1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 /***/
47 
48 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
49   switch (CC) {
50   default: return llvm::CallingConv::C;
51   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
52   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
53   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
54   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
55   case CC_Win64: return llvm::CallingConv::Win64;
56   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
57   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
58   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
59   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
60   // TODO: Add support for __pascal to LLVM.
61   case CC_X86Pascal: return llvm::CallingConv::C;
62   // TODO: Add support for __vectorcall to LLVM.
63   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
64   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
65   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
66   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
67   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
68   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
69   case CC_Swift: return llvm::CallingConv::Swift;
70   case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
71   }
72 }
73 
74 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
75 /// qualification. Either or both of RD and MD may be null. A null RD indicates
76 /// that there is no meaningful 'this' type, and a null MD can occur when
77 /// calling a method pointer.
78 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
79                                          const CXXMethodDecl *MD) {
80   QualType RecTy;
81   if (RD)
82     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
83   else
84     RecTy = Context.VoidTy;
85 
86   if (MD)
87     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
88   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
89 }
90 
91 /// Returns the canonical formal type of the given C++ method.
92 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
93   return MD->getType()->getCanonicalTypeUnqualified()
94            .getAs<FunctionProtoType>();
95 }
96 
97 /// Returns the "extra-canonicalized" return type, which discards
98 /// qualifiers on the return type.  Codegen doesn't care about them,
99 /// and it makes ABI code a little easier to be able to assume that
100 /// all parameter and return types are top-level unqualified.
101 static CanQualType GetReturnType(QualType RetTy) {
102   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
103 }
104 
105 /// Arrange the argument and result information for a value of the given
106 /// unprototyped freestanding function type.
107 const CGFunctionInfo &
108 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
109   // When translating an unprototyped function type, always use a
110   // variadic type.
111   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
112                                  /*instanceMethod=*/false,
113                                  /*chainCall=*/false, None,
114                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
115 }
116 
117 static void addExtParameterInfosForCall(
118          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
119                                         const FunctionProtoType *proto,
120                                         unsigned prefixArgs,
121                                         unsigned totalArgs) {
122   assert(proto->hasExtParameterInfos());
123   assert(paramInfos.size() <= prefixArgs);
124   assert(proto->getNumParams() + prefixArgs <= totalArgs);
125 
126   paramInfos.reserve(totalArgs);
127 
128   // Add default infos for any prefix args that don't already have infos.
129   paramInfos.resize(prefixArgs);
130 
131   // Add infos for the prototype.
132   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
133     paramInfos.push_back(ParamInfo);
134     // pass_object_size params have no parameter info.
135     if (ParamInfo.hasPassObjectSize())
136       paramInfos.emplace_back();
137   }
138 
139   assert(paramInfos.size() <= totalArgs &&
140          "Did we forget to insert pass_object_size args?");
141   // Add default infos for the variadic and/or suffix arguments.
142   paramInfos.resize(totalArgs);
143 }
144 
145 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
146 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
147 static void appendParameterTypes(const CodeGenTypes &CGT,
148                                  SmallVectorImpl<CanQualType> &prefix,
149               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
150                                  CanQual<FunctionProtoType> FPT) {
151   // Fast path: don't touch param info if we don't need to.
152   if (!FPT->hasExtParameterInfos()) {
153     assert(paramInfos.empty() &&
154            "We have paramInfos, but the prototype doesn't?");
155     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
156     return;
157   }
158 
159   unsigned PrefixSize = prefix.size();
160   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
161   // parameters; the only thing that can change this is the presence of
162   // pass_object_size. So, we preallocate for the common case.
163   prefix.reserve(prefix.size() + FPT->getNumParams());
164 
165   auto ExtInfos = FPT->getExtParameterInfos();
166   assert(ExtInfos.size() == FPT->getNumParams());
167   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
168     prefix.push_back(FPT->getParamType(I));
169     if (ExtInfos[I].hasPassObjectSize())
170       prefix.push_back(CGT.getContext().getSizeType());
171   }
172 
173   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
174                               prefix.size());
175 }
176 
177 /// Arrange the LLVM function layout for a value of the given function
178 /// type, on top of any implicit parameters already stored.
179 static const CGFunctionInfo &
180 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
181                         SmallVectorImpl<CanQualType> &prefix,
182                         CanQual<FunctionProtoType> FTP) {
183   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
184   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
185   // FIXME: Kill copy.
186   appendParameterTypes(CGT, prefix, paramInfos, FTP);
187   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
188 
189   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
190                                      /*chainCall=*/false, prefix,
191                                      FTP->getExtInfo(), paramInfos,
192                                      Required);
193 }
194 
195 /// Arrange the argument and result information for a value of the
196 /// given freestanding function type.
197 const CGFunctionInfo &
198 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
199   SmallVector<CanQualType, 16> argTypes;
200   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
201                                    FTP);
202 }
203 
204 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
205                                                bool IsWindows) {
206   // Set the appropriate calling convention for the Function.
207   if (D->hasAttr<StdCallAttr>())
208     return CC_X86StdCall;
209 
210   if (D->hasAttr<FastCallAttr>())
211     return CC_X86FastCall;
212 
213   if (D->hasAttr<RegCallAttr>())
214     return CC_X86RegCall;
215 
216   if (D->hasAttr<ThisCallAttr>())
217     return CC_X86ThisCall;
218 
219   if (D->hasAttr<VectorCallAttr>())
220     return CC_X86VectorCall;
221 
222   if (D->hasAttr<PascalAttr>())
223     return CC_X86Pascal;
224 
225   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
226     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
227 
228   if (D->hasAttr<AArch64VectorPcsAttr>())
229     return CC_AArch64VectorCall;
230 
231   if (D->hasAttr<IntelOclBiccAttr>())
232     return CC_IntelOclBicc;
233 
234   if (D->hasAttr<MSABIAttr>())
235     return IsWindows ? CC_C : CC_Win64;
236 
237   if (D->hasAttr<SysVABIAttr>())
238     return IsWindows ? CC_X86_64SysV : CC_C;
239 
240   if (D->hasAttr<PreserveMostAttr>())
241     return CC_PreserveMost;
242 
243   if (D->hasAttr<PreserveAllAttr>())
244     return CC_PreserveAll;
245 
246   return CC_C;
247 }
248 
249 /// Arrange the argument and result information for a call to an
250 /// unknown C++ non-static member function of the given abstract type.
251 /// (A null RD means we don't have any meaningful "this" argument type,
252 ///  so fall back to a generic pointer type).
253 /// The member function must be an ordinary function, i.e. not a
254 /// constructor or destructor.
255 const CGFunctionInfo &
256 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
257                                    const FunctionProtoType *FTP,
258                                    const CXXMethodDecl *MD) {
259   SmallVector<CanQualType, 16> argTypes;
260 
261   // Add the 'this' pointer.
262   argTypes.push_back(DeriveThisType(RD, MD));
263 
264   return ::arrangeLLVMFunctionInfo(
265       *this, true, argTypes,
266       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
267 }
268 
269 /// Set calling convention for CUDA/HIP kernel.
270 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
271                                            const FunctionDecl *FD) {
272   if (FD->hasAttr<CUDAGlobalAttr>()) {
273     const FunctionType *FT = FTy->getAs<FunctionType>();
274     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
275     FTy = FT->getCanonicalTypeUnqualified();
276   }
277 }
278 
279 /// Arrange the argument and result information for a declaration or
280 /// definition of the given C++ non-static member function.  The
281 /// member function must be an ordinary function, i.e. not a
282 /// constructor or destructor.
283 const CGFunctionInfo &
284 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
285   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
286   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
287 
288   CanQualType FT = GetFormalType(MD).getAs<Type>();
289   setCUDAKernelCallingConvention(FT, CGM, MD);
290   auto prototype = FT.getAs<FunctionProtoType>();
291 
292   if (MD->isInstance()) {
293     // The abstract case is perfectly fine.
294     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
295     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
296   }
297 
298   return arrangeFreeFunctionType(prototype);
299 }
300 
301 bool CodeGenTypes::inheritingCtorHasParams(
302     const InheritedConstructor &Inherited, CXXCtorType Type) {
303   // Parameters are unnecessary if we're constructing a base class subobject
304   // and the inherited constructor lives in a virtual base.
305   return Type == Ctor_Complete ||
306          !Inherited.getShadowDecl()->constructsVirtualBase() ||
307          !Target.getCXXABI().hasConstructorVariants();
308 }
309 
310 const CGFunctionInfo &
311 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
312   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
313 
314   SmallVector<CanQualType, 16> argTypes;
315   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
316   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
317 
318   bool PassParams = true;
319 
320   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
321     // A base class inheriting constructor doesn't get forwarded arguments
322     // needed to construct a virtual base (or base class thereof).
323     if (auto Inherited = CD->getInheritedConstructor())
324       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
325   }
326 
327   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
328 
329   // Add the formal parameters.
330   if (PassParams)
331     appendParameterTypes(*this, argTypes, paramInfos, FTP);
332 
333   CGCXXABI::AddedStructorArgCounts AddedArgs =
334       TheCXXABI.buildStructorSignature(GD, argTypes);
335   if (!paramInfos.empty()) {
336     // Note: prefix implies after the first param.
337     if (AddedArgs.Prefix)
338       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
339                         FunctionProtoType::ExtParameterInfo{});
340     if (AddedArgs.Suffix)
341       paramInfos.append(AddedArgs.Suffix,
342                         FunctionProtoType::ExtParameterInfo{});
343   }
344 
345   RequiredArgs required =
346       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
347                                       : RequiredArgs::All);
348 
349   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
350   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
351                                ? argTypes.front()
352                                : TheCXXABI.hasMostDerivedReturn(GD)
353                                      ? CGM.getContext().VoidPtrTy
354                                      : Context.VoidTy;
355   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
356                                  /*chainCall=*/false, argTypes, extInfo,
357                                  paramInfos, required);
358 }
359 
360 static SmallVector<CanQualType, 16>
361 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
362   SmallVector<CanQualType, 16> argTypes;
363   for (auto &arg : args)
364     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
365   return argTypes;
366 }
367 
368 static SmallVector<CanQualType, 16>
369 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
370   SmallVector<CanQualType, 16> argTypes;
371   for (auto &arg : args)
372     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
373   return argTypes;
374 }
375 
376 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
377 getExtParameterInfosForCall(const FunctionProtoType *proto,
378                             unsigned prefixArgs, unsigned totalArgs) {
379   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
380   if (proto->hasExtParameterInfos()) {
381     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
382   }
383   return result;
384 }
385 
386 /// Arrange a call to a C++ method, passing the given arguments.
387 ///
388 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
389 /// parameter.
390 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
391 /// args.
392 /// PassProtoArgs indicates whether `args` has args for the parameters in the
393 /// given CXXConstructorDecl.
394 const CGFunctionInfo &
395 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
396                                         const CXXConstructorDecl *D,
397                                         CXXCtorType CtorKind,
398                                         unsigned ExtraPrefixArgs,
399                                         unsigned ExtraSuffixArgs,
400                                         bool PassProtoArgs) {
401   // FIXME: Kill copy.
402   SmallVector<CanQualType, 16> ArgTypes;
403   for (const auto &Arg : args)
404     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
405 
406   // +1 for implicit this, which should always be args[0].
407   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
408 
409   CanQual<FunctionProtoType> FPT = GetFormalType(D);
410   RequiredArgs Required = PassProtoArgs
411                               ? RequiredArgs::forPrototypePlus(
412                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
413                               : RequiredArgs::All;
414 
415   GlobalDecl GD(D, CtorKind);
416   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
417                                ? ArgTypes.front()
418                                : TheCXXABI.hasMostDerivedReturn(GD)
419                                      ? CGM.getContext().VoidPtrTy
420                                      : Context.VoidTy;
421 
422   FunctionType::ExtInfo Info = FPT->getExtInfo();
423   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
424   // If the prototype args are elided, we should only have ABI-specific args,
425   // which never have param info.
426   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
427     // ABI-specific suffix arguments are treated the same as variadic arguments.
428     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
429                                 ArgTypes.size());
430   }
431   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
432                                  /*chainCall=*/false, ArgTypes, Info,
433                                  ParamInfos, Required);
434 }
435 
436 /// Arrange the argument and result information for the declaration or
437 /// definition of the given function.
438 const CGFunctionInfo &
439 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
440   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
441     if (MD->isInstance())
442       return arrangeCXXMethodDeclaration(MD);
443 
444   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
445 
446   assert(isa<FunctionType>(FTy));
447   setCUDAKernelCallingConvention(FTy, CGM, FD);
448 
449   // When declaring a function without a prototype, always use a
450   // non-variadic type.
451   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
452     return arrangeLLVMFunctionInfo(
453         noProto->getReturnType(), /*instanceMethod=*/false,
454         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
455   }
456 
457   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
458 }
459 
460 /// Arrange the argument and result information for the declaration or
461 /// definition of an Objective-C method.
462 const CGFunctionInfo &
463 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
464   // It happens that this is the same as a call with no optional
465   // arguments, except also using the formal 'self' type.
466   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
467 }
468 
469 /// Arrange the argument and result information for the function type
470 /// through which to perform a send to the given Objective-C method,
471 /// using the given receiver type.  The receiver type is not always
472 /// the 'self' type of the method or even an Objective-C pointer type.
473 /// This is *not* the right method for actually performing such a
474 /// message send, due to the possibility of optional arguments.
475 const CGFunctionInfo &
476 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
477                                               QualType receiverType) {
478   SmallVector<CanQualType, 16> argTys;
479   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
480   argTys.push_back(Context.getCanonicalParamType(receiverType));
481   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
482   // FIXME: Kill copy?
483   for (const auto *I : MD->parameters()) {
484     argTys.push_back(Context.getCanonicalParamType(I->getType()));
485     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
486         I->hasAttr<NoEscapeAttr>());
487     extParamInfos.push_back(extParamInfo);
488   }
489 
490   FunctionType::ExtInfo einfo;
491   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
492   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
493 
494   if (getContext().getLangOpts().ObjCAutoRefCount &&
495       MD->hasAttr<NSReturnsRetainedAttr>())
496     einfo = einfo.withProducesResult(true);
497 
498   RequiredArgs required =
499     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
500 
501   return arrangeLLVMFunctionInfo(
502       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
503       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
504 }
505 
506 const CGFunctionInfo &
507 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
508                                                  const CallArgList &args) {
509   auto argTypes = getArgTypesForCall(Context, args);
510   FunctionType::ExtInfo einfo;
511 
512   return arrangeLLVMFunctionInfo(
513       GetReturnType(returnType), /*instanceMethod=*/false,
514       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
515 }
516 
517 const CGFunctionInfo &
518 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
519   // FIXME: Do we need to handle ObjCMethodDecl?
520   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
521 
522   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
523       isa<CXXDestructorDecl>(GD.getDecl()))
524     return arrangeCXXStructorDeclaration(GD);
525 
526   return arrangeFunctionDeclaration(FD);
527 }
528 
529 /// Arrange a thunk that takes 'this' as the first parameter followed by
530 /// varargs.  Return a void pointer, regardless of the actual return type.
531 /// The body of the thunk will end in a musttail call to a function of the
532 /// correct type, and the caller will bitcast the function to the correct
533 /// prototype.
534 const CGFunctionInfo &
535 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
536   assert(MD->isVirtual() && "only methods have thunks");
537   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
538   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
539   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
540                                  /*chainCall=*/false, ArgTys,
541                                  FTP->getExtInfo(), {}, RequiredArgs(1));
542 }
543 
544 const CGFunctionInfo &
545 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
546                                    CXXCtorType CT) {
547   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
548 
549   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
550   SmallVector<CanQualType, 2> ArgTys;
551   const CXXRecordDecl *RD = CD->getParent();
552   ArgTys.push_back(DeriveThisType(RD, CD));
553   if (CT == Ctor_CopyingClosure)
554     ArgTys.push_back(*FTP->param_type_begin());
555   if (RD->getNumVBases() > 0)
556     ArgTys.push_back(Context.IntTy);
557   CallingConv CC = Context.getDefaultCallingConvention(
558       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
559   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
560                                  /*chainCall=*/false, ArgTys,
561                                  FunctionType::ExtInfo(CC), {},
562                                  RequiredArgs::All);
563 }
564 
565 /// Arrange a call as unto a free function, except possibly with an
566 /// additional number of formal parameters considered required.
567 static const CGFunctionInfo &
568 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
569                             CodeGenModule &CGM,
570                             const CallArgList &args,
571                             const FunctionType *fnType,
572                             unsigned numExtraRequiredArgs,
573                             bool chainCall) {
574   assert(args.size() >= numExtraRequiredArgs);
575 
576   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
577 
578   // In most cases, there are no optional arguments.
579   RequiredArgs required = RequiredArgs::All;
580 
581   // If we have a variadic prototype, the required arguments are the
582   // extra prefix plus the arguments in the prototype.
583   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
584     if (proto->isVariadic())
585       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
586 
587     if (proto->hasExtParameterInfos())
588       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
589                                   args.size());
590 
591   // If we don't have a prototype at all, but we're supposed to
592   // explicitly use the variadic convention for unprototyped calls,
593   // treat all of the arguments as required but preserve the nominal
594   // possibility of variadics.
595   } else if (CGM.getTargetCodeGenInfo()
596                 .isNoProtoCallVariadic(args,
597                                        cast<FunctionNoProtoType>(fnType))) {
598     required = RequiredArgs(args.size());
599   }
600 
601   // FIXME: Kill copy.
602   SmallVector<CanQualType, 16> argTypes;
603   for (const auto &arg : args)
604     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
605   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
606                                      /*instanceMethod=*/false, chainCall,
607                                      argTypes, fnType->getExtInfo(), paramInfos,
608                                      required);
609 }
610 
611 /// Figure out the rules for calling a function with the given formal
612 /// type using the given arguments.  The arguments are necessary
613 /// because the function might be unprototyped, in which case it's
614 /// target-dependent in crazy ways.
615 const CGFunctionInfo &
616 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
617                                       const FunctionType *fnType,
618                                       bool chainCall) {
619   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
620                                      chainCall ? 1 : 0, chainCall);
621 }
622 
623 /// A block function is essentially a free function with an
624 /// extra implicit argument.
625 const CGFunctionInfo &
626 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
627                                        const FunctionType *fnType) {
628   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
629                                      /*chainCall=*/false);
630 }
631 
632 const CGFunctionInfo &
633 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
634                                               const FunctionArgList &params) {
635   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
636   auto argTypes = getArgTypesForDeclaration(Context, params);
637 
638   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
639                                  /*instanceMethod*/ false, /*chainCall*/ false,
640                                  argTypes, proto->getExtInfo(), paramInfos,
641                                  RequiredArgs::forPrototypePlus(proto, 1));
642 }
643 
644 const CGFunctionInfo &
645 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
646                                          const CallArgList &args) {
647   // FIXME: Kill copy.
648   SmallVector<CanQualType, 16> argTypes;
649   for (const auto &Arg : args)
650     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
651   return arrangeLLVMFunctionInfo(
652       GetReturnType(resultType), /*instanceMethod=*/false,
653       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
654       /*paramInfos=*/ {}, RequiredArgs::All);
655 }
656 
657 const CGFunctionInfo &
658 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
659                                                 const FunctionArgList &args) {
660   auto argTypes = getArgTypesForDeclaration(Context, args);
661 
662   return arrangeLLVMFunctionInfo(
663       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
664       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
665 }
666 
667 const CGFunctionInfo &
668 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
669                                               ArrayRef<CanQualType> argTypes) {
670   return arrangeLLVMFunctionInfo(
671       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
672       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
673 }
674 
675 /// Arrange a call to a C++ method, passing the given arguments.
676 ///
677 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
678 /// does not count `this`.
679 const CGFunctionInfo &
680 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
681                                    const FunctionProtoType *proto,
682                                    RequiredArgs required,
683                                    unsigned numPrefixArgs) {
684   assert(numPrefixArgs + 1 <= args.size() &&
685          "Emitting a call with less args than the required prefix?");
686   // Add one to account for `this`. It's a bit awkward here, but we don't count
687   // `this` in similar places elsewhere.
688   auto paramInfos =
689     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
690 
691   // FIXME: Kill copy.
692   auto argTypes = getArgTypesForCall(Context, args);
693 
694   FunctionType::ExtInfo info = proto->getExtInfo();
695   return arrangeLLVMFunctionInfo(
696       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
697       /*chainCall=*/false, argTypes, info, paramInfos, required);
698 }
699 
700 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
701   return arrangeLLVMFunctionInfo(
702       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
703       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
704 }
705 
706 const CGFunctionInfo &
707 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
708                           const CallArgList &args) {
709   assert(signature.arg_size() <= args.size());
710   if (signature.arg_size() == args.size())
711     return signature;
712 
713   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
714   auto sigParamInfos = signature.getExtParameterInfos();
715   if (!sigParamInfos.empty()) {
716     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
717     paramInfos.resize(args.size());
718   }
719 
720   auto argTypes = getArgTypesForCall(Context, args);
721 
722   assert(signature.getRequiredArgs().allowsOptionalArgs());
723   return arrangeLLVMFunctionInfo(signature.getReturnType(),
724                                  signature.isInstanceMethod(),
725                                  signature.isChainCall(),
726                                  argTypes,
727                                  signature.getExtInfo(),
728                                  paramInfos,
729                                  signature.getRequiredArgs());
730 }
731 
732 namespace clang {
733 namespace CodeGen {
734 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
735 }
736 }
737 
738 /// Arrange the argument and result information for an abstract value
739 /// of a given function type.  This is the method which all of the
740 /// above functions ultimately defer to.
741 const CGFunctionInfo &
742 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
743                                       bool instanceMethod,
744                                       bool chainCall,
745                                       ArrayRef<CanQualType> argTypes,
746                                       FunctionType::ExtInfo info,
747                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
748                                       RequiredArgs required) {
749   assert(llvm::all_of(argTypes,
750                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
751 
752   // Lookup or create unique function info.
753   llvm::FoldingSetNodeID ID;
754   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
755                           required, resultType, argTypes);
756 
757   void *insertPos = nullptr;
758   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
759   if (FI)
760     return *FI;
761 
762   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
763 
764   // Construct the function info.  We co-allocate the ArgInfos.
