1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 using namespace clang; 43 using namespace CodeGen; 44 45 /***/ 46 47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 48 switch (CC) { 49 default: return llvm::CallingConv::C; 50 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 51 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 52 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 53 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 54 case CC_Win64: return llvm::CallingConv::Win64; 55 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 56 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 57 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 58 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 59 // TODO: Add support for __pascal to LLVM. 60 case CC_X86Pascal: return llvm::CallingConv::C; 61 // TODO: Add support for __vectorcall to LLVM. 62 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 63 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 64 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 65 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 66 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 67 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 68 case CC_Swift: return llvm::CallingConv::Swift; 69 } 70 } 71 72 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 73 /// qualification. Either or both of RD and MD may be null. A null RD indicates 74 /// that there is no meaningful 'this' type, and a null MD can occur when 75 /// calling a method pointer. 76 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 77 const CXXMethodDecl *MD) { 78 QualType RecTy; 79 if (RD) 80 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 81 else 82 RecTy = Context.VoidTy; 83 84 if (MD) 85 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 86 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 87 } 88 89 /// Returns the canonical formal type of the given C++ method. 90 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 91 return MD->getType()->getCanonicalTypeUnqualified() 92 .getAs<FunctionProtoType>(); 93 } 94 95 /// Returns the "extra-canonicalized" return type, which discards 96 /// qualifiers on the return type. Codegen doesn't care about them, 97 /// and it makes ABI code a little easier to be able to assume that 98 /// all parameter and return types are top-level unqualified. 99 static CanQualType GetReturnType(QualType RetTy) { 100 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 101 } 102 103 /// Arrange the argument and result information for a value of the given 104 /// unprototyped freestanding function type. 105 const CGFunctionInfo & 106 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 107 // When translating an unprototyped function type, always use a 108 // variadic type. 109 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 110 /*instanceMethod=*/false, 111 /*chainCall=*/false, None, 112 FTNP->getExtInfo(), {}, RequiredArgs(0)); 113 } 114 115 static void addExtParameterInfosForCall( 116 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 117 const FunctionProtoType *proto, 118 unsigned prefixArgs, 119 unsigned totalArgs) { 120 assert(proto->hasExtParameterInfos()); 121 assert(paramInfos.size() <= prefixArgs); 122 assert(proto->getNumParams() + prefixArgs <= totalArgs); 123 124 paramInfos.reserve(totalArgs); 125 126 // Add default infos for any prefix args that don't already have infos. 127 paramInfos.resize(prefixArgs); 128 129 // Add infos for the prototype. 130 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 131 paramInfos.push_back(ParamInfo); 132 // pass_object_size params have no parameter info. 133 if (ParamInfo.hasPassObjectSize()) 134 paramInfos.emplace_back(); 135 } 136 137 assert(paramInfos.size() <= totalArgs && 138 "Did we forget to insert pass_object_size args?"); 139 // Add default infos for the variadic and/or suffix arguments. 140 paramInfos.resize(totalArgs); 141 } 142 143 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 144 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 145 static void appendParameterTypes(const CodeGenTypes &CGT, 146 SmallVectorImpl<CanQualType> &prefix, 147 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 148 CanQual<FunctionProtoType> FPT) { 149 // Fast path: don't touch param info if we don't need to. 150 if (!FPT->hasExtParameterInfos()) { 151 assert(paramInfos.empty() && 152 "We have paramInfos, but the prototype doesn't?"); 153 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 154 return; 155 } 156 157 unsigned PrefixSize = prefix.size(); 158 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 159 // parameters; the only thing that can change this is the presence of 160 // pass_object_size. So, we preallocate for the common case. 161 prefix.reserve(prefix.size() + FPT->getNumParams()); 162 163 auto ExtInfos = FPT->getExtParameterInfos(); 164 assert(ExtInfos.size() == FPT->getNumParams()); 165 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 166 prefix.push_back(FPT->getParamType(I)); 167 if (ExtInfos[I].hasPassObjectSize()) 168 prefix.push_back(CGT.getContext().getSizeType()); 169 } 170 171 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 172 prefix.size()); 173 } 174 175 /// Arrange the LLVM function layout for a value of the given function 176 /// type, on top of any implicit parameters already stored. 177 static const CGFunctionInfo & 178 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 179 SmallVectorImpl<CanQualType> &prefix, 180 CanQual<FunctionProtoType> FTP) { 181 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 182 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 183 // FIXME: Kill copy. 184 appendParameterTypes(CGT, prefix, paramInfos, FTP); 185 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 186 187 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 188 /*chainCall=*/false, prefix, 189 FTP->getExtInfo(), paramInfos, 190 Required); 191 } 192 193 /// Arrange the argument and result information for a value of the 194 /// given freestanding function type. 195 const CGFunctionInfo & 196 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 197 SmallVector<CanQualType, 16> argTypes; 198 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 199 FTP); 200 } 201 202 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 203 bool IsWindows) { 204 // Set the appropriate calling convention for the Function. 205 if (D->hasAttr<StdCallAttr>()) 206 return CC_X86StdCall; 207 208 if (D->hasAttr<FastCallAttr>()) 209 return CC_X86FastCall; 210 211 if (D->hasAttr<RegCallAttr>()) 212 return CC_X86RegCall; 213 214 if (D->hasAttr<ThisCallAttr>()) 215 return CC_X86ThisCall; 216 217 if (D->hasAttr<VectorCallAttr>()) 218 return CC_X86VectorCall; 219 220 if (D->hasAttr<PascalAttr>()) 221 return CC_X86Pascal; 222 223 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 224 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 225 226 if (D->hasAttr<AArch64VectorPcsAttr>()) 227 return CC_AArch64VectorCall; 228 229 if (D->hasAttr<IntelOclBiccAttr>()) 230 return CC_IntelOclBicc; 231 232 if (D->hasAttr<MSABIAttr>()) 233 return IsWindows ? CC_C : CC_Win64; 234 235 if (D->hasAttr<SysVABIAttr>()) 236 return IsWindows ? CC_X86_64SysV : CC_C; 237 238 if (D->hasAttr<PreserveMostAttr>()) 239 return CC_PreserveMost; 240 241 if (D->hasAttr<PreserveAllAttr>()) 242 return CC_PreserveAll; 243 244 return CC_C; 245 } 246 247 /// Arrange the argument and result information for a call to an 248 /// unknown C++ non-static member function of the given abstract type. 249 /// (A null RD means we don't have any meaningful "this" argument type, 250 /// so fall back to a generic pointer type). 251 /// The member function must be an ordinary function, i.e. not a 252 /// constructor or destructor. 253 const CGFunctionInfo & 254 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 255 const FunctionProtoType *FTP, 256 const CXXMethodDecl *MD) { 257 SmallVector<CanQualType, 16> argTypes; 258 259 // Add the 'this' pointer. 260 argTypes.push_back(DeriveThisType(RD, MD)); 261 262 return ::arrangeLLVMFunctionInfo( 263 *this, true, argTypes, 264 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 265 } 266 267 /// Set calling convention for CUDA/HIP kernel. 268 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 269 const FunctionDecl *FD) { 270 if (FD->hasAttr<CUDAGlobalAttr>()) { 271 const FunctionType *FT = FTy->getAs<FunctionType>(); 272 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 273 FTy = FT->getCanonicalTypeUnqualified(); 274 } 275 } 276 277 /// Arrange the argument and result information for a declaration or 278 /// definition of the given C++ non-static member function. The 279 /// member function must be an ordinary function, i.e. not a 280 /// constructor or destructor. 281 const CGFunctionInfo & 282 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 283 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 284 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 285 286 CanQualType FT = GetFormalType(MD).getAs<Type>(); 287 setCUDAKernelCallingConvention(FT, CGM, MD); 288 auto prototype = FT.getAs<FunctionProtoType>(); 289 290 if (MD->isInstance()) { 291 // The abstract case is perfectly fine. 292 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 293 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 294 } 295 296 return arrangeFreeFunctionType(prototype); 297 } 298 299 bool CodeGenTypes::inheritingCtorHasParams( 300 const InheritedConstructor &Inherited, CXXCtorType Type) { 301 // Parameters are unnecessary if we're constructing a base class subobject 302 // and the inherited constructor lives in a virtual base. 303 return Type == Ctor_Complete || 304 !Inherited.getShadowDecl()->constructsVirtualBase() || 305 !Target.getCXXABI().hasConstructorVariants(); 306 } 307 308 const CGFunctionInfo & 309 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 310 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 311 312 SmallVector<CanQualType, 16> argTypes; 313 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 314 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 315 316 bool PassParams = true; 317 318 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 319 // A base class inheriting constructor doesn't get forwarded arguments 320 // needed to construct a virtual base (or base class thereof). 321 if (auto Inherited = CD->getInheritedConstructor()) 322 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 323 } 324 325 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 326 327 // Add the formal parameters. 328 if (PassParams) 329 appendParameterTypes(*this, argTypes, paramInfos, FTP); 330 331 CGCXXABI::AddedStructorArgCounts AddedArgs = 332 TheCXXABI.buildStructorSignature(GD, argTypes); 333 if (!paramInfos.empty()) { 334 // Note: prefix implies after the first param. 335 if (AddedArgs.Prefix) 336 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 337 FunctionProtoType::ExtParameterInfo{}); 338 if (AddedArgs.Suffix) 339 paramInfos.append(AddedArgs.Suffix, 340 FunctionProtoType::ExtParameterInfo{}); 341 } 342 343 RequiredArgs required = 344 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 345 : RequiredArgs::All); 346 347 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 348 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 349 ? argTypes.front() 350 : TheCXXABI.hasMostDerivedReturn(GD) 351 ? CGM.getContext().VoidPtrTy 352 : Context.VoidTy; 353 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 354 /*chainCall=*/false, argTypes, extInfo, 355 paramInfos, required); 356 } 357 358 static SmallVector<CanQualType, 16> 359 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 360 SmallVector<CanQualType, 16> argTypes; 361 for (auto &arg : args) 362 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 363 return argTypes; 364 } 365 366 static SmallVector<CanQualType, 16> 367 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 368 SmallVector<CanQualType, 16> argTypes; 369 for (auto &arg : args) 370 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 371 return argTypes; 372 } 373 374 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 375 getExtParameterInfosForCall(const FunctionProtoType *proto, 376 unsigned prefixArgs, unsigned totalArgs) { 377 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 378 if (proto->hasExtParameterInfos()) { 379 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 380 } 381 return result; 382 } 383 384 /// Arrange a call to a C++ method, passing the given arguments. 385 /// 386 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 387 /// parameter. 388 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 389 /// args. 390 /// PassProtoArgs indicates whether `args` has args for the parameters in the 391 /// given CXXConstructorDecl. 392 const CGFunctionInfo & 393 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 394 const CXXConstructorDecl *D, 395 CXXCtorType CtorKind, 396 unsigned ExtraPrefixArgs, 397 unsigned ExtraSuffixArgs, 398 bool PassProtoArgs) { 399 // FIXME: Kill copy. 400 SmallVector<CanQualType, 16> ArgTypes; 401 for (const auto &Arg : args) 402 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 403 404 // +1 for implicit this, which should always be args[0]. 405 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 406 407 CanQual<FunctionProtoType> FPT = GetFormalType(D); 408 RequiredArgs Required = PassProtoArgs 409 ? RequiredArgs::forPrototypePlus( 410 FPT, TotalPrefixArgs + ExtraSuffixArgs) 411 : RequiredArgs::All; 412 413 GlobalDecl GD(D, CtorKind); 414 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 415 ? ArgTypes.front() 416 : TheCXXABI.hasMostDerivedReturn(GD) 417 ? CGM.getContext().VoidPtrTy 418 : Context.VoidTy; 419 420 FunctionType::ExtInfo Info = FPT->getExtInfo(); 421 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 422 // If the prototype args are elided, we should only have ABI-specific args, 423 // which never have param info. 424 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 425 // ABI-specific suffix arguments are treated the same as variadic arguments. 426 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 427 ArgTypes.size()); 428 } 429 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 430 /*chainCall=*/false, ArgTypes, Info, 431 ParamInfos, Required); 432 } 433 434 /// Arrange the argument and result information for the declaration or 435 /// definition of the given function. 436 const CGFunctionInfo & 437 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 438 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 439 if (MD->isInstance()) 440 return arrangeCXXMethodDeclaration(MD); 441 442 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 443 444 assert(isa<FunctionType>(FTy)); 445 setCUDAKernelCallingConvention(FTy, CGM, FD); 446 447 // When declaring a function without a prototype, always use a 448 // non-variadic type. 449 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 450 return arrangeLLVMFunctionInfo( 451 noProto->getReturnType(), /*instanceMethod=*/false, 452 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 453 } 454 455 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 456 } 457 458 /// Arrange the argument and result information for the declaration or 459 /// definition of an Objective-C method. 460 const CGFunctionInfo & 461 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 462 // It happens that this is the same as a call with no optional 463 // arguments, except also using the formal 'self' type. 464 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 465 } 466 467 /// Arrange the argument and result information for the function type 468 /// through which to perform a send to the given Objective-C method, 469 /// using the given receiver type. The receiver type is not always 470 /// the 'self' type of the method or even an Objective-C pointer type. 471 /// This is *not* the right method for actually performing such a 472 /// message send, due to the possibility of optional arguments. 473 const CGFunctionInfo & 474 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 475 QualType receiverType) { 476 SmallVector<CanQualType, 16> argTys; 477 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 478 argTys.push_back(Context.getCanonicalParamType(receiverType)); 479 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 480 // FIXME: Kill copy? 481 for (const auto *I : MD->parameters()) { 482 argTys.push_back(Context.getCanonicalParamType(I->getType())); 483 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 484 I->hasAttr<NoEscapeAttr>()); 485 extParamInfos.push_back(extParamInfo); 486 } 487 488 FunctionType::ExtInfo einfo; 489 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 490 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 491 492 if (getContext().getLangOpts().ObjCAutoRefCount && 493 MD->hasAttr<NSReturnsRetainedAttr>()) 494 einfo = einfo.withProducesResult(true); 495 496 RequiredArgs required = 497 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 498 499 return arrangeLLVMFunctionInfo( 500 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 501 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 502 } 503 504 const CGFunctionInfo & 505 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 506 const CallArgList &args) { 507 auto argTypes = getArgTypesForCall(Context, args); 508 FunctionType::ExtInfo einfo; 509 510 return arrangeLLVMFunctionInfo( 511 GetReturnType(returnType), /*instanceMethod=*/false, 512 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 513 } 514 515 const CGFunctionInfo & 516 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 517 // FIXME: Do we need to handle ObjCMethodDecl? 518 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 519 520 if (isa<CXXConstructorDecl>(GD.getDecl()) || 521 isa<CXXDestructorDecl>(GD.getDecl())) 522 return arrangeCXXStructorDeclaration(GD); 523 524 return arrangeFunctionDeclaration(FD); 525 } 526 527 /// Arrange a thunk that takes 'this' as the first parameter followed by 528 /// varargs. Return a void pointer, regardless of the actual return type. 529 /// The body of the thunk will end in a musttail call to a function of the 530 /// correct type, and the caller will bitcast the function to the correct 531 /// prototype. 532 const CGFunctionInfo & 533 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 534 assert(MD->isVirtual() && "only methods have thunks"); 535 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 536 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 537 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 538 /*chainCall=*/false, ArgTys, 539 FTP->getExtInfo(), {}, RequiredArgs(1)); 540 } 541 542 const CGFunctionInfo & 543 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 544 CXXCtorType CT) { 545 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 546 547 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 548 SmallVector<CanQualType, 2> ArgTys; 549 const CXXRecordDecl *RD = CD->getParent(); 550 ArgTys.push_back(DeriveThisType(RD, CD)); 551 if (CT == Ctor_CopyingClosure) 552 ArgTys.push_back(*FTP->param_type_begin()); 553 if (RD->getNumVBases() > 0) 554 ArgTys.push_back(Context.IntTy); 555 CallingConv CC = Context.getDefaultCallingConvention( 556 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 557 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 558 /*chainCall=*/false, ArgTys, 559 FunctionType::ExtInfo(CC), {}, 560 RequiredArgs::All); 561 } 562 563 /// Arrange a call as unto a free function, except possibly with an 564 /// additional number of formal parameters considered required. 565 static const CGFunctionInfo & 566 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 567 CodeGenModule &CGM, 568 const CallArgList &args, 569 const FunctionType *fnType, 570 unsigned numExtraRequiredArgs, 571 bool chainCall) { 572 assert(args.size() >= numExtraRequiredArgs); 573 574 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 575 576 // In most cases, there are no optional arguments. 577 RequiredArgs required = RequiredArgs::All; 578 579 // If we have a variadic prototype, the required arguments are the 580 // extra prefix plus the arguments in the prototype. 581 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 582 if (proto->isVariadic()) 583 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 584 585 if (proto->hasExtParameterInfos()) 586 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 587 args.size()); 588 589 // If we don't have a prototype at all, but we're supposed to 590 // explicitly use the variadic convention for unprototyped calls, 591 // treat all of the arguments as required but preserve the nominal 592 // possibility of variadics. 