1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 /***/
44 
45 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
46   switch (CC) {
47   default: return llvm::CallingConv::C;
48   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
49   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
50   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
51   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
52   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
53   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
54   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
55   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
56   // TODO: Add support for __pascal to LLVM.
57   case CC_X86Pascal: return llvm::CallingConv::C;
58   // TODO: Add support for __vectorcall to LLVM.
59   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
60   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
61   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
62   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
63   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
64   case CC_Swift: return llvm::CallingConv::Swift;
65   }
66 }
67 
68 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
69 /// qualification.
70 /// FIXME: address space qualification?
71 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
72   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
73   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
74 }
75 
76 /// Returns the canonical formal type of the given C++ method.
77 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
78   return MD->getType()->getCanonicalTypeUnqualified()
79            .getAs<FunctionProtoType>();
80 }
81 
82 /// Returns the "extra-canonicalized" return type, which discards
83 /// qualifiers on the return type.  Codegen doesn't care about them,
84 /// and it makes ABI code a little easier to be able to assume that
85 /// all parameter and return types are top-level unqualified.
86 static CanQualType GetReturnType(QualType RetTy) {
87   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
88 }
89 
90 /// Arrange the argument and result information for a value of the given
91 /// unprototyped freestanding function type.
92 const CGFunctionInfo &
93 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
94   // When translating an unprototyped function type, always use a
95   // variadic type.
96   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
97                                  /*instanceMethod=*/false,
98                                  /*chainCall=*/false, None,
99                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
100 }
101 
102 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in
103 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
104 static void appendParameterTypes(const CodeGenTypes &CGT,
105                                  SmallVectorImpl<CanQualType> &prefix,
106               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
107                                  CanQual<FunctionProtoType> FPT,
108                                  const FunctionDecl *FD) {
109   // Fill out paramInfos.
110   if (FPT->hasExtParameterInfos() || !paramInfos.empty()) {
111     assert(paramInfos.size() <= prefix.size());
112     auto protoParamInfos = FPT->getExtParameterInfos();
113     paramInfos.reserve(prefix.size() + protoParamInfos.size());
114     paramInfos.resize(prefix.size());
115     paramInfos.append(protoParamInfos.begin(), protoParamInfos.end());
116   }
117 
118   // Fast path: unknown target.
119   if (FD == nullptr) {
120     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
121     return;
122   }
123 
124   // In the vast majority cases, we'll have precisely FPT->getNumParams()
125   // parameters; the only thing that can change this is the presence of
126   // pass_object_size. So, we preallocate for the common case.
127   prefix.reserve(prefix.size() + FPT->getNumParams());
128 
129   assert(FD->getNumParams() == FPT->getNumParams());
130   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
131     prefix.push_back(FPT->getParamType(I));
132     if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>())
133       prefix.push_back(CGT.getContext().getSizeType());
134   }
135 }
136 
137 /// Arrange the LLVM function layout for a value of the given function
138 /// type, on top of any implicit parameters already stored.
139 static const CGFunctionInfo &
140 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
141                         SmallVectorImpl<CanQualType> &prefix,
142                         CanQual<FunctionProtoType> FTP,
143                         const FunctionDecl *FD) {
144   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
145   RequiredArgs Required =
146       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
147   // FIXME: Kill copy.
148   appendParameterTypes(CGT, prefix, paramInfos, FTP, FD);
149   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
150 
151   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
152                                      /*chainCall=*/false, prefix,
153                                      FTP->getExtInfo(), paramInfos,
154                                      Required);
155 }
156 
157 /// Arrange the argument and result information for a value of the
158 /// given freestanding function type.
159 const CGFunctionInfo &
160 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
161                                       const FunctionDecl *FD) {
162   SmallVector<CanQualType, 16> argTypes;
163   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
164                                    FTP, FD);
165 }
166 
167 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
168   // Set the appropriate calling convention for the Function.
169   if (D->hasAttr<StdCallAttr>())
170     return CC_X86StdCall;
171 
172   if (D->hasAttr<FastCallAttr>())
173     return CC_X86FastCall;
174 
175   if (D->hasAttr<ThisCallAttr>())
176     return CC_X86ThisCall;
177 
178   if (D->hasAttr<VectorCallAttr>())
179     return CC_X86VectorCall;
180 
181   if (D->hasAttr<PascalAttr>())
182     return CC_X86Pascal;
183 
184   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
185     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
186 
187   if (D->hasAttr<IntelOclBiccAttr>())
188     return CC_IntelOclBicc;
189 
190   if (D->hasAttr<MSABIAttr>())
191     return IsWindows ? CC_C : CC_X86_64Win64;
192 
193   if (D->hasAttr<SysVABIAttr>())
194     return IsWindows ? CC_X86_64SysV : CC_C;
195 
196   if (D->hasAttr<PreserveMostAttr>())
197     return CC_PreserveMost;
198 
199   if (D->hasAttr<PreserveAllAttr>())
200     return CC_PreserveAll;
201 
202   return CC_C;
203 }
204 
205 /// Arrange the argument and result information for a call to an
206 /// unknown C++ non-static member function of the given abstract type.
207 /// (Zero value of RD means we don't have any meaningful "this" argument type,
208 ///  so fall back to a generic pointer type).
209 /// The member function must be an ordinary function, i.e. not a
210 /// constructor or destructor.
211 const CGFunctionInfo &
212 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
213                                    const FunctionProtoType *FTP,
214                                    const CXXMethodDecl *MD) {
215   SmallVector<CanQualType, 16> argTypes;
216 
217   // Add the 'this' pointer.
218   if (RD)
219     argTypes.push_back(GetThisType(Context, RD));
220   else
221     argTypes.push_back(Context.VoidPtrTy);
222 
223   return ::arrangeLLVMFunctionInfo(
224       *this, true, argTypes,
225       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
226 }
227 
228 /// Arrange the argument and result information for a declaration or
229 /// definition of the given C++ non-static member function.  The
230 /// member function must be an ordinary function, i.e. not a
231 /// constructor or destructor.
232 const CGFunctionInfo &
233 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
234   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
235   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
236 
237   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
238 
239   if (MD->isInstance()) {
240     // The abstract case is perfectly fine.
241     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
242     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
243   }
244 
245   return arrangeFreeFunctionType(prototype, MD);
246 }
247 
248 bool CodeGenTypes::inheritingCtorHasParams(
249     const InheritedConstructor &Inherited, CXXCtorType Type) {
250   // Parameters are unnecessary if we're constructing a base class subobject
251   // and the inherited constructor lives in a virtual base.
252   return Type == Ctor_Complete ||
253          !Inherited.getShadowDecl()->constructsVirtualBase() ||
254          !Target.getCXXABI().hasConstructorVariants();
255   }
256 
257 const CGFunctionInfo &
258 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
259                                             StructorType Type) {
260 
261   SmallVector<CanQualType, 16> argTypes;
262   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
263   argTypes.push_back(GetThisType(Context, MD->getParent()));
264 
265   bool PassParams = true;
266 
267   GlobalDecl GD;
268   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
269     GD = GlobalDecl(CD, toCXXCtorType(Type));
270 
271     // A base class inheriting constructor doesn't get forwarded arguments
272     // needed to construct a virtual base (or base class thereof).
273     if (auto Inherited = CD->getInheritedConstructor())
274       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
275   } else {
276     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
277     GD = GlobalDecl(DD, toCXXDtorType(Type));
278   }
279 
280   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
281 
282   // Add the formal parameters.
283   if (PassParams)
284     appendParameterTypes(*this, argTypes, paramInfos, FTP, MD);
285 
286   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
287 
288   RequiredArgs required =
289       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
290                                       : RequiredArgs::All);
291 
292   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
293   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
294                                ? argTypes.front()
295                                : TheCXXABI.hasMostDerivedReturn(GD)
296                                      ? CGM.getContext().VoidPtrTy
297                                      : Context.VoidTy;
298   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
299                                  /*chainCall=*/false, argTypes, extInfo,
300                                  paramInfos, required);
301 }
302 
303 static SmallVector<CanQualType, 16>
304 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
305   SmallVector<CanQualType, 16> argTypes;
306   for (auto &arg : args)
307     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
308   return argTypes;
309 }
310 
311 static SmallVector<CanQualType, 16>
312 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
313   SmallVector<CanQualType, 16> argTypes;
314   for (auto &arg : args)
315     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
316   return argTypes;
317 }
318 
319 static void addExtParameterInfosForCall(
320          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
321                                         const FunctionProtoType *proto,
322                                         unsigned prefixArgs,
323                                         unsigned totalArgs) {
324   assert(proto->hasExtParameterInfos());
325   assert(paramInfos.size() <= prefixArgs);
326   assert(proto->getNumParams() + prefixArgs <= totalArgs);
327 
328   // Add default infos for any prefix args that don't already have infos.
329   paramInfos.resize(prefixArgs);
330 
331   // Add infos for the prototype.
332   auto protoInfos = proto->getExtParameterInfos();
333   paramInfos.append(protoInfos.begin(), protoInfos.end());
334 
335   // Add default infos for the variadic arguments.
336   paramInfos.resize(totalArgs);
337 }
338 
339 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
340 getExtParameterInfosForCall(const FunctionProtoType *proto,
341                             unsigned prefixArgs, unsigned totalArgs) {
342   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
343   if (proto->hasExtParameterInfos()) {
344     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
345   }
346   return result;
347 }
348 
349 /// Arrange a call to a C++ method, passing the given arguments.
350 const CGFunctionInfo &
351 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
352                                         const CXXConstructorDecl *D,
353                                         CXXCtorType CtorKind,
354                                         unsigned ExtraArgs) {
355   // FIXME: Kill copy.
356   SmallVector<CanQualType, 16> ArgTypes;
357   for (const auto &Arg : args)
358     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
359 
360   CanQual<FunctionProtoType> FPT = GetFormalType(D);
361   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs, D);
362   GlobalDecl GD(D, CtorKind);
363   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
364                                ? ArgTypes.front()
365                                : TheCXXABI.hasMostDerivedReturn(GD)
366                                      ? CGM.getContext().VoidPtrTy
367                                      : Context.VoidTy;
368 
369   FunctionType::ExtInfo Info = FPT->getExtInfo();
370   auto ParamInfos = getExtParameterInfosForCall(FPT.getTypePtr(), 1 + ExtraArgs,
371                                                 ArgTypes.size());
372   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
373                                  /*chainCall=*/false, ArgTypes, Info,
374                                  ParamInfos, Required);
375 }
376 
377 /// Arrange the argument and result information for the declaration or
378 /// definition of the given function.
379 const CGFunctionInfo &
380 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
381   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
382     if (MD->isInstance())
383       return arrangeCXXMethodDeclaration(MD);
384 
385   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
386 
387   assert(isa<FunctionType>(FTy));
388 
389   // When declaring a function without a prototype, always use a
390   // non-variadic type.
391   if (isa<FunctionNoProtoType>(FTy)) {
392     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
393     return arrangeLLVMFunctionInfo(
394         noProto->getReturnType(), /*instanceMethod=*/false,
395         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
396   }
397 
398   assert(isa<FunctionProtoType>(FTy));
399   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD);
400 }
401 
402 /// Arrange the argument and result information for the declaration or
403 /// definition of an Objective-C method.
404 const CGFunctionInfo &
405 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
406   // It happens that this is the same as a call with no optional
407   // arguments, except also using the formal 'self' type.
408   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
409 }
410 
411 /// Arrange the argument and result information for the function type
412 /// through which to perform a send to the given Objective-C method,
413 /// using the given receiver type.  The receiver type is not always
414 /// the 'self' type of the method or even an Objective-C pointer type.
415 /// This is *not* the right method for actually performing such a
416 /// message send, due to the possibility of optional arguments.
417 const CGFunctionInfo &
418 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
419                                               QualType receiverType) {
420   SmallVector<CanQualType, 16> argTys;
421   argTys.push_back(Context.getCanonicalParamType(receiverType));
422   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
423   // FIXME: Kill copy?
424   for (const auto *I : MD->parameters()) {
425     argTys.push_back(Context.getCanonicalParamType(I->getType()));
426   }
427 
428   FunctionType::ExtInfo einfo;
429   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
430   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
431 
432   if (getContext().getLangOpts().ObjCAutoRefCount &&
433       MD->hasAttr<NSReturnsRetainedAttr>())
434     einfo = einfo.withProducesResult(true);
435 
436   RequiredArgs required =
437     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
438 
439   return arrangeLLVMFunctionInfo(
440       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
441       /*chainCall=*/false, argTys, einfo, {}, required);
442 }
443 
444 const CGFunctionInfo &
445 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
446                                                  const CallArgList &args) {
447   auto argTypes = getArgTypesForCall(Context, args);
448   FunctionType::ExtInfo einfo;
449 
450   return arrangeLLVMFunctionInfo(
451       GetReturnType(returnType), /*instanceMethod=*/false,
452       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
453 }
454 
455 const CGFunctionInfo &
456 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
457   // FIXME: Do we need to handle ObjCMethodDecl?
458   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
459 
460   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
461     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
462 
463   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
464     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
465 
466   return arrangeFunctionDeclaration(FD);
467 }
468 
469 /// Arrange a thunk that takes 'this' as the first parameter followed by
470 /// varargs.  Return a void pointer, regardless of the actual return type.
471 /// The body of the thunk will end in a musttail call to a function of the
472 /// correct type, and the caller will bitcast the function to the correct
473 /// prototype.
474 const CGFunctionInfo &
475 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
476   assert(MD->isVirtual() && "only virtual memptrs have thunks");
477   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
478   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
479   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
480                                  /*chainCall=*/false, ArgTys,
481                                  FTP->getExtInfo(), {}, RequiredArgs(1));
482 }
483 
484 const CGFunctionInfo &
485 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
486                                    CXXCtorType CT) {
487   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
488 
489   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
490   SmallVector<CanQualType, 2> ArgTys;
491   const CXXRecordDecl *RD = CD->getParent();
492   ArgTys.push_back(GetThisType(Context, RD));
493   if (CT == Ctor_CopyingClosure)
494     ArgTys.push_back(*FTP->param_type_begin());
495   if (RD->getNumVBases() > 0)
496     ArgTys.push_back(Context.IntTy);
497   CallingConv CC = Context.getDefaultCallingConvention(
498       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
499   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
500                                  /*chainCall=*/false, ArgTys,
501                                  FunctionType::ExtInfo(CC), {},
502                                  RequiredArgs::All);
503 }
504 
505 /// Arrange a call as unto a free function, except possibly with an
506 /// additional number of formal parameters considered required.
507 static const CGFunctionInfo &
508 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
509                             CodeGenModule &CGM,
510                             const CallArgList &args,
511                             const FunctionType *fnType,
512                             unsigned numExtraRequiredArgs,
513                             bool chainCall) {
514   assert(args.size() >= numExtraRequiredArgs);
515 
516   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
517 
518   // In most cases, there are no optional arguments.
519   RequiredArgs required = RequiredArgs::All;
520 
521   // If we have a variadic prototype, the required arguments are the
522   // extra prefix plus the arguments in the prototype.
523   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
524     if (proto->isVariadic())
525       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
526 
527     if (proto->hasExtParameterInfos())
528       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
529                                   args.size());
530 
531   // If we don't have a prototype at all, but we're supposed to
532   // explicitly use the variadic convention for unprototyped calls,
533   // treat all of the arguments as required but preserve the nominal
534   // possibility of variadics.
535   } else if (CGM.getTargetCodeGenInfo()
536                 .isNoProtoCallVariadic(args,
537                                        cast<FunctionNoProtoType>(fnType))) {
538     required = RequiredArgs(args.size());
539   }
540 
541   // FIXME: Kill copy.
542   SmallVector<CanQualType, 16> argTypes;
543   for (const auto &arg : args)
544     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
545   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
546                                      /*instanceMethod=*/false, chainCall,
547                                      argTypes, fnType->getExtInfo(), paramInfos,
548                                      required);
549 }
550 
551 /// Figure out the rules for calling a function with the given formal
552 /// type using the given arguments.  The arguments are necessary
553 /// because the function might be unprototyped, in which case it's
554 /// target-dependent in crazy ways.
555 const CGFunctionInfo &
556 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
557                                       const FunctionType *fnType,
558                                       bool chainCall) {
559   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
560                                      chainCall ? 1 : 0, chainCall);
561 }
562 
563 /// A block function is essentially a free function with an
564 /// extra implicit argument.
565 const CGFunctionInfo &
566 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
567                                        const FunctionType *fnType) {
568   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
569                                      /*chainCall=*/false);
570 }
571 
572 const CGFunctionInfo &
573 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
574                                               const FunctionArgList &params) {
575   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
576   auto argTypes = getArgTypesForDeclaration(Context, params);
577 
578   return arrangeLLVMFunctionInfo(
579       GetReturnType(proto->getReturnType()),
580       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
581       proto->getExtInfo(), paramInfos,
582       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
583 }
584 
585 const CGFunctionInfo &
586 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
587                                          const CallArgList &args) {
588   // FIXME: Kill copy.
589   SmallVector<CanQualType, 16> argTypes;
590   for (const auto &Arg : args)
591     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
592   return arrangeLLVMFunctionInfo(
593       GetReturnType(resultType), /*instanceMethod=*/false,
594       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
595       /*paramInfos=*/ {}, RequiredArgs::All);
596 }
597 
598 const CGFunctionInfo &
599 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
600                                                 const FunctionArgList &args) {
601   auto argTypes = getArgTypesForDeclaration(Context, args);
602 
603   return arrangeLLVMFunctionInfo(
604       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
605       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
606 }
607 
608 const CGFunctionInfo &
609 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
610                                               ArrayRef<CanQualType> argTypes) {
611   return arrangeLLVMFunctionInfo(
612       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
613       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
614 }
615 
616 /// Arrange a call to a C++ method, passing the given arguments.
617 const CGFunctionInfo &
618 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
619                                    const FunctionProtoType *proto,
620                                    RequiredArgs required) {
621   unsigned numRequiredArgs =
622     (proto->isVariadic() ? required.getNumRequiredArgs() : args.size());
623   unsigned numPrefixArgs = numRequiredArgs - proto->getNumParams();
624   auto paramInfos =
625     getExtParameterInfosForCall(proto, numPrefixArgs, args.size());
626 
627   // FIXME: Kill copy.
628   auto argTypes = getArgTypesForCall(Context, args);
629 
630   FunctionType::ExtInfo info = proto->getExtInfo();
631   return arrangeLLVMFunctionInfo(
632       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
633       /*chainCall=*/false, argTypes, info, paramInfos, required);
634 }
635 
636 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
637   return arrangeLLVMFunctionInfo(
638       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
639       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
640 }
641 
642 const CGFunctionInfo &
643 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
644                           const CallArgList &args) {
645   assert(signature.arg_size() <= args.size());
646   if (signature.arg_size() == args.size())
647     return signature;
648 
649   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
650   auto sigParamInfos = signature.getExtParameterInfos();
651   if (!sigParamInfos.empty()) {
652     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
653     paramInfos.resize(args.size());
654   }
655 
656   auto argTypes = getArgTypesForCall(Context, args);
657 
658   assert(signature.getRequiredArgs().allowsOptionalArgs());
659   return arrangeLLVMFunctionInfo(signature.getReturnType(),
660                                  signature.isInstanceMethod(),
661                                  signature.isChainCall(),
662                                  argTypes,
663                                  signature.getExtInfo(),
664                                  paramInfos,
665                                  signature.getRequiredArgs());
666 }
667 
668 /// Arrange the argument and result information for an abstract value
669 /// of a given function type.  This is the method which all of the
670 /// above functions ultimately defer to.
671 const CGFunctionInfo &
672 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
673                                       bool instanceMethod,
674                                       bool chainCall,
675                                       ArrayRef<CanQualType> argTypes,
676                                       FunctionType::ExtInfo info,
677                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
678                                       RequiredArgs required) {
679   assert(std::all_of(argTypes.begin(), argTypes.end(),
680                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
681 
682   // Lookup or create unique function info.
683   llvm::FoldingSetNodeID ID;
684   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
685                           required, resultType, argTypes);
686 
687   void *insertPos = nullptr;
688   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
689   if (FI)
690     return *FI;
691 
692   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
693 
694   // Construct the function info.  We co-allocate the ArgInfos.
695   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
696                               paramInfos, resultType, argTypes, required);
697   FunctionInfos.InsertNode(FI, insertPos);
698 
699   bool inserted = FunctionsBeingProcessed.insert(FI).second;
700   (void)inserted;
701   assert(inserted && "Recursively being processed?");
702 
703   // Compute ABI information.
704   if (info.getCC() != CC_Swift) {
705     getABIInfo().computeInfo(*FI);
706   } else {
707     swiftcall::computeABIInfo(CGM, *FI);
708   }
709 
710   // Loop over all of the computed argument and return value info.  If any of
711   // them are direct or extend without a specified coerce type, specify the
712   // default now.
713   ABIArgInfo &retInfo = FI->getReturnInfo();
714   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
715     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
716 
717   for (auto &I : FI->arguments())
718     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
719       I.info.setCoerceToType(ConvertType(I.type));
720 
721   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
722   assert(erased && "Not in set?");
723 
724   return *FI;
725 }
726 
727 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
728                                        bool instanceMethod,
729                                        bool chainCall,
730                                        const FunctionType::ExtInfo &info,
731                                        ArrayRef<ExtParameterInfo> paramInfos,
732                                        CanQualType resultType,
733                                        ArrayRef<CanQualType> argTypes,
734                                        RequiredArgs required) {
735   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
736 
737   void *buffer =
738     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
739                                   argTypes.size() + 1, paramInfos.size()));
740 
741   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
742   FI->CallingConvention = llvmCC;
743   FI->EffectiveCallingConvention = llvmCC;
744   FI->ASTCallingConvention = info.getCC();
745   FI->InstanceMethod = instanceMethod;
746   FI->ChainCall = chainCall;
747   FI->NoReturn = info.getNoReturn();
748   FI->ReturnsRetained = info.getProducesResult();
749   FI->Required = required;
750   FI->HasRegParm = info.getHasRegParm();
751   FI->RegParm = info.getRegParm();
752   FI->ArgStruct = nullptr;
753   FI->ArgStructAlign = 0;
754   FI->NumArgs = argTypes.size();
755   FI->HasExtParameterInfos = !paramInfos.empty();
756   FI->getArgsBuffer()[0].type = resultType;
757   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
758     FI->getArgsBuffer()[i + 1].type = argTypes[i];
759   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
760     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
761   return FI;
762 }
763 
764 /***/
765 
766 namespace {
767 // ABIArgInfo::Expand implementation.
768 
769 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
770 struct TypeExpansion {
771   enum TypeExpansionKind {
772     // Elements of constant arrays are expanded recursively.
773     TEK_ConstantArray,
774     // Record fields are expanded recursively (but if record is a union, only
775     // the field with the largest size is expanded).
776     TEK_Record,
777     // For complex types, real and imaginary parts are expanded recursively.
778     TEK_Complex,
779     // All other types are not expandable.
780     TEK_None
781   };
782 
783   const TypeExpansionKind Kind;
784 
785   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
786   virtual ~TypeExpansion() {}
787 };
788 
789 struct ConstantArrayExpansion : TypeExpansion {
790   QualType EltTy;
791   uint64_t NumElts;
792 
793   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
794       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
795   static bool classof(const TypeExpansion *TE) {
796     return TE->Kind == TEK_ConstantArray;
797   }
798 };
799 
800 struct RecordExpansion : TypeExpansion {
801   SmallVector<const CXXBaseSpecifier *, 1> Bases;
802 
803   SmallVector<const FieldDecl *, 1> Fields;
804 
805   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
806                   SmallVector<const FieldDecl *, 1> &&Fields)
807       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
808         Fields(std::move(Fields)) {}
809   static bool classof(const TypeExpansion *TE) {
810     return TE->Kind == TEK_Record;
811   }
812 };
813 
814 struct ComplexExpansion : TypeExpansion {
815   QualType EltTy;
816 
817   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
818   static bool classof(const TypeExpansion *TE) {
819     return TE->Kind == TEK_Complex;
820   }
821 };
822 
823 struct NoExpansion : TypeExpansion {
824   NoExpansion() : TypeExpansion(TEK_None) {}
825   static bool classof(const TypeExpansion *TE) {
826     return TE->Kind == TEK_None;
827   }
828 };
829 }  // namespace
830 
831 static std::unique_ptr<TypeExpansion>
832 getTypeExpansion(QualType Ty, const ASTContext &Context) {
833   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
834     return llvm::make_unique<ConstantArrayExpansion>(
835         AT->getElementType(), AT->getSize().getZExtValue());
836   }
837   if (const RecordType *RT = Ty->getAs<RecordType>()) {
838     SmallVector<const CXXBaseSpecifier *, 1> Bases;
839     SmallVector<const FieldDecl *, 1> Fields;
840     const RecordDecl *RD = RT->getDecl();
841     assert(!RD->hasFlexibleArrayMember() &&
842            "Cannot expand structure with flexible array.");
843     if (RD->isUnion()) {
844       // Unions can be here only in degenerative cases - all the fields are same
845       // after flattening. Thus we have to use the "largest" field.
846       const FieldDecl *LargestFD = nullptr;
847       CharUnits UnionSize = CharUnits::Zero();
848 
849       for (const auto *FD : RD->fields()) {
850         // Skip zero length bitfields.
851         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
852           continue;
853         assert(!FD->isBitField() &&
854                "Cannot expand structure with bit-field members.");
855         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
856         if (UnionSize < FieldSize) {
857           UnionSize = FieldSize;
858           LargestFD = FD;
859         }
860       }
861       if (LargestFD)
862         Fields.push_back(LargestFD);
863     } else {
864       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
865         assert(!CXXRD->isDynamicClass() &&
866                "cannot expand vtable pointers in dynamic classes");
867         for (const CXXBaseSpecifier &BS : CXXRD->bases())
868           Bases.push_back(&BS);
869       }
870 
871       for (const auto *FD : RD->fields()) {
872         // Skip zero length bitfields.
873         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
874           continue;
875         assert(!FD->isBitField() &&
876                "Cannot expand structure with bit-field members.");
877         Fields.push_back(FD);
878       }
879     }
880     return llvm::make_unique<RecordExpansion>(std::move(Bases),
881                                               std::move(Fields));
882   }
883   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
884     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
885   }
886   return llvm::make_unique<NoExpansion>();
887 }
888 
889 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
890   auto Exp = getTypeExpansion(Ty, Context);
891   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
892     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
893   }
894   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
895     int Res = 0;
896     for (auto BS : RExp->Bases)
897       Res += getExpansionSize(BS->getType(), Context);
898     for (auto FD : RExp->Fields)
899       Res += getExpansionSize(FD->getType(), Context);
900     return Res;
901   }
902   if (isa<ComplexExpansion>(Exp.get()))
903     return 2;
904   assert(isa<NoExpansion>(Exp.get()));
905   return 1;
906 }
907 
908 void
909 CodeGenTypes::getExpandedTypes(QualType Ty,
910                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
911   auto Exp = getTypeExpansion(Ty, Context);
912   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
913     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
914       getExpandedTypes(CAExp->EltTy, TI);
915     }
916   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
917     for (auto BS : RExp->Bases)
918       getExpandedTypes(BS->getType(), TI);
919     for (auto FD : RExp->Fields)
920       getExpandedTypes(FD->getType(), TI);
921   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
922     llvm::Type *EltTy = ConvertType(CExp->EltTy);
923     *TI++ = EltTy;
924     *TI++ = EltTy;
925   } else {
926     assert(isa<NoExpansion>(Exp.get()));
927     *TI++ = ConvertType(Ty);
928   }
929 }
930 
931 static void forConstantArrayExpansion(CodeGenFunction &CGF,
932                                       ConstantArrayExpansion *CAE,
933                                       Address BaseAddr,
934                                       llvm::function_ref<void(Address)> Fn) {
935   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
936   CharUnits EltAlign =
937     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
938 
939   for (int i = 0, n = CAE->NumElts; i < n; i++) {
940     llvm::Value *EltAddr =
941       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
942     Fn(Address(EltAddr, EltAlign));
943   }
944 }
945 
946 void CodeGenFunction::ExpandTypeFromArgs(
947     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
948   assert(LV.isSimple() &&
949          "Unexpected non-simple lvalue during struct expansion.");
950 
951   auto Exp = getTypeExpansion(Ty, getContext());
952   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
953     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
954                               [&](Address EltAddr) {
955       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
956       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
957     });
958   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
959     Address This = LV.getAddress();
960     for (const CXXBaseSpecifier *BS : RExp->Bases) {
961       // Perform a single step derived-to-base conversion.
962       Address Base =
963           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
964                                 /*NullCheckValue=*/false, SourceLocation());
965       LValue SubLV = MakeAddrLValue(Base, BS->getType());
966 
967       // Recurse onto bases.
968       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
969     }
970     for (auto FD : RExp->Fields) {
971       // FIXME: What are the right qualifiers here?
972       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
973       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
974     }
975   } else if (isa<ComplexExpansion>(Exp.get())) {
976     auto realValue = *AI++;
977     auto imagValue = *AI++;
978     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
979   } else {
980     assert(isa<NoExpansion>(Exp.get()));
981     EmitStoreThroughLValue(RValue::get(*AI++), LV);
982   }
983 }
984 
985 void CodeGenFunction::ExpandTypeToArgs(
986     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
987     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
988   auto Exp = getTypeExpansion(Ty, getContext());
989   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
990     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
991                               [&](Address EltAddr) {
992       RValue EltRV =
993           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
994       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
995     });
996   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
997     Address This = RV.getAggregateAddress();
998     for (const CXXBaseSpecifier *BS : RExp->Bases) {
999       // Perform a single step derived-to-base conversion.
1000       Address Base =
1001           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1002                                 /*NullCheckValue=*/false, SourceLocation());
1003       RValue BaseRV = RValue::getAggregate(Base);
1004 
1005       // Recurse onto bases.
1006       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
1007                        IRCallArgPos);
1008     }
1009 
1010     LValue LV = MakeAddrLValue(This, Ty);
1011     for (auto FD : RExp->Fields) {
1012       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
1013       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
1014                        IRCallArgPos);
1015     }
1016   } else if (isa<ComplexExpansion>(Exp.get())) {
1017     ComplexPairTy CV = RV.getComplexVal();
1018     IRCallArgs[IRCallArgPos++] = CV.first;
1019     IRCallArgs[IRCallArgPos++] = CV.second;
1020   } else {
1021     assert(isa<NoExpansion>(Exp.get()));
1022     assert(RV.isScalar() &&
1023            "Unexpected non-scalar rvalue during struct expansion.");
1024 
1025     // Insert a bitcast as needed.
1026     llvm::Value *V = RV.getScalarVal();
1027     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1028         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1029       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1030 
1031     IRCallArgs[IRCallArgPos++] = V;
1032   }
1033 }
1034 
1035 /// Create a temporary allocation for the purposes of coercion.
1036 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1037                                            CharUnits MinAlign) {
1038   // Don't use an alignment that's worse than what LLVM would prefer.
1039   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1040   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1041 
1042   return CGF.CreateTempAlloca(Ty, Align);
1043 }
1044 
1045 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1046 /// accessing some number of bytes out of it, try to gep into the struct to get
1047 /// at its inner goodness.  Dive as deep as possible without entering an element
1048 /// with an in-memory size smaller than DstSize.
1049 static Address
1050 EnterStructPointerForCoercedAccess(Address SrcPtr,
1051                                    llvm::StructType *SrcSTy,
1052                                    uint64_t DstSize, CodeGenFunction &CGF) {
1053   // We can't dive into a zero-element struct.
1054   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1055 
1056   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1057 
1058   // If the first elt is at least as large as what we're looking for, or if the
1059   // first element is the same size as the whole struct, we can enter it. The
1060   // comparison must be made on the store size and not the alloca size. Using
1061   // the alloca size may overstate the size of the load.
1062   uint64_t FirstEltSize =
1063     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1064   if (FirstEltSize < DstSize &&
1065       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1066     return SrcPtr;
1067 
1068   // GEP into the first element.
1069   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1070 
1071   // If the first element is a struct, recurse.
1072   llvm::Type *SrcTy = SrcPtr.getElementType();
1073   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1074     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1075 
1076   return SrcPtr;
1077 }
1078 
1079 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1080 /// are either integers or pointers.  This does a truncation of the value if it
1081 /// is too large or a zero extension if it is too small.
1082 ///
1083 /// This behaves as if the value were coerced through memory, so on big-endian
1084 /// targets the high bits are preserved in a truncation, while little-endian
1085 /// targets preserve the low bits.
1086 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1087                                              llvm::Type *Ty,
1088                                              CodeGenFunction &CGF) {
1089   if (Val->getType() == Ty)
1090     return Val;
1091 
1092   if (isa<llvm::PointerType>(Val->getType())) {
1093     // If this is Pointer->Pointer avoid conversion to and from int.
1094     if (isa<llvm::PointerType>(Ty))
1095       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1096 
1097     // Convert the pointer to an integer so we can play with its width.
1098     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1099   }
1100 
1101   llvm::Type *DestIntTy = Ty;
1102   if (isa<llvm::PointerType>(DestIntTy))
1103     DestIntTy = CGF.IntPtrTy;
1104 
1105   if (Val->getType() != DestIntTy) {
1106     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1107     if (DL.isBigEndian()) {
1108       // Preserve the high bits on big-endian targets.
1109       // That is what memory coercion does.
1110       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1111       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1112 
1113       if (SrcSize > DstSize) {
1114         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1115         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1116       } else {
1117         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1118         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1119       }
1120     } else {
1121       // Little-endian targets preserve the low bits. No shifts required.
1122       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1123     }
1124   }
1125 
1126   if (isa<llvm::PointerType>(Ty))
1127     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1128   return Val;
1129 }
1130 
1131 
1132 
1133 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1134 /// a pointer to an object of type \arg Ty, known to be aligned to
1135 /// \arg SrcAlign bytes.
1136 ///
1137 /// This safely handles the case when the src type is smaller than the
1138 /// destination type; in this situation the values of bits which not
1139 /// present in the src are undefined.
1140 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1141                                       CodeGenFunction &CGF) {
1142   llvm::Type *SrcTy = Src.getElementType();
1143 
1144   // If SrcTy and Ty are the same, just do a load.
1145   if (SrcTy == Ty)
1146     return CGF.Builder.CreateLoad(Src);
1147 
1148   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1149 
1150   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1151     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1152     SrcTy = Src.getType()->getElementType();
1153   }
1154 
1155   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1156 
1157   // If the source and destination are integer or pointer types, just do an
1158   // extension or truncation to the desired type.
1159   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1160       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1161     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1162     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1163   }
1164 
1165   // If load is legal, just bitcast the src pointer.
1166   if (SrcSize >= DstSize) {
1167     // Generally SrcSize is never greater than DstSize, since this means we are
1168     // losing bits. However, this can happen in cases where the structure has
1169     // additional padding, for example due to a user specified alignment.
1170     //
1171     // FIXME: Assert that we aren't truncating non-padding bits when have access
1172     // to that information.
1173     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
1174     return CGF.Builder.CreateLoad(Src);
1175   }
1176 
1177   // Otherwise do coercion through memory. This is stupid, but simple.
1178   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1179   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1180   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
1181   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1182       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1183       false);
1184   return CGF.Builder.CreateLoad(Tmp);
1185 }
1186 
1187 // Function to store a first-class aggregate into memory.  We prefer to
1188 // store the elements rather than the aggregate to be more friendly to
1189 // fast-isel.
1190 // FIXME: Do we need to recurse here?
1191 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1192                           Address Dest, bool DestIsVolatile) {
1193   // Prefer scalar stores to first-class aggregate stores.
1194   if (llvm::StructType *STy =
1195         dyn_cast<llvm::StructType>(Val->getType())) {
1196     const llvm::StructLayout *Layout =
1197       CGF.CGM.getDataLayout().getStructLayout(STy);
1198 
1199     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1200       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1201       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1202       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1203       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1204     }
1205   } else {
1206     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1207   }
1208 }
1209 
1210 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1211 /// where the source and destination may have different types.  The
1212 /// destination is known to be aligned to \arg DstAlign bytes.
1213 ///
1214 /// This safely handles the case when the src type is larger than the
1215 /// destination type; the upper bits of the src will be lost.
1216 static void CreateCoercedStore(llvm::Value *Src,
1217                                Address Dst,
1218                                bool DstIsVolatile,
1219                                CodeGenFunction &CGF) {
1220   llvm::Type *SrcTy = Src->getType();
1221   llvm::Type *DstTy = Dst.getType()->getElementType();
1222   if (SrcTy == DstTy) {
1223     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1224     return;
1225   }
1226 
1227   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1228 
1229   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1230     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1231     DstTy = Dst.getType()->getElementType();
1232   }
1233 
1234   // If the source and destination are integer or pointer types, just do an
1235   // extension or truncation to the desired type.
1236   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1237       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1238     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1239     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1240     return;
1241   }
1242 
1243   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1244 
1245   // If store is legal, just bitcast the src pointer.
1246   if (SrcSize <= DstSize) {
1247     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1248     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1249   } else {
1250     // Otherwise do coercion through memory. This is stupid, but
1251     // simple.
1252 
1253     // Generally SrcSize is never greater than DstSize, since this means we are
1254     // losing bits. However, this can happen in cases where the structure has
1255     // additional padding, for example due to a user specified alignment.
1256     //
1257     // FIXME: Assert that we aren't truncating non-padding bits when have access
1258     // to that information.
1259     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1260     CGF.Builder.CreateStore(Src, Tmp);
1261     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1262     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1263     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1264         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1265         false);
1266   }
1267 }
1268 
1269 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1270                                    const ABIArgInfo &info) {
1271   if (unsigned offset = info.getDirectOffset()) {
1272     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1273     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1274                                              CharUnits::fromQuantity(offset));
1275     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1276   }
1277   return addr;
1278 }
1279 
1280 namespace {
1281 
1282 /// Encapsulates information about the way function arguments from
1283 /// CGFunctionInfo should be passed to actual LLVM IR function.
1284 class ClangToLLVMArgMapping {
1285   static const unsigned InvalidIndex = ~0U;
1286   unsigned InallocaArgNo;
1287   unsigned SRetArgNo;
1288   unsigned TotalIRArgs;
1289 
1290   /// Arguments of LLVM IR function corresponding to single Clang argument.
1291   struct IRArgs {
1292     unsigned PaddingArgIndex;
1293     // Argument is expanded to IR arguments at positions
1294     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1295     unsigned FirstArgIndex;
1296     unsigned NumberOfArgs;
1297 
1298     IRArgs()
1299         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1300           NumberOfArgs(0) {}
1301   };
1302 
1303   SmallVector<IRArgs, 8> ArgInfo;
1304 
1305 public:
1306   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1307                         bool OnlyRequiredArgs = false)
1308       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1309         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1310     construct(Context, FI, OnlyRequiredArgs);
1311   }
1312 
1313   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1314   unsigned getInallocaArgNo() const {
1315     assert(hasInallocaArg());
1316     return InallocaArgNo;
1317   }
1318 
1319   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1320   unsigned getSRetArgNo() const {
1321     assert(hasSRetArg());
1322     return SRetArgNo;
1323   }
1324 
1325   unsigned totalIRArgs() const { return TotalIRArgs; }
1326 
1327   bool hasPaddingArg(unsigned ArgNo) const {
1328     assert(ArgNo < ArgInfo.size());
1329     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1330   }
1331   unsigned getPaddingArgNo(unsigned ArgNo) const {
1332     assert(hasPaddingArg(ArgNo));
1333     return ArgInfo[ArgNo].PaddingArgIndex;
1334   }
1335 
1336   /// Returns index of first IR argument corresponding to ArgNo, and their
1337   /// quantity.
1338   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1339     assert(ArgNo < ArgInfo.size());
1340     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1341                           ArgInfo[ArgNo].NumberOfArgs);
1342   }
1343 
1344 private:
1345   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1346                  bool OnlyRequiredArgs);
1347 };
1348 
1349 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1350                                       const CGFunctionInfo &FI,
1351                                       bool OnlyRequiredArgs) {
1352   unsigned IRArgNo = 0;
1353   bool SwapThisWithSRet = false;
1354   const ABIArgInfo &RetAI = FI.getReturnInfo();
1355 
1356   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1357     SwapThisWithSRet = RetAI.isSRetAfterThis();
1358     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1359   }
1360 
1361   unsigned ArgNo = 0;
1362   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1363   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1364        ++I, ++ArgNo) {
1365     assert(I != FI.arg_end());
1366     QualType ArgType = I->type;
1367     const ABIArgInfo &AI = I->info;
1368     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1369     auto &IRArgs = ArgInfo[ArgNo];
1370 
1371     if (AI.getPaddingType())
1372       IRArgs.PaddingArgIndex = IRArgNo++;
1373 
1374     switch (AI.getKind()) {
1375     case ABIArgInfo::Extend:
1376     case ABIArgInfo::Direct: {
1377       // FIXME: handle sseregparm someday...
1378       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1379       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1380         IRArgs.NumberOfArgs = STy->getNumElements();
1381       } else {
1382         IRArgs.NumberOfArgs = 1;
1383       }
1384       break;
1385     }
1386     case ABIArgInfo::Indirect:
1387       IRArgs.NumberOfArgs = 1;
1388       break;
1389     case ABIArgInfo::Ignore:
1390     case ABIArgInfo::InAlloca:
1391       // ignore and inalloca doesn't have matching LLVM parameters.
1392       IRArgs.NumberOfArgs = 0;
1393       break;
1394     case ABIArgInfo::CoerceAndExpand:
1395       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1396       break;
1397     case ABIArgInfo::Expand:
1398       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1399       break;
1400     }
1401 
1402     if (IRArgs.NumberOfArgs > 0) {
1403       IRArgs.FirstArgIndex = IRArgNo;
1404       IRArgNo += IRArgs.NumberOfArgs;
1405     }
1406 
1407     // Skip over the sret parameter when it comes second.  We already handled it
1408     // above.
1409     if (IRArgNo == 1 && SwapThisWithSRet)
1410       IRArgNo++;
1411   }
1412   assert(ArgNo == ArgInfo.size());
1413 
1414   if (FI.usesInAlloca())
1415     InallocaArgNo = IRArgNo++;
1416 
1417   TotalIRArgs = IRArgNo;
1418 }
1419 }  // namespace
1420 
1421 /***/
1422 
1423 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1424   return FI.getReturnInfo().isIndirect();
1425 }
1426 
1427 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1428   return ReturnTypeUsesSRet(FI) &&
1429          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1430 }
1431 
1432 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1433   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1434     switch (BT->getKind()) {
1435     default:
1436       return false;
1437     case BuiltinType::Float:
1438       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1439     case BuiltinType::Double:
1440       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1441     case BuiltinType::LongDouble:
1442       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1443     }
1444   }
1445 
1446   return false;
1447 }
1448 
1449 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1450   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1451     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1452       if (BT->getKind() == BuiltinType::LongDouble)
1453         return getTarget().useObjCFP2RetForComplexLongDouble();
1454     }
1455   }
1456 
1457   return false;
1458 }
1459 
1460 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1461   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1462   return GetFunctionType(FI);
1463 }
1464 
1465 llvm::FunctionType *
1466 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1467 
1468   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1469   (void)Inserted;
1470   assert(Inserted && "Recursively being processed?");
1471 
1472   llvm::Type *resultType = nullptr;
1473   const ABIArgInfo &retAI = FI.getReturnInfo();
1474   switch (retAI.getKind()) {
1475   case ABIArgInfo::Expand:
1476     llvm_unreachable("Invalid ABI kind for return argument");
1477 
1478   case ABIArgInfo::Extend:
1479   case ABIArgInfo::Direct:
1480     resultType = retAI.getCoerceToType();
1481     break;
1482 
1483   case ABIArgInfo::InAlloca:
1484     if (retAI.getInAllocaSRet()) {
1485       // sret things on win32 aren't void, they return the sret pointer.
1486       QualType ret = FI.getReturnType();
1487       llvm::Type *ty = ConvertType(ret);
1488       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1489       resultType = llvm::PointerType::get(ty, addressSpace);
1490     } else {
1491       resultType = llvm::Type::getVoidTy(getLLVMContext());
1492     }
1493     break;
1494 
1495   case ABIArgInfo::Indirect:
1496   case ABIArgInfo::Ignore:
1497     resultType = llvm::Type::getVoidTy(getLLVMContext());
1498     break;
1499 
1500   case ABIArgInfo::CoerceAndExpand:
1501     resultType = retAI.getUnpaddedCoerceAndExpandType();
1502     break;
1503   }
1504 
1505   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1506   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1507 
1508   // Add type for sret argument.
1509   if (IRFunctionArgs.hasSRetArg()) {
1510     QualType Ret = FI.getReturnType();
1511     llvm::Type *Ty = ConvertType(Ret);
1512     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1513     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1514         llvm::PointerType::get(Ty, AddressSpace);
1515   }
1516 
1517   // Add type for inalloca argument.
1518   if (IRFunctionArgs.hasInallocaArg()) {
1519     auto ArgStruct = FI.getArgStruct();
1520     assert(ArgStruct);
1521     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1522   }
1523 
1524   // Add in all of the required arguments.
1525   unsigned ArgNo = 0;
1526   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1527                                      ie = it + FI.getNumRequiredArgs();
1528   for (; it != ie; ++it, ++ArgNo) {
1529     const ABIArgInfo &ArgInfo = it->info;
1530 
1531     // Insert a padding type to ensure proper alignment.
1532     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1533       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1534           ArgInfo.getPaddingType();
1535 
1536     unsigned FirstIRArg, NumIRArgs;
1537     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1538 
1539     switch (ArgInfo.getKind()) {
1540     case ABIArgInfo::Ignore:
1541     case ABIArgInfo::InAlloca:
1542       assert(NumIRArgs == 0);
1543       break;
1544 
1545     case ABIArgInfo::Indirect: {
1546       assert(NumIRArgs == 1);
1547       // indirect arguments are always on the stack, which is addr space #0.
1548       llvm::Type *LTy = ConvertTypeForMem(it->type);
1549       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1550       break;
1551     }
1552 
1553     case ABIArgInfo::Extend:
1554     case ABIArgInfo::Direct: {
1555       // Fast-isel and the optimizer generally like scalar values better than
1556       // FCAs, so we flatten them if this is safe to do for this argument.
1557       llvm::Type *argType = ArgInfo.getCoerceToType();
1558       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1559       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1560         assert(NumIRArgs == st->getNumElements());
1561         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1562           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1563       } else {
1564         assert(NumIRArgs == 1);
1565         ArgTypes[FirstIRArg] = argType;
1566       }
1567       break;
1568     }
1569 
1570     case ABIArgInfo::CoerceAndExpand: {
1571       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1572       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1573         *ArgTypesIter++ = EltTy;
1574       }
1575       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1576       break;
1577     }
1578 
1579     case ABIArgInfo::Expand:
1580       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1581       getExpandedTypes(it->type, ArgTypesIter);
1582       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1583       break;
1584     }
1585   }
1586 
1587   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1588   assert(Erased && "Not in set?");
1589 
1590   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1591 }
1592 
1593 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1594   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1595   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1596 
1597   if (!isFuncTypeConvertible(FPT))
1598     return llvm::StructType::get(getLLVMContext());
1599 
1600   const CGFunctionInfo *Info;
1601   if (isa<CXXDestructorDecl>(MD))
1602     Info =
1603         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1604   else
1605     Info = &arrangeCXXMethodDeclaration(MD);
1606   return GetFunctionType(*Info);
1607 }
1608 
1609 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1610                                                llvm::AttrBuilder &FuncAttrs,
1611                                                const FunctionProtoType *FPT) {
1612   if (!FPT)
1613     return;
1614 
1615   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1616       FPT->isNothrow(Ctx))
1617     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1618 }
1619 
1620 void CodeGenModule::ConstructAttributeList(
1621     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1622     AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) {
1623   llvm::AttrBuilder FuncAttrs;
1624   llvm::AttrBuilder RetAttrs;
1625   bool HasOptnone = false;
1626 
1627   CallingConv = FI.getEffectiveCallingConvention();
1628 
1629   if (FI.isNoReturn())
1630     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1631 
1632   // If we have information about the function prototype, we can learn
1633   // attributes form there.
1634   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1635                                      CalleeInfo.getCalleeFunctionProtoType());
1636 
1637   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1638 
1639   bool HasAnyX86InterruptAttr = false;
1640   // FIXME: handle sseregparm someday...
1641   if (TargetDecl) {
1642     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1643       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1644     if (TargetDecl->hasAttr<NoThrowAttr>())
1645       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1646     if (TargetDecl->hasAttr<NoReturnAttr>())
1647       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1648     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1649       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1650 
1651     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1652       AddAttributesFromFunctionProtoType(
1653           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1654       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1655       // These attributes are not inherited by overloads.
1656       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1657       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1658         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1659     }
1660 
1661     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1662     if (TargetDecl->hasAttr<ConstAttr>()) {
1663       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1664       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1665     } else if (TargetDecl->hasAttr<PureAttr>()) {
1666       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1667       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1668     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1669       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1670       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1671     }
1672     if (TargetDecl->hasAttr<RestrictAttr>())
1673       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1674     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1675       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1676 
1677     HasAnyX86InterruptAttr = TargetDecl->hasAttr<AnyX86InterruptAttr>();
1678     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1679   }
1680 
1681   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1682   if (!HasOptnone) {
1683     if (CodeGenOpts.OptimizeSize)
1684       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1685     if (CodeGenOpts.OptimizeSize == 2)
1686       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1687   }
1688 
1689   if (CodeGenOpts.DisableRedZone)
1690     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1691   if (CodeGenOpts.NoImplicitFloat)
1692     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1693   if (CodeGenOpts.EnableSegmentedStacks &&
1694       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1695     FuncAttrs.addAttribute("split-stack");
1696 
1697   if (AttrOnCallSite) {
1698     // Attributes that should go on the call site only.
1699     if (!CodeGenOpts.SimplifyLibCalls ||
1700         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1701       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1702     if (!CodeGenOpts.TrapFuncName.empty())
1703       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1704   } else {
1705     // Attributes that should go on the function, but not the call site.
1706     if (!CodeGenOpts.DisableFPElim) {
1707       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1708     } else if (CodeGenOpts.OmitLeafFramePointer) {
1709       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1710       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1711     } else {
1712       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1713       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1714     }
1715 
1716     bool DisableTailCalls =
1717         CodeGenOpts.DisableTailCalls || HasAnyX86InterruptAttr ||
1718         (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>());
1719     FuncAttrs.addAttribute(
1720         "disable-tail-calls",
1721         llvm::toStringRef(DisableTailCalls));
1722 
1723     FuncAttrs.addAttribute("less-precise-fpmad",
1724                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1725     FuncAttrs.addAttribute("no-infs-fp-math",
1726                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1727     FuncAttrs.addAttribute("no-nans-fp-math",
1728                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1729     FuncAttrs.addAttribute("unsafe-fp-math",
1730                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1731     FuncAttrs.addAttribute("use-soft-float",
1732                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1733     FuncAttrs.addAttribute("stack-protector-buffer-size",
1734                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1735 
1736     if (CodeGenOpts.StackRealignment)
1737       FuncAttrs.addAttribute("stackrealign");
1738     if (CodeGenOpts.Backchain)
1739       FuncAttrs.addAttribute("backchain");
1740 
1741     // Add target-cpu and target-features attributes to functions. If
1742     // we have a decl for the function and it has a target attribute then
1743     // parse that and add it to the feature set.
1744     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1745     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1746     if (FD && FD->hasAttr<TargetAttr>()) {
1747       llvm::StringMap<bool> FeatureMap;
1748       getFunctionFeatureMap(FeatureMap, FD);
1749 
1750       // Produce the canonical string for this set of features.
1751       std::vector<std::string> Features;
1752       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1753                                                  ie = FeatureMap.end();
1754            it != ie; ++it)
1755         Features.push_back((it->second ? "+" : "-") + it->first().str());
1756 
1757       // Now add the target-cpu and target-features to the function.
1758       // While we populated the feature map above, we still need to
1759       // get and parse the target attribute so we can get the cpu for
1760       // the function.
1761       const auto *TD = FD->getAttr<TargetAttr>();
1762       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1763       if (ParsedAttr.second != "")
1764         TargetCPU = ParsedAttr.second;
1765       if (TargetCPU != "")
1766         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1767       if (!Features.empty()) {
1768         std::sort(Features.begin(), Features.end());
1769         FuncAttrs.addAttribute(
1770             "target-features",
1771             llvm::join(Features.begin(), Features.end(), ","));
1772       }
1773     } else {
1774       // Otherwise just add the existing target cpu and target features to the
1775       // function.
1776       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1777       if (TargetCPU != "")
1778         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1779       if (!Features.empty()) {
1780         std::sort(Features.begin(), Features.end());
1781         FuncAttrs.addAttribute(
1782             "target-features",
1783             llvm::join(Features.begin(), Features.end(), ","));
1784       }
1785     }
1786   }
1787 
1788   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1789     // Conservatively, mark all functions and calls in CUDA as convergent
1790     // (meaning, they may call an intrinsically convergent op, such as
1791     // __syncthreads(), and so can't have certain optimizations applied around
1792     // them).  LLVM will remove this attribute where it safely can.
1793     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1794 
1795     // Respect -fcuda-flush-denormals-to-zero.
1796     if (getLangOpts().CUDADeviceFlushDenormalsToZero)
1797       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1798   }
1799 
1800   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1801 
1802   QualType RetTy = FI.getReturnType();
1803   const ABIArgInfo &RetAI = FI.getReturnInfo();
1804   switch (RetAI.getKind()) {
1805   case ABIArgInfo::Extend:
1806     if (RetTy->hasSignedIntegerRepresentation())
1807       RetAttrs.addAttribute(llvm::Attribute::SExt);
1808     else if (RetTy->hasUnsignedIntegerRepresentation())
1809       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1810     // FALL THROUGH
1811   case ABIArgInfo::Direct:
1812     if (RetAI.getInReg())
1813       RetAttrs.addAttribute(llvm::Attribute::InReg);
1814     break;
1815   case ABIArgInfo::Ignore:
1816     break;
1817 
1818   case ABIArgInfo::InAlloca:
1819   case ABIArgInfo::Indirect: {
1820     // inalloca and sret disable readnone and readonly
1821     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1822       .removeAttribute(llvm::Attribute::ReadNone);
1823     break;
1824   }
1825 
1826   case ABIArgInfo::CoerceAndExpand:
1827     break;
1828 
1829   case ABIArgInfo::Expand:
1830     llvm_unreachable("Invalid ABI kind for return argument");
1831   }
1832 
1833   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1834     QualType PTy = RefTy->getPointeeType();
1835     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1836       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1837                                         .getQuantity());
1838     else if (getContext().getTargetAddressSpace(PTy) == 0)
1839       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1840   }
1841 
1842   // Attach return attributes.
1843   if (RetAttrs.hasAttributes()) {
1844     PAL.push_back(llvm::AttributeSet::get(
1845         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1846   }
1847 
1848   bool hasUsedSRet = false;
1849 
1850   // Attach attributes to sret.
1851   if (IRFunctionArgs.hasSRetArg()) {
1852     llvm::AttrBuilder SRETAttrs;
1853     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1854     hasUsedSRet = true;
1855     if (RetAI.getInReg())
1856       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1857     PAL.push_back(llvm::AttributeSet::get(
1858         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1859   }
1860 
1861   // Attach attributes to inalloca argument.
1862   if (IRFunctionArgs.hasInallocaArg()) {
1863     llvm::AttrBuilder Attrs;
1864     Attrs.addAttribute(llvm::Attribute::InAlloca);
1865     PAL.push_back(llvm::AttributeSet::get(
1866         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1867   }
1868 
1869   unsigned ArgNo = 0;
1870   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1871                                           E = FI.arg_end();
1872        I != E; ++I, ++ArgNo) {
1873     QualType ParamType = I->type;
1874     const ABIArgInfo &AI = I->info;
1875     llvm::AttrBuilder Attrs;
1876 
1877     // Add attribute for padding argument, if necessary.
1878     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1879       if (AI.getPaddingInReg())
1880         PAL.push_back(llvm::AttributeSet::get(
1881             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1882             llvm::Attribute::InReg));
1883     }
1884 
1885     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1886     // have the corresponding parameter variable.  It doesn't make
1887     // sense to do it here because parameters are so messed up.
1888     switch (AI.getKind()) {
1889     case ABIArgInfo::Extend:
1890       if (ParamType->isSignedIntegerOrEnumerationType())
1891         Attrs.addAttribute(llvm::Attribute::SExt);
1892       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1893         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1894           Attrs.addAttribute(llvm::Attribute::SExt);
1895         else
1896           Attrs.addAttribute(llvm::Attribute::ZExt);
1897       }
1898       // FALL THROUGH
1899     case ABIArgInfo::Direct:
1900       if (ArgNo == 0 && FI.isChainCall())
1901         Attrs.addAttribute(llvm::Attribute::Nest);
1902       else if (AI.getInReg())
1903         Attrs.addAttribute(llvm::Attribute::InReg);
1904       break;
1905 
1906     case ABIArgInfo::Indirect: {
1907       if (AI.getInReg())
1908         Attrs.addAttribute(llvm::Attribute::InReg);
1909 
1910       if (AI.getIndirectByVal())
1911         Attrs.addAttribute(llvm::Attribute::ByVal);
1912 
1913       CharUnits Align = AI.getIndirectAlign();
1914 
1915       // In a byval argument, it is important that the required
1916       // alignment of the type is honored, as LLVM might be creating a
1917       // *new* stack object, and needs to know what alignment to give
1918       // it. (Sometimes it can deduce a sensible alignment on its own,
1919       // but not if clang decides it must emit a packed struct, or the
1920       // user specifies increased alignment requirements.)
1921       //
1922       // This is different from indirect *not* byval, where the object
1923       // exists already, and the align attribute is purely
1924       // informative.
1925       assert(!Align.isZero());
1926 
1927       // For now, only add this when we have a byval argument.
1928       // TODO: be less lazy about updating test cases.
1929       if (AI.getIndirectByVal())
1930         Attrs.addAlignmentAttr(Align.getQuantity());
1931 
1932       // byval disables readnone and readonly.
1933       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1934         .removeAttribute(llvm::Attribute::ReadNone);
1935       break;
1936     }
1937     case ABIArgInfo::Ignore:
1938     case ABIArgInfo::Expand:
1939     case ABIArgInfo::CoerceAndExpand:
1940       break;
1941 
1942     case ABIArgInfo::InAlloca:
1943       // inalloca disables readnone and readonly.
1944       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1945           .removeAttribute(llvm::Attribute::ReadNone);
1946       continue;
1947     }
1948 
1949     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1950       QualType PTy = RefTy->getPointeeType();
1951       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1952         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1953                                        .getQuantity());
1954       else if (getContext().getTargetAddressSpace(PTy) == 0)
1955         Attrs.addAttribute(llvm::Attribute::NonNull);
1956     }
1957 
1958     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
1959     case ParameterABI::Ordinary:
1960       break;
1961 
1962     case ParameterABI::SwiftIndirectResult: {
1963       // Add 'sret' if we haven't already used it for something, but
1964       // only if the result is void.
1965       if (!hasUsedSRet && RetTy->isVoidType()) {
1966         Attrs.addAttribute(llvm::Attribute::StructRet);
1967         hasUsedSRet = true;
1968       }
1969 
1970       // Add 'noalias' in either case.
1971       Attrs.addAttribute(llvm::Attribute::NoAlias);
1972 
1973       // Add 'dereferenceable' and 'alignment'.
1974       auto PTy = ParamType->getPointeeType();
1975       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
1976         auto info = getContext().getTypeInfoInChars(PTy);
1977         Attrs.addDereferenceableAttr(info.first.getQuantity());
1978         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
1979                                                  info.second.getQuantity()));
1980       }
1981       break;
1982     }
1983 
1984     case ParameterABI::SwiftErrorResult:
1985       Attrs.addAttribute(llvm::Attribute::SwiftError);
1986       break;
1987 
1988     case ParameterABI::SwiftContext:
1989       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
1990       break;
1991     }
1992 
1993     if (Attrs.hasAttributes()) {
1994       unsigned FirstIRArg, NumIRArgs;
1995       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1996       for (unsigned i = 0; i < NumIRArgs; i++)
1997         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1998                                               FirstIRArg + i + 1, Attrs));
1999     }
2000   }
2001   assert(ArgNo == FI.arg_size());
2002 
2003   if (FuncAttrs.hasAttributes())
2004     PAL.push_back(llvm::
2005                   AttributeSet::get(getLLVMContext(),
2006                                     llvm::AttributeSet::FunctionIndex,
2007                                     FuncAttrs));
2008 }
2009 
2010 /// An argument came in as a promoted argument; demote it back to its
2011 /// declared type.
2012 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2013                                          const VarDecl *var,
2014                                          llvm::Value *value) {
2015   llvm::Type *varType = CGF.ConvertType(var->getType());
2016 
2017   // This can happen with promotions that actually don't change the
2018   // underlying type, like the enum promotions.
2019   if (value->getType() == varType) return value;
2020 
2021   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2022          && "unexpected promotion type");
2023 
2024   if (isa<llvm::IntegerType>(varType))
2025     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2026 
2027   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2028 }
2029 
2030 /// Returns the attribute (either parameter attribute, or function
2031 /// attribute), which declares argument ArgNo to be non-null.
2032 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2033                                          QualType ArgType, unsigned ArgNo) {
2034   // FIXME: __attribute__((nonnull)) can also be applied to:
2035   //   - references to pointers, where the pointee is known to be
2036   //     nonnull (apparently a Clang extension)
2037   //   - transparent unions containing pointers
2038   // In the former case, LLVM IR cannot represent the constraint. In
2039   // the latter case, we have no guarantee that the transparent union
2040   // is in fact passed as a pointer.
2041   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2042     return nullptr;
2043   // First, check attribute on parameter itself.
2044   if (PVD) {
2045     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2046       return ParmNNAttr;
2047   }
2048   // Check function attributes.
2049   if (!FD)
2050     return nullptr;
2051   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2052     if (NNAttr->isNonNull(ArgNo))
2053       return NNAttr;
2054   }
2055   return nullptr;
2056 }
2057 
2058 namespace {
2059   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2060     Address Temp;
2061     Address Arg;
2062     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2063     void Emit(CodeGenFunction &CGF, Flags flags) override {
2064       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2065       CGF.Builder.CreateStore(errorValue, Arg);
2066     }
2067   };
2068 }
2069 
2070 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2071                                          llvm::Function *Fn,
2072                                          const FunctionArgList &Args) {
2073   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2074     // Naked functions don't have prologues.
2075     return;
2076 
2077   // If this is an implicit-return-zero function, go ahead and
2078   // initialize the return value.  TODO: it might be nice to have
2079   // a more general mechanism for this that didn't require synthesized
2080   // return statements.
2081   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2082     if (FD->hasImplicitReturnZero()) {
2083       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2084       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2085       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2086       Builder.CreateStore(Zero, ReturnValue);
2087     }
2088   }
2089 
2090   // FIXME: We no longer need the types from FunctionArgList; lift up and
2091   // simplify.
2092 
2093   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2094   // Flattened function arguments.
2095   SmallVector<llvm::Value *, 16> FnArgs;
2096   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2097   for (auto &Arg : Fn->args()) {
2098     FnArgs.push_back(&Arg);
2099   }
2100   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2101 
2102   // If we're using inalloca, all the memory arguments are GEPs off of the last
2103   // parameter, which is a pointer to the complete memory area.
2104   Address ArgStruct = Address::invalid();
2105   const llvm::StructLayout *ArgStructLayout = nullptr;
2106   if (IRFunctionArgs.hasInallocaArg()) {
2107     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2108     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2109                         FI.getArgStructAlignment());
2110 
2111     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2112   }
2113 
2114   // Name the struct return parameter.
2115   if (IRFunctionArgs.hasSRetArg()) {
2116     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2117     AI->setName("agg.result");
2118     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
2119                                         llvm::Attribute::NoAlias));
2120   }
2121 
2122   // Track if we received the parameter as a pointer (indirect, byval, or
2123   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2124   // into a local alloca for us.
2125   SmallVector<ParamValue, 16> ArgVals;
2126   ArgVals.reserve(Args.size());
2127 
2128   // Create a pointer value for every parameter declaration.  This usually
2129   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2130   // any cleanups or do anything that might unwind.  We do that separately, so
2131   // we can push the cleanups in the correct order for the ABI.
2132   assert(FI.arg_size() == Args.size() &&
2133          "Mismatch between function signature & arguments.");
2134   unsigned ArgNo = 0;
2135   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2136   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2137        i != e; ++i, ++info_it, ++ArgNo) {
2138     const VarDecl *Arg = *i;
2139     QualType Ty = info_it->type;
2140     const ABIArgInfo &ArgI = info_it->info;
2141 
2142     bool isPromoted =
2143       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2144 
2145     unsigned FirstIRArg, NumIRArgs;
2146     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2147 
2148     switch (ArgI.getKind()) {
2149     case ABIArgInfo::InAlloca: {
2150       assert(NumIRArgs == 0);
2151       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2152       CharUnits FieldOffset =
2153         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2154       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2155                                           Arg->getName());
2156       ArgVals.push_back(ParamValue::forIndirect(V));
2157       break;
2158     }
2159 
2160     case ABIArgInfo::Indirect: {
2161       assert(NumIRArgs == 1);
2162       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2163 
2164       if (!hasScalarEvaluationKind(Ty)) {
2165         // Aggregates and complex variables are accessed by reference.  All we
2166         // need to do is realign the value, if requested.
2167         Address V = ParamAddr;
2168         if (ArgI.getIndirectRealign()) {
2169           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2170 
2171           // Copy from the incoming argument pointer to the temporary with the
2172           // appropriate alignment.
2173           //
2174           // FIXME: We should have a common utility for generating an aggregate
2175           // copy.
2176           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2177           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2178           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2179           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2180           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2181           V = AlignedTemp;
2182         }
2183         ArgVals.push_back(ParamValue::forIndirect(V));
2184       } else {
2185         // Load scalar value from indirect argument.
2186         llvm::Value *V =
2187           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
2188 
2189         if (isPromoted)
2190           V = emitArgumentDemotion(*this, Arg, V);
2191         ArgVals.push_back(ParamValue::forDirect(V));
2192       }
2193       break;
2194     }
2195 
2196     case ABIArgInfo::Extend:
2197     case ABIArgInfo::Direct: {
2198 
2199       // If we have the trivial case, handle it with no muss and fuss.
2200       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2201           ArgI.getCoerceToType() == ConvertType(Ty) &&
2202           ArgI.getDirectOffset() == 0) {
2203         assert(NumIRArgs == 1);
2204         llvm::Value *V = FnArgs[FirstIRArg];
2205         auto AI = cast<llvm::Argument>(V);
2206 
2207         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2208           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2209                              PVD->getFunctionScopeIndex()))
2210             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2211                                                 AI->getArgNo() + 1,
2212                                                 llvm::Attribute::NonNull));
2213 
2214           QualType OTy = PVD->getOriginalType();
2215           if (const auto *ArrTy =
2216               getContext().getAsConstantArrayType(OTy)) {
2217             // A C99 array parameter declaration with the static keyword also
2218             // indicates dereferenceability, and if the size is constant we can
2219             // use the dereferenceable attribute (which requires the size in
2220             // bytes).
2221             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2222               QualType ETy = ArrTy->getElementType();
2223               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2224               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2225                   ArrSize) {
2226                 llvm::AttrBuilder Attrs;
2227                 Attrs.addDereferenceableAttr(
2228                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2229                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2230                                                     AI->getArgNo() + 1, Attrs));
2231               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
2232                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2233                                                     AI->getArgNo() + 1,
2234                                                     llvm::Attribute::NonNull));
2235               }
2236             }
2237           } else if (const auto *ArrTy =
2238                      getContext().getAsVariableArrayType(OTy)) {
2239             // For C99 VLAs with the static keyword, we don't know the size so
2240             // we can't use the dereferenceable attribute, but in addrspace(0)
2241             // we know that it must be nonnull.
2242             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2243                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
2244               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2245                                                   AI->getArgNo() + 1,
2246                                                   llvm::Attribute::NonNull));
2247           }
2248 
2249           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2250           if (!AVAttr)
2251             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2252               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2253           if (AVAttr) {
2254             llvm::Value *AlignmentValue =
2255               EmitScalarExpr(AVAttr->getAlignment());
2256             llvm::ConstantInt *AlignmentCI =
2257               cast<llvm::ConstantInt>(AlignmentValue);
2258             unsigned Alignment =
2259               std::min((unsigned) AlignmentCI->getZExtValue(),
2260                        +llvm::Value::MaximumAlignment);
2261 
2262             llvm::AttrBuilder Attrs;
2263             Attrs.addAlignmentAttr(Alignment);
2264             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2265                                                 AI->getArgNo() + 1, Attrs));
2266           }
2267         }
2268 
2269         if (Arg->getType().isRestrictQualified())
2270           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2271                                               AI->getArgNo() + 1,
2272                                               llvm::Attribute::NoAlias));
2273 
2274         // LLVM expects swifterror parameters to be used in very restricted
2275         // ways.  Copy the value into a less-restricted temporary.
2276         if (FI.getExtParameterInfo(ArgNo).getABI()
2277               == ParameterABI::SwiftErrorResult) {
2278           QualType pointeeTy = Ty->getPointeeType();
2279           assert(pointeeTy->isPointerType());
2280           Address temp =
2281             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2282           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2283           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2284           Builder.CreateStore(incomingErrorValue, temp);
2285           V = temp.getPointer();
2286 
2287           // Push a cleanup to copy the value back at the end of the function.
2288           // The convention does not guarantee that the value will be written
2289           // back if the function exits with an unwind exception.
2290           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2291         }
2292 
2293         // Ensure the argument is the correct type.
2294         if (V->getType() != ArgI.getCoerceToType())
2295           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2296 
2297         if (isPromoted)
2298           V = emitArgumentDemotion(*this, Arg, V);
2299 
2300         if (const CXXMethodDecl *MD =
2301             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
2302           if (MD->isVirtual() && Arg == CXXABIThisDecl)
2303             V = CGM.getCXXABI().
2304                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
2305         }
2306 
2307         // Because of merging of function types from multiple decls it is
2308         // possible for the type of an argument to not match the corresponding
2309         // type in the function type. Since we are codegening the callee
2310         // in here, add a cast to the argument type.
2311         llvm::Type *LTy = ConvertType(Arg->getType());
2312         if (V->getType() != LTy)
2313           V = Builder.CreateBitCast(V, LTy);
2314 
2315         ArgVals.push_back(ParamValue::forDirect(V));
2316         break;
2317       }
2318 
2319       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2320                                      Arg->getName());
2321 
2322       // Pointer to store into.
2323       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2324 
2325       // Fast-isel and the optimizer generally like scalar values better than
2326       // FCAs, so we flatten them if this is safe to do for this argument.
2327       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2328       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2329           STy->getNumElements() > 1) {
2330         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2331         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2332         llvm::Type *DstTy = Ptr.getElementType();
2333         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2334 
2335         Address AddrToStoreInto = Address::invalid();
2336         if (SrcSize <= DstSize) {
2337           AddrToStoreInto =
2338             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2339         } else {
2340           AddrToStoreInto =
2341             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2342         }
2343 
2344         assert(STy->getNumElements() == NumIRArgs);
2345         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2346           auto AI = FnArgs[FirstIRArg + i];
2347           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2348           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2349           Address EltPtr =
2350             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2351           Builder.CreateStore(AI, EltPtr);
2352         }
2353 
2354         if (SrcSize > DstSize) {
2355           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2356         }
2357 
2358       } else {
2359         // Simple case, just do a coerced store of the argument into the alloca.
2360         assert(NumIRArgs == 1);
2361         auto AI = FnArgs[FirstIRArg];
2362         AI->setName(Arg->getName() + ".coerce");
2363         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2364       }
2365 
2366       // Match to what EmitParmDecl is expecting for this type.
2367       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2368         llvm::Value *V =
2369           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2370         if (isPromoted)
2371           V = emitArgumentDemotion(*this, Arg, V);
2372         ArgVals.push_back(ParamValue::forDirect(V));
2373       } else {
2374         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2375       }
2376       break;
2377     }
2378 
2379     case ABIArgInfo::CoerceAndExpand: {
2380       // Reconstruct into a temporary.
2381       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2382       ArgVals.push_back(ParamValue::forIndirect(alloca));
2383 
2384       auto coercionType = ArgI.getCoerceAndExpandType();
2385       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2386       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2387 
2388       unsigned argIndex = FirstIRArg;
2389       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2390         llvm::Type *eltType = coercionType->getElementType(i);
2391         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2392           continue;
2393 
2394         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2395         auto elt = FnArgs[argIndex++];
2396         Builder.CreateStore(elt, eltAddr);
2397       }
2398       assert(argIndex == FirstIRArg + NumIRArgs);
2399       break;
2400     }
2401 
2402     case ABIArgInfo::Expand: {
2403       // If this structure was expanded into multiple arguments then
2404       // we need to create a temporary and reconstruct it from the
2405       // arguments.
2406       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2407       LValue LV = MakeAddrLValue(Alloca, Ty);
2408       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2409 
2410       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2411       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2412       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2413       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2414         auto AI = FnArgs[FirstIRArg + i];
2415         AI->setName(Arg->getName() + "." + Twine(i));
2416       }
2417       break;
2418     }
2419 
2420     case ABIArgInfo::Ignore:
2421       assert(NumIRArgs == 0);
2422       // Initialize the local variable appropriately.
2423       if (!hasScalarEvaluationKind(Ty)) {
2424         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2425       } else {
2426         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2427         ArgVals.push_back(ParamValue::forDirect(U));
2428       }
2429       break;
2430     }
2431   }
2432 
2433   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2434     for (int I = Args.size() - 1; I >= 0; --I)
2435       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2436   } else {
2437     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2438       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2439   }
2440 }
2441 
2442 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2443   while (insn->use_empty()) {
2444     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2445     if (!bitcast) return;
2446 
2447     // This is "safe" because we would have used a ConstantExpr otherwise.
2448     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2449     bitcast->eraseFromParent();
2450   }
2451 }
2452 
2453 /// Try to emit a fused autorelease of a return result.
2454 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2455                                                     llvm::Value *result) {
2456   // We must be immediately followed the cast.
2457   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2458   if (BB->empty()) return nullptr;
2459   if (&BB->back() != result) return nullptr;
2460 
2461   llvm::Type *resultType = result->getType();
2462 
2463   // result is in a BasicBlock and is therefore an Instruction.
2464   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2465 
2466   SmallVector<llvm::Instruction*,4> insnsToKill;
2467 
2468   // Look for:
2469   //  %generator = bitcast %type1* %generator2 to %type2*
2470   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2471     // We would have emitted this as a constant if the operand weren't
2472     // an Instruction.
2473     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2474 
2475     // Require the generator to be immediately followed by the cast.
2476     if (generator->getNextNode() != bitcast)
2477       return nullptr;
2478 
2479     insnsToKill.push_back(bitcast);
2480   }
2481 
2482   // Look for:
2483   //   %generator = call i8* @objc_retain(i8* %originalResult)
2484   // or
2485   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2486   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2487   if (!call) return nullptr;
2488 
2489   bool doRetainAutorelease;
2490 
2491   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2492     doRetainAutorelease = true;
2493   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2494                                           .objc_retainAutoreleasedReturnValue) {
2495     doRetainAutorelease = false;
2496 
2497     // If we emitted an assembly marker for this call (and the
2498     // ARCEntrypoints field should have been set if so), go looking
2499     // for that call.  If we can't find it, we can't do this
2500     // optimization.  But it should always be the immediately previous
2501     // instruction, unless we needed bitcasts around the call.
2502     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2503       llvm::Instruction *prev = call->getPrevNode();
2504       assert(prev);
2505       if (isa<llvm::BitCastInst>(prev)) {
2506         prev = prev->getPrevNode();
2507         assert(prev);
2508       }
2509       assert(isa<llvm::CallInst>(prev));
2510       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2511                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2512       insnsToKill.push_back(prev);
2513     }
2514   } else {
2515     return nullptr;
2516   }
2517 
2518   result = call->getArgOperand(0);
2519   insnsToKill.push_back(call);
2520 
2521   // Keep killing bitcasts, for sanity.  Note that we no longer care
2522   // about precise ordering as long as there's exactly one use.
2523   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2524     if (!bitcast->hasOneUse()) break;
2525     insnsToKill.push_back(bitcast);
2526     result = bitcast->getOperand(0);
2527   }
2528 
2529   // Delete all the unnecessary instructions, from latest to earliest.
2530   for (SmallVectorImpl<llvm::Instruction*>::iterator
2531          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2532     (*i)->eraseFromParent();
2533 
2534   // Do the fused retain/autorelease if we were asked to.
2535   if (doRetainAutorelease)
2536     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2537 
2538   // Cast back to the result type.
2539   return CGF.Builder.CreateBitCast(result, resultType);
2540 }
2541 
2542 /// If this is a +1 of the value of an immutable 'self', remove it.
2543 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2544                                           llvm::Value *result) {
2545   // This is only applicable to a method with an immutable 'self'.
2546   const ObjCMethodDecl *method =
2547     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2548   if (!method) return nullptr;
2549   const VarDecl *self = method->getSelfDecl();
2550   if (!self->getType().isConstQualified()) return nullptr;
2551 
2552   // Look for a retain call.
2553   llvm::CallInst *retainCall =
2554     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2555   if (!retainCall ||
2556       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2557     return nullptr;
2558 
2559   // Look for an ordinary load of 'self'.
2560   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2561   llvm::LoadInst *load =
2562     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2563   if (!load || load->isAtomic() || load->isVolatile() ||
2564       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2565     return nullptr;
2566 
2567   // Okay!  Burn it all down.  This relies for correctness on the
2568   // assumption that the retain is emitted as part of the return and
2569   // that thereafter everything is used "linearly".
2570   llvm::Type *resultType = result->getType();
2571   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2572   assert(retainCall->use_empty());
2573   retainCall->eraseFromParent();
2574   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2575 
2576   return CGF.Builder.CreateBitCast(load, resultType);
2577 }
2578 
2579 /// Emit an ARC autorelease of the result of a function.
2580 ///
2581 /// \return the value to actually return from the function
2582 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2583                                             llvm::Value *result) {
2584   // If we're returning 'self', kill the initial retain.  This is a
2585   // heuristic attempt to "encourage correctness" in the really unfortunate
2586   // case where we have a return of self during a dealloc and we desperately
2587   // need to avoid the possible autorelease.
2588   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2589     return self;
2590 
2591   // At -O0, try to emit a fused retain/autorelease.
2592   if (CGF.shouldUseFusedARCCalls())
2593     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2594       return fused;
2595 
2596   return CGF.EmitARCAutoreleaseReturnValue(result);
2597 }
2598 
2599 /// Heuristically search for a dominating store to the return-value slot.
2600 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2601   // Check if a User is a store which pointerOperand is the ReturnValue.
2602   // We are looking for stores to the ReturnValue, not for stores of the
2603   // ReturnValue to some other location.
2604   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2605     auto *SI = dyn_cast<llvm::StoreInst>(U);
2606     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2607       return nullptr;
2608     // These aren't actually possible for non-coerced returns, and we
2609     // only care about non-coerced returns on this code path.
2610     assert(!SI->isAtomic() && !SI->isVolatile());
2611     return SI;
2612   };
2613   // If there are multiple uses of the return-value slot, just check
2614   // for something immediately preceding the IP.  Sometimes this can
2615   // happen with how we generate implicit-returns; it can also happen
2616   // with noreturn cleanups.
2617   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2618     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2619     if (IP->empty()) return nullptr;
2620     llvm::Instruction *I = &IP->back();
2621 
2622     // Skip lifetime markers
2623     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2624                                             IE = IP->rend();
2625          II != IE; ++II) {
2626       if (llvm::IntrinsicInst *Intrinsic =
2627               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2628         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2629           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2630           ++II;
2631           if (II == IE)
2632             break;
2633           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2634             continue;
2635         }
2636       }
2637       I = &*II;
2638       break;
2639     }
2640 
2641     return GetStoreIfValid(I);
2642   }
2643 
2644   llvm::StoreInst *store =
2645       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2646   if (!store) return nullptr;
2647 
2648   // Now do a first-and-dirty dominance check: just walk up the
2649   // single-predecessors chain from the current insertion point.
2650   llvm::BasicBlock *StoreBB = store->getParent();
2651   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2652   while (IP != StoreBB) {
2653     if (!(IP = IP->getSinglePredecessor()))
2654       return nullptr;
2655   }
2656 
2657   // Okay, the store's basic block dominates the insertion point; we
2658   // can do our thing.
2659   return store;
2660 }
2661 
2662 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2663                                          bool EmitRetDbgLoc,
2664                                          SourceLocation EndLoc) {
2665   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2666     // Naked functions don't have epilogues.
2667     Builder.CreateUnreachable();
2668     return;
2669   }
2670 
2671   // Functions with no result always return void.
2672   if (!ReturnValue.isValid()) {
2673     Builder.CreateRetVoid();
2674     return;
2675   }
2676 
2677   llvm::DebugLoc RetDbgLoc;
2678   llvm::Value *RV = nullptr;
2679   QualType RetTy = FI.getReturnType();
2680   const ABIArgInfo &RetAI = FI.getReturnInfo();
2681 
2682   switch (RetAI.getKind()) {
2683   case ABIArgInfo::InAlloca:
2684     // Aggregrates get evaluated directly into the destination.  Sometimes we
2685     // need to return the sret value in a register, though.
2686     assert(hasAggregateEvaluationKind(RetTy));
2687     if (RetAI.getInAllocaSRet()) {
2688       llvm::Function::arg_iterator EI = CurFn->arg_end();
2689       --EI;
2690       llvm::Value *ArgStruct = &*EI;
2691       llvm::Value *SRet = Builder.CreateStructGEP(
2692           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2693       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2694     }
2695     break;
2696 
2697   case ABIArgInfo::Indirect: {
2698     auto AI = CurFn->arg_begin();
2699     if (RetAI.isSRetAfterThis())
2700       ++AI;
2701     switch (getEvaluationKind(RetTy)) {
2702     case TEK_Complex: {
2703       ComplexPairTy RT =
2704         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2705       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2706                          /*isInit*/ true);
2707       break;
2708     }
2709     case TEK_Aggregate:
2710       // Do nothing; aggregrates get evaluated directly into the destination.
2711       break;
2712     case TEK_Scalar:
2713       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2714                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2715                         /*isInit*/ true);
2716       break;
2717     }
2718     break;
2719   }
2720 
2721   case ABIArgInfo::Extend:
2722   case ABIArgInfo::Direct:
2723     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2724         RetAI.getDirectOffset() == 0) {
2725       // The internal return value temp always will have pointer-to-return-type
2726       // type, just do a load.
2727 
2728       // If there is a dominating store to ReturnValue, we can elide
2729       // the load, zap the store, and usually zap the alloca.
2730       if (llvm::StoreInst *SI =
2731               findDominatingStoreToReturnValue(*this)) {
2732         // Reuse the debug location from the store unless there is
2733         // cleanup code to be emitted between the store and return
2734         // instruction.
2735         if (EmitRetDbgLoc && !AutoreleaseResult)
2736           RetDbgLoc = SI->getDebugLoc();
2737         // Get the stored value and nuke the now-dead store.
2738         RV = SI->getValueOperand();
2739         SI->eraseFromParent();
2740 
2741         // If that was the only use of the return value, nuke it as well now.
2742         auto returnValueInst = ReturnValue.getPointer();
2743         if (returnValueInst->use_empty()) {
2744           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2745             alloca->eraseFromParent();
2746             ReturnValue = Address::invalid();
2747           }
2748         }
2749 
2750       // Otherwise, we have to do a simple load.
2751       } else {
2752         RV = Builder.CreateLoad(ReturnValue);
2753       }
2754     } else {
2755       // If the value is offset in memory, apply the offset now.
2756       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2757 
2758       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2759     }
2760 
2761     // In ARC, end functions that return a retainable type with a call
2762     // to objc_autoreleaseReturnValue.
2763     if (AutoreleaseResult) {
2764 #ifndef NDEBUG
2765       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2766       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2767       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2768       // CurCodeDecl or BlockInfo.
2769       QualType RT;
2770 
2771       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2772         RT = FD->getReturnType();
2773       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2774         RT = MD->getReturnType();
2775       else if (isa<BlockDecl>(CurCodeDecl))
2776         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2777       else
2778         llvm_unreachable("Unexpected function/method type");
2779 
2780       assert(getLangOpts().ObjCAutoRefCount &&
2781              !FI.isReturnsRetained() &&
2782              RT->isObjCRetainableType());
2783 #endif
2784       RV = emitAutoreleaseOfResult(*this, RV);
2785     }
2786 
2787     break;
2788 
2789   case ABIArgInfo::Ignore:
2790     break;
2791 
2792   case ABIArgInfo::CoerceAndExpand: {
2793     auto coercionType = RetAI.getCoerceAndExpandType();
2794     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2795 
2796     // Load all of the coerced elements out into results.
2797     llvm::SmallVector<llvm::Value*, 4> results;
2798     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2799     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2800       auto coercedEltType = coercionType->getElementType(i);
2801       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2802         continue;
2803 
2804       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2805       auto elt = Builder.CreateLoad(eltAddr);
2806       results.push_back(elt);
2807     }
2808 
2809     // If we have one result, it's the single direct result type.
2810     if (results.size() == 1) {
2811       RV = results[0];
2812 
2813     // Otherwise, we need to make a first-class aggregate.
2814     } else {
2815       // Construct a return type that lacks padding elements.
2816       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2817 
2818       RV = llvm::UndefValue::get(returnType);
2819       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2820         RV = Builder.CreateInsertValue(RV, results[i], i);
2821       }
2822     }
2823     break;
2824   }
2825 
2826   case ABIArgInfo::Expand:
2827     llvm_unreachable("Invalid ABI kind for return argument");
2828   }
2829 
2830   llvm::Instruction *Ret;
2831   if (RV) {
2832     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2833       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
2834         SanitizerScope SanScope(this);
2835         llvm::Value *Cond = Builder.CreateICmpNE(
2836             RV, llvm::Constant::getNullValue(RV->getType()));
2837         llvm::Constant *StaticData[] = {
2838             EmitCheckSourceLocation(EndLoc),
2839             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2840         };
2841         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2842                   "nonnull_return", StaticData, None);
2843       }
2844     }
2845     Ret = Builder.CreateRet(RV);
2846   } else {
2847     Ret = Builder.CreateRetVoid();
2848   }
2849 
2850   if (RetDbgLoc)
2851     Ret->setDebugLoc(std::move(RetDbgLoc));
2852 }
2853 
2854 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2855   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2856   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2857 }
2858 
2859 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2860                                           QualType Ty) {
2861   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2862   // placeholders.
2863   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2864   llvm::Value *Placeholder =
2865     llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2866   Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder);
2867 
2868   // FIXME: When we generate this IR in one pass, we shouldn't need
2869   // this win32-specific alignment hack.
2870   CharUnits Align = CharUnits::fromQuantity(4);
2871 
2872   return AggValueSlot::forAddr(Address(Placeholder, Align),
2873                                Ty.getQualifiers(),
2874                                AggValueSlot::IsNotDestructed,
2875                                AggValueSlot::DoesNotNeedGCBarriers,
2876                                AggValueSlot::IsNotAliased);
2877 }
2878 
2879 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2880                                           const VarDecl *param,
2881                                           SourceLocation loc) {
2882   // StartFunction converted the ABI-lowered parameter(s) into a
2883   // local alloca.  We need to turn that into an r-value suitable
2884   // for EmitCall.
2885   Address local = GetAddrOfLocalVar(param);
2886 
2887   QualType type = param->getType();
2888 
2889   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2890          "cannot emit delegate call arguments for inalloca arguments!");
2891 
2892   // For the most part, we just need to load the alloca, except that
2893   // aggregate r-values are actually pointers to temporaries.
2894   if (type->isReferenceType())
2895     args.add(RValue::get(Builder.CreateLoad(local)), type);
2896   else
2897     args.add(convertTempToRValue(local, type, loc), type);
2898 }
2899 
2900 static bool isProvablyNull(llvm::Value *addr) {
2901   return isa<llvm::ConstantPointerNull>(addr);
2902 }
2903 
2904 static bool isProvablyNonNull(llvm::Value *addr) {
2905   return isa<llvm::AllocaInst>(addr);
2906 }
2907 
2908 /// Emit the actual writing-back of a writeback.
2909 static void emitWriteback(CodeGenFunction &CGF,
2910                           const CallArgList::Writeback &writeback) {
2911   const LValue &srcLV = writeback.Source;
2912   Address srcAddr = srcLV.getAddress();
2913   assert(!isProvablyNull(srcAddr.getPointer()) &&
2914          "shouldn't have writeback for provably null argument");
2915 
2916   llvm::BasicBlock *contBB = nullptr;
2917 
2918   // If the argument wasn't provably non-null, we need to null check
2919   // before doing the store.
2920   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2921   if (!provablyNonNull) {
2922     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2923     contBB = CGF.createBasicBlock("icr.done");
2924 
2925     llvm::Value *isNull =
2926       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2927     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2928     CGF.EmitBlock(writebackBB);
2929   }
2930 
2931   // Load the value to writeback.
2932   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2933 
2934   // Cast it back, in case we're writing an id to a Foo* or something.
2935   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
2936                                     "icr.writeback-cast");
2937 
2938   // Perform the writeback.
2939 
2940   // If we have a "to use" value, it's something we need to emit a use
2941   // of.  This has to be carefully threaded in: if it's done after the
2942   // release it's potentially undefined behavior (and the optimizer
2943   // will ignore it), and if it happens before the retain then the
2944   // optimizer could move the release there.
2945   if (writeback.ToUse) {
2946     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2947 
2948     // Retain the new value.  No need to block-copy here:  the block's
2949     // being passed up the stack.
2950     value = CGF.EmitARCRetainNonBlock(value);
2951 
2952     // Emit the intrinsic use here.
2953     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2954 
2955     // Load the old value (primitively).
2956     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2957 
2958     // Put the new value in place (primitively).
2959     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2960 
2961     // Release the old value.
2962     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2963 
2964   // Otherwise, we can just do a normal lvalue store.
2965   } else {
2966     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2967   }
2968 
2969   // Jump to the continuation block.
2970   if (!provablyNonNull)
2971     CGF.EmitBlock(contBB);
2972 }
2973 
2974 static void emitWritebacks(CodeGenFunction &CGF,
2975                            const CallArgList &args) {
2976   for (const auto &I : args.writebacks())
2977     emitWriteback(CGF, I);
2978 }
2979 
2980 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2981                                             const CallArgList &CallArgs) {
2982   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2983   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2984     CallArgs.getCleanupsToDeactivate();
2985   // Iterate in reverse to increase the likelihood of popping the cleanup.
2986   for (const auto &I : llvm::reverse(Cleanups)) {
2987     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
2988     I.IsActiveIP->eraseFromParent();
2989   }
2990 }
2991 
2992 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2993   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2994     if (uop->getOpcode() == UO_AddrOf)
2995       return uop->getSubExpr();
2996   return nullptr;
2997 }
2998 
2999 /// Emit an argument that's being passed call-by-writeback.  That is,
3000 /// we are passing the address of an __autoreleased temporary; it
3001 /// might be copy-initialized with the current value of the given
3002 /// address, but it will definitely be copied out of after the call.
3003 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3004                              const ObjCIndirectCopyRestoreExpr *CRE) {
3005   LValue srcLV;
3006 
3007   // Make an optimistic effort to emit the address as an l-value.
3008   // This can fail if the argument expression is more complicated.
3009   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3010     srcLV = CGF.EmitLValue(lvExpr);
3011 
3012   // Otherwise, just emit it as a scalar.
3013   } else {
3014     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3015 
3016     QualType srcAddrType =
3017       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3018     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3019   }
3020   Address srcAddr = srcLV.getAddress();
3021 
3022   // The dest and src types don't necessarily match in LLVM terms
3023   // because of the crazy ObjC compatibility rules.
3024 
3025   llvm::PointerType *destType =
3026     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3027 
3028   // If the address is a constant null, just pass the appropriate null.
3029   if (isProvablyNull(srcAddr.getPointer())) {
3030     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3031              CRE->getType());
3032     return;
3033   }
3034 
3035   // Create the temporary.
3036   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3037                                       CGF.getPointerAlign(),
3038                                       "icr.temp");
3039   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3040   // and that cleanup will be conditional if we can't prove that the l-value
3041   // isn't null, so we need to register a dominating point so that the cleanups
3042   // system will make valid IR.
3043   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3044 
3045   // Zero-initialize it if we're not doing a copy-initialization.
3046   bool shouldCopy = CRE->shouldCopy();
3047   if (!shouldCopy) {
3048     llvm::Value *null =
3049       llvm::ConstantPointerNull::get(
3050         cast<llvm::PointerType>(destType->getElementType()));
3051     CGF.Builder.CreateStore(null, temp);
3052   }
3053 
3054   llvm::BasicBlock *contBB = nullptr;
3055   llvm::BasicBlock *originBB = nullptr;
3056 
3057   // If the address is *not* known to be non-null, we need to switch.
3058   llvm::Value *finalArgument;
3059 
3060   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
3061   if (provablyNonNull) {
3062     finalArgument = temp.getPointer();
3063   } else {
3064     llvm::Value *isNull =
3065       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3066 
3067     finalArgument = CGF.Builder.CreateSelect(isNull,
3068                                    llvm::ConstantPointerNull::get(destType),
3069                                              temp.getPointer(), "icr.argument");
3070 
3071     // If we need to copy, then the load has to be conditional, which
3072     // means we need control flow.
3073     if (shouldCopy) {
3074       originBB = CGF.Builder.GetInsertBlock();
3075       contBB = CGF.createBasicBlock("icr.cont");
3076       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3077       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3078       CGF.EmitBlock(copyBB);
3079       condEval.begin(CGF);
3080     }
3081   }
3082 
3083   llvm::Value *valueToUse = nullptr;
3084 
3085   // Perform a copy if necessary.
3086   if (shouldCopy) {
3087     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3088     assert(srcRV.isScalar());
3089 
3090     llvm::Value *src = srcRV.getScalarVal();
3091     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3092                                     "icr.cast");
3093 
3094     // Use an ordinary store, not a store-to-lvalue.
3095     CGF.Builder.CreateStore(src, temp);
3096 
3097     // If optimization is enabled, and the value was held in a
3098     // __strong variable, we need to tell the optimizer that this
3099     // value has to stay alive until we're doing the store back.
3100     // This is because the temporary is effectively unretained,
3101     // and so otherwise we can violate the high-level semantics.
3102     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3103         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3104       valueToUse = src;
3105     }
3106   }
3107 
3108   // Finish the control flow if we needed it.
3109   if (shouldCopy && !provablyNonNull) {
3110     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3111     CGF.EmitBlock(contBB);
3112 
3113     // Make a phi for the value to intrinsically use.
3114     if (valueToUse) {
3115       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3116                                                       "icr.to-use");
3117       phiToUse->addIncoming(valueToUse, copyBB);
3118       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3119                             originBB);
3120       valueToUse = phiToUse;
3121     }
3122 
3123     condEval.end(CGF);
3124   }
3125 
3126   args.addWriteback(srcLV, temp, valueToUse);
3127   args.add(RValue::get(finalArgument), CRE->getType());
3128 }
3129 
3130 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3131   assert(!StackBase && !StackCleanup.isValid());
3132 
3133   // Save the stack.
3134   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3135   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3136 }
3137 
3138 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3139   if (StackBase) {
3140     // Restore the stack after the call.
3141     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3142     CGF.Builder.CreateCall(F, StackBase);
3143   }
3144 }
3145 
3146 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3147                                           SourceLocation ArgLoc,
3148                                           const FunctionDecl *FD,
3149                                           unsigned ParmNum) {
3150   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
3151     return;
3152   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
3153   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3154   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
3155   if (!NNAttr)
3156     return;
3157   SanitizerScope SanScope(this);
3158   assert(RV.isScalar());
3159   llvm::Value *V = RV.getScalarVal();
3160   llvm::Value *Cond =
3161       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3162   llvm::Constant *StaticData[] = {
3163       EmitCheckSourceLocation(ArgLoc),
3164       EmitCheckSourceLocation(NNAttr->getLocation()),
3165       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3166   };
3167   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
3168                 "nonnull_arg", StaticData, None);
3169 }
3170 
3171 void CodeGenFunction::EmitCallArgs(
3172     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3173     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3174     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) {
3175   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3176 
3177   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) {
3178     if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams())
3179       return;
3180     auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3181     if (PS == nullptr)
3182       return;
3183 
3184     const auto &Context = getContext();
3185     auto SizeTy = Context.getSizeType();
3186     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3187     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T);
3188     Args.add(RValue::get(V), SizeTy);
3189   };
3190 
3191   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3192   // because arguments are destroyed left to right in the callee.
3193   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3194     // Insert a stack save if we're going to need any inalloca args.
3195     bool HasInAllocaArgs = false;
3196     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3197          I != E && !HasInAllocaArgs; ++I)
3198       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3199     if (HasInAllocaArgs) {
3200       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3201       Args.allocateArgumentMemory(*this);
3202     }
3203 
3204     // Evaluate each argument.
3205     size_t CallArgsStart = Args.size();
3206     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
3207       CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
3208       MaybeEmitImplicitObjectSize(I, *Arg);
3209       EmitCallArg(Args, *Arg, ArgTypes[I]);
3210       EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
3211                           CalleeDecl, ParamsToSkip + I);
3212     }
3213 
3214     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3215     // IR function.
3216     std::reverse(Args.begin() + CallArgsStart, Args.end());
3217     return;
3218   }
3219 
3220   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3221     CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
3222     assert(Arg != ArgRange.end());
3223     EmitCallArg(Args, *Arg, ArgTypes[I]);
3224     EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
3225                         CalleeDecl, ParamsToSkip + I);
3226     MaybeEmitImplicitObjectSize(I, *Arg);
3227   }
3228 }
3229 
3230 namespace {
3231 
3232 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3233   DestroyUnpassedArg(Address Addr, QualType Ty)
3234       : Addr(Addr), Ty(Ty) {}
3235 
3236   Address Addr;
3237   QualType Ty;
3238 
3239   void Emit(CodeGenFunction &CGF, Flags flags) override {
3240     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3241     assert(!Dtor->isTrivial());
3242     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3243                               /*Delegating=*/false, Addr);
3244   }
3245 };
3246 
3247 struct DisableDebugLocationUpdates {
3248   CodeGenFunction &CGF;
3249   bool disabledDebugInfo;
3250   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3251     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3252       CGF.disableDebugInfo();
3253   }
3254   ~DisableDebugLocationUpdates() {
3255     if (disabledDebugInfo)
3256       CGF.enableDebugInfo();
3257   }
3258 };
3259 
3260 } // end anonymous namespace
3261 
3262 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3263                                   QualType type) {
3264   DisableDebugLocationUpdates Dis(*this, E);
3265   if (const ObjCIndirectCopyRestoreExpr *CRE
3266         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3267     assert(getLangOpts().ObjCAutoRefCount);
3268     assert(getContext().hasSameType(E->getType(), type));
3269     return emitWritebackArg(*this, args, CRE);
3270   }
3271 
3272   assert(type->isReferenceType() == E->isGLValue() &&
3273          "reference binding to unmaterialized r-value!");
3274 
3275   if (E->isGLValue()) {
3276     assert(E->getObjectKind() == OK_Ordinary);
3277     return args.add(EmitReferenceBindingToExpr(E), type);
3278   }
3279 
3280   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3281 
3282   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3283   // However, we still have to push an EH-only cleanup in case we unwind before
3284   // we make it to the call.
3285   if (HasAggregateEvalKind &&
3286       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3287     // If we're using inalloca, use the argument memory.  Otherwise, use a
3288     // temporary.
3289     AggValueSlot Slot;
3290     if (args.isUsingInAlloca())
3291       Slot = createPlaceholderSlot(*this, type);
3292     else
3293       Slot = CreateAggTemp(type, "agg.tmp");
3294 
3295     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3296     bool DestroyedInCallee =
3297         RD && RD->hasNonTrivialDestructor() &&
3298         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
3299     if (DestroyedInCallee)
3300       Slot.setExternallyDestructed();
3301 
3302     EmitAggExpr(E, Slot);
3303     RValue RV = Slot.asRValue();
3304     args.add(RV, type);
3305 
3306     if (DestroyedInCallee) {
3307       // Create a no-op GEP between the placeholder and the cleanup so we can
3308       // RAUW it successfully.  It also serves as a marker of the first
3309       // instruction where the cleanup is active.
3310       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3311                                               type);
3312       // This unreachable is a temporary marker which will be removed later.
3313       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3314       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3315     }
3316     return;
3317   }
3318 
3319   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3320       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3321     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3322     assert(L.isSimple());
3323     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
3324       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
3325     } else {
3326       // We can't represent a misaligned lvalue in the CallArgList, so copy
3327       // to an aligned temporary now.
3328       Address tmp = CreateMemTemp(type);
3329       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
3330       args.add(RValue::getAggregate(tmp), type);
3331     }
3332     return;
3333   }
3334 
3335   args.add(EmitAnyExprToTemp(E), type);
3336 }
3337 
3338 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3339   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3340   // implicitly widens null pointer constants that are arguments to varargs
3341   // functions to pointer-sized ints.
3342   if (!getTarget().getTriple().isOSWindows())
3343     return Arg->getType();
3344 
3345   if (Arg->getType()->isIntegerType() &&
3346       getContext().getTypeSize(Arg->getType()) <
3347           getContext().getTargetInfo().getPointerWidth(0) &&
3348       Arg->isNullPointerConstant(getContext(),
3349                                  Expr::NPC_ValueDependentIsNotNull)) {
3350     return getContext().getIntPtrType();
3351   }
3352 
3353   return Arg->getType();
3354 }
3355 
3356 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3357 // optimizer it can aggressively ignore unwind edges.
3358 void
3359 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3360   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3361       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3362     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3363                       CGM.getNoObjCARCExceptionsMetadata());
3364 }
3365 
3366 /// Emits a call to the given no-arguments nounwind runtime function.
3367 llvm::CallInst *
3368 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3369                                          const llvm::Twine &name) {
3370   return EmitNounwindRuntimeCall(callee, None, name);
3371 }
3372 
3373 /// Emits a call to the given nounwind runtime function.
3374 llvm::CallInst *
3375 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3376                                          ArrayRef<llvm::Value*> args,
3377                                          const llvm::Twine &name) {
3378   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3379   call->setDoesNotThrow();
3380   return call;
3381 }
3382 
3383 /// Emits a simple call (never an invoke) to the given no-arguments
3384 /// runtime function.
3385 llvm::CallInst *
3386 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3387                                  const llvm::Twine &name) {
3388   return EmitRuntimeCall(callee, None, name);
3389 }
3390 
3391 // Calls which may throw must have operand bundles indicating which funclet
3392 // they are nested within.
3393 static void
3394 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad,
3395                      SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
3396   // There is no need for a funclet operand bundle if we aren't inside a
3397   // funclet.
3398   if (!CurrentFuncletPad)
3399     return;
3400 
3401   // Skip intrinsics which cannot throw.
3402   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3403   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3404     return;
3405 
3406   BundleList.emplace_back("funclet", CurrentFuncletPad);
3407 }
3408 
3409 /// Emits a simple call (never an invoke) to the given runtime function.
3410 llvm::CallInst *
3411 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3412                                  ArrayRef<llvm::Value*> args,
3413                                  const llvm::Twine &name) {
3414   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3415   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3416 
3417   llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name);
3418   call->setCallingConv(getRuntimeCC());
3419   return call;
3420 }
3421 
3422 /// Emits a call or invoke to the given noreturn runtime function.
3423 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3424                                                ArrayRef<llvm::Value*> args) {
3425   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3426   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3427 
3428   if (getInvokeDest()) {
3429     llvm::InvokeInst *invoke =
3430       Builder.CreateInvoke(callee,
3431                            getUnreachableBlock(),
3432                            getInvokeDest(),
3433                            args,
3434                            BundleList);
3435     invoke->setDoesNotReturn();
3436     invoke->setCallingConv(getRuntimeCC());
3437   } else {
3438     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3439     call->setDoesNotReturn();
3440     call->setCallingConv(getRuntimeCC());
3441     Builder.CreateUnreachable();
3442   }
3443 }
3444 
3445 /// Emits a call or invoke instruction to the given nullary runtime function.
3446 llvm::CallSite
3447 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3448                                          const Twine &name) {
3449   return EmitRuntimeCallOrInvoke(callee, None, name);
3450 }
3451 
3452 /// Emits a call or invoke instruction to the given runtime function.
3453 llvm::CallSite
3454 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3455                                          ArrayRef<llvm::Value*> args,
3456                                          const Twine &name) {
3457   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3458   callSite.setCallingConv(getRuntimeCC());
3459   return callSite;
3460 }
3461 
3462 /// Emits a call or invoke instruction to the given function, depending
3463 /// on the current state of the EH stack.
3464 llvm::CallSite
3465 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3466                                   ArrayRef<llvm::Value *> Args,
3467                                   const Twine &Name) {
3468   llvm::BasicBlock *InvokeDest = getInvokeDest();
3469   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3470   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3471 
3472   llvm::Instruction *Inst;
3473   if (!InvokeDest)
3474     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3475   else {
3476     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3477     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3478                                 Name);
3479     EmitBlock(ContBB);
3480   }
3481 
3482   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3483   // optimizer it can aggressively ignore unwind edges.
3484   if (CGM.getLangOpts().ObjCAutoRefCount)
3485     AddObjCARCExceptionMetadata(Inst);
3486 
3487   return llvm::CallSite(Inst);
3488 }
3489 
3490 /// \brief Store a non-aggregate value to an address to initialize it.  For
3491 /// initialization, a non-atomic store will be used.
3492 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3493                                         LValue Dst) {
3494   if (Src.isScalar())
3495     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3496   else
3497     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3498 }
3499 
3500 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3501                                                   llvm::Value *New) {
3502   DeferredReplacements.push_back(std::make_pair(Old, New));
3503 }
3504 
3505 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3506                                  llvm::Value *Callee,
3507                                  ReturnValueSlot ReturnValue,
3508                                  const CallArgList &CallArgs,
3509                                  CGCalleeInfo CalleeInfo,
3510                                  llvm::Instruction **callOrInvoke) {
3511   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3512 
3513   // Handle struct-return functions by passing a pointer to the
3514   // location that we would like to return into.
3515   QualType RetTy = CallInfo.getReturnType();
3516   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3517 
3518   llvm::FunctionType *IRFuncTy =
3519     cast<llvm::FunctionType>(
3520                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3521 
3522   // If we're using inalloca, insert the allocation after the stack save.
3523   // FIXME: Do this earlier rather than hacking it in here!
3524   Address ArgMemory = Address::invalid();
3525   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3526   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3527     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
3528     llvm::Instruction *IP = CallArgs.getStackBase();
3529     llvm::AllocaInst *AI;
3530     if (IP) {
3531       IP = IP->getNextNode();
3532       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3533     } else {
3534       AI = CreateTempAlloca(ArgStruct, "argmem");
3535     }
3536     auto Align = CallInfo.getArgStructAlignment();
3537     AI->setAlignment(Align.getQuantity());
3538     AI->setUsedWithInAlloca(true);
3539     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3540     ArgMemory = Address(AI, Align);
3541   }
3542 
3543   // Helper function to drill into the inalloca allocation.
3544   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3545     auto FieldOffset =
3546       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3547     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3548   };
3549 
3550   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3551   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3552 
3553   // If the call returns a temporary with struct return, create a temporary
3554   // alloca to hold the result, unless one is given to us.
3555   Address SRetPtr = Address::invalid();
3556   size_t UnusedReturnSize = 0;
3557   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3558     if (!ReturnValue.isNull()) {
3559       SRetPtr = ReturnValue.getValue();
3560     } else {
3561       SRetPtr = CreateMemTemp(RetTy);
3562       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3563         uint64_t size =
3564             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3565         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3566           UnusedReturnSize = size;
3567       }
3568     }
3569     if (IRFunctionArgs.hasSRetArg()) {
3570       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3571     } else if (RetAI.isInAlloca()) {
3572       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3573       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3574     }
3575   }
3576 
3577   Address swiftErrorTemp = Address::invalid();
3578   Address swiftErrorArg = Address::invalid();
3579 
3580   assert(CallInfo.arg_size() == CallArgs.size() &&
3581          "Mismatch between function signature & arguments.");
3582   unsigned ArgNo = 0;
3583   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3584   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3585        I != E; ++I, ++info_it, ++ArgNo) {
3586     const ABIArgInfo &ArgInfo = info_it->info;
3587     RValue RV = I->RV;
3588 
3589     // Insert a padding argument to ensure proper alignment.
3590     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3591       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3592           llvm::UndefValue::get(ArgInfo.getPaddingType());
3593 
3594     unsigned FirstIRArg, NumIRArgs;
3595     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3596 
3597     switch (ArgInfo.getKind()) {
3598     case ABIArgInfo::InAlloca: {
3599       assert(NumIRArgs == 0);
3600       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3601       if (RV.isAggregate()) {
3602         // Replace the placeholder with the appropriate argument slot GEP.
3603         llvm::Instruction *Placeholder =
3604             cast<llvm::Instruction>(RV.getAggregatePointer());
3605         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3606         Builder.SetInsertPoint(Placeholder);
3607         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3608         Builder.restoreIP(IP);
3609         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3610       } else {
3611         // Store the RValue into the argument struct.
3612         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3613         unsigned AS = Addr.getType()->getPointerAddressSpace();
3614         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3615         // There are some cases where a trivial bitcast is not avoidable.  The
3616         // definition of a type later in a translation unit may change it's type
3617         // from {}* to (%struct.foo*)*.
3618         if (Addr.getType() != MemType)
3619           Addr = Builder.CreateBitCast(Addr, MemType);
3620         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3621         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3622       }
3623       break;
3624     }
3625 
3626     case ABIArgInfo::Indirect: {
3627       assert(NumIRArgs == 1);
3628       if (RV.isScalar() || RV.isComplex()) {
3629         // Make a temporary alloca to pass the argument.
3630         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3631         IRCallArgs[FirstIRArg] = Addr.getPointer();
3632 
3633         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3634         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3635       } else {
3636         // We want to avoid creating an unnecessary temporary+copy here;
3637         // however, we need one in three cases:
3638         // 1. If the argument is not byval, and we are required to copy the
3639         //    source.  (This case doesn't occur on any common architecture.)
3640         // 2. If the argument is byval, RV is not sufficiently aligned, and
3641         //    we cannot force it to be sufficiently aligned.
3642         // 3. If the argument is byval, but RV is located in an address space
3643         //    different than that of the argument (0).
3644         Address Addr = RV.getAggregateAddress();
3645         CharUnits Align = ArgInfo.getIndirectAlign();
3646         const llvm::DataLayout *TD = &CGM.getDataLayout();
3647         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3648         const unsigned ArgAddrSpace =
3649             (FirstIRArg < IRFuncTy->getNumParams()
3650                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3651                  : 0);
3652         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3653             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3654              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3655                                               Align.getQuantity(), *TD)
3656                < Align.getQuantity()) ||
3657             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3658           // Create an aligned temporary, and copy to it.
3659           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3660           IRCallArgs[FirstIRArg] = AI.getPointer();
3661           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3662         } else {
3663           // Skip the extra memcpy call.
3664           IRCallArgs[FirstIRArg] = Addr.getPointer();
3665         }
3666       }
3667       break;
3668     }
3669 
3670     case ABIArgInfo::Ignore:
3671       assert(NumIRArgs == 0);
3672       break;
3673 
3674     case ABIArgInfo::Extend:
3675     case ABIArgInfo::Direct: {
3676       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3677           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3678           ArgInfo.getDirectOffset() == 0) {
3679         assert(NumIRArgs == 1);
3680         llvm::Value *V;
3681         if (RV.isScalar())
3682           V = RV.getScalarVal();
3683         else
3684           V = Builder.CreateLoad(RV.getAggregateAddress());
3685 
3686         // Implement swifterror by copying into a new swifterror argument.
3687         // We'll write back in the normal path out of the call.
3688         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
3689               == ParameterABI::SwiftErrorResult) {
3690           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
3691 
3692           QualType pointeeTy = I->Ty->getPointeeType();
3693           swiftErrorArg =
3694             Address(V, getContext().getTypeAlignInChars(pointeeTy));
3695 
3696           swiftErrorTemp =
3697             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3698           V = swiftErrorTemp.getPointer();
3699           cast<llvm::AllocaInst>(V)->setSwiftError(true);
3700 
3701           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
3702           Builder.CreateStore(errorValue, swiftErrorTemp);
3703         }
3704 
3705         // We might have to widen integers, but we should never truncate.
3706         if (ArgInfo.getCoerceToType() != V->getType() &&
3707             V->getType()->isIntegerTy())
3708           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3709 
3710         // If the argument doesn't match, perform a bitcast to coerce it.  This
3711         // can happen due to trivial type mismatches.
3712         if (FirstIRArg < IRFuncTy->getNumParams() &&
3713             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3714           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3715 
3716         IRCallArgs[FirstIRArg] = V;
3717         break;
3718       }
3719 
3720       // FIXME: Avoid the conversion through memory if possible.
3721       Address Src = Address::invalid();
3722       if (RV.isScalar() || RV.isComplex()) {
3723         Src = CreateMemTemp(I->Ty, "coerce");
3724         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3725         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3726       } else {
3727         Src = RV.getAggregateAddress();
3728       }
3729 
3730       // If the value is offset in memory, apply the offset now.
3731       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3732 
3733       // Fast-isel and the optimizer generally like scalar values better than
3734       // FCAs, so we flatten them if this is safe to do for this argument.
3735       llvm::StructType *STy =
3736             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3737       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3738         llvm::Type *SrcTy = Src.getType()->getElementType();
3739         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3740         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3741 
3742         // If the source type is smaller than the destination type of the
3743         // coerce-to logic, copy the source value into a temp alloca the size
3744         // of the destination type to allow loading all of it. The bits past
3745         // the source value are left undef.
3746         if (SrcSize < DstSize) {
3747           Address TempAlloca
3748             = CreateTempAlloca(STy, Src.getAlignment(),
3749                                Src.getName() + ".coerce");
3750           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3751           Src = TempAlloca;
3752         } else {
3753           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3754         }
3755 
3756         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3757         assert(NumIRArgs == STy->getNumElements());
3758         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3759           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3760           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3761           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3762           IRCallArgs[FirstIRArg + i] = LI;
3763         }
3764       } else {
3765         // In the simple case, just pass the coerced loaded value.
3766         assert(NumIRArgs == 1);
3767         IRCallArgs[FirstIRArg] =
3768           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3769       }
3770 
3771       break;
3772     }
3773 
3774     case ABIArgInfo::CoerceAndExpand: {
3775       auto coercionType = ArgInfo.getCoerceAndExpandType();
3776       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
3777 
3778       llvm::Value *tempSize = nullptr;
3779       Address addr = Address::invalid();
3780       if (RV.isAggregate()) {
3781         addr = RV.getAggregateAddress();
3782       } else {
3783         assert(RV.isScalar()); // complex should always just be direct
3784 
3785         llvm::Type *scalarType = RV.getScalarVal()->getType();
3786         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
3787         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
3788 
3789         tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize);
3790 
3791         // Materialize to a temporary.
3792         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
3793                  CharUnits::fromQuantity(std::max(layout->getAlignment(),
3794                                                   scalarAlign)));
3795         EmitLifetimeStart(scalarSize, addr.getPointer());
3796 
3797         Builder.CreateStore(RV.getScalarVal(), addr);
3798       }
3799 
3800       addr = Builder.CreateElementBitCast(addr, coercionType);
3801 
3802       unsigned IRArgPos = FirstIRArg;
3803       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3804         llvm::Type *eltType = coercionType->getElementType(i);
3805         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
3806         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
3807         llvm::Value *elt = Builder.CreateLoad(eltAddr);
3808         IRCallArgs[IRArgPos++] = elt;
3809       }
3810       assert(IRArgPos == FirstIRArg + NumIRArgs);
3811 
3812       if (tempSize) {
3813         EmitLifetimeEnd(tempSize, addr.getPointer());
3814       }
3815 
3816       break;
3817     }
3818 
3819     case ABIArgInfo::Expand:
3820       unsigned IRArgPos = FirstIRArg;
3821       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3822       assert(IRArgPos == FirstIRArg + NumIRArgs);
3823       break;
3824     }
3825   }
3826 
3827   if (ArgMemory.isValid()) {
3828     llvm::Value *Arg = ArgMemory.getPointer();
3829     if (CallInfo.isVariadic()) {
3830       // When passing non-POD arguments by value to variadic functions, we will
3831       // end up with a variadic prototype and an inalloca call site.  In such
3832       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3833       // the callee.
3834       unsigned CalleeAS =
3835           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3836       Callee = Builder.CreateBitCast(
3837           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3838     } else {
3839       llvm::Type *LastParamTy =
3840           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3841       if (Arg->getType() != LastParamTy) {
3842 #ifndef NDEBUG
3843         // Assert that these structs have equivalent element types.
3844         llvm::StructType *FullTy = CallInfo.getArgStruct();
3845         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3846             cast<llvm::PointerType>(LastParamTy)->getElementType());
3847         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3848         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3849                                                 DE = DeclaredTy->element_end(),
3850                                                 FI = FullTy->element_begin();
3851              DI != DE; ++DI, ++FI)
3852           assert(*DI == *FI);
3853 #endif
3854         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3855       }
3856     }
3857     assert(IRFunctionArgs.hasInallocaArg());
3858     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3859   }
3860 
3861   if (!CallArgs.getCleanupsToDeactivate().empty())
3862     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3863 
3864   // If the callee is a bitcast of a function to a varargs pointer to function
3865   // type, check to see if we can remove the bitcast.  This handles some cases
3866   // with unprototyped functions.
3867   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3868     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3869       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3870       llvm::FunctionType *CurFT =
3871         cast<llvm::FunctionType>(CurPT->getElementType());
3872       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3873 
3874       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3875           ActualFT->getReturnType() == CurFT->getReturnType() &&
3876           ActualFT->getNumParams() == CurFT->getNumParams() &&
3877           ActualFT->getNumParams() == IRCallArgs.size() &&
3878           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3879         bool ArgsMatch = true;
3880         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3881           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3882             ArgsMatch = false;
3883             break;
3884           }
3885 
3886         // Strip the cast if we can get away with it.  This is a nice cleanup,
3887         // but also allows us to inline the function at -O0 if it is marked
3888         // always_inline.
3889         if (ArgsMatch)
3890           Callee = CalleeF;
3891       }
3892     }
3893 
3894   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3895   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3896     // Inalloca argument can have different type.
3897     if (IRFunctionArgs.hasInallocaArg() &&
3898         i == IRFunctionArgs.getInallocaArgNo())
3899       continue;
3900     if (i < IRFuncTy->getNumParams())
3901       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3902   }
3903 
3904   unsigned CallingConv;
3905   CodeGen::AttributeListType AttributeList;
3906   CGM.ConstructAttributeList(Callee->getName(), CallInfo, CalleeInfo,
3907                              AttributeList, CallingConv,
3908                              /*AttrOnCallSite=*/true);
3909   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3910                                                      AttributeList);
3911 
3912   bool CannotThrow;
3913   if (currentFunctionUsesSEHTry()) {
3914     // SEH cares about asynchronous exceptions, everything can "throw."
3915     CannotThrow = false;
3916   } else if (isCleanupPadScope() &&
3917              EHPersonality::get(*this).isMSVCXXPersonality()) {
3918     // The MSVC++ personality will implicitly terminate the program if an
3919     // exception is thrown.  An unwind edge cannot be reached.
3920     CannotThrow = true;
3921   } else {
3922     // Otherwise, nowunind callsites will never throw.
3923     CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3924                                      llvm::Attribute::NoUnwind);
3925   }
3926   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
3927 
3928   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3929   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3930 
3931   llvm::CallSite CS;
3932   if (!InvokeDest) {
3933     CS = Builder.CreateCall(Callee, IRCallArgs, BundleList);
3934   } else {
3935     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3936     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs,
3937                               BundleList);
3938     EmitBlock(Cont);
3939   }
3940   if (callOrInvoke)
3941     *callOrInvoke = CS.getInstruction();
3942 
3943   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3944       !CS.hasFnAttr(llvm::Attribute::NoInline))
3945     Attrs =
3946         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3947                            llvm::Attribute::AlwaysInline);
3948 
3949   // Disable inlining inside SEH __try blocks.
3950   if (isSEHTryScope())
3951     Attrs =
3952         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3953                            llvm::Attribute::NoInline);
3954 
3955   CS.setAttributes(Attrs);
3956   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3957 
3958   // Insert instrumentation or attach profile metadata at indirect call sites.
3959   // For more details, see the comment before the definition of
3960   // IPVK_IndirectCallTarget in InstrProfData.inc.
3961   if (!CS.getCalledFunction())
3962     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
3963                      CS.getInstruction(), Callee);
3964 
3965   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3966   // optimizer it can aggressively ignore unwind edges.
3967   if (CGM.getLangOpts().ObjCAutoRefCount)
3968     AddObjCARCExceptionMetadata(CS.getInstruction());
3969 
3970   // If the call doesn't return, finish the basic block and clear the
3971   // insertion point; this allows the rest of IRgen to discard
3972   // unreachable code.
3973   if (CS.doesNotReturn()) {
3974     if (UnusedReturnSize)
3975       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3976                       SRetPtr.getPointer());
3977 
3978     Builder.CreateUnreachable();
3979     Builder.ClearInsertionPoint();
3980 
3981     // FIXME: For now, emit a dummy basic block because expr emitters in
3982     // generally are not ready to handle emitting expressions at unreachable
3983     // points.
3984     EnsureInsertPoint();
3985 
3986     // Return a reasonable RValue.
3987     return GetUndefRValue(RetTy);
3988   }
3989 
3990   llvm::Instruction *CI = CS.getInstruction();
3991   if (!CI->getType()->isVoidTy())
3992     CI->setName("call");
3993 
3994   // Perform the swifterror writeback.
3995   if (swiftErrorTemp.isValid()) {
3996     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
3997     Builder.CreateStore(errorResult, swiftErrorArg);
3998   }
3999 
4000   // Emit any writebacks immediately.  Arguably this should happen
4001   // after any return-value munging.
4002   if (CallArgs.hasWritebacks())
4003     emitWritebacks(*this, CallArgs);
4004 
4005   // The stack cleanup for inalloca arguments has to run out of the normal
4006   // lexical order, so deactivate it and run it manually here.
4007   CallArgs.freeArgumentMemory(*this);
4008 
4009   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4010     const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
4011     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4012       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4013   }
4014 
4015   RValue Ret = [&] {
4016     switch (RetAI.getKind()) {
4017     case ABIArgInfo::CoerceAndExpand: {
4018       auto coercionType = RetAI.getCoerceAndExpandType();
4019       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4020 
4021       Address addr = SRetPtr;
4022       addr = Builder.CreateElementBitCast(addr, coercionType);
4023 
4024       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4025       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4026 
4027       unsigned unpaddedIndex = 0;
4028       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4029         llvm::Type *eltType = coercionType->getElementType(i);
4030         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4031         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4032         llvm::Value *elt = CI;
4033         if (requiresExtract)
4034           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4035         else
4036           assert(unpaddedIndex == 0);
4037         Builder.CreateStore(elt, eltAddr);
4038       }
4039       // FALLTHROUGH
4040     }
4041 
4042     case ABIArgInfo::InAlloca:
4043     case ABIArgInfo::Indirect: {
4044       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4045       if (UnusedReturnSize)
4046         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4047                         SRetPtr.getPointer());
4048       return ret;
4049     }
4050 
4051     case ABIArgInfo::Ignore:
4052       // If we are ignoring an argument that had a result, make sure to
4053       // construct the appropriate return value for our caller.
4054       return GetUndefRValue(RetTy);
4055 
4056     case ABIArgInfo::Extend:
4057     case ABIArgInfo::Direct: {
4058       llvm::Type *RetIRTy = ConvertType(RetTy);
4059       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4060         switch (getEvaluationKind(RetTy)) {
4061         case TEK_Complex: {
4062           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4063           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4064           return RValue::getComplex(std::make_pair(Real, Imag));
4065         }
4066         case TEK_Aggregate: {
4067           Address DestPtr = ReturnValue.getValue();
4068           bool DestIsVolatile = ReturnValue.isVolatile();
4069 
4070           if (!DestPtr.isValid()) {
4071             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4072             DestIsVolatile = false;
4073           }
4074           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4075           return RValue::getAggregate(DestPtr);
4076         }
4077         case TEK_Scalar: {
4078           // If the argument doesn't match, perform a bitcast to coerce it.  This
4079           // can happen due to trivial type mismatches.
4080           llvm::Value *V = CI;
4081           if (V->getType() != RetIRTy)
4082             V = Builder.CreateBitCast(V, RetIRTy);
4083           return RValue::get(V);
4084         }
4085         }
4086         llvm_unreachable("bad evaluation kind");
4087       }
4088 
4089       Address DestPtr = ReturnValue.getValue();
4090       bool DestIsVolatile = ReturnValue.isVolatile();
4091 
4092       if (!DestPtr.isValid()) {
4093         DestPtr = CreateMemTemp(RetTy, "coerce");
4094         DestIsVolatile = false;
4095       }
4096 
4097       // If the value is offset in memory, apply the offset now.
4098       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4099       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4100 
4101       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4102     }
4103 
4104     case ABIArgInfo::Expand:
4105       llvm_unreachable("Invalid ABI kind for return argument");
4106     }
4107 
4108     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4109   } ();
4110 
4111   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
4112 
4113   if (Ret.isScalar() && TargetDecl) {
4114     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4115       llvm::Value *OffsetValue = nullptr;
4116       if (const auto *Offset = AA->getOffset())
4117         OffsetValue = EmitScalarExpr(Offset);
4118 
4119       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4120       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4121       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4122                               OffsetValue);
4123     }
4124   }
4125 
4126   return Ret;
4127 }
4128 
4129 /* VarArg handling */
4130 
4131 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4132   VAListAddr = VE->isMicrosoftABI()
4133                  ? EmitMSVAListRef(VE->getSubExpr())
4134                  : EmitVAListRef(VE->getSubExpr());
4135   QualType Ty = VE->getType();
4136   if (VE->isMicrosoftABI())
4137     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4138   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4139 }
4140