     // to that information.
973     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
974     return CGF.Builder.CreateLoad(Src);
975   }
976 
977   // Otherwise do coercion through memory. This is stupid, but simple.
978   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
979   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
980   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
981   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
982       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
983       false);
984   return CGF.Builder.CreateLoad(Tmp);
985 }
986 
987 // Function to store a first-class aggregate into memory.  We prefer to
988 // store the elements rather than the aggregate to be more friendly to
989 // fast-isel.
990 // FIXME: Do we need to recurse here?
991 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
992                           Address Dest, bool DestIsVolatile) {
993   // Prefer scalar stores to first-class aggregate stores.
994   if (llvm::StructType *STy =
995         dyn_cast<llvm::StructType>(Val->getType())) {
996     const llvm::StructLayout *Layout =
997       CGF.CGM.getDataLayout().getStructLayout(STy);
998 
999     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1000       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1001       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1002       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1003       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1004     }
1005   } else {
1006     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1007   }
1008 }
1009 
1010 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1011 /// where the source and destination may have different types.  The
1012 /// destination is known to be aligned to \arg DstAlign bytes.
1013 ///
1014 /// This safely handles the case when the src type is larger than the
1015 /// destination type; the upper bits of the src will be lost.
1016 static void CreateCoercedStore(llvm::Value *Src,
1017                                Address Dst,
1018                                bool DstIsVolatile,
1019                                CodeGenFunction &CGF) {
1020   llvm::Type *SrcTy = Src->getType();
1021   llvm::Type *DstTy = Dst.getType()->getElementType();
1022   if (SrcTy == DstTy) {
1023     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1024     return;
1025   }
1026 
1027   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1028 
1029   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1030     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1031     DstTy = Dst.getType()->getElementType();
1032   }
1033 
1034   // If the source and destination are integer or pointer types, just do an
1035   // extension or truncation to the desired type.
1036   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1037       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1038     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1039     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1040     return;
1041   }
1042 
1043   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1044 
1045   // If store is legal, just bitcast the src pointer.
1046   if (SrcSize <= DstSize) {
1047     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1048     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1049   } else {
1050     // Otherwise do coercion through memory. This is stupid, but
1051     // simple.
1052 
1053     // Generally SrcSize is never greater than DstSize, since this means we are
1054     // losing bits. However, this can happen in cases where the structure has
1055     // additional padding, for example due to a user specified alignment.
1056     //
1057     // FIXME: Assert that we aren't truncating non-padding bits when have access
1058     // to that information.
1059     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1060     CGF.Builder.CreateStore(Src, Tmp);
1061     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1062     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1063     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1064         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1065         false);
1066   }
1067 }
1068 
1069 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1070                                    const ABIArgInfo &info) {
1071   if (unsigned offset = info.getDirectOffset()) {
1072     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1073     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1074                                              CharUnits::fromQuantity(offset));
1075     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1076   }
1077   return addr;
1078 }
1079 
1080 namespace {
1081 
1082 /// Encapsulates information about the way function arguments from
1083 /// CGFunctionInfo should be passed to actual LLVM IR function.
1084 class ClangToLLVMArgMapping {
1085   static const unsigned InvalidIndex = ~0U;
1086   unsigned InallocaArgNo;
1087   unsigned SRetArgNo;
1088   unsigned TotalIRArgs;
1089 
1090   /// Arguments of LLVM IR function corresponding to single Clang argument.
1091   struct IRArgs {
1092     unsigned PaddingArgIndex;
1093     // Argument is expanded to IR arguments at positions
1094     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1095     unsigned FirstArgIndex;
1096     unsigned NumberOfArgs;
1097 
1098     IRArgs()
1099         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1100           NumberOfArgs(0) {}
1101   };
1102 
1103   SmallVector<IRArgs, 8> ArgInfo;
1104 
1105 public:
1106   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1107                         bool OnlyRequiredArgs = false)
1108       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1109         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1110     construct(Context, FI, OnlyRequiredArgs);
1111   }
1112 
1113   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1114   unsigned getInallocaArgNo() const {
1115     assert(hasInallocaArg());
1116     return InallocaArgNo;
1117   }
1118 
1119   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1120   unsigned getSRetArgNo() const {
1121     assert(hasSRetArg());
1122     return SRetArgNo;
1123   }
1124 
1125   unsigned totalIRArgs() const { return TotalIRArgs; }
1126 
1127   bool hasPaddingArg(unsigned ArgNo) const {
1128     assert(ArgNo < ArgInfo.size());
1129     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1130   }
1131   unsigned getPaddingArgNo(unsigned ArgNo) const {
1132     assert(hasPaddingArg(ArgNo));
1133     return ArgInfo[ArgNo].PaddingArgIndex;
1134   }
1135 
1136   /// Returns index of first IR argument corresponding to ArgNo, and their
1137   /// quantity.
1138   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1139     assert(ArgNo < ArgInfo.size());
1140     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1141                           ArgInfo[ArgNo].NumberOfArgs);
1142   }
1143 
1144 private:
1145   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1146                  bool OnlyRequiredArgs);
1147 };
1148 
1149 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1150                                       const CGFunctionInfo &FI,
1151                                       bool OnlyRequiredArgs) {
1152   unsigned IRArgNo = 0;
1153   bool SwapThisWithSRet = false;
1154   const ABIArgInfo &RetAI = FI.getReturnInfo();
1155 
1156   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1157     SwapThisWithSRet = RetAI.isSRetAfterThis();
1158     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1159   }
1160 
1161   unsigned ArgNo = 0;
1162   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1163   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1164        ++I, ++ArgNo) {
1165     assert(I != FI.arg_end());
1166     QualType ArgType = I->type;
1167     const ABIArgInfo &AI = I->info;
1168     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1169     auto &IRArgs = ArgInfo[ArgNo];
1170 
1171     if (AI.getPaddingType())
1172       IRArgs.PaddingArgIndex = IRArgNo++;
1173 
1174     switch (AI.getKind()) {
1175     case ABIArgInfo::Extend:
1176     case ABIArgInfo::Direct: {
1177       // FIXME: handle sseregparm someday...
1178       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1179       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1180         IRArgs.NumberOfArgs = STy->getNumElements();
1181       } else {
1182         IRArgs.NumberOfArgs = 1;
1183       }
1184       break;
1185     }
1186     case ABIArgInfo::Indirect:
1187       IRArgs.NumberOfArgs = 1;
1188       break;
1189     case ABIArgInfo::Ignore:
1190     case ABIArgInfo::InAlloca:
1191       // ignore and inalloca doesn't have matching LLVM parameters.
1192       IRArgs.NumberOfArgs = 0;
1193       break;
1194     case ABIArgInfo::Expand: {
1195       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1196       break;
1197     }
1198     }
1199 
1200     if (IRArgs.NumberOfArgs > 0) {
1201       IRArgs.FirstArgIndex = IRArgNo;
1202       IRArgNo += IRArgs.NumberOfArgs;
1203     }
1204 
1205     // Skip over the sret parameter when it comes second.  We already handled it
1206     // above.
1207     if (IRArgNo == 1 && SwapThisWithSRet)
1208       IRArgNo++;
1209   }
1210   assert(ArgNo == ArgInfo.size());
1211 
1212   if (FI.usesInAlloca())
1213     InallocaArgNo = IRArgNo++;
1214 
1215   TotalIRArgs = IRArgNo;
1216 }
1217 }  // namespace
1218 
1219 /***/
1220 
1221 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1222   return FI.getReturnInfo().isIndirect();
1223 }
1224 
1225 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1226   return ReturnTypeUsesSRet(FI) &&
1227          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1228 }
1229 
1230 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1231   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1232     switch (BT->getKind()) {
1233     default:
1234       return false;
1235     case BuiltinType::Float:
1236       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1237     case BuiltinType::Double:
1238       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1239     case BuiltinType::LongDouble:
1240       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1241     }
1242   }
1243 
1244   return false;
1245 }
1246 
1247 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1248   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1249     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1250       if (BT->getKind() == BuiltinType::LongDouble)
1251         return getTarget().useObjCFP2RetForComplexLongDouble();
1252     }
1253   }
1254 
1255   return false;
1256 }
1257 
1258 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1259   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1260   return GetFunctionType(FI);
1261 }
1262 
1263 llvm::FunctionType *
1264 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1265 
1266   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1267   (void)Inserted;
1268   assert(Inserted && "Recursively being processed?");
1269 
1270   llvm::Type *resultType = nullptr;
1271   const ABIArgInfo &retAI = FI.getReturnInfo();
1272   switch (retAI.getKind()) {
1273   case ABIArgInfo::Expand:
1274     llvm_unreachable("Invalid ABI kind for return argument");
1275 
1276   case ABIArgInfo::Extend:
1277   case ABIArgInfo::Direct:
1278     resultType = retAI.getCoerceToType();
1279     break;
1280 
1281   case ABIArgInfo::InAlloca:
1282     if (retAI.getInAllocaSRet()) {
1283       // sret things on win32 aren't void, they return the sret pointer.
1284       QualType ret = FI.getReturnType();
1285       llvm::Type *ty = ConvertType(ret);
1286       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1287       resultType = llvm::PointerType::get(ty, addressSpace);
1288     } else {
1289       resultType = llvm::Type::getVoidTy(getLLVMContext());
1290     }
1291     break;
1292 
1293   case ABIArgInfo::Indirect:
1294   case ABIArgInfo::Ignore:
1295     resultType = llvm::Type::getVoidTy(getLLVMContext());
1296     break;
1297   }
1298 
1299   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1300   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1301 
1302   // Add type for sret argument.
1303   if (IRFunctionArgs.hasSRetArg()) {
1304     QualType Ret = FI.getReturnType();
1305     llvm::Type *Ty = ConvertType(Ret);
1306     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1307     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1308         llvm::PointerType::get(Ty, AddressSpace);
1309   }
1310 
1311   // Add type for inalloca argument.
1312   if (IRFunctionArgs.hasInallocaArg()) {
1313     auto ArgStruct = FI.getArgStruct();
1314     assert(ArgStruct);
1315     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1316   }
1317 
1318   // Add in all of the required arguments.
1319   unsigned ArgNo = 0;
1320   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1321                                      ie = it + FI.getNumRequiredArgs();
1322   for (; it != ie; ++it, ++ArgNo) {
1323     const ABIArgInfo &ArgInfo = it->info;
1324 
1325     // Insert a padding type to ensure proper alignment.