593 } else if (CGM.getTargetCodeGenInfo() 594 .isNoProtoCallVariadic(args, 595 cast<FunctionNoProtoType>(fnType))) { 596 required = RequiredArgs(args.size()); 597 } 598 599 // FIXME: Kill copy. 600 SmallVector<CanQualType, 16> argTypes; 601 for (const auto &arg : args) 602 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 603 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 604 /*instanceMethod=*/false, chainCall, 605 argTypes, fnType->getExtInfo(), paramInfos, 606 required); 607 } 608 609 /// Figure out the rules for calling a function with the given formal 610 /// type using the given arguments. The arguments are necessary 611 /// because the function might be unprototyped, in which case it's 612 /// target-dependent in crazy ways. 613 const CGFunctionInfo & 614 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 615 const FunctionType *fnType, 616 bool chainCall) { 617 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 618 chainCall ? 1 : 0, chainCall); 619 } 620 621 /// A block function is essentially a free function with an 622 /// extra implicit argument. 623 const CGFunctionInfo & 624 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 625 const FunctionType *fnType) { 626 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 627 /*chainCall=*/false); 628 } 629 630 const CGFunctionInfo & 631 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 632 const FunctionArgList ¶ms) { 633 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 634 auto argTypes = getArgTypesForDeclaration(Context, params); 635 636 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 637 /*instanceMethod*/ false, /*chainCall*/ false, 638 argTypes, proto->getExtInfo(), paramInfos, 639 RequiredArgs::forPrototypePlus(proto, 1)); 640 } 641 642 const CGFunctionInfo & 643 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 644 const CallArgList &args) { 645 // FIXME: Kill copy. 646 SmallVector<CanQualType, 16> argTypes; 647 for (const auto &Arg : args) 648 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 649 return arrangeLLVMFunctionInfo( 650 GetReturnType(resultType), /*instanceMethod=*/false, 651 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 652 /*paramInfos=*/ {}, RequiredArgs::All); 653 } 654 655 const CGFunctionInfo & 656 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 657 const FunctionArgList &args) { 658 auto argTypes = getArgTypesForDeclaration(Context, args); 659 660 return arrangeLLVMFunctionInfo( 661 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 662 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 663 } 664 665 const CGFunctionInfo & 666 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 667 ArrayRef<CanQualType> argTypes) { 668 return arrangeLLVMFunctionInfo( 669 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 670 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 671 } 672 673 /// Arrange a call to a C++ method, passing the given arguments. 674 /// 675 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 676 /// does not count `this`. 677 const CGFunctionInfo & 678 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 679 const FunctionProtoType *proto, 680 RequiredArgs required, 681 unsigned numPrefixArgs) { 682 assert(numPrefixArgs + 1 <= args.size() && 683 "Emitting a call with less args than the required prefix?"); 684 // Add one to account for `this`. It's a bit awkward here, but we don't count 685 // `this` in similar places elsewhere. 686 auto paramInfos = 687 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 688 689 // FIXME: Kill copy. 690 auto argTypes = getArgTypesForCall(Context, args); 691 692 FunctionType::ExtInfo info = proto->getExtInfo(); 693 return arrangeLLVMFunctionInfo( 694 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 695 /*chainCall=*/false, argTypes, info, paramInfos, required); 696 } 697 698 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 699 return arrangeLLVMFunctionInfo( 700 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 701 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 702 } 703 704 const CGFunctionInfo & 705 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 706 const CallArgList &args) { 707 assert(signature.arg_size() <= args.size()); 708 if (signature.arg_size() == args.size()) 709 return signature; 710 711 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 712 auto sigParamInfos = signature.getExtParameterInfos(); 713 if (!sigParamInfos.empty()) { 714 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 715 paramInfos.resize(args.size()); 716 } 717 718 auto argTypes = getArgTypesForCall(Context, args); 719 720 assert(signature.getRequiredArgs().allowsOptionalArgs()); 721 return arrangeLLVMFunctionInfo(signature.getReturnType(), 722 signature.isInstanceMethod(), 723 signature.isChainCall(), 724 argTypes, 725 signature.getExtInfo(), 726 paramInfos, 727 signature.getRequiredArgs()); 728 } 729 730 namespace clang { 731 namespace CodeGen { 732 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 733 } 734 } 735 736 /// Arrange the argument and result information for an abstract value 737 /// of a given function type. This is the method which all of the 738 /// above functions ultimately defer to. 739 const CGFunctionInfo & 740 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 741 bool instanceMethod, 742 bool chainCall, 743 ArrayRef<CanQualType> argTypes, 744 FunctionType::ExtInfo info, 745 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 746 RequiredArgs required) { 747 assert(llvm::all_of(argTypes, 748 [](CanQualType T) { return T.isCanonicalAsParam(); })); 749 750 // Lookup or create unique function info. 751 llvm::FoldingSetNodeID ID; 752 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 753 required, resultType, argTypes); 754 755 void *insertPos = nullptr; 756 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 757 if (FI) 758 return *FI; 759 760 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 761 762 // Construct the function info. We co-allocate the ArgInfos. 763 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 764 paramInfos, resultType, argTypes, required); 765 FunctionInfos.InsertNode(FI, insertPos); 766 767 bool inserted = FunctionsBeingProcessed.insert(FI).second; 768 (void)inserted; 769 assert(inserted && "Recursively being processed?"); 770 771 // Compute ABI information. 772 if (CC == llvm::CallingConv::SPIR_KERNEL) { 773 // Force target independent argument handling for the host visible 774 // kernel functions. 775 computeSPIRKernelABIInfo(CGM, *FI); 776 } else if (info.getCC() == CC_Swift) { 777 swiftcall::computeABIInfo(CGM, *FI); 778 } else { 779 getABIInfo().computeInfo(*FI); 780 } 781 782 // Loop over all of the computed argument and return value info. If any of 783 // them are direct or extend without a specified coerce type, specify the 784 // default now. 785 ABIArgInfo &retInfo = FI->getReturnInfo(); 786 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 787 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 788 789 for (auto &I : FI->arguments()) 790 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 791 I.info.setCoerceToType(ConvertType(I.type)); 792 793 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 794 assert(erased && "Not in set?"); 795 796 return *FI; 797 } 798 799 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 800 bool instanceMethod, 801 bool chainCall, 802 const FunctionType::ExtInfo &info, 803 ArrayRef<ExtParameterInfo> paramInfos, 804 CanQualType resultType, 805 ArrayRef<CanQualType> argTypes, 806 RequiredArgs required) { 807 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 808 assert(!required.allowsOptionalArgs() || 809 required.getNumRequiredArgs() <= argTypes.size()); 810 811 void *buffer = 812 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 813 argTypes.size() + 1, paramInfos.size())); 814 815 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 816 FI->CallingConvention = llvmCC; 817 FI->EffectiveCallingConvention = llvmCC; 818 FI->ASTCallingConvention = info.getCC(); 819 FI->InstanceMethod = instanceMethod; 820 FI->ChainCall = chainCall; 821 FI->CmseNSCall = info.getCmseNSCall(); 822 FI->NoReturn = info.getNoReturn(); 823 FI->ReturnsRetained = info.getProducesResult(); 824 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 825 FI->NoCfCheck = info.getNoCfCheck(); 826 FI->Required = required; 827 FI->HasRegParm = info.getHasRegParm(); 828 FI->RegParm = info.getRegParm(); 829 FI->ArgStruct = nullptr; 830 FI->ArgStructAlign = 0; 831 FI->NumArgs = argTypes.size(); 832 FI->HasExtParameterInfos = !paramInfos.empty(); 833 FI->getArgsBuffer()[0].type = resultType; 834 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 835 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 836 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 837 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 838 return FI; 839 } 840 841 /***/ 842 843 namespace { 844 // ABIArgInfo::Expand implementation. 845 846 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 847 struct TypeExpansion { 848 enum TypeExpansionKind { 849 // Elements of constant arrays are expanded recursively. 850 TEK_ConstantArray, 851 // Record fields are expanded recursively (but if record is a union, only 852 // the field with the largest size is expanded). 853 TEK_Record, 854 // For complex types, real and imaginary parts are expanded recursively. 855 TEK_Complex, 856 // All other types are not expandable. 857 TEK_None 858 }; 859 860 const TypeExpansionKind Kind; 861 862 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 863 virtual ~TypeExpansion() {} 864 }; 865 866 struct ConstantArrayExpansion : TypeExpansion { 867 QualType EltTy; 868 uint64_t NumElts; 869 870 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 871 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 872 static bool classof(const TypeExpansion *TE) { 873 return TE->Kind == TEK_ConstantArray; 874 } 875 }; 876 877 struct RecordExpansion : TypeExpansion { 878 SmallVector<const CXXBaseSpecifier *, 1> Bases; 879 880 SmallVector<const FieldDecl *, 1> Fields; 881 882 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 883 SmallVector<const FieldDecl *, 1> &&Fields) 884 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 885 Fields(std::move(Fields)) {} 886 static bool classof(const TypeExpansion *TE) { 887 return TE->Kind == TEK_Record; 888 } 889 }; 890 891 struct ComplexExpansion : TypeExpansion { 892 QualType EltTy; 893 894 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 895 static bool classof(const TypeExpansion *TE) { 896 return TE->Kind == TEK_Complex; 897 } 898 }; 899 900 struct NoExpansion : TypeExpansion { 901 NoExpansion() : TypeExpansion(TEK_None) {} 902 static bool classof(const TypeExpansion *TE) { 903 return TE->Kind == TEK_None; 904 } 905 }; 906 } // namespace 907 908 static std::unique_ptr<TypeExpansion> 909 getTypeExpansion(QualType Ty, const ASTContext &Context) { 910 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 911 return std::make_unique<ConstantArrayExpansion>( 912 AT->getElementType(), AT->getSize().getZExtValue()); 913 } 914 if (const RecordType *RT = Ty->getAs<RecordType>()) { 915 SmallVector<const CXXBaseSpecifier *, 1> Bases; 916 SmallVector<const FieldDecl *, 1> Fields; 917 const RecordDecl *RD = RT->getDecl(); 918 assert(!RD->hasFlexibleArrayMember() && 919 "Cannot expand structure with flexible array."); 920 if (RD->isUnion()) { 921 // Unions can be here only in degenerative cases - all the fields are same 922 // after flattening. Thus we have to use the "largest" field. 923 const FieldDecl *LargestFD = nullptr; 924 CharUnits UnionSize = CharUnits::Zero(); 925 926 for (const auto *FD : RD->fields()) { 927 if (FD->isZeroLengthBitField(Context)) 928 continue; 929 assert(!FD->isBitField() && 930 "Cannot expand structure with bit-field members."); 931 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 932 if (UnionSize < FieldSize) { 933 UnionSize = FieldSize; 934 LargestFD = FD; 935 } 936 } 937 if (LargestFD) 938 Fields.push_back(LargestFD); 939 } else { 940 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 941 assert(!CXXRD->isDynamicClass() && 942 "cannot expand vtable pointers in dynamic classes"); 943 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 944 Bases.push_back(&BS); 945 } 946 947 for (const auto *FD : RD->fields()) { 948 if (FD->isZeroLengthBitField(Context)) 949 continue; 950 assert(!FD->isBitField() && 951 "Cannot expand structure with bit-field members."); 952 Fields.push_back(FD); 953 } 954 } 955 return std::make_unique<RecordExpansion>(std::move(Bases), 956 std::move(Fields)); 957 } 958 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 959 return std::make_unique<ComplexExpansion>(CT->getElementType()); 960 } 961 return std::make_unique<NoExpansion>(); 962 } 963 964 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 965 auto Exp = getTypeExpansion(Ty, Context); 966 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 967 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 968 } 969 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 970 int Res = 0; 971 for (auto BS : RExp->Bases) 972 Res += getExpansionSize(BS->getType(), Context); 973 for (auto FD : RExp->Fields) 974 Res += getExpansionSize(FD->getType(), Context); 975 return Res; 976 } 977 if (isa<ComplexExpansion>(Exp.get())) 978 return 2; 979 assert(isa<NoExpansion>(Exp.get())); 980 return 1; 981 } 982 983 void 984 CodeGenTypes::getExpandedTypes(QualType Ty, 985 SmallVectorImpl<llvm::Type *>::iterator &TI) { 986 auto Exp = getTypeExpansion(Ty, Context); 987 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 988 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 989 getExpandedTypes(CAExp->EltTy, TI); 990 } 991 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 992 for (auto BS : RExp->Bases) 993 getExpandedTypes(BS->getType(), TI); 994 for (auto FD : RExp->Fields) 995 getExpandedTypes(FD->getType(), TI); 996 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 997 llvm::Type *EltTy = ConvertType(CExp->EltTy); 998 *TI++ = EltTy; 999 *TI++ = EltTy; 1000 } else { 1001 assert(isa<NoExpansion>(Exp.get())); 1002 *TI++ = ConvertType(Ty); 1003 } 1004 } 1005 1006 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1007 ConstantArrayExpansion *CAE, 1008 Address BaseAddr, 1009 llvm::function_ref<void(Address)> Fn) { 1010 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1011 CharUnits EltAlign = 1012 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1013 1014 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1015 llvm::Value *EltAddr = 1016 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1017 Fn(Address(EltAddr, EltAlign)); 1018 } 1019 } 1020 1021 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1022 llvm::Function::arg_iterator &AI) { 1023 assert(LV.isSimple() && 1024 "Unexpected non-simple lvalue during struct expansion."); 1025 1026 auto Exp = getTypeExpansion(Ty, getContext()); 1027 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1028 forConstantArrayExpansion( 1029 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1030 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1031 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1032 }); 1033 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1034 Address This = LV.getAddress(*this); 1035 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1036 // Perform a single step derived-to-base conversion. 1037 Address Base = 1038 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1039 /*NullCheckValue=*/false, SourceLocation()); 1040 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1041 1042 // Recurse onto bases. 1043 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1044 } 1045 for (auto FD : RExp->Fields) { 1046 // FIXME: What are the right qualifiers here? 1047 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1048 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1049 } 1050 } else if (isa<ComplexExpansion>(Exp.get())) { 1051 auto realValue = &*AI++; 1052 auto imagValue = &*AI++; 1053 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1054 } else { 1055 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1056 // primitive store. 1057 assert(isa<NoExpansion>(Exp.get())); 1058 if (LV.isBitField()) 1059 EmitStoreThroughLValue(RValue::get(&*AI++), LV); 1060 else 1061 EmitStoreOfScalar(&*AI++, LV); 1062 } 1063 } 1064 1065 void CodeGenFunction::ExpandTypeToArgs( 1066 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1067 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1068 auto Exp = getTypeExpansion(Ty, getContext()); 1069 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1070 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1071 : Arg.getKnownRValue().getAggregateAddress(); 1072 forConstantArrayExpansion( 1073 *this, CAExp, Addr, [&](Address EltAddr) { 1074 CallArg EltArg = CallArg( 1075 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1076 CAExp->EltTy); 1077 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1078 IRCallArgPos); 1079 }); 1080 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1081 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1082 : Arg.getKnownRValue().getAggregateAddress(); 1083 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1084 // Perform a single step derived-to-base conversion. 1085 Address Base = 1086 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1087 /*NullCheckValue=*/false, SourceLocation()); 1088 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1089 1090 // Recurse onto bases. 1091 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1092 IRCallArgPos); 1093 } 1094 1095 LValue LV = MakeAddrLValue(This, Ty); 1096 for (auto FD : RExp->Fields) { 1097 CallArg FldArg = 1098 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1099 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1100 IRCallArgPos); 1101 } 1102 } else if (isa<ComplexExpansion>(Exp.get())) { 1103 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1104 IRCallArgs[IRCallArgPos++] = CV.first; 1105 IRCallArgs[IRCallArgPos++] = CV.second; 1106 } else { 1107 assert(isa<NoExpansion>(Exp.get())); 1108 auto RV = Arg.getKnownRValue(); 1109 assert(RV.isScalar() && 1110 "Unexpected non-scalar rvalue during struct expansion."); 1111 1112 // Insert a bitcast as needed. 1113 llvm::Value *V = RV.getScalarVal(); 1114 if (IRCallArgPos < IRFuncTy->getNumParams() && 1115 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1116 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1117 1118 IRCallArgs[IRCallArgPos++] = V; 1119 } 1120 } 1121 1122 /// Create a temporary allocation for the purposes of coercion. 1123 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1124 CharUnits MinAlign, 1125 const Twine &Name = "tmp") { 1126 // Don't use an alignment that's worse than what LLVM would prefer. 1127 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1128 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1129 1130 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1131 } 1132 1133 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1134 /// accessing some number of bytes out of it, try to gep into the struct to get 1135 /// at its inner goodness. Dive as deep as possible without entering an element 1136 /// with an in-memory size smaller than DstSize. 1137 static Address 1138 EnterStructPointerForCoercedAccess(Address SrcPtr, 1139 llvm::StructType *SrcSTy, 1140 uint64_t DstSize, CodeGenFunction &CGF) { 1141 // We can't dive into a zero-element struct. 1142 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1143 1144 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1145 1146 // If the first elt is at least as large as what we're looking for, or if the 1147 // first element is the same size as the whole struct, we can enter it. The 1148 // comparison must be made on the store size and not the alloca size. Using 1149 // the alloca size may overstate the size of the load. 1150 uint64_t FirstEltSize = 1151 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1152 if (FirstEltSize < DstSize && 1153 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1154 return SrcPtr; 1155 1156 // GEP into the first element. 1157 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1158 1159 // If the first element is a struct, recurse. 1160 llvm::Type *SrcTy = SrcPtr.getElementType(); 1161 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1162 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1163 1164 return SrcPtr; 1165 } 1166 1167 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1168 /// are either integers or pointers. This does a truncation of the value if it 1169 /// is too large or a zero extension if it is too small. 1170 /// 1171 /// This behaves as if the value were coerced through memory, so on big-endian 1172 /// targets the high bits are preserved in a truncation, while little-endian 1173 /// targets preserve the low bits. 1174 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1175 llvm::Type *Ty, 1176 CodeGenFunction &CGF) { 1177 if (Val->getType() == Ty) 1178 return Val; 1179 1180 if (isa<llvm::PointerType>(Val->getType())) { 1181 // If this is Pointer->Pointer avoid conversion to and from int. 1182 if (isa<llvm::PointerType>(Ty)) 1183 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1184 1185 // Convert the pointer to an integer so we can play with its width. 1186 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1187 } 1188 1189 llvm::Type *DestIntTy = Ty; 1190 if (isa<llvm::PointerType>(DestIntTy)) 1191 DestIntTy = CGF.IntPtrTy; 1192 1193 if (Val->getType() != DestIntTy) { 1194 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1195 if (DL.isBigEndian()) { 1196 // Preserve the high bits on big-endian targets. 1197 // That is what memory coercion does. 1198 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1199 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1200 1201 if (SrcSize > DstSize) { 1202 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1203 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1204 } else { 1205 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1206 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1207 } 1208 } else { 1209 // Little-endian targets preserve the low bits. No shifts required. 1210 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1211 } 1212 } 1213 1214 if (isa<llvm::PointerType>(Ty)) 1215 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1216 return Val; 1217 } 1218 1219 1220 1221 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1222 /// a pointer to an object of type \arg Ty, known to be aligned to 1223 /// \arg SrcAlign bytes. 1224 /// 1225 /// This safely handles the case when the src type is smaller than the 1226 /// destination type; in this situation the values of bits which not 1227 /// present in the src are undefined. 1228 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1229 CodeGenFunction &CGF) { 1230 llvm::Type *SrcTy = Src.getElementType(); 1231 1232 // If SrcTy and Ty are the same, just do a load. 1233 if (SrcTy == Ty) 1234 return CGF.Builder.CreateLoad(Src); 1235 1236 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1237 1238 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1239 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1240 DstSize.getFixedSize(), CGF); 1241 SrcTy = Src.getElementType(); 1242 } 1243 1244 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1245 1246 // If the source and destination are integer or pointer types, just do an 1247 // extension or truncation to the desired type. 1248 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1249 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1250 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1251 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1252 } 1253 1254 // If load is legal, just bitcast the src pointer. 1255 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1256 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1257 // Generally SrcSize is never greater than DstSize, since this means we are 1258 // losing bits. However, this can happen in cases where the structure has 1259 // additional padding, for example due to a user specified alignment. 1260 // 1261 // FIXME: Assert that we aren't truncating non-padding bits when have access 1262 // to that information. 1263 Src = CGF.Builder.CreateBitCast(Src, 1264 Ty->getPointerTo(Src.getAddressSpace())); 1265 return CGF.Builder.CreateLoad(Src); 1266 } 1267 1268 // Otherwise do coercion through memory. This is stupid, but simple. 1269 Address Tmp = 1270 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1271 CGF.Builder.CreateMemCpy( 1272 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1273 Src.getAlignment().getAsAlign(), 1274 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1275 return CGF.Builder.CreateLoad(Tmp); 1276 } 1277 1278 // Function to store a first-class aggregate into memory. We prefer to 1279 // store the elements rather than the aggregate to be more friendly to 1280 // fast-isel. 1281 // FIXME: Do we need to recurse here? 1282 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1283 bool DestIsVolatile) { 1284 // Prefer scalar stores to first-class aggregate stores. 1285 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1286 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1287 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1288 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1289 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1290 } 1291 } else { 1292 Builder.CreateStore(Val, Dest, DestIsVolatile); 1293 } 1294 } 1295 1296 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1297 /// where the source and destination may have different types. The 1298 /// destination is known to be aligned to \arg DstAlign bytes. 1299 /// 1300 /// This safely handles the case when the src type is larger than the 1301 /// destination type; the upper bits of the src will be lost. 1302 static void CreateCoercedStore(llvm::Value *Src, 1303 Address Dst, 1304 bool DstIsVolatile, 1305 CodeGenFunction &CGF) { 1306 llvm::Type *SrcTy = Src->getType(); 1307 llvm::Type *DstTy = Dst.getElementType(); 1308 if (SrcTy == DstTy) { 1309 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1310 return; 1311 } 1312 1313 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1314 1315 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1316 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1317 SrcSize.getFixedSize(), CGF); 1318 DstTy = Dst.getElementType(); 1319 } 1320 1321 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1322 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1323 if (SrcPtrTy && DstPtrTy && 1324 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1325 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1326 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1327 return; 1328 } 1329 1330 // If the source and destination are integer or pointer types, just do an 1331 // extension or truncation to the desired type. 1332 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1333 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1334 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1335 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1336 return; 1337 } 1338 1339 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1340 1341 // If store is legal, just bitcast the src pointer. 1342 if (isa<llvm::ScalableVectorType>(SrcTy) || 1343 isa<llvm::ScalableVectorType>(DstTy) || 1344 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1345 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1346 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1347 } else { 1348 // Otherwise do coercion through memory. This is stupid, but 1349 // simple. 1350 1351 // Generally SrcSize is never greater than DstSize, since this means we are 1352 // losing bits. However, this can happen in cases where the structure has 1353 // additional padding, for example due to a user specified alignment. 1354 // 1355 // FIXME: Assert that we aren't truncating non-padding bits when have access 1356 // to that information. 1357 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1358 CGF.Builder.CreateStore(Src, Tmp); 1359 CGF.Builder.CreateMemCpy( 1360 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1361 Tmp.getAlignment().getAsAlign(), 1362 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1363 } 1364 } 1365 1366 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1367 const ABIArgInfo &info) { 1368 if (unsigned offset = info.getDirectOffset()) { 1369 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1370 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1371 CharUnits::fromQuantity(offset)); 1372 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1373 } 1374 return addr; 1375 } 1376 1377 namespace { 1378 1379 /// Encapsulates information about the way function arguments from 1380 /// CGFunctionInfo should be passed to actual LLVM IR function. 1381 class ClangToLLVMArgMapping { 1382 static const unsigned InvalidIndex = ~0U; 1383 unsigned InallocaArgNo; 1384 unsigned SRetArgNo; 1385 unsigned TotalIRArgs; 1386 1387 /// Arguments of LLVM IR function corresponding to single Clang argument. 1388 struct IRArgs { 1389 unsigned PaddingArgIndex; 1390 // Argument is expanded to IR arguments at positions 1391 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1392 unsigned FirstArgIndex; 1393 unsigned NumberOfArgs; 1394 1395 IRArgs() 1396 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1397 NumberOfArgs(0) {} 1398 }; 1399 1400 SmallVector<IRArgs, 8> ArgInfo; 1401 1402 public: 1403 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1404 bool OnlyRequiredArgs = false) 1405 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1406 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1407 construct(Context, FI, OnlyRequiredArgs); 1408 } 1409 1410 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1411 unsigned getInallocaArgNo() const { 1412 assert(hasInallocaArg()); 1413 return InallocaArgNo; 1414 } 1415 1416 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1417 unsigned getSRetArgNo() const { 1418 assert(hasSRetArg()); 1419 return SRetArgNo; 1420 } 1421 1422 unsigned totalIRArgs() const { return TotalIRArgs; } 1423 1424 bool hasPaddingArg(unsigned ArgNo) const { 1425 assert(ArgNo < ArgInfo.size()); 1426 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1427 } 1428 unsigned getPaddingArgNo(unsigned ArgNo) const { 1429 assert(hasPaddingArg(ArgNo)); 1430 return ArgInfo[ArgNo].PaddingArgIndex; 1431 } 1432 1433 /// Returns index of first IR argument corresponding to ArgNo, and their 1434 /// quantity. 1435 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1436 assert(ArgNo < ArgInfo.size()); 1437 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1438 ArgInfo[ArgNo].NumberOfArgs); 1439 } 1440 1441 private: 1442 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1443 bool OnlyRequiredArgs); 1444 }; 1445 1446 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1447 const CGFunctionInfo &FI, 1448 bool OnlyRequiredArgs) { 1449 unsigned IRArgNo = 0; 1450 bool SwapThisWithSRet = false; 1451 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1452 1453 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1454 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1455 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1456 } 1457 1458 unsigned ArgNo = 0; 1459 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1460 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1461 ++I, ++ArgNo) { 1462 assert(I != FI.arg_end()); 1463 QualType ArgType = I->type; 1464 const ABIArgInfo &AI = I->info; 1465 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1466 auto &IRArgs = ArgInfo[ArgNo]; 1467 1468 if (AI.getPaddingType()) 1469 IRArgs.PaddingArgIndex = IRArgNo++; 1470 1471 switch (AI.getKind()) { 1472 case ABIArgInfo::Extend: 1473 case ABIArgInfo::Direct: { 1474 // FIXME: handle sseregparm someday... 1475 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1476 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1477 IRArgs.NumberOfArgs = STy->getNumElements(); 1478 } else { 1479 IRArgs.NumberOfArgs = 1; 1480 } 1481 break; 1482 } 1483 case ABIArgInfo::Indirect: 1484 case ABIArgInfo::IndirectAliased: 1485 IRArgs.NumberOfArgs = 1; 1486 break; 1487 case ABIArgInfo::Ignore: 1488 case ABIArgInfo::InAlloca: 1489 // ignore and inalloca doesn't have matching LLVM parameters. 1490 IRArgs.NumberOfArgs = 0; 1491 break; 1492 case ABIArgInfo::CoerceAndExpand: 1493 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1494 break; 1495 case ABIArgInfo::Expand: 1496 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1497 break; 1498 } 1499 1500 if (IRArgs.NumberOfArgs > 0) { 1501 IRArgs.FirstArgIndex = IRArgNo; 1502 IRArgNo += IRArgs.NumberOfArgs; 1503 } 1504 1505 // Skip over the sret parameter when it comes second. We already handled it 1506 // above. 1507 if (IRArgNo == 1 && SwapThisWithSRet) 1508 IRArgNo++; 1509 } 1510 assert(ArgNo == ArgInfo.size()); 1511 1512 if (FI.usesInAlloca()) 1513 InallocaArgNo = IRArgNo++; 1514 1515 TotalIRArgs = IRArgNo; 1516 } 1517 } // namespace 1518 1519 /***/ 1520 1521 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1522 const auto &RI = FI.getReturnInfo(); 1523 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1524 } 1525 1526 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1527 return ReturnTypeUsesSRet(FI) && 1528 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1529 } 1530 1531 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1532 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1533 switch (BT->getKind()) { 1534 default: 1535 return false; 1536 case BuiltinType::Float: 1537 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1538 case BuiltinType::Double: 1539 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1540 case BuiltinType::LongDouble: 1541 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1542 } 1543 } 1544 1545 return false; 1546 } 1547 1548 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1549 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1550 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1551 if (BT->getKind() == BuiltinType::LongDouble) 1552 return getTarget().useObjCFP2RetForComplexLongDouble(); 1553 } 1554 } 1555 1556 return false; 1557 } 1558 1559 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1560 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1561 return GetFunctionType(FI); 1562 } 1563 1564 llvm::FunctionType * 1565 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1566 1567 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1568 (void)Inserted; 1569 assert(Inserted && "Recursively being processed?"); 1570 1571 llvm::Type *resultType = nullptr; 1572 const ABIArgInfo &retAI = FI.getReturnInfo(); 1573 switch (retAI.getKind()) { 1574 case ABIArgInfo::Expand: 1575 case ABIArgInfo::IndirectAliased: 1576 llvm_unreachable("Invalid ABI kind for return argument"); 1577 1578 case ABIArgInfo::Extend: 1579 case ABIArgInfo::Direct: 1580 resultType = retAI.getCoerceToType(); 1581 break; 1582 1583 case ABIArgInfo::InAlloca: 1584 if (retAI.getInAllocaSRet()) { 1585 // sret things on win32 aren't void, they return the sret pointer. 1586 QualType ret = FI.getReturnType(); 1587 llvm::Type *ty = ConvertType(ret); 1588 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1589 resultType = llvm::PointerType::get(ty, addressSpace); 1590 } else { 1591 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1592 } 1593 break; 1594 1595 case ABIArgInfo::Indirect: 1596 case ABIArgInfo::Ignore: 1597 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1598 break; 1599 1600 case ABIArgInfo::CoerceAndExpand: 1601 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1602 break; 1603 } 1604 1605 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1606 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1607 1608 // Add type for sret argument. 1609 if (IRFunctionArgs.hasSRetArg()) { 1610 QualType Ret = FI.getReturnType(); 1611 llvm::Type *Ty = ConvertType(Ret); 1612 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1613 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1614 llvm::PointerType::get(Ty, AddressSpace); 1615 } 1616 1617 // Add type for inalloca argument. 1618 if (IRFunctionArgs.hasInallocaArg()) { 1619 auto ArgStruct = FI.getArgStruct(); 1620 assert(ArgStruct); 1621 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1622 } 1623 1624 // Add in all of the required arguments. 1625 unsigned ArgNo = 0; 1626 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1627 ie = it + FI.getNumRequiredArgs(); 1628 for (; it != ie; ++it, ++ArgNo) { 1629 const ABIArgInfo &ArgInfo = it->info; 1630 1631 // Insert a padding type to ensure proper alignment. 1632 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1633 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1634 ArgInfo.getPaddingType(); 1635 1636 unsigned FirstIRArg, NumIRArgs; 1637 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1638 1639 switch (ArgInfo.getKind()) { 1640 case ABIArgInfo::Ignore: 1641 case ABIArgInfo::InAlloca: 1642 assert(NumIRArgs == 0); 1643 break; 1644 1645 case ABIArgInfo::Indirect: { 1646 assert(NumIRArgs == 1); 1647 // indirect arguments are always on the stack, which is alloca addr space. 1648 llvm::Type *LTy = ConvertTypeForMem(it->type); 1649 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1650 CGM.getDataLayout().getAllocaAddrSpace()); 1651 break; 1652 } 1653 case ABIArgInfo::IndirectAliased: { 1654 assert(NumIRArgs == 1); 1655 llvm::Type *LTy = ConvertTypeForMem(it->type); 1656 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1657 break; 1658 } 1659 case ABIArgInfo::Extend: 1660 case ABIArgInfo::Direct: { 1661 // Fast-isel and the optimizer generally like scalar values better than 1662 // FCAs, so we flatten them if this is safe to do for this argument. 1663 llvm::Type *argType = ArgInfo.getCoerceToType(); 1664 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1665 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1666 assert(NumIRArgs == st->getNumElements()); 1667 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1668 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1669 } else { 1670 assert(NumIRArgs == 1); 1671 ArgTypes[FirstIRArg] = argType; 1672 } 1673 break; 1674 } 1675 1676 case ABIArgInfo::CoerceAndExpand: { 1677 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1678 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1679 *ArgTypesIter++ = EltTy; 1680 } 1681 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1682 break; 1683 } 1684 1685 case ABIArgInfo::Expand: 1686 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1687 getExpandedTypes(it->type, ArgTypesIter); 1688 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1689 break; 1690 } 1691 } 1692 1693 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1694 assert(Erased && "Not in set?"); 1695 1696 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1697 } 1698 1699 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1700 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1701 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1702 1703 if (!isFuncTypeConvertible(FPT)) 1704 return llvm::StructType::get(getLLVMContext()); 1705 1706 return GetFunctionType(GD); 1707 } 1708 1709 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1710 llvm::AttrBuilder &FuncAttrs, 1711 const FunctionProtoType *FPT) { 1712 if (!FPT) 1713 return; 1714 1715 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1716 FPT->isNothrow()) 1717 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1718 } 1719 1720 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1721 bool HasOptnone, 1722 bool AttrOnCallSite, 1723 llvm::AttrBuilder &FuncAttrs) { 1724 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1725 if (!HasOptnone) { 1726 if (CodeGenOpts.OptimizeSize) 1727 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1728 if (CodeGenOpts.OptimizeSize == 2) 1729 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1730 } 1731 1732 if (CodeGenOpts.DisableRedZone) 1733 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1734 if (CodeGenOpts.IndirectTlsSegRefs) 1735 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1736 if (CodeGenOpts.NoImplicitFloat) 1737 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1738 1739 if (AttrOnCallSite) { 1740 // Attributes that should go on the call site only. 1741 if (!CodeGenOpts.SimplifyLibCalls || 1742 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1743 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1744 if (!CodeGenOpts.TrapFuncName.empty()) 1745 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1746 } else { 1747 StringRef FpKind; 1748 switch (CodeGenOpts.getFramePointer()) { 1749 case CodeGenOptions::FramePointerKind::None: 1750 FpKind = "none"; 1751 break; 1752 case CodeGenOptions::FramePointerKind::NonLeaf: 1753 FpKind = "non-leaf"; 1754 break; 1755 case CodeGenOptions::FramePointerKind::All: 1756 FpKind = "all"; 1757 break; 1758 } 1759 FuncAttrs.addAttribute("frame-pointer", FpKind); 1760 1761 FuncAttrs.addAttribute("less-precise-fpmad", 1762 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1763 1764 if (CodeGenOpts.NullPointerIsValid) 1765 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1766 1767 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1768 FuncAttrs.addAttribute("denormal-fp-math", 1769 CodeGenOpts.FPDenormalMode.str()); 1770 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1771 FuncAttrs.addAttribute( 1772 "denormal-fp-math-f32", 1773 CodeGenOpts.FP32DenormalMode.str()); 1774 } 1775 1776 FuncAttrs.addAttribute("no-trapping-math", 1777 llvm::toStringRef(LangOpts.getFPExceptionMode() == 1778 LangOptions::FPE_Ignore)); 1779 1780 // Strict (compliant) code is the default, so only add this attribute to 1781 // indicate that we are trying to workaround a problem case. 1782 if (!CodeGenOpts.StrictFloatCastOverflow) 1783 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1784 1785 // TODO: Are these all needed? 1786 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1787 FuncAttrs.addAttribute("no-infs-fp-math", 1788 llvm::toStringRef(LangOpts.NoHonorInfs)); 1789 FuncAttrs.addAttribute("no-nans-fp-math", 1790 llvm::toStringRef(LangOpts.NoHonorNaNs)); 1791 FuncAttrs.addAttribute("unsafe-fp-math", 1792 llvm::toStringRef(LangOpts.UnsafeFPMath)); 1793 FuncAttrs.addAttribute("use-soft-float", 1794 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1795 FuncAttrs.addAttribute("stack-protector-buffer-size", 1796 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1797 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1798 llvm::toStringRef(LangOpts.NoSignedZero)); 1799 1800 // TODO: Reciprocal estimate codegen options should apply to instructions? 1801 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1802 if (!Recips.empty()) 1803 FuncAttrs.addAttribute("reciprocal-estimates", 1804 llvm::join(Recips, ",")); 1805 1806 if (!CodeGenOpts.PreferVectorWidth.empty() && 1807 CodeGenOpts.PreferVectorWidth != "none") 1808 FuncAttrs.addAttribute("prefer-vector-width", 1809 CodeGenOpts.PreferVectorWidth); 1810 1811 if (CodeGenOpts.StackRealignment) 1812 FuncAttrs.addAttribute("stackrealign"); 1813 if (CodeGenOpts.Backchain) 1814 FuncAttrs.addAttribute("backchain"); 1815 if (CodeGenOpts.EnableSegmentedStacks) 1816 FuncAttrs.addAttribute("split-stack"); 1817 1818 if (CodeGenOpts.SpeculativeLoadHardening) 1819 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1820 } 1821 1822 if (getLangOpts().assumeFunctionsAreConvergent()) { 1823 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1824 // convergent (meaning, they may call an intrinsically convergent op, such 1825 // as __syncthreads() / barrier(), and so can't have certain optimizations 1826 // applied around them). LLVM will remove this attribute where it safely 1827 // can. 1828 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1829 } 1830 1831 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1832 // Exceptions aren't supported in CUDA device code. 1833 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1834 } 1835 1836 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1837 StringRef Var, Value; 1838 std::tie(Var, Value) = Attr.split('='); 1839 FuncAttrs.addAttribute(Var, Value); 1840 } 1841 } 1842 1843 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1844 llvm::AttrBuilder FuncAttrs; 1845 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1846 /* AttrOnCallSite = */ false, FuncAttrs); 1847 // TODO: call GetCPUAndFeaturesAttributes? 1848 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1849 } 1850 1851 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1852 llvm::AttrBuilder &attrs) { 1853 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1854 /*for call*/ false, attrs); 1855 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1856 } 1857 1858 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1859 const LangOptions &LangOpts, 1860 const NoBuiltinAttr *NBA = nullptr) { 1861 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1862 SmallString<32> AttributeName; 1863 AttributeName += "no-builtin-"; 1864 AttributeName += BuiltinName; 1865 FuncAttrs.addAttribute(AttributeName); 1866 }; 1867 1868 // First, handle the language options passed through -fno-builtin. 1869 if (LangOpts.NoBuiltin) { 1870 // -fno-builtin disables them all. 1871 FuncAttrs.addAttribute("no-builtins"); 1872 return; 1873 } 1874 1875 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1876 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1877 1878 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1879 // the source. 1880 if (!NBA) 1881 return; 1882 1883 // If there is a wildcard in the builtin names specified through the 1884 // attribute, disable them all. 1885 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1886 FuncAttrs.addAttribute("no-builtins"); 1887 return; 1888 } 1889 1890 // And last, add the rest of the builtin names. 1891 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1892 } 1893 1894 /// Construct the IR attribute list of a function or call. 1895 /// 1896 /// When adding an attribute, please consider where it should be handled: 1897 /// 1898 /// - getDefaultFunctionAttributes is for attributes that are essentially 1899 /// part of the global target configuration (but perhaps can be 1900 /// overridden on a per-function basis). Adding attributes there 1901 /// will cause them to also be set in frontends that build on Clang's 1902 /// target-configuration logic, as well as for code defined in library 1903 /// modules such as CUDA's libdevice. 1904 /// 1905 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 1906 /// and adds declaration-specific, convention-specific, and 1907 /// frontend-specific logic. The last is of particular importance: 1908 /// attributes that restrict how the frontend generates code must be 1909 /// added here rather than getDefaultFunctionAttributes. 1910 /// 1911 void CodeGenModule::ConstructAttributeList( 1912 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1913 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1914 llvm::AttrBuilder FuncAttrs; 1915 llvm::AttrBuilder RetAttrs; 1916 1917 // Collect function IR attributes from the CC lowering. 1918 // We'll collect the paramete and result attributes later. 1919 CallingConv = FI.getEffectiveCallingConvention(); 1920 if (FI.isNoReturn()) 1921 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1922 if (FI.isCmseNSCall()) 1923 FuncAttrs.addAttribute("cmse_nonsecure_call"); 1924 1925 // Collect function IR attributes from the callee prototype if we have one. 1926 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1927 CalleeInfo.getCalleeFunctionProtoType()); 1928 1929 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1930 1931 bool HasOptnone = false; 1932 // The NoBuiltinAttr attached to the target FunctionDecl. 1933 const NoBuiltinAttr *NBA = nullptr; 1934 1935 // Collect function IR attributes based on declaration-specific 1936 // information. 1937 // FIXME: handle sseregparm someday... 1938 if (TargetDecl) { 1939 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1940 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1941 if (TargetDecl->hasAttr<NoThrowAttr>()) 1942 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1943 if (TargetDecl->hasAttr<NoReturnAttr>()) 1944 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1945 if (TargetDecl->hasAttr<ColdAttr>()) 1946 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1947 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1948 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1949 if (TargetDecl->hasAttr<ConvergentAttr>()) 1950 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1951 1952 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1953 AddAttributesFromFunctionProtoType( 1954 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1955 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 1956 // A sane operator new returns a non-aliasing pointer. 1957 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 1958 if (getCodeGenOpts().AssumeSaneOperatorNew && 1959 (Kind == OO_New || Kind == OO_Array_New)) 1960 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1961 } 1962 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1963 const bool IsVirtualCall = MD && MD->isVirtual(); 1964 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1965 // virtual function. These attributes are not inherited by overloads. 1966 if (!(AttrOnCallSite && IsVirtualCall)) { 1967 if (Fn->isNoReturn()) 1968 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1969 NBA = Fn->getAttr<NoBuiltinAttr>(); 1970 } 1971 } 1972 1973 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1974 if (TargetDecl->hasAttr<ConstAttr>()) { 1975 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1976 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1977 } else if (TargetDecl->hasAttr<PureAttr>()) { 1978 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1979 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1980 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1981 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1982 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1983 } 1984 if (TargetDecl->hasAttr<RestrictAttr>()) 1985 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1986 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1987 !CodeGenOpts.NullPointerIsValid) 1988 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1989 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1990 FuncAttrs.addAttribute("no_caller_saved_registers"); 1991 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1992 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1993 if (TargetDecl->hasAttr<LeafAttr>()) 1994 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 1995 1996 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1997 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1998 Optional<unsigned> NumElemsParam; 1999 if (AllocSize->getNumElemsParam().isValid()) 2000 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2001 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2002 NumElemsParam); 2003 } 2004 2005 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2006 if (getLangOpts().OpenCLVersion <= 120) { 2007 // OpenCL v1.2 Work groups are always uniform 2008 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2009 } else { 2010 // OpenCL v2.0 Work groups may be whether uniform or not. 2011 // '-cl-uniform-work-group-size' compile option gets a hint 2012 // to the compiler that the global work-size be a multiple of 2013 // the work-group size specified to clEnqueueNDRangeKernel 2014 // (i.e. work groups are uniform). 2015 FuncAttrs.addAttribute("uniform-work-group-size", 2016 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2017 } 2018 } 2019 2020 std::string AssumptionValueStr; 2021 for (AssumptionAttr *AssumptionA : 2022 TargetDecl->specific_attrs<AssumptionAttr>()) { 2023 std::string AS = AssumptionA->getAssumption().str(); 2024 if (!AS.empty() && !AssumptionValueStr.empty()) 2025 AssumptionValueStr += ","; 2026 AssumptionValueStr += AS; 2027 } 2028 2029 if (!AssumptionValueStr.empty()) 2030 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, AssumptionValueStr); 2031 } 2032 2033 // Attach "no-builtins" attributes to: 2034 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2035 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2036 // The attributes can come from: 2037 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2038 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2039 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2040 2041 // Collect function IR attributes based on global settiings. 2042 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2043 2044 // Override some default IR attributes based on declaration-specific 2045 // information. 2046 if (TargetDecl) { 2047 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2048 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2049 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2050 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2051 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2052 FuncAttrs.removeAttribute("split-stack"); 2053 2054 // Add NonLazyBind attribute to function declarations when -fno-plt 2055 // is used. 2056 // FIXME: what if we just haven't processed the function definition 2057 // yet, or if it's an external definition like C99 inline? 2058 if (CodeGenOpts.NoPLT) { 2059 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2060 if (!Fn->isDefined() && !AttrOnCallSite) { 2061 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2062 } 2063 } 2064 } 2065 } 2066 2067 // Collect non-call-site function IR attributes from declaration-specific 2068 // information. 2069 if (!AttrOnCallSite) { 2070 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2071 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2072 2073 // Whether tail calls are enabled. 2074 auto shouldDisableTailCalls = [&] { 2075 // Should this be honored in getDefaultFunctionAttributes? 2076 if (CodeGenOpts.DisableTailCalls) 2077 return true; 2078 2079 if (!TargetDecl) 2080 return false; 2081 2082 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2083 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2084 return true; 2085 2086 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2087 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2088 if (!BD->doesNotEscape()) 2089 return true; 2090 } 2091 2092 return false; 2093 }; 2094 FuncAttrs.addAttribute("disable-tail-calls", 2095 llvm::toStringRef(shouldDisableTailCalls())); 2096 2097 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2098 // handles these separately to set them based on the global defaults. 2099 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2100 } 2101 2102 // Collect attributes from arguments and return values. 2103 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2104 2105 QualType RetTy = FI.getReturnType(); 2106 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2107 switch (RetAI.getKind()) { 2108 case ABIArgInfo::Extend: 2109 if (RetAI.isSignExt()) 2110 RetAttrs.addAttribute(llvm::Attribute::SExt); 2111 else 2112 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2113 LLVM_FALLTHROUGH; 2114 case ABIArgInfo::Direct: 2115 if (RetAI.getInReg()) 2116 RetAttrs.addAttribute(llvm::Attribute::InReg); 2117 break; 2118 case ABIArgInfo::Ignore: 2119 break; 2120 2121 case ABIArgInfo::InAlloca: 2122 case ABIArgInfo::Indirect: { 2123 // inalloca and sret disable readnone and readonly 2124 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2125 .removeAttribute(llvm::Attribute::ReadNone); 2126 break; 2127 } 2128 2129 case ABIArgInfo::CoerceAndExpand: 2130 break; 2131 2132 case ABIArgInfo::Expand: 2133 case ABIArgInfo::IndirectAliased: 2134 llvm_unreachable("Invalid ABI kind for return argument"); 2135 } 2136 2137 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2138 QualType PTy = RefTy->getPointeeType(); 2139 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2140 RetAttrs.addDereferenceableAttr( 2141 getMinimumObjectSize(PTy).getQuantity()); 2142 if (getContext().getTargetAddressSpace(PTy) == 0 && 2143 !CodeGenOpts.NullPointerIsValid) 2144 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2145 if (PTy->isObjectType()) { 2146 llvm::Align Alignment = 2147 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2148 RetAttrs.addAlignmentAttr(Alignment); 2149 } 2150 } 2151 2152 bool hasUsedSRet = false; 2153 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2154 2155 // Attach attributes to sret. 2156 if (IRFunctionArgs.hasSRetArg()) { 2157 llvm::AttrBuilder SRETAttrs; 2158 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2159 hasUsedSRet = true; 2160 if (RetAI.getInReg()) 2161 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2162 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2163 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2164 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2165 } 2166 2167 // Attach attributes to inalloca argument. 2168 if (IRFunctionArgs.hasInallocaArg()) { 2169 llvm::AttrBuilder Attrs; 2170 Attrs.addAttribute(llvm::Attribute::InAlloca); 2171 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2172 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2173 } 2174 2175 // Apply `nonnull` and `dereferencable(N)` to the `this` argument. 2176 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2177 !FI.arg_begin()->type->isVoidPointerType()) { 2178 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2179 2180 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2181 2182 llvm::AttrBuilder Attrs; 2183 2184 if (!CodeGenOpts.NullPointerIsValid && 2185 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2186 Attrs.addAttribute(llvm::Attribute::NonNull); 2187 Attrs.addDereferenceableAttr( 2188 getMinimumObjectSize( 2189 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2190 .getQuantity()); 2191 } else { 2192 // FIXME dereferenceable should be correct here, regardless of 2193 // NullPointerIsValid. However, dereferenceable currently does not always 2194 // respect NullPointerIsValid and may imply nonnull and break the program. 2195 // See https://reviews.llvm.org/D66618 for discussions. 2196 Attrs.addDereferenceableOrNullAttr( 2197 getMinimumObjectSize( 2198 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2199 .getQuantity()); 2200 } 2201 2202 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2203 } 2204 2205 unsigned ArgNo = 0; 2206 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2207 E = FI.arg_end(); 2208 I != E; ++I, ++ArgNo) { 2209 QualType ParamType = I->type; 2210 const ABIArgInfo &AI = I->info; 2211 llvm::AttrBuilder Attrs; 2212 2213 // Add attribute for padding argument, if necessary. 2214 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2215 if (AI.getPaddingInReg()) { 2216 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2217 llvm::AttributeSet::get( 2218 getLLVMContext(), 2219 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2220 } 2221 } 2222 2223 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2224 // have the corresponding parameter variable. It doesn't make 2225 // sense to do it here because parameters are so messed up. 2226 switch (AI.getKind()) { 2227 case ABIArgInfo::Extend: 2228 if (AI.isSignExt()) 2229 Attrs.addAttribute(llvm::Attribute::SExt); 2230 else 2231 Attrs.addAttribute(llvm::Attribute::ZExt); 2232 LLVM_FALLTHROUGH; 2233 case ABIArgInfo::Direct: 2234 if (ArgNo == 0 && FI.isChainCall()) 2235 Attrs.addAttribute(llvm::Attribute::Nest); 2236 else if (AI.getInReg()) 2237 Attrs.addAttribute(llvm::Attribute::InReg); 2238 break; 2239 2240 case ABIArgInfo::Indirect: { 2241 if (AI.getInReg()) 2242 Attrs.addAttribute(llvm::Attribute::InReg); 2243 2244 if (AI.getIndirectByVal()) 2245 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2246 2247 auto *Decl = ParamType->getAsRecordDecl(); 2248 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2249 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2250 // When calling the function, the pointer passed in will be the only 2251 // reference to the underlying object. Mark it accordingly. 2252 Attrs.addAttribute(llvm::Attribute::NoAlias); 2253 2254 // TODO: We could add the byref attribute if not byval, but it would 2255 // require updating many testcases. 2256 2257 CharUnits Align = AI.getIndirectAlign(); 2258 2259 // In a byval argument, it is important that the required 2260 // alignment of the type is honored, as LLVM might be creating a 2261 // *new* stack object, and needs to know what alignment to give 2262 // it. (Sometimes it can deduce a sensible alignment on its own, 2263 // but not if clang decides it must emit a packed struct, or the 2264 // user specifies increased alignment requirements.) 2265 // 2266 // This is different from indirect *not* byval, where the object 2267 // exists already, and the align attribute is purely 2268 // informative. 2269 assert(!Align.isZero()); 2270 2271 // For now, only add this when we have a byval argument. 2272 // TODO: be less lazy about updating test cases. 2273 if (AI.getIndirectByVal()) 2274 Attrs.addAlignmentAttr(Align.getQuantity()); 2275 2276 // byval disables readnone and readonly. 2277 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2278 .removeAttribute(llvm::Attribute::ReadNone); 2279 2280 break; 2281 } 2282 case ABIArgInfo::IndirectAliased: { 2283 CharUnits Align = AI.getIndirectAlign(); 2284 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2285 Attrs.addAlignmentAttr(Align.getQuantity()); 2286 break; 2287 } 2288 case ABIArgInfo::Ignore: 2289 case ABIArgInfo::Expand: 2290 case ABIArgInfo::CoerceAndExpand: 2291 break; 2292 2293 case ABIArgInfo::InAlloca: 2294 // inalloca disables readnone and readonly. 2295 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2296 .removeAttribute(llvm::Attribute::ReadNone); 2297 continue; 2298 } 2299 2300 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2301 QualType PTy = RefTy->getPointeeType(); 2302 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2303 Attrs.addDereferenceableAttr( 2304 getMinimumObjectSize(PTy).getQuantity()); 2305 if (getContext().getTargetAddressSpace(PTy) == 0 && 2306 !CodeGenOpts.NullPointerIsValid) 2307 Attrs.addAttribute(llvm::Attribute::NonNull); 2308 if (PTy->isObjectType()) { 2309 llvm::Align Alignment = 2310 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2311 Attrs.addAlignmentAttr(Alignment); 2312 } 2313 } 2314 2315 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2316 case ParameterABI::Ordinary: 2317 break; 2318 2319 case ParameterABI::SwiftIndirectResult: { 2320 // Add 'sret' if we haven't already used it for something, but 2321 // only if the result is void. 2322 if (!hasUsedSRet && RetTy->isVoidType()) { 2323 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2324 hasUsedSRet = true; 2325 } 2326 2327 // Add 'noalias' in either case. 2328 Attrs.addAttribute(llvm::Attribute::NoAlias); 2329 2330 // Add 'dereferenceable' and 'alignment'. 2331 auto PTy = ParamType->getPointeeType(); 2332 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2333 auto info = getContext().getTypeInfoInChars(PTy); 2334 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2335 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2336 } 2337 break; 2338 } 2339 2340 case ParameterABI::SwiftErrorResult: 2341 Attrs.addAttribute(llvm::Attribute::SwiftError); 2342 break; 2343 2344 case ParameterABI::SwiftContext: 2345 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2346 break; 2347 } 2348 2349 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2350 Attrs.addAttribute(llvm::Attribute::NoCapture); 2351 2352 if (Attrs.hasAttributes()) { 2353 unsigned FirstIRArg, NumIRArgs; 2354 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2355 for (unsigned i = 0; i < NumIRArgs; i++) 2356 ArgAttrs[FirstIRArg + i] = 2357 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2358 } 2359 } 2360 assert(ArgNo == FI.arg_size()); 2361 2362 AttrList = llvm::AttributeList::get( 2363 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2364 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2365 } 2366 2367 /// An argument came in as a promoted argument; demote it back to its 2368 /// declared type. 2369 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2370 const VarDecl *var, 2371 llvm::Value *value) { 2372 llvm::Type *varType = CGF.ConvertType(var->getType()); 2373 2374 // This can happen with promotions that actually don't change the 2375 // underlying type, like the enum promotions. 2376 if (value->getType() == varType) return value; 2377 2378 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2379 && "unexpected promotion type"); 2380 2381 if (isa<llvm::IntegerType>(varType)) 2382 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2383 2384 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2385 } 2386 2387 /// Returns the attribute (either parameter attribute, or function 2388 /// attribute), which declares argument ArgNo to be non-null. 2389 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2390 QualType ArgType, unsigned ArgNo) { 2391 // FIXME: __attribute__((nonnull)) can also be applied to: 2392 // - references to pointers, where the pointee is known to be 2393 // nonnull (apparently a Clang extension) 2394 // - transparent unions containing pointers 2395 // In the former case, LLVM IR cannot represent the constraint. In 2396 // the latter case, we have no guarantee that the transparent union 2397 // is in fact passed as a pointer. 2398 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2399 return nullptr; 2400 // First, check attribute on parameter itself. 2401 if (PVD) { 2402 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2403 return ParmNNAttr; 2404 } 2405 // Check function attributes. 2406 if (!FD) 2407 return nullptr; 2408 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2409 if (NNAttr->isNonNull(ArgNo)) 2410 return NNAttr; 2411 } 2412 return nullptr; 2413 } 2414 2415 namespace { 2416 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2417 Address Temp; 2418 Address Arg; 2419 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2420 void Emit(CodeGenFunction &CGF, Flags flags) override { 2421 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2422 CGF.Builder.CreateStore(errorValue, Arg); 2423 } 2424 }; 2425 } 2426 2427 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2428 llvm::Function *Fn, 2429 const FunctionArgList &Args) { 2430 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2431 // Naked functions don't have prologues. 2432 return; 2433 2434 // If this is an implicit-return-zero function, go ahead and 2435 // initialize the return value. TODO: it might be nice to have 2436 // a more general mechanism for this that didn't require synthesized 2437 // return statements. 2438 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2439 if (FD->hasImplicitReturnZero()) { 2440 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2441 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2442 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2443 Builder.CreateStore(Zero, ReturnValue); 2444 } 2445 } 2446 2447 // FIXME: We no longer need the types from FunctionArgList; lift up and 2448 // simplify. 2449 2450 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2451 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2452 2453 // If we're using inalloca, all the memory arguments are GEPs off of the last 2454 // parameter, which is a pointer to the complete memory area. 2455 Address ArgStruct = Address::invalid(); 2456 if (IRFunctionArgs.hasInallocaArg()) { 2457 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2458 FI.getArgStructAlignment()); 2459 2460 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2461 } 2462 2463 // Name the struct return parameter. 2464 if (IRFunctionArgs.hasSRetArg()) { 2465 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2466 AI->setName("agg.result"); 2467 AI->addAttr(llvm::Attribute::NoAlias); 2468 } 2469 2470 // Track if we received the parameter as a pointer (indirect, byval, or 2471 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2472 // into a local alloca for us. 2473 SmallVector<ParamValue, 16> ArgVals; 2474 ArgVals.reserve(Args.size()); 2475 2476 // Create a pointer value for every parameter declaration. This usually 2477 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2478 // any cleanups or do anything that might unwind. We do that separately, so 2479 // we can push the cleanups in the correct order for the ABI. 2480 assert(FI.arg_size() == Args.size() && 2481 "Mismatch between function signature & arguments."); 2482 unsigned ArgNo = 0; 2483 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2484 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2485 i != e; ++i, ++info_it, ++ArgNo) { 2486 const VarDecl *Arg = *i; 2487 const ABIArgInfo &ArgI = info_it->info; 2488 2489 bool isPromoted = 2490 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2491 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2492 // the parameter is promoted. In this case we convert to 2493 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2494 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2495 assert(hasScalarEvaluationKind(Ty) == 2496 hasScalarEvaluationKind(Arg->getType())); 2497 2498 unsigned FirstIRArg, NumIRArgs; 2499 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2500 2501 switch (ArgI.getKind()) { 2502 case ABIArgInfo::InAlloca: { 2503 assert(NumIRArgs == 0); 2504 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2505 Address V = 2506 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2507 if (ArgI.getInAllocaIndirect()) 2508 V = Address(Builder.CreateLoad(V), 2509 getContext().getTypeAlignInChars(Ty)); 2510 ArgVals.push_back(ParamValue::forIndirect(V)); 2511 break; 2512 } 2513 2514 case ABIArgInfo::Indirect: 2515 case ABIArgInfo::IndirectAliased: { 2516 assert(NumIRArgs == 1); 2517 Address ParamAddr = 2518 Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign()); 2519 2520 if (!hasScalarEvaluationKind(Ty)) { 2521 // Aggregates and complex variables are accessed by reference. All we 2522 // need to do is realign the value, if requested. Also, if the address 2523 // may be aliased, copy it to ensure that the parameter variable is 2524 // mutable and has a unique adress, as C requires. 2525 Address V = ParamAddr; 2526 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2527 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2528 2529 // Copy from the incoming argument pointer to the temporary with the 2530 // appropriate alignment. 2531 // 2532 // FIXME: We should have a common utility for generating an aggregate 2533 // copy. 2534 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2535 Builder.CreateMemCpy( 2536 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2537 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2538 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2539 V = AlignedTemp; 2540 } 2541 ArgVals.push_back(ParamValue::forIndirect(V)); 2542 } else { 2543 // Load scalar value from indirect argument. 2544 llvm::Value *V = 2545 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2546 2547 if (isPromoted) 2548 V = emitArgumentDemotion(*this, Arg, V); 2549 ArgVals.push_back(ParamValue::forDirect(V)); 2550 } 2551 break; 2552 } 2553 2554 case ABIArgInfo::Extend: 2555 case ABIArgInfo::Direct: { 2556 auto AI = Fn->getArg(FirstIRArg); 2557 llvm::Type *LTy = ConvertType(Arg->getType()); 2558 2559 // Prepare parameter attributes. So far, only attributes for pointer 2560 // parameters are prepared. See 2561 // http://llvm.org/docs/LangRef.html#paramattrs. 2562 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2563 ArgI.getCoerceToType()->isPointerTy()) { 2564 assert(NumIRArgs == 1); 2565 2566 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2567 // Set `nonnull` attribute if any. 2568 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2569 PVD->getFunctionScopeIndex()) && 2570 !CGM.getCodeGenOpts().NullPointerIsValid) 2571 AI->addAttr(llvm::Attribute::NonNull); 2572 2573 QualType OTy = PVD->getOriginalType(); 2574 if (const auto *ArrTy = 2575 getContext().getAsConstantArrayType(OTy)) { 2576 // A C99 array parameter declaration with the static keyword also 2577 // indicates dereferenceability, and if the size is constant we can 2578 // use the dereferenceable attribute (which requires the size in 2579 // bytes). 2580 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2581 QualType ETy = ArrTy->getElementType(); 2582 llvm::Align Alignment = 2583 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2584 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2585 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2586 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2587 ArrSize) { 2588 llvm::AttrBuilder Attrs; 2589 Attrs.addDereferenceableAttr( 2590 getContext().getTypeSizeInChars(ETy).getQuantity() * 2591 ArrSize); 2592 AI->addAttrs(Attrs); 2593 } else if (getContext().getTargetInfo().getNullPointerValue( 2594 ETy.getAddressSpace()) == 0 && 2595 !CGM.getCodeGenOpts().NullPointerIsValid) { 2596 AI->addAttr(llvm::Attribute::NonNull); 2597 } 2598 } 2599 } else if (const auto *ArrTy = 2600 getContext().getAsVariableArrayType(OTy)) { 2601 // For C99 VLAs with the static keyword, we don't know the size so 2602 // we can't use the dereferenceable attribute, but in addrspace(0) 2603 // we know that it must be nonnull. 2604 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2605 QualType ETy = ArrTy->getElementType(); 2606 llvm::Align Alignment = 2607 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2608 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2609 if (!getContext().getTargetAddressSpace(ETy) && 2610 !CGM.getCodeGenOpts().NullPointerIsValid) 2611 AI->addAttr(llvm::Attribute::NonNull); 2612 } 2613 } 2614 2615 // Set `align` attribute if any. 2616 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2617 if (!AVAttr) 2618 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2619 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2620 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2621 // If alignment-assumption sanitizer is enabled, we do *not* add 2622 // alignment attribute here, but emit normal alignment assumption, 2623 // so the UBSAN check could function. 2624 llvm::ConstantInt *AlignmentCI = 2625 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2626 unsigned AlignmentInt = 2627 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2628 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2629 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2630 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr( 2631 llvm::Align(AlignmentInt))); 2632 } 2633 } 2634 } 2635 2636 // Set 'noalias' if an argument type has the `restrict` qualifier. 2637 if (Arg->getType().isRestrictQualified()) 2638 AI->addAttr(llvm::Attribute::NoAlias); 2639 } 2640 2641 // Prepare the argument value. If we have the trivial case, handle it 2642 // with no muss and fuss. 2643 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2644 ArgI.getCoerceToType() == ConvertType(Ty) && 2645 ArgI.getDirectOffset() == 0) { 2646 assert(NumIRArgs == 1); 2647 2648 // LLVM expects swifterror parameters to be used in very restricted 2649 // ways. Copy the value into a less-restricted temporary. 2650 llvm::Value *V = AI; 2651 if (FI.getExtParameterInfo(ArgNo).getABI() 2652 == ParameterABI::SwiftErrorResult) { 2653 QualType pointeeTy = Ty->getPointeeType(); 2654 assert(pointeeTy->isPointerType()); 2655 Address temp = 2656 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2657 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2658 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2659 Builder.CreateStore(incomingErrorValue, temp); 2660 V = temp.getPointer(); 2661 2662 // Push a cleanup to copy the value back at the end of the function. 2663 // The convention does not guarantee that the value will be written 2664 // back if the function exits with an unwind exception. 2665 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2666 } 2667 2668 // Ensure the argument is the correct type. 2669 if (V->getType() != ArgI.getCoerceToType()) 2670 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2671 2672 if (isPromoted) 2673 V = emitArgumentDemotion(*this, Arg, V); 2674 2675 // Because of merging of function types from multiple decls it is 2676 // possible for the type of an argument to not match the corresponding 2677 // type in the function type. Since we are codegening the callee 2678 // in here, add a cast to the argument type. 2679 llvm::Type *LTy = ConvertType(Arg->getType()); 2680 if (V->getType() != LTy) 2681 V = Builder.CreateBitCast(V, LTy); 2682 2683 ArgVals.push_back(ParamValue::forDirect(V)); 2684 break; 2685 } 2686 2687 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2688 Arg->getName()); 2689 2690 // Pointer to store into. 2691 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2692 2693 // Fast-isel and the optimizer generally like scalar values better than 2694 // FCAs, so we flatten them if this is safe to do for this argument. 2695 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2696 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2697 STy->getNumElements() > 1) { 2698 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2699 llvm::Type *DstTy = Ptr.getElementType(); 2700 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2701 2702 Address AddrToStoreInto = Address::invalid(); 2703 if (SrcSize <= DstSize) { 2704 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2705 } else { 2706 AddrToStoreInto = 2707 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2708 } 2709 2710 assert(STy->getNumElements() == NumIRArgs); 2711 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2712 auto AI = Fn->getArg(FirstIRArg + i); 2713 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2714 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2715 Builder.CreateStore(AI, EltPtr); 2716 } 2717 2718 if (SrcSize > DstSize) { 2719 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2720 } 2721 2722 } else { 2723 // Simple case, just do a coerced store of the argument into the alloca. 2724 assert(NumIRArgs == 1); 2725 auto AI = Fn->getArg(FirstIRArg); 2726 AI->setName(Arg->getName() + ".coerce"); 2727 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2728 } 2729 2730 // Match to what EmitParmDecl is expecting for this type. 2731 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2732 llvm::Value *V = 2733 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2734 if (isPromoted) 2735 V = emitArgumentDemotion(*this, Arg, V); 2736 ArgVals.push_back(ParamValue::forDirect(V)); 2737 } else { 2738 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2739 } 2740 break; 2741 } 2742 2743 case ABIArgInfo::CoerceAndExpand: { 2744 // Reconstruct into a temporary. 2745 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2746 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2747 2748 auto coercionType = ArgI.getCoerceAndExpandType(); 2749 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2750 2751 unsigned argIndex = FirstIRArg; 2752 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2753 llvm::Type *eltType = coercionType->getElementType(i); 2754 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2755 continue; 2756 2757 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2758 auto elt = Fn->getArg(argIndex++); 2759 Builder.CreateStore(elt, eltAddr); 2760 } 2761 assert(argIndex == FirstIRArg + NumIRArgs); 2762 break; 2763 } 2764 2765 case ABIArgInfo::Expand: { 2766 // If this structure was expanded into multiple arguments then 2767 // we need to create a temporary and reconstruct it from the 2768 // arguments. 2769 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2770 LValue LV = MakeAddrLValue(Alloca, Ty); 2771 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2772 2773 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2774 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2775 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2776 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2777 auto AI = Fn->getArg(FirstIRArg + i); 2778 AI->setName(Arg->getName() + "." + Twine(i)); 2779 } 2780 break; 2781 } 2782 2783 case ABIArgInfo::Ignore: 2784 assert(NumIRArgs == 0); 2785 // Initialize the local variable appropriately. 2786 if (!hasScalarEvaluationKind(Ty)) { 2787 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2788 } else { 2789 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2790 ArgVals.push_back(ParamValue::forDirect(U)); 2791 } 2792 break; 2793 } 2794 } 2795 2796 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2797 for (int I = Args.size() - 1; I >= 0; --I) 2798 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2799 } else { 2800 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2801 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2802 } 2803 } 2804 2805 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2806 while (insn->use_empty()) { 2807 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2808 if (!bitcast) return; 2809 2810 // This is "safe" because we would have used a ConstantExpr otherwise. 2811 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2812 bitcast->eraseFromParent(); 2813 } 2814 } 2815 2816 /// Try to emit a fused autorelease of a return result. 2817 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2818 llvm::Value *result) { 2819 // We must be immediately followed the cast. 2820 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2821 if (BB->empty()) return nullptr; 2822 if (&BB->back() != result) return nullptr; 2823 2824 llvm::Type *resultType = result->getType(); 2825 2826 // result is in a BasicBlock and is therefore an Instruction. 2827 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2828 2829 SmallVector<llvm::Instruction *, 4> InstsToKill; 2830 2831 // Look for: 2832 // %generator = bitcast %type1* %generator2 to %type2* 2833 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2834 // We would have emitted this as a constant if the operand weren't 2835 // an Instruction. 2836 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2837 2838 // Require the generator to be immediately followed by the cast. 2839 if (generator->getNextNode() != bitcast) 2840 return nullptr; 2841 2842 InstsToKill.push_back(bitcast); 2843 } 2844 2845 // Look for: 2846 // %generator = call i8* @objc_retain(i8* %originalResult) 2847 // or 2848 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2849 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2850 if (!call) return nullptr; 2851 2852 bool doRetainAutorelease; 2853 2854 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2855 doRetainAutorelease = true; 2856 } else if (call->getCalledOperand() == 2857 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 2858 doRetainAutorelease = false; 2859 2860 // If we emitted an assembly marker for this call (and the 2861 // ARCEntrypoints field should have been set if so), go looking 2862 // for that call. If we can't find it, we can't do this 2863 // optimization. But it should always be the immediately previous 2864 // instruction, unless we needed bitcasts around the call. 2865 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2866 llvm::Instruction *prev = call->getPrevNode(); 2867 assert(prev); 2868 if (isa<llvm::BitCastInst>(prev)) { 2869 prev = prev->getPrevNode(); 2870 assert(prev); 2871 } 2872 assert(isa<llvm::CallInst>(prev)); 2873 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 2874 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2875 InstsToKill.push_back(prev); 2876 } 2877 } else { 2878 return nullptr; 2879 } 2880 2881 result = call->getArgOperand(0); 2882 InstsToKill.push_back(call); 2883 2884 // Keep killing bitcasts, for sanity. Note that we no longer care 2885 // about precise ordering as long as there's exactly one use. 2886 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2887 if (!bitcast->hasOneUse()) break; 2888 InstsToKill.push_back(bitcast); 2889 result = bitcast->getOperand(0); 2890 } 2891 2892 // Delete all the unnecessary instructions, from latest to earliest. 2893 for (auto *I : InstsToKill) 2894 I->eraseFromParent(); 2895 2896 // Do the fused retain/autorelease if we were asked to. 2897 if (doRetainAutorelease) 2898 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2899 2900 // Cast back to the result type. 2901 return CGF.Builder.CreateBitCast(result, resultType); 2902 } 2903 2904 /// If this is a +1 of the value of an immutable 'self', remove it. 2905 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2906 llvm::Value *result) { 2907 // This is only applicable to a method with an immutable 'self'. 2908 const ObjCMethodDecl *method = 2909 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2910 if (!method) return nullptr; 2911 const VarDecl *self = method->getSelfDecl(); 2912 if (!self->getType().isConstQualified()) return nullptr; 2913 2914 // Look for a retain call. 2915 llvm::CallInst *retainCall = 2916 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2917 if (!retainCall || retainCall->getCalledOperand() != 2918 CGF.CGM.getObjCEntrypoints().objc_retain) 2919 return nullptr; 2920 2921 // Look for an ordinary load of 'self'. 2922 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2923 llvm::LoadInst *load = 2924 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2925 if (!load || load->isAtomic() || load->isVolatile() || 2926 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2927 return nullptr; 2928 2929 // Okay! Burn it all down. This relies for correctness on the 2930 // assumption that the retain is emitted as part of the return and 2931 // that thereafter everything is used "linearly". 2932 llvm::Type *resultType = result->getType(); 2933 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2934 assert(retainCall->use_empty()); 2935 retainCall->eraseFromParent(); 2936 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2937 2938 return CGF.Builder.CreateBitCast(load, resultType); 2939 } 2940 2941 /// Emit an ARC autorelease of the result of a function. 2942 /// 2943 /// \return the value to actually return from the function 2944 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2945 llvm::Value *result) { 2946 // If we're returning 'self', kill the initial retain. This is a 2947 // heuristic attempt to "encourage correctness" in the really unfortunate 2948 // case where we have a return of self during a dealloc and we desperately 2949 // need to avoid the possible autorelease. 2950 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2951 return self; 2952 2953 // At -O0, try to emit a fused retain/autorelease. 2954 if (CGF.shouldUseFusedARCCalls()) 2955 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2956 return fused; 2957 2958 return CGF.EmitARCAutoreleaseReturnValue(result); 2959 } 2960 2961 /// Heuristically search for a dominating store to the return-value slot. 2962 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2963 // Check if a User is a store which pointerOperand is the ReturnValue. 2964 // We are looking for stores to the ReturnValue, not for stores of the 2965 // ReturnValue to some other location. 2966 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2967 auto *SI = dyn_cast<llvm::StoreInst>(U); 2968 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2969 return nullptr; 2970 // These aren't actually possible for non-coerced returns, and we 2971 // only care about non-coerced returns on this code path. 2972 assert(!SI->isAtomic() && !SI->isVolatile()); 2973 return SI; 2974 }; 2975 // If there are multiple uses of the return-value slot, just check 2976 // for something immediately preceding the IP. Sometimes this can 2977 // happen with how we generate implicit-returns; it can also happen 2978 // with noreturn cleanups. 2979 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2980 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2981 if (IP->empty()) return nullptr; 2982 llvm::Instruction *I = &IP->back(); 2983 2984 // Skip lifetime markers 2985 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2986 IE = IP->rend(); 2987 II != IE; ++II) { 2988 if (llvm::IntrinsicInst *Intrinsic = 2989 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2990 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2991 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2992 ++II; 2993 if (II == IE) 2994 break; 2995 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2996 continue; 2997 } 2998 } 2999 I = &*II; 3000 break; 3001 } 3002 3003 return GetStoreIfValid(I); 3004 } 3005 3006 llvm::StoreInst *store = 3007 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3008 if (!store) return nullptr; 3009 3010 // Now do a first-and-dirty dominance check: just walk up the 3011 // single-predecessors chain from the current insertion point. 3012 llvm::BasicBlock *StoreBB = store->getParent(); 3013 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3014 while (IP != StoreBB) { 3015 if (!(IP = IP->getSinglePredecessor())) 3016 return nullptr; 3017 } 3018 3019 // Okay, the store's basic block dominates the insertion point; we 3020 // can do our thing. 3021 return store; 3022 } 3023 3024 // Helper functions for EmitCMSEClearRecord 3025 3026 // Set the bits corresponding to a field having width `BitWidth` and located at 3027 // offset `BitOffset` (from the least significant bit) within a storage unit of 3028 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3029 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3030 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3031 int BitWidth, int CharWidth) { 3032 assert(CharWidth <= 64); 3033 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3034 3035 int Pos = 0; 3036 if (BitOffset >= CharWidth) { 3037 Pos += BitOffset / CharWidth; 3038 BitOffset = BitOffset % CharWidth; 3039 } 3040 3041 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3042 if (BitOffset + BitWidth >= CharWidth) { 3043 Bits[Pos++] |= (Used << BitOffset) & Used; 3044 BitWidth -= CharWidth - BitOffset; 3045 BitOffset = 0; 3046 } 3047 3048 while (BitWidth >= CharWidth) { 3049 Bits[Pos++] = Used; 3050 BitWidth -= CharWidth; 3051 } 3052 3053 if (BitWidth > 0) 3054 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3055 } 3056 3057 // Set the bits corresponding to a field having width `BitWidth` and located at 3058 // offset `BitOffset` (from the least significant bit) within a storage unit of 3059 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3060 // `Bits` corresponds to one target byte. Use target endian layout. 3061 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3062 int StorageSize, int BitOffset, int BitWidth, 3063 int CharWidth, bool BigEndian) { 3064 3065 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3066 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3067 3068 if (BigEndian) 3069 std::reverse(TmpBits.begin(), TmpBits.end()); 3070 3071 for (uint64_t V : TmpBits) 3072 Bits[StorageOffset++] |= V; 3073 } 3074 3075 static void setUsedBits(CodeGenModule &, QualType, int, 3076 SmallVectorImpl<uint64_t> &); 3077 3078 // Set the bits in `Bits`, which correspond to the value representations of 3079 // the actual members of the record type `RTy`. Note that this function does 3080 // not handle base classes, virtual tables, etc, since they cannot happen in 3081 // CMSE function arguments or return. The bit mask corresponds to the target 3082 // memory layout, i.e. it's endian dependent. 3083 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3084 SmallVectorImpl<uint64_t> &Bits) { 3085 ASTContext &Context = CGM.getContext(); 3086 int CharWidth = Context.getCharWidth(); 3087 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3088 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3089 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3090 3091 int Idx = 0; 3092 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3093 const FieldDecl *F = *I; 3094 3095 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3096 F->getType()->isIncompleteArrayType()) 3097 continue; 3098 3099 if (F->isBitField()) { 3100 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3101 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3102 BFI.StorageSize / CharWidth, BFI.Offset, 3103 BFI.Size, CharWidth, 3104 CGM.getDataLayout().isBigEndian()); 3105 continue; 3106 } 3107 3108 setUsedBits(CGM, F->getType(), 3109 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3110 } 3111 } 3112 3113 // Set the bits in `Bits`, which correspond to the value representations of 3114 // the elements of an array type `ATy`. 3115 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3116 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3117 const ASTContext &Context = CGM.getContext(); 3118 3119 QualType ETy = Context.getBaseElementType(ATy); 3120 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3121 SmallVector<uint64_t, 4> TmpBits(Size); 3122 setUsedBits(CGM, ETy, 0, TmpBits); 3123 3124 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3125 auto Src = TmpBits.begin(); 3126 auto Dst = Bits.begin() + Offset + I * Size; 3127 for (int J = 0; J < Size; ++J) 3128 *Dst++ |= *Src++; 3129 } 3130 } 3131 3132 // Set the bits in `Bits`, which correspond to the value representations of 3133 // the type `QTy`. 3134 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3135 SmallVectorImpl<uint64_t> &Bits) { 3136 if (const auto *RTy = QTy->getAs<RecordType>()) 3137 return setUsedBits(CGM, RTy, Offset, Bits); 3138 3139 ASTContext &Context = CGM.getContext(); 3140 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3141 return setUsedBits(CGM, ATy, Offset, Bits); 3142 3143 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3144 if (Size <= 0) 3145 return; 3146 3147 std::fill_n(Bits.begin() + Offset, Size, 3148 (uint64_t(1) << Context.getCharWidth()) - 1); 3149 } 3150 3151 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3152 int Pos, int Size, int CharWidth, 3153 bool BigEndian) { 3154 assert(Size > 0); 3155 uint64_t Mask = 0; 3156 if (BigEndian) { 3157 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3158 ++P) 3159 Mask = (Mask << CharWidth) | *P; 3160 } else { 3161 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3162 do 3163 Mask = (Mask << CharWidth) | *--P; 3164 while (P != End); 3165 } 3166 return Mask; 3167 } 3168 3169 // Emit code to clear the bits in a record, which aren't a part of any user 3170 // declared member, when the record is a function return. 3171 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3172 llvm::IntegerType *ITy, 3173 QualType QTy) { 3174 assert(Src->getType() == ITy); 3175 assert(ITy->getScalarSizeInBits() <= 64); 3176 3177 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3178 int Size = DataLayout.getTypeStoreSize(ITy); 3179 SmallVector<uint64_t, 4> Bits(Size); 3180 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3181 3182 int CharWidth = CGM.getContext().getCharWidth(); 3183 uint64_t Mask = 3184 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3185 3186 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3187 } 3188 3189 // Emit code to clear the bits in a record, which aren't a part of any user 3190 // declared member, when the record is a function argument. 3191 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3192 llvm::ArrayType *ATy, 3193 QualType QTy) { 3194 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3195 int Size = DataLayout.getTypeStoreSize(ATy); 3196 SmallVector<uint64_t, 16> Bits(Size); 3197 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3198 3199 // Clear each element of the LLVM array. 3200 int CharWidth = CGM.getContext().getCharWidth(); 3201 int CharsPerElt = 3202 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3203 int MaskIndex = 0; 3204 llvm::Value *R = llvm::UndefValue::get(ATy); 3205 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3206 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3207 DataLayout.isBigEndian()); 3208 MaskIndex += CharsPerElt; 3209 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3210 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3211 R = Builder.CreateInsertValue(R, T1, I); 3212 } 3213 3214 return R; 3215 } 3216 3217 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3218 bool EmitRetDbgLoc, 3219 SourceLocation EndLoc) { 3220 if (FI.isNoReturn()) { 3221 // Noreturn functions don't return. 3222 EmitUnreachable(EndLoc); 3223 return; 3224 } 3225 3226 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3227 // Naked functions don't have epilogues. 3228 Builder.CreateUnreachable(); 3229 return; 3230 } 3231 3232 // Functions with no result always return void. 3233 if (!ReturnValue.isValid()) { 3234 Builder.CreateRetVoid(); 3235 return; 3236 } 3237 3238 llvm::DebugLoc RetDbgLoc; 3239 llvm::Value *RV = nullptr; 3240 QualType RetTy = FI.getReturnType(); 3241 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3242 3243 switch (RetAI.getKind()) { 3244 case ABIArgInfo::InAlloca: 3245 // Aggregrates get evaluated directly into the destination. Sometimes we 3246 // need to return the sret value in a register, though. 3247 assert(hasAggregateEvaluationKind(RetTy)); 3248 if (RetAI.getInAllocaSRet()) { 3249 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3250 --EI; 3251 llvm::Value *ArgStruct = &*EI; 3252 llvm::Value *SRet = Builder.CreateStructGEP( 3253 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 3254 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 3255 } 3256 break; 3257 3258 case ABIArgInfo::Indirect: { 3259 auto AI = CurFn->arg_begin(); 3260 if (RetAI.isSRetAfterThis()) 3261 ++AI; 3262 switch (getEvaluationKind(RetTy)) { 3263 case TEK_Complex: { 3264 ComplexPairTy RT = 3265 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3266 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3267 /*isInit*/ true); 3268 break; 3269 } 3270 case TEK_Aggregate: 3271 // Do nothing; aggregrates get evaluated directly into the destination. 3272 break; 3273 case TEK_Scalar: 3274 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 3275 MakeNaturalAlignAddrLValue(&*AI, RetTy), 3276 /*isInit*/ true); 3277 break; 3278 } 3279 break; 3280 } 3281 3282 case ABIArgInfo::Extend: 3283 case ABIArgInfo::Direct: 3284 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3285 RetAI.getDirectOffset() == 0) { 3286 // The internal return value temp always will have pointer-to-return-type 3287 // type, just do a load. 3288 3289 // If there is a dominating store to ReturnValue, we can elide 3290 // the load, zap the store, and usually zap the alloca. 3291 if (llvm::StoreInst *SI = 3292 findDominatingStoreToReturnValue(*this)) { 3293 // Reuse the debug location from the store unless there is 3294 // cleanup code to be emitted between the store and return 3295 // instruction. 3296 if (EmitRetDbgLoc && !AutoreleaseResult) 3297 RetDbgLoc = SI->getDebugLoc(); 3298 // Get the stored value and nuke the now-dead store. 3299 RV = SI->getValueOperand(); 3300 SI->eraseFromParent(); 3301 3302 // Otherwise, we have to do a simple load. 3303 } else { 3304 RV = Builder.CreateLoad(ReturnValue); 3305 } 3306 } else { 3307 // If the value is offset in memory, apply the offset now. 3308 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3309 3310 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3311 } 3312 3313 // In ARC, end functions that return a retainable type with a call 3314 // to objc_autoreleaseReturnValue. 3315 if (AutoreleaseResult) { 3316 #ifndef NDEBUG 3317 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3318 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3319 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3320 // CurCodeDecl or BlockInfo. 3321 QualType RT; 3322 3323 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3324 RT = FD->getReturnType(); 3325 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3326 RT = MD->getReturnType(); 3327 else if (isa<BlockDecl>(CurCodeDecl)) 3328 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3329 else 3330 llvm_unreachable("Unexpected function/method type"); 3331 3332 assert(getLangOpts().ObjCAutoRefCount && 3333 !FI.isReturnsRetained() && 3334 RT->isObjCRetainableType()); 3335 #endif 3336 RV = emitAutoreleaseOfResult(*this, RV); 3337 } 3338 3339 break; 3340 3341 case ABIArgInfo::Ignore: 3342 break; 3343 3344 case ABIArgInfo::CoerceAndExpand: { 3345 auto coercionType = RetAI.getCoerceAndExpandType(); 3346 3347 // Load all of the coerced elements out into results. 3348 llvm::SmallVector<llvm::Value*, 4> results; 3349 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3350 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3351 auto coercedEltType = coercionType->getElementType(i); 3352 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3353 continue; 3354 3355 auto eltAddr = Builder.CreateStructGEP(addr, i); 3356 auto elt = Builder.CreateLoad(eltAddr); 3357 results.push_back(elt); 3358 } 3359 3360 // If we have one result, it's the single direct result type. 3361 if (results.size() == 1) { 3362 RV = results[0]; 3363 3364 // Otherwise, we need to make a first-class aggregate. 3365 } else { 3366 // Construct a return type that lacks padding elements. 3367 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3368 3369 RV = llvm::UndefValue::get(returnType); 3370 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3371 RV = Builder.CreateInsertValue(RV, results[i], i); 3372 } 3373 } 3374 break; 3375 } 3376 case ABIArgInfo::Expand: 3377 case ABIArgInfo::IndirectAliased: 3378 llvm_unreachable("Invalid ABI kind for return argument"); 3379 } 3380 3381 llvm::Instruction *Ret; 3382 if (RV) { 3383 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3384 // For certain return types, clear padding bits, as they may reveal 3385 // sensitive information. 3386 // Small struct/union types are passed as integers. 3387 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3388 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3389 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3390 } 3391 EmitReturnValueCheck(RV); 3392 Ret = Builder.CreateRet(RV); 3393 } else { 3394 Ret = Builder.CreateRetVoid(); 3395 } 3396 3397 if (RetDbgLoc) 3398 Ret->setDebugLoc(std::move(RetDbgLoc)); 3399 } 3400 3401 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3402 // A current decl may not be available when emitting vtable thunks. 3403 if (!CurCodeDecl) 3404 return; 3405 3406 // If the return block isn't reachable, neither is this check, so don't emit 3407 // it. 3408 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3409 return; 3410 3411 ReturnsNonNullAttr *RetNNAttr = nullptr; 3412 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3413 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3414 3415 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3416 return; 3417 3418 // Prefer the returns_nonnull attribute if it's present. 3419 SourceLocation AttrLoc; 3420 SanitizerMask CheckKind; 3421 SanitizerHandler Handler; 3422 if (RetNNAttr) { 3423 assert(!requiresReturnValueNullabilityCheck() && 3424 "Cannot check nullability and the nonnull attribute"); 3425 AttrLoc = RetNNAttr->getLocation(); 3426 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3427 Handler = SanitizerHandler::NonnullReturn; 3428 } else { 3429 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3430 if (auto *TSI = DD->getTypeSourceInfo()) 3431 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3432 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3433 CheckKind = SanitizerKind::NullabilityReturn; 3434 Handler = SanitizerHandler::NullabilityReturn; 3435 } 3436 3437 SanitizerScope SanScope(this); 3438 3439 // Make sure the "return" source location is valid. If we're checking a 3440 // nullability annotation, make sure the preconditions for the check are met. 3441 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3442 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3443 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3444 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3445 if (requiresReturnValueNullabilityCheck()) 3446 CanNullCheck = 3447 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3448 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3449 EmitBlock(Check); 3450 3451 // Now do the null check. 3452 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3453 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3454 llvm::Value *DynamicData[] = {SLocPtr}; 3455 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3456 3457 EmitBlock(NoCheck); 3458 3459 #ifndef NDEBUG 3460 // The return location should not be used after the check has been emitted. 3461 ReturnLocation = Address::invalid(); 3462 #endif 3463 } 3464 3465 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3466 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3467 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3468 } 3469 3470 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3471 QualType Ty) { 3472 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3473 // placeholders. 3474 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3475 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3476 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3477 3478 // FIXME: When we generate this IR in one pass, we shouldn't need 3479 // this win32-specific alignment hack. 3480 CharUnits Align = CharUnits::fromQuantity(4); 3481 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3482 3483 return AggValueSlot::forAddr(Address(Placeholder, Align), 3484 Ty.getQualifiers(), 3485 AggValueSlot::IsNotDestructed, 3486 AggValueSlot::DoesNotNeedGCBarriers, 3487 AggValueSlot::IsNotAliased, 3488 AggValueSlot::DoesNotOverlap); 3489 } 3490 3491 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3492 const VarDecl *param, 3493 SourceLocation loc) { 3494 // StartFunction converted the ABI-lowered parameter(s) into a 3495 // local alloca. We need to turn that into an r-value suitable 3496 // for EmitCall. 3497 Address local = GetAddrOfLocalVar(param); 3498 3499 QualType type = param->getType(); 3500 3501 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3502 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3503 } 3504 3505 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3506 // but the argument needs to be the original pointer. 3507 if (type->isReferenceType()) { 3508 args.add(RValue::get(Builder.CreateLoad(local)), type); 3509 3510 // In ARC, move out of consumed arguments so that the release cleanup 3511 // entered by StartFunction doesn't cause an over-release. This isn't 3512 // optimal -O0 code generation, but it should get cleaned up when 3513 // optimization is enabled. This also assumes that delegate calls are 3514 // performed exactly once for a set of arguments, but that should be safe. 3515 } else if (getLangOpts().ObjCAutoRefCount && 3516 param->hasAttr<NSConsumedAttr>() && 3517 type->isObjCRetainableType()) { 3518 llvm::Value *ptr = Builder.CreateLoad(local); 3519 auto null = 3520 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3521 Builder.CreateStore(null, local); 3522 args.add(RValue::get(ptr), type); 3523 3524 // For the most part, we just need to load the alloca, except that 3525 // aggregate r-values are actually pointers to temporaries. 3526 } else { 3527 args.add(convertTempToRValue(local, type, loc), type); 3528 } 3529 3530 // Deactivate the cleanup for the callee-destructed param that was pushed. 3531 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3532 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3533 param->needsDestruction(getContext())) { 3534 EHScopeStack::stable_iterator cleanup = 3535 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3536 assert(cleanup.isValid() && 3537 "cleanup for callee-destructed param not recorded"); 3538 // This unreachable is a temporary marker which will be removed later. 3539 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3540 args.addArgCleanupDeactivation(cleanup, isActive); 3541 } 3542 } 3543 3544 static bool isProvablyNull(llvm::Value *addr) { 3545 return isa<llvm::ConstantPointerNull>(addr); 3546 } 3547 3548 /// Emit the actual writing-back of a writeback. 3549 static void emitWriteback(CodeGenFunction &CGF, 3550 const CallArgList::Writeback &writeback) { 3551 const LValue &srcLV = writeback.Source; 3552 Address srcAddr = srcLV.getAddress(CGF); 3553 assert(!isProvablyNull(srcAddr.getPointer()) && 3554 "shouldn't have writeback for provably null argument"); 3555 3556 llvm::BasicBlock *contBB = nullptr; 3557 3558 // If the argument wasn't provably non-null, we need to null check 3559 // before doing the store. 3560 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3561 CGF.CGM.getDataLayout()); 3562 if (!provablyNonNull) { 3563 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3564 contBB = CGF.createBasicBlock("icr.done"); 3565 3566 llvm::Value *isNull = 3567 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3568 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3569 CGF.EmitBlock(writebackBB); 3570 } 3571 3572 // Load the value to writeback. 3573 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3574 3575 // Cast it back, in case we're writing an id to a Foo* or something. 3576 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3577 "icr.writeback-cast"); 3578 3579 // Perform the writeback. 3580 3581 // If we have a "to use" value, it's something we need to emit a use 3582 // of. This has to be carefully threaded in: if it's done after the 3583 // release it's potentially undefined behavior (and the optimizer 3584 // will ignore it), and if it happens before the retain then the 3585 // optimizer could move the release there. 3586 if (writeback.ToUse) { 3587 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3588 3589 // Retain the new value. No need to block-copy here: the block's 3590 // being passed up the stack. 3591 value = CGF.EmitARCRetainNonBlock(value); 3592 3593 // Emit the intrinsic use here. 3594 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3595 3596 // Load the old value (primitively). 3597 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3598 3599 // Put the new value in place (primitively). 3600 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3601 3602 // Release the old value. 3603 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3604 3605 // Otherwise, we can just do a normal lvalue store. 3606 } else { 3607 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3608 } 3609 3610 // Jump to the continuation block. 3611 if (!provablyNonNull) 3612 CGF.EmitBlock(contBB); 3613 } 3614 3615 static void emitWritebacks(CodeGenFunction &CGF, 3616 const CallArgList &args) { 3617 for (const auto &I : args.writebacks()) 3618 emitWriteback(CGF, I); 3619 } 3620 3621 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3622 const CallArgList &CallArgs) { 3623 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3624 CallArgs.getCleanupsToDeactivate(); 3625 // Iterate in reverse to increase the likelihood of popping the cleanup. 3626 for (const auto &I : llvm::reverse(Cleanups)) { 3627 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3628 I.IsActiveIP->eraseFromParent(); 3629 } 3630 } 3631 3632 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3633 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3634 if (uop->getOpcode() == UO_AddrOf) 3635 return uop->getSubExpr(); 3636 return nullptr; 3637 } 3638 3639 /// Emit an argument that's being passed call-by-writeback. That is, 3640 /// we are passing the address of an __autoreleased temporary; it 3641 /// might be copy-initialized with the current value of the given 3642 /// address, but it will definitely be copied out of after the call. 3643 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3644 const ObjCIndirectCopyRestoreExpr *CRE) { 3645 LValue srcLV; 3646 3647 // Make an optimistic effort to emit the address as an l-value. 3648 // This can fail if the argument expression is more complicated. 3649 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3650 srcLV = CGF.EmitLValue(lvExpr); 3651 3652 // Otherwise, just emit it as a scalar. 3653 } else { 3654 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3655 3656 QualType srcAddrType = 3657 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3658 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3659 } 3660 Address srcAddr = srcLV.getAddress(CGF); 3661 3662 // The dest and src types don't necessarily match in LLVM terms 3663 // because of the crazy ObjC compatibility rules. 3664 3665 llvm::PointerType *destType = 3666 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3667 3668 // If the address is a constant null, just pass the appropriate null. 3669 if (isProvablyNull(srcAddr.getPointer())) { 3670 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3671 CRE->getType()); 3672 return; 3673 } 3674 3675 // Create the temporary. 3676 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3677 CGF.getPointerAlign(), 3678 "icr.temp"); 3679 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3680 // and that cleanup will be conditional if we can't prove that the l-value 3681 // isn't null, so we need to register a dominating point so that the cleanups 3682 // system will make valid IR. 3683 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3684 3685 // Zero-initialize it if we're not doing a copy-initialization. 3686 bool shouldCopy = CRE->shouldCopy(); 3687 if (!shouldCopy) { 3688 llvm::Value *null = 3689 llvm::ConstantPointerNull::get( 3690 cast<llvm::PointerType>(destType->getElementType())); 3691 CGF.Builder.CreateStore(null, temp); 3692 } 3693 3694 llvm::BasicBlock *contBB = nullptr; 3695 llvm::BasicBlock *originBB = nullptr; 3696 3697 // If the address is *not* known to be non-null, we need to switch. 3698 llvm::Value *finalArgument; 3699 3700 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3701 CGF.CGM.getDataLayout()); 3702 if (provablyNonNull) { 3703 finalArgument = temp.getPointer(); 3704 } else { 3705 llvm::Value *isNull = 3706 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3707 3708 finalArgument = CGF.Builder.CreateSelect(isNull, 3709 llvm::ConstantPointerNull::get(destType), 3710 temp.getPointer(), "icr.argument"); 3711 3712 // If we need to copy, then the load has to be conditional, which 3713 // means we need control flow. 3714 if (shouldCopy) { 3715 originBB = CGF.Builder.GetInsertBlock(); 3716 contBB = CGF.createBasicBlock("icr.cont"); 3717 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3718 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3719 CGF.EmitBlock(copyBB); 3720 condEval.begin(CGF); 3721 } 3722 } 3723 3724 llvm::Value *valueToUse = nullptr; 3725 3726 // Perform a copy if necessary. 3727 if (shouldCopy) { 3728 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3729 assert(srcRV.isScalar()); 3730 3731 llvm::Value *src = srcRV.getScalarVal(); 3732 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3733 "icr.cast"); 3734 3735 // Use an ordinary store, not a store-to-lvalue. 3736 CGF.Builder.CreateStore(src, temp); 3737 3738 // If optimization is enabled, and the value was held in a 3739 // __strong variable, we need to tell the optimizer that this 3740 // value has to stay alive until we're doing the store back. 3741 // This is because the temporary is effectively unretained, 3742 // and so otherwise we can violate the high-level semantics. 3743 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3744 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3745 valueToUse = src; 3746 } 3747 } 3748 3749 // Finish the control flow if we needed it. 3750 if (shouldCopy && !provablyNonNull) { 3751 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3752 CGF.EmitBlock(contBB); 3753 3754 // Make a phi for the value to intrinsically use. 3755 if (valueToUse) { 3756 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3757 "icr.to-use"); 3758 phiToUse->addIncoming(valueToUse, copyBB); 3759 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3760 originBB); 3761 valueToUse = phiToUse; 3762 } 3763 3764 condEval.end(CGF); 3765 } 3766 3767 args.addWriteback(srcLV, temp, valueToUse); 3768 args.add(RValue::get(finalArgument), CRE->getType()); 3769 } 3770 3771 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3772 assert(!StackBase); 3773 3774 // Save the stack. 3775 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3776 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3777 } 3778 3779 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3780 if (StackBase) { 3781 // Restore the stack after the call. 3782 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3783 CGF.Builder.CreateCall(F, StackBase); 3784 } 3785 } 3786 3787 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3788 SourceLocation ArgLoc, 3789 AbstractCallee AC, 3790 unsigned ParmNum) { 3791 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3792 SanOpts.has(SanitizerKind::NullabilityArg))) 3793 return; 3794 3795 // The param decl may be missing in a variadic function. 3796 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3797 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3798 3799 // Prefer the nonnull attribute if it's present. 3800 const NonNullAttr *NNAttr = nullptr; 3801 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3802 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3803 3804 bool CanCheckNullability = false; 3805 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3806 auto Nullability = PVD->getType()->getNullability(getContext()); 3807 CanCheckNullability = Nullability && 3808 *Nullability == NullabilityKind::NonNull && 3809 PVD->getTypeSourceInfo(); 3810 } 3811 3812 if (!NNAttr && !CanCheckNullability) 3813 return; 3814 3815 SourceLocation AttrLoc; 3816 SanitizerMask CheckKind; 3817 SanitizerHandler Handler; 3818 if (NNAttr) { 3819 AttrLoc = NNAttr->getLocation(); 3820 CheckKind = SanitizerKind::NonnullAttribute; 3821 Handler = SanitizerHandler::NonnullArg; 3822 } else { 3823 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3824 CheckKind = SanitizerKind::NullabilityArg; 3825 Handler = SanitizerHandler::NullabilityArg; 3826 } 3827 3828 SanitizerScope SanScope(this); 3829 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 3830 llvm::Constant *StaticData[] = { 3831 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3832 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3833 }; 3834 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3835 } 3836 3837 // Check if the call is going to use the inalloca convention. This needs to 3838 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 3839 // later, so we can't check it directly. 3840 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 3841 ArrayRef<QualType> ArgTypes) { 3842 // The Swift calling convention doesn't go through the target-specific 3843 // argument classification, so it never uses inalloca. 3844 // TODO: Consider limiting inalloca use to only calling conventions supported 3845 // by MSVC. 3846 if (ExplicitCC == CC_Swift) 3847 return false; 3848 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 3849 return false; 3850 return llvm::any_of(ArgTypes, [&](QualType Ty) { 3851 return isInAllocaArgument(CGM.getCXXABI(), Ty); 3852 }); 3853 } 3854 3855 #ifndef NDEBUG 3856 // Determine whether the given argument is an Objective-C method 3857 // that may have type parameters in its signature. 3858 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3859 const DeclContext *dc = method->getDeclContext(); 3860 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 3861 return classDecl->getTypeParamListAsWritten(); 3862 } 3863 3864 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3865 return catDecl->getTypeParamList(); 3866 } 3867 3868 return false; 3869 } 3870 #endif 3871 3872 /// EmitCallArgs - Emit call arguments for a function. 3873 void CodeGenFunction::EmitCallArgs( 3874 CallArgList &Args, PrototypeWrapper Prototype, 3875 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3876 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3877 SmallVector<QualType, 16> ArgTypes; 3878 3879 assert((ParamsToSkip == 0 || Prototype.P) && 3880 "Can't skip parameters if type info is not provided"); 3881 3882 // This variable only captures *explicitly* written conventions, not those 3883 // applied by default via command line flags or target defaults, such as 3884 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 3885 // require knowing if this is a C++ instance method or being able to see 3886 // unprototyped FunctionTypes. 3887 CallingConv ExplicitCC = CC_C; 3888 3889 // First, if a prototype was provided, use those argument types. 3890 bool IsVariadic = false; 3891 if (Prototype.P) { 3892 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 3893 if (MD) { 3894 IsVariadic = MD->isVariadic(); 3895 ExplicitCC = getCallingConventionForDecl( 3896 MD, CGM.getTarget().getTriple().isOSWindows()); 3897 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 3898 MD->param_type_end()); 3899 } else { 3900 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 3901 IsVariadic = FPT->isVariadic(); 3902 ExplicitCC = FPT->getExtInfo().getCC(); 3903 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 3904 FPT->param_type_end()); 3905 } 3906 3907 #ifndef NDEBUG 3908 // Check that the prototyped types match the argument expression types. 3909 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 3910 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3911 for (QualType Ty : ArgTypes) { 3912 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3913 assert( 3914 (isGenericMethod || Ty->isVariablyModifiedType() || 3915 Ty.getNonReferenceType()->isObjCRetainableType() || 3916 getContext() 3917 .getCanonicalType(Ty.getNonReferenceType()) 3918 .getTypePtr() == 3919 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 3920 "type mismatch in call argument!"); 3921 ++Arg; 3922 } 3923 3924 // Either we've emitted all the call args, or we have a call to variadic 3925 // function. 3926 assert((Arg == ArgRange.end() || IsVariadic) && 3927 "Extra arguments in non-variadic function!"); 3928 #endif 3929 } 3930 3931 // If we still have any arguments, emit them using the type of the argument. 3932 for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()), 3933 ArgRange.end())) 3934 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 3935 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3936 3937 // We must evaluate arguments from right to left in the MS C++ ABI, 3938 // because arguments are destroyed left to right in the callee. As a special 3939 // case, there are certain language constructs that require left-to-right 3940 // evaluation, and in those cases we consider the evaluation order requirement 3941 // to trump the "destruction order is reverse construction order" guarantee. 3942 bool LeftToRight = 3943 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3944 ? Order == EvaluationOrder::ForceLeftToRight 3945 : Order != EvaluationOrder::ForceRightToLeft; 3946 3947 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3948 RValue EmittedArg) { 3949 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3950 return; 3951 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3952 if (PS == nullptr) 3953 return; 3954 3955 const auto &Context = getContext(); 3956 auto SizeTy = Context.getSizeType(); 3957 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3958 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3959 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3960 EmittedArg.getScalarVal(), 3961 PS->isDynamic()); 3962 Args.add(RValue::get(V), SizeTy); 3963 // If we're emitting args in reverse, be sure to do so with 3964 // pass_object_size, as well. 3965 if (!LeftToRight) 3966 std::swap(Args.back(), *(&Args.back() - 1)); 3967 }; 3968 3969 // Insert a stack save if we're going to need any inalloca args. 3970 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 3971 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 3972 "inalloca only supported on x86"); 3973 Args.allocateArgumentMemory(*this); 3974 } 3975 3976 // Evaluate each argument in the appropriate order. 3977 size_t CallArgsStart = Args.size(); 3978 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3979 unsigned Idx = LeftToRight ? I : E - I - 1; 3980 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3981 unsigned InitialArgSize = Args.size(); 3982 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3983 // the argument and parameter match or the objc method is parameterized. 3984 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3985 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3986 ArgTypes[Idx]) || 3987 (isa<ObjCMethodDecl>(AC.getDecl()) && 3988 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3989 "Argument and parameter types don't match"); 3990 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3991 // In particular, we depend on it being the last arg in Args, and the 3992 // objectsize bits depend on there only being one arg if !LeftToRight. 3993 assert(InitialArgSize + 1 == Args.size() && 3994 "The code below depends on only adding one arg per EmitCallArg"); 3995 (void)InitialArgSize; 3996 // Since pointer argument are never emitted as LValue, it is safe to emit 3997 // non-null argument check for r-value only. 3998 if (!Args.back().hasLValue()) { 3999 RValue RVArg = Args.back().getKnownRValue(); 4000 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4001 ParamsToSkip + Idx); 4002 // @llvm.objectsize should never have side-effects and shouldn't need 4003 // destruction/cleanups, so we can safely "emit" it after its arg, 4004 // regardless of right-to-leftness 4005 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4006 } 4007 } 4008 4009 if (!LeftToRight) { 4010 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4011 // IR function. 4012 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4013 } 4014 } 4015 4016 namespace { 4017 4018 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4019 DestroyUnpassedArg(Address Addr, QualType Ty) 4020 : Addr(Addr), Ty(Ty) {} 4021 4022 Address Addr; 4023 QualType Ty; 4024 4025 void Emit(CodeGenFunction &CGF, Flags flags) override { 4026 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4027 if (DtorKind == QualType::DK_cxx_destructor) { 4028 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4029 assert(!Dtor->isTrivial()); 4030 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4031 /*Delegating=*/false, Addr, Ty); 4032 } else { 4033 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4034 } 4035 } 4036 }; 4037 4038 struct DisableDebugLocationUpdates { 4039 CodeGenFunction &CGF; 4040 bool disabledDebugInfo; 4041 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4042 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4043 CGF.disableDebugInfo(); 4044 } 4045 ~DisableDebugLocationUpdates() { 4046 if (disabledDebugInfo) 4047 CGF.enableDebugInfo(); 4048 } 4049 }; 4050 4051 } // end anonymous namespace 4052 4053 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4054 if (!HasLV) 4055 return RV; 4056 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4057 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4058 LV.isVolatile()); 4059 IsUsed = true; 4060 return RValue::getAggregate(Copy.getAddress(CGF)); 4061 } 4062 4063 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4064 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4065 if (!HasLV && RV.isScalar()) 4066 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4067 else if (!HasLV && RV.isComplex()) 4068 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4069 else { 4070 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4071 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4072 // We assume that call args are never copied into subobjects. 4073 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4074 HasLV ? LV.isVolatileQualified() 4075 : RV.isVolatileQualified()); 4076 } 4077 IsUsed = true; 4078 } 4079 4080 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4081 QualType type) { 4082 DisableDebugLocationUpdates Dis(*this, E); 4083 if (const ObjCIndirectCopyRestoreExpr *CRE 4084 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4085 assert(getLangOpts().ObjCAutoRefCount); 4086 return emitWritebackArg(*this, args, CRE); 4087 } 4088 4089 assert(type->isReferenceType() == E->isGLValue() && 4090 "reference binding to unmaterialized r-value!"); 4091 4092 if (E->isGLValue()) { 4093 assert(E->getObjectKind() == OK_Ordinary); 4094 return args.add(EmitReferenceBindingToExpr(E), type); 4095 } 4096 4097 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4098 4099 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4100 // However, we still have to push an EH-only cleanup in case we unwind before 4101 // we make it to the call. 4102 if (HasAggregateEvalKind && 4103 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4104 // If we're using inalloca, use the argument memory. Otherwise, use a 4105 // temporary. 4106 AggValueSlot Slot; 4107 if (args.isUsingInAlloca()) 4108 Slot = createPlaceholderSlot(*this, type); 4109 else 4110 Slot = CreateAggTemp(type, "agg.tmp"); 4111 4112 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4113 if (const auto *RD = type->getAsCXXRecordDecl()) 4114 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4115 else 4116 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4117 4118 if (DestroyedInCallee) 4119 Slot.setExternallyDestructed(); 4120 4121 EmitAggExpr(E, Slot); 4122 RValue RV = Slot.asRValue(); 4123 args.add(RV, type); 4124 4125 if (DestroyedInCallee && NeedsEHCleanup) { 4126 // Create a no-op GEP between the placeholder and the cleanup so we can 4127 // RAUW it successfully. It also serves as a marker of the first 4128 // instruction where the cleanup is active. 4129 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4130 type); 4131 // This unreachable is a temporary marker which will be removed later. 4132 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4133 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 4134 } 4135 return; 4136 } 4137 4138 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4139 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4140 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4141 assert(L.isSimple()); 4142 args.addUncopiedAggregate(L, type); 4143 return; 4144 } 4145 4146 args.add(EmitAnyExprToTemp(E), type); 4147 } 4148 4149 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4150 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4151 // implicitly widens null pointer constants that are arguments to varargs 4152 // functions to pointer-sized ints. 4153 if (!getTarget().getTriple().isOSWindows()) 4154 return Arg->getType(); 4155 4156 if (Arg->getType()->isIntegerType() && 4157 getContext().getTypeSize(Arg->getType()) < 4158 getContext().getTargetInfo().getPointerWidth(0) && 4159 Arg->isNullPointerConstant(getContext(), 4160 Expr::NPC_ValueDependentIsNotNull)) { 4161 return getContext().getIntPtrType(); 4162 } 4163 4164 return Arg->getType(); 4165 } 4166 4167 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4168 // optimizer it can aggressively ignore unwind edges. 4169 void 4170 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4171 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4172 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4173 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4174 CGM.getNoObjCARCExceptionsMetadata()); 4175 } 4176 4177 /// Emits a call to the given no-arguments nounwind runtime function. 4178 llvm::CallInst * 4179 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4180 const llvm::Twine &name) { 4181 return EmitNounwindRuntimeCall(callee, None, name); 4182 } 4183 4184 /// Emits a call to the given nounwind runtime function. 4185 llvm::CallInst * 4186 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4187 ArrayRef<llvm::Value *> args, 4188 const llvm::Twine &name) { 4189 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4190 call->setDoesNotThrow(); 4191 return call; 4192 } 4193 4194 /// Emits a simple call (never an invoke) to the given no-arguments 4195 /// runtime function. 4196 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4197 const llvm::Twine &name) { 4198 return EmitRuntimeCall(callee, None, name); 4199 } 4200 4201 // Calls which may throw must have operand bundles indicating which funclet 4202 // they are nested within. 4203 SmallVector<llvm::OperandBundleDef, 1> 4204 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4205 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4206 // There is no need for a funclet operand bundle if we aren't inside a 4207 // funclet. 4208 if (!CurrentFuncletPad) 4209 return BundleList; 4210 4211 // Skip intrinsics which cannot throw. 4212 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4213 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4214 return BundleList; 4215 4216 BundleList.emplace_back("funclet", CurrentFuncletPad); 4217 return BundleList; 4218 } 4219 4220 /// Emits a simple call (never an invoke) to the given runtime function. 4221 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4222 ArrayRef<llvm::Value *> args, 4223 const llvm::Twine &name) { 4224 llvm::CallInst *call = Builder.CreateCall( 4225 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4226 call->setCallingConv(getRuntimeCC()); 4227 return call; 4228 } 4229 4230 /// Emits a call or invoke to the given noreturn runtime function. 4231 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4232 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4233 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4234 getBundlesForFunclet(callee.getCallee()); 4235 4236 if (getInvokeDest()) { 4237 llvm::InvokeInst *invoke = 4238 Builder.CreateInvoke(callee, 4239 getUnreachableBlock(), 4240 getInvokeDest(), 4241 args, 4242 BundleList); 4243 invoke->setDoesNotReturn(); 4244 invoke->setCallingConv(getRuntimeCC()); 4245 } else { 4246 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4247 call->setDoesNotReturn(); 4248 call->setCallingConv(getRuntimeCC()); 4249 Builder.CreateUnreachable(); 4250 } 4251 } 4252 4253 /// Emits a call or invoke instruction to the given nullary runtime function. 4254 llvm::CallBase * 4255 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4256 const Twine &name) { 4257 return EmitRuntimeCallOrInvoke(callee, None, name); 4258 } 4259 4260 /// Emits a call or invoke instruction to the given runtime function. 4261 llvm::CallBase * 4262 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4263 ArrayRef<llvm::Value *> args, 4264 const Twine &name) { 4265 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4266 call->setCallingConv(getRuntimeCC()); 4267 return call; 4268 } 4269 4270 /// Emits a call or invoke instruction to the given function, depending 4271 /// on the current state of the EH stack. 4272 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4273 ArrayRef<llvm::Value *> Args, 4274 const Twine &Name) { 4275 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4276 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4277 getBundlesForFunclet(Callee.getCallee()); 4278 4279 llvm::CallBase *Inst; 4280 if (!InvokeDest) 4281 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4282 else { 4283 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4284 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4285 Name); 4286 EmitBlock(ContBB); 4287 } 4288 4289 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4290 // optimizer it can aggressively ignore unwind edges. 4291 if (CGM.getLangOpts().ObjCAutoRefCount) 4292 AddObjCARCExceptionMetadata(Inst); 4293 4294 return Inst; 4295 } 4296 4297 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4298 llvm::Value *New) { 4299 DeferredReplacements.push_back(std::make_pair(Old, New)); 4300 } 4301 4302 namespace { 4303 4304 /// Specify given \p NewAlign as the alignment of return value attribute. If 4305 /// such attribute already exists, re-set it to the maximal one of two options. 4306 LLVM_NODISCARD llvm::AttributeList 4307 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4308 const llvm::AttributeList &Attrs, 4309 llvm::Align NewAlign) { 4310 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4311 if (CurAlign >= NewAlign) 4312 return Attrs; 4313 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4314 return Attrs 4315 .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex, 4316 llvm::Attribute::AttrKind::Alignment) 4317 .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr); 4318 } 4319 4320 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4321 protected: 4322 CodeGenFunction &CGF; 4323 4324 /// We do nothing if this is, or becomes, nullptr. 4325 const AlignedAttrTy *AA = nullptr; 4326 4327 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4328 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4329 4330 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4331 : CGF(CGF_) { 4332 if (!FuncDecl) 4333 return; 4334 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4335 } 4336 4337 public: 4338 /// If we can, materialize the alignment as an attribute on return value. 4339 LLVM_NODISCARD llvm::AttributeList 4340 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4341 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4342 return Attrs; 4343 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4344 if (!AlignmentCI) 4345 return Attrs; 4346 // We may legitimately have non-power-of-2 alignment here. 4347 // If so, this is UB land, emit it via `@llvm.assume` instead. 4348 if (!AlignmentCI->getValue().isPowerOf2()) 4349 return Attrs; 4350 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4351 CGF.getLLVMContext(), Attrs, 4352 llvm::Align( 4353 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4354 AA = nullptr; // We're done. Disallow doing anything else. 4355 return NewAttrs; 4356 } 4357 4358 /// Emit alignment assumption. 4359 /// This is a general fallback that we take if either there is an offset, 4360 /// or the alignment is variable or we are sanitizing for alignment. 4361 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4362 if (!AA) 4363 return; 4364 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4365 AA->getLocation(), Alignment, OffsetCI); 4366 AA = nullptr; // We're done. Disallow doing anything else. 4367 } 4368 }; 4369 4370 /// Helper data structure to emit `AssumeAlignedAttr`. 4371 class AssumeAlignedAttrEmitter final 4372 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4373 public: 4374 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4375 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4376 if (!AA) 4377 return; 4378 // It is guaranteed that the alignment/offset are constants. 4379 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4380 if (Expr *Offset = AA->getOffset()) { 4381 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4382 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4383 OffsetCI = nullptr; 4384 } 4385 } 4386 }; 4387 4388 /// Helper data structure to emit `AllocAlignAttr`. 4389 class AllocAlignAttrEmitter final 4390 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4391 public: 4392 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4393 const CallArgList &CallArgs) 4394 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4395 if (!AA) 4396 return; 4397 // Alignment may or may not be a constant, and that is okay. 4398 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4399 .getRValue(CGF) 4400 .getScalarVal(); 4401 } 4402 }; 4403 4404 } // namespace 4405 4406 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4407 const CGCallee &Callee, 4408 ReturnValueSlot ReturnValue, 4409 const CallArgList &CallArgs, 4410 llvm::CallBase **callOrInvoke, 4411 SourceLocation Loc) { 4412 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4413 4414 assert(Callee.isOrdinary() || Callee.isVirtual()); 4415 4416 // Handle struct-return functions by passing a pointer to the 4417 // location that we would like to return into. 4418 QualType RetTy = CallInfo.getReturnType(); 4419 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4420 4421 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4422 4423 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4424 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4425 // We can only guarantee that a function is called from the correct 4426 // context/function based on the appropriate target attributes, 4427 // so only check in the case where we have both always_inline and target 4428 // since otherwise we could be making a conditional call after a check for 4429 // the proper cpu features (and it won't cause code generation issues due to 4430 // function based code generation). 4431 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4432 TargetDecl->hasAttr<TargetAttr>()) 4433 checkTargetFeatures(Loc, FD); 4434 4435 // Some architectures (such as x86-64) have the ABI changed based on 4436 // attribute-target/features. Give them a chance to diagnose. 4437 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4438 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4439 } 4440 4441 #ifndef NDEBUG 4442 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4443 // For an inalloca varargs function, we don't expect CallInfo to match the 4444 // function pointer's type, because the inalloca struct a will have extra 4445 // fields in it for the varargs parameters. Code later in this function 4446 // bitcasts the function pointer to the type derived from CallInfo. 4447 // 4448 // In other cases, we assert that the types match up (until pointers stop 4449 // having pointee types). 4450 llvm::Type *TypeFromVal; 4451 if (Callee.isVirtual()) 4452 TypeFromVal = Callee.getVirtualFunctionType(); 4453 else 4454 TypeFromVal = 4455 Callee.getFunctionPointer()->getType()->getPointerElementType(); 4456 assert(IRFuncTy == TypeFromVal); 4457 } 4458 #endif 4459 4460 // 1. Set up the arguments. 4461 4462 // If we're using inalloca, insert the allocation after the stack save. 4463 // FIXME: Do this earlier rather than hacking it in here! 4464 Address ArgMemory = Address::invalid(); 4465 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4466 const llvm::DataLayout &DL = CGM.getDataLayout(); 4467 llvm::Instruction *IP = CallArgs.getStackBase(); 4468 llvm::AllocaInst *AI; 4469 if (IP) { 4470 IP = IP->getNextNode(); 4471 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4472 "argmem", IP); 4473 } else { 4474 AI = CreateTempAlloca(ArgStruct, "argmem"); 4475 } 4476 auto Align = CallInfo.getArgStructAlignment(); 4477 AI->setAlignment(Align.getAsAlign()); 4478 AI->setUsedWithInAlloca(true); 4479 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4480 ArgMemory = Address(AI, Align); 4481 } 4482 4483 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4484 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4485 4486 // If the call returns a temporary with struct return, create a temporary 4487 // alloca to hold the result, unless one is given to us. 4488 Address SRetPtr = Address::invalid(); 4489 Address SRetAlloca = Address::invalid(); 4490 llvm::Value *UnusedReturnSizePtr = nullptr; 4491 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4492 if (!ReturnValue.isNull()) { 4493 SRetPtr = ReturnValue.getValue(); 4494 } else { 4495 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4496 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4497 uint64_t size = 4498 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4499 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4500 } 4501 } 4502 if (IRFunctionArgs.hasSRetArg()) { 4503 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4504 } else if (RetAI.isInAlloca()) { 4505 Address Addr = 4506 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4507 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4508 } 4509 } 4510 4511 Address swiftErrorTemp = Address::invalid(); 4512 Address swiftErrorArg = Address::invalid(); 4513 4514 // When passing arguments using temporary allocas, we need to add the 4515 // appropriate lifetime markers. This vector keeps track of all the lifetime 4516 // markers that need to be ended right after the call. 4517 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4518 4519 // Translate all of the arguments as necessary to match the IR lowering. 4520 assert(CallInfo.arg_size() == CallArgs.size() && 4521 "Mismatch between function signature & arguments."); 4522 unