1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /***/ 42 43 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 44 switch (CC) { 45 default: return llvm::CallingConv::C; 46 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 47 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 48 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 49 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 50 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 51 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 52 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 53 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 54 // TODO: Add support for __pascal to LLVM. 55 case CC_X86Pascal: return llvm::CallingConv::C; 56 // TODO: Add support for __vectorcall to LLVM. 57 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 58 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 59 case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL; 60 } 61 } 62 63 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 64 /// qualification. 65 /// FIXME: address space qualification? 66 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 67 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 68 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 69 } 70 71 /// Returns the canonical formal type of the given C++ method. 72 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 73 return MD->getType()->getCanonicalTypeUnqualified() 74 .getAs<FunctionProtoType>(); 75 } 76 77 /// Returns the "extra-canonicalized" return type, which discards 78 /// qualifiers on the return type. Codegen doesn't care about them, 79 /// and it makes ABI code a little easier to be able to assume that 80 /// all parameter and return types are top-level unqualified. 81 static CanQualType GetReturnType(QualType RetTy) { 82 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 83 } 84 85 /// Arrange the argument and result information for a value of the given 86 /// unprototyped freestanding function type. 87 const CGFunctionInfo & 88 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 89 // When translating an unprototyped function type, always use a 90 // variadic type. 91 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 92 /*instanceMethod=*/false, 93 /*chainCall=*/false, None, 94 FTNP->getExtInfo(), RequiredArgs(0)); 95 } 96 97 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in 98 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 99 static void appendParameterTypes(const CodeGenTypes &CGT, 100 SmallVectorImpl<CanQualType> &prefix, 101 const CanQual<FunctionProtoType> &FPT, 102 const FunctionDecl *FD) { 103 // Fast path: unknown target. 104 if (FD == nullptr) { 105 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 106 return; 107 } 108 109 // In the vast majority cases, we'll have precisely FPT->getNumParams() 110 // parameters; the only thing that can change this is the presence of 111 // pass_object_size. So, we preallocate for the common case. 112 prefix.reserve(prefix.size() + FPT->getNumParams()); 113 114 assert(FD->getNumParams() == FPT->getNumParams()); 115 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 116 prefix.push_back(FPT->getParamType(I)); 117 if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>()) 118 prefix.push_back(CGT.getContext().getSizeType()); 119 } 120 } 121 122 /// Arrange the LLVM function layout for a value of the given function 123 /// type, on top of any implicit parameters already stored. 124 static const CGFunctionInfo & 125 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 126 SmallVectorImpl<CanQualType> &prefix, 127 CanQual<FunctionProtoType> FTP, 128 const FunctionDecl *FD) { 129 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 130 // FIXME: Kill copy. 131 appendParameterTypes(CGT, prefix, FTP, FD); 132 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 133 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 134 /*chainCall=*/false, prefix, 135 FTP->getExtInfo(), required); 136 } 137 138 /// Arrange the argument and result information for a value of the 139 /// given freestanding function type. 140 const CGFunctionInfo & 141 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 142 const FunctionDecl *FD) { 143 SmallVector<CanQualType, 16> argTypes; 144 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 145 FTP, FD); 146 } 147 148 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 149 // Set the appropriate calling convention for the Function. 150 if (D->hasAttr<StdCallAttr>()) 151 return CC_X86StdCall; 152 153 if (D->hasAttr<FastCallAttr>()) 154 return CC_X86FastCall; 155 156 if (D->hasAttr<ThisCallAttr>()) 157 return CC_X86ThisCall; 158 159 if (D->hasAttr<VectorCallAttr>()) 160 return CC_X86VectorCall; 161 162 if (D->hasAttr<PascalAttr>()) 163 return CC_X86Pascal; 164 165 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 166 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 167 168 if (D->hasAttr<IntelOclBiccAttr>()) 169 return CC_IntelOclBicc; 170 171 if (D->hasAttr<MSABIAttr>()) 172 return IsWindows ? CC_C : CC_X86_64Win64; 173 174 if (D->hasAttr<SysVABIAttr>()) 175 return IsWindows ? CC_X86_64SysV : CC_C; 176 177 return CC_C; 178 } 179 180 /// Arrange the argument and result information for a call to an 181 /// unknown C++ non-static member function of the given abstract type. 182 /// (Zero value of RD means we don't have any meaningful "this" argument type, 183 /// so fall back to a generic pointer type). 184 /// The member function must be an ordinary function, i.e. not a 185 /// constructor or destructor. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 188 const FunctionProtoType *FTP, 189 const CXXMethodDecl *MD) { 190 SmallVector<CanQualType, 16> argTypes; 191 192 // Add the 'this' pointer. 193 if (RD) 194 argTypes.push_back(GetThisType(Context, RD)); 195 else 196 argTypes.push_back(Context.VoidPtrTy); 197 198 return ::arrangeLLVMFunctionInfo( 199 *this, true, argTypes, 200 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 201 } 202 203 /// Arrange the argument and result information for a declaration or 204 /// definition of the given C++ non-static member function. The 205 /// member function must be an ordinary function, i.e. not a 206 /// constructor or destructor. 207 const CGFunctionInfo & 208 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 209 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 210 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 211 212 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 213 214 if (MD->isInstance()) { 215 // The abstract case is perfectly fine. 216 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 217 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 218 } 219 220 return arrangeFreeFunctionType(prototype, MD); 221 } 222 223 const CGFunctionInfo & 224 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 225 StructorType Type) { 226 227 SmallVector<CanQualType, 16> argTypes; 228 argTypes.push_back(GetThisType(Context, MD->getParent())); 229 230 GlobalDecl GD; 231 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 232 GD = GlobalDecl(CD, toCXXCtorType(Type)); 233 } else { 234 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 235 GD = GlobalDecl(DD, toCXXDtorType(Type)); 236 } 237 238 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 239 240 // Add the formal parameters. 241 appendParameterTypes(*this, argTypes, FTP, MD); 242 243 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 244 245 RequiredArgs required = 246 (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All); 247 248 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 249 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 250 ? argTypes.front() 251 : TheCXXABI.hasMostDerivedReturn(GD) 252 ? CGM.getContext().VoidPtrTy 253 : Context.VoidTy; 254 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 255 /*chainCall=*/false, argTypes, extInfo, 256 required); 257 } 258 259 /// Arrange a call to a C++ method, passing the given arguments. 260 const CGFunctionInfo & 261 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 262 const CXXConstructorDecl *D, 263 CXXCtorType CtorKind, 264 unsigned ExtraArgs) { 265 // FIXME: Kill copy. 266 SmallVector<CanQualType, 16> ArgTypes; 267 for (const auto &Arg : args) 268 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 269 270 CanQual<FunctionProtoType> FPT = GetFormalType(D); 271 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs); 272 GlobalDecl GD(D, CtorKind); 273 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 274 ? ArgTypes.front() 275 : TheCXXABI.hasMostDerivedReturn(GD) 276 ? CGM.getContext().VoidPtrTy 277 : Context.VoidTy; 278 279 FunctionType::ExtInfo Info = FPT->getExtInfo(); 280 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 281 /*chainCall=*/false, ArgTypes, Info, 282 Required); 283 } 284 285 /// Arrange the argument and result information for the declaration or 286 /// definition of the given function. 287 const CGFunctionInfo & 288 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 289 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 290 if (MD->isInstance()) 291 return arrangeCXXMethodDeclaration(MD); 292 293 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 294 295 assert(isa<FunctionType>(FTy)); 296 297 // When declaring a function without a prototype, always use a 298 // non-variadic type. 299 if (isa<FunctionNoProtoType>(FTy)) { 300 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 301 return arrangeLLVMFunctionInfo( 302 noProto->getReturnType(), /*instanceMethod=*/false, 303 /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All); 304 } 305 306 assert(isa<FunctionProtoType>(FTy)); 307 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD); 308 } 309 310 /// Arrange the argument and result information for the declaration or 311 /// definition of an Objective-C method. 312 const CGFunctionInfo & 313 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 314 // It happens that this is the same as a call with no optional 315 // arguments, except also using the formal 'self' type. 316 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 317 } 318 319 /// Arrange the argument and result information for the function type 320 /// through which to perform a send to the given Objective-C method, 321 /// using the given receiver type. The receiver type is not always 322 /// the 'self' type of the method or even an Objective-C pointer type. 323 /// This is *not* the right method for actually performing such a 324 /// message send, due to the possibility of optional arguments. 325 const CGFunctionInfo & 326 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 327 QualType receiverType) { 328 SmallVector<CanQualType, 16> argTys; 329 argTys.push_back(Context.getCanonicalParamType(receiverType)); 330 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 331 // FIXME: Kill copy? 332 for (const auto *I : MD->params()) { 333 argTys.push_back(Context.getCanonicalParamType(I->getType())); 334 } 335 336 FunctionType::ExtInfo einfo; 337 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 338 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 339 340 if (getContext().getLangOpts().ObjCAutoRefCount && 341 MD->hasAttr<NSReturnsRetainedAttr>()) 342 einfo = einfo.withProducesResult(true); 343 344 RequiredArgs required = 345 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 346 347 return arrangeLLVMFunctionInfo( 348 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 349 /*chainCall=*/false, argTys, einfo, required); 350 } 351 352 const CGFunctionInfo & 353 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 354 // FIXME: Do we need to handle ObjCMethodDecl? 355 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 356 357 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 358 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 359 360 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 361 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 362 363 return arrangeFunctionDeclaration(FD); 364 } 365 366 /// Arrange a thunk that takes 'this' as the first parameter followed by 367 /// varargs. Return a void pointer, regardless of the actual return type. 368 /// The body of the thunk will end in a musttail call to a function of the 369 /// correct type, and the caller will bitcast the function to the correct 370 /// prototype. 371 const CGFunctionInfo & 372 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 373 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 374 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 375 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 376 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 377 /*chainCall=*/false, ArgTys, 378 FTP->getExtInfo(), RequiredArgs(1)); 379 } 380 381 const CGFunctionInfo & 382 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 383 CXXCtorType CT) { 384 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 385 386 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 387 SmallVector<CanQualType, 2> ArgTys; 388 const CXXRecordDecl *RD = CD->getParent(); 389 ArgTys.push_back(GetThisType(Context, RD)); 390 if (CT == Ctor_CopyingClosure) 391 ArgTys.push_back(*FTP->param_type_begin()); 392 if (RD->getNumVBases() > 0) 393 ArgTys.push_back(Context.IntTy); 394 CallingConv CC = Context.getDefaultCallingConvention( 395 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 396 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 397 /*chainCall=*/false, ArgTys, 398 FunctionType::ExtInfo(CC), RequiredArgs::All); 399 } 400 401 /// Arrange a call as unto a free function, except possibly with an 402 /// additional number of formal parameters considered required. 403 static const CGFunctionInfo & 404 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 405 CodeGenModule &CGM, 406 const CallArgList &args, 407 const FunctionType *fnType, 408 unsigned numExtraRequiredArgs, 409 bool chainCall) { 410 assert(args.size() >= numExtraRequiredArgs); 411 412 // In most cases, there are no optional arguments. 413 RequiredArgs required = RequiredArgs::All; 414 415 // If we have a variadic prototype, the required arguments are the 416 // extra prefix plus the arguments in the prototype. 417 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 418 if (proto->isVariadic()) 419 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 420 421 // If we don't have a prototype at all, but we're supposed to 422 // explicitly use the variadic convention for unprototyped calls, 423 // treat all of the arguments as required but preserve the nominal 424 // possibility of variadics. 425 } else if (CGM.getTargetCodeGenInfo() 426 .isNoProtoCallVariadic(args, 427 cast<FunctionNoProtoType>(fnType))) { 428 required = RequiredArgs(args.size()); 429 } 430 431 // FIXME: Kill copy. 432 SmallVector<CanQualType, 16> argTypes; 433 for (const auto &arg : args) 434 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 435 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 436 /*instanceMethod=*/false, chainCall, 437 argTypes, fnType->getExtInfo(), required); 438 } 439 440 /// Figure out the rules for calling a function with the given formal 441 /// type using the given arguments. The arguments are necessary 442 /// because the function might be unprototyped, in which case it's 443 /// target-dependent in crazy ways. 444 const CGFunctionInfo & 445 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 446 const FunctionType *fnType, 447 bool chainCall) { 448 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 449 chainCall ? 1 : 0, chainCall); 450 } 451 452 /// A block function call is essentially a free-function call with an 453 /// extra implicit argument. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 456 const FunctionType *fnType) { 457 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 458 /*chainCall=*/false); 459 } 460 461 const CGFunctionInfo & 462 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 463 const CallArgList &args, 464 FunctionType::ExtInfo info, 465 RequiredArgs required) { 466 // FIXME: Kill copy. 467 SmallVector<CanQualType, 16> argTypes; 468 for (const auto &Arg : args) 469 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 470 return arrangeLLVMFunctionInfo( 471 GetReturnType(resultType), /*instanceMethod=*/false, 472 /*chainCall=*/false, argTypes, info, required); 473 } 474 475 /// Arrange a call to a C++ method, passing the given arguments. 