765   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
766                               paramInfos, resultType, argTypes, required);
767   FunctionInfos.InsertNode(FI, insertPos);
768 
769   bool inserted = FunctionsBeingProcessed.insert(FI).second;
770   (void)inserted;
771   assert(inserted && "Recursively being processed?");
772 
773   // Compute ABI information.
774   if (CC == llvm::CallingConv::SPIR_KERNEL) {
775     // Force target independent argument handling for the host visible
776     // kernel functions.
777     computeSPIRKernelABIInfo(CGM, *FI);
778   } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
779     swiftcall::computeABIInfo(CGM, *FI);
780   } else {
781     getABIInfo().computeInfo(*FI);
782   }
783 
784   // Loop over all of the computed argument and return value info.  If any of
785   // them are direct or extend without a specified coerce type, specify the
786   // default now.
787   ABIArgInfo &retInfo = FI->getReturnInfo();
788   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
789     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
790 
791   for (auto &I : FI->arguments())
792     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
793       I.info.setCoerceToType(ConvertType(I.type));
794 
795   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
796   assert(erased && "Not in set?");
797 
798   return *FI;
799 }
800 
801 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
802                                        bool instanceMethod,
803                                        bool chainCall,
804                                        const FunctionType::ExtInfo &info,
805                                        ArrayRef<ExtParameterInfo> paramInfos,
806                                        CanQualType resultType,
807                                        ArrayRef<CanQualType> argTypes,
808                                        RequiredArgs required) {
809   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
810   assert(!required.allowsOptionalArgs() ||
811          required.getNumRequiredArgs() <= argTypes.size());
812 
813   void *buffer =
814     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
815                                   argTypes.size() + 1, paramInfos.size()));
816 
817   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
818   FI->CallingConvention = llvmCC;
819   FI->EffectiveCallingConvention = llvmCC;
820   FI->ASTCallingConvention = info.getCC();
821   FI->InstanceMethod = instanceMethod;
822   FI->ChainCall = chainCall;
823   FI->CmseNSCall = info.getCmseNSCall();
824   FI->NoReturn = info.getNoReturn();
825   FI->ReturnsRetained = info.getProducesResult();
826   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
827   FI->NoCfCheck = info.getNoCfCheck();
828   FI->Required = required;
829   FI->HasRegParm = info.getHasRegParm();
830   FI->RegParm = info.getRegParm();
831   FI->ArgStruct = nullptr;
832   FI->ArgStructAlign = 0;
833   FI->NumArgs = argTypes.size();
834   FI->HasExtParameterInfos = !paramInfos.empty();
835   FI->getArgsBuffer()[0].type = resultType;
836   FI->MaxVectorWidth = 0;
837   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
838     FI->getArgsBuffer()[i + 1].type = argTypes[i];
839   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
840     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
841   return FI;
842 }
843 
844 /***/
845 
846 namespace {
847 // ABIArgInfo::Expand implementation.
848 
849 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
850 struct TypeExpansion {
851   enum TypeExpansionKind {
852     // Elements of constant arrays are expanded recursively.
853     TEK_ConstantArray,
854     // Record fields are expanded recursively (but if record is a union, only
855     // the field with the largest size is expanded).
856     TEK_Record,
857     // For complex types, real and imaginary parts are expanded recursively.
858     TEK_Complex,
859     // All other types are not expandable.
860     TEK_None
861   };
862 
863   const TypeExpansionKind Kind;
864 
865   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
866   virtual ~TypeExpansion() {}
867 };
868 
869 struct ConstantArrayExpansion : TypeExpansion {
870   QualType EltTy;
871   uint64_t NumElts;
872 
873   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
874       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
875   static bool classof(const TypeExpansion *TE) {
876     return TE->Kind == TEK_ConstantArray;
877   }
878 };
879 
880 struct RecordExpansion : TypeExpansion {
881   SmallVector<const CXXBaseSpecifier *, 1> Bases;
882 
883   SmallVector<const FieldDecl *, 1> Fields;
884 
885   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
886                   SmallVector<const FieldDecl *, 1> &&Fields)
887       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
888         Fields(std::move(Fields)) {}
889   static bool classof(const TypeExpansion *TE) {
890     return TE->Kind == TEK_Record;
891   }
892 };
893 
894 struct ComplexExpansion : TypeExpansion {
895   QualType EltTy;
896 
897   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
898   static bool classof(const TypeExpansion *TE) {
899     return TE->Kind == TEK_Complex;
900   }
901 };
902 
903 struct NoExpansion : TypeExpansion {
904   NoExpansion() : TypeExpansion(TEK_None) {}
905   static bool classof(const TypeExpansion *TE) {
906     return TE->Kind == TEK_None;
907   }
908 };
909 }  // namespace
910 
911 static std::unique_ptr<TypeExpansion>
912 getTypeExpansion(QualType Ty, const ASTContext &Context) {
913   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
914     return std::make_unique<ConstantArrayExpansion>(
915         AT->getElementType(), AT->getSize().getZExtValue());
916   }
917   if (const RecordType *RT = Ty->getAs<RecordType>()) {
918     SmallVector<const CXXBaseSpecifier *, 1> Bases;
919     SmallVector<const FieldDecl *, 1> Fields;
920     const RecordDecl *RD = RT->getDecl();
921     assert(!RD->hasFlexibleArrayMember() &&
922            "Cannot expand structure with flexible array.");
923     if (RD->isUnion()) {
924       // Unions can be here only in degenerative cases - all the fields are same
925       // after flattening. Thus we have to use the "largest" field.
926       const FieldDecl *LargestFD = nullptr;
927       CharUnits UnionSize = CharUnits::Zero();
928 
929       for (const auto *FD : RD->fields()) {
930         if (FD->isZeroLengthBitField(Context))
931           continue;
932         assert(!FD->isBitField() &&
933                "Cannot expand structure with bit-field members.");
934         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
935         if (UnionSize < FieldSize) {
936           UnionSize = FieldSize;
937           LargestFD = FD;
938         }
939       }
940       if (LargestFD)
941         Fields.push_back(LargestFD);
942     } else {
943       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
944         assert(!CXXRD->isDynamicClass() &&
945                "cannot expand vtable pointers in dynamic classes");
946         llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases()));
947       }
948 
949       for (const auto *FD : RD->fields()) {
950         if (FD->isZeroLengthBitField(Context))
951           continue;
952         assert(!FD->isBitField() &&
953                "Cannot expand structure with bit-field members.");
954         Fields.push_back(FD);
955       }
956     }
957     return std::make_unique<RecordExpansion>(std::move(Bases),
958                                               std::move(Fields));
959   }
960   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
961     return std::make_unique<ComplexExpansion>(CT->getElementType());
962   }
963   return std::make_unique<NoExpansion>();
964 }
965 
966 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
967   auto Exp = getTypeExpansion(Ty, Context);
968   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
969     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
970   }
971   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
972     int Res = 0;
973     for (auto BS : RExp->Bases)
974       Res += getExpansionSize(BS->getType(), Context);
975     for (auto FD : RExp->Fields)
976       Res += getExpansionSize(FD->getType(), Context);
977     return Res;
978   }
979   if (isa<ComplexExpansion>(Exp.get()))
980     return 2;
981   assert(isa<NoExpansion>(Exp.get()));
982   return 1;
983 }
984 
985 void
986 CodeGenTypes::getExpandedTypes(QualType Ty,
987                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
988   auto Exp = getTypeExpansion(Ty, Context);
989   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
990     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
991       getExpandedTypes(CAExp->EltTy, TI);
992     }
993   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
994     for (auto BS : RExp->Bases)
995       getExpandedTypes(BS->getType(), TI);
996     for (auto FD : RExp->Fields)
997       getExpandedTypes(FD->getType(), TI);
998   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
999     llvm::Type *EltTy = ConvertType(CExp->EltTy);
1000     *TI++ = EltTy;
1001     *TI++ = EltTy;
1002   } else {
1003     assert(isa<NoExpansion>(Exp.get()));
1004     *TI++ = ConvertType(Ty);
1005   }
1006 }
1007 
1008 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1009                                       ConstantArrayExpansion *CAE,
1010                                       Address BaseAddr,
1011                                       llvm::function_ref<void(Address)> Fn) {
1012   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1013   CharUnits EltAlign =
1014     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1015   llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy);
1016 
1017   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1018     llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1019         BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1020     Fn(Address(EltAddr, EltTy, EltAlign));
1021   }
1022 }
1023 
1024 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1025                                          llvm::Function::arg_iterator &AI) {
1026   assert(LV.isSimple() &&
1027          "Unexpected non-simple lvalue during struct expansion.");
1028 
1029   auto Exp = getTypeExpansion(Ty, getContext());
1030   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1031     forConstantArrayExpansion(
1032         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1033           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1034           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1035         });
1036   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1037     Address This = LV.getAddress(*this);
1038     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1039       // Perform a single step derived-to-base conversion.
1040       Address Base =
1041           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1042                                 /*NullCheckValue=*/false, SourceLocation());
1043       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1044 
1045       // Recurse onto bases.
1046       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1047     }
1048     for (auto FD : RExp->Fields) {
1049       // FIXME: What are the right qualifiers here?
1050       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1051       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1052     }
1053   } else if (isa<ComplexExpansion>(Exp.get())) {
1054     auto realValue = &*AI++;
1055     auto imagValue = &*AI++;
1056     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1057   } else {
1058     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1059     // primitive store.
1060     assert(isa<NoExpansion>(Exp.get()));
1061     llvm::Value *Arg = &*AI++;
1062     if (LV.isBitField()) {
1063       EmitStoreThroughLValue(RValue::get(Arg), LV);
1064     } else {
1065       // TODO: currently there are some places are inconsistent in what LLVM
1066       // pointer type they use (see D118744). Once clang uses opaque pointers
1067       // all LLVM pointer types will be the same and we can remove this check.
1068       if (Arg->getType()->isPointerTy()) {
1069         Address Addr = LV.getAddress(*this);
1070         Arg = Builder.CreateBitCast(Arg, Addr.getElementType());
1071       }
1072       EmitStoreOfScalar(Arg, LV);
1073     }
1074   }
1075 }
1076 
1077 void CodeGenFunction::ExpandTypeToArgs(
1078     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1079     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1080   auto Exp = getTypeExpansion(Ty, getContext());
1081   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1082     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1083                                    : Arg.getKnownRValue().getAggregateAddress();
1084     forConstantArrayExpansion(
1085         *this, CAExp, Addr, [&](Address EltAddr) {
1086           CallArg EltArg = CallArg(
1087               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1088               CAExp->EltTy);
1089           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1090                            IRCallArgPos);
1091         });
1092   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1093     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1094                                    : Arg.getKnownRValue().getAggregateAddress();
1095     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1096       // Perform a single step derived-to-base conversion.
1097       Address Base =
1098           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1099                                 /*NullCheckValue=*/false, SourceLocation());
1100       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1101 
1102       // Recurse onto bases.
1103       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1104                        IRCallArgPos);
1105     }
1106 
1107     LValue LV = MakeAddrLValue(This, Ty);
1108     for (auto FD : RExp->Fields) {
1109       CallArg FldArg =
1110           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1111       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1112                        IRCallArgPos);
1113     }
1114   } else if (isa<ComplexExpansion>(Exp.get())) {
1115     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1116     IRCallArgs[IRCallArgPos++] = CV.first;
1117     IRCallArgs[IRCallArgPos++] = CV.second;
1118   } else {
1119     assert(isa<NoExpansion>(Exp.get()));
1120     auto RV = Arg.getKnownRValue();
1121     assert(RV.isScalar() &&
1122            "Unexpected non-scalar rvalue during struct expansion.");
1123 
1124     // Insert a bitcast as needed.
1125     llvm::Value *V = RV.getScalarVal();
1126     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1127         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1128       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1129 
1130     IRCallArgs[IRCallArgPos++] = V;
1131   }
1132 }
1133 
1134 /// Create a temporary allocation for the purposes of coercion.
1135 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1136                                            CharUnits MinAlign,
1137                                            const Twine &Name = "tmp") {
1138   // Don't use an alignment that's worse than what LLVM would prefer.
1139   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1140   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1141 
1142   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1143 }
1144 
1145 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1146 /// accessing some number of bytes out of it, try to gep into the struct to get
1147 /// at its inner goodness.  Dive as deep as possible without entering an element
1148 /// with an in-memory size smaller than DstSize.
1149 static Address
1150 EnterStructPointerForCoercedAccess(Address SrcPtr,
1151                                    llvm::StructType *SrcSTy,
1152                                    uint64_t DstSize, CodeGenFunction &CGF) {
1153   // We can't dive into a zero-element struct.
1154   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1155 
1156   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1157 
1158   // If the first elt is at least as large as what we're looking for, or if the
1159   // first element is the same size as the whole struct, we can enter it. The
1160   // comparison must be made on the store size and not the alloca size. Using
1161   // the alloca size may overstate the size of the load.
1162   uint64_t FirstEltSize =
1163     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1164   if (FirstEltSize < DstSize &&
1165       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1166     return SrcPtr;
1167 
1168   // GEP into the first element.
1169   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1170 
1171   // If the first element is a struct, recurse.
1172   llvm::Type *SrcTy = SrcPtr.getElementType();
1173   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1174     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1175 
1176   return SrcPtr;
1177 }
1178 
1179 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1180 /// are either integers or pointers.  This does a truncation of the value if it
1181 /// is too large or a zero extension if it is too small.
1182 ///
1183 /// This behaves as if the value were coerced through memory, so on big-endian
1184 /// targets the high bits are preserved in a truncation, while little-endian
1185 /// targets preserve the low bits.
1186 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1187                                              llvm::Type *Ty,
1188                                              CodeGenFunction &CGF) {
1189   if (Val->getType() == Ty)
1190     return Val;
1191 
1192   if (isa<llvm::PointerType>(Val->getType())) {
1193     // If this is Pointer->Pointer avoid conversion to and from int.
1194     if (isa<llvm::PointerType>(Ty))
1195       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1196 
1197     // Convert the pointer to an integer so we can play with its width.
1198     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1199   }
1200 
1201   llvm::Type *DestIntTy = Ty;
1202   if (isa<llvm::PointerType>(DestIntTy))
1203     DestIntTy = CGF.IntPtrTy;
1204 
1205   if (Val->getType() != DestIntTy) {
1206     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1207     if (DL.isBigEndian()) {
1208       // Preserve the high bits on big-endian targets.
1209       // That is what memory coercion does.
1210       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1211       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1212 
1213       if (SrcSize > DstSize) {
1214         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1215         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1216       } else {
1217         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1218         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1219       }
1220     } else {
1221       // Little-endian targets preserve the low bits. No shifts required.
1222       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1223     }
1224   }
1225 
1226   if (isa<llvm::PointerType>(Ty))
1227     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1228   return Val;
1229 }
1230 
1231 
1232 
1233 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1234 /// a pointer to an object of type \arg Ty, known to be aligned to
1235 /// \arg SrcAlign bytes.
1236 ///
1237 /// This safely handles the case when the src type is smaller than the
1238 /// destination type; in this situation the values of bits which not
1239 /// present in the src are undefined.
1240 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1241                                       CodeGenFunction &CGF) {
1242   llvm::Type *SrcTy = Src.getElementType();
1243 
1244   // If SrcTy and Ty are the same, just do a load.
1245   if (SrcTy == Ty)
1246     return CGF.Builder.CreateLoad(Src);
1247 
1248   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1249 
1250   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1251     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1252                                              DstSize.getFixedSize(), CGF);
1253     SrcTy = Src.getElementType();
1254   }
1255 
1256   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1257 
1258   // If the source and destination are integer or pointer types, just do an
1259   // extension or truncation to the desired type.
1260   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1261       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1262     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1263     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1264   }
1265 
1266   // If load is legal, just bitcast the src pointer.
1267   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1268       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1269     // Generally SrcSize is never greater than DstSize, since this means we are
1270     // losing bits. However, this can happen in cases where the structure has
1271     // additional padding, for example due to a user specified alignment.
1272     //
1273     // FIXME: Assert that we aren't truncating non-padding bits when have access
1274     // to that information.
1275     Src = CGF.Builder.CreateElementBitCast(Src, Ty);
1276     return CGF.Builder.CreateLoad(Src);
1277   }
1278 
1279   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1280   // the types match, use the llvm.experimental.vector.insert intrinsic to
1281   // perform the conversion.
1282   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1283     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1284       // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1285       // vector, use a vector insert and bitcast the result.
1286       bool NeedsBitcast = false;
1287       auto PredType =
1288           llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1289       llvm::Type *OrigType = Ty;
1290       if (ScalableDst == PredType &&
1291           FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1292         ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1293         NeedsBitcast = true;
1294       }
1295       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1296         auto *Load = CGF.Builder.CreateLoad(Src);
1297         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1298         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1299         llvm::Value *Result = CGF.Builder.CreateInsertVector(
1300             ScalableDst, UndefVec, Load, Zero, "castScalableSve");
1301         if (NeedsBitcast)
1302           Result = CGF.Builder.CreateBitCast(Result, OrigType);
1303         return Result;
1304       }
1305     }
1306   }
1307 
1308   // Otherwise do coercion through memory. This is stupid, but simple.
1309   Address Tmp =
1310       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1311   CGF.Builder.CreateMemCpy(
1312       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1313       Src.getAlignment().getAsAlign(),
1314       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1315   return CGF.Builder.CreateLoad(Tmp);
1316 }
1317 
1318 // Function to store a first-class aggregate into memory.  We prefer to
1319 // store the elements rather than the aggregate to be more friendly to
1320 // fast-isel.
1321 // FIXME: Do we need to recurse here?
1322 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1323                                          bool DestIsVolatile) {
1324   // Prefer scalar stores to first-class aggregate stores.
1325   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1326     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1327       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1328       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1329       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1330     }
1331   } else {
1332     Builder.CreateStore(Val, Dest, DestIsVolatile);
1333   }
1334 }
1335 
1336 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1337 /// where the source and destination may have different types.  The
1338 /// destination is known to be aligned to \arg DstAlign bytes.
1339 ///
1340 /// This safely handles the case when the src type is larger than the
1341 /// destination type; the upper bits of the src will be lost.
1342 static void CreateCoercedStore(llvm::Value *Src,
1343                                Address Dst,
1344                                bool DstIsVolatile,
1345                                CodeGenFunction &CGF) {
1346   llvm::Type *SrcTy = Src->getType();
1347   llvm::Type *DstTy = Dst.getElementType();
1348   if (SrcTy == DstTy) {
1349     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1350     return;
1351   }
1352 
1353   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1354 
1355   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1356     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1357                                              SrcSize.getFixedSize(), CGF);
1358     DstTy = Dst.getElementType();
1359   }
1360 
1361   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1362   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1363   if (SrcPtrTy && DstPtrTy &&
1364       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1365     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1366     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1367     return;
1368   }
1369 
1370   // If the source and destination are integer or pointer types, just do an
1371   // extension or truncation to the desired type.
1372   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1373       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1374     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1375     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1376     return;
1377   }
1378 
1379   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1380 
1381   // If store is legal, just bitcast the src pointer.
1382   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1383       isa<llvm::ScalableVectorType>(DstTy) ||
1384       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1385     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1386     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1387   } else {
1388     // Otherwise do coercion through memory. This is stupid, but
1389     // simple.
1390 
1391     // Generally SrcSize is never greater than DstSize, since this means we are
1392     // losing bits. However, this can happen in cases where the structure has
1393     // additional padding, for example due to a user specified alignment.
1394     //
1395     // FIXME: Assert that we aren't truncating non-padding bits when have access
1396     // to that information.
1397     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1398     CGF.Builder.CreateStore(Src, Tmp);
1399     CGF.Builder.CreateMemCpy(
1400         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1401         Tmp.getAlignment().getAsAlign(),
1402         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1403   }
1404 }
1405 
1406 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1407                                    const ABIArgInfo &info) {
1408   if (unsigned offset = info.getDirectOffset()) {
1409     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1410     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1411                                              CharUnits::fromQuantity(offset));
1412     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1413   }
1414   return addr;
1415 }
1416 
1417 namespace {
1418 
1419 /// Encapsulates information about the way function arguments from
1420 /// CGFunctionInfo should be passed to actual LLVM IR function.
1421 class ClangToLLVMArgMapping {
1422   static const unsigned InvalidIndex = ~0U;
1423   unsigned InallocaArgNo;
1424   unsigned SRetArgNo;
1425   unsigned TotalIRArgs;
1426 
1427   /// Arguments of LLVM IR function corresponding to single Clang argument.
1428   struct IRArgs {
1429     unsigned PaddingArgIndex;
1430     // Argument is expanded to IR arguments at positions
1431     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1432     unsigned FirstArgIndex;
1433     unsigned NumberOfArgs;
1434 
1435     IRArgs()
1436         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1437           NumberOfArgs(0) {}
1438   };
1439 
1440   SmallVector<IRArgs, 8> ArgInfo;
1441 
1442 public:
1443   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1444                         bool OnlyRequiredArgs = false)
1445       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1446         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1447     construct(Context, FI, OnlyRequiredArgs);
1448   }
1449 
1450   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1451   unsigned getInallocaArgNo() const {
1452     assert(hasInallocaArg());
1453     return InallocaArgNo;
1454   }
1455 
1456   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1457   unsigned getSRetArgNo() const {
1458     assert(hasSRetArg());
1459     return SRetArgNo;
1460   }
1461 
1462   unsigned totalIRArgs() const { return TotalIRArgs; }
1463 
1464   bool hasPaddingArg(unsigned ArgNo) const {
1465     assert(ArgNo < ArgInfo.size());
1466     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1467   }
1468   unsigned getPaddingArgNo(unsigned ArgNo) const {
1469     assert(hasPaddingArg(ArgNo));
1470     return ArgInfo[ArgNo].PaddingArgIndex;
1471   }
1472 
1473   /// Returns index of first IR argument corresponding to ArgNo, and their
1474   /// quantity.
1475   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1476     assert(ArgNo < ArgInfo.size());
1477     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1478                           ArgInfo[ArgNo].NumberOfArgs);
1479   }
1480 
1481 private:
1482   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1483                  bool OnlyRequiredArgs);
1484 };
1485 
1486 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1487                                       const CGFunctionInfo &FI,
1488                                       bool OnlyRequiredArgs) {
1489   unsigned IRArgNo = 0;
1490   bool SwapThisWithSRet = false;
1491   const ABIArgInfo &RetAI = FI.getReturnInfo();
1492 
1493   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1494     SwapThisWithSRet = RetAI.isSRetAfterThis();
1495     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1496   }
1497 
1498   unsigned ArgNo = 0;
1499   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1500   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1501        ++I, ++ArgNo) {
1502     assert(I != FI.arg_end());
1503     QualType ArgType = I->type;
1504     const ABIArgInfo &AI = I->info;
1505     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1506     auto &IRArgs = ArgInfo[ArgNo];
1507 
1508     if (AI.getPaddingType())
1509       IRArgs.PaddingArgIndex = IRArgNo++;
1510 
1511     switch (AI.getKind()) {
1512     case ABIArgInfo::Extend:
1513     case ABIArgInfo::Direct: {
1514       // FIXME: handle sseregparm someday...
1515       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1516       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1517         IRArgs.NumberOfArgs = STy->getNumElements();
1518       } else {
1519         IRArgs.NumberOfArgs = 1;
1520       }
1521       break;
1522     }
1523     case ABIArgInfo::Indirect:
1524     case ABIArgInfo::IndirectAliased:
1525       IRArgs.NumberOfArgs = 1;
1526       break;
1527     case ABIArgInfo::Ignore:
1528     case ABIArgInfo::InAlloca:
1529       // ignore and inalloca doesn't have matching LLVM parameters.
1530       IRArgs.NumberOfArgs = 0;
1531       break;
1532     case ABIArgInfo::CoerceAndExpand:
1533       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1534       break;
1535     case ABIArgInfo::Expand:
1536       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1537       break;
1538     }
1539 
1540     if (IRArgs.NumberOfArgs > 0) {
1541       IRArgs.FirstArgIndex = IRArgNo;
1542       IRArgNo += IRArgs.NumberOfArgs;
1543     }
1544 
1545     // Skip over the sret parameter when it comes second.  We already handled it
1546     // above.
1547     if (IRArgNo == 1 && SwapThisWithSRet)
1548       IRArgNo++;
1549   }
1550   assert(ArgNo == ArgInfo.size());
1551 
1552   if (FI.usesInAlloca())
1553     InallocaArgNo = IRArgNo++;
1554 
1555   TotalIRArgs = IRArgNo;
1556 }
1557 }  // namespace
1558 
1559 /***/
1560 
1561 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1562   const auto &RI = FI.getReturnInfo();
1563   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1564 }
1565 
1566 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1567   return ReturnTypeUsesSRet(FI) &&
1568          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1569 }
1570 
1571 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1572   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1573     switch (BT->getKind()) {
1574     default:
1575       return false;
1576     case BuiltinType::Float:
1577       return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1578     case BuiltinType::Double:
1579       return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1580     case BuiltinType::LongDouble:
1581       return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1582     }
1583   }
1584 
1585   return false;
1586 }
1587 
1588 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1589   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1590     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1591       if (BT->getKind() == BuiltinType::LongDouble)
1592         return getTarget().useObjCFP2RetForComplexLongDouble();
1593     }
1594   }
1595 
1596   return false;
1597 }
1598 
1599 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1600   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1601   return GetFunctionType(FI);
1602 }
1603 
1604 llvm::FunctionType *
1605 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1606 
1607   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1608   (void)Inserted;
1609   assert(Inserted && "Recursively being processed?");
1610 
1611   llvm::Type *resultType = nullptr;
1612   const ABIArgInfo &retAI = FI.getReturnInfo();
1613   switch (retAI.getKind()) {
1614   case ABIArgInfo::Expand:
1615   case ABIArgInfo::IndirectAliased:
1616     llvm_unreachable("Invalid ABI kind for return argument");
1617 
1618   case ABIArgInfo::Extend:
1619   case ABIArgInfo::Direct:
1620     resultType = retAI.getCoerceToType();
1621     break;
1622 
1623   case ABIArgInfo::InAlloca:
1624     if (retAI.getInAllocaSRet()) {
1625       // sret things on win32 aren't void, they return the sret pointer.
1626       QualType ret = FI.getReturnType();
1627       llvm::Type *ty = ConvertType(ret);
1628       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1629       resultType = llvm::PointerType::get(ty, addressSpace);
1630     } else {
1631       resultType = llvm::Type::getVoidTy(getLLVMContext());
1632     }
1633     break;
1634 
1635   case ABIArgInfo::Indirect:
1636   case ABIArgInfo::Ignore:
1637     resultType = llvm::Type::getVoidTy(getLLVMContext());
1638     break;
1639 
1640   case ABIArgInfo::CoerceAndExpand:
1641     resultType = retAI.getUnpaddedCoerceAndExpandType();
1642     break;
1643   }
1644 
1645   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1646   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1647 
1648   // Add type for sret argument.
1649   if (IRFunctionArgs.hasSRetArg()) {
1650     QualType Ret = FI.getReturnType();
1651     llvm::Type *Ty = ConvertType(Ret);
1652     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1653     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1654         llvm::PointerType::get(Ty, AddressSpace);
1655   }
1656 
1657   // Add type for inalloca argument.
1658   if (IRFunctionArgs.hasInallocaArg()) {
1659     auto ArgStruct = FI.getArgStruct();
1660     assert(ArgStruct);
1661     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1662   }
1663 
1664   // Add in all of the required arguments.
1665   unsigned ArgNo = 0;
1666   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1667                                      ie = it + FI.getNumRequiredArgs();
1668   for (; it != ie; ++it, ++ArgNo) {
1669     const ABIArgInfo &ArgInfo = it->info;
1670 
1671     // Insert a padding type to ensure proper alignment.
1672     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1673       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1674           ArgInfo.getPaddingType();
1675 
1676     unsigned FirstIRArg, NumIRArgs;
1677     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1678 
1679     switch (ArgInfo.getKind()) {
1680     case ABIArgInfo::Ignore:
1681     case ABIArgInfo::InAlloca:
1682       assert(NumIRArgs == 0);
1683       break;
1684 
1685     case ABIArgInfo::Indirect: {
1686       assert(NumIRArgs == 1);
1687       // indirect arguments are always on the stack, which is alloca addr space.
1688       llvm::Type *LTy = ConvertTypeForMem(it->type);
1689       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1690           CGM.getDataLayout().getAllocaAddrSpace());
1691       break;
1692     }
1693     case ABIArgInfo::IndirectAliased: {
1694       assert(NumIRArgs == 1);
1695       llvm::Type *LTy = ConvertTypeForMem(it->type);
1696       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1697       break;
1698     }
1699     case ABIArgInfo::Extend:
1700     case ABIArgInfo::Direct: {
1701       // Fast-isel and the optimizer generally like scalar values better than
1702       // FCAs, so we flatten them if this is safe to do for this argument.
1703       llvm::Type *argType = ArgInfo.getCoerceToType();
1704       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1705       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1706         assert(NumIRArgs == st->getNumElements());
1707         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1708           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1709       } else {
1710         assert(NumIRArgs == 1);
1711         ArgTypes[FirstIRArg] = argType;
1712       }
1713       break;
1714     }
1715 
1716     case ABIArgInfo::CoerceAndExpand: {
1717       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1718       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1719         *ArgTypesIter++ = EltTy;
1720       }
1721       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1722       break;
1723     }
1724 
1725     case ABIArgInfo::Expand:
1726       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1727       getExpandedTypes(it->type, ArgTypesIter);
1728       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1729       break;
1730     }
1731   }
1732 
1733   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1734   assert(Erased && "Not in set?");
1735 
1736   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1737 }
1738 
1739 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1740   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1741   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1742 
1743   if (!isFuncTypeConvertible(FPT))
1744     return llvm::StructType::get(getLLVMContext());
1745 
1746   return GetFunctionType(GD);
1747 }
1748 
1749 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1750                                                llvm::AttrBuilder &FuncAttrs,
1751                                                const FunctionProtoType *FPT) {
1752   if (!FPT)
1753     return;
1754 
1755   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1756       FPT->isNothrow())
1757     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1758 }
1759 
1760 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
1761                                      const Decl *Callee) {
1762   if (!Callee)
1763     return;
1764 
1765   SmallVector<StringRef, 4> Attrs;
1766 
1767   for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
1768     AA->getAssumption().split(Attrs, ",");
1769 
1770   if (!Attrs.empty())
1771     FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1772                            llvm::join(Attrs.begin(), Attrs.end(), ","));
1773 }
1774 
1775 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1776                                           QualType ReturnType) {
1777   // We can't just discard the return value for a record type with a
1778   // complex destructor or a non-trivially copyable type.
1779   if (const RecordType *RT =
1780           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1781     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1782       return ClassDecl->hasTrivialDestructor();
1783   }
1784   return ReturnType.isTriviallyCopyableType(Context);
1785 }
1786 
1787 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1788                                                  bool HasOptnone,
1789                                                  bool AttrOnCallSite,
1790                                                llvm::AttrBuilder &FuncAttrs) {
1791   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1792   if (!HasOptnone) {
1793     if (CodeGenOpts.OptimizeSize)
1794       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1795     if (CodeGenOpts.OptimizeSize == 2)
1796       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1797   }
1798 
1799   if (CodeGenOpts.DisableRedZone)
1800     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1801   if (CodeGenOpts.IndirectTlsSegRefs)
1802     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1803   if (CodeGenOpts.NoImplicitFloat)
1804     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1805 
1806   if (AttrOnCallSite) {
1807     // Attributes that should go on the call site only.
1808     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1809       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1810     if (!CodeGenOpts.TrapFuncName.empty())
1811       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1812   } else {
1813     StringRef FpKind;
1814     switch (CodeGenOpts.getFramePointer()) {
1815     case CodeGenOptions::FramePointerKind::None:
1816       FpKind = "none";
1817       break;
1818     case CodeGenOptions::FramePointerKind::NonLeaf:
1819       FpKind = "non-leaf";
1820       break;
1821     case CodeGenOptions::FramePointerKind::All:
1822       FpKind = "all";
1823       break;
1824     }
1825     FuncAttrs.addAttribute("frame-pointer", FpKind);
1826 
1827     if (CodeGenOpts.LessPreciseFPMAD)
1828       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1829 
1830     if (CodeGenOpts.NullPointerIsValid)
1831       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1832 
1833     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1834       FuncAttrs.addAttribute("denormal-fp-math",
1835                              CodeGenOpts.FPDenormalMode.str());
1836     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1837       FuncAttrs.addAttribute(
1838           "denormal-fp-math-f32",
1839           CodeGenOpts.FP32DenormalMode.str());
1840     }
1841 
1842     if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1843       FuncAttrs.addAttribute("no-trapping-math", "true");
1844 
1845     // TODO: Are these all needed?
1846     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1847     if (LangOpts.NoHonorInfs)
1848       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1849     if (LangOpts.NoHonorNaNs)
1850       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1851     if (LangOpts.ApproxFunc)
1852       FuncAttrs.addAttribute("approx-func-fp-math", "true");
1853     if (LangOpts.UnsafeFPMath)
1854       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1855     if (CodeGenOpts.SoftFloat)
1856       FuncAttrs.addAttribute("use-soft-float", "true");
1857     FuncAttrs.addAttribute("stack-protector-buffer-size",
1858                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1859     if (LangOpts.NoSignedZero)
1860       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1861 
1862     // TODO: Reciprocal estimate codegen options should apply to instructions?
1863     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1864     if (!Recips.empty())
1865       FuncAttrs.addAttribute("reciprocal-estimates",
1866                              llvm::join(Recips, ","));
1867 
1868     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1869         CodeGenOpts.PreferVectorWidth != "none")
1870       FuncAttrs.addAttribute("prefer-vector-width",
1871                              CodeGenOpts.PreferVectorWidth);
1872 
1873     if (CodeGenOpts.StackRealignment)
1874       FuncAttrs.addAttribute("stackrealign");
1875     if (CodeGenOpts.Backchain)
1876       FuncAttrs.addAttribute("backchain");
1877     if (CodeGenOpts.EnableSegmentedStacks)
1878       FuncAttrs.addAttribute("split-stack");
1879 
1880     if (CodeGenOpts.SpeculativeLoadHardening)
1881       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1882 
1883     // Add zero-call-used-regs attribute.
1884     switch (CodeGenOpts.getZeroCallUsedRegs()) {
1885     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
1886       FuncAttrs.removeAttribute("zero-call-used-regs");
1887       break;
1888     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
1889       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg");
1890       break;
1891     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
1892       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr");
1893       break;
1894     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
1895       FuncAttrs.addAttribute("zero-call-used-regs", "used-arg");
1896       break;
1897     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
1898       FuncAttrs.addAttribute("zero-call-used-regs", "used");
1899       break;
1900     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
1901       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg");
1902       break;
1903     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
1904       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr");
1905       break;
1906     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
1907       FuncAttrs.addAttribute("zero-call-used-regs", "all-arg");
1908       break;
1909     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
1910       FuncAttrs.addAttribute("zero-call-used-regs", "all");
1911       break;
1912     }
1913   }
1914 
1915   if (getLangOpts().assumeFunctionsAreConvergent()) {
1916     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1917     // convergent (meaning, they may call an intrinsically convergent op, such
1918     // as __syncthreads() / barrier(), and so can't have certain optimizations
1919     // applied around them).  LLVM will remove this attribute where it safely
1920     // can.
1921     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1922   }
1923 
1924   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1925     // Exceptions aren't supported in CUDA device code.
1926     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1927   }
1928 
1929   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1930     StringRef Var, Value;
1931     std::tie(Var, Value) = Attr.split('=');
1932     FuncAttrs.addAttribute(Var, Value);
1933   }
1934 }
1935 
1936 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1937   llvm::AttrBuilder FuncAttrs(F.getContext());
1938   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1939                                /* AttrOnCallSite = */ false, FuncAttrs);
1940   // TODO: call GetCPUAndFeaturesAttributes?
1941   F.addFnAttrs(FuncAttrs);
1942 }
1943 
1944 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1945                                                    llvm::AttrBuilder &attrs) {
1946   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1947                                /*for call*/ false, attrs);
1948   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1949 }
1950 
1951 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1952                                    const LangOptions &LangOpts,
1953                                    const NoBuiltinAttr *NBA = nullptr) {
1954   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1955     SmallString<32> AttributeName;
1956     AttributeName += "no-builtin-";
1957     AttributeName += BuiltinName;
1958     FuncAttrs.addAttribute(AttributeName);
1959   };
1960 
1961   // First, handle the language options passed through -fno-builtin.
1962   if (LangOpts.NoBuiltin) {
1963     // -fno-builtin disables them all.
1964     FuncAttrs.addAttribute("no-builtins");
1965     return;
1966   }
1967 
1968   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1969   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1970 
1971   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1972   // the source.
1973   if (!NBA)
1974     return;
1975 
1976   // If there is a wildcard in the builtin names specified through the
1977   // attribute, disable them all.
1978   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1979     FuncAttrs.addAttribute("no-builtins");
1980     return;
1981   }
1982 
1983   // And last, add the rest of the builtin names.
1984   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1985 }
1986 
1987 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
1988                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
1989                              bool CheckCoerce = true) {
1990   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
1991   if (AI.getKind() == ABIArgInfo::Indirect)
1992     return true;
1993   if (AI.getKind() == ABIArgInfo::Extend)
1994     return true;
1995   if (!DL.typeSizeEqualsStoreSize(Ty))
1996     // TODO: This will result in a modest amount of values not marked noundef
1997     // when they could be. We care about values that *invisibly* contain undef
1998     // bits from the perspective of LLVM IR.
1999     return false;
2000   if (CheckCoerce && AI.canHaveCoerceToType()) {
2001     llvm::Type *CoerceTy = AI.getCoerceToType();
2002     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
2003                                   DL.getTypeSizeInBits(Ty)))
2004       // If we're coercing to a type with a greater size than the canonical one,
2005       // we're introducing new undef bits.
2006       // Coercing to a type of smaller or equal size is ok, as we know that
2007       // there's no internal padding (typeSizeEqualsStoreSize).
2008       return false;
2009   }
2010   if (QTy->isBitIntType())
2011     return true;
2012   if (QTy->isReferenceType())
2013     return true;
2014   if (QTy->isNullPtrType())
2015     return false;
2016   if (QTy->isMemberPointerType())
2017     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2018     // now, never mark them.
2019     return false;
2020   if (QTy->isScalarType()) {
2021     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
2022       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
2023     return true;
2024   }
2025   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
2026     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
2027   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
2028     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
2029   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
2030     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
2031 
2032   // TODO: Some structs may be `noundef`, in specific situations.
2033   return false;
2034 }
2035 
2036 /// Construct the IR attribute list of a function or call.
2037 ///
2038 /// When adding an attribute, please consider where it should be handled:
2039 ///
2040 ///   - getDefaultFunctionAttributes is for attributes that are essentially
2041 ///     part of the global target configuration (but perhaps can be
2042 ///     overridden on a per-function basis).  Adding attributes there
2043 ///     will cause them to also be set in frontends that build on Clang's
2044 ///     target-configuration logic, as well as for code defined in library
2045 ///     modules such as CUDA's libdevice.
2046 ///
2047 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2048 ///     and adds declaration-specific, convention-specific, and
2049 ///     frontend-specific logic.  The last is of particular importance:
2050 ///     attributes that restrict how the frontend generates code must be
2051 ///     added here rather than getDefaultFunctionAttributes.
2052 ///
2053 void CodeGenModule::ConstructAttributeList(StringRef Name,
2054                                            const CGFunctionInfo &FI,
2055                                            CGCalleeInfo CalleeInfo,
2056                                            llvm::AttributeList &AttrList,
2057                                            unsigned &CallingConv,
2058                                            bool AttrOnCallSite, bool IsThunk) {
2059   llvm::AttrBuilder FuncAttrs(getLLVMContext());
2060   llvm::AttrBuilder RetAttrs(getLLVMContext());
2061 
2062   // Collect function IR attributes from the CC lowering.
2063   // We'll collect the paramete and result attributes later.
2064   CallingConv = FI.getEffectiveCallingConvention();
2065   if (FI.isNoReturn())
2066     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2067   if (FI.isCmseNSCall())
2068     FuncAttrs.addAttribute("cmse_nonsecure_call");
2069 
2070   // Collect function IR attributes from the callee prototype if we have one.
2071   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2072                                      CalleeInfo.getCalleeFunctionProtoType());
2073 
2074   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2075 
2076   // Attach assumption attributes to the declaration. If this is a call
2077   // site, attach assumptions from the caller to the call as well.
2078   AddAttributesFromAssumes(FuncAttrs, TargetDecl);
2079 
2080   bool HasOptnone = false;
2081   // The NoBuiltinAttr attached to the target FunctionDecl.
2082   const NoBuiltinAttr *NBA = nullptr;
2083 
2084   // Collect function IR attributes based on declaration-specific
2085   // information.
2086   // FIXME: handle sseregparm someday...
2087   if (TargetDecl) {
2088     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2089       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2090     if (TargetDecl->hasAttr<NoThrowAttr>())
2091       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2092     if (TargetDecl->hasAttr<NoReturnAttr>())
2093       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2094     if (TargetDecl->hasAttr<ColdAttr>())
2095       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2096     if (TargetDecl->hasAttr<HotAttr>())
2097       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2098     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2099       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2100     if (TargetDecl->hasAttr<ConvergentAttr>())
2101       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2102 
2103     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2104       AddAttributesFromFunctionProtoType(
2105           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2106       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2107         // A sane operator new returns a non-aliasing pointer.
2108         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2109         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2110             (Kind == OO_New || Kind == OO_Array_New))
2111           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2112       }
2113       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2114       const bool IsVirtualCall = MD && MD->isVirtual();
2115       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2116       // virtual function. These attributes are not inherited by overloads.
2117       if (!(AttrOnCallSite && IsVirtualCall)) {
2118         if (Fn->isNoReturn())
2119           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2120         NBA = Fn->getAttr<NoBuiltinAttr>();
2121       }
2122       // Only place nomerge attribute on call sites, never functions. This
2123       // allows it to work on indirect virtual function calls.
2124       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2125         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2126     }
2127 
2128     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2129     if (TargetDecl->hasAttr<ConstAttr>()) {
2130       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2131       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2132       // gcc specifies that 'const' functions have greater restrictions than
2133       // 'pure' functions, so they also cannot have infinite loops.
2134       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2135     } else if (TargetDecl->hasAttr<PureAttr>()) {
2136       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2137       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2138       // gcc specifies that 'pure' functions cannot have infinite loops.
2139       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2140     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2141       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2142       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2143     }
2144     if (TargetDecl->hasAttr<RestrictAttr>())
2145       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2146     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2147         !CodeGenOpts.NullPointerIsValid)
2148       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2149     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2150       FuncAttrs.addAttribute("no_caller_saved_registers");
2151     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2152       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2153     if (TargetDecl->hasAttr<LeafAttr>())
2154       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2155 
2156     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2157     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2158       Optional<unsigned> NumElemsParam;
2159       if (AllocSize->getNumElemsParam().isValid())
2160         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2161       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2162                                  NumElemsParam);
2163     }
2164 
2165     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2166       if (getLangOpts().OpenCLVersion <= 120) {
2167         // OpenCL v1.2 Work groups are always uniform
2168         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2169       } else {
2170         // OpenCL v2.0 Work groups may be whether uniform or not.
2171         // '-cl-uniform-work-group-size' compile option gets a hint
2172         // to the compiler that the global work-size be a multiple of
2173         // the work-group size specified to clEnqueueNDRangeKernel
2174         // (i.e. work groups are uniform).
2175         FuncAttrs.addAttribute("uniform-work-group-size",
2176                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2177       }
2178     }
2179   }
2180 
2181   // Attach "no-builtins" attributes to:
2182   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2183   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2184   // The attributes can come from:
2185   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2186   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2187   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2188 
2189   // Collect function IR attributes based on global settiings.