1326     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1327       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1328           ArgInfo.getPaddingType();
1329 
1330     unsigned FirstIRArg, NumIRArgs;
1331     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1332 
1333     switch (ArgInfo.getKind()) {
1334     case ABIArgInfo::Ignore:
1335     case ABIArgInfo::InAlloca:
1336       assert(NumIRArgs == 0);
1337       break;
1338 
1339     case ABIArgInfo::Indirect: {
1340       assert(NumIRArgs == 1);
1341       // indirect arguments are always on the stack, which is addr space #0.
1342       llvm::Type *LTy = ConvertTypeForMem(it->type);
1343       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1344       break;
1345     }
1346 
1347     case ABIArgInfo::Extend:
1348     case ABIArgInfo::Direct: {
1349       // Fast-isel and the optimizer generally like scalar values better than
1350       // FCAs, so we flatten them if this is safe to do for this argument.
1351       llvm::Type *argType = ArgInfo.getCoerceToType();
1352       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1353       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1354         assert(NumIRArgs == st->getNumElements());
1355         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1356           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1357       } else {
1358         assert(NumIRArgs == 1);
1359         ArgTypes[FirstIRArg] = argType;
1360       }
1361       break;
1362     }
1363 
1364     case ABIArgInfo::Expand:
1365       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1366       getExpandedTypes(it->type, ArgTypesIter);
1367       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1368       break;
1369     }
1370   }
1371 
1372   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1373   assert(Erased && "Not in set?");
1374 
1375   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1376 }
1377 
1378 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1379   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1380   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1381 
1382   if (!isFuncTypeConvertible(FPT))
1383     return llvm::StructType::get(getLLVMContext());
1384 
1385   const CGFunctionInfo *Info;
1386   if (isa<CXXDestructorDecl>(MD))
1387     Info =
1388         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1389   else
1390     Info = &arrangeCXXMethodDeclaration(MD);
1391   return GetFunctionType(*Info);
1392 }
1393 
1394 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1395                                            const Decl *TargetDecl,
1396                                            AttributeListType &PAL,
1397                                            unsigned &CallingConv,
1398                                            bool AttrOnCallSite) {
1399   llvm::AttrBuilder FuncAttrs;
1400   llvm::AttrBuilder RetAttrs;
1401   bool HasOptnone = false;
1402 
1403   CallingConv = FI.getEffectiveCallingConvention();
1404 
1405   if (FI.isNoReturn())
1406     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1407 
1408   // FIXME: handle sseregparm someday...
1409   if (TargetDecl) {
1410     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1411       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1412     if (TargetDecl->hasAttr<NoThrowAttr>())
1413       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1414     if (TargetDecl->hasAttr<NoReturnAttr>())
1415       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1416     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1417       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1418 
1419     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1420       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1421       if (FPT && !isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1422           FPT->isNothrow(getContext()))
1423         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1424       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1425       // These attributes are not inherited by overloads.
1426       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1427       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1428         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1429     }
1430 
1431     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1432     if (TargetDecl->hasAttr<ConstAttr>()) {
1433       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1434       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1435     } else if (TargetDecl->hasAttr<PureAttr>()) {
1436       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1437       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1438     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1439       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1440       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1441     }
1442     if (TargetDecl->hasAttr<RestrictAttr>())
1443       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1444     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1445       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1446 
1447     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1448   }
1449 
1450   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1451   if (!HasOptnone) {
1452     if (CodeGenOpts.OptimizeSize)
1453       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1454     if (CodeGenOpts.OptimizeSize == 2)
1455       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1456   }
1457 
1458   if (CodeGenOpts.DisableRedZone)
1459     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1460   if (CodeGenOpts.NoImplicitFloat)
1461     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1462   if (CodeGenOpts.EnableSegmentedStacks &&
1463       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1464     FuncAttrs.addAttribute("split-stack");
1465 
1466   if (AttrOnCallSite) {
1467     // Attributes that should go on the call site only.
1468     if (!CodeGenOpts.SimplifyLibCalls)
1469       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1470     if (!CodeGenOpts.TrapFuncName.empty())
1471       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1472   } else {
1473     // Attributes that should go on the function, but not the call site.
1474     if (!CodeGenOpts.DisableFPElim) {
1475       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1476     } else if (CodeGenOpts.OmitLeafFramePointer) {
1477       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1478       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1479     } else {
1480       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1481       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1482     }
1483 
1484     bool DisableTailCalls =
1485         CodeGenOpts.DisableTailCalls ||
1486         (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>());
1487     FuncAttrs.addAttribute("disable-tail-calls",
1488                            llvm::toStringRef(DisableTailCalls));
1489 
1490     FuncAttrs.addAttribute("less-precise-fpmad",
1491                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1492     FuncAttrs.addAttribute("no-infs-fp-math",
1493                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1494     FuncAttrs.addAttribute("no-nans-fp-math",
1495                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1496     FuncAttrs.addAttribute("unsafe-fp-math",
1497                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1498     FuncAttrs.addAttribute("use-soft-float",
1499                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1500     FuncAttrs.addAttribute("stack-protector-buffer-size",
1501                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1502 
1503     if (CodeGenOpts.StackRealignment)
1504       FuncAttrs.addAttribute("stackrealign");
1505 
1506     // Add target-cpu and target-features attributes to functions. If
1507     // we have a decl for the function and it has a target attribute then
1508     // parse that and add it to the feature set.
1509     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1510     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1511     if (FD && FD->hasAttr<TargetAttr>()) {
1512       llvm::StringMap<bool> FeatureMap;
1513       getFunctionFeatureMap(FeatureMap, FD);
1514 
1515       // Produce the canonical string for this set of features.
1516       std::vector<std::string> Features;
1517       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1518                                                  ie = FeatureMap.end();
1519            it != ie; ++it)
1520         Features.push_back((it->second ? "+" : "-") + it->first().str());
1521 
1522       // Now add the target-cpu and target-features to the function.
1523       // While we populated the feature map above, we still need to
1524       // get and parse the target attribute so we can get the cpu for
1525       // the function.
1526       const auto *TD = FD->getAttr<TargetAttr>();
1527       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1528       if (ParsedAttr.second != "")
1529         TargetCPU = ParsedAttr.second;
1530       if (TargetCPU != "")
1531         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1532       if (!Features.empty()) {
1533         std::sort(Features.begin(), Features.end());
1534         FuncAttrs.addAttribute(
1535             "target-features",
1536             llvm::join(Features.begin(), Features.end(), ","));
1537       }
1538     } else {
1539       // Otherwise just add the existing target cpu and target features to the
1540       // function.
1541       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1542       if (TargetCPU != "")
1543         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1544       if (!Features.empty()) {
1545         std::sort(Features.begin(), Features.end());
1546         FuncAttrs.addAttribute(
1547             "target-features",
1548             llvm::join(Features.begin(), Features.end(), ","));
1549       }
1550     }
1551   }
1552 
1553   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1554 
1555   QualType RetTy = FI.getReturnType();
1556   const ABIArgInfo &RetAI = FI.getReturnInfo();
1557   switch (RetAI.getKind()) {
1558   case ABIArgInfo::Extend:
1559     if (RetTy->hasSignedIntegerRepresentation())
1560       RetAttrs.addAttribute(llvm::Attribute::SExt);
1561     else if (RetTy->hasUnsignedIntegerRepresentation())
1562       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1563     // FALL THROUGH
1564   case ABIArgInfo::Direct:
1565     if (RetAI.getInReg())
1566       RetAttrs.addAttribute(llvm::Attribute::InReg);
1567     break;
1568   case ABIArgInfo::Ignore:
1569     break;
1570 
1571   case ABIArgInfo::InAlloca:
1572   case ABIArgInfo::Indirect: {
1573     // inalloca and sret disable readnone and readonly
1574     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1575       .removeAttribute(llvm::Attribute::ReadNone);
1576     break;
1577   }
1578 
1579   case ABIArgInfo::Expand:
1580     llvm_unreachable("Invalid ABI kind for return argument");
1581   }
1582 
1583   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1584     QualType PTy = RefTy->getPointeeType();
1585     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1586       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1587                                         .getQuantity());
1588     else if (getContext().getTargetAddressSpace(PTy) == 0)
1589       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1590   }
1591 
1592   // Attach return attributes.
1593   if (RetAttrs.hasAttributes()) {
1594     PAL.push_back(llvm::AttributeSet::get(
1595         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1596   }
1597 
1598   // Attach attributes to sret.
1599   if (IRFunctionArgs.hasSRetArg()) {
1600     llvm::AttrBuilder SRETAttrs;
1601     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1602     if (RetAI.getInReg())
1603       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1604     PAL.push_back(llvm::AttributeSet::get(
1605         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1606   }
1607 
1608   // Attach attributes to inalloca argument.
1609   if (IRFunctionArgs.hasInallocaArg()) {
1610     llvm::AttrBuilder Attrs;
1611     Attrs.addAttribute(llvm::Attribute::InAlloca);
1612     PAL.push_back(llvm::AttributeSet::get(
1613         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1614   }
1615 
1616   unsigned ArgNo = 0;
1617   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1618                                           E = FI.arg_end();
1619        I != E; ++I, ++ArgNo) {
1620     QualType ParamType = I->type;
1621     const ABIArgInfo &AI = I->info;
1622     llvm::AttrBuilder Attrs;
1623 
1624     // Add attribute for padding argument, if necessary.
1625     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1626       if (AI.getPaddingInReg())
1627         PAL.push_back(llvm::AttributeSet::get(
1628             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1629             llvm::Attribute::InReg));
1630     }
1631 
1632     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1633     // have the corresponding parameter variable.  It doesn't make
1634     // sense to do it here because parameters are so messed up.