476 const CGFunctionInfo & 477 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 478 const FunctionProtoType *FPT, 479 RequiredArgs required) { 480 // FIXME: Kill copy. 481 SmallVector<CanQualType, 16> argTypes; 482 for (const auto &Arg : args) 483 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 484 485 FunctionType::ExtInfo info = FPT->getExtInfo(); 486 return arrangeLLVMFunctionInfo( 487 GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true, 488 /*chainCall=*/false, argTypes, info, required); 489 } 490 491 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration( 492 QualType resultType, const FunctionArgList &args, 493 const FunctionType::ExtInfo &info, bool isVariadic) { 494 // FIXME: Kill copy. 495 SmallVector<CanQualType, 16> argTypes; 496 for (auto Arg : args) 497 argTypes.push_back(Context.getCanonicalParamType(Arg->getType())); 498 499 RequiredArgs required = 500 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 501 return arrangeLLVMFunctionInfo( 502 GetReturnType(resultType), /*instanceMethod=*/false, 503 /*chainCall=*/false, argTypes, info, required); 504 } 505 506 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 507 return arrangeLLVMFunctionInfo( 508 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 509 None, FunctionType::ExtInfo(), RequiredArgs::All); 510 } 511 512 /// Arrange the argument and result information for an abstract value 513 /// of a given function type. This is the method which all of the 514 /// above functions ultimately defer to. 515 const CGFunctionInfo & 516 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 517 bool instanceMethod, 518 bool chainCall, 519 ArrayRef<CanQualType> argTypes, 520 FunctionType::ExtInfo info, 521 RequiredArgs required) { 522 assert(std::all_of(argTypes.begin(), argTypes.end(), 523 std::mem_fun_ref(&CanQualType::isCanonicalAsParam))); 524 525 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 526 527 // Lookup or create unique function info. 528 llvm::FoldingSetNodeID ID; 529 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required, 530 resultType, argTypes); 531 532 void *insertPos = nullptr; 533 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 534 if (FI) 535 return *FI; 536 537 // Construct the function info. We co-allocate the ArgInfos. 538 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 539 resultType, argTypes, required); 540 FunctionInfos.InsertNode(FI, insertPos); 541 542 bool inserted = FunctionsBeingProcessed.insert(FI).second; 543 (void)inserted; 544 assert(inserted && "Recursively being processed?"); 545 546 // Compute ABI information. 547 getABIInfo().computeInfo(*FI); 548 549 // Loop over all of the computed argument and return value info. If any of 550 // them are direct or extend without a specified coerce type, specify the 551 // default now. 552 ABIArgInfo &retInfo = FI->getReturnInfo(); 553 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 554 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 555 556 for (auto &I : FI->arguments()) 557 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 558 I.info.setCoerceToType(ConvertType(I.type)); 559 560 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 561 assert(erased && "Not in set?"); 562 563 return *FI; 564 } 565 566 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 567 bool instanceMethod, 568 bool chainCall, 569 const FunctionType::ExtInfo &info, 570 CanQualType resultType, 571 ArrayRef<CanQualType> argTypes, 572 RequiredArgs required) { 573 void *buffer = operator new(totalSizeToAlloc<ArgInfo>(argTypes.size() + 1)); 574 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 575 FI->CallingConvention = llvmCC; 576 FI->EffectiveCallingConvention = llvmCC; 577 FI->ASTCallingConvention = info.getCC(); 578 FI->InstanceMethod = instanceMethod; 579 FI->ChainCall = chainCall; 580 FI->NoReturn = info.getNoReturn(); 581 FI->ReturnsRetained = info.getProducesResult(); 582 FI->Required = required; 583 FI->HasRegParm = info.getHasRegParm(); 584 FI->RegParm = info.getRegParm(); 585 FI->ArgStruct = nullptr; 586 FI->ArgStructAlign = 0; 587 FI->NumArgs = argTypes.size(); 588 FI->getArgsBuffer()[0].type = resultType; 589 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 590 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 591 return FI; 592 } 593 594 /***/ 595 596 namespace { 597 // ABIArgInfo::Expand implementation. 598 599 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 600 struct TypeExpansion { 601 enum TypeExpansionKind { 602 // Elements of constant arrays are expanded recursively. 603 TEK_ConstantArray, 604 // Record fields are expanded recursively (but if record is a union, only 605 // the field with the largest size is expanded). 606 TEK_Record, 607 // For complex types, real and imaginary parts are expanded recursively. 608 TEK_Complex, 609 // All other types are not expandable. 610 TEK_None 611 }; 612 613 const TypeExpansionKind Kind; 614 615 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 616 virtual ~TypeExpansion() {} 617 }; 618 619 struct ConstantArrayExpansion : TypeExpansion { 620 QualType EltTy; 621 uint64_t NumElts; 622 623 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 624 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 625 static bool classof(const TypeExpansion *TE) { 626 return TE->Kind == TEK_ConstantArray; 627 } 628 }; 629 630 struct RecordExpansion : TypeExpansion { 631 SmallVector<const CXXBaseSpecifier *, 1> Bases; 632 633 SmallVector<const FieldDecl *, 1> Fields; 634 635 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 636 SmallVector<const FieldDecl *, 1> &&Fields) 637 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 638 Fields(std::move(Fields)) {} 639 static bool classof(const TypeExpansion *TE) { 640 return TE->Kind == TEK_Record; 641 } 642 }; 643 644 struct ComplexExpansion : TypeExpansion { 645 QualType EltTy; 646 647 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 648 static bool classof(const TypeExpansion *TE) { 649 return TE->Kind == TEK_Complex; 650 } 651 }; 652 653 struct NoExpansion : TypeExpansion { 654 NoExpansion() : TypeExpansion(TEK_None) {} 655 static bool classof(const TypeExpansion *TE) { 656 return TE->Kind == TEK_None; 657 } 658 }; 659 } // namespace 660 661 static std::unique_ptr<TypeExpansion> 662 getTypeExpansion(QualType Ty, const ASTContext &Context) { 663 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 664 return llvm::make_unique<ConstantArrayExpansion>( 665 AT->getElementType(), AT->getSize().getZExtValue()); 666 } 667 if (const RecordType *RT = Ty->getAs<RecordType>()) { 668 SmallVector<const CXXBaseSpecifier *, 1> Bases; 669 SmallVector<const FieldDecl *, 1> Fields; 670 const RecordDecl *RD = RT->getDecl(); 671 assert(!RD->hasFlexibleArrayMember() && 672 "Cannot expand structure with flexible array."); 673 if (RD->isUnion()) { 674 // Unions can be here only in degenerative cases - all the fields are same 675 // after flattening. Thus we have to use the "largest" field. 676 const FieldDecl *LargestFD = nullptr; 677 CharUnits UnionSize = CharUnits::Zero(); 678 679 for (const auto *FD : RD->fields()) { 680 // Skip zero length bitfields. 681 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 682 continue; 683 assert(!FD->isBitField() && 684 "Cannot expand structure with bit-field members."); 685 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 686 if (UnionSize < FieldSize) { 687 UnionSize = FieldSize; 688 LargestFD = FD; 689 } 690 } 691 if (LargestFD) 692 Fields.push_back(LargestFD); 693 } else { 694 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 695 assert(!CXXRD->isDynamicClass() && 696 "cannot expand vtable pointers in dynamic classes"); 697 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 698 Bases.push_back(&BS); 699 } 700 701 for (const auto *FD : RD->fields()) { 702 // Skip zero length bitfields. 703 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 704 continue; 705 assert(!FD->isBitField() && 706 "Cannot expand structure with bit-field members."); 707 Fields.push_back(FD); 708 } 709 } 710 return llvm::make_unique<RecordExpansion>(std::move(Bases), 711 std::move(Fields)); 712 } 713 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 714 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 715 } 716 return llvm::make_unique<NoExpansion>(); 717 } 718 719 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 720 auto Exp = getTypeExpansion(Ty, Context); 721 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 722 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 723 } 724 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 725 int Res = 0; 726 for (auto BS : RExp->Bases) 727 Res += getExpansionSize(BS->getType(), Context); 728 for (auto FD : RExp->Fields) 729 Res += getExpansionSize(FD->getType(), Context); 730 return Res; 731 } 732 if (isa<ComplexExpansion>(Exp.get())) 733 return 2; 734 assert(isa<NoExpansion>(Exp.get())); 735 return 1; 736 } 737 738 void 739 CodeGenTypes::getExpandedTypes(QualType Ty, 740 SmallVectorImpl<llvm::Type *>::iterator &TI) { 741 auto Exp = getTypeExpansion(Ty, Context); 742 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 743 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 744 getExpandedTypes(CAExp->EltTy, TI); 745 } 746 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 747 for (auto BS : RExp->Bases) 748 getExpandedTypes(BS->getType(), TI); 749 for (auto FD : RExp->Fields) 750 getExpandedTypes(FD->getType(), TI); 751 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 752 llvm::Type *EltTy = ConvertType(CExp->EltTy); 753 *TI++ = EltTy; 754 *TI++ = EltTy; 755 } else { 756 assert(isa<NoExpansion>(Exp.get())); 757 *TI++ = ConvertType(Ty); 758 } 759 } 760 761 static void forConstantArrayExpansion(CodeGenFunction &CGF, 762 ConstantArrayExpansion *CAE, 763 Address BaseAddr, 764 llvm::function_ref<void(Address)> Fn) { 765 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 766 CharUnits EltAlign = 767 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 768 769 for (int i = 0, n = CAE->NumElts; i < n; i++) { 770 llvm::Value *EltAddr = 771 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 772 Fn(Address(EltAddr, EltAlign)); 773 } 774 } 775 776 void CodeGenFunction::ExpandTypeFromArgs( 777 QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) { 778 assert(LV.isSimple() && 779 "Unexpected non-simple lvalue during struct expansion."); 780 781 auto Exp = getTypeExpansion(Ty, getContext()); 782 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 783 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 784 [&](Address EltAddr) { 785 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 786 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 787 }); 788 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 789 Address This = LV.getAddress(); 790 for (const CXXBaseSpecifier *BS : RExp->Bases) { 791 // Perform a single step derived-to-base conversion. 792 Address Base = 793 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 794 /*NullCheckValue=*/false, SourceLocation()); 795 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 796 797 // Recurse onto bases. 798 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 799 } 800 for (auto FD : RExp->Fields) { 801 // FIXME: What are the right qualifiers here? 802 LValue SubLV = EmitLValueForField(LV, FD); 803 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 804 } 805 } else if (isa<ComplexExpansion>(Exp.get())) { 806 auto realValue = *AI++; 807 auto imagValue = *AI++; 808 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 809 } else { 810 assert(isa<NoExpansion>(Exp.get())); 811 EmitStoreThroughLValue(RValue::get(*AI++), LV); 812 } 813 } 814 815 void CodeGenFunction::ExpandTypeToArgs( 816 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 817 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 818 auto Exp = getTypeExpansion(Ty, getContext()); 819 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 820 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 821 [&](Address EltAddr) { 822 RValue EltRV = 823 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 824 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 825 }); 826 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 827 Address This = RV.getAggregateAddress(); 828 for (const CXXBaseSpecifier *BS : RExp->Bases) { 829 // Perform a single step derived-to-base conversion. 830 Address Base = 831 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 832 /*NullCheckValue=*/false, SourceLocation()); 833 RValue BaseRV = RValue::getAggregate(Base); 834 835 // Recurse onto bases. 836 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 837 IRCallArgPos); 838 } 839 840 LValue LV = MakeAddrLValue(This, Ty); 841 for (auto FD : RExp->Fields) { 842 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 843 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 844 IRCallArgPos); 845 } 846 } else if (isa<ComplexExpansion>(Exp.get())) { 847 ComplexPairTy CV = RV.getComplexVal(); 848 IRCallArgs[IRCallArgPos++] = CV.first; 849 IRCallArgs[IRCallArgPos++] = CV.second; 850 } else { 851 assert(isa<NoExpansion>(Exp.get())); 852 assert(RV.isScalar() && 853 "Unexpected non-scalar rvalue during struct expansion."); 854 855 // Insert a bitcast as needed. 856 llvm::Value *V = RV.getScalarVal(); 857 if (IRCallArgPos < IRFuncTy->getNumParams() && 858 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 859 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 860 861 IRCallArgs[IRCallArgPos++] = V; 862 } 863 } 864 865 /// Create a temporary allocation for the purposes of coercion. 866 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 867 CharUnits MinAlign) { 868 // Don't use an alignment that's worse than what LLVM would prefer. 869 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 870 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 871 872 return CGF.CreateTempAlloca(Ty, Align); 873 } 874 875 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 876 /// accessing some number of bytes out of it, try to gep into the struct to get 877 /// at its inner goodness. Dive as deep as possible without entering an element 878 /// with an in-memory size smaller than DstSize. 879 static Address 880 EnterStructPointerForCoercedAccess(Address SrcPtr, 881 llvm::StructType *SrcSTy, 882 uint64_t DstSize, CodeGenFunction &CGF) { 883 // We can't dive into a zero-element struct. 884 if (SrcSTy->getNumElements() == 0) return SrcPtr; 885 886 llvm::Type *FirstElt = SrcSTy->getElementType(0); 887 888 // If the first elt is at least as large as what we're looking for, or if the 889 // first element is the same size as the whole struct, we can enter it. The 890 // comparison must be made on the store size and not the alloca size. Using 891 // the alloca size may overstate the size of the load. 892 uint64_t FirstEltSize = 893 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 894 if (FirstEltSize < DstSize && 895 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 896 return SrcPtr; 897 898 // GEP into the first element. 899 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 900 901 // If the first element is a struct, recurse. 902 llvm::Type *SrcTy = SrcPtr.getElementType(); 903 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 904 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 905 906 return SrcPtr; 907 } 908 909 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 910 /// are either integers or pointers. This does a truncation of the value if it 911 /// is too large or a zero extension if it is too small. 912 /// 913 /// This behaves as if the value were coerced through memory, so on big-endian 914 /// targets the high bits are preserved in a truncation, while little-endian 915 /// targets preserve the low bits. 916 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 917 llvm::Type *Ty, 918 CodeGenFunction &CGF) { 919 if (Val->getType() == Ty) 920 return Val; 921 922 if (isa<llvm::PointerType>(Val->getType())) { 923 // If this is Pointer->Pointer avoid conversion to and from int. 924 if (isa<llvm::PointerType>(Ty)) 925 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 926 927 // Convert the pointer to an integer so we can play with its width. 928 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 929 } 930 931 llvm::Type *DestIntTy = Ty; 932 if (isa<llvm::PointerType>(DestIntTy)) 933 DestIntTy = CGF.IntPtrTy; 934 935 if (Val->getType() != DestIntTy) { 936 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 937 if (DL.isBigEndian()) { 938 // Preserve the high bits on big-endian targets. 939 // That is what memory coercion does. 940 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 941 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 942 943 if (SrcSize > DstSize) { 944 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 945 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 946 } else { 947 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 948 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 949 } 950 } else { 951 // Little-endian targets preserve the low bits. No shifts required. 952 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 953 } 954 } 955 956 if (isa<llvm::PointerType>(Ty)) 957 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 958 return Val; 959 } 960 961 962 963 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 964 /// a pointer to an object of type \arg Ty, known to be aligned to 965 /// \arg SrcAlign bytes. 966 /// 967 /// This safely handles the case when the src type is smaller than the 968 /// destination type; in this situation the values of bits which not 969 /// present in the src are undefined. 970 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 971 CodeGenFunction &CGF) { 972 llvm::Type *SrcTy = Src.getElementType(); 973 974 // If SrcTy and Ty are the same, just do a load. 975 if (SrcTy == Ty) 976 return CGF.Builder.CreateLoad(Src); 977 978 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 979 980 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 981 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 982 SrcTy = Src.getType()->getElementType(); 983 } 984 985 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 986 987 // If the source and destination are integer or pointer types, just do an 988 // extension or truncation to the desired type. 989 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 990 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 991 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 992 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 993 } 994 995 // If load is legal, just bitcast the src pointer. 996 if (SrcSize >= DstSize) { 997 // Generally SrcSize is never greater than DstSize, since this means we are 998 // losing bits. However, this can happen in cases where the structure has 999 // additional padding, for example due to a user specified alignment. 1000 // 1001 // FIXME: Assert that we aren't truncating non-padding bits when have access 1002 // to that information. 1003 Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty)); 1004 return CGF.Builder.CreateLoad(Src); 1005 } 1006 1007 // Otherwise do coercion through memory. This is stupid, but simple. 1008 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1009 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1010 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 1011 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1012 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1013 false); 1014 return CGF.Builder.CreateLoad(Tmp); 1015 } 1016 1017 // Function to store a first-class aggregate into memory. We prefer to 1018 // store the elements rather than the aggregate to be more friendly to 1019 // fast-isel. 1020 // FIXME: Do we need to recurse here? 1021 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1022 Address Dest, bool DestIsVolatile) { 1023 // Prefer scalar stores to first-class aggregate stores. 1024 if (llvm::StructType *STy = 1025 dyn_cast<llvm::StructType>(Val->getType())) { 1026 const llvm::StructLayout *Layout = 1027 CGF.CGM.getDataLayout().getStructLayout(STy); 1028 1029 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1030 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1031 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1032 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1033 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1034 } 1035 } else { 1036 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1037 } 1038 } 1039 1040 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1041 /// where the source and destination may have different types. The 1042 /// destination is known to be aligned to \arg DstAlign bytes. 1043 /// 1044 /// This safely handles the case when the src type is larger than the 1045 /// destination type; the upper bits of the src will be lost. 1046 static void CreateCoercedStore(llvm::Value *Src, 1047 Address Dst, 1048 bool DstIsVolatile, 1049 CodeGenFunction &CGF) { 1050 llvm::Type *SrcTy = Src->getType(); 1051 llvm::Type *DstTy = Dst.getType()->getElementType(); 1052 if (SrcTy == DstTy) { 1053 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1054 return; 1055 } 1056 1057 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1058 1059 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1060 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1061 DstTy = Dst.getType()->getElementType(); 1062 } 1063 1064 // If the source and destination are integer or pointer types, just do an 1065 // extension or truncation to the desired type. 1066 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1067 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1068 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1069 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1070 return; 1071 } 1072 1073 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1074 1075 // If store is legal, just bitcast the src pointer. 1076 if (SrcSize <= DstSize) { 1077 Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy)); 1078 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1079 } else { 1080 // Otherwise do coercion through memory. This is stupid, but 1081 // simple. 1082 1083 // Generally SrcSize is never greater than DstSize, since this means we are 1084 // losing bits. However, this can happen in cases where the structure has 1085 // additional padding, for example due to a user specified alignment. 1086 // 1087 // FIXME: Assert that we aren't truncating non-padding bits when have access 1088 // to that information. 1089 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1090 CGF.Builder.CreateStore(Src, Tmp); 1091 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1092 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1093 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1094 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1095 false); 1096 } 1097 } 1098 1099 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1100 const ABIArgInfo &info) { 1101 if (unsigned offset = info.getDirectOffset()) { 1102 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1103 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1104 CharUnits::fromQuantity(offset)); 1105 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1106 } 1107 return addr; 1108 } 1109 1110 namespace { 1111 1112 /// Encapsulates information about the way function arguments from 1113 /// CGFunctionInfo should be passed to actual LLVM IR function. 1114 class ClangToLLVMArgMapping { 1115 static const unsigned InvalidIndex = ~0U; 1116 unsigned InallocaArgNo; 1117 unsigned SRetArgNo; 1118 unsigned TotalIRArgs; 1119 1120 /// Arguments of LLVM IR function corresponding to single Clang argument. 1121 struct IRArgs { 1122 unsigned PaddingArgIndex; 1123 // Argument is expanded to IR arguments at positions 1124 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1125 unsigned FirstArgIndex; 1126 unsigned NumberOfArgs; 1127 1128 IRArgs() 1129 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1130 NumberOfArgs(0) {} 1131 }; 1132 1133 SmallVector<IRArgs, 8> ArgInfo; 1134 1135 public: 1136 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1137 bool OnlyRequiredArgs = false) 1138 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1139 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1140 construct(Context, FI, OnlyRequiredArgs); 1141 } 1142 1143 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1144 unsigned getInallocaArgNo() const { 1145 assert(hasInallocaArg()); 1146 return InallocaArgNo; 1147 } 1148 1149 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1150 unsigned getSRetArgNo() const { 1151 assert(hasSRetArg()); 1152 return SRetArgNo; 1153 } 1154 1155 unsigned totalIRArgs() const { return TotalIRArgs; } 1156 1157 bool hasPaddingArg(unsigned ArgNo) const { 1158 assert(ArgNo < ArgInfo.size()); 1159 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1160 } 1161 unsigned getPaddingArgNo(unsigned ArgNo) const { 1162 assert(hasPaddingArg(ArgNo)); 1163 return ArgInfo[ArgNo].PaddingArgIndex; 1164 } 1165 1166 /// Returns index of first IR argument corresponding to ArgNo, and their 1167 /// quantity. 1168 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1169 assert(ArgNo < ArgInfo.size()); 1170 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1171 ArgInfo[ArgNo].NumberOfArgs); 1172 } 1173 1174 private: 1175 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1176 bool OnlyRequiredArgs); 1177 }; 1178 1179 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1180 const CGFunctionInfo &FI, 1181 bool OnlyRequiredArgs) { 1182 unsigned IRArgNo = 0; 1183 bool SwapThisWithSRet = false; 1184 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1185 1186 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1187 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1188 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1189 } 1190 1191 unsigned ArgNo = 0; 1192 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1193 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1194 ++I, ++ArgNo) { 1195 assert(I != FI.arg_end()); 1196 QualType ArgType = I->type; 1197 const ABIArgInfo &AI = I->info; 1198 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1199 auto &IRArgs = ArgInfo[ArgNo]; 1200 1201 if (AI.getPaddingType()) 1202 IRArgs.PaddingArgIndex = IRArgNo++; 1203 1204 switch (AI.getKind()) { 1205 case ABIArgInfo::Extend: 1206 case ABIArgInfo::Direct: { 1207 // FIXME: handle sseregparm someday... 1208 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1209 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1210 IRArgs.NumberOfArgs = STy->getNumElements(); 1211 } else { 1212 IRArgs.NumberOfArgs = 1; 1213 } 1214 break; 1215 } 1216 case ABIArgInfo::Indirect: 1217 IRArgs.NumberOfArgs = 1; 1218 break; 1219 case ABIArgInfo::Ignore: 1220 case ABIArgInfo::InAlloca: 1221 // ignore and inalloca doesn't have matching LLVM parameters. 1222 IRArgs.NumberOfArgs = 0; 1223 break; 1224 case ABIArgInfo::Expand: { 1225 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1226 break; 1227 } 1228 } 1229 1230 if (IRArgs.NumberOfArgs > 0) { 1231 IRArgs.FirstArgIndex = IRArgNo; 1232 IRArgNo += IRArgs.NumberOfArgs; 1233 } 1234 1235 // Skip over the sret parameter when it comes second. We already handled it 1236 // above. 1237 if (IRArgNo == 1 && SwapThisWithSRet) 1238 IRArgNo++; 1239 } 1240 assert(ArgNo == ArgInfo.size()); 1241 1242 if (FI.usesInAlloca()) 1243 InallocaArgNo = IRArgNo++; 1244 1245 TotalIRArgs = IRArgNo; 1246 } 1247 } // namespace 1248 1249 /***/ 1250 1251 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1252 return FI.getReturnInfo().isIndirect(); 1253 } 1254 1255 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1256 return ReturnTypeUsesSRet(FI) && 1257 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1258 } 1259 1260 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1261 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1262 switch (BT->getKind()) { 1263 default: 1264 return false; 1265 case BuiltinType::Float: 1266 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1267 case BuiltinType::Double: 1268 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1269 case BuiltinType::LongDouble: 1270 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1271 } 1272 } 1273 1274 return false; 1275 } 1276 1277 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1278 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1279 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1280 if (BT->getKind() == BuiltinType::LongDouble) 1281 return getTarget().useObjCFP2RetForComplexLongDouble(); 1282 } 1283 } 1284 1285 return false; 1286 } 1287 1288 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1289 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1290 return GetFunctionType(FI); 1291 } 1292 1293 llvm::FunctionType * 1294 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1295 1296 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1297 (void)Inserted; 1298 assert(Inserted && "Recursively being processed?"); 1299 1300 llvm::Type *resultType = nullptr; 1301 const ABIArgInfo &retAI = FI.getReturnInfo(); 1302 switch (retAI.getKind()) { 1303 case ABIArgInfo::Expand: 1304 llvm_unreachable("Invalid ABI kind for return argument"); 1305 1306 case ABIArgInfo::Extend: 1307 case ABIArgInfo::Direct: 1308 resultType = retAI.getCoerceToType(); 1309 break; 1310 1311 case ABIArgInfo::InAlloca: 1312 if (retAI.getInAllocaSRet()) { 1313 // sret things on win32 aren't void, they return the sret pointer. 1314 QualType ret = FI.getReturnType(); 1315 llvm::Type *ty = ConvertType(ret); 1316 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1317 resultType = llvm::PointerType::get(ty, addressSpace); 1318 } else { 1319 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1320 } 1321 break; 1322 1323 case ABIArgInfo::Indirect: 1324 case ABIArgInfo::Ignore: 1325 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1326 break; 1327 } 1328 1329 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1330 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1331 1332 // Add type for sret argument. 1333 if (IRFunctionArgs.hasSRetArg()) { 1334 QualType Ret = FI.getReturnType(); 1335 llvm::Type *Ty = ConvertType(Ret); 1336 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1337 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1338 llvm::PointerType::get(Ty, AddressSpace); 1339 } 1340 1341 // Add type for inalloca argument. 1342 if (IRFunctionArgs.hasInallocaArg()) { 1343 auto ArgStruct = FI.getArgStruct(); 1344 assert(ArgStruct); 1345 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1346 } 1347 1348 // Add in all of the required arguments. 1349 unsigned ArgNo = 0; 1350 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1351 ie = it + FI.getNumRequiredArgs(); 1352 for (; it != ie; ++it, ++ArgNo) { 1353 const ABIArgInfo &ArgInfo = it->info; 1354 1355 // Insert a padding type to ensure proper alignment. 1356 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1357 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1358 ArgInfo.getPaddingType(); 1359 1360 unsigned FirstIRArg, NumIRArgs; 1361 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1362 1363 switch (ArgInfo.getKind()) { 1364 case ABIArgInfo::Ignore: 1365 case ABIArgInfo::InAlloca: 1366 assert(NumIRArgs == 0); 1367 break; 1368 1369 case ABIArgInfo::Indirect: { 1370 assert(NumIRArgs == 1); 1371 // indirect arguments are always on the stack, which is addr space #0. 1372 llvm::Type *LTy = ConvertTypeForMem(it->type); 1373 ArgTypes[FirstIRArg] = LTy->getPointerTo(); 1374 break; 1375 } 1376 1377 case ABIArgInfo::Extend: 1378 case ABIArgInfo::Direct: { 1379 // Fast-isel and the optimizer generally like scalar values better than 1380 // FCAs, so we flatten them if this is safe to do for this argument. 1381 llvm::Type *argType = ArgInfo.getCoerceToType(); 1382 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1383 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1384 assert(NumIRArgs == st->getNumElements()); 1385 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1386 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1387 } else { 1388 assert(NumIRArgs == 1); 1389 ArgTypes[FirstIRArg] = argType; 1390 } 1391 break; 1392 } 1393 1394 case ABIArgInfo::Expand: 1395 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1396 getExpandedTypes(it->type, ArgTypesIter); 1397 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1398 break; 1399 } 1400 } 1401 1402 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1403 assert(Erased && "Not in set?"); 1404 1405 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1406 } 1407 1408 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1409 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1410 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1411 1412 if (!isFuncTypeConvertible(FPT)) 1413 return llvm::StructType::get(getLLVMContext()); 1414 1415 const CGFunctionInfo *Info; 1416 if (isa<CXXDestructorDecl>(MD)) 1417 Info = 1418 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1419 else 1420 Info = &arrangeCXXMethodDeclaration(MD); 1421 return GetFunctionType(*Info); 1422 } 1423 1424 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1425 llvm::AttrBuilder &FuncAttrs, 1426 const FunctionProtoType *FPT) { 1427 if (!FPT) 1428 return; 1429 1430 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1431 FPT->isNothrow(Ctx)) 1432 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1433 } 1434 1435 void CodeGenModule::ConstructAttributeList( 1436 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1437 AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) { 1438 llvm::AttrBuilder FuncAttrs; 1439 llvm::AttrBuilder RetAttrs; 1440 bool HasOptnone = false; 1441 1442 CallingConv = FI.getEffectiveCallingConvention(); 1443 1444 if (FI.isNoReturn()) 1445 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1446 1447 // If we have information about the function prototype, we can learn 1448 // attributes form there. 1449 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1450 CalleeInfo.getCalleeFunctionProtoType()); 1451 1452 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1453 1454 bool HasAnyX86InterruptAttr = false; 1455 // FIXME: handle sseregparm someday... 