2190   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2191 
2192   // Override some default IR attributes based on declaration-specific
2193   // information.
2194   if (TargetDecl) {
2195     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2196       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2197     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2198       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2199     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2200       FuncAttrs.removeAttribute("split-stack");
2201     if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
2202       // A function "__attribute__((...))" overrides the command-line flag.
2203       auto Kind =
2204           TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
2205       FuncAttrs.removeAttribute("zero-call-used-regs");
2206       FuncAttrs.addAttribute(
2207           "zero-call-used-regs",
2208           ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind));
2209     }
2210 
2211     // Add NonLazyBind attribute to function declarations when -fno-plt
2212     // is used.
2213     // FIXME: what if we just haven't processed the function definition
2214     // yet, or if it's an external definition like C99 inline?
2215     if (CodeGenOpts.NoPLT) {
2216       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2217         if (!Fn->isDefined() && !AttrOnCallSite) {
2218           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2219         }
2220       }
2221     }
2222   }
2223 
2224   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2225   // functions with -funique-internal-linkage-names.
2226   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2227     if (isa<FunctionDecl>(TargetDecl)) {
2228       if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) ==
2229           llvm::GlobalValue::InternalLinkage)
2230         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2231                                "selected");
2232     }
2233   }
2234 
2235   // Collect non-call-site function IR attributes from declaration-specific
2236   // information.
2237   if (!AttrOnCallSite) {
2238     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2239       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2240 
2241     // Whether tail calls are enabled.
2242     auto shouldDisableTailCalls = [&] {
2243       // Should this be honored in getDefaultFunctionAttributes?
2244       if (CodeGenOpts.DisableTailCalls)
2245         return true;
2246 
2247       if (!TargetDecl)
2248         return false;
2249 
2250       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2251           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2252         return true;
2253 
2254       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2255         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2256           if (!BD->doesNotEscape())
2257             return true;
2258       }
2259 
2260       return false;
2261     };
2262     if (shouldDisableTailCalls())
2263       FuncAttrs.addAttribute("disable-tail-calls", "true");
2264 
2265     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2266     // handles these separately to set them based on the global defaults.
2267     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2268   }
2269 
2270   // Collect attributes from arguments and return values.
2271   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2272 
2273   QualType RetTy = FI.getReturnType();
2274   const ABIArgInfo &RetAI = FI.getReturnInfo();
2275   const llvm::DataLayout &DL = getDataLayout();
2276 
2277   // C++ explicitly makes returning undefined values UB. C's rule only applies
2278   // to used values, so we never mark them noundef for now.
2279   bool HasStrictReturn = getLangOpts().CPlusPlus;
2280   if (TargetDecl && HasStrictReturn) {
2281     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2282       HasStrictReturn &= !FDecl->isExternC();
2283     else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2284       // Function pointer
2285       HasStrictReturn &= !VDecl->isExternC();
2286   }
2287 
2288   // We don't want to be too aggressive with the return checking, unless
2289   // it's explicit in the code opts or we're using an appropriate sanitizer.
2290   // Try to respect what the programmer intended.
2291   HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2292                      !MayDropFunctionReturn(getContext(), RetTy) ||
2293                      getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2294                      getLangOpts().Sanitize.has(SanitizerKind::Return);
2295 
2296   // Determine if the return type could be partially undef
2297   if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2298     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2299         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2300       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2301   }
2302 
2303   switch (RetAI.getKind()) {
2304   case ABIArgInfo::Extend:
2305     if (RetAI.isSignExt())
2306       RetAttrs.addAttribute(llvm::Attribute::SExt);
2307     else
2308       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2309     LLVM_FALLTHROUGH;
2310   case ABIArgInfo::Direct:
2311     if (RetAI.getInReg())
2312       RetAttrs.addAttribute(llvm::Attribute::InReg);
2313     break;
2314   case ABIArgInfo::Ignore:
2315     break;
2316 
2317   case ABIArgInfo::InAlloca:
2318   case ABIArgInfo::Indirect: {
2319     // inalloca and sret disable readnone and readonly
2320     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2321       .removeAttribute(llvm::Attribute::ReadNone);
2322     break;
2323   }
2324 
2325   case ABIArgInfo::CoerceAndExpand:
2326     break;
2327 
2328   case ABIArgInfo::Expand:
2329   case ABIArgInfo::IndirectAliased:
2330     llvm_unreachable("Invalid ABI kind for return argument");
2331   }
2332 
2333   if (!IsThunk) {
2334     // FIXME: fix this properly, https://reviews.llvm.org/D100388
2335     if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2336       QualType PTy = RefTy->getPointeeType();
2337       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2338         RetAttrs.addDereferenceableAttr(
2339             getMinimumObjectSize(PTy).getQuantity());
2340       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2341           !CodeGenOpts.NullPointerIsValid)
2342         RetAttrs.addAttribute(llvm::Attribute::NonNull);
2343       if (PTy->isObjectType()) {
2344         llvm::Align Alignment =
2345             getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2346         RetAttrs.addAlignmentAttr(Alignment);
2347       }
2348     }
2349   }
2350 
2351   bool hasUsedSRet = false;
2352   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2353 
2354   // Attach attributes to sret.
2355   if (IRFunctionArgs.hasSRetArg()) {
2356     llvm::AttrBuilder SRETAttrs(getLLVMContext());
2357     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2358     hasUsedSRet = true;
2359     if (RetAI.getInReg())
2360       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2361     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2362     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2363         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2364   }
2365 
2366   // Attach attributes to inalloca argument.
2367   if (IRFunctionArgs.hasInallocaArg()) {
2368     llvm::AttrBuilder Attrs(getLLVMContext());
2369     Attrs.addInAllocaAttr(FI.getArgStruct());
2370     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2371         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2372   }
2373 
2374   // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2375   // unless this is a thunk function.
2376   // FIXME: fix this properly, https://reviews.llvm.org/D100388
2377   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2378       !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2379     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2380 
2381     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2382 
2383     llvm::AttrBuilder Attrs(getLLVMContext());
2384 
2385     QualType ThisTy =
2386         FI.arg_begin()->type.castAs<PointerType>()->getPointeeType();
2387 
2388     if (!CodeGenOpts.NullPointerIsValid &&
2389         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2390       Attrs.addAttribute(llvm::Attribute::NonNull);
2391       Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2392     } else {
2393       // FIXME dereferenceable should be correct here, regardless of
2394       // NullPointerIsValid. However, dereferenceable currently does not always
2395       // respect NullPointerIsValid and may imply nonnull and break the program.
2396       // See https://reviews.llvm.org/D66618 for discussions.
2397       Attrs.addDereferenceableOrNullAttr(
2398           getMinimumObjectSize(
2399               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2400               .getQuantity());
2401     }
2402 
2403     llvm::Align Alignment =
2404         getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2405                                 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2406             .getAsAlign();
2407     Attrs.addAlignmentAttr(Alignment);
2408 
2409     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2410   }
2411 
2412   unsigned ArgNo = 0;
2413   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2414                                           E = FI.arg_end();
2415        I != E; ++I, ++ArgNo) {
2416     QualType ParamType = I->type;
2417     const ABIArgInfo &AI = I->info;
2418     llvm::AttrBuilder Attrs(getLLVMContext());
2419 
2420     // Add attribute for padding argument, if necessary.
2421     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2422       if (AI.getPaddingInReg()) {
2423         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2424             llvm::AttributeSet::get(
2425                 getLLVMContext(),
2426                 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg));
2427       }
2428     }
2429 
2430     // Decide whether the argument we're handling could be partially undef
2431     if (CodeGenOpts.EnableNoundefAttrs &&
2432         DetermineNoUndef(ParamType, getTypes(), DL, AI)) {
2433       Attrs.addAttribute(llvm::Attribute::NoUndef);
2434     }
2435 
2436     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2437     // have the corresponding parameter variable.  It doesn't make
2438     // sense to do it here because parameters are so messed up.
2439     switch (AI.getKind()) {
2440     case ABIArgInfo::Extend:
2441       if (AI.isSignExt())
2442         Attrs.addAttribute(llvm::Attribute::SExt);
2443       else
2444         Attrs.addAttribute(llvm::Attribute::ZExt);
2445       LLVM_FALLTHROUGH;
2446     case ABIArgInfo::Direct:
2447       if (ArgNo == 0 && FI.isChainCall())
2448         Attrs.addAttribute(llvm::Attribute::Nest);
2449       else if (AI.getInReg())
2450         Attrs.addAttribute(llvm::Attribute::InReg);
2451       Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2452       break;
2453 
2454     case ABIArgInfo::Indirect: {
2455       if (AI.getInReg())
2456         Attrs.addAttribute(llvm::Attribute::InReg);
2457 
2458       if (AI.getIndirectByVal())
2459         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2460 
2461       auto *Decl = ParamType->getAsRecordDecl();
2462       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2463           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2464         // When calling the function, the pointer passed in will be the only
2465         // reference to the underlying object. Mark it accordingly.
2466         Attrs.addAttribute(llvm::Attribute::NoAlias);
2467 
2468       // TODO: We could add the byref attribute if not byval, but it would
2469       // require updating many testcases.
2470 
2471       CharUnits Align = AI.getIndirectAlign();
2472 
2473       // In a byval argument, it is important that the required
2474       // alignment of the type is honored, as LLVM might be creating a
2475       // *new* stack object, and needs to know what alignment to give
2476       // it. (Sometimes it can deduce a sensible alignment on its own,
2477       // but not if clang decides it must emit a packed struct, or the
2478       // user specifies increased alignment requirements.)
2479       //
2480       // This is different from indirect *not* byval, where the object
2481       // exists already, and the align attribute is purely
2482       // informative.
2483       assert(!Align.isZero());
2484 
2485       // For now, only add this when we have a byval argument.
2486       // TODO: be less lazy about updating test cases.
2487       if (AI.getIndirectByVal())
2488         Attrs.addAlignmentAttr(Align.getQuantity());
2489 
2490       // byval disables readnone and readonly.
2491       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2492         .removeAttribute(llvm::Attribute::ReadNone);
2493 
2494       break;
2495     }
2496     case ABIArgInfo::IndirectAliased: {
2497       CharUnits Align = AI.getIndirectAlign();
2498       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2499       Attrs.addAlignmentAttr(Align.getQuantity());
2500       break;
2501     }
2502     case ABIArgInfo::Ignore:
2503     case ABIArgInfo::Expand:
2504     case ABIArgInfo::CoerceAndExpand:
2505       break;
2506 
2507     case ABIArgInfo::InAlloca:
2508       // inalloca disables readnone and readonly.
2509       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2510           .removeAttribute(llvm::Attribute::ReadNone);
2511       continue;
2512     }
2513 
2514     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2515       QualType PTy = RefTy->getPointeeType();
2516       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2517         Attrs.addDereferenceableAttr(
2518             getMinimumObjectSize(PTy).getQuantity());
2519       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2520           !CodeGenOpts.NullPointerIsValid)
2521         Attrs.addAttribute(llvm::Attribute::NonNull);
2522       if (PTy->isObjectType()) {
2523         llvm::Align Alignment =
2524             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2525         Attrs.addAlignmentAttr(Alignment);
2526       }
2527     }
2528 
2529     // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2530     // > For arguments to a __kernel function declared to be a pointer to a
2531     // > data type, the OpenCL compiler can assume that the pointee is always
2532     // > appropriately aligned as required by the data type.
2533     if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
2534         ParamType->isPointerType()) {
2535       QualType PTy = ParamType->getPointeeType();
2536       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2537         llvm::Align Alignment =
2538             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2539         Attrs.addAlignmentAttr(Alignment);
2540       }
2541     }
2542 
2543     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2544     case ParameterABI::Ordinary:
2545       break;
2546 
2547     case ParameterABI::SwiftIndirectResult: {
2548       // Add 'sret' if we haven't already used it for something, but
2549       // only if the result is void.
2550       if (!hasUsedSRet && RetTy->isVoidType()) {
2551         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2552         hasUsedSRet = true;
2553       }
2554 
2555       // Add 'noalias' in either case.
2556       Attrs.addAttribute(llvm::Attribute::NoAlias);
2557 
2558       // Add 'dereferenceable' and 'alignment'.
2559       auto PTy = ParamType->getPointeeType();
2560       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2561         auto info = getContext().getTypeInfoInChars(PTy);
2562         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2563         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2564       }
2565       break;
2566     }
2567 
2568     case ParameterABI::SwiftErrorResult:
2569       Attrs.addAttribute(llvm::Attribute::SwiftError);
2570       break;
2571 
2572     case ParameterABI::SwiftContext:
2573       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2574       break;
2575 
2576     case ParameterABI::SwiftAsyncContext:
2577       Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2578       break;
2579     }
2580 
2581     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2582       Attrs.addAttribute(llvm::Attribute::NoCapture);
2583 
2584     if (Attrs.hasAttributes()) {
2585       unsigned FirstIRArg, NumIRArgs;
2586       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2587       for (unsigned i = 0; i < NumIRArgs; i++)
2588         ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
2589             getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs));
2590     }
2591   }
2592   assert(ArgNo == FI.arg_size());
2593 
2594   AttrList = llvm::AttributeList::get(
2595       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2596       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2597 }
2598 
2599 /// An argument came in as a promoted argument; demote it back to its
2600 /// declared type.
2601 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2602                                          const VarDecl *var,
2603                                          llvm::Value *value) {
2604   llvm::Type *varType = CGF.ConvertType(var->getType());
2605 
2606   // This can happen with promotions that actually don't change the
2607   // underlying type, like the enum promotions.
2608   if (value->getType() == varType) return value;
2609 
2610   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2611          && "unexpected promotion type");
2612 
2613   if (isa<llvm::IntegerType>(varType))
2614     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2615 
2616   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2617 }
2618 
2619 /// Returns the attribute (either parameter attribute, or function
2620 /// attribute), which declares argument ArgNo to be non-null.
2621 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2622                                          QualType ArgType, unsigned ArgNo) {
2623   // FIXME: __attribute__((nonnull)) can also be applied to:
2624   //   - references to pointers, where the pointee is known to be
2625   //     nonnull (apparently a Clang extension)
2626   //   - transparent unions containing pointers
2627   // In the former case, LLVM IR cannot represent the constraint. In
2628   // the latter case, we have no guarantee that the transparent union
2629   // is in fact passed as a pointer.
2630   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2631     return nullptr;
2632   // First, check attribute on parameter itself.
2633   if (PVD) {
2634     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2635       return ParmNNAttr;
2636   }
2637   // Check function attributes.
2638   if (!FD)
2639     return nullptr;
2640   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2641     if (NNAttr->isNonNull(ArgNo))
2642       return NNAttr;
2643   }
2644   return nullptr;
2645 }
2646 
2647 namespace {
2648   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2649     Address Temp;
2650     Address Arg;
2651     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2652     void Emit(CodeGenFunction &CGF, Flags flags) override {
2653       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2654       CGF.Builder.CreateStore(errorValue, Arg);
2655     }
2656   };
2657 }
2658 
2659 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2660                                          llvm::Function *Fn,
2661                                          const FunctionArgList &Args) {
2662   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2663     // Naked functions don't have prologues.
2664     return;
2665 
2666   // If this is an implicit-return-zero function, go ahead and
2667   // initialize the return value.  TODO: it might be nice to have
2668   // a more general mechanism for this that didn't require synthesized
2669   // return statements.
2670   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2671     if (FD->hasImplicitReturnZero()) {
2672       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2673       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2674       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2675       Builder.CreateStore(Zero, ReturnValue);
2676     }
2677   }
2678 
2679   // FIXME: We no longer need the types from FunctionArgList; lift up and
2680   // simplify.
2681 
2682   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2683   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2684 
2685   // If we're using inalloca, all the memory arguments are GEPs off of the last
2686   // parameter, which is a pointer to the complete memory area.
2687   Address ArgStruct = Address::invalid();
2688   if (IRFunctionArgs.hasInallocaArg()) {
2689     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2690                         FI.getArgStruct(), FI.getArgStructAlignment());
2691 
2692     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2693   }
2694 
2695   // Name the struct return parameter.
2696   if (IRFunctionArgs.hasSRetArg()) {
2697     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2698     AI->setName("agg.result");
2699     AI->addAttr(llvm::Attribute::NoAlias);
2700   }
2701 
2702   // Track if we received the parameter as a pointer (indirect, byval, or
2703   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2704   // into a local alloca for us.
2705   SmallVector<ParamValue, 16> ArgVals;
2706   ArgVals.reserve(Args.size());
2707 
2708   // Create a pointer value for every parameter declaration.  This usually
2709   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2710   // any cleanups or do anything that might unwind.  We do that separately, so
2711   // we can push the cleanups in the correct order for the ABI.
2712   assert(FI.arg_size() == Args.size() &&
2713          "Mismatch between function signature & arguments.");
2714   unsigned ArgNo = 0;
2715   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2716   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2717        i != e; ++i, ++info_it, ++ArgNo) {
2718     const VarDecl *Arg = *i;
2719     const ABIArgInfo &ArgI = info_it->info;
2720 
2721     bool isPromoted =
2722       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2723     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2724     // the parameter is promoted. In this case we convert to
2725     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2726     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2727     assert(hasScalarEvaluationKind(Ty) ==
2728            hasScalarEvaluationKind(Arg->getType()));
2729 
2730     unsigned FirstIRArg, NumIRArgs;
2731     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2732 
2733     switch (ArgI.getKind()) {
2734     case ABIArgInfo::InAlloca: {
2735       assert(NumIRArgs == 0);
2736       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2737       Address V =
2738           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2739       if (ArgI.getInAllocaIndirect())
2740         V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty),
2741                     getContext().getTypeAlignInChars(Ty));
2742       ArgVals.push_back(ParamValue::forIndirect(V));
2743       break;
2744     }
2745 
2746     case ABIArgInfo::Indirect:
2747     case ABIArgInfo::IndirectAliased: {
2748       assert(NumIRArgs == 1);
2749       Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty),
2750                                   ArgI.getIndirectAlign());
2751 
2752       if (!hasScalarEvaluationKind(Ty)) {
2753         // Aggregates and complex variables are accessed by reference. All we
2754         // need to do is realign the value, if requested. Also, if the address
2755         // may be aliased, copy it to ensure that the parameter variable is
2756         // mutable and has a unique adress, as C requires.
2757         Address V = ParamAddr;
2758         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2759           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2760 
2761           // Copy from the incoming argument pointer to the temporary with the
2762           // appropriate alignment.
2763           //
2764           // FIXME: We should have a common utility for generating an aggregate
2765           // copy.
2766           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2767           Builder.CreateMemCpy(
2768               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2769               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2770               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2771           V = AlignedTemp;
2772         }
2773         ArgVals.push_back(ParamValue::forIndirect(V));
2774       } else {
2775         // Load scalar value from indirect argument.
2776         llvm::Value *V =
2777             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2778 
2779         if (isPromoted)
2780           V = emitArgumentDemotion(*this, Arg, V);
2781         ArgVals.push_back(ParamValue::forDirect(V));
2782       }
2783       break;
2784     }
2785 
2786     case ABIArgInfo::Extend:
2787     case ABIArgInfo::Direct: {
2788       auto AI = Fn->getArg(FirstIRArg);
2789       llvm::Type *LTy = ConvertType(Arg->getType());
2790 
2791       // Prepare parameter attributes. So far, only attributes for pointer
2792       // parameters are prepared. See
2793       // http://llvm.org/docs/LangRef.html#paramattrs.
2794       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2795           ArgI.getCoerceToType()->isPointerTy()) {
2796         assert(NumIRArgs == 1);
2797 
2798         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2799           // Set `nonnull` attribute if any.
2800           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2801                              PVD->getFunctionScopeIndex()) &&
2802               !CGM.getCodeGenOpts().NullPointerIsValid)
2803             AI->addAttr(llvm::Attribute::NonNull);
2804 
2805           QualType OTy = PVD->getOriginalType();
2806           if (const auto *ArrTy =
2807               getContext().getAsConstantArrayType(OTy)) {
2808             // A C99 array parameter declaration with the static keyword also
2809             // indicates dereferenceability, and if the size is constant we can
2810             // use the dereferenceable attribute (which requires the size in
2811             // bytes).
2812             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2813               QualType ETy = ArrTy->getElementType();
2814               llvm::Align Alignment =
2815                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2816               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
2817               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2818               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2819                   ArrSize) {
2820                 llvm::AttrBuilder Attrs(getLLVMContext());
2821                 Attrs.addDereferenceableAttr(
2822                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2823                     ArrSize);
2824                 AI->addAttrs(Attrs);
2825               } else if (getContext().getTargetInfo().getNullPointerValue(
2826                              ETy.getAddressSpace()) == 0 &&
2827                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2828                 AI->addAttr(llvm::Attribute::NonNull);
2829               }
2830             }
2831           } else if (const auto *ArrTy =
2832                      getContext().getAsVariableArrayType(OTy)) {
2833             // For C99 VLAs with the static keyword, we don't know the size so
2834             // we can't use the dereferenceable attribute, but in addrspace(0)
2835             // we know that it must be nonnull.
2836             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2837               QualType ETy = ArrTy->getElementType();
2838               llvm::Align Alignment =
2839                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2840               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
2841               if (!getContext().getTargetAddressSpace(ETy) &&
2842                   !CGM.getCodeGenOpts().NullPointerIsValid)
2843                 AI->addAttr(llvm::Attribute::NonNull);
2844             }
2845           }
2846 
2847           // Set `align` attribute if any.
2848           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2849           if (!AVAttr)
2850             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2851               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2852           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2853             // If alignment-assumption sanitizer is enabled, we do *not* add
2854             // alignment attribute here, but emit normal alignment assumption,
2855             // so the UBSAN check could function.
2856             llvm::ConstantInt *AlignmentCI =
2857                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2858             uint64_t AlignmentInt =
2859                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2860             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2861               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2862               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
2863                   llvm::Align(AlignmentInt)));
2864             }
2865           }
2866         }
2867 
2868         // Set 'noalias' if an argument type has the `restrict` qualifier.
2869         if (Arg->getType().isRestrictQualified())
2870           AI->addAttr(llvm::Attribute::NoAlias);
2871       }
2872 
2873       // Prepare the argument value. If we have the trivial case, handle it
2874       // with no muss and fuss.
2875       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2876           ArgI.getCoerceToType() == ConvertType(Ty) &&
2877           ArgI.getDirectOffset() == 0) {
2878         assert(NumIRArgs == 1);
2879 
2880         // LLVM expects swifterror parameters to be used in very restricted
2881         // ways.  Copy the value into a less-restricted temporary.
2882         llvm::Value *V = AI;
2883         if (FI.getExtParameterInfo(ArgNo).getABI()
2884               == ParameterABI::SwiftErrorResult) {
2885           QualType pointeeTy = Ty->getPointeeType();
2886           assert(pointeeTy->isPointerType());
2887           Address temp =
2888             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2889           Address arg(V, ConvertTypeForMem(pointeeTy),
2890                       getContext().getTypeAlignInChars(pointeeTy));
2891           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2892           Builder.CreateStore(incomingErrorValue, temp);
2893           V = temp.getPointer();
2894 
2895           // Push a cleanup to copy the value back at the end of the function.
2896           // The convention does not guarantee that the value will be written
2897           // back if the function exits with an unwind exception.
2898           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2899         }
2900 
2901         // Ensure the argument is the correct type.
2902         if (V->getType() != ArgI.getCoerceToType())
2903           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2904 
2905         if (isPromoted)
2906           V = emitArgumentDemotion(*this, Arg, V);
2907 
2908         // Because of merging of function types from multiple decls it is
2909         // possible for the type of an argument to not match the corresponding
2910         // type in the function type. Since we are codegening the callee
2911         // in here, add a cast to the argument type.
2912         llvm::Type *LTy = ConvertType(Arg->getType());
2913         if (V->getType() != LTy)
2914           V = Builder.CreateBitCast(V, LTy);
2915 
2916         ArgVals.push_back(ParamValue::forDirect(V));
2917         break;
2918       }
2919 
2920       // VLST arguments are coerced to VLATs at the function boundary for
2921       // ABI consistency. If this is a VLST that was coerced to
2922       // a VLAT at the function boundary and the types match up, use
2923       // llvm.experimental.vector.extract to convert back to the original
2924       // VLST.
2925       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2926         llvm::Value *Coerced = Fn->getArg(FirstIRArg);
2927         if (auto *VecTyFrom =
2928                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2929           // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2930           // vector, bitcast the source and use a vector extract.
2931           auto PredType =
2932               llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2933           if (VecTyFrom == PredType &&
2934               VecTyTo->getElementType() == Builder.getInt8Ty()) {
2935             VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2936             Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
2937           }
2938           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2939             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2940 
2941             assert(NumIRArgs == 1);
2942             Coerced->setName(Arg->getName() + ".coerce");
2943             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2944                 VecTyTo, Coerced, Zero, "castFixedSve")));
2945             break;
2946           }
2947         }
2948       }
2949 
2950       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2951                                      Arg->getName());
2952 
2953       // Pointer to store into.
2954       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2955 
2956       // Fast-isel and the optimizer generally like scalar values better than
2957       // FCAs, so we flatten them if this is safe to do for this argument.
2958       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2959       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2960           STy->getNumElements() > 1) {
2961         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2962         llvm::Type *DstTy = Ptr.getElementType();
2963         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2964 
2965         Address AddrToStoreInto = Address::invalid();
2966         if (SrcSize <= DstSize) {
2967           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2968         } else {
2969           AddrToStoreInto =
2970             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2971         }
2972 
2973         assert(STy->getNumElements() == NumIRArgs);
2974         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2975           auto AI = Fn->getArg(FirstIRArg + i);
2976           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2977           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2978           Builder.CreateStore(AI, EltPtr);
2979         }
2980 
2981         if (SrcSize > DstSize) {
2982           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2983         }
2984 
2985       } else {
2986         // Simple case, just do a coerced store of the argument into the alloca.
2987         assert(NumIRArgs == 1);
2988         auto AI = Fn->getArg(FirstIRArg);
2989         AI->setName(Arg->getName() + ".coerce");
2990         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2991       }
2992 
2993       // Match to what EmitParmDecl is expecting for this type.
2994       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2995         llvm::Value *V =
2996             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2997         if (isPromoted)
2998           V = emitArgumentDemotion(*this, Arg, V);
2999         ArgVals.push_back(ParamValue::forDirect(V));
3000       } else {
3001         ArgVals.push_back(ParamValue::forIndirect(Alloca));
3002       }
3003       break;
3004     }
3005 
3006     case ABIArgInfo::CoerceAndExpand: {
3007       // Reconstruct into a temporary.
3008       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3009       ArgVals.push_back(ParamValue::forIndirect(alloca));
3010 
3011       auto coercionType = ArgI.getCoerceAndExpandType();
3012       alloca = Builder.CreateElementBitCast(alloca, coercionType);
3013 
3014       unsigned argIndex = FirstIRArg;
3015       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3016         llvm::Type *eltType = coercionType->getElementType(i);
3017         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
3018           continue;
3019 
3020         auto eltAddr = Builder.CreateStructGEP(alloca, i);
3021         auto elt = Fn->getArg(argIndex++);
3022         Builder.CreateStore(elt, eltAddr);
3023       }
3024       assert(argIndex == FirstIRArg + NumIRArgs);
3025       break;
3026     }
3027 
3028     case ABIArgInfo::Expand: {
3029       // If this structure was expanded into multiple arguments then
3030       // we need to create a temporary and reconstruct it from the
3031       // arguments.
3032       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3033       LValue LV = MakeAddrLValue(Alloca, Ty);
3034       ArgVals.push_back(ParamValue::forIndirect(Alloca));
3035 
3036       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
3037       ExpandTypeFromArgs(Ty, LV, FnArgIter);
3038       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
3039       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
3040         auto AI = Fn->getArg(FirstIRArg + i);
3041         AI->setName(Arg->getName() + "." + Twine(i));
3042       }
3043       break;
3044     }
3045 
3046     case ABIArgInfo::Ignore:
3047       assert(NumIRArgs == 0);
3048       // Initialize the local variable appropriately.
3049       if (!hasScalarEvaluationKind(Ty)) {
3050         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
3051       } else {
3052         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
3053         ArgVals.push_back(ParamValue::forDirect(U));
3054       }
3055       break;
3056     }
3057   }
3058 
3059   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3060     for (int I = Args.size() - 1; I >= 0; --I)
3061       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3062   } else {
3063     for (unsigned I = 0, E = Args.size(); I != E; ++I)
3064       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3065   }
3066 }
3067 
3068 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3069   while (insn->use_empty()) {
3070     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3071     if (!bitcast) return;
3072 
3073     // This is "safe" because we would have used a ConstantExpr otherwise.
3074     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3075     bitcast->eraseFromParent();
3076   }
3077 }
3078 
3079 /// Try to emit a fused autorelease of a return result.
3080 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3081                                                     llvm::Value *result) {
3082   // We must be immediately followed the cast.
3083   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3084   if (BB->empty()) return nullptr;
3085   if (&BB->back() != result) return nullptr;
3086 
3087   llvm::Type *resultType = result->getType();
3088 
3089   // result is in a BasicBlock and is therefore an Instruction.
3090   llvm::Instruction *generator = cast<llvm::Instruction>(result);
3091 
3092   SmallVector<llvm::Instruction *, 4> InstsToKill;
3093 
3094   // Look for:
3095   //  %generator = bitcast %type1* %generator2 to %type2*
3096   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3097     // We would have emitted this as a constant if the operand weren't
3098     // an Instruction.
3099     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3100 
3101     // Require the generator to be immediately followed by the cast.
3102     if (generator->getNextNode() != bitcast)
3103       return nullptr;
3104 
3105     InstsToKill.push_back(bitcast);
3106   }
3107 
3108   // Look for:
3109   //   %generator = call i8* @objc_retain(i8* %originalResult)
3110   // or
3111   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3112   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3113   if (!call) return nullptr;
3114 
3115   bool doRetainAutorelease;
3116 
3117   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3118     doRetainAutorelease = true;
3119   } else if (call->getCalledOperand() ==
3120              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3121     doRetainAutorelease = false;
3122 
3123     // If we emitted an assembly marker for this call (and the
3124     // ARCEntrypoints field should have been set if so), go looking
3125     // for that call.  If we can't find it, we can't do this
3126     // optimization.  But it should always be the immediately previous
3127     // instruction, unless we needed bitcasts around the call.
3128     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3129       llvm::Instruction *prev = call->getPrevNode();
3130       assert(prev);
3131       if (isa<llvm::BitCastInst>(prev)) {
3132         prev = prev->getPrevNode();
3133         assert(prev);
3134       }
3135       assert(isa<llvm::CallInst>(prev));
3136       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3137              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3138       InstsToKill.push_back(prev);
3139     }
3140   } else {
3141     return nullptr;
3142   }
3143 
3144   result = call->getArgOperand(0);
3145   InstsToKill.push_back(call);
3146 
3147   // Keep killing bitcasts, for sanity.  Note that we no longer care
3148   // about precise ordering as long as there's exactly one use.
3149   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3150     if (!bitcast->hasOneUse()) break;
3151     InstsToKill.push_back(bitcast);
3152     result = bitcast->getOperand(0);
3153   }
3154 
3155   // Delete all the unnecessary instructions, from latest to earliest.
3156   for (auto *I : InstsToKill)
3157     I->eraseFromParent();
3158 
3159   // Do the fused retain/autorelease if we were asked to.
3160   if (doRetainAutorelease)
3161     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3162 
3163   // Cast back to the result type.
3164   return CGF.Builder.CreateBitCast(result, resultType);
3165 }
3166 
3167 /// If this is a +1 of the value of an immutable 'self', remove it.
3168 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3169                                           llvm::Value *result) {
3170   // This is only applicable to a method with an immutable 'self'.
3171   const ObjCMethodDecl *method =
3172     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3173   if (!method) return nullptr;
3174   const VarDecl *self = method->getSelfDecl();
3175   if (!self->getType().isConstQualified()) return nullptr;
3176 
3177   // Look for a retain call.
3178   llvm::CallInst *retainCall =
3179     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3180   if (!retainCall || retainCall->getCalledOperand() !=
3181                          CGF.CGM.getObjCEntrypoints().objc_retain)
3182     return nullptr;
3183 
3184   // Look for an ordinary load of 'self'.
3185   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3186   llvm::LoadInst *load =
3187     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3188   if (!load || load->isAtomic() || load->isVolatile() ||
3189       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3190     return nullptr;
3191 
3192   // Okay!  Burn it all down.  This relies for correctness on the
3193   // assumption that the retain is emitted as part of the return and
3194   // that thereafter everything is used "linearly".
3195   llvm::Type *resultType = result->getType();
3196   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3197   assert(retainCall->use_empty());
3198   retainCall->eraseFromParent();
3199   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3200 
3201   return CGF.Builder.CreateBitCast(load, resultType);
3202 }
3203 
3204 /// Emit an ARC autorelease of the result of a function.
3205 ///
3206 /// \return the value to actually return from the function
3207 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3208                                             llvm::Value *result) {
3209   // If we're returning 'self', kill the initial retain.  This is a
3210   // heuristic attempt to "encourage correctness" in the really unfortunate
3211   // case where we have a return of self during a dealloc and we desperately
3212   // need to avoid the possible autorelease.
3213   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3214     return self;
3215 
3216   // At -O0, try to emit a fused retain/autorelease.
3217   if (CGF.shouldUseFusedARCCalls())
3218     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3219       return fused;
3220 
3221   return CGF.EmitARCAutoreleaseReturnValue(result);
3222 }
3223 
3224 /// Heuristically search for a dominating store to the return-value slot.
3225 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3226   // Check if a User is a store which pointerOperand is the ReturnValue.
3227   // We are looking for stores to the ReturnValue, not for stores of the
3228   // ReturnValue to some other location.
3229   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3230     auto *SI = dyn_cast<llvm::StoreInst>(U);
3231     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
3232       return nullptr;
3233     // These aren't actually possible for non-coerced returns, and we
3234     // only care about non-coerced returns on this code path.
3235     assert(!SI->isAtomic() && !SI->isVolatile());
3236     return SI;
3237   };
3238   // If there are multiple uses of the return-value slot, just check
3239   // for something immediately preceding the IP.  Sometimes this can
3240   // happen with how we generate implicit-returns; it can also happen
3241   // with noreturn cleanups.
3242   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3243     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3244     if (IP->empty()) return nullptr;
3245 
3246     // Look at directly preceding instruction, skipping bitcasts and lifetime
3247     // markers.
3248     for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) {
3249       if (isa<llvm::BitCastInst>(&I))
3250         continue;
3251       if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I))
3252         if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end)
3253           continue;
3254 
3255       return GetStoreIfValid(&I);
3256     }
3257     return nullptr;
3258   }
3259 
3260   llvm::StoreInst *store =
3261       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3262   if (!store) return nullptr;
3263 
3264   // Now do a first-and-dirty dominance check: just walk up the
3265   // single-predecessors chain from the current insertion point.
3266   llvm::BasicBlock *StoreBB = store->getParent();
3267   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3268   while (IP != StoreBB) {
3269     if (!(IP = IP->getSinglePredecessor()))
3270       return nullptr;
3271   }
3272 
3273   // Okay, the store's basic block dominates the insertion point; we
3274   // can do our thing.
3275   return store;
3276 }
3277 
3278 // Helper functions for EmitCMSEClearRecord
3279 
3280 // Set the bits corresponding to a field having width `BitWidth` and located at
3281 // offset `BitOffset` (from the least significant bit) within a storage unit of
3282 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3283 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3284 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3285                         int BitWidth, int CharWidth) {
3286   assert(CharWidth <= 64);
3287   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3288 
3289   int Pos = 0;
3290   if (BitOffset >= CharWidth) {
3291     Pos += BitOffset / CharWidth;
3292     BitOffset = BitOffset % CharWidth;
3293   }
3294 
3295   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3296   if (BitOffset + BitWidth >= CharWidth) {
3297     Bits[Pos++] |= (Used << BitOffset) & Used;
3298     BitWidth -= CharWidth - BitOffset;
3299     BitOffset = 0;
3300   }
3301 
3302   while (BitWidth >= CharWidth) {
3303     Bits[Pos++] = Used;
3304     BitWidth -= CharWidth;
3305   }
3306 
3307   if (BitWidth > 0)
3308     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3309 }
3310 
3311 // Set the bits corresponding to a field having width `BitWidth` and located at
3312 // offset `BitOffset` (from the least significant bit) within a storage unit of
3313 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3314 // `Bits` corresponds to one target byte. Use target endian layout.
3315 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3316                         int StorageSize, int BitOffset, int BitWidth,
3317                         int CharWidth, bool BigEndian) {
3318 
3319   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3320   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3321 
3322   if (BigEndian)
3323     std::reverse(TmpBits.begin(), TmpBits.end());
3324 
3325   for (uint64_t V : TmpBits)
3326     Bits[StorageOffset++] |= V;
3327 }
3328 
3329 static void setUsedBits(CodeGenModule &, QualType, int,
3330                         SmallVectorImpl<uint64_t> &);
3331 
3332 // Set the bits in `Bits`, which correspond to the value representations of
3333 // the actual members of the record type `RTy`. Note that this function does
3334 // not handle base classes, virtual tables, etc, since they cannot happen in
3335 // CMSE function arguments or return. The bit mask corresponds to the target
3336 // memory layout, i.e. it's endian dependent.
3337 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3338                         SmallVectorImpl<uint64_t> &Bits) {
3339   ASTContext &Context = CGM.getContext();
3340   int CharWidth = Context.getCharWidth();
3341   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3342   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3343   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3344 
3345   int Idx = 0;
3346   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3347     const FieldDecl *F = *I;
3348 
3349     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3350         F->getType()->isIncompleteArrayType())
3351       continue;
3352 
3353     if (F->isBitField()) {
3354       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3355       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3356                   BFI.StorageSize / CharWidth, BFI.Offset,
3357                   BFI.Size, CharWidth,
3358                   CGM.getDataLayout().isBigEndian());
3359       continue;
3360     }
3361 
3362     setUsedBits(CGM, F->getType(),
3363                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3364   }
3365 }
3366 
3367 // Set the bits in `Bits`, which correspond to the value representations of
3368 // the elements of an array type `ATy`.
3369 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3370                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3371   const ASTContext &Context = CGM.getContext();
3372 
3373   QualType ETy = Context.getBaseElementType(ATy);
3374   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3375   SmallVector<uint64_t, 4> TmpBits(Size);
3376   setUsedBits(CGM, ETy, 0, TmpBits);
3377 
3378   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3379     auto Src = TmpBits.begin();
3380     auto Dst = Bits.begin() + Offset + I * Size;
3381     for (int J = 0; J < Size; ++J)
3382       *Dst++ |= *Src++;
3383   }
3384 }
3385 
3386 // Set the bits in `Bits`, which correspond to the value representations of
3387 // the type `QTy`.
3388 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3389                         SmallVectorImpl<uint64_t> &Bits) {
3390   if (const auto *RTy = QTy->getAs<RecordType>())
3391     return setUsedBits(CGM, RTy, Offset, Bits);
3392 
3393   ASTContext &Context = CGM.getContext();
3394   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3395     return setUsedBits(CGM, ATy, Offset, Bits);
3396 
3397   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3398   if (Size <= 0)
3399     return;
3400 
3401   std::fill_n(Bits.begin() + Offset, Size,
3402               (uint64_t(1) << Context.getCharWidth()) - 1);
3403 }
3404 
3405 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3406                                    int Pos, int Size, int CharWidth,
3407                                    bool BigEndian) {
3408   assert(Size > 0);
3409   uint64_t Mask = 0;
3410   if (BigEndian) {
3411     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3412          ++P)
3413       Mask = (Mask << CharWidth) | *P;
3414   } else {
3415     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3416     do
3417       Mask = (Mask << CharWidth) | *--P;
3418     while (P != End);
3419   }
3420   return Mask;
3421 }
3422 
3423 // Emit code to clear the bits in a record, which aren't a part of any user
3424 // declared member, when the record is a function return.
3425 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3426                                                   llvm::IntegerType *ITy,
3427                                                   QualType QTy) {
3428   assert(Src->getType() == ITy);
3429   assert(ITy->getScalarSizeInBits() <= 64);
3430 
3431   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3432   int Size = DataLayout.getTypeStoreSize(ITy);
3433   SmallVector<uint64_t, 4> Bits(Size);
3434   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3435 
3436   int CharWidth = CGM.getContext().getCharWidth();
3437   uint64_t Mask =
3438       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3439 
3440   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3441 }
3442 
3443 // Emit code to clear the bits in a record, which aren't a part of any user
3444 // declared member, when the record is a function argument.
3445 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3446                                                   llvm::ArrayType *ATy,
3447                                                   QualType QTy) {
3448   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3449   int Size = DataLayout.getTypeStoreSize(ATy);
3450   SmallVector<uint64_t, 16> Bits(Size);
3451   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3452 
3453   // Clear each element of the LLVM array.
3454   int CharWidth = CGM.getContext().getCharWidth();
3455   int CharsPerElt =
3456       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3457   int MaskIndex = 0;
3458   llvm::Value *R = llvm::UndefValue::get(ATy);
3459   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3460     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3461                                        DataLayout.isBigEndian());
3462     MaskIndex += CharsPerElt;
3463     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3464     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3465     R = Builder.CreateInsertValue(R, T1, I);
3466   }
3467 
3468   return R;
3469 }
3470 
3471 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3472                                          bool EmitRetDbgLoc,
3473                                          SourceLocation EndLoc) {
3474   if (FI.isNoReturn()) {
3475     // Noreturn functions don't return.
3476     EmitUnreachable(EndLoc);
3477     return;
3478   }
3479 
3480   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3481     // Naked functions don't have epilogues.
3482     Builder.CreateUnreachable();
3483     return;
3484   }
3485 
3486   // Functions with no result always return void.
3487   if (!ReturnValue.isValid()) {
3488     Builder.CreateRetVoid();
3489     return;
3490   }
3491 
3492   llvm::DebugLoc RetDbgLoc;
3493   llvm::Value *RV = nullptr;
3494   QualType RetTy = FI.getReturnType();
3495   const ABIArgInfo &RetAI = FI.getReturnInfo();
3496 
3497   switch (RetAI.getKind()) {
3498   case ABIArgInfo::InAlloca:
3499     // Aggregrates get evaluated directly into the destination.  Sometimes we
3500     // need to return the sret value in a register, though.
3501     assert(hasAggregateEvaluationKind(RetTy));
3502     if (RetAI.getInAllocaSRet()) {
3503       llvm::Function::arg_iterator EI = CurFn->arg_end();
3504       --EI;
3505       llvm::Value *ArgStruct = &*EI;
3506       llvm::Value *SRet = Builder.CreateStructGEP(
3507           FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex());
3508       llvm::Type *Ty =
3509           cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3510       RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3511     }
3512     break;
3513 
3514   case ABIArgInfo::Indirect: {
3515     auto AI = CurFn->arg_begin();
3516     if (RetAI.isSRetAfterThis())
3517       ++AI;
3518     switch (getEvaluationKind(RetTy)) {
3519     case TEK_Complex: {
3520       ComplexPairTy RT =
3521         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3522       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3523                          /*isInit*/ true);
3524       break;
3525     }
3526     case TEK_Aggregate:
3527       // Do nothing; aggregrates get evaluated directly into the destination.
3528       break;
3529     case TEK_Scalar: {
3530       LValueBaseInfo BaseInfo;
3531       TBAAAccessInfo TBAAInfo;
3532       CharUnits Alignment =
3533           CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
3534       Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
3535       LValue ArgVal =
3536           LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
3537       EmitStoreOfScalar(
3538           Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true);
3539       break;
3540     }
3541     }
3542     break;
3543   }
3544 
3545   case ABIArgInfo::Extend:
3546   case ABIArgInfo::Direct:
3547     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3548         RetAI.getDirectOffset() == 0) {
3549       // The internal return value temp always will have pointer-to-return-type
3550       // type, just do a load.
3551 
3552       // If there is a dominating store to ReturnValue, we can elide
3553       // the load, zap the store, and usually zap the alloca.
3554       if (llvm::StoreInst *SI =
3555               findDominatingStoreToReturnValue(*this)) {
3556         // Reuse the debug location from the store unless there is
3557         // cleanup code to be emitted between the store and return
3558         // instruction.
3559         if (EmitRetDbgLoc && !AutoreleaseResult)
3560           RetDbgLoc = SI->getDebugLoc();
3561         // Get the stored value and nuke the now-dead store.
3562         RV = SI->getValueOperand();
3563         SI->eraseFromParent();
3564 
3565       // Otherwise, we have to do a simple load.
3566       } else {
3567         RV = Builder.CreateLoad(ReturnValue);
3568       }
3569     } else {
3570       // If the value is offset in memory, apply the offset now.
3571       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3572 
3573       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3574     }
3575 
3576     // In ARC, end functions that return a retainable type with a call
3577     // to objc_autoreleaseReturnValue.
3578     if (AutoreleaseResult) {
3579 #ifndef NDEBUG
3580       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3581       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3582       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3583       // CurCodeDecl or BlockInfo.
3584       QualType RT;
3585 
3586       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3587         RT = FD->getReturnType();
3588       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3589         RT = MD->getReturnType();
3590       else if (isa<BlockDecl>(CurCodeDecl))
3591         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3592       else
3593         llvm_unreachable("Unexpected function/method type");
3594 
3595       assert(getLangOpts().ObjCAutoRefCount &&
3596              !FI.isReturnsRetained() &&
3597              RT->isObjCRetainableType());
3598 #endif
3599       RV = emitAutoreleaseOfResult(*this, RV);
3600     }
3601 
3602     break;
3603 
3604   case ABIArgInfo::Ignore:
3605     break;
3606 
3607   case ABIArgInfo::CoerceAndExpand: {
3608     auto coercionType = RetAI.getCoerceAndExpandType();
3609 
3610     // Load all of the coerced elements out into results.
3611     llvm::SmallVector<llvm::Value*, 4> results;
3612     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3613     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3614       auto coercedEltType = coercionType->getElementType(i);
3615       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3616         continue;
3617 
3618       auto eltAddr = Builder.CreateStructGEP(addr, i);
3619       auto elt = Builder.CreateLoad(eltAddr);
3620       results.push_back(elt);
3621     }
3622 
3623     // If we have one result, it's the single direct result type.
3624     if (results.size() == 1) {
3625       RV = results[0];
3626 
3627     // Otherwise, we need to make a first-class aggregate.
3628     } else {
3629       // Construct a return type that lacks padding elements.
3630       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3631 
3632       RV = llvm::UndefValue::get(returnType);
3633       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3634         RV = Builder.CreateInsertValue(RV, results[i], i);
3635       }
3636     }
3637     break;
3638   }
3639   case ABIArgInfo::Expand:
3640   case ABIArgInfo::IndirectAliased:
3641     llvm_unreachable("Invalid ABI kind for return argument");
3642   }
3643 
3644   llvm::Instruction *Ret;
3645   if (RV) {
3646     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3647       // For certain return types, clear padding bits, as they may reveal
3648       // sensitive information.
3649       // Small struct/union types are passed as integers.
3650       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3651       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3652         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3653     }
3654     EmitReturnValueCheck(RV);
3655     Ret = Builder.CreateRet(RV);
3656   } else {
3657     Ret = Builder.CreateRetVoid();
3658   }
3659 
3660   if (RetDbgLoc)
3661     Ret->setDebugLoc(std::move(RetDbgLoc));
3662 }
3663 
3664 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3665   // A current decl may not be available when emitting vtable thunks.
3666   if (!CurCodeDecl)
3667     return;
3668 
3669   // If the return block isn't reachable, neither is this check, so don't emit
3670   // it.
3671   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3672     return;
3673 
3674   ReturnsNonNullAttr *RetNNAttr = nullptr;
3675   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3676     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3677 
3678   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3679     return;
3680 
3681   // Prefer the returns_nonnull attribute if it's present.
3682   SourceLocation AttrLoc;
3683   SanitizerMask CheckKind;
3684   SanitizerHandler Handler;
3685   if (RetNNAttr) {
3686     assert(!requiresReturnValueNullabilityCheck() &&
3687            "Cannot check nullability and the nonnull attribute");
3688     AttrLoc = RetNNAttr->getLocation();
3689     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3690     Handler = SanitizerHandler::NonnullReturn;
3691   } else {
3692     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3693       if (auto *TSI = DD->getTypeSourceInfo())
3694         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3695           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3696     CheckKind = SanitizerKind::NullabilityReturn;
3697     Handler = SanitizerHandler::NullabilityReturn;
3698   }
3699 
3700   SanitizerScope SanScope(this);
3701 
3702   // Make sure the "return" source location is valid. If we're checking a
3703   // nullability annotation, make sure the preconditions for the check are met.
3704   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3705   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3706   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3707   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3708   if (requiresReturnValueNullabilityCheck())
3709     CanNullCheck =
3710         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3711   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3712   EmitBlock(Check);
3713 
3714   // Now do the null check.
3715   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3716   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3717   llvm::Value *DynamicData[] = {SLocPtr};
3718   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3719 
3720   EmitBlock(NoCheck);
3721 
3722 #ifndef NDEBUG
3723   // The return location should not be used after the check has been emitted.
3724   ReturnLocation = Address::invalid();
3725 #endif
3726 }
3727 
3728 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3729   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3730   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3731 }
3732 
3733 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3734                                           QualType Ty) {
3735   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3736   // placeholders.
3737   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3738   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3739   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3740 
3741   // FIXME: When we generate this IR in one pass, we shouldn't need
3742   // this win32-specific alignment hack.
3743   CharUnits Align = CharUnits::fromQuantity(4);
3744   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3745 
3746   return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align),
3747                                Ty.getQualifiers(),
3748                                AggValueSlot::IsNotDestructed,
3749                                AggValueSlot::DoesNotNeedGCBarriers,
3750                                AggValueSlot::IsNotAliased,
3751                                AggValueSlot::DoesNotOverlap);
3752 }
3753 
3754 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3755                                           const VarDecl *param,
3756                                           SourceLocation loc) {
3757   // StartFunction converted the ABI-lowered parameter(s) into a
3758   // local alloca.  We need to turn that into an r-value suitable
3759   // for EmitCall.
3760   Address local = GetAddrOfLocalVar(param);
3761 
3762   QualType type = param->getType();
3763 
3764   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3765     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3766   }
3767 
3768   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3769   // but the argument needs to be the original pointer.
3770   if (type->isReferenceType()) {
3771     args.add(RValue::get(Builder.CreateLoad(local)), type);
3772 
3773   // In ARC, move out of consumed arguments so that the release cleanup
3774   // entered by StartFunction doesn't cause an over-release.  This isn't
3775   // optimal -O0 code generation, but it should get cleaned up when
3776   // optimization is enabled.  This also assumes that delegate calls are
3777   // performed exactly once for a set of arguments, but that should be safe.
3778   } else if (getLangOpts().ObjCAutoRefCount &&
3779              param->hasAttr<NSConsumedAttr>() &&
3780              type->isObjCRetainableType()) {
3781     llvm::Value *ptr = Builder.CreateLoad(local);
3782     auto null =
3783       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3784     Builder.CreateStore(null, local);
3785     args.add(RValue::get(ptr), type);
3786 
3787   // For the most part, we just need to load the alloca, except that
3788   // aggregate r-values are actually pointers to temporaries.
3789   } else {
3790     args.add(convertTempToRValue(local, type, loc), type);
3791   }
3792 
3793   // Deactivate the cleanup for the callee-destructed param that was pushed.
3794   if (type->isRecordType() && !CurFuncIsThunk &&
3795       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3796       param->needsDestruction(getContext())) {
3797     EHScopeStack::stable_iterator cleanup =
3798         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3799     assert(cleanup.isValid() &&
3800            "cleanup for callee-destructed param not recorded");
3801     // This unreachable is a temporary marker which will be removed later.
3802     llvm::Instruction *isActive = Builder.CreateUnreachable();
3803     args.addArgCleanupDeactivation(cleanup, isActive);
3804   }
3805 }
3806 
3807 static bool isProvablyNull(llvm::Value *addr) {
3808   return isa<llvm::ConstantPointerNull>(addr);
3809 }
3810 
3811 /// Emit the actual writing-back of a writeback.
3812 static void emitWriteback(CodeGenFunction &CGF,
3813                           const CallArgList::Writeback &writeback) {
3814   const LValue &srcLV = writeback.Source;
3815   Address srcAddr = srcLV.getAddress(CGF);
3816   assert(!isProvablyNull(srcAddr.getPointer()) &&
3817          "shouldn't have writeback for provably null argument");
3818 
3819   llvm::BasicBlock *contBB = nullptr;
3820 
3821   // If the argument wasn't provably non-null, we need to null check
3822   // before doing the store.
3823   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3824                                               CGF.CGM.getDataLayout());
3825   if (!provablyNonNull) {
3826     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3827     contBB = CGF.createBasicBlock("icr.done");
3828 
3829     llvm::Value *isNull =
3830       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3831     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3832     CGF.EmitBlock(writebackBB);
3833   }
3834 
3835   // Load the value to writeback.
3836   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3837 
3838   // Cast it back, in case we're writing an id to a Foo* or something.
3839   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3840                                     "icr.writeback-cast");
3841 
3842   // Perform the writeback.
3843 
3844   // If we have a "to use" value, it's something we need to emit a use
3845   // of.  This has to be carefully threaded in: if it's done after the
3846   // release it's potentially undefined behavior (and the optimizer
3847   // will ignore it), and if it happens before the retain then the
3848   // optimizer could move the release there.
3849   if (writeback.ToUse) {
3850     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3851 
3852     // Retain the new value.  No need to block-copy here:  the block's
3853     // being passed up the stack.
3854     value = CGF.EmitARCRetainNonBlock(value);
3855 
3856     // Emit the intrinsic use here.
3857     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3858 
3859     // Load the old value (primitively).
3860     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3861 
3862     // Put the new value in place (primitively).
3863     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3864 
3865     // Release the old value.
3866     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3867 
3868   // Otherwise, we can just do a normal lvalue store.
3869   } else {
3870     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3871   }
3872 
3873   // Jump to the continuation block.
3874   if (!provablyNonNull)
3875     CGF.EmitBlock(contBB);
3876 }
3877 
3878 static void emitWritebacks(CodeGenFunction &CGF,
3879                            const CallArgList &args) {
3880   for (const auto &I : args.writebacks())
3881     emitWriteback(CGF, I);
3882 }
3883 
3884 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3885                                             const CallArgList &CallArgs) {
3886   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3887     CallArgs.getCleanupsToDeactivate();
3888   // Iterate in reverse to increase the likelihood of popping the cleanup.
3889   for (const auto &I : llvm::reverse(Cleanups)) {
3890     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3891     I.IsActiveIP->eraseFromParent();
3892   }
3893 }
3894 
3895 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3896   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3897     if (uop->getOpcode() == UO_AddrOf)
3898       return uop->getSubExpr();
3899   return nullptr;
3900 }
3901 
3902 /// Emit an argument that's being passed call-by-writeback.  That is,
3903 /// we are passing the address of an __autoreleased temporary; it
3904 /// might be copy-initialized with the current value of the given
3905 /// address, but it will definitely be copied out of after the call.
3906 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3907                              const ObjCIndirectCopyRestoreExpr *CRE) {
3908   LValue srcLV;
3909 
3910   // Make an optimistic effort to emit the address as an l-value.
3911   // This can fail if the argument expression is more complicated.
3912   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3913     srcLV = CGF.EmitLValue(lvExpr);
3914 
3915   // Otherwise, just emit it as a scalar.
3916   } else {
3917     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3918 
3919     QualType srcAddrType =
3920       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3921     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3922   }
3923   Address srcAddr = srcLV.getAddress(CGF);
3924 
3925   // The dest and src types don't necessarily match in LLVM terms
3926   // because of the crazy ObjC compatibility rules.
3927 
3928   llvm::PointerType *destType =
3929       cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3930   llvm::Type *destElemType =
3931       CGF.ConvertTypeForMem(CRE->getType()->getPointeeType());
3932 
3933   // If the address is a constant null, just pass the appropriate null.
3934   if (isProvablyNull(srcAddr.getPointer())) {
3935     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3936              CRE->getType());
3937     return;
3938   }
3939 
3940   // Create the temporary.
3941   Address temp =
3942       CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp");
3943   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3944   // and that cleanup will be conditional if we can't prove that the l-value
3945   // isn't null, so we need to register a dominating point so that the cleanups
3946   // system will make valid IR.
3947   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3948 
3949   // Zero-initialize it if we're not doing a copy-initialization.
3950   bool shouldCopy = CRE->shouldCopy();
3951   if (!shouldCopy) {
3952     llvm::Value *null =
3953         llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType));
3954     CGF.Builder.CreateStore(null, temp);
3955   }
3956 
3957   llvm::BasicBlock *contBB = nullptr;
3958   llvm::BasicBlock *originBB = nullptr;
3959 
3960   // If the address is *not* known to be non-null, we need to switch.
3961   llvm::Value *finalArgument;
3962 
3963   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3964                                               CGF.CGM.getDataLayout());
3965   if (provablyNonNull) {
3966     finalArgument = temp.getPointer();
3967   } else {
3968     llvm::Value *isNull =
3969       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3970 
3971     finalArgument = CGF.Builder.CreateSelect(isNull,
3972                                    llvm::ConstantPointerNull::get(destType),
3973                                              temp.getPointer(), "icr.argument");
3974 
3975     // If we need to copy, then the load has to be conditional, which
3976     // means we need control flow.
3977     if (shouldCopy) {
3978       originBB = CGF.Builder.GetInsertBlock();
3979       contBB = CGF.createBasicBlock("icr.cont");
3980       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3981       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3982       CGF.EmitBlock(copyBB);
3983       condEval.begin(CGF);
3984     }
3985   }
3986 
3987   llvm::Value *valueToUse = nullptr;
3988 
3989   // Perform a copy if necessary.
3990   if (shouldCopy) {
3991     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3992     assert(srcRV.isScalar());
3993 
3994     llvm::Value *src = srcRV.getScalarVal();
3995     src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast");
3996 
3997     // Use an ordinary store, not a store-to-lvalue.
3998     CGF.Builder.CreateStore(src, temp);
3999 
4000     // If optimization is enabled, and the value was held in a
4001     // __strong variable, we need to tell the optimizer that this
4002     // value has to stay alive until we're doing the store back.
4003     // This is because the temporary is effectively unretained,
4004     // and so otherwise we can violate the high-level semantics.
4005     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4006         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
4007       valueToUse = src;
4008     }
4009   }
4010 
4011   // Finish the control flow if we needed it.
4012   if (shouldCopy && !provablyNonNull) {
4013     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
4014     CGF.EmitBlock(contBB);
4015 
4016     // Make a phi for the value to intrinsically use.
4017     if (valueToUse) {
4018       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
4019                                                       "icr.to-use");
4020       phiToUse->addIncoming(valueToUse, copyBB);
4021       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
4022                             originBB);
4023       valueToUse = phiToUse;
4024     }
4025 
4026     condEval.end(CGF);
4027   }
4028 
4029   args.addWriteback(srcLV, temp, valueToUse);
4030   args.add(RValue::get(finalArgument), CRE->getType());
4031 }
4032 
4033 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
4034   assert(!StackBase);
4035 
4036   // Save the stack.
4037   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
4038   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
4039 }
4040 
4041 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
4042   if (StackBase) {
4043     // Restore the stack after the call.
4044     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
4045     CGF.Builder.CreateCall(F, StackBase);
4046   }
4047 }
4048 
4049 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4050                                           SourceLocation ArgLoc,
4051                                           AbstractCallee AC,
4052                                           unsigned ParmNum) {
4053   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4054                          SanOpts.has(SanitizerKind::NullabilityArg)))
4055     return;
4056 
4057   // The param decl may be missing in a variadic function.
4058   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4059   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4060 
4061   // Prefer the nonnull attribute if it's present.
4062   const NonNullAttr *NNAttr = nullptr;
4063   if (SanOpts.has(SanitizerKind::NonnullAttribute))
4064     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4065 
4066   bool CanCheckNullability = false;
4067   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4068     auto Nullability = PVD->getType()->getNullability(getContext());
4069     CanCheckNullability = Nullability &&
4070                           *Nullability == NullabilityKind::NonNull &&
4071                           PVD->getTypeSourceInfo();
4072   }
4073 
4074   if (!NNAttr && !CanCheckNullability)
4075     return;
4076 
4077   SourceLocation AttrLoc;
4078   SanitizerMask CheckKind;
4079   SanitizerHandler Handler;
4080   if (NNAttr) {
4081     AttrLoc = NNAttr->getLocation();
4082     CheckKind = SanitizerKind::NonnullAttribute;
4083     Handler = SanitizerHandler::NonnullArg;
4084   } else {
4085     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4086     CheckKind = SanitizerKind::NullabilityArg;
4087     Handler = SanitizerHandler::NullabilityArg;
4088   }
4089 
4090   SanitizerScope SanScope(this);
4091   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4092   llvm::Constant *StaticData[] = {
4093       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4094       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4095   };
4096   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
4097 }
4098 
4099 // Check if the call is going to use the inalloca convention. This needs to
4100 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4101 // later, so we can't check it directly.
4102 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4103                             ArrayRef<QualType> ArgTypes) {
4104   // The Swift calling conventions don't go through the target-specific
4105   // argument classification, they never use inalloca.
4106   // TODO: Consider limiting inalloca use to only calling conventions supported
4107   // by MSVC.
4108   if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4109     return false;
4110   if (!CGM.getTarget().getCXXABI().isMicrosoft())
4111     return false;
4112   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4113     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4114   });
4115 }
4116 
4117 #ifndef NDEBUG
4118 // Determine whether the given argument is an Objective-C method
4119 // that may have type parameters in its signature.
4120 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4121   const DeclContext *dc = method->getDeclContext();
4122   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4123     return classDecl->getTypeParamListAsWritten();
4124   }
4125 
4126   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4127     return catDecl->getTypeParamList();
4128   }
4129 
4130   return false;
4131 }
4132 #endif
4133 
4134 /// EmitCallArgs - Emit call arguments for a function.
4135 void CodeGenFunction::EmitCallArgs(
4136     CallArgList &Args, PrototypeWrapper Prototype,
4137     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4138     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4139   SmallVector<QualType, 16> ArgTypes;
4140 
4141   assert((ParamsToSkip == 0 || Prototype.P) &&
4142          "Can't skip parameters if type info is not provided");
4143 
4144   // This variable only captures *explicitly* written conventions, not those
4145   // applied by default via command line flags or target defaults, such as
4146   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4147   // require knowing if this is a C++ instance method or being able to see
4148   // unprototyped FunctionTypes.
4149   CallingConv ExplicitCC = CC_C;
4150 
4151   // First, if a prototype was provided, use those argument types.
4152   bool IsVariadic = false;
4153   if (Prototype.P) {
4154     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4155     if (MD) {
4156       IsVariadic = MD->isVariadic();
4157       ExplicitCC = getCallingConventionForDecl(
4158           MD, CGM.getTarget().getTriple().isOSWindows());
4159       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4160                       MD->param_type_end());
4161     } else {
4162       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4163       IsVariadic = FPT->isVariadic();
4164       ExplicitCC = FPT->getExtInfo().getCC();
4165       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4166                       FPT->param_type_end());
4167     }
4168 
4169 #ifndef NDEBUG
4170     // Check that the prototyped types match the argument expression types.
4171     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4172     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4173     for (QualType Ty : ArgTypes) {
4174       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4175       assert(
4176           (isGenericMethod || Ty->isVariablyModifiedType() ||
4177            Ty.getNonReferenceType()->isObjCRetainableType() ||
4178            getContext()
4179                    .getCanonicalType(Ty.getNonReferenceType())
4180                    .getTypePtr() ==
4181                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4182           "type mismatch in call argument!");
4183       ++Arg;
4184     }
4185 
4186     // Either we've emitted all the call args, or we have a call to variadic
4187     // function.
4188     assert((Arg == ArgRange.end() || IsVariadic) &&
4189            "Extra arguments in non-variadic function!");
4190 #endif
4191   }
4192 
4193   // If we still have any arguments, emit them using the type of the argument.
4194   for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
4195     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4196   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4197 
4198   // We must evaluate arguments from right to left in the MS C++ ABI,
4199   // because arguments are destroyed left to right in the callee. As a special
4200   // case, there are certain language constructs that require left-to-right
4201   // evaluation, and in those cases we consider the evaluation order requirement
4202   // to trump the "destruction order is reverse construction order" guarantee.
4203   bool LeftToRight =
4204       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4205           ? Order == EvaluationOrder::ForceLeftToRight
4206           : Order != EvaluationOrder::ForceRightToLeft;
4207 
4208   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4209                                          RValue EmittedArg) {
4210     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4211       return;
4212     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4213     if (PS == nullptr)
4214       return;
4215 
4216     const auto &Context = getContext();
4217     auto SizeTy = Context.getSizeType();
4218     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4219     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4220     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4221                                                      EmittedArg.getScalarVal(),
4222                                                      PS->isDynamic());
4223     Args.add(RValue::get(V), SizeTy);
4224     // If we're emitting args in reverse, be sure to do so with
4225     // pass_object_size, as well.
4226     if (!LeftToRight)
4227       std::swap(Args.back(), *(&Args.back() - 1));
4228   };
4229 
4230   // Insert a stack save if we're going to need any inalloca args.
4231   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4232     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4233            "inalloca only supported on x86");
4234     Args.allocateArgumentMemory(*this);
4235   }
4236 
4237   // Evaluate each argument in the appropriate order.
4238   size_t CallArgsStart = Args.size();
4239   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4240     unsigned Idx = LeftToRight ? I : E - I - 1;
4241     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4242     unsigned InitialArgSize = Args.size();
4243     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4244     // the argument and parameter match or the objc method is parameterized.
4245     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4246             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4247                                                 ArgTypes[Idx]) ||
4248             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4249              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4250            "Argument and parameter types don't match");
4251     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4252     // In particular, we depend on it being the last arg in Args, and the
4253     // objectsize bits depend on there only being one arg if !LeftToRight.
4254     assert(InitialArgSize + 1 == Args.size() &&
4255            "The code below depends on only adding one arg per EmitCallArg");
4256     (void)InitialArgSize;
4257     // Since pointer argument are never emitted as LValue, it is safe to emit
4258     // non-null argument check for r-value only.
4259     if (!Args.back().hasLValue()) {
4260       RValue RVArg = Args.back().getKnownRValue();
4261       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4262                           ParamsToSkip + Idx);
4263       // @llvm.objectsize should never have side-effects and shouldn't need
4264       // destruction/cleanups, so we can safely "emit" it after its arg,
4265       // regardless of right-to-leftness
4266       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4267     }
4268   }
4269 
4270   if (!LeftToRight) {
4271     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4272     // IR function.
4273     std::reverse(Args.begin() + CallArgsStart, Args.end());
4274   }
4275 }
4276 
4277 namespace {
4278 
4279 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4280   DestroyUnpassedArg(Address Addr, QualType Ty)
4281       : Addr(Addr), Ty(Ty) {}
4282 
4283   Address Addr;
4284   QualType Ty;
4285 
4286   void Emit(CodeGenFunction &CGF, Flags flags) override {
4287     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4288     if (DtorKind == QualType::DK_cxx_destructor) {
4289       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4290       assert(!Dtor->isTrivial());
4291       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4292                                 /*Delegating=*/false, Addr, Ty);
4293     } else {
4294       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4295     }
4296   }
4297 };
4298 
4299 struct DisableDebugLocationUpdates {
4300   CodeGenFunction &CGF;
4301   bool disabledDebugInfo;
4302   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4303     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4304       CGF.disableDebugInfo();
4305   }
4306   ~DisableDebugLocationUpdates() {
4307     if (disabledDebugInfo)
4308       CGF.enableDebugInfo();
4309   }
4310 };
4311 
4312 } // end anonymous namespace
4313 
4314 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4315   if (!HasLV)
4316     return RV;
4317   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4318   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4319                         LV.isVolatile());
4320   IsUsed = true;
4321   return RValue::getAggregate(Copy.getAddress(CGF));
4322 }
4323 
4324 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4325   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4326   if (!HasLV && RV.isScalar())
4327     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4328   else if (!HasLV && RV.isComplex())
4329     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4330   else {
4331     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4332     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4333     // We assume that call args are never copied into subobjects.
4334     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4335                           HasLV ? LV.isVolatileQualified()
4336                                 : RV.isVolatileQualified());
4337   }
4338   IsUsed = true;
4339 }
4340 
4341 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4342                                   QualType type) {
4343   DisableDebugLocationUpdates Dis(*this, E);
4344   if (const ObjCIndirectCopyRestoreExpr *CRE
4345         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4346     assert(getLangOpts().ObjCAutoRefCount);
4347     return emitWritebackArg(*this, args, CRE);
4348   }
4349 
4350   assert(type->isReferenceType() == E->isGLValue() &&
4351          "reference binding to unmaterialized r-value!");
4352 
4353   if (E->isGLValue()) {
4354     assert(E->getObjectKind() == OK_Ordinary);
4355     return args.add(EmitReferenceBindingToExpr(E), type);
4356   }
4357 
4358   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4359 
4360   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4361   // However, we still have to push an EH-only cleanup in case we unwind before
4362   // we make it to the call.
4363   if (type->isRecordType() &&
4364       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4365     // If we're using inalloca, use the argument memory.  Otherwise, use a
4366     // temporary.
4367     AggValueSlot Slot = args.isUsingInAlloca()
4368         ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
4369 
4370     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4371     if (const auto *RD = type->getAsCXXRecordDecl())
4372       DestroyedInCallee = RD->hasNonTrivialDestructor();
4373     else
4374       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4375 
4376     if (DestroyedInCallee)
4377       Slot.setExternallyDestructed();
4378 
4379     EmitAggExpr(E, Slot);
4380     RValue RV = Slot.asRValue();
4381     args.add(RV, type);
4382 
4383     if (DestroyedInCallee && NeedsEHCleanup) {
4384       // Create a no-op GEP between the placeholder and the cleanup so we can
4385       // RAUW it successfully.  It also serves as a marker of the first
4386       // instruction where the cleanup is active.
4387       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4388                                               type);
4389       // This unreachable is a temporary marker which will be removed later.
4390       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4391       args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive);
4392     }
4393     return;
4394   }
4395 
4396   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4397       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4398     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4399     assert(L.isSimple());
4400     args.addUncopiedAggregate(L, type);
4401     return;
4402   }
4403 
4404   args.add(EmitAnyExprToTemp(E), type);
4405 }
4406 
4407 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4408   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4409   // implicitly widens null pointer constants that are arguments to varargs
4410   // functions to pointer-sized ints.
4411   if (!getTarget().getTriple().isOSWindows())
4412     return Arg->getType();
4413 
4414   if (Arg->getType()->isIntegerType() &&
4415       getContext().getTypeSize(Arg->getType()) <
4416           getContext().getTargetInfo().getPointerWidth(0) &&
4417       Arg->isNullPointerConstant(getContext(),
4418                                  Expr::NPC_ValueDependentIsNotNull)) {
4419     return getContext().getIntPtrType();
4420   }
4421 
4422   return Arg->getType();
4423 }
4424 
4425 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4426 // optimizer it can aggressively ignore unwind edges.
4427 void
4428 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4429   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4430       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4431     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4432                       CGM.getNoObjCARCExceptionsMetadata());
4433 }
4434 
4435 /// Emits a call to the given no-arguments nounwind runtime function.
4436 llvm::CallInst *
4437 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4438                                          const llvm::Twine &name) {
4439   return EmitNounwindRuntimeCall(callee, None, name);
4440 }
4441 
4442 /// Emits a call to the given nounwind runtime function.
4443 llvm::CallInst *
4444 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4445                                          ArrayRef<llvm::Value *> args,
4446                                          const llvm::Twine &name) {
4447   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4448   call->setDoesNotThrow();
4449   return call;
4450 }
4451 
4452 /// Emits a simple call (never an invoke) to the given no-arguments
4453 /// runtime function.
4454 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4455                                                  const llvm::Twine &name) {
4456   return EmitRuntimeCall(callee, None, name);
4457 }
4458 
4459 // Calls which may throw must have operand bundles indicating which funclet
4460 // they are nested within.
4461 SmallVector<llvm::OperandBundleDef, 1>
4462 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4463   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4464   // There is no need for a funclet operand bundle if we aren't inside a
4465   // funclet.
4466   if (!CurrentFuncletPad)
4467     return BundleList;
4468 
4469   // Skip intrinsics which cannot throw.
4470   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4471   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4472     return BundleList;
4473 
4474   BundleList.emplace_back("funclet", CurrentFuncletPad);
4475   return BundleList;
4476 }
4477 
4478 /// Emits a simple call (never an invoke) to the given runtime function.
4479 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4480                                                  ArrayRef<llvm::Value *> args,
4481                                                  const llvm::Twine &name) {
4482   llvm::CallInst *call = Builder.CreateCall(
4483       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4484   call->setCallingConv(getRuntimeCC());
4485   return call;
4486 }
4487 
4488 /// Emits a call or invoke to the given noreturn runtime function.
4489 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4490     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4491   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4492       getBundlesForFunclet(callee.getCallee());
4493 
4494   if (getInvokeDest()) {
4495     llvm::InvokeInst *invoke =
4496       Builder.CreateInvoke(callee,
4497                            getUnreachableBlock(),
4498                            getInvokeDest(),
4499                            args,
4500                            BundleList);
4501     invoke->setDoesNotReturn();
4502     invoke->setCallingConv(getRuntimeCC());
4503   } else {
4504     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4505     call->setDoesNotReturn();
4506     call->setCallingConv(getRuntimeCC());
4507     Builder.CreateUnreachable();
4508   }
4509 }
4510 
4511 /// Emits a call or invoke instruction to the given nullary runtime function.
4512 llvm::CallBase *
4513 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4514                                          const Twine &name) {
4515   return EmitRuntimeCallOrInvoke(callee, None, name);
4516 }
4517 
4518 /// Emits a call or invoke instruction to the given runtime function.
4519 llvm::CallBase *
4520 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4521                                          ArrayRef<llvm::Value *> args,
4522                                          const Twine &name) {
4523   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4524   call->setCallingConv(getRuntimeCC());
4525   return call;
4526 }
4527 
4528 /// Emits a call or invoke instruction to the given function, depending
4529 /// on the current state of the EH stack.
4530 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4531                                                   ArrayRef<llvm::Value *> Args,
4532                                                   const Twine &Name) {
4533   llvm::BasicBlock *InvokeDest = getInvokeDest();
4534   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4535       getBundlesForFunclet(Callee.getCallee());
4536 
4537   llvm::CallBase *Inst;
4538   if (!InvokeDest)
4539     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4540   else {
4541     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4542     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4543                                 Name);
4544     EmitBlock(ContBB);
4545   }
4546 
4547   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4548   // optimizer it can aggressively ignore unwind edges.
4549   if (CGM.getLangOpts().ObjCAutoRefCount)
4550     AddObjCARCExceptionMetadata(Inst);
4551 
4552   return Inst;
4553 }
4554 
4555 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4556                                                   llvm::Value *New) {
4557   DeferredReplacements.push_back(
4558       std::make_pair(llvm::WeakTrackingVH(Old), New));
4559 }
4560 
4561 namespace {
4562 
4563 /// Specify given \p NewAlign as the alignment of return value attribute. If
4564 /// such attribute already exists, re-set it to the maximal one of two options.
4565 LLVM_NODISCARD llvm::AttributeList
4566 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4567                                 const llvm::AttributeList &Attrs,
4568                                 llvm::Align NewAlign) {
4569   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4570   if (CurAlign >= NewAlign)
4571     return Attrs;
4572   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4573   return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4574       .addRetAttribute(Ctx, AlignAttr);
4575 }
4576 
4577 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4578 protected:
4579   CodeGenFunction &CGF;
4580 
4581   /// We do nothing if this is, or becomes, nullptr.
4582   const AlignedAttrTy *AA = nullptr;
4583 
4584   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4585   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4586 
4587   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4588       : CGF(CGF_) {
4589     if (!FuncDecl)
4590       return;
4591     AA = FuncDecl->getAttr<AlignedAttrTy>();
4592   }
4593 
4594 public:
4595   /// If we can, materialize the alignment as an attribute on return value.
4596   LLVM_NODISCARD llvm::AttributeList
4597   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4598     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4599       return Attrs;
4600     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4601     if (!AlignmentCI)
4602       return Attrs;
4603     // We may legitimately have non-power-of-2 alignment here.
4604     // If so, this is UB land, emit it via `@llvm.assume` instead.
4605     if (!AlignmentCI->getValue().isPowerOf2())
4606       return Attrs;
4607     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4608         CGF.getLLVMContext(), Attrs,
4609         llvm::Align(
4610             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4611     AA = nullptr; // We're done. Disallow doing anything else.
4612     return NewAttrs;
4613   }
4614 
4615   /// Emit alignment assumption.
4616   /// This is a general fallback that we take if either there is an offset,
4617   /// or the alignment is variable or we are sanitizing for alignment.
4618   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4619     if (!AA)
4620       return;
4621     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4622                                 AA->getLocation(), Alignment, OffsetCI);
4623     AA = nullptr; // We're done. Disallow doing anything else.
4624   }
4625 };
4626 
4627 /// Helper data structure to emit `AssumeAlignedAttr`.
4628 class AssumeAlignedAttrEmitter final
4629     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4630 public:
4631   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4632       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4633     if (!AA)
4634       return;
4635     // It is guaranteed that the alignment/offset are constants.
4636     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4637     if (Expr *Offset = AA->getOffset()) {
4638       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4639       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4640         OffsetCI = nullptr;
4641     }
4642   }
4643 };
4644 
4645 /// Helper data structure to emit `AllocAlignAttr`.
4646 class AllocAlignAttrEmitter final
4647     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4648 public:
4649   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4650                         const CallArgList &CallArgs)
4651       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4652     if (!AA)
4653       return;
4654     // Alignment may or may not be a constant, and that is okay.
4655     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4656                     .getRValue(CGF)
4657                     .getScalarVal();
4658   }
4659 };
4660 
4661 } // namespace
4662 
4663 static unsigned getMaxVectorWidth(const llvm::Type *Ty) {
4664   if (auto *VT = dyn_cast<llvm::VectorType>(Ty))
4665     return VT->getPrimitiveSizeInBits().getKnownMinSize();
4666   if (auto *AT = dyn_cast<llvm::ArrayType>(Ty))
4667     return getMaxVectorWidth(AT->getElementType());
4668 
4669   unsigned MaxVectorWidth = 0;
4670   if (auto *ST = dyn_cast<llvm::StructType>(Ty))
4671     for (auto *I : ST->elements())
4672       MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I));
4673   return MaxVectorWidth;
4674 }
4675 
4676 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4677                                  const CGCallee &Callee,
4678                                  ReturnValueSlot ReturnValue,
4679                                  const CallArgList &CallArgs,
4680                                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4681                                  SourceLocation Loc) {
4682   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4683 
4684   assert(Callee.isOrdinary() || Callee.isVirtual());
4685 
4686   // Handle struct-return functions by passing a pointer to the
4687   // location that we would like to return into.
4688   QualType RetTy = CallInfo.getReturnType();
4689   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4690 
4691   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4692 
4693   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4694   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4695     // We can only guarantee that a function is called from the correct
4696     // context/function based on the appropriate target attributes,
4697     // so only check in the case where we have both always_inline and target
4698     // since otherwise we could be making a conditional call after a check for
4699     // the proper cpu features (and it won't cause code generation issues due to
4700     // function based code generation).
4701     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4702         TargetDecl->hasAttr<TargetAttr>())
4703       checkTargetFeatures(Loc, FD);
4704 
4705     // Some architectures (such as x86-64) have the ABI changed based on
4706     // attribute-target/features. Give them a chance to diagnose.
4707     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4708         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4709   }
4710 
4711 #ifndef NDEBUG
4712   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4713     // For an inalloca varargs function, we don't expect CallInfo to match the
4714     // function pointer's type, because the inalloca struct a will have extra
4715     // fields in it for the varargs parameters.  Code later in this function
4716     // bitcasts the function pointer to the type derived from CallInfo.
4717     //
4718     // In other cases, we assert that the types match up (until pointers stop
4719     // having pointee types).
4720     if (Callee.isVirtual())
4721       assert(IRFuncTy == Callee.getVirtualFunctionType());
4722     else {
4723       llvm::PointerType *PtrTy =
4724           llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType());
4725       assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy));
4726     }
4727   }
4728 #endif
4729 
4730   // 1. Set up the arguments.
4731 
4732   // If we're using inalloca, insert the allocation after the stack save.
4733   // FIXME: Do this earlier rather than hacking it in here!
4734   Address ArgMemory = Address::invalid();
4735   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4736     const llvm::DataLayout &DL = CGM.getDataLayout();
4737     llvm::Instruction *IP = CallArgs.getStackBase();
4738     llvm::AllocaInst *AI;
4739     if (IP) {
4740       IP = IP->getNextNode();
4741       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4742                                 "argmem", IP);
4743     } else {
4744       AI = CreateTempAlloca(ArgStruct, "argmem");
4745     }
4746     auto Align = CallInfo.getArgStructAlignment();
4747     AI->setAlignment(Align.getAsAlign());
4748     AI->setUsedWithInAlloca(true);
4749     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4750     ArgMemory = Address(AI, ArgStruct, Align);
4751   }
4752 
4753   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4754   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4755 
4756   // If the call returns a temporary with struct return, create a temporary
4757   // alloca to hold the result, unless one is given to us.
4758   Address SRetPtr = Address::invalid();
4759   Address SRetAlloca = Address::invalid();
4760   llvm::Value *UnusedReturnSizePtr = nullptr;
4761   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4762     if (!ReturnValue.isNull()) {
4763       SRetPtr = ReturnValue.getValue();
4764     } else {
4765       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4766       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4767         llvm::TypeSize size =
4768             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4769         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4770       }
4771     }
4772     if (IRFunctionArgs.hasSRetArg()) {
4773       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4774     } else if (RetAI.isInAlloca()) {
4775       Address Addr =
4776           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4777       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4778     }
4779   }
4780 
4781   Address swiftErrorTemp = Address::invalid();
4782   Address swiftErrorArg = Address::invalid();
4783 
4784   // When passing arguments using temporary allocas, we need to add the
4785   // appropriate lifetime markers. This vector keeps track of all the lifetime
4786   // markers that need to be ended right after the call.
4787   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4788 
4789   // Translate all of the arguments as necessary to match the IR lowering.
4790   assert(CallInfo.arg_size() == CallArgs.size() &&
4791          "Mismatch between function signature & arguments.");
4792   unsigned ArgNo = 0;
4793   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4794   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4795        I != E; ++I, ++info_it, ++ArgNo) {
4796     const ABIArgInfo &ArgInfo = info_it->info;
4797 
4798     // Insert a padding argument to ensure proper alignment.
4799     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4800       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4801           llvm::UndefValue::get(ArgInfo.getPaddingType());
4802 
4803     unsigned FirstIRArg, NumIRArgs;
4804     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4805 
4806     switch (ArgInfo.getKind()) {
4807     case ABIArgInfo::InAlloca: {
4808       assert(NumIRArgs == 0);
4809       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4810       if (I->isAggregate()) {
4811         Address Addr = I->hasLValue()
4812                            ? I->getKnownLValue().getAddress(*this)
4813                            : I->getKnownRValue().getAggregateAddress();
4814         llvm::Instruction *Placeholder =
4815             cast<llvm::Instruction>(Addr.getPointer());
4816 
4817         if (!ArgInfo.getInAllocaIndirect()) {
4818           // Replace the placeholder with the appropriate argument slot GEP.
4819           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4820           Builder.SetInsertPoint(Placeholder);
4821           Addr = Builder.CreateStructGEP(ArgMemory,
4822                                          ArgInfo.getInAllocaFieldIndex());
4823           Builder.restoreIP(IP);
4824         } else {
4825           // For indirect things such as overaligned structs, replace the
4826           // placeholder with a regular aggregate temporary alloca. Store the
4827           // address of this alloca into the struct.
4828           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4829           Address ArgSlot = Builder.CreateStructGEP(
4830               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4831           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4832         }
4833         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4834       } else if (ArgInfo.getInAllocaIndirect()) {
4835         // Make a temporary alloca and store the address of it into the argument
4836         // struct.
4837         Address Addr = CreateMemTempWithoutCast(
4838             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4839             "indirect-arg-temp");
4840         I->copyInto(*this, Addr);
4841         Address ArgSlot =
4842             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4843         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4844       } else {
4845         // Store the RValue into the argument struct.
4846         Address Addr =
4847             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4848         // There are some cases where a trivial bitcast is not avoidable.  The
4849         // definition of a type later in a translation unit may change it's type
4850         // from {}* to (%struct.foo*)*.
4851         Addr = Builder.CreateElementBitCast(Addr, ConvertTypeForMem(I->Ty));
4852         I->copyInto(*this, Addr);
4853       }
4854       break;
4855     }
4856 
4857     case ABIArgInfo::Indirect:
4858     case ABIArgInfo::IndirectAliased: {
4859       assert(NumIRArgs == 1);
4860       if (!I->isAggregate()) {
4861         // Make a temporary alloca to pass the argument.
4862         Address Addr = CreateMemTempWithoutCast(
4863             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4864         IRCallArgs[FirstIRArg] = Addr.getPointer();
4865 
4866         I->copyInto(*this, Addr);
4867       } else {
4868         // We want to avoid creating an unnecessary temporary+copy here;
4869         // however, we need one in three cases:
4870         // 1. If the argument is not byval, and we are required to copy the
4871         //    source.  (This case doesn't occur on any common architecture.)
4872         // 2. If the argument is byval, RV is not sufficiently aligned, and
4873         //    we cannot force it to be sufficiently aligned.
4874         // 3. If the argument is byval, but RV is not located in default
4875         //    or alloca address space.
4876         Address Addr = I->hasLValue()
4877                            ? I->getKnownLValue().getAddress(*this)
4878                            : I->getKnownRValue().getAggregateAddress();
4879         llvm::Value *V = Addr.getPointer();
4880         CharUnits Align = ArgInfo.getIndirectAlign();
4881         const llvm::DataLayout *TD = &CGM.getDataLayout();
4882 
4883         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4884                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4885                     TD->getAllocaAddrSpace()) &&
4886                "indirect argument must be in alloca address space");
4887 
4888         bool NeedCopy = false;
4889 
4890         if (Addr.getAlignment() < Align &&
4891             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4892                 Align.getAsAlign()) {
4893           NeedCopy = true;
4894         } else if (I->hasLValue()) {
4895           auto LV = I->getKnownLValue();
4896           auto AS = LV.getAddressSpace();
4897 
4898           if (!ArgInfo.getIndirectByVal() ||
4899               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4900             NeedCopy = true;
4901           }
4902           if (!getLangOpts().OpenCL) {
4903             if ((ArgInfo.getIndirectByVal() &&
4904                 (AS != LangAS::Default &&
4905                  AS != CGM.getASTAllocaAddressSpace()))) {
4906               NeedCopy = true;
4907             }
4908           }
4909           // For OpenCL even if RV is located in default or alloca address space
4910           // we don't want to perform address space cast for it.
4911           else if ((ArgInfo.getIndirectByVal() &&
4912                     Addr.getType()->getAddressSpace() != IRFuncTy->
4913                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4914             NeedCopy = true;
4915           }
4916         }
4917 
4918         if (NeedCopy) {
4919           // Create an aligned temporary, and copy to it.
4920           Address AI = CreateMemTempWithoutCast(
4921               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4922           IRCallArgs[FirstIRArg] = AI.getPointer();
4923 
4924           // Emit lifetime markers for the temporary alloca.
4925           llvm::TypeSize ByvalTempElementSize =
4926               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4927           llvm::Value *LifetimeSize =
4928               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4929 
4930           // Add cleanup code to emit the end lifetime marker after the call.
4931           if (LifetimeSize) // In case we disabled lifetime markers.
4932             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4933 
4934           // Generate the copy.
4935           I->copyInto(*this, AI);
4936         } else {
4937           // Skip the extra memcpy call.
4938           auto *T = llvm::PointerType::getWithSamePointeeType(
4939               cast<llvm::PointerType>(V->getType()),
4940               CGM.getDataLayout().getAllocaAddrSpace());
4941           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4942               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4943               true);
4944         }
4945       }
4946       break;
4947     }
4948 
4949     case ABIArgInfo::Ignore:
4950       assert(NumIRArgs == 0);
4951       break;
4952 
4953     case ABIArgInfo::Extend:
4954     case ABIArgInfo::Direct: {
4955       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4956           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4957           ArgInfo.getDirectOffset() == 0) {
4958         assert(NumIRArgs == 1);
4959         llvm::Value *V;
4960         if (!I->isAggregate())
4961           V = I->getKnownRValue().getScalarVal();
4962         else
4963           V = Builder.CreateLoad(
4964               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4965                              : I->getKnownRValue().getAggregateAddress());
4966 
4967         // Implement swifterror by copying into a new swifterror argument.
4968         // We'll write back in the normal path out of the call.
4969         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4970               == ParameterABI::SwiftErrorResult) {
4971           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4972 
4973           QualType pointeeTy = I->Ty->getPointeeType();
4974           swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy),
4975                                   getContext().getTypeAlignInChars(pointeeTy));
4976 
4977           swiftErrorTemp =
4978             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4979           V = swiftErrorTemp.getPointer();
4980           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4981 
4982           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4983           Builder.CreateStore(errorValue, swiftErrorTemp);
4984         }
4985 
4986         // We might have to widen integers, but we should never truncate.
4987         if (ArgInfo.getCoerceToType() != V->getType() &&
4988             V->getType()->isIntegerTy())
4989           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4990 
4991         // If the argument doesn't match, perform a bitcast to coerce it.  This
4992         // can happen due to trivial type mismatches.
4993         if (FirstIRArg < IRFuncTy->getNumParams() &&
4994             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4995           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4996 
4997         IRCallArgs[FirstIRArg] = V;
4998         break;
4999       }
5000 
5001       // FIXME: Avoid the conversion through memory if possible.
5002       Address Src = Address::invalid();
5003       if (!I->isAggregate()) {
5004         Src = CreateMemTemp(I->Ty, "coerce");
5005         I->copyInto(*this, Src);
5006       } else {
5007         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5008                              : I->getKnownRValue().getAggregateAddress();
5009       }
5010 
5011       // If the value is offset in memory, apply the offset now.
5012       Src = emitAddressAtOffset(*this, Src, ArgInfo);
5013 
5014       // Fast-isel and the optimizer generally like scalar values better than
5015       // FCAs, so we flatten them if this is safe to do for this argument.
5016       llvm::StructType *STy =
5017             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
5018       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
5019         llvm::Type *SrcTy = Src.getElementType();
5020         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
5021         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
5022 
5023         // If the source type is smaller than the destination type of the
5024         // coerce-to logic, copy the source value into a temp alloca the size
5025         // of the destination type to allow loading all of it. The bits past
5026         // the source value are left undef.
5027         if (SrcSize < DstSize) {
5028           Address TempAlloca
5029             = CreateTempAlloca(STy, Src.getAlignment(),
5030                                Src.getName() + ".coerce");
5031           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
5032           Src = TempAlloca;
5033         } else {
5034           Src = Builder.CreateElementBitCast(Src, STy);
5035         }
5036 
5037         assert(NumIRArgs == STy->getNumElements());
5038         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5039           Address EltPtr = Builder.CreateStructGEP(Src, i);
5040           llvm::Value *LI = Builder.CreateLoad(EltPtr);
5041           IRCallArgs[FirstIRArg + i] = LI;
5042         }
5043       } else {
5044         // In the simple case, just pass the coerced loaded value.
5045         assert(NumIRArgs == 1);
5046         llvm::Value *Load =
5047             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
5048 
5049         if (CallInfo.isCmseNSCall()) {
5050           // For certain parameter types, clear padding bits, as they may reveal
5051           // sensitive information.
5052           // Small struct/union types are passed as integer arrays.
5053           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
5054           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
5055             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
5056         }
5057         IRCallArgs[FirstIRArg] = Load;
5058       }
5059 
5060       break;
5061     }
5062 
5063     case ABIArgInfo::CoerceAndExpand: {
5064       auto coercionType = ArgInfo.getCoerceAndExpandType();
5065       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5066 
5067       llvm::Value *tempSize = nullptr;
5068       Address addr = Address::invalid();
5069       Address AllocaAddr = Address::invalid();
5070       if (I->isAggregate()) {
5071         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5072                               : I->getKnownRValue().getAggregateAddress();
5073 
5074       } else {
5075         RValue RV = I->getKnownRValue();
5076         assert(RV.isScalar()); // complex should always just be direct
5077 
5078         llvm::Type *scalarType = RV.getScalarVal()->getType();
5079         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5080         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
5081 
5082         // Materialize to a temporary.
5083         addr =
5084             CreateTempAlloca(RV.getScalarVal()->getType(),
5085                              CharUnits::fromQuantity(std::max(
5086                                  layout->getAlignment().value(), scalarAlign)),
5087                              "tmp",
5088                              /*ArraySize=*/nullptr, &AllocaAddr);
5089         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5090 
5091         Builder.CreateStore(RV.getScalarVal(), addr);
5092       }
5093 
5094       addr = Builder.CreateElementBitCast(addr, coercionType);
5095 
5096       unsigned IRArgPos = FirstIRArg;
5097       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5098         llvm::Type *eltType = coercionType->getElementType(i);
5099         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5100         Address eltAddr = Builder.CreateStructGEP(addr, i);
5101         llvm::Value *elt = Builder.CreateLoad(eltAddr);
5102         IRCallArgs[IRArgPos++] = elt;
5103       }
5104       assert(IRArgPos == FirstIRArg + NumIRArgs);
5105 
5106       if (tempSize) {
5107         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5108       }
5109 
5110       break;
5111     }
5112 
5113     case ABIArgInfo::Expand: {
5114       unsigned IRArgPos = FirstIRArg;
5115       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5116       assert(IRArgPos == FirstIRArg + NumIRArgs);
5117       break;
5118     }
5119     }
5120   }
5121 
5122   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5123   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5124 
5125   // If we're using inalloca, set up that argument.
5126   if (ArgMemory.isValid()) {
5127     llvm::Value *Arg = ArgMemory.getPointer();
5128     if (CallInfo.isVariadic()) {
5129       // When passing non-POD arguments by value to variadic functions, we will
5130       // end up with a variadic prototype and an inalloca call site.  In such
5131       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
5132       // the callee.
5133       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5134       CalleePtr =
5135           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5136     } else {
5137       llvm::Type *LastParamTy =
5138           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5139       if (Arg->getType() != LastParamTy) {
5140 #ifndef NDEBUG
5141         // Assert that these structs have equivalent element types.
5142         llvm::StructType *FullTy = CallInfo.getArgStruct();
5143         if (!LastParamTy->isOpaquePointerTy()) {
5144           llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5145               LastParamTy->getNonOpaquePointerElementType());
5146           assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5147           for (auto DI = DeclaredTy->element_begin(),
5148                     DE = DeclaredTy->element_end(),
5149                     FI = FullTy->element_begin();
5150                DI != DE; ++DI, ++FI)
5151             assert(*DI == *FI);
5152         }
5153 #endif
5154         Arg = Builder.CreateBitCast(Arg, LastParamTy);
5155       }
5156     }
5157     assert(IRFunctionArgs.hasInallocaArg());
5158     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5159   }
5160 
5161   // 2. Prepare the function pointer.
5162 
5163   // If the callee is a bitcast of a non-variadic function to have a
5164   // variadic function pointer type, check to see if we can remove the
5165   // bitcast.  This comes up with unprototyped functions.
5166   //
5167   // This makes the IR nicer, but more importantly it ensures that we
5168   // can inline the function at -O0 if it is marked always_inline.
5169   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5170                                    llvm::Value *Ptr) -> llvm::Function * {
5171     if (!CalleeFT->isVarArg())
5172       return nullptr;
5173 
5174     // Get underlying value if it's a bitcast
5175     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5176       if (CE->getOpcode() == llvm::Instruction::BitCast)
5177         Ptr = CE->getOperand(0);
5178     }
5179 
5180     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5181     if (!OrigFn)
5182       return nullptr;
5183 
5184     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5185 
5186     // If the original type is variadic, or if any of the component types
5187     // disagree, we cannot remove the cast.
5188     if (OrigFT->isVarArg() ||
5189         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5190         OrigFT->getReturnType() != CalleeFT->getReturnType())
5191       return nullptr;
5192 
5193     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5194       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5195         return nullptr;
5196 
5197     return OrigFn;
5198   };
5199 
5200   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5201     CalleePtr = OrigFn;
5202     IRFuncTy = OrigFn->getFunctionType();
5203   }
5204 
5205   // 3. Perform the actual call.
5206 
5207   // Deactivate any cleanups that we're supposed to do immediately before
5208   // the call.
5209   if (!CallArgs.getCleanupsToDeactivate().empty())
5210     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5211 
5212   // Assert that the arguments we computed match up.  The IR verifier
5213   // will catch this, but this is a common enough source of problems
5214   // during IRGen changes that it's way better for debugging to catch
5215   // it ourselves here.
5216 #ifndef NDEBUG
5217   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5218   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5219     // Inalloca argument can have different type.
5220     if (IRFunctionArgs.hasInallocaArg() &&
5221         i == IRFunctionArgs.getInallocaArgNo())
5222       continue;
5223     if (i < IRFuncTy->getNumParams())
5224       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5225   }
5226 #endif
5227 
5228   // Update the largest vector width if any arguments have vector types.
5229   for (unsigned i = 0; i < IRCallArgs.size(); ++i)
5230     LargestVectorWidth = std::max(LargestVectorWidth,
5231                                   getMaxVectorWidth(IRCallArgs[i]->getType()));
5232 
5233   // Compute the calling convention and attributes.
5234   unsigned CallingConv;
5235   llvm::AttributeList Attrs;
5236   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5237                              Callee.getAbstractInfo(), Attrs, CallingConv,
5238                              /*AttrOnCallSite=*/true,
5239                              /*IsThunk=*/false);
5240 
5241   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5242     if (FD->hasAttr<StrictFPAttr>())
5243       // All calls within a strictfp function are marked strictfp
5244       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5245 
5246   // Add call-site nomerge attribute if exists.
5247   if (InNoMergeAttributedStmt)
5248     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5249 
5250   // Add call-site noinline attribute if exists.
5251   if (InNoInlineAttributedStmt)
5252     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5253 
5254   // Add call-site always_inline attribute if exists.
5255   if (InAlwaysInlineAttributedStmt)
5256     Attrs =
5257         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5258 
5259   // Apply some call-site-specific attributes.
5260   // TODO: work this into building the attribute set.
5261 
5262   // Apply always_inline to all calls within flatten functions.
5263   // FIXME: should this really take priority over __try, below?
5264   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5265       !InNoInlineAttributedStmt &&
5266       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5267     Attrs =
5268         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5269   }
5270 
5271   // Disable inlining inside SEH __try blocks.
5272   if (isSEHTryScope()) {
5273     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5274   }
5275 
5276   // Decide whether to use a call or an invoke.
5277   bool CannotThrow;
5278   if (currentFunctionUsesSEHTry()) {
5279     // SEH cares about asynchronous exceptions, so everything can "throw."
5280     CannotThrow = false;
5281   } else if (isCleanupPadScope() &&
5282              EHPersonality::get(*this).isMSVCXXPersonality()) {
5283     // The MSVC++ personality will implicitly terminate the program if an
5284     // exception is thrown during a cleanup outside of a try/catch.
5285     // We don't need to model anything in IR to get this behavior.
5286     CannotThrow = true;
5287   } else {
5288     // Otherwise, nounwind call sites will never throw.
5289     CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5290 
5291     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5292       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5293         CannotThrow = true;
5294   }
5295 
5296   // If we made a temporary, be sure to clean up after ourselves. Note that we
5297   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5298   // pop this cleanup later on. Being eager about this is OK, since this
5299   // temporary is 'invisible' outside of the callee.
5300   if (UnusedReturnSizePtr)
5301     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5302                                          UnusedReturnSizePtr);
5303 
5304   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5305 
5306   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5307       getBundlesForFunclet(CalleePtr);
5308 
5309   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5310     if (FD->hasAttr<StrictFPAttr>())
5311       // All calls within a strictfp function are marked strictfp
5312       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5313 
5314   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5315   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5316 
5317   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5318   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5319 
5320   // Emit the actual call/invoke instruction.
5321   llvm::CallBase *CI;
5322   if (!InvokeDest) {
5323     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5324   } else {
5325     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5326     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5327                               BundleList);
5328     EmitBlock(Cont);
5329   }
5330   if (callOrInvoke)
5331     *callOrInvoke = CI;
5332 
5333   // If this is within a function that has the guard(nocf) attribute and is an
5334   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5335   // Control Flow Guard checks should not be added, even if the call is inlined.
5336   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5337     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5338       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5339         Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5340     }
5341   }
5342 
5343   // Apply the attributes and calling convention.
5344   CI->setAttributes(Attrs);
5345   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5346 
5347   // Apply various metadata.
5348 
5349   if (!CI->getType()->isVoidTy())
5350     CI->setName("call");
5351 
5352   // Update largest vector width from the return type.
5353   LargestVectorWidth =
5354       std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType()));
5355 
5356   // Insert instrumentation or attach profile metadata at indirect call sites.
5357   // For more details, see the comment before the definition of
5358   // IPVK_IndirectCallTarget in InstrProfData.inc.
5359   if (!CI->getCalledFunction())
5360     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5361                      CI, CalleePtr);
5362 
5363   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5364   // optimizer it can aggressively ignore unwind edges.
5365   if (CGM.getLangOpts().ObjCAutoRefCount)
5366     AddObjCARCExceptionMetadata(CI);
5367 
5368   // Set tail call kind if necessary.
5369   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5370     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5371       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5372     else if (IsMustTail)
5373       Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5374   }
5375 
5376   // Add metadata for calls to MSAllocator functions
5377   if (getDebugInfo() && TargetDecl &&
5378       TargetDecl->hasAttr<MSAllocatorAttr>())
5379     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5380 
5381   // Add metadata if calling an __attribute__((error(""))) or warning fn.
5382   if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5383     llvm::ConstantInt *Line =
5384         llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5385     llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5386     llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5387     CI->setMetadata("srcloc", MDT);
5388   }
5389 
5390   // 4. Finish the call.
5391 
5392   // If the call doesn't return, finish the basic block and clear the
5393   // insertion point; this allows the rest of IRGen to discard
5394   // unreachable code.
5395   if (CI->doesNotReturn()) {
5396     if (UnusedReturnSizePtr)
5397       PopCleanupBlock();
5398 
5399     // Strip away the noreturn attribute to better diagnose unreachable UB.
5400     if (SanOpts.has(SanitizerKind::Unreachable)) {
5401       // Also remove from function since CallBase::hasFnAttr additionally checks
5402       // attributes of the called function.
5403       if (auto *F = CI->getCalledFunction())
5404         F->removeFnAttr(llvm::Attribute::NoReturn);
5405       CI->removeFnAttr(llvm::Attribute::NoReturn);
5406 
5407       // Avoid incompatibility with ASan which relies on the `noreturn`
5408       // attribute to insert handler calls.
5409       if (SanOpts.hasOneOf(SanitizerKind::Address |
5410                            SanitizerKind::KernelAddress)) {
5411         SanitizerScope SanScope(this);
5412         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5413         Builder.SetInsertPoint(CI);
5414         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5415         llvm::FunctionCallee Fn =
5416             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5417         EmitNounwindRuntimeCall(Fn);
5418       }
5419     }
5420 
5421     EmitUnreachable(Loc);
5422     Builder.ClearInsertionPoint();
5423 
5424     // FIXME: For now, emit a dummy basic block because expr emitters in
5425     // generally are not ready to handle emitting expressions at unreachable
5426     // points.
5427     EnsureInsertPoint();
5428 
5429     // Return a reasonable RValue.
5430     return GetUndefRValue(RetTy);
5431   }
5432 
5433   // If this is a musttail call, return immediately. We do not branch to the
5434   // epilogue in this case.
5435   if (IsMustTail) {
5436     for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5437          ++it) {
5438       EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5439       if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5440         CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5441     }
5442     if (CI->getType()->isVoidTy())
5443       Builder.CreateRetVoid();
5444     else
5445       Builder.CreateRet(CI);
5446     Builder.ClearInsertionPoint();
5447     EnsureInsertPoint();
5448     return GetUndefRValue(RetTy);
5449   }
5450 
5451   // Perform the swifterror writeback.
5452   if (swiftErrorTemp.isValid()) {
5453     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5454     Builder.CreateStore(errorResult, swiftErrorArg);
5455   }
5456 
5457   // Emit any call-associated writebacks immediately.  Arguably this
5458   // should happen after any return-value munging.
5459   if (CallArgs.hasWritebacks())
5460     emitWritebacks(*this, CallArgs);
5461 
5462   // The stack cleanup for inalloca arguments has to run out of the normal
5463   // lexical order, so deactivate it and run it manually here.
5464   CallArgs.freeArgumentMemory(*this);
5465 
5466   // Extract the return value.
5467   RValue Ret = [&] {
5468     switch (RetAI.getKind()) {
5469     case ABIArgInfo::CoerceAndExpand: {
5470       auto coercionType = RetAI.getCoerceAndExpandType();
5471 
5472       Address addr = SRetPtr;
5473       addr = Builder.CreateElementBitCast(addr, coercionType);
5474 
5475       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5476       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5477 
5478       unsigned unpaddedIndex = 0;
5479       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5480         llvm::Type *eltType = coercionType->getElementType(i);
5481         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5482         Address eltAddr = Builder.CreateStructGEP(addr, i);
5483         llvm::Value *elt = CI;
5484         if (requiresExtract)
5485           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5486         else
5487           assert(unpaddedIndex == 0);
5488         Builder.CreateStore(elt, eltAddr);
5489       }
5490       // FALLTHROUGH
5491       LLVM_FALLTHROUGH;
5492     }
5493 
5494     case ABIArgInfo::InAlloca:
5495     case ABIArgInfo::Indirect: {
5496       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5497       if (UnusedReturnSizePtr)
5498         PopCleanupBlock();
5499       return ret;
5500     }
5501 
5502     case ABIArgInfo::Ignore:
5503       // If we are ignoring an argument that had a result, make sure to
5504       // construct the appropriate return value for our caller.
5505       return GetUndefRValue(RetTy);
5506 
5507     case ABIArgInfo::Extend:
5508     case ABIArgInfo::Direct: {
5509       llvm::Type *RetIRTy = ConvertType(RetTy);
5510       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5511         switch (getEvaluationKind(RetTy)) {
5512         case TEK_Complex: {
5513           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5514           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5515           return RValue::getComplex(std::make_pair(Real, Imag));
5516         }
5517         case TEK_Aggregate: {
5518           Address DestPtr = ReturnValue.getValue();
5519           bool DestIsVolatile = ReturnValue.isVolatile();
5520 
5521           if (!DestPtr.isValid()) {
5522             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5523             DestIsVolatile = false;
5524           }
5525           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5526           return RValue::getAggregate(DestPtr);
5527         }
5528         case TEK_Scalar: {
5529           // If the argument doesn't match, perform a bitcast to coerce it.  This
5530           // can happen due to trivial type mismatches.
5531           llvm::Value *V = CI;
5532           if (V->getType() != RetIRTy)
5533             V = Builder.CreateBitCast(V, RetIRTy);
5534           return RValue::get(V);
5535         }
5536         }
5537         llvm_unreachable("bad evaluation kind");
5538       }
5539 
5540       Address DestPtr = ReturnValue.getValue();
5541       bool DestIsVolatile = ReturnValue.isVolatile();
5542 
5543       if (!DestPtr.isValid()) {
5544         DestPtr = CreateMemTemp(RetTy, "coerce");
5545         DestIsVolatile = false;
5546       }
5547 
5548       // If the value is offset in memory, apply the offset now.
5549       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5550       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5551 
5552       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5553     }
5554 
5555     case ABIArgInfo::Expand:
5556     case ABIArgInfo::IndirectAliased:
5557       llvm_unreachable("Invalid ABI kind for return argument");
5558     }
5559 
5560     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5561   } ();
5562 
5563   // Emit the assume_aligned check on the return value.
5564   if (Ret.isScalar() && TargetDecl) {
5565     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5566     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5567   }
5568 
5569   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5570   // we can't use the full cleanup mechanism.
5571   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5572     LifetimeEnd.Emit(*this, /*Flags=*/{});
5573 
5574   if (!ReturnValue.isExternallyDestructed() &&
5575       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5576     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5577                 RetTy);
5578 
5579   return Ret;
5580 }
5581 
5582 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5583   if (isVirtual()) {
5584     const CallExpr *CE = getVirtualCallExpr();
5585     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5586         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5587         CE ? CE->getBeginLoc() : SourceLocation());
5588   }
5589 
5590   return *this;
5591 }
5592 
5593 /* VarArg handling */
5594 
5595 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5596   VAListAddr = VE->isMicrosoftABI()
5597                  ? EmitMSVAListRef(VE->getSubExpr())
5598                  : EmitVAListRef(VE->getSubExpr());
5599   QualType Ty = VE->getType();
5600   if (VE->isMicrosoftABI())
5601     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5602   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5603 }
5604