1635     switch (AI.getKind()) {
1636     case ABIArgInfo::Extend:
1637       if (ParamType->isSignedIntegerOrEnumerationType())
1638         Attrs.addAttribute(llvm::Attribute::SExt);
1639       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1640         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1641           Attrs.addAttribute(llvm::Attribute::SExt);
1642         else
1643           Attrs.addAttribute(llvm::Attribute::ZExt);
1644       }
1645       // FALL THROUGH
1646     case ABIArgInfo::Direct:
1647       if (ArgNo == 0 && FI.isChainCall())
1648         Attrs.addAttribute(llvm::Attribute::Nest);
1649       else if (AI.getInReg())
1650         Attrs.addAttribute(llvm::Attribute::InReg);
1651       break;
1652 
1653     case ABIArgInfo::Indirect: {
1654       if (AI.getInReg())
1655         Attrs.addAttribute(llvm::Attribute::InReg);
1656 
1657       if (AI.getIndirectByVal())
1658         Attrs.addAttribute(llvm::Attribute::ByVal);
1659 
1660       CharUnits Align = AI.getIndirectAlign();
1661 
1662       // In a byval argument, it is important that the required
1663       // alignment of the type is honored, as LLVM might be creating a
1664       // *new* stack object, and needs to know what alignment to give
1665       // it. (Sometimes it can deduce a sensible alignment on its own,
1666       // but not if clang decides it must emit a packed struct, or the
1667       // user specifies increased alignment requirements.)
1668       //
1669       // This is different from indirect *not* byval, where the object
1670       // exists already, and the align attribute is purely
1671       // informative.
1672       assert(!Align.isZero());
1673 
1674       // For now, only add this when we have a byval argument.
1675       // TODO: be less lazy about updating test cases.
1676       if (AI.getIndirectByVal())
1677         Attrs.addAlignmentAttr(Align.getQuantity());
1678 
1679       // byval disables readnone and readonly.
1680       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1681         .removeAttribute(llvm::Attribute::ReadNone);
1682       break;
1683     }
1684     case ABIArgInfo::Ignore:
1685     case ABIArgInfo::Expand:
1686       continue;
1687 
1688     case ABIArgInfo::InAlloca:
1689       // inalloca disables readnone and readonly.
1690       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1691           .removeAttribute(llvm::Attribute::ReadNone);
1692       continue;
1693     }
1694 
1695     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1696       QualType PTy = RefTy->getPointeeType();
1697       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1698         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1699                                        .getQuantity());
1700       else if (getContext().getTargetAddressSpace(PTy) == 0)
1701         Attrs.addAttribute(llvm::Attribute::NonNull);
1702     }
1703 
1704     if (Attrs.hasAttributes()) {
1705       unsigned FirstIRArg, NumIRArgs;
1706       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1707       for (unsigned i = 0; i < NumIRArgs; i++)
1708         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1709                                               FirstIRArg + i + 1, Attrs));
1710     }
1711   }
1712   assert(ArgNo == FI.arg_size());
1713 
1714   if (FuncAttrs.hasAttributes())
1715     PAL.push_back(llvm::
1716                   AttributeSet::get(getLLVMContext(),
1717                                     llvm::AttributeSet::FunctionIndex,
1718                                     FuncAttrs));
1719 }
1720 
1721 /// An argument came in as a promoted argument; demote it back to its
1722 /// declared type.
1723 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1724                                          const VarDecl *var,
1725                                          llvm::Value *value) {
1726   llvm::Type *varType = CGF.ConvertType(var->getType());
1727 
1728   // This can happen with promotions that actually don't change the
1729   // underlying type, like the enum promotions.
1730   if (value->getType() == varType) return value;
1731 
1732   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1733          && "unexpected promotion type");
1734 
1735   if (isa<llvm::IntegerType>(varType))
1736     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1737 
1738   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1739 }
1740 
1741 /// Returns the attribute (either parameter attribute, or function
1742 /// attribute), which declares argument ArgNo to be non-null.
1743 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1744                                          QualType ArgType, unsigned ArgNo) {
1745   // FIXME: __attribute__((nonnull)) can also be applied to:
1746   //   - references to pointers, where the pointee is known to be
1747   //     nonnull (apparently a Clang extension)
1748   //   - transparent unions containing pointers
1749   // In the former case, LLVM IR cannot represent the constraint. In
1750   // the latter case, we have no guarantee that the transparent union
1751   // is in fact passed as a pointer.
1752   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1753     return nullptr;
1754   // First, check attribute on parameter itself.
1755   if (PVD) {
1756     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1757       return ParmNNAttr;
1758   }
1759   // Check function attributes.
1760   if (!FD)
1761     return nullptr;
1762   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1763     if (NNAttr->isNonNull(ArgNo))
1764       return NNAttr;
1765   }
1766   return nullptr;
1767 }
1768 
1769 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1770                                          llvm::Function *Fn,
1771                                          const FunctionArgList &Args) {
1772   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1773     // Naked functions don't have prologues.
1774     return;
1775 
1776   // If this is an implicit-return-zero function, go ahead and
1777   // initialize the return value.  TODO: it might be nice to have
1778   // a more general mechanism for this that didn't require synthesized
1779   // return statements.
1780   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1781     if (FD->hasImplicitReturnZero()) {
1782       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1783       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1784       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1785       Builder.CreateStore(Zero, ReturnValue);
1786     }
1787   }
1788 
1789   // FIXME: We no longer need the types from FunctionArgList; lift up and
1790   // simplify.
1791 
1792   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1793   // Flattened function arguments.
1794   SmallVector<llvm::Argument *, 16> FnArgs;
1795   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1796   for (auto &Arg : Fn->args()) {
1797     FnArgs.push_back(&Arg);
1798   }
1799   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1800 
1801   // If we're using inalloca, all the memory arguments are GEPs off of the last
1802   // parameter, which is a pointer to the complete memory area.
1803   Address ArgStruct = Address::invalid();
1804   const llvm::StructLayout *ArgStructLayout = nullptr;
1805   if (IRFunctionArgs.hasInallocaArg()) {
1806     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
1807     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
1808                         FI.getArgStructAlignment());
1809 
1810     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
1811   }
1812 
1813   // Name the struct return parameter.
1814   if (IRFunctionArgs.hasSRetArg()) {
1815     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1816     AI->setName("agg.result");
1817     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1818                                         llvm::Attribute::NoAlias));
1819   }
1820 
1821   // Track if we received the parameter as a pointer (indirect, byval, or
1822   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1823   // into a local alloca for us.
1824   SmallVector<ParamValue, 16> ArgVals;
1825   ArgVals.reserve(Args.size());
1826 
1827   // Create a pointer value for every parameter declaration.  This usually
1828   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1829   // any cleanups or do anything that might unwind.  We do that separately, so
1830   // we can push the cleanups in the correct order for the ABI.
1831   assert(FI.arg_size() == Args.size() &&
1832          "Mismatch between function signature & arguments.");
1833   unsigned ArgNo = 0;
1834   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1835   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1836        i != e; ++i, ++info_it, ++ArgNo) {
1837     const VarDecl *Arg = *i;
1838     QualType Ty = info_it->type;
1839     const ABIArgInfo &ArgI = info_it->info;
1840 
1841     bool isPromoted =
1842       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1843 
1844     unsigned FirstIRArg, NumIRArgs;
1845     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1846 
1847     switch (ArgI.getKind()) {
1848     case ABIArgInfo::InAlloca: {
1849       assert(NumIRArgs == 0);
1850       auto FieldIndex = ArgI.getInAllocaFieldIndex();
1851       CharUnits FieldOffset =
1852         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
1853       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
1854                                           Arg->getName());
1855       ArgVals.push_back(ParamValue::forIndirect(V));
1856       break;
1857     }
1858 
1859     case ABIArgInfo::Indirect: {
1860       assert(NumIRArgs == 1);
1861       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
1862 
1863       if (!hasScalarEvaluationKind(Ty)) {
1864         // Aggregates and complex variables are accessed by reference.  All we
1865         // need to do is realign the value, if requested.
1866         Address V = ParamAddr;
1867         if (ArgI.getIndirectRealign()) {
1868           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
1869 
1870           // Copy from the incoming argument pointer to the temporary with the
1871           // appropriate alignment.
1872           //
1873           // FIXME: We should have a common utility for generating an aggregate
1874           // copy.
1875           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1876           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
1877           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
1878           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
1879           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
1880           V = AlignedTemp;
1881         }
1882         ArgVals.push_back(ParamValue::forIndirect(V));
1883       } else {
1884         // Load scalar value from indirect argument.
1885         llvm::Value *V =
1886           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
1887 
1888         if (isPromoted)
1889           V = emitArgumentDemotion(*this, Arg, V);
1890         ArgVals.push_back(ParamValue::forDirect(V));
1891       }
1892       break;
1893     }
1894 
1895     case ABIArgInfo::Extend:
1896     case ABIArgInfo::Direct: {
1897 
1898       // If we have the trivial case, handle it with no muss and fuss.
1899       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1900           ArgI.getCoerceToType() == ConvertType(Ty) &&
1901           ArgI.getDirectOffset() == 0) {
1902         assert(NumIRArgs == 1);
1903         auto AI = FnArgs[FirstIRArg];
1904         llvm::Value *V = AI;
1905 
1906         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1907           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1908                              PVD->getFunctionScopeIndex()))
1909             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1910                                                 AI->getArgNo() + 1,
1911                                                 llvm::Attribute::NonNull));
1912 
1913           QualType OTy = PVD->getOriginalType();
1914           if (const auto *ArrTy =
1915               getContext().getAsConstantArrayType(OTy)) {
1916             // A C99 array parameter declaration with the static keyword also
1917             // indicates dereferenceability, and if the size is constant we can
1918             // use the dereferenceable attribute (which requires the size in
1919             // bytes).
1920             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1921               QualType ETy = ArrTy->getElementType();
1922               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1923               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1924                   ArrSize) {
1925                 llvm::AttrBuilder Attrs;
1926                 Attrs.addDereferenceableAttr(
1927                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1928                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1929                                                     AI->getArgNo() + 1, Attrs));
1930               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1931                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1932                                                     AI->getArgNo() + 1,
1933                                                     llvm::Attribute::NonNull));
1934               }
1935             }
1936           } else if (const auto *ArrTy =
1937                      getContext().getAsVariableArrayType(OTy)) {
1938             // For C99 VLAs with the static keyword, we don't know the size so
1939             // we can't use the dereferenceable attribute, but in addrspace(0)
1940             // we know that it must be nonnull.