1456 if (TargetDecl) { 1457 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1458 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1459 if (TargetDecl->hasAttr<NoThrowAttr>()) 1460 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1461 if (TargetDecl->hasAttr<NoReturnAttr>()) 1462 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1463 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1464 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1465 1466 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1467 AddAttributesFromFunctionProtoType( 1468 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1469 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1470 // These attributes are not inherited by overloads. 1471 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1472 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1473 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1474 } 1475 1476 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1477 if (TargetDecl->hasAttr<ConstAttr>()) { 1478 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1479 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1480 } else if (TargetDecl->hasAttr<PureAttr>()) { 1481 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1482 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1483 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1484 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1485 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1486 } 1487 if (TargetDecl->hasAttr<RestrictAttr>()) 1488 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1489 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1490 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1491 1492 HasAnyX86InterruptAttr = TargetDecl->hasAttr<AnyX86InterruptAttr>(); 1493 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1494 } 1495 1496 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1497 if (!HasOptnone) { 1498 if (CodeGenOpts.OptimizeSize) 1499 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1500 if (CodeGenOpts.OptimizeSize == 2) 1501 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1502 } 1503 1504 if (CodeGenOpts.DisableRedZone) 1505 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1506 if (CodeGenOpts.NoImplicitFloat) 1507 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1508 if (CodeGenOpts.EnableSegmentedStacks && 1509 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1510 FuncAttrs.addAttribute("split-stack"); 1511 1512 if (AttrOnCallSite) { 1513 // Attributes that should go on the call site only. 1514 if (!CodeGenOpts.SimplifyLibCalls || 1515 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1516 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1517 if (!CodeGenOpts.TrapFuncName.empty()) 1518 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1519 } else { 1520 // Attributes that should go on the function, but not the call site. 1521 if (!CodeGenOpts.DisableFPElim) { 1522 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1523 } else if (CodeGenOpts.OmitLeafFramePointer) { 1524 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1525 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1526 } else { 1527 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1528 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1529 } 1530 1531 bool DisableTailCalls = 1532 CodeGenOpts.DisableTailCalls || HasAnyX86InterruptAttr || 1533 (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>()); 1534 FuncAttrs.addAttribute( 1535 "disable-tail-calls", 1536 llvm::toStringRef(DisableTailCalls)); 1537 1538 FuncAttrs.addAttribute("less-precise-fpmad", 1539 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1540 FuncAttrs.addAttribute("no-infs-fp-math", 1541 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1542 FuncAttrs.addAttribute("no-nans-fp-math", 1543 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1544 FuncAttrs.addAttribute("unsafe-fp-math", 1545 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1546 FuncAttrs.addAttribute("use-soft-float", 1547 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1548 FuncAttrs.addAttribute("stack-protector-buffer-size", 1549 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1550 1551 if (CodeGenOpts.StackRealignment) 1552 FuncAttrs.addAttribute("stackrealign"); 1553 1554 // Add target-cpu and target-features attributes to functions. If 1555 // we have a decl for the function and it has a target attribute then 1556 // parse that and add it to the feature set. 1557 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1558 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1559 if (FD && FD->hasAttr<TargetAttr>()) { 1560 llvm::StringMap<bool> FeatureMap; 1561 getFunctionFeatureMap(FeatureMap, FD); 1562 1563 // Produce the canonical string for this set of features. 1564 std::vector<std::string> Features; 1565 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1566 ie = FeatureMap.end(); 1567 it != ie; ++it) 1568 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1569 1570 // Now add the target-cpu and target-features to the function. 1571 // While we populated the feature map above, we still need to 1572 // get and parse the target attribute so we can get the cpu for 1573 // the function. 1574 const auto *TD = FD->getAttr<TargetAttr>(); 1575 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1576 if (ParsedAttr.second != "") 1577 TargetCPU = ParsedAttr.second; 1578 if (TargetCPU != "") 1579 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1580 if (!Features.empty()) { 1581 std::sort(Features.begin(), Features.end()); 1582 FuncAttrs.addAttribute( 1583 "target-features", 1584 llvm::join(Features.begin(), Features.end(), ",")); 1585 } 1586 } else { 1587 // Otherwise just add the existing target cpu and target features to the 1588 // function. 1589 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1590 if (TargetCPU != "") 1591 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1592 if (!Features.empty()) { 1593 std::sort(Features.begin(), Features.end()); 1594 FuncAttrs.addAttribute( 1595 "target-features", 1596 llvm::join(Features.begin(), Features.end(), ",")); 1597 } 1598 } 1599 } 1600 1601 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1602 // Conservatively, mark all functions and calls in CUDA as convergent 1603 // (meaning, they may call an intrinsically convergent op, such as 1604 // __syncthreads(), and so can't have certain optimizations applied around 1605 // them). LLVM will remove this attribute where it safely can. 1606 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1607 } 1608 1609 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1610 1611 QualType RetTy = FI.getReturnType(); 1612 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1613 switch (RetAI.getKind()) { 1614 case ABIArgInfo::Extend: 1615 if (RetTy->hasSignedIntegerRepresentation()) 1616 RetAttrs.addAttribute(llvm::Attribute::SExt); 1617 else if (RetTy->hasUnsignedIntegerRepresentation()) 1618 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1619 // FALL THROUGH 1620 case ABIArgInfo::Direct: 1621 if (RetAI.getInReg()) 1622 RetAttrs.addAttribute(llvm::Attribute::InReg); 1623 break; 1624 case ABIArgInfo::Ignore: 1625 break; 1626 1627 case ABIArgInfo::InAlloca: 1628 case ABIArgInfo::Indirect: { 1629 // inalloca and sret disable readnone and readonly 1630 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1631 .removeAttribute(llvm::Attribute::ReadNone); 1632 break; 1633 } 1634 1635 case ABIArgInfo::Expand: 1636 llvm_unreachable("Invalid ABI kind for return argument"); 1637 } 1638 1639 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1640 QualType PTy = RefTy->getPointeeType(); 1641 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1642 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1643 .getQuantity()); 1644 else if (getContext().getTargetAddressSpace(PTy) == 0) 1645 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1646 } 1647 1648 // Attach return attributes. 1649 if (RetAttrs.hasAttributes()) { 1650 PAL.push_back(llvm::AttributeSet::get( 1651 getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs)); 1652 } 1653 1654 // Attach attributes to sret. 1655 if (IRFunctionArgs.hasSRetArg()) { 1656 llvm::AttrBuilder SRETAttrs; 1657 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1658 if (RetAI.getInReg()) 1659 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1660 PAL.push_back(llvm::AttributeSet::get( 1661 getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs)); 1662 } 1663 1664 // Attach attributes to inalloca argument. 1665 if (IRFunctionArgs.hasInallocaArg()) { 1666 llvm::AttrBuilder Attrs; 1667 Attrs.addAttribute(llvm::Attribute::InAlloca); 1668 PAL.push_back(llvm::AttributeSet::get( 1669 getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs)); 1670 } 1671 1672 unsigned ArgNo = 0; 1673 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1674 E = FI.arg_end(); 1675 I != E; ++I, ++ArgNo) { 1676 QualType ParamType = I->type; 1677 const ABIArgInfo &AI = I->info; 1678 llvm::AttrBuilder Attrs; 1679 1680 // Add attribute for padding argument, if necessary. 1681 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1682 if (AI.getPaddingInReg()) 1683 PAL.push_back(llvm::AttributeSet::get( 1684 getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1, 1685 llvm::Attribute::InReg)); 1686 } 1687 1688 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1689 // have the corresponding parameter variable. It doesn't make 1690 // sense to do it here because parameters are so messed up. 1691 switch (AI.getKind()) { 1692 case ABIArgInfo::Extend: 1693 if (ParamType->isSignedIntegerOrEnumerationType()) 1694 Attrs.addAttribute(llvm::Attribute::SExt); 1695 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1696 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1697 Attrs.addAttribute(llvm::Attribute::SExt); 1698 else 1699 Attrs.addAttribute(llvm::Attribute::ZExt); 1700 } 1701 // FALL THROUGH 1702 case ABIArgInfo::Direct: 1703 if (ArgNo == 0 && FI.isChainCall()) 1704 Attrs.addAttribute(llvm::Attribute::Nest); 1705 else if (AI.getInReg()) 1706 Attrs.addAttribute(llvm::Attribute::InReg); 1707 break; 1708 1709 case ABIArgInfo::Indirect: { 1710 if (AI.getInReg()) 1711 Attrs.addAttribute(llvm::Attribute::InReg); 1712 1713 if (AI.getIndirectByVal()) 1714 Attrs.addAttribute(llvm::Attribute::ByVal); 1715 1716 CharUnits Align = AI.getIndirectAlign(); 1717 1718 // In a byval argument, it is important that the required 1719 // alignment of the type is honored, as LLVM might be creating a 1720 // *new* stack object, and needs to know what alignment to give 1721 // it. (Sometimes it can deduce a sensible alignment on its own, 1722 // but not if clang decides it must emit a packed struct, or the 1723 // user specifies increased alignment requirements.) 1724 // 1725 // This is different from indirect *not* byval, where the object 1726 // exists already, and the align attribute is purely 1727 // informative. 1728 assert(!Align.isZero()); 1729 1730 // For now, only add this when we have a byval argument. 1731 // TODO: be less lazy about updating test cases. 1732 if (AI.getIndirectByVal()) 1733 Attrs.addAlignmentAttr(Align.getQuantity()); 1734 1735 // byval disables readnone and readonly. 1736 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1737 .removeAttribute(llvm::Attribute::ReadNone); 1738 break; 1739 } 1740 case ABIArgInfo::Ignore: 1741 case ABIArgInfo::Expand: 1742 continue; 1743 1744 case ABIArgInfo::InAlloca: 1745 // inalloca disables readnone and readonly. 1746 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1747 .removeAttribute(llvm::Attribute::ReadNone); 1748 continue; 1749 } 1750 1751 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 1752 QualType PTy = RefTy->getPointeeType(); 1753 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1754 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1755 .getQuantity()); 1756 else if (getContext().getTargetAddressSpace(PTy) == 0) 1757 Attrs.addAttribute(llvm::Attribute::NonNull); 1758 } 1759 1760 if (Attrs.hasAttributes()) { 1761 unsigned FirstIRArg, NumIRArgs; 1762 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1763 for (unsigned i = 0; i < NumIRArgs; i++) 1764 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), 1765 FirstIRArg + i + 1, Attrs)); 1766 } 1767 } 1768 assert(ArgNo == FI.arg_size()); 1769 1770 if (FuncAttrs.hasAttributes()) 1771 PAL.push_back(llvm:: 1772 AttributeSet::get(getLLVMContext(), 1773 llvm::AttributeSet::FunctionIndex, 1774 FuncAttrs)); 1775 } 1776 1777 /// An argument came in as a promoted argument; demote it back to its 1778 /// declared type. 1779 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1780 const VarDecl *var, 1781 llvm::Value *value) { 1782 llvm::Type *varType = CGF.ConvertType(var->getType()); 1783 1784 // This can happen with promotions that actually don't change the 1785 // underlying type, like the enum promotions. 1786 if (value->getType() == varType) return value; 1787 1788 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1789 && "unexpected promotion type"); 1790 1791 if (isa<llvm::IntegerType>(varType)) 1792 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1793 1794 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1795 } 1796 1797 /// Returns the attribute (either parameter attribute, or function 1798 /// attribute), which declares argument ArgNo to be non-null. 1799 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 1800 QualType ArgType, unsigned ArgNo) { 1801 // FIXME: __attribute__((nonnull)) can also be applied to: 1802 // - references to pointers, where the pointee is known to be 1803 // nonnull (apparently a Clang extension) 1804 // - transparent unions containing pointers 1805 // In the former case, LLVM IR cannot represent the constraint. In 1806 // the latter case, we have no guarantee that the transparent union 1807 // is in fact passed as a pointer. 1808 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 1809 return nullptr; 1810 // First, check attribute on parameter itself. 1811 if (PVD) { 1812 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 1813 return ParmNNAttr; 1814 } 1815 // Check function attributes. 1816 if (!FD) 1817 return nullptr; 1818 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 1819 if (NNAttr->isNonNull(ArgNo)) 1820 return NNAttr; 1821 } 1822 return nullptr; 1823 } 1824 1825 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1826 llvm::Function *Fn, 1827 const FunctionArgList &Args) { 1828 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 1829 // Naked functions don't have prologues. 1830 return; 1831 1832 // If this is an implicit-return-zero function, go ahead and 1833 // initialize the return value. TODO: it might be nice to have 1834 // a more general mechanism for this that didn't require synthesized 1835 // return statements. 1836 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 1837 if (FD->hasImplicitReturnZero()) { 1838 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 1839 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1840 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1841 Builder.CreateStore(Zero, ReturnValue); 1842 } 1843 } 1844 1845 // FIXME: We no longer need the types from FunctionArgList; lift up and 1846 // simplify. 1847 1848 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 1849 // Flattened function arguments. 1850 SmallVector<llvm::Argument *, 16> FnArgs; 1851 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 1852 for (auto &Arg : Fn->args()) { 1853 FnArgs.push_back(&Arg); 1854 } 1855 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 1856 1857 // If we're using inalloca, all the memory arguments are GEPs off of the last 1858 // parameter, which is a pointer to the complete memory area. 1859 Address ArgStruct = Address::invalid(); 1860 const llvm::StructLayout *ArgStructLayout = nullptr; 1861 if (IRFunctionArgs.hasInallocaArg()) { 1862 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 1863 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 1864 FI.getArgStructAlignment()); 1865 1866 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 1867 } 1868 1869 // Name the struct return parameter. 1870 if (IRFunctionArgs.hasSRetArg()) { 1871 auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()]; 1872 AI->setName("agg.result"); 1873 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1, 1874 llvm::Attribute::NoAlias)); 1875 } 1876 1877 // Track if we received the parameter as a pointer (indirect, byval, or 1878 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 1879 // into a local alloca for us. 1880 SmallVector<ParamValue, 16> ArgVals; 1881 ArgVals.reserve(Args.size()); 1882 1883 // Create a pointer value for every parameter declaration. This usually 1884 // entails copying one or more LLVM IR arguments into an alloca. Don't push 1885 // any cleanups or do anything that might unwind. We do that separately, so 1886 // we can push the cleanups in the correct order for the ABI. 1887 assert(FI.arg_size() == Args.size() && 1888 "Mismatch between function signature & arguments."); 1889 unsigned ArgNo = 0; 1890 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1891 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1892 i != e; ++i, ++info_it, ++ArgNo) { 1893 const VarDecl *Arg = *i; 1894 QualType Ty = info_it->type; 1895 const ABIArgInfo &ArgI = info_it->info; 1896 1897 bool isPromoted = 1898 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1899 1900 unsigned FirstIRArg, NumIRArgs; 1901 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1902 1903 switch (ArgI.getKind()) { 1904 case ABIArgInfo::InAlloca: { 1905 assert(NumIRArgs == 0); 1906 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 1907 CharUnits FieldOffset = 1908 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 1909 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 1910 Arg->getName()); 1911 ArgVals.push_back(ParamValue::forIndirect(V)); 1912 break; 1913 } 1914 1915 case ABIArgInfo::Indirect: { 1916 assert(NumIRArgs == 1); 1917 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 1918 1919 if (!hasScalarEvaluationKind(Ty)) { 1920 // Aggregates and complex variables are accessed by reference. All we 1921 // need to do is realign the value, if requested. 1922 Address V = ParamAddr; 1923 if (ArgI.getIndirectRealign()) { 1924 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 1925 1926 // Copy from the incoming argument pointer to the temporary with the 1927 // appropriate alignment. 1928 // 1929 // FIXME: We should have a common utility for generating an aggregate 1930 // copy. 1931 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1932 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 1933 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 1934 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 1935 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 1936 V = AlignedTemp; 1937 } 1938 ArgVals.push_back(ParamValue::forIndirect(V)); 1939 } else { 1940 // Load scalar value from indirect argument. 1941 llvm::Value *V = 1942 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 1943 1944 if (isPromoted) 1945 V = emitArgumentDemotion(*this, Arg, V); 1946 ArgVals.push_back(ParamValue::forDirect(V)); 1947 } 1948 break; 1949 } 1950 1951 case ABIArgInfo::Extend: 1952 case ABIArgInfo::Direct: { 1953 1954 // If we have the trivial case, handle it with no muss and fuss. 1955 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1956 ArgI.getCoerceToType() == ConvertType(Ty) && 1957 ArgI.getDirectOffset() == 0) { 1958 assert(NumIRArgs == 1); 1959 auto AI = FnArgs[FirstIRArg]; 1960 llvm::Value *V = AI; 1961 1962 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 1963 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 1964 PVD->getFunctionScopeIndex())) 1965 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1966 AI->getArgNo() + 1, 1967 llvm::Attribute::NonNull)); 1968 1969 QualType OTy = PVD->getOriginalType(); 1970 if (const auto *ArrTy = 1971 getContext().getAsConstantArrayType(OTy)) { 1972 // A C99 array parameter declaration with the static keyword also 1973 // indicates dereferenceability, and if the size is constant we can 1974 // use the dereferenceable attribute (which requires the size in 1975 // bytes). 1976 if (ArrTy->getSizeModifier() == ArrayType::Static) { 1977 QualType ETy = ArrTy->getElementType(); 1978 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 1979 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 1980 ArrSize) { 1981 llvm::AttrBuilder Attrs; 1982 Attrs.addDereferenceableAttr( 1983 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 1984 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1985 AI->getArgNo() + 1, Attrs)); 1986 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 1987 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1988 AI->getArgNo() + 1, 1989 llvm::Attribute::NonNull)); 1990 } 1991 } 1992 } else if (const auto *ArrTy = 1993 getContext().getAsVariableArrayType(OTy)) { 1994 // For C99 VLAs with the static keyword, we don't know the size so 1995 // we can't use the dereferenceable attribute, but in addrspace(0) 1996 // we know that it must be nonnull. 1997 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 1998 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 1999 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2000 AI->getArgNo() + 1, 2001 llvm::Attribute::NonNull)); 2002 } 2003 2004 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2005 if (!AVAttr) 2006 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2007 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2008 if (AVAttr) { 2009 llvm::Value *AlignmentValue = 2010 EmitScalarExpr(AVAttr->getAlignment()); 2011 llvm::ConstantInt *AlignmentCI = 2012 cast<llvm::ConstantInt>(AlignmentValue); 2013 unsigned Alignment = 2014 std::min((unsigned) AlignmentCI->getZExtValue(), 2015 +llvm::Value::MaximumAlignment); 2016 2017 llvm::AttrBuilder Attrs; 2018 Attrs.addAlignmentAttr(Alignment); 2019 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2020 AI->getArgNo() + 1, Attrs)); 2021 } 2022 } 2023 2024 if (Arg->getType().isRestrictQualified()) 2025 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2026 AI->getArgNo() + 1, 2027 llvm::Attribute::NoAlias)); 2028 2029 // Ensure the argument is the correct type. 2030 if (V->getType() != ArgI.getCoerceToType()) 2031 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2032 2033 if (isPromoted) 2034 V = emitArgumentDemotion(*this, Arg, V); 2035 2036 if (const CXXMethodDecl *MD = 2037 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 2038 if (MD->isVirtual() && Arg == CXXABIThisDecl) 2039 V = CGM.getCXXABI(). 2040 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V); 2041 } 2042 2043 // Because of merging of function types from multiple decls it is 2044 // possible for the type of an argument to not match the corresponding 2045 // type in the function type. Since we are codegening the callee 2046 // in here, add a cast to the argument type. 2047 llvm::Type *LTy = ConvertType(Arg->getType()); 2048 if (V->getType() != LTy) 2049 V = Builder.CreateBitCast(V, LTy); 2050 2051 ArgVals.push_back(ParamValue::forDirect(V)); 2052 break; 2053 } 2054 2055 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2056 Arg->getName()); 2057 2058 // Pointer to store into. 2059 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2060 2061 // Fast-isel and the optimizer generally like scalar values better than 2062 // FCAs, so we flatten them if this is safe to do for this argument. 2063 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2064 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2065 STy->getNumElements() > 1) { 2066 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2067 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2068 llvm::Type *DstTy = Ptr.getElementType(); 2069 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2070 2071 Address AddrToStoreInto = Address::invalid(); 2072 if (SrcSize <= DstSize) { 2073 AddrToStoreInto = 2074 Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 2075 } else { 2076 AddrToStoreInto = 2077 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2078 } 2079 2080 assert(STy->getNumElements() == NumIRArgs); 2081 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2082 auto AI = FnArgs[FirstIRArg + i]; 2083 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2084 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2085 Address EltPtr = 2086 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2087 Builder.CreateStore(AI, EltPtr); 2088 } 2089 2090 if (SrcSize > DstSize) { 2091 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2092 } 2093 2094 } else { 2095 // Simple case, just do a coerced store of the argument into the alloca. 2096 assert(NumIRArgs == 1); 2097 auto AI = FnArgs[FirstIRArg]; 2098 AI->setName(Arg->getName() + ".coerce"); 2099 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2100 } 2101 2102 // Match to what EmitParmDecl is expecting for this type. 2103 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2104 llvm::Value *V = 2105 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2106 if (isPromoted) 2107 V = emitArgumentDemotion(*this, Arg, V); 2108 ArgVals.push_back(ParamValue::forDirect(V)); 2109 } else { 2110 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2111 } 2112 break; 2113 } 2114 2115 case ABIArgInfo::Expand: { 2116 // If this structure was expanded into multiple arguments then 2117 // we need to create a temporary and reconstruct it from the 2118 // arguments. 2119 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2120 LValue LV = MakeAddrLValue(Alloca, Ty); 2121 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2122 2123 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2124 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2125 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2126 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2127 auto AI = FnArgs[FirstIRArg + i]; 2128 AI->setName(Arg->getName() + "." + Twine(i)); 2129 } 2130 break; 2131 } 2132 2133 case ABIArgInfo::Ignore: 2134 assert(NumIRArgs == 0); 2135 // Initialize the local variable appropriately. 2136 if (!hasScalarEvaluationKind(Ty)) { 2137 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2138 } else { 2139 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2140 ArgVals.push_back(ParamValue::forDirect(U)); 2141 } 2142 break; 2143 } 2144 } 2145 2146 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2147 for (int I = Args.size() - 1; I >= 0; --I) 2148 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2149 } else { 2150 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2151 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2152 } 2153 } 2154 2155 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2156 while (insn->use_empty()) { 2157 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2158 if (!bitcast) return; 2159 2160 // This is "safe" because we would have used a ConstantExpr otherwise. 2161 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2162 bitcast->eraseFromParent(); 2163 } 2164 } 2165 2166 /// Try to emit a fused autorelease of a return result. 2167 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2168 llvm::Value *result) { 2169 // We must be immediately followed the cast. 2170 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2171 if (BB->empty()) return nullptr; 2172 if (&BB->back() != result) return nullptr; 2173 2174 llvm::Type *resultType = result->getType(); 2175 2176 // result is in a BasicBlock and is therefore an Instruction. 2177 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2178 2179 SmallVector<llvm::Instruction*,4> insnsToKill; 2180 2181 // Look for: 2182 // %generator = bitcast %type1* %generator2 to %type2* 2183 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2184 // We would have emitted this as a constant if the operand weren't 2185 // an Instruction. 2186 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2187 2188 // Require the generator to be immediately followed by the cast. 2189 if (generator->getNextNode() != bitcast) 2190 return nullptr; 2191 2192 insnsToKill.push_back(bitcast); 2193 } 2194 2195 // Look for: 2196 // %generator = call i8* @objc_retain(i8* %originalResult) 2197 // or 2198 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2199 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2200 if (!call) return nullptr; 2201 2202 bool doRetainAutorelease; 2203 2204 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2205 doRetainAutorelease = true; 2206 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2207 .objc_retainAutoreleasedReturnValue) { 2208 doRetainAutorelease = false; 2209 2210 // If we emitted an assembly marker for this call (and the 2211 // ARCEntrypoints field should have been set if so), go looking 2212 // for that call. If we can't find it, we can't do this 2213 // optimization. But it should always be the immediately previous 2214 // instruction, unless we needed bitcasts around the call. 2215 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2216 llvm::Instruction *prev = call->getPrevNode(); 2217 assert(prev); 2218 if (isa<llvm::BitCastInst>(prev)) { 2219 prev = prev->getPrevNode(); 2220 assert(prev); 2221 } 2222 assert(isa<llvm::CallInst>(prev)); 2223 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2224 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2225 insnsToKill.push_back(prev); 2226 } 2227 } else { 2228 return nullptr; 2229 } 2230 2231 result = call->getArgOperand(0); 2232 insnsToKill.push_back(call); 2233 2234 // Keep killing bitcasts, for sanity. Note that we no longer care 2235 // about precise ordering as long as there's exactly one use. 2236 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2237 if (!bitcast->hasOneUse()) break; 2238 insnsToKill.push_back(bitcast); 2239 result = bitcast->getOperand(0); 2240 } 2241 2242 // Delete all the unnecessary instructions, from latest to earliest. 2243 for (SmallVectorImpl<llvm::Instruction*>::iterator 2244 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 2245 (*i)->eraseFromParent(); 2246 2247 // Do the fused retain/autorelease if we were asked to. 2248 if (doRetainAutorelease) 2249 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2250 2251 // Cast back to the result type. 2252 return CGF.Builder.CreateBitCast(result, resultType); 2253 } 2254 2255 /// If this is a +1 of the value of an immutable 'self', remove it. 2256 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2257 llvm::Value *result) { 2258 // This is only applicable to a method with an immutable 'self'. 2259 const ObjCMethodDecl *method = 2260 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2261 if (!method) return nullptr; 2262 const VarDecl *self = method->getSelfDecl(); 2263 if (!self->getType().isConstQualified()) return nullptr; 2264 2265 // Look for a retain call. 2266 llvm::CallInst *retainCall = 2267 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2268 if (!retainCall || 2269 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2270 return nullptr; 2271 2272 // Look for an ordinary load of 'self'. 2273 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2274 llvm::LoadInst *load = 2275 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2276 if (!load || load->isAtomic() || load->isVolatile() || 2277 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2278 return nullptr; 2279 2280 // Okay! Burn it all down. This relies for correctness on the 2281 // assumption that the retain is emitted as part of the return and 2282 // that thereafter everything is used "linearly". 2283 llvm::Type *resultType = result->getType(); 2284 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2285 assert(retainCall->use_empty()); 2286 retainCall->eraseFromParent(); 2287 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2288 2289 return CGF.Builder.CreateBitCast(load, resultType); 2290 } 2291 2292 /// Emit an ARC autorelease of the result of a function. 2293 /// 2294 /// \return the value to actually return from the function 2295 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2296 llvm::Value *result) { 2297 // If we're returning 'self', kill the initial retain. This is a 2298 // heuristic attempt to "encourage correctness" in the really unfortunate 2299 // case where we have a return of self during a dealloc and we desperately 2300 // need to avoid the possible autorelease. 2301 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2302 return self; 2303 2304 // At -O0, try to emit a fused retain/autorelease. 2305 if (CGF.shouldUseFusedARCCalls()) 2306 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2307 return fused; 2308 2309 return CGF.EmitARCAutoreleaseReturnValue(result); 2310 } 2311 2312 /// Heuristically search for a dominating store to the return-value slot. 2313 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2314 // Check if a User is a store which pointerOperand is the ReturnValue. 2315 // We are looking for stores to the ReturnValue, not for stores of the 2316 // ReturnValue to some other location. 2317 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2318 auto *SI = dyn_cast<llvm::StoreInst>(U); 2319 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2320 return nullptr; 2321 // These aren't actually possible for non-coerced returns, and we 2322 // only care about non-coerced returns on this code path. 2323 assert(!SI->isAtomic() && !SI->isVolatile()); 2324 return SI; 2325 }; 2326 // If there are multiple uses of the return-value slot, just check 2327 // for something immediately preceding the IP. Sometimes this can 2328 // happen with how we generate implicit-returns; it can also happen 2329 // with noreturn cleanups. 2330 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2331 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2332 if (IP->empty()) return nullptr; 2333 llvm::Instruction *I = &IP->back(); 2334 2335 // Skip lifetime markers 2336 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2337 IE = IP->rend(); 2338 II != IE; ++II) { 2339 if (llvm::IntrinsicInst *Intrinsic = 2340 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2341 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2342 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2343 ++II; 2344 if (II == IE) 2345 break; 2346 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2347 continue; 2348 } 2349 } 2350 I = &*II; 2351 break; 2352 } 2353 2354 return GetStoreIfValid(I); 2355 } 2356 2357 llvm::StoreInst *store = 2358 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2359 if (!store) return nullptr; 2360 2361 // Now do a first-and-dirty dominance check: just walk up the 2362 // single-predecessors chain from the current insertion point. 2363 llvm::BasicBlock *StoreBB = store->getParent(); 2364 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2365 while (IP != StoreBB) { 2366 if (!(IP = IP->getSinglePredecessor())) 2367 return nullptr; 2368 } 2369 2370 // Okay, the store's basic block dominates the insertion point; we 2371 // can do our thing. 2372 return store; 2373 } 2374 2375 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2376 bool EmitRetDbgLoc, 2377 SourceLocation EndLoc) { 2378 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2379 // Naked functions don't have epilogues. 2380 Builder.CreateUnreachable(); 2381 return; 2382 } 2383 2384 // Functions with no result always return void. 2385 if (!ReturnValue.isValid()) { 2386 Builder.CreateRetVoid(); 2387 return; 2388 } 2389 2390 llvm::DebugLoc RetDbgLoc; 2391 llvm::Value *RV = nullptr; 2392 QualType RetTy = FI.getReturnType(); 2393 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2394 2395 switch (RetAI.getKind()) { 2396 case ABIArgInfo::InAlloca: 2397 // Aggregrates get evaluated directly into the destination. Sometimes we 2398 // need to return the sret value in a register, though. 2399 assert(hasAggregateEvaluationKind(RetTy)); 2400 if (RetAI.getInAllocaSRet()) { 2401 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2402 --EI; 2403 llvm::Value *ArgStruct = &*EI; 2404 llvm::Value *SRet = Builder.CreateStructGEP( 2405 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2406 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2407 } 2408 break; 2409 2410 case ABIArgInfo::Indirect: { 2411 auto AI = CurFn->arg_begin(); 2412 if (RetAI.isSRetAfterThis()) 2413 ++AI; 2414 switch (getEvaluationKind(RetTy)) { 2415 case TEK_Complex: { 2416 ComplexPairTy RT = 2417 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2418 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2419 /*isInit*/ true); 2420 break; 2421 } 2422 case TEK_Aggregate: 2423 // Do nothing; aggregrates get evaluated directly into the destination. 2424 break; 2425 case TEK_Scalar: 2426 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2427 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2428 /*isInit*/ true); 2429 break; 2430 } 2431 break; 2432 } 2433 2434 case ABIArgInfo::Extend: 2435 case ABIArgInfo::Direct: 2436 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2437 RetAI.getDirectOffset() == 0) { 2438 // The internal return value temp always will have pointer-to-return-type 2439 // type, just do a load. 2440 2441 // If there is a dominating store to ReturnValue, we can elide 2442 // the load, zap the store, and usually zap the alloca. 2443 if (llvm::StoreInst *SI = 2444 findDominatingStoreToReturnValue(*this)) { 2445 // Reuse the debug location from the store unless there is 2446 // cleanup code to be emitted between the store and return 2447 // instruction. 2448 if (EmitRetDbgLoc && !AutoreleaseResult) 2449 RetDbgLoc = SI->getDebugLoc(); 2450 // Get the stored value and nuke the now-dead store. 2451 RV = SI->getValueOperand(); 2452 SI->eraseFromParent(); 2453 2454 // If that was the only use of the return value, nuke it as well now. 2455 auto returnValueInst = ReturnValue.getPointer(); 2456 if (returnValueInst->use_empty()) { 2457 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2458 alloca->eraseFromParent(); 2459 ReturnValue = Address::invalid(); 2460 } 2461 } 2462 2463 // Otherwise, we have to do a simple load. 2464 } else { 2465 RV = Builder.CreateLoad(ReturnValue); 2466 } 2467 } else { 2468 // If the value is offset in memory, apply the offset now. 2469 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2470 2471 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2472 } 2473 2474 // In ARC, end functions that return a retainable type with a call 2475 // to objc_autoreleaseReturnValue. 2476 if (AutoreleaseResult) { 2477 #ifndef NDEBUG 2478 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2479 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2480 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2481 // CurCodeDecl or BlockInfo. 2482 QualType RT; 2483 2484 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2485 RT = FD->getReturnType(); 2486 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2487 RT = MD->getReturnType(); 2488 else if (isa<BlockDecl>(CurCodeDecl)) 2489 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2490 else 2491 llvm_unreachable("Unexpected function/method type"); 2492 2493 assert(getLangOpts().ObjCAutoRefCount && 2494 !FI.isReturnsRetained() && 2495 RT->isObjCRetainableType()); 2496 #endif 2497 RV = emitAutoreleaseOfResult(*this, RV); 2498 } 2499 2500 break; 2501 2502 case ABIArgInfo::Ignore: 2503 break; 2504 2505 case ABIArgInfo::Expand: 2506 llvm_unreachable("Invalid ABI kind for return argument"); 2507 } 2508 2509 llvm::Instruction *Ret; 2510 if (RV) { 2511 if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) { 2512 if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) { 2513 SanitizerScope SanScope(this); 2514 llvm::Value *Cond = Builder.CreateICmpNE( 2515 RV, llvm::Constant::getNullValue(RV->getType())); 2516 llvm::Constant *StaticData[] = { 2517 EmitCheckSourceLocation(EndLoc), 2518 EmitCheckSourceLocation(RetNNAttr->getLocation()), 2519 }; 2520 EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute), 2521 "nonnull_return", StaticData, None); 2522 } 2523 } 2524 Ret = Builder.CreateRet(RV); 2525 } else { 2526 Ret = Builder.CreateRetVoid(); 2527 } 2528 2529 if (RetDbgLoc) 2530 Ret->setDebugLoc(std::move(RetDbgLoc)); 2531 } 2532 2533 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2534 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2535 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2536 } 2537 2538 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2539 QualType Ty) { 2540 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2541 // placeholders. 2542 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2543 llvm::Value *Placeholder = 2544 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo()); 2545 Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder); 2546 2547 // FIXME: When we generate this IR in one pass, we shouldn't need 2548 // this win32-specific alignment hack. 2549 CharUnits Align = CharUnits::fromQuantity(4); 2550 2551 return AggValueSlot::forAddr(Address(Placeholder, Align), 2552 Ty.getQualifiers(), 2553 AggValueSlot::IsNotDestructed, 2554 AggValueSlot::DoesNotNeedGCBarriers, 2555 AggValueSlot::IsNotAliased); 2556 } 2557 2558 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 2559 const VarDecl *param, 2560 SourceLocation loc) { 2561 // StartFunction converted the ABI-lowered parameter(s) into a 2562 // local alloca. We need to turn that into an r-value suitable 2563 // for EmitCall. 2564 Address local = GetAddrOfLocalVar(param); 2565 2566 QualType type = param->getType(); 2567 2568 // For the most part, we just need to load the alloca, except: 2569 // 1) aggregate r-values are actually pointers to temporaries, and 2570 // 2) references to non-scalars are pointers directly to the aggregate. 2571 // I don't know why references to scalars are different here. 2572 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 2573 if (!hasScalarEvaluationKind(ref->getPointeeType())) 2574 return args.add(RValue::getAggregate(local), type); 2575 2576 // Locals which are references to scalars are represented 2577 // with allocas holding the pointer. 2578 return args.add(RValue::get(Builder.CreateLoad(local)), type); 2579 } 2580 2581 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 2582 "cannot emit delegate call arguments for inalloca arguments!"); 2583 2584 args.add(convertTempToRValue(local, type, loc), type); 2585 } 2586 2587 static bool isProvablyNull(llvm::Value *addr) { 2588 return isa<llvm::ConstantPointerNull>(addr); 2589 } 2590 2591 static bool isProvablyNonNull(llvm::Value *addr) { 2592 return isa<llvm::AllocaInst>(addr); 2593 } 2594 2595 /// Emit the actual writing-back of a writeback. 2596 static void emitWriteback(CodeGenFunction &CGF, 2597 const CallArgList::Writeback &writeback) { 2598 const LValue &srcLV = writeback.Source; 2599 Address srcAddr = srcLV.getAddress(); 2600 assert(!isProvablyNull(srcAddr.getPointer()) && 2601 "shouldn't have writeback for provably null argument"); 2602 2603 llvm::BasicBlock *contBB = nullptr; 2604 2605 // If the argument wasn't provably non-null, we need to null check 2606 // before doing the store. 2607 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 2608 if (!provablyNonNull) { 2609 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 2610 contBB = CGF.createBasicBlock("icr.done"); 2611 2612 llvm::Value *isNull = 2613 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2614 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 2615 CGF.EmitBlock(writebackBB); 2616 } 2617 2618 // Load the value to writeback. 2619 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 2620 2621 // Cast it back, in case we're writing an id to a Foo* or something. 2622 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 2623 "icr.writeback-cast"); 2624 2625 // Perform the writeback. 2626 2627 // If we have a "to use" value, it's something we need to emit a use 2628 // of. This has to be carefully threaded in: if it's done after the 2629 // release it's potentially undefined behavior (and the optimizer 2630 // will ignore it), and if it happens before the retain then the 2631 // optimizer could move the release there. 2632 if (writeback.ToUse) { 2633 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 2634 2635 // Retain the new value. No need to block-copy here: the block's 2636 // being passed up the stack. 2637 value = CGF.EmitARCRetainNonBlock(value); 2638 2639 // Emit the intrinsic use here. 2640 CGF.EmitARCIntrinsicUse(writeback.ToUse); 2641 2642 // Load the old value (primitively). 2643 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 2644 2645 // Put the new value in place (primitively). 2646 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 2647 2648 // Release the old value. 2649 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 2650 2651 // Otherwise, we can just do a normal lvalue store. 2652 } else { 2653 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 2654 } 2655 2656 // Jump to the continuation block. 2657 if (!provablyNonNull) 2658 CGF.EmitBlock(contBB); 2659 } 2660 2661 static void emitWritebacks(CodeGenFunction &CGF, 2662 const CallArgList &args) { 2663 for (const auto &I : args.writebacks()) 2664 emitWriteback(CGF, I); 2665 } 2666 2667 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 2668 const CallArgList &CallArgs) { 2669 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 2670 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 2671 CallArgs.getCleanupsToDeactivate(); 2672 // Iterate in reverse to increase the likelihood of popping the cleanup. 2673 for (const auto &I : llvm::reverse(Cleanups)) { 2674 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 2675 I.IsActiveIP->eraseFromParent(); 2676 } 2677 } 2678 2679 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 2680 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 2681 if (uop->getOpcode() == UO_AddrOf) 2682 return uop->getSubExpr(); 2683 return nullptr; 2684 } 2685 2686 /// Emit an argument that's being passed call-by-writeback. That is, 2687 /// we are passing the address of an __autoreleased temporary; it 2688 /// might be copy-initialized with the current value of the given 2689 /// address, but it will definitely be copied out of after the call. 2690 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 2691 const ObjCIndirectCopyRestoreExpr *CRE) { 2692 LValue srcLV; 2693 2694 // Make an optimistic effort to emit the address as an l-value. 2695 // This can fail if the argument expression is more complicated. 2696 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 2697 srcLV = CGF.EmitLValue(lvExpr); 2698 2699 // Otherwise, just emit it as a scalar. 2700 } else { 2701 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 2702 2703 QualType srcAddrType = 2704 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 2705 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 2706 } 2707 Address srcAddr = srcLV.getAddress(); 2708 2709 // The dest and src types don't necessarily match in LLVM terms 2710 // because of the crazy ObjC compatibility rules. 2711 2712 llvm::PointerType *destType = 2713 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 2714 2715 // If the address is a constant null, just pass the appropriate null. 2716 if (isProvablyNull(srcAddr.getPointer())) { 2717 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 2718 CRE->getType()); 2719 return; 2720 } 2721 2722 // Create the temporary. 2723 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 2724 CGF.getPointerAlign(), 2725 "icr.temp"); 2726 // Loading an l-value can introduce a cleanup if the l-value is __weak, 2727 // and that cleanup will be conditional if we can't prove that the l-value 2728 // isn't null, so we need to register a dominating point so that the cleanups 2729 // system will make valid IR. 2730 CodeGenFunction::ConditionalEvaluation condEval(CGF); 2731 2732 // Zero-initialize it if we're not doing a copy-initialization. 2733 bool shouldCopy = CRE->shouldCopy(); 2734 if (!shouldCopy) { 2735 llvm::Value *null = 2736 llvm::ConstantPointerNull::get( 2737 cast<llvm::PointerType>(destType->getElementType())); 2738 CGF.Builder.CreateStore(null, temp); 2739 } 2740 2741 llvm::BasicBlock *contBB = nullptr; 2742 llvm::BasicBlock *originBB = nullptr; 2743 2744 // If the address is *not* known to be non-null, we need to switch. 2745 llvm::Value *finalArgument; 2746 2747 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 2748 if (provablyNonNull) { 2749 finalArgument = temp.getPointer(); 2750 } else { 2751 llvm::Value *isNull = 2752 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2753 2754 finalArgument = CGF.Builder.CreateSelect(isNull, 2755 llvm::ConstantPointerNull::get(destType), 2756 temp.getPointer(), "icr.argument"); 2757 2758 // If we need to copy, then the load has to be conditional, which 2759 // means we need control flow. 2760 if (shouldCopy) { 2761 originBB = CGF.Builder.GetInsertBlock(); 2762 contBB = CGF.createBasicBlock("icr.cont"); 2763 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 2764 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 2765 CGF.EmitBlock(copyBB); 2766 condEval.begin(CGF); 2767 } 2768 } 2769 2770 llvm::Value *valueToUse = nullptr; 2771 2772 // Perform a copy if necessary. 2773 if (shouldCopy) { 2774 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 2775 assert(srcRV.isScalar()); 2776 2777 llvm::Value *src = srcRV.getScalarVal(); 2778 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 2779 "icr.cast"); 2780 2781 // Use an ordinary store, not a store-to-lvalue. 2782 CGF.Builder.CreateStore(src, temp); 2783 2784 // If optimization is enabled, and the value was held in a 2785 // __strong variable, we need to tell the optimizer that this 2786 // value has to stay alive until we're doing the store back. 2787 // This is because the temporary is effectively unretained, 2788 // and so otherwise we can violate the high-level semantics. 2789 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 2790 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 2791 valueToUse = src; 2792 } 2793 } 2794 2795 // Finish the control flow if we needed it. 2796 if (shouldCopy && !provablyNonNull) { 2797 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 2798 CGF.EmitBlock(contBB); 2799 2800 // Make a phi for the value to intrinsically use. 2801 if (valueToUse) { 2802 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 2803 "icr.to-use"); 2804 phiToUse->addIncoming(valueToUse, copyBB); 2805 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 2806 originBB); 2807 valueToUse = phiToUse; 2808 } 2809 2810 condEval.end(CGF); 2811 } 2812 2813 args.addWriteback(srcLV, temp, valueToUse); 2814 args.add(RValue::get(finalArgument), CRE->getType()); 2815 } 2816 2817 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 2818 assert(!StackBase && !StackCleanup.isValid()); 2819 2820 // Save the stack. 2821 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 2822 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 2823 } 2824 2825 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 2826 if (StackBase) { 2827 // Restore the stack after the call. 2828 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 2829 CGF.Builder.CreateCall(F, StackBase); 2830 } 2831 } 2832 2833 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 2834 SourceLocation ArgLoc, 2835 const FunctionDecl *FD, 2836 unsigned ParmNum) { 2837 if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD) 2838 return; 2839 auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr; 2840 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 2841 auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo); 2842 if (!NNAttr) 2843 return; 2844 SanitizerScope SanScope(this); 2845 assert(RV.isScalar()); 2846 llvm::Value *V = RV.getScalarVal(); 2847 llvm::Value *Cond = 2848 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 2849 llvm::Constant *StaticData[] = { 2850 EmitCheckSourceLocation(ArgLoc), 2851 EmitCheckSourceLocation(NNAttr->getLocation()), 2852 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 2853 }; 2854 EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute), 2855 "nonnull_arg", StaticData, None); 2856 } 2857 2858 void CodeGenFunction::EmitCallArgs( 2859 CallArgList &Args, ArrayRef<QualType> ArgTypes, 2860 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 2861 const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) { 2862 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 2863 2864 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) { 2865 if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams()) 2866 return; 2867 auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 2868 if (PS == nullptr) 2869 return; 2870 2871 const auto &Context = getContext(); 2872 auto SizeTy = Context.getSizeType(); 2873 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 2874 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T); 2875 Args.add(RValue::get(V), SizeTy); 2876 }; 2877 2878 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 2879 // because arguments are destroyed left to right in the callee. 2880 if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2881 // Insert a stack save if we're going to need any inalloca args. 2882 bool HasInAllocaArgs = false; 2883 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 2884 I != E && !HasInAllocaArgs; ++I) 2885 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 2886 if (HasInAllocaArgs) { 2887 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 2888 Args.allocateArgumentMemory(*this); 2889 } 2890 2891 // Evaluate each argument. 2892 size_t CallArgsStart = Args.size(); 2893 for (int I = ArgTypes.size() - 1; I >= 0; --I) { 2894 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 2895 EmitCallArg(Args, *Arg, ArgTypes[I]); 2896 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 2897 CalleeDecl, ParamsToSkip + I); 2898 MaybeEmitImplicitObjectSize(I, *Arg); 2899 } 2900 2901 // Un-reverse the arguments we just evaluated so they match up with the LLVM 2902 // IR function. 2903 std::reverse(Args.begin() + CallArgsStart, Args.end()); 2904 return; 2905 } 2906 2907 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 2908 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 2909 assert(Arg != ArgRange.end()); 2910 EmitCallArg(Args, *Arg, ArgTypes[I]); 2911 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 2912 CalleeDecl, ParamsToSkip + I); 2913 MaybeEmitImplicitObjectSize(I, *Arg); 2914 } 2915 } 2916 2917 namespace { 2918 2919 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 2920 DestroyUnpassedArg(Address Addr, QualType Ty) 2921 : Addr(Addr), Ty(Ty) {} 2922 2923 Address Addr; 2924 QualType Ty; 2925 2926 void Emit(CodeGenFunction &CGF, Flags flags) override { 2927 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 2928 assert(!Dtor->isTrivial()); 2929 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 2930 /*Delegating=*/false, Addr); 2931 } 2932 }; 2933 2934 struct DisableDebugLocationUpdates { 2935 CodeGenFunction &CGF; 2936 bool disabledDebugInfo; 2937 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 2938 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 2939 CGF.disableDebugInfo(); 2940 } 2941 ~DisableDebugLocationUpdates() { 2942 if (disabledDebugInfo) 2943 CGF.enableDebugInfo(); 2944 } 2945 }; 2946 2947 } // end anonymous namespace 2948 2949 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 2950 QualType type) { 2951 DisableDebugLocationUpdates Dis(*this, E); 2952 if (const ObjCIndirectCopyRestoreExpr *CRE 2953 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 2954 assert(getLangOpts().ObjCAutoRefCount); 2955 assert(getContext().hasSameType(E->getType(), type)); 2956 return emitWritebackArg(*this, args, CRE); 2957 } 2958 2959 assert(type->isReferenceType() == E->isGLValue() && 2960 "reference binding to unmaterialized r-value!"); 2961 2962 if (E->isGLValue()) { 2963 assert(E->getObjectKind() == OK_Ordinary); 2964 return args.add(EmitReferenceBindingToExpr(E), type); 2965 } 2966 2967 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 2968 2969 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 2970 // However, we still have to push an EH-only cleanup in case we unwind before 2971 // we make it to the call. 2972 if (HasAggregateEvalKind && 2973 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2974 // If we're using inalloca, use the argument memory. Otherwise, use a 2975 // temporary. 2976 AggValueSlot Slot; 2977 if (args.isUsingInAlloca()) 2978 Slot = createPlaceholderSlot(*this, type); 2979 else 2980 Slot = CreateAggTemp(type, "agg.tmp"); 2981 2982 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2983 bool DestroyedInCallee = 2984 RD && RD->hasNonTrivialDestructor() && 2985 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 2986 if (DestroyedInCallee) 2987 Slot.setExternallyDestructed(); 2988 2989 EmitAggExpr(E, Slot); 2990 RValue RV = Slot.asRValue(); 2991 args.add(RV, type); 2992 2993 if (DestroyedInCallee) { 2994 // Create a no-op GEP between the placeholder and the cleanup so we can 2995 // RAUW it successfully. It also serves as a marker of the first 2996 // instruction where the cleanup is active. 2997 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 2998 type); 2999 // This unreachable is a temporary marker which will be removed later. 3000 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3001 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3002 } 3003 return; 3004 } 3005 3006 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3007 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3008 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3009 assert(L.isSimple()); 3010 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 3011 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 3012 } else { 3013 // We can't represent a misaligned lvalue in the CallArgList, so copy 3014 // to an aligned temporary now. 3015 Address tmp = CreateMemTemp(type); 3016 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 3017 args.add(RValue::getAggregate(tmp), type); 3018 } 3019 return; 3020 } 3021 3022 args.add(EmitAnyExprToTemp(E), type); 3023 } 3024 3025 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3026 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3027 // implicitly widens null pointer constants that are arguments to varargs 3028 // functions to pointer-sized ints. 3029 if (!getTarget().getTriple().isOSWindows()) 3030 return Arg->getType(); 3031 3032 if (Arg->getType()->isIntegerType() && 3033 getContext().getTypeSize(Arg->getType()) < 3034 getContext().getTargetInfo().getPointerWidth(0) && 3035 Arg->isNullPointerConstant(getContext(), 3036 Expr::NPC_ValueDependentIsNotNull)) { 3037 return getContext().getIntPtrType(); 3038 } 3039 3040 return Arg->getType(); 3041 } 3042 3043 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3044 // optimizer it can aggressively ignore unwind edges. 3045 void 3046 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3047 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3048 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3049 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3050 CGM.getNoObjCARCExceptionsMetadata()); 3051 } 3052 3053 /// Emits a call to the given no-arguments nounwind runtime function. 3054 llvm::CallInst * 3055 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3056 const llvm::Twine &name) { 3057 return EmitNounwindRuntimeCall(callee, None, name); 3058 } 3059 3060 /// Emits a call to the given nounwind runtime function. 3061 llvm::CallInst * 3062 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3063 ArrayRef<llvm::Value*> args, 3064 const llvm::Twine &name) { 3065 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3066 call->setDoesNotThrow(); 3067 return call; 3068 } 3069 3070 /// Emits a simple call (never an invoke) to the given no-arguments 3071 /// runtime function. 3072 llvm::CallInst * 3073 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3074 const llvm::Twine &name) { 3075 return EmitRuntimeCall(callee, None, name); 3076 } 3077 3078 // Calls which may throw must have operand bundles indicating which funclet 3079 // they are nested within. 3080 static void 3081 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad, 3082 SmallVectorImpl<llvm::OperandBundleDef> &BundleList) { 3083 // There is no need for a funclet operand bundle if we aren't inside a 3084 // funclet. 3085 if (!CurrentFuncletPad) 3086 return; 3087 3088 // Skip intrinsics which cannot throw. 3089 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3090 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3091 return; 3092 3093 BundleList.emplace_back("funclet", CurrentFuncletPad); 3094 } 3095 3096 /// Emits a simple call (never an invoke) to the given runtime function. 3097 llvm::CallInst * 3098 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3099 ArrayRef<llvm::Value*> args, 3100 const llvm::Twine &name) { 3101 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3102 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3103 3104 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name); 3105 call->setCallingConv(getRuntimeCC()); 3106 return call; 3107 } 3108 3109 /// Emits a call or invoke to the given noreturn runtime function. 3110 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3111 ArrayRef<llvm::Value*> args) { 3112 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3113 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3114 3115 if (getInvokeDest()) { 3116 llvm::InvokeInst *invoke = 3117 Builder.CreateInvoke(callee, 3118 getUnreachableBlock(), 3119 getInvokeDest(), 3120 args, 3121 BundleList); 3122 invoke->setDoesNotReturn(); 3123 invoke->setCallingConv(getRuntimeCC()); 3124 } else { 3125 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3126 call->setDoesNotReturn(); 3127 call->setCallingConv(getRuntimeCC()); 3128 Builder.CreateUnreachable(); 3129 } 3130 } 3131 3132 /// Emits a call or invoke instruction to the given nullary runtime function. 3133 llvm::CallSite 3134 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3135 const Twine &name) { 3136 return EmitRuntimeCallOrInvoke(callee, None, name); 3137 } 3138 3139 /// Emits a call or invoke instruction to the given runtime function. 3140 llvm::CallSite 3141 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3142 ArrayRef<llvm::Value*> args, 3143 const Twine &name) { 3144 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3145 callSite.setCallingConv(getRuntimeCC()); 3146 return callSite; 3147 } 3148 3149 /// Emits a call or invoke instruction to the given function, depending 3150 /// on the current state of the EH stack. 3151 llvm::CallSite 3152 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3153 ArrayRef<llvm::Value *> Args, 3154 const Twine &Name) { 3155 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3156 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3157 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3158 3159 llvm::Instruction *Inst; 3160 if (!InvokeDest) 3161 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3162 else { 3163 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3164 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3165 Name); 3166 EmitBlock(ContBB); 3167 } 3168 3169 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3170 // optimizer it can aggressively ignore unwind edges. 3171 if (CGM.getLangOpts().ObjCAutoRefCount) 3172 AddObjCARCExceptionMetadata(Inst); 3173 3174 return llvm::CallSite(Inst); 3175 } 3176 3177 /// \brief Store a non-aggregate value to an address to initialize it. For 3178 /// initialization, a non-atomic store will be used. 3179 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3180 LValue Dst) { 3181 if (Src.isScalar()) 3182 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3183 else 3184 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3185 } 3186 3187 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3188 llvm::Value *New) { 3189 DeferredReplacements.push_back(std::make_pair(Old, New)); 3190 } 3191 3192 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3193 llvm::Value *Callee, 3194 ReturnValueSlot ReturnValue, 3195 const CallArgList &CallArgs, 3196 CGCalleeInfo CalleeInfo, 3197 llvm::Instruction **callOrInvoke) { 3198 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3199 3200 // Handle struct-return functions by passing a pointer to the 3201 // location that we would like to return into. 3202 QualType RetTy = CallInfo.getReturnType(); 3203 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3204 3205 llvm::FunctionType *IRFuncTy = 3206 cast<llvm::FunctionType>( 3207 cast<llvm::PointerType>(Callee->getType())->getElementType()); 3208 3209 // If we're using inalloca, insert the allocation after the stack save. 3210 // FIXME: Do this earlier rather than hacking it in here! 3211 Address ArgMemory = Address::invalid(); 3212 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3213 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3214 ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct); 3215 llvm::Instruction *IP = CallArgs.getStackBase(); 3216 llvm::AllocaInst *AI; 3217 if (IP) { 3218 IP = IP->getNextNode(); 3219 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP); 3220 } else { 3221 AI = CreateTempAlloca(ArgStruct, "argmem"); 3222 } 3223 auto Align = CallInfo.getArgStructAlignment(); 3224 AI->setAlignment(Align.getQuantity()); 3225 AI->setUsedWithInAlloca(true); 3226 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3227 ArgMemory = Address(AI, Align); 3228 } 3229 3230 // Helper function to drill into the inalloca allocation. 3231 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3232 auto FieldOffset = 3233 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3234 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3235 }; 3236 3237 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3238 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3239 3240 // If the call returns a temporary with struct return, create a temporary 3241 // alloca to hold the result, unless one is given to us. 3242 Address SRetPtr = Address::invalid(); 3243 size_t UnusedReturnSize = 0; 3244 if (RetAI.isIndirect() || RetAI.isInAlloca()) { 3245 if (!ReturnValue.isNull()) { 3246 SRetPtr = ReturnValue.getValue(); 3247 } else { 3248 SRetPtr = CreateMemTemp(RetTy); 3249 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3250 uint64_t size = 3251 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3252 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3253 UnusedReturnSize = size; 3254 } 3255 } 3256 if (IRFunctionArgs.hasSRetArg()) { 3257 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3258 } else { 3259 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3260 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3261 } 3262 } 3263 3264 assert(CallInfo.arg_size() == CallArgs.size() && 3265 "Mismatch between function signature & arguments."); 3266 unsigned ArgNo = 0; 3267 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3268 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3269 I != E; ++I, ++info_it, ++ArgNo) { 3270 const ABIArgInfo &ArgInfo = info_it->info; 3271 RValue RV = I->RV; 3272 3273 // Insert a padding argument to ensure proper alignment. 3274 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3275 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3276 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3277 3278 unsigned FirstIRArg, NumIRArgs; 3279 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3280 3281 switch (ArgInfo.getKind()) { 3282 case ABIArgInfo::InAlloca: { 3283 assert(NumIRArgs == 0); 3284 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3285 if (RV.isAggregate()) { 3286 // Replace the placeholder with the appropriate argument slot GEP. 3287 llvm::Instruction *Placeholder = 3288 cast<llvm::Instruction>(RV.getAggregatePointer()); 3289 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3290 Builder.SetInsertPoint(Placeholder); 3291 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3292 Builder.restoreIP(IP); 3293 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3294 } else { 3295 // Store the RValue into the argument struct. 3296 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3297 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3298 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3299 // There are some cases where a trivial bitcast is not avoidable. The 3300 // definition of a type later in a translation unit may change it's type 3301 // from {}* to (%struct.foo*)*. 3302 if (Addr.getType() != MemType) 3303 Addr = Builder.CreateBitCast(Addr, MemType); 3304 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3305 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3306 } 3307 break; 3308 } 3309 3310 case ABIArgInfo::Indirect: { 3311 assert(NumIRArgs == 1); 3312 if (RV.isScalar() || RV.isComplex()) { 3313 // Make a temporary alloca to pass the argument. 3314 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3315 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3316 3317 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3318 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3319 } else { 3320 // We want to avoid creating an unnecessary temporary+copy here; 3321 // however, we need one in three cases: 3322 // 1. If the argument is not byval, and we are required to copy the 3323 // source. (This case doesn't occur on any common architecture.) 3324 // 2. If the argument is byval, RV is not sufficiently aligned, and 3325 // we cannot force it to be sufficiently aligned. 3326 // 3. If the argument is byval, but RV is located in an address space 3327 // different than that of the argument (0). 3328 Address Addr = RV.getAggregateAddress(); 3329 CharUnits Align = ArgInfo.getIndirectAlign(); 3330 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3331 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3332 const unsigned ArgAddrSpace = 3333 (FirstIRArg < IRFuncTy->getNumParams() 3334 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3335 : 0); 3336 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3337 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3338 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3339 Align.getQuantity(), *TD) 3340 < Align.getQuantity()) || 3341 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3342 // Create an aligned temporary, and copy to it. 3343 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3344 IRCallArgs[FirstIRArg] = AI.getPointer(); 3345 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3346 } else { 3347 // Skip the extra memcpy call. 3348 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3349 } 3350 } 3351 break; 3352 } 3353 3354 case ABIArgInfo::Ignore: 3355 assert(NumIRArgs == 0); 3356 break; 3357 3358 case ABIArgInfo::Extend: 3359 case ABIArgInfo::Direct: { 3360 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3361 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3362 ArgInfo.getDirectOffset() == 0) { 3363 assert(NumIRArgs == 1); 3364 llvm::Value *V; 3365 if (RV.isScalar()) 3366 V = RV.getScalarVal(); 3367 else 3368 V = Builder.CreateLoad(RV.getAggregateAddress()); 3369 3370 // We might have to widen integers, but we should never truncate. 3371 if (ArgInfo.getCoerceToType() != V->getType() && 3372 V->getType()->isIntegerTy()) 3373 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3374 3375 // If the argument doesn't match, perform a bitcast to coerce it. This 3376 // can happen due to trivial type mismatches. 3377 if (FirstIRArg < IRFuncTy->getNumParams() && 3378 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3379 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3380 IRCallArgs[FirstIRArg] = V; 3381 break; 3382 } 3383 3384 // FIXME: Avoid the conversion through memory if possible. 3385 Address Src = Address::invalid(); 3386 if (RV.isScalar() || RV.isComplex()) { 3387 Src = CreateMemTemp(I->Ty, "coerce"); 3388 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3389 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3390 } else { 3391 Src = RV.getAggregateAddress(); 3392 } 3393 3394 // If the value is offset in memory, apply the offset now. 3395 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3396 3397 // Fast-isel and the optimizer generally like scalar values better than 3398 // FCAs, so we flatten them if this is safe to do for this argument. 3399 llvm::StructType *STy = 3400 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3401 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3402 llvm::Type *SrcTy = Src.getType()->getElementType(); 3403 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3404 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3405 3406 // If the source type is smaller than the destination type of the 3407 // coerce-to logic, copy the source value into a temp alloca the size 3408 // of the destination type to allow loading all of it. The bits past 3409 // the source value are left undef. 3410 if (SrcSize < DstSize) { 3411 Address TempAlloca 3412 = CreateTempAlloca(STy, Src.getAlignment(), 3413 Src.getName() + ".coerce"); 3414 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3415 Src = TempAlloca; 3416 } else { 3417 Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy)); 3418 } 3419 3420 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3421 assert(NumIRArgs == STy->getNumElements()); 3422 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3423 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3424 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3425 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3426 IRCallArgs[FirstIRArg + i] = LI; 3427 } 3428 } else { 3429 // In the simple case, just pass the coerced loaded value. 3430 assert(NumIRArgs == 1); 3431 IRCallArgs[FirstIRArg] = 3432 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3433 } 3434 3435 break; 3436 } 3437 3438 case ABIArgInfo::Expand: 3439 unsigned IRArgPos = FirstIRArg; 3440 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 3441 assert(IRArgPos == FirstIRArg + NumIRArgs); 3442 break; 3443 } 3444 } 3445 3446 if (ArgMemory.isValid()) { 3447 llvm::Value *Arg = ArgMemory.getPointer(); 3448 if (CallInfo.isVariadic()) { 3449 // When passing non-POD arguments by value to variadic functions, we will 3450 // end up with a variadic prototype and an inalloca call site. In such 3451 // cases, we can't do any parameter mismatch checks. Give up and bitcast 3452 // the callee. 3453 unsigned CalleeAS = 3454 cast<llvm::PointerType>(Callee->getType())->getAddressSpace(); 3455 Callee = Builder.CreateBitCast( 3456 Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS)); 3457 } else { 3458 llvm::Type *LastParamTy = 3459 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 3460 if (Arg->getType() != LastParamTy) { 3461 #ifndef NDEBUG 3462 // Assert that these structs have equivalent element types. 3463 llvm::StructType *FullTy = CallInfo.getArgStruct(); 3464 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 3465 cast<llvm::PointerType>(LastParamTy)->getElementType()); 3466 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 3467 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 3468 DE = DeclaredTy->element_end(), 3469 FI = FullTy->element_begin(); 3470 DI != DE; ++DI, ++FI) 3471 assert(*DI == *FI); 3472 #endif 3473 Arg = Builder.CreateBitCast(Arg, LastParamTy); 3474 } 3475 } 3476 assert(IRFunctionArgs.hasInallocaArg()); 3477 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 3478 } 3479 3480 if (!CallArgs.getCleanupsToDeactivate().empty()) 3481 deactivateArgCleanupsBeforeCall(*this, CallArgs); 3482 3483 // If the callee is a bitcast of a function to a varargs pointer to function 3484 // type, check to see if we can remove the bitcast. This handles some cases 3485 // with unprototyped functions. 3486 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 3487 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 3488 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 3489 llvm::FunctionType *CurFT = 3490 cast<llvm::FunctionType>(CurPT->getElementType()); 3491 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 3492 3493 if (CE->getOpcode() == llvm::Instruction::BitCast && 3494 ActualFT->getReturnType() == CurFT->getReturnType() && 3495 ActualFT->getNumParams() == CurFT->getNumParams() && 3496 ActualFT->getNumParams() == IRCallArgs.size() && 3497 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 3498 bool ArgsMatch = true; 3499 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 3500 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 3501 ArgsMatch = false; 3502 break; 3503 } 3504 3505 // Strip the cast if we can get away with it. This is a nice cleanup, 3506 // but also allows us to inline the function at -O0 if it is marked 3507 // always_inline. 3508 if (ArgsMatch) 3509 Callee = CalleeF; 3510 } 3511 } 3512 3513 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 3514 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 3515 // Inalloca argument can have different type. 3516 if (IRFunctionArgs.hasInallocaArg() && 3517 i == IRFunctionArgs.getInallocaArgNo()) 3518 continue; 3519 if (i < IRFuncTy->getNumParams()) 3520 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 3521 } 3522 3523 unsigned CallingConv; 3524 CodeGen::AttributeListType AttributeList; 3525 CGM.ConstructAttributeList(Callee->getName(), CallInfo, CalleeInfo, 3526 AttributeList, CallingConv, 3527 /*AttrOnCallSite=*/true); 3528 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 3529 AttributeList); 3530 3531 bool CannotThrow; 3532 if (currentFunctionUsesSEHTry()) { 3533 // SEH cares about asynchronous exceptions, everything can "throw." 3534 CannotThrow = false; 3535 } else if (isCleanupPadScope() && 3536 EHPersonality::get(*this).isMSVCXXPersonality()) { 3537 // The MSVC++ personality will implicitly terminate the program if an 3538 // exception is thrown. An unwind edge cannot be reached. 3539 CannotThrow = true; 3540 } else { 3541 // Otherwise, nowunind callsites will never throw. 3542 CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 3543 llvm::Attribute::NoUnwind); 3544 } 3545 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 3546 3547 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3548 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3549 3550 llvm::CallSite CS; 3551 if (!InvokeDest) { 3552 CS = Builder.CreateCall(Callee, IRCallArgs, BundleList); 3553 } else { 3554 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 3555 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs, 3556 BundleList); 3557 EmitBlock(Cont); 3558 } 3559 if (callOrInvoke) 3560 *callOrInvoke = CS.getInstruction(); 3561 3562 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 3563 !CS.hasFnAttr(llvm::Attribute::NoInline)) 3564 Attrs = 3565 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3566 llvm::Attribute::AlwaysInline); 3567 3568 // Disable inlining inside SEH __try blocks. 3569 if (isSEHTryScope()) 3570 Attrs = 3571 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3572 llvm::Attribute::NoInline); 3573 3574 CS.setAttributes(Attrs); 3575 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 3576 3577 // Insert instrumentation or attach profile metadata at indirect call sites 3578 if (!CS.getCalledFunction()) 3579 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 3580 CS.getInstruction(), Callee); 3581 3582 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3583 // optimizer it can aggressively ignore unwind edges. 3584 if (CGM.getLangOpts().ObjCAutoRefCount) 3585 AddObjCARCExceptionMetadata(CS.getInstruction()); 3586 3587 // If the call doesn't return, finish the basic block and clear the 3588 // insertion point; this allows the rest of IRgen to discard 3589 // unreachable code. 3590 if (CS.doesNotReturn()) { 3591 if (UnusedReturnSize) 3592 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3593 SRetPtr.getPointer()); 3594 3595 Builder.CreateUnreachable(); 3596 Builder.ClearInsertionPoint(); 3597 3598 // FIXME: For now, emit a dummy basic block because expr emitters in 3599 // generally are not ready to handle emitting expressions at unreachable 3600 // points. 3601 EnsureInsertPoint(); 3602 3603 // Return a reasonable RValue. 3604 return GetUndefRValue(RetTy); 3605 } 3606 3607 llvm::Instruction *CI = CS.getInstruction(); 3608 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 3609 CI->setName("call"); 3610 3611 // Emit any writebacks immediately. Arguably this should happen 3612 // after any return-value munging. 3613 if (CallArgs.hasWritebacks()) 3614 emitWritebacks(*this, CallArgs); 3615 3616 // The stack cleanup for inalloca arguments has to run out of the normal 3617 // lexical order, so deactivate it and run it manually here. 3618 CallArgs.freeArgumentMemory(*this); 3619 3620 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 3621 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 3622 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 3623 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 3624 } 3625 3626 RValue Ret = [&] { 3627 switch (RetAI.getKind()) { 3628 case ABIArgInfo::InAlloca: 3629 case ABIArgInfo::Indirect: { 3630 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 3631 if (UnusedReturnSize) 3632 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3633 SRetPtr.getPointer()); 3634 return ret; 3635 } 3636 3637 case ABIArgInfo::Ignore: 3638 // If we are ignoring an argument that had a result, make sure to 3639 // construct the appropriate return value for our caller. 3640 return GetUndefRValue(RetTy); 3641 3642 case ABIArgInfo::Extend: 3643 case ABIArgInfo::Direct: { 3644 llvm::Type *RetIRTy = ConvertType(RetTy); 3645 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 3646 switch (getEvaluationKind(RetTy)) { 3647 case TEK_Complex: { 3648 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 3649 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 3650 return RValue::getComplex(std::make_pair(Real, Imag)); 3651 } 3652 case TEK_Aggregate: { 3653 Address DestPtr = ReturnValue.getValue(); 3654 bool DestIsVolatile = ReturnValue.isVolatile(); 3655 3656 if (!DestPtr.isValid()) { 3657 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 3658 DestIsVolatile = false; 3659 } 3660 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 3661 return RValue::getAggregate(DestPtr); 3662 } 3663 case TEK_Scalar: { 3664 // If the argument doesn't match, perform a bitcast to coerce it. This 3665 // can happen due to trivial type mismatches. 3666 llvm::Value *V = CI; 3667 if (V->getType() != RetIRTy) 3668 V = Builder.CreateBitCast(V, RetIRTy); 3669 return RValue::get(V); 3670 } 3671 } 3672 llvm_unreachable("bad evaluation kind"); 3673 } 3674 3675 Address DestPtr = ReturnValue.getValue(); 3676 bool DestIsVolatile = ReturnValue.isVolatile(); 3677 3678 if (!DestPtr.isValid()) { 3679 DestPtr = CreateMemTemp(RetTy, "coerce"); 3680 DestIsVolatile = false; 3681 } 3682 3683 // If the value is offset in memory, apply the offset now. 3684 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 3685 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 3686 3687 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 3688 } 3689 3690 case ABIArgInfo::Expand: 3691 llvm_unreachable("Invalid ABI kind for return argument"); 3692 } 3693 3694 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 3695 } (); 3696 3697 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 3698 3699 if (Ret.isScalar() && TargetDecl) { 3700 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 3701 llvm::Value *OffsetValue = nullptr; 3702 if (const auto *Offset = AA->getOffset()) 3703 OffsetValue = EmitScalarExpr(Offset); 3704 3705 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 3706 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 3707 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 3708 OffsetValue); 3709 } 3710 } 3711 3712 return Ret; 3713 } 3714 3715 /* VarArg handling */ 3716 3717 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 3718 VAListAddr = VE->isMicrosoftABI() 3719 ? EmitMSVAListRef(VE->getSubExpr()) 3720 : EmitVAListRef(VE->getSubExpr()); 3721 QualType Ty = VE->getType(); 3722 if (VE->isMicrosoftABI()) 3723 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 3724 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 3725 } 3726