1941             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1942                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1943               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1944                                                   AI->getArgNo() + 1,
1945                                                   llvm::Attribute::NonNull));
1946           }
1947 
1948           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1949           if (!AVAttr)
1950             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1951               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1952           if (AVAttr) {
1953             llvm::Value *AlignmentValue =
1954               EmitScalarExpr(AVAttr->getAlignment());
1955             llvm::ConstantInt *AlignmentCI =
1956               cast<llvm::ConstantInt>(AlignmentValue);
1957             unsigned Alignment =
1958               std::min((unsigned) AlignmentCI->getZExtValue(),
1959                        +llvm::Value::MaximumAlignment);
1960 
1961             llvm::AttrBuilder Attrs;
1962             Attrs.addAlignmentAttr(Alignment);
1963             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1964                                                 AI->getArgNo() + 1, Attrs));
1965           }
1966         }
1967 
1968         if (Arg->getType().isRestrictQualified())
1969           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1970                                               AI->getArgNo() + 1,
1971                                               llvm::Attribute::NoAlias));
1972 
1973         // Ensure the argument is the correct type.
1974         if (V->getType() != ArgI.getCoerceToType())
1975           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1976 
1977         if (isPromoted)
1978           V = emitArgumentDemotion(*this, Arg, V);
1979 
1980         if (const CXXMethodDecl *MD =
1981             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1982           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1983             V = CGM.getCXXABI().
1984                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1985         }
1986 
1987         // Because of merging of function types from multiple decls it is
1988         // possible for the type of an argument to not match the corresponding
1989         // type in the function type. Since we are codegening the callee
1990         // in here, add a cast to the argument type.
1991         llvm::Type *LTy = ConvertType(Arg->getType());
1992         if (V->getType() != LTy)
1993           V = Builder.CreateBitCast(V, LTy);
1994 
1995         ArgVals.push_back(ParamValue::forDirect(V));
1996         break;
1997       }
1998 
1999       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2000                                      Arg->getName());
2001 
2002       // Pointer to store into.
2003       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2004 
2005       // Fast-isel and the optimizer generally like scalar values better than
2006       // FCAs, so we flatten them if this is safe to do for this argument.
2007       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2008       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2009           STy->getNumElements() > 1) {
2010         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2011         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2012         llvm::Type *DstTy = Ptr.getElementType();
2013         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2014 
2015         Address AddrToStoreInto = Address::invalid();
2016         if (SrcSize <= DstSize) {
2017           AddrToStoreInto =
2018             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2019         } else {
2020           AddrToStoreInto =
2021             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2022         }
2023 
2024         assert(STy->getNumElements() == NumIRArgs);
2025         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2026           auto AI = FnArgs[FirstIRArg + i];
2027           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2028           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2029           Address EltPtr =
2030             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2031           Builder.CreateStore(AI, EltPtr);
2032         }
2033 
2034         if (SrcSize > DstSize) {
2035           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2036         }
2037 
2038       } else {
2039         // Simple case, just do a coerced store of the argument into the alloca.
2040         assert(NumIRArgs == 1);
2041         auto AI = FnArgs[FirstIRArg];
2042         AI->setName(Arg->getName() + ".coerce");
2043         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2044       }
2045 
2046       // Match to what EmitParmDecl is expecting for this type.
2047       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2048         llvm::Value *V =
2049           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2050         if (isPromoted)
2051           V = emitArgumentDemotion(*this, Arg, V);
2052         ArgVals.push_back(ParamValue::forDirect(V));
2053       } else {
2054         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2055       }
2056       break;
2057     }
2058 
2059     case ABIArgInfo::Expand: {
2060       // If this structure was expanded into multiple arguments then
2061       // we need to create a temporary and reconstruct it from the
2062       // arguments.
2063       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2064       LValue LV = MakeAddrLValue(Alloca, Ty);
2065       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2066 
2067       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2068       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2069       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2070       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2071         auto AI = FnArgs[FirstIRArg + i];
2072         AI->setName(Arg->getName() + "." + Twine(i));
2073       }
2074       break;
2075     }
2076 
2077     case ABIArgInfo::Ignore:
2078       assert(NumIRArgs == 0);
2079       // Initialize the local variable appropriately.
2080       if (!hasScalarEvaluationKind(Ty)) {
2081         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2082       } else {
2083         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2084         ArgVals.push_back(ParamValue::forDirect(U));
2085       }
2086       break;
2087     }
2088   }
2089 
2090   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2091     for (int I = Args.size() - 1; I >= 0; --I)
2092       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2093   } else {
2094     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2095       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2096   }
2097 }
2098 
2099 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2100   while (insn->use_empty()) {
2101     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2102     if (!bitcast) return;
2103 
2104     // This is "safe" because we would have used a ConstantExpr otherwise.
2105     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2106     bitcast->eraseFromParent();
2107   }
2108 }
2109 
2110 /// Try to emit a fused autorelease of a return result.
2111 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2112                                                     llvm::Value *result) {
2113   // We must be immediately followed the cast.
2114   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2115   if (BB->empty()) return nullptr;
2116   if (&BB->back() != result) return nullptr;
2117 
2118   llvm::Type *resultType = result->getType();
2119 
2120   // result is in a BasicBlock and is therefore an Instruction.
2121   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2122 
2123   SmallVector<llvm::Instruction*,4> insnsToKill;
2124 
2125   // Look for:
2126   //  %generator = bitcast %type1* %generator2 to %type2*
2127   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2128     // We would have emitted this as a constant if the operand weren't
2129     // an Instruction.
2130     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2131 
2132     // Require the generator to be immediately followed by the cast.
2133     if (generator->getNextNode() != bitcast)
2134       return nullptr;
2135 
2136     insnsToKill.push_back(bitcast);
2137   }
2138 
2139   // Look for:
2140   //   %generator = call i8* @objc_retain(i8* %originalResult)
2141   // or
2142   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2143   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2144   if (!call) return nullptr;
2145 
2146   bool doRetainAutorelease;
2147 
2148   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2149     doRetainAutorelease = true;
2150   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2151                                           .objc_retainAutoreleasedReturnValue) {
2152     doRetainAutorelease = false;
2153 
2154     // If we emitted an assembly marker for this call (and the
2155     // ARCEntrypoints field should have been set if so), go looking
2156     // for that call.  If we can't find it, we can't do this
2157     // optimization.  But it should always be the immediately previous
2158     // instruction, unless we needed bitcasts around the call.
2159     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2160       llvm::Instruction *prev = call->getPrevNode();
2161       assert(prev);
2162       if (isa<llvm::BitCastInst>(prev)) {
2163         prev = prev->getPrevNode();
2164         assert(prev);
2165       }
2166       assert(isa<llvm::CallInst>(prev));
2167       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2168                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2169       insnsToKill.push_back(prev);
2170     }
2171   } else {
2172     return nullptr;
2173   }
2174 
2175   result = call->getArgOperand(0);
2176   insnsToKill.push_back(call);
2177 
2178   // Keep killing bitcasts, for sanity.  Note that we no longer care
2179   // about precise ordering as long as there's exactly one use.
2180   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2181     if (!bitcast->hasOneUse()) break;
2182     insnsToKill.push_back(bitcast);
2183     result = bitcast->getOperand(0);
2184   }
2185 
2186   // Delete all the unnecessary instructions, from latest to earliest.
2187   for (SmallVectorImpl<llvm::Instruction*>::iterator
2188          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2189     (*i)->eraseFromParent();
2190 
2191   // Do the fused retain/autorelease if we were asked to.
2192   if (doRetainAutorelease)
2193     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2194 
2195   // Cast back to the result type.
2196   return CGF.Builder.CreateBitCast(result, resultType);
2197 }
2198 
2199 /// If this is a +1 of the value of an immutable 'self', remove it.
2200 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2201                                           llvm::Value *result) {
2202   // This is only applicable to a method with an immutable 'self'.
2203   const ObjCMethodDecl *method =
2204     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2205   if (!method) return nullptr;
2206   const VarDecl *self = method->getSelfDecl();
2207   if (!self->getType().isConstQualified()) return nullptr;
2208 
2209   // Look for a retain call.
2210   llvm::CallInst *retainCall =
2211     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2212   if (!retainCall ||
2213       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2214     return nullptr;
2215 
2216   // Look for an ordinary load of 'self'.
2217   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2218   llvm::LoadInst *load =
2219     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2220   if (!load || load->isAtomic() || load->isVolatile() ||
2221       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2222     return nullptr;
2223 
2224   // Okay!  Burn it all down.  This relies for correctness on the
2225   // assumption that the retain is emitted as part of the return and
2226   // that thereafter everything is used "linearly".
2227   llvm::Type *resultType = result->getType();
2228   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2229   assert(retainCall->use_empty());
2230   retainCall->eraseFromParent();
2231   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2232 
2233   return CGF.Builder.CreateBitCast(load, resultType);
2234 }
2235 
2236 /// Emit an ARC autorelease of the result of a function.
2237 ///
2238 /// \return the value to actually return from the function
2239 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2240                                             llvm::Value *result) {
2241   // If we're returning 'self', kill the initial retain.  This is a
2242   // heuristic attempt to "encourage correctness" in the really unfortunate
2243   // case where we have a return of self during a dealloc and we desperately
2244   // need to avoid the possible autorelease.
2245   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2246     return self;
2247 
2248   // At -O0, try to emit a fused retain/autorelease.
2249   if (CGF.shouldUseFusedARCCalls())
2250     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2251       return fused;
2252 
2253   return CGF.EmitARCAutoreleaseReturnValue(result);
2254 }
2255 
2256 /// Heuristically search for a dominating store to the return-value slot.
2257 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2258   // Check if a User is a store which pointerOperand is the ReturnValue.
2259   // We are looking for stores to the ReturnValue, not for stores of the
2260   // ReturnValue to some other location.
2261   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2262     auto *SI = dyn_cast<llvm::StoreInst>(U);
2263     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2264       return nullptr;
2265     // These aren't actually possible for non-coerced returns, and we
2266     // only care about non-coerced returns on this code path.
2267     assert(!SI->isAtomic() && !SI->isVolatile());
2268     return SI;
2269   };
2270   // If there are multiple uses of the return-value slot, just check
2271   // for something immediately preceding the IP.  Sometimes this can
2272   // happen with how we generate implicit-returns; it can also happen
2273   // with noreturn cleanups.
2274   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2275     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2276     if (IP->empty()) return nullptr;
2277     llvm::Instruction *I = &IP->back();
2278 
2279     // Skip lifetime markers
2280     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2281                                             IE = IP->rend();
2282          II != IE; ++II) {
2283       if (llvm::IntrinsicInst *Intrinsic =
2284               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2285         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2286           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2287           ++II;
2288           if (II == IE)
2289             break;
2290           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2291             continue;
2292         }
2293       }
2294       I = &*II;
2295       break;
2296     }
2297 
2298     return GetStoreIfValid(I);
2299   }
2300 
2301   llvm::StoreInst *store =
2302       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2303   if (!store) return nullptr;
2304 
2305   // Now do a first-and-dirty dominance check: just walk up the
2306   // single-predecessors chain from the current insertion point.
2307   llvm::BasicBlock *StoreBB = store->getParent();
2308   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2309   while (IP != StoreBB) {
2310     if (!(IP = IP->getSinglePredecessor()))
2311       return nullptr;
2312   }
2313 
2314   // Okay, the store's basic block dominates the insertion point; we
2315   // can do our thing.
2316   return store;
2317 }
2318 
2319 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2320                                          bool EmitRetDbgLoc,
2321                                          SourceLocation EndLoc) {
2322   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2323     // Naked functions don't have epilogues.
2324     Builder.CreateUnreachable();
2325     return;
2326   }
2327 
2328   // Functions with no result always return void.
2329   if (!ReturnValue.isValid()) {
2330     Builder.CreateRetVoid();
2331     return;
2332   }
2333 
2334   llvm::DebugLoc RetDbgLoc;
2335   llvm::Value *RV = nullptr;
2336   QualType RetTy = FI.getReturnType();
2337   const ABIArgInfo &RetAI = FI.getReturnInfo();
2338 
2339   switch (RetAI.getKind()) {
2340   case ABIArgInfo::InAlloca:
2341     // Aggregrates get evaluated directly into the destination.  Sometimes we
2342     // need to return the sret value in a register, though.
2343     assert(hasAggregateEvaluationKind(RetTy));
2344     if (RetAI.getInAllocaSRet()) {
2345       llvm::Function::arg_iterator EI = CurFn->arg_end();
2346       --EI;
2347       llvm::Value *ArgStruct = &*EI;
2348       llvm::Value *SRet = Builder.CreateStructGEP(
2349           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2350       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2351     }
2352     break;
2353 
2354   case ABIArgInfo::Indirect: {
2355     auto AI = CurFn->arg_begin();
2356     if (RetAI.isSRetAfterThis())
2357       ++AI;
2358     switch (getEvaluationKind(RetTy)) {
2359     case TEK_Complex: {
2360       ComplexPairTy RT =
2361         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2362       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2363                          /*isInit*/ true);
2364       break;
2365     }
2366     case TEK_Aggregate:
2367       // Do nothing; aggregrates get evaluated directly into the destination.
2368       break;
2369     case TEK_Scalar:
2370       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2371                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2372                         /*isInit*/ true);
2373       break;
2374     }
2375     break;
2376   }
2377 
2378   case ABIArgInfo::Extend:
2379   case ABIArgInfo::Direct:
2380     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2381         RetAI.getDirectOffset() == 0) {
2382       // The internal return value temp always will have pointer-to-return-type
2383       // type, just do a load.
2384 
2385       // If there is a dominating store to ReturnValue, we can elide
2386       // the load, zap the store, and usually zap the alloca.
2387       if (llvm::StoreInst *SI =
2388               findDominatingStoreToReturnValue(*this)) {
2389         // Reuse the debug location from the store unless there is
2390         // cleanup code to be emitted between the store and return
2391         // instruction.
2392         if (EmitRetDbgLoc && !AutoreleaseResult)
2393           RetDbgLoc = SI->getDebugLoc();
2394         // Get the stored value and nuke the now-dead store.
2395         RV = SI->getValueOperand();
2396         SI->eraseFromParent();
2397 
2398         // If that was the only use of the return value, nuke it as well now.
2399         auto returnValueInst = ReturnValue.getPointer();
2400         if (returnValueInst->use_empty()) {
2401           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2402             alloca->eraseFromParent();
2403             ReturnValue = Address::invalid();
2404           }
2405         }
2406 
2407       // Otherwise, we have to do a simple load.
2408       } else {
2409         RV = Builder.CreateLoad(ReturnValue);
2410       }
2411     } else {
2412       // If the value is offset in memory, apply the offset now.
2413       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2414 
2415       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2416     }
2417 
2418     // In ARC, end functions that return a retainable type with a call
2419     // to objc_autoreleaseReturnValue.
2420     if (AutoreleaseResult) {
2421       assert(getLangOpts().ObjCAutoRefCount &&
2422              !FI.isReturnsRetained() &&
2423              RetTy->isObjCRetainableType());
2424       RV = emitAutoreleaseOfResult(*this, RV);
2425     }
2426 
2427     break;
2428 
2429   case ABIArgInfo::Ignore:
2430     break;
2431 
2432   case ABIArgInfo::Expand:
2433     llvm_unreachable("Invalid ABI kind for return argument");
2434   }
2435 
2436   llvm::Instruction *Ret;
2437   if (RV) {
2438     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2439       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
2440         SanitizerScope SanScope(this);
2441         llvm::Value *Cond = Builder.CreateICmpNE(
2442             RV, llvm::Constant::getNullValue(RV->getType()));
2443         llvm::Constant *StaticData[] = {
2444             EmitCheckSourceLocation(EndLoc),
2445             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2446         };
2447         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2448                   "nonnull_return", StaticData, None);
2449       }
2450     }
2451     Ret = Builder.CreateRet(RV);
2452   } else {
2453     Ret = Builder.CreateRetVoid();
2454   }
2455 
2456   if (RetDbgLoc)
2457     Ret->setDebugLoc(std::move(RetDbgLoc));
2458 }
2459 
2460 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2461   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2462   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2463 }
2464 
2465 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2466                                           QualType Ty) {
2467   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2468   // placeholders.
2469   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2470   llvm::Value *Placeholder =
2471     llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2472   Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder);
2473 
2474   // FIXME: When we generate this IR in one pass, we shouldn't need
2475   // this win32-specific alignment hack.
2476   CharUnits Align = CharUnits::fromQuantity(4);
2477 
2478   return AggValueSlot::forAddr(Address(Placeholder, Align),
2479                                Ty.getQualifiers(),
2480                                AggValueSlot::IsNotDestructed,
2481                                AggValueSlot::DoesNotNeedGCBarriers,
2482                                AggValueSlot::IsNotAliased);
2483 }
2484 
2485 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2486                                           const VarDecl *param,
2487                                           SourceLocation loc) {
2488   // StartFunction converted the ABI-lowered parameter(s) into a
2489   // local alloca.  We need to turn that into an r-value suitable
2490   // for EmitCall.
2491   Address local = GetAddrOfLocalVar(param);
2492 
2493   QualType type = param->getType();
2494 
2495   // For the most part, we just need to load the alloca, except:
2496   // 1) aggregate r-values are actually pointers to temporaries, and
2497   // 2) references to non-scalars are pointers directly to the aggregate.
2498   // I don't know why references to scalars are different here.
2499   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2500     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2501       return args.add(RValue::getAggregate(local), type);
2502 
2503     // Locals which are references to scalars are represented
2504     // with allocas holding the pointer.
2505     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2506   }
2507 
2508   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2509          "cannot emit delegate call arguments for inalloca arguments!");
2510 
2511   args.add(convertTempToRValue(local, type, loc), type);
2512 }
2513 
2514 static bool isProvablyNull(llvm::Value *addr) {
2515   return isa<llvm::ConstantPointerNull>(addr);
2516 }
2517 
2518 static bool isProvablyNonNull(llvm::Value *addr) {
2519   return isa<llvm::AllocaInst>(addr);
2520 }
2521 
2522 /// Emit the actual writing-back of a writeback.
2523 static void emitWriteback(CodeGenFunction &CGF,
2524                           const CallArgList::Writeback &writeback) {
2525   const LValue &srcLV = writeback.Source;
2526   Address srcAddr = srcLV.getAddress();
2527   assert(!isProvablyNull(srcAddr.getPointer()) &&
2528          "shouldn't have writeback for provably null argument");
2529 
2530   llvm::BasicBlock *contBB = nullptr;
2531 
2532   // If the argument wasn't provably non-null, we need to null check
2533   // before doing the store.
2534   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2535   if (!provablyNonNull) {
2536     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2537     contBB = CGF.createBasicBlock("icr.done");
2538 
2539     llvm::Value *isNull =
2540       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2541     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2542     CGF.EmitBlock(writebackBB);
2543   }
2544 
2545   // Load the value to writeback.
2546   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2547 
2548   // Cast it back, in case we're writing an id to a Foo* or something.
2549   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
2550                                     "icr.writeback-cast");
2551 
2552   // Perform the writeback.
2553 
2554   // If we have a "to use" value, it's something we need to emit a use
2555   // of.  This has to be carefully threaded in: if it's done after the
2556   // release it's potentially undefined behavior (and the optimizer
2557   // will ignore it), and if it happens before the retain then the
2558   // optimizer could move the release there.
2559   if (writeback.ToUse) {
2560     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2561 
2562     // Retain the new value.  No need to block-copy here:  the block's
2563     // being passed up the stack.
2564     value = CGF.EmitARCRetainNonBlock(value);
2565 
2566     // Emit the intrinsic use here.
2567     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2568 
2569     // Load the old value (primitively).
2570     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2571 
2572     // Put the new value in place (primitively).
2573     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2574 
2575     // Release the old value.
2576     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2577 
2578   // Otherwise, we can just do a normal lvalue store.
2579   } else {
2580     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2581   }
2582 
2583   // Jump to the continuation block.
2584   if (!provablyNonNull)
2585     CGF.EmitBlock(contBB);
2586 }
2587 
2588 static void emitWritebacks(CodeGenFunction &CGF,
2589                            const CallArgList &args) {
2590   for (const auto &I : args.writebacks())
2591     emitWriteback(CGF, I);
2592 }
2593 
2594 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2595                                             const CallArgList &CallArgs) {
2596   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2597   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2598     CallArgs.getCleanupsToDeactivate();
2599   // Iterate in reverse to increase the likelihood of popping the cleanup.
2600   for (const auto &I : llvm::reverse(Cleanups)) {
2601     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
2602     I.IsActiveIP->eraseFromParent();
2603   }
2604 }
2605 
2606 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2607   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2608     if (uop->getOpcode() == UO_AddrOf)
2609       return uop->getSubExpr();
2610   return nullptr;
2611 }
2612 
2613 /// Emit an argument that's being passed call-by-writeback.  That is,
2614 /// we are passing the address of an __autoreleased temporary; it
2615 /// might be copy-initialized with the current value of the given
2616 /// address, but it will definitely be copied out of after the call.
2617 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2618                              const ObjCIndirectCopyRestoreExpr *CRE) {
2619   LValue srcLV;
2620 
2621   // Make an optimistic effort to emit the address as an l-value.
2622   // This can fail if the argument expression is more complicated.
2623   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2624     srcLV = CGF.EmitLValue(lvExpr);
2625 
2626   // Otherwise, just emit it as a scalar.
2627   } else {
2628     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
2629 
2630     QualType srcAddrType =
2631       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2632     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
2633   }
2634   Address srcAddr = srcLV.getAddress();
2635 
2636   // The dest and src types don't necessarily match in LLVM terms
2637   // because of the crazy ObjC compatibility rules.
2638 
2639   llvm::PointerType *destType =
2640     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2641 
2642   // If the address is a constant null, just pass the appropriate null.
2643   if (isProvablyNull(srcAddr.getPointer())) {
2644     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2645              CRE->getType());
2646     return;
2647   }
2648 
2649   // Create the temporary.
2650   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
2651                                       CGF.getPointerAlign(),
2652                                       "icr.temp");
2653   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2654   // and that cleanup will be conditional if we can't prove that the l-value
2655   // isn't null, so we need to register a dominating point so that the cleanups
2656   // system will make valid IR.
2657   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2658 
2659   // Zero-initialize it if we're not doing a copy-initialization.
2660   bool shouldCopy = CRE->shouldCopy();
2661   if (!shouldCopy) {
2662     llvm::Value *null =
2663       llvm::ConstantPointerNull::get(
2664         cast<llvm::PointerType>(destType->getElementType()));
2665     CGF.Builder.CreateStore(null, temp);
2666   }
2667 
2668   llvm::BasicBlock *contBB = nullptr;
2669   llvm::BasicBlock *originBB = nullptr;
2670 
2671   // If the address is *not* known to be non-null, we need to switch.
2672   llvm::Value *finalArgument;
2673 
2674   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2675   if (provablyNonNull) {
2676     finalArgument = temp.getPointer();
2677   } else {
2678     llvm::Value *isNull =
2679       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2680 
2681     finalArgument = CGF.Builder.CreateSelect(isNull,
2682                                    llvm::ConstantPointerNull::get(destType),
2683                                              temp.getPointer(), "icr.argument");
2684 
2685     // If we need to copy, then the load has to be conditional, which
2686     // means we need control flow.
2687     if (shouldCopy) {
2688       originBB = CGF.Builder.GetInsertBlock();
2689       contBB = CGF.createBasicBlock("icr.cont");
2690       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2691       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2692       CGF.EmitBlock(copyBB);
2693       condEval.begin(CGF);
2694     }
2695   }
2696 
2697   llvm::Value *valueToUse = nullptr;
2698 
2699   // Perform a copy if necessary.
2700   if (shouldCopy) {
2701     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2702     assert(srcRV.isScalar());
2703 
2704     llvm::Value *src = srcRV.getScalarVal();
2705     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2706                                     "icr.cast");
2707 
2708     // Use an ordinary store, not a store-to-lvalue.
2709     CGF.Builder.CreateStore(src, temp);
2710 
2711     // If optimization is enabled, and the value was held in a
2712     // __strong variable, we need to tell the optimizer that this
2713     // value has to stay alive until we're doing the store back.
2714     // This is because the temporary is effectively unretained,
2715     // and so otherwise we can violate the high-level semantics.
2716     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2717         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2718       valueToUse = src;
2719     }
2720   }
2721 
2722   // Finish the control flow if we needed it.
2723   if (shouldCopy && !provablyNonNull) {
2724     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2725     CGF.EmitBlock(contBB);
2726 
2727     // Make a phi for the value to intrinsically use.
2728     if (valueToUse) {
2729       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2730                                                       "icr.to-use");
2731       phiToUse->addIncoming(valueToUse, copyBB);
2732       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2733                             originBB);
2734       valueToUse = phiToUse;
2735     }
2736 
2737     condEval.end(CGF);
2738   }
2739 
2740   args.addWriteback(srcLV, temp, valueToUse);
2741   args.add(RValue::get(finalArgument), CRE->getType());
2742 }
2743 
2744 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2745   assert(!StackBase && !StackCleanup.isValid());
2746 
2747   // Save the stack.
2748   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2749   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
2750 }
2751 
2752 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2753   if (StackBase) {
2754     // Restore the stack after the call.
2755     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2756     CGF.Builder.CreateCall(F, StackBase);
2757   }
2758 }
2759 
2760 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
2761                                           SourceLocation ArgLoc,
2762                                           const FunctionDecl *FD,
2763                                           unsigned ParmNum) {
2764   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2765     return;
2766   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2767   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2768   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2769   if (!NNAttr)
2770     return;
2771   SanitizerScope SanScope(this);
2772   assert(RV.isScalar());
2773   llvm::Value *V = RV.getScalarVal();
2774   llvm::Value *Cond =
2775       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2776   llvm::Constant *StaticData[] = {
2777       EmitCheckSourceLocation(ArgLoc),
2778       EmitCheckSourceLocation(NNAttr->getLocation()),
2779       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
2780   };
2781   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2782                 "nonnull_arg", StaticData, None);
2783 }
2784 
2785 void CodeGenFunction::EmitCallArgs(
2786     CallArgList &Args, ArrayRef<QualType> ArgTypes,
2787     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
2788     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) {
2789   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
2790   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2791   // because arguments are destroyed left to right in the callee.
2792   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2793     // Insert a stack save if we're going to need any inalloca args.
2794     bool HasInAllocaArgs = false;
2795     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2796          I != E && !HasInAllocaArgs; ++I)
2797       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2798     if (HasInAllocaArgs) {
2799       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2800       Args.allocateArgumentMemory(*this);
2801     }
2802 
2803     // Evaluate each argument.
2804     size_t CallArgsStart = Args.size();
2805     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2806       CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2807       EmitCallArg(Args, *Arg, ArgTypes[I]);
2808       EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2809                           CalleeDecl, ParamsToSkip + I);
2810     }
2811 
2812     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2813     // IR function.
2814     std::reverse(Args.begin() + CallArgsStart, Args.end());
2815     return;
2816   }
2817 
2818   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2819     CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2820     assert(Arg != ArgRange.end());
2821     EmitCallArg(Args, *Arg, ArgTypes[I]);
2822     EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2823                         CalleeDecl, ParamsToSkip + I);
2824   }
2825 }
2826 
2827 namespace {
2828 
2829 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
2830   DestroyUnpassedArg(Address Addr, QualType Ty)
2831       : Addr(Addr), Ty(Ty) {}
2832 
2833   Address Addr;
2834   QualType Ty;
2835 
2836   void Emit(CodeGenFunction &CGF, Flags flags) override {
2837     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2838     assert(!Dtor->isTrivial());
2839     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2840                               /*Delegating=*/false, Addr);
2841   }
2842 };
2843 
2844 struct DisableDebugLocationUpdates {
2845   CodeGenFunction &CGF;
2846   bool disabledDebugInfo;
2847   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2848     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2849       CGF.disableDebugInfo();
2850   }
2851   ~DisableDebugLocationUpdates() {
2852     if (disabledDebugInfo)
2853       CGF.enableDebugInfo();
2854   }
2855 };
2856 
2857 } // end anonymous namespace
2858 
2859 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2860                                   QualType type) {
2861   DisableDebugLocationUpdates Dis(*this, E);
2862   if (const ObjCIndirectCopyRestoreExpr *CRE
2863         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2864     assert(getLangOpts().ObjCAutoRefCount);
2865     assert(getContext().hasSameType(E->getType(), type));
2866     return emitWritebackArg(*this, args, CRE);
2867   }
2868 
2869   assert(type->isReferenceType() == E->isGLValue() &&
2870          "reference binding to unmaterialized r-value!");
2871 
2872   if (E->isGLValue()) {
2873     assert(E->getObjectKind() == OK_Ordinary);
2874     return args.add(EmitReferenceBindingToExpr(E), type);
2875   }
2876 
2877   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2878 
2879   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2880   // However, we still have to push an EH-only cleanup in case we unwind before
2881   // we make it to the call.
2882   if (HasAggregateEvalKind &&
2883       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2884     // If we're using inalloca, use the argument memory.  Otherwise, use a
2885     // temporary.
2886     AggValueSlot Slot;
2887     if (args.isUsingInAlloca())
2888       Slot = createPlaceholderSlot(*this, type);
2889     else
2890       Slot = CreateAggTemp(type, "agg.tmp");
2891 
2892     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2893     bool DestroyedInCallee =
2894         RD && RD->hasNonTrivialDestructor() &&
2895         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2896     if (DestroyedInCallee)
2897       Slot.setExternallyDestructed();
2898 
2899     EmitAggExpr(E, Slot);
2900     RValue RV = Slot.asRValue();
2901     args.add(RV, type);
2902 
2903     if (DestroyedInCallee) {
2904       // Create a no-op GEP between the placeholder and the cleanup so we can
2905       // RAUW it successfully.  It also serves as a marker of the first
2906       // instruction where the cleanup is active.
2907       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
2908                                               type);
2909       // This unreachable is a temporary marker which will be removed later.
2910       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2911       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2912     }
2913     return;
2914   }
2915 
2916   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2917       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2918     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2919     assert(L.isSimple());
2920     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2921       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2922     } else {
2923       // We can't represent a misaligned lvalue in the CallArgList, so copy
2924       // to an aligned temporary now.
2925       Address tmp = CreateMemTemp(type);
2926       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
2927       args.add(RValue::getAggregate(tmp), type);
2928     }
2929     return;
2930   }
2931 
2932   args.add(EmitAnyExprToTemp(E), type);
2933 }
2934 
2935 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2936   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2937   // implicitly widens null pointer constants that are arguments to varargs
2938   // functions to pointer-sized ints.
2939   if (!getTarget().getTriple().isOSWindows())
2940     return Arg->getType();
2941 
2942   if (Arg->getType()->isIntegerType() &&
2943       getContext().getTypeSize(Arg->getType()) <
2944           getContext().getTargetInfo().getPointerWidth(0) &&
2945       Arg->isNullPointerConstant(getContext(),
2946                                  Expr::NPC_ValueDependentIsNotNull)) {
2947     return getContext().getIntPtrType();
2948   }
2949 
2950   return Arg->getType();
2951 }
2952 
2953 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2954 // optimizer it can aggressively ignore unwind edges.
2955 void
2956 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2957   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2958       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2959     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2960                       CGM.getNoObjCARCExceptionsMetadata());
2961 }
2962 
2963 /// Emits a call to the given no-arguments nounwind runtime function.
2964 llvm::CallInst *
2965 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2966                                          const llvm::Twine &name) {
2967   return EmitNounwindRuntimeCall(callee, None, name);
2968 }
2969 
2970 /// Emits a call to the given nounwind runtime function.
2971 llvm::CallInst *
2972 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2973                                          ArrayRef<llvm::Value*> args,
2974                                          const llvm::Twine &name) {
2975   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2976   call->setDoesNotThrow();
2977   return call;
2978 }
2979 
2980 /// Emits a simple call (never an invoke) to the given no-arguments
2981 /// runtime function.
2982 llvm::CallInst *
2983 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2984                                  const llvm::Twine &name) {
2985   return EmitRuntimeCall(callee, None, name);
2986 }
2987 
2988 /// Emits a simple call (never an invoke) to the given runtime
2989 /// function.
2990 llvm::CallInst *
2991 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2992                                  ArrayRef<llvm::Value*> args,
2993                                  const llvm::Twine &name) {
2994   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2995   call->setCallingConv(getRuntimeCC());
2996   return call;
2997 }
2998 
2999 /// Emits a call or invoke to the given noreturn runtime function.
3000 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3001                                                ArrayRef<llvm::Value*> args) {
3002   if (getInvokeDest()) {
3003     llvm::InvokeInst *invoke =
3004       Builder.CreateInvoke(callee,
3005                            getUnreachableBlock(),
3006                            getInvokeDest(),
3007                            args);
3008     invoke->setDoesNotReturn();
3009     invoke->setCallingConv(getRuntimeCC());
3010   } else {
3011     llvm::CallInst *call = Builder.CreateCall(callee, args);
3012     call->setDoesNotReturn();
3013     call->setCallingConv(getRuntimeCC());
3014     Builder.CreateUnreachable();
3015   }
3016 }
3017 
3018 /// Emits a call or invoke instruction to the given nullary runtime
3019 /// function.
3020 llvm::CallSite
3021 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3022                                          const Twine &name) {
3023   return EmitRuntimeCallOrInvoke(callee, None, name);
3024 }
3025 
3026 /// Emits a call or invoke instruction to the given runtime function.
3027 llvm::CallSite
3028 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3029                                          ArrayRef<llvm::Value*> args,
3030                                          const Twine &name) {
3031   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3032   callSite.setCallingConv(getRuntimeCC());
3033   return callSite;
3034 }
3035 
3036 /// Emits a call or invoke instruction to the given function, depending
3037 /// on the current state of the EH stack.
3038 llvm::CallSite
3039 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3040                                   ArrayRef<llvm::Value *> Args,
3041                                   const Twine &Name) {
3042   llvm::BasicBlock *InvokeDest = getInvokeDest();
3043 
3044   llvm::Instruction *Inst;
3045   if (!InvokeDest)
3046     Inst = Builder.CreateCall(Callee, Args, Name);
3047   else {
3048     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3049     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
3050     EmitBlock(ContBB);
3051   }
3052 
3053   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3054   // optimizer it can aggressively ignore unwind edges.
3055   if (CGM.getLangOpts().ObjCAutoRefCount)
3056     AddObjCARCExceptionMetadata(Inst);
3057 
3058   return llvm::CallSite(Inst);
3059 }
3060 
3061 /// \brief Store a non-aggregate value to an address to initialize it.  For
3062 /// initialization, a non-atomic store will be used.
3063 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3064                                         LValue Dst) {
3065   if (Src.isScalar())
3066     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3067   else
3068     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3069 }
3070 
3071 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3072                                                   llvm::Value *New) {
3073   DeferredReplacements.push_back(std::make_pair(Old, New));
3074 }
3075 
3076 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3077                                  llvm::Value *Callee,
3078                                  ReturnValueSlot ReturnValue,
3079                                  const CallArgList &CallArgs,
3080                                  const Decl *TargetDecl,
3081                                  llvm::Instruction **callOrInvoke) {
3082   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3083 
3084   // Handle struct-return functions by passing a pointer to the
3085   // location that we would like to return into.
3086   QualType RetTy = CallInfo.getReturnType();
3087   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3088 
3089   llvm::FunctionType *IRFuncTy =
3090     cast<llvm::FunctionType>(
3091                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3092 
3093   // If we're using inalloca, insert the allocation after the stack save.
3094   // FIXME: Do this earlier rather than hacking it in here!
3095   Address ArgMemory = Address::invalid();
3096   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3097   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3098     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
3099     llvm::Instruction *IP = CallArgs.getStackBase();
3100     llvm::AllocaInst *AI;
3101     if (IP) {
3102       IP = IP->getNextNode();
3103       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3104     } else {
3105       AI = CreateTempAlloca(ArgStruct, "argmem");
3106     }
3107     auto Align = CallInfo.getArgStructAlignment();
3108     AI->setAlignment(Align.getQuantity());
3109     AI->setUsedWithInAlloca(true);
3110     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3111     ArgMemory = Address(AI, Align);
3112   }
3113 
3114   // Helper function to drill into the inalloca allocation.
3115   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3116     auto FieldOffset =
3117       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3118     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3119   };
3120 
3121   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3122   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3123 
3124   // If the call returns a temporary with struct return, create a temporary
3125   // alloca to hold the result, unless one is given to us.
3126   Address SRetPtr = Address::invalid();
3127   size_t UnusedReturnSize = 0;
3128   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3129     if (!ReturnValue.isNull()) {
3130       SRetPtr = ReturnValue.getValue();
3131     } else {
3132       SRetPtr = CreateMemTemp(RetTy);
3133       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3134         uint64_t size =
3135             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3136         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3137           UnusedReturnSize = size;
3138       }
3139     }
3140     if (IRFunctionArgs.hasSRetArg()) {
3141       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3142     } else {
3143       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3144       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3145     }
3146   }
3147 
3148   assert(CallInfo.arg_size() == CallArgs.size() &&
3149          "Mismatch between function signature & arguments.");
3150   unsigned ArgNo = 0;
3151   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3152   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3153        I != E; ++I, ++info_it, ++ArgNo) {
3154     const ABIArgInfo &ArgInfo = info_it->info;
3155     RValue RV = I->RV;
3156 
3157     // Insert a padding argument to ensure proper alignment.
3158     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3159       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3160           llvm::UndefValue::get(ArgInfo.getPaddingType());
3161 
3162     unsigned FirstIRArg, NumIRArgs;
3163     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3164 
3165     switch (ArgInfo.getKind()) {
3166     case ABIArgInfo::InAlloca: {
3167       assert(NumIRArgs == 0);
3168       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3169       if (RV.isAggregate()) {
3170         // Replace the placeholder with the appropriate argument slot GEP.
3171         llvm::Instruction *Placeholder =
3172             cast<llvm::Instruction>(RV.getAggregatePointer());
3173         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3174         Builder.SetInsertPoint(Placeholder);
3175         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3176         Builder.restoreIP(IP);
3177         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3178       } else {
3179         // Store the RValue into the argument struct.
3180         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3181         unsigned AS = Addr.getType()->getPointerAddressSpace();
3182         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3183         // There are some cases where a trivial bitcast is not avoidable.  The
3184         // definition of a type later in a translation unit may change it's type
3185         // from {}* to (%struct.foo*)*.
3186         if (Addr.getType() != MemType)
3187           Addr = Builder.CreateBitCast(Addr, MemType);
3188         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3189         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3190       }
3191       break;
3192     }
3193 
3194     case ABIArgInfo::Indirect: {
3195       assert(NumIRArgs == 1);
3196       if (RV.isScalar() || RV.isComplex()) {
3197         // Make a temporary alloca to pass the argument.
3198         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3199         IRCallArgs[FirstIRArg] = Addr.getPointer();
3200 
3201         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3202         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3203       } else {
3204         // We want to avoid creating an unnecessary temporary+copy here;
3205         // however, we need one in three cases:
3206         // 1. If the argument is not byval, and we are required to copy the
3207         //    source.  (This case doesn't occur on any common architecture.)
3208         // 2. If the argument is byval, RV is not sufficiently aligned, and
3209         //    we cannot force it to be sufficiently aligned.
3210         // 3. If the argument is byval, but RV is located in an address space
3211         //    different than that of the argument (0).
3212         Address Addr = RV.getAggregateAddress();
3213         CharUnits Align = ArgInfo.getIndirectAlign();
3214         const llvm::DataLayout *TD = &CGM.getDataLayout();
3215         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3216         const unsigned ArgAddrSpace =
3217             (FirstIRArg < IRFuncTy->getNumParams()
3218                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3219                  : 0);
3220         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3221             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3222              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3223                                               Align.getQuantity(), *TD)
3224                < Align.getQuantity()) ||
3225             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3226           // Create an aligned temporary, and copy to it.
3227           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3228           IRCallArgs[FirstIRArg] = AI.getPointer();
3229           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3230         } else {
3231           // Skip the extra memcpy call.
3232           IRCallArgs[FirstIRArg] = Addr.getPointer();
3233         }
3234       }
3235       break;
3236     }
3237 
3238     case ABIArgInfo::Ignore:
3239       assert(NumIRArgs == 0);
3240       break;
3241 
3242     case ABIArgInfo::Extend:
3243     case ABIArgInfo::Direct: {
3244       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3245           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3246           ArgInfo.getDirectOffset() == 0) {
3247         assert(NumIRArgs == 1);
3248         llvm::Value *V;
3249         if (RV.isScalar())
3250           V = RV.getScalarVal();
3251         else
3252           V = Builder.CreateLoad(RV.getAggregateAddress());
3253 
3254         // We might have to widen integers, but we should never truncate.
3255         if (ArgInfo.getCoerceToType() != V->getType() &&
3256             V->getType()->isIntegerTy())
3257           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3258 
3259         // If the argument doesn't match, perform a bitcast to coerce it.  This
3260         // can happen due to trivial type mismatches.
3261         if (FirstIRArg < IRFuncTy->getNumParams() &&
3262             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3263           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3264         IRCallArgs[FirstIRArg] = V;
3265         break;
3266       }
3267 
3268       // FIXME: Avoid the conversion through memory if possible.
3269       Address Src = Address::invalid();
3270       if (RV.isScalar() || RV.isComplex()) {
3271         Src = CreateMemTemp(I->Ty, "coerce");
3272         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3273         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3274       } else {
3275         Src = RV.getAggregateAddress();
3276       }
3277 
3278       // If the value is offset in memory, apply the offset now.
3279       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3280 
3281       // Fast-isel and the optimizer generally like scalar values better than
3282       // FCAs, so we flatten them if this is safe to do for this argument.
3283       llvm::StructType *STy =
3284             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3285       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3286         llvm::Type *SrcTy = Src.getType()->getElementType();
3287         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3288         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3289 
3290         // If the source type is smaller than the destination type of the
3291         // coerce-to logic, copy the source value into a temp alloca the size
3292         // of the destination type to allow loading all of it. The bits past
3293         // the source value are left undef.
3294         if (SrcSize < DstSize) {
3295           Address TempAlloca
3296             = CreateTempAlloca(STy, Src.getAlignment(),
3297                                Src.getName() + ".coerce");
3298           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3299           Src = TempAlloca;
3300         } else {
3301           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3302         }
3303 
3304         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3305         assert(NumIRArgs == STy->getNumElements());
3306         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3307           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3308           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3309           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3310           IRCallArgs[FirstIRArg + i] = LI;
3311         }
3312       } else {
3313         // In the simple case, just pass the coerced loaded value.
3314         assert(NumIRArgs == 1);
3315         IRCallArgs[FirstIRArg] =
3316           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3317       }
3318 
3319       break;
3320     }
3321 
3322     case ABIArgInfo::Expand:
3323       unsigned IRArgPos = FirstIRArg;
3324       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3325       assert(IRArgPos == FirstIRArg + NumIRArgs);
3326       break;
3327     }
3328   }
3329 
3330   if (ArgMemory.isValid()) {
3331     llvm::Value *Arg = ArgMemory.getPointer();
3332     if (CallInfo.isVariadic()) {
3333       // When passing non-POD arguments by value to variadic functions, we will
3334       // end up with a variadic prototype and an inalloca call site.  In such
3335       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3336       // the callee.
3337       unsigned CalleeAS =
3338           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3339       Callee = Builder.CreateBitCast(
3340           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3341     } else {
3342       llvm::Type *LastParamTy =
3343           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3344       if (Arg->getType() != LastParamTy) {
3345 #ifndef NDEBUG
3346         // Assert that these structs have equivalent element types.
3347         llvm::StructType *FullTy = CallInfo.getArgStruct();
3348         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3349             cast<llvm::PointerType>(LastParamTy)->getElementType());
3350         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3351         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3352                                                 DE = DeclaredTy->element_end(),
3353                                                 FI = FullTy->element_begin();
3354              DI != DE; ++DI, ++FI)
3355           assert(*DI == *FI);
3356 #endif
3357         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3358       }
3359     }
3360     assert(IRFunctionArgs.hasInallocaArg());
3361     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3362   }
3363 
3364   if (!CallArgs.getCleanupsToDeactivate().empty())
3365     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3366 
3367   // If the callee is a bitcast of a function to a varargs pointer to function
3368   // type, check to see if we can remove the bitcast.  This handles some cases
3369   // with unprototyped functions.
3370   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3371     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3372       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3373       llvm::FunctionType *CurFT =
3374         cast<llvm::FunctionType>(CurPT->getElementType());
3375       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3376 
3377       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3378           ActualFT->getReturnType() == CurFT->getReturnType() &&
3379           ActualFT->getNumParams() == CurFT->getNumParams() &&
3380           ActualFT->getNumParams() == IRCallArgs.size() &&
3381           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3382         bool ArgsMatch = true;
3383         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3384           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3385             ArgsMatch = false;
3386             break;
3387           }
3388 
3389         // Strip the cast if we can get away with it.  This is a nice cleanup,
3390         // but also allows us to inline the function at -O0 if it is marked
3391         // always_inline.
3392         if (ArgsMatch)
3393           Callee = CalleeF;
3394       }
3395     }
3396 
3397   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3398   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3399     // Inalloca argument can have different type.
3400     if (IRFunctionArgs.hasInallocaArg() &&
3401         i == IRFunctionArgs.getInallocaArgNo())
3402       continue;
3403     if (i < IRFuncTy->getNumParams())
3404       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3405   }
3406 
3407   unsigned CallingConv;
3408   CodeGen::AttributeListType AttributeList;
3409   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
3410                              CallingConv, true);
3411   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3412                                                      AttributeList);
3413 
3414   llvm::BasicBlock *InvokeDest = nullptr;
3415   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3416                           llvm::Attribute::NoUnwind) ||
3417       currentFunctionUsesSEHTry())
3418     InvokeDest = getInvokeDest();
3419 
3420   llvm::CallSite CS;
3421   if (!InvokeDest) {
3422     CS = Builder.CreateCall(Callee, IRCallArgs);
3423   } else {
3424     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3425     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
3426     EmitBlock(Cont);
3427   }
3428   if (callOrInvoke)
3429     *callOrInvoke = CS.getInstruction();
3430 
3431   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3432       !CS.hasFnAttr(llvm::Attribute::NoInline))
3433     Attrs =
3434         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3435                            llvm::Attribute::AlwaysInline);
3436 
3437   // Disable inlining inside SEH __try blocks and cleanup funclets. None of the
3438   // funclet EH personalities that clang supports have tables that are
3439   // expressive enough to describe catching an exception inside a cleanup.
3440   // __CxxFrameHandler3, for example, will terminate the program without
3441   // catching it.
3442   // FIXME: Move this decision to the LLVM inliner. Before we can do that, the
3443   // inliner needs to know if a given call site is part of a cleanuppad.
3444   if (isSEHTryScope() || isCleanupPadScope())
3445     Attrs =
3446         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3447                            llvm::Attribute::NoInline);
3448 
3449   CS.setAttributes(Attrs);
3450   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3451 
3452   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3453   // optimizer it can aggressively ignore unwind edges.
3454   if (CGM.getLangOpts().ObjCAutoRefCount)
3455     AddObjCARCExceptionMetadata(CS.getInstruction());
3456 
3457   // If the call doesn't return, finish the basic block and clear the
3458   // insertion point; this allows the rest of IRgen to discard
3459   // unreachable code.
3460   if (CS.doesNotReturn()) {
3461     if (UnusedReturnSize)
3462       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3463                       SRetPtr.getPointer());
3464 
3465     Builder.CreateUnreachable();
3466     Builder.ClearInsertionPoint();
3467 
3468     // FIXME: For now, emit a dummy basic block because expr emitters in
3469     // generally are not ready to handle emitting expressions at unreachable
3470     // points.
3471     EnsureInsertPoint();
3472 
3473     // Return a reasonable RValue.
3474     return GetUndefRValue(RetTy);
3475   }
3476 
3477   llvm::Instruction *CI = CS.getInstruction();
3478   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3479     CI->setName("call");
3480 
3481   // Emit any writebacks immediately.  Arguably this should happen
3482   // after any return-value munging.
3483   if (CallArgs.hasWritebacks())
3484     emitWritebacks(*this, CallArgs);
3485 
3486   // The stack cleanup for inalloca arguments has to run out of the normal
3487   // lexical order, so deactivate it and run it manually here.
3488   CallArgs.freeArgumentMemory(*this);
3489 
3490   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI))
3491     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
3492       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
3493 
3494   RValue Ret = [&] {
3495     switch (RetAI.getKind()) {
3496     case ABIArgInfo::InAlloca:
3497     case ABIArgInfo::Indirect: {
3498       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3499       if (UnusedReturnSize)
3500         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3501                         SRetPtr.getPointer());
3502       return ret;
3503     }
3504 
3505     case ABIArgInfo::Ignore:
3506       // If we are ignoring an argument that had a result, make sure to
3507       // construct the appropriate return value for our caller.
3508       return GetUndefRValue(RetTy);
3509 
3510     case ABIArgInfo::Extend:
3511     case ABIArgInfo::Direct: {
3512       llvm::Type *RetIRTy = ConvertType(RetTy);
3513       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3514         switch (getEvaluationKind(RetTy)) {
3515         case TEK_Complex: {
3516           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3517           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3518           return RValue::getComplex(std::make_pair(Real, Imag));
3519         }
3520         case TEK_Aggregate: {
3521           Address DestPtr = ReturnValue.getValue();
3522           bool DestIsVolatile = ReturnValue.isVolatile();
3523 
3524           if (!DestPtr.isValid()) {
3525             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3526             DestIsVolatile = false;
3527           }
3528           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
3529           return RValue::getAggregate(DestPtr);
3530         }
3531         case TEK_Scalar: {
3532           // If the argument doesn't match, perform a bitcast to coerce it.  This
3533           // can happen due to trivial type mismatches.
3534           llvm::Value *V = CI;
3535           if (V->getType() != RetIRTy)
3536             V = Builder.CreateBitCast(V, RetIRTy);
3537           return RValue::get(V);
3538         }
3539         }
3540         llvm_unreachable("bad evaluation kind");
3541       }
3542 
3543       Address DestPtr = ReturnValue.getValue();
3544       bool DestIsVolatile = ReturnValue.isVolatile();
3545 
3546       if (!DestPtr.isValid()) {
3547         DestPtr = CreateMemTemp(RetTy, "coerce");
3548         DestIsVolatile = false;
3549       }
3550 
3551       // If the value is offset in memory, apply the offset now.
3552       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
3553       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3554 
3555       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3556     }
3557 
3558     case ABIArgInfo::Expand:
3559       llvm_unreachable("Invalid ABI kind for return argument");
3560     }
3561 
3562     llvm_unreachable("Unhandled ABIArgInfo::Kind");
3563   } ();
3564 
3565   if (Ret.isScalar() && TargetDecl) {
3566     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3567       llvm::Value *OffsetValue = nullptr;
3568       if (const auto *Offset = AA->getOffset())
3569         OffsetValue = EmitScalarExpr(Offset);
3570 
3571       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3572       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3573       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3574                               OffsetValue);
3575     }
3576   }
3577 
3578   return Ret;
3579 }
3580 
3581 /* VarArg handling */
3582 
3583 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
3584   VAListAddr = VE->isMicrosoftABI()
3585                  ? EmitMSVAListRef(VE->getSubExpr())
3586                  : EmitVAListRef(VE->getSubExpr());
3587   QualType Ty = VE->getType();
3588   if (VE->isMicrosoftABI())
3589     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
3590   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
3591 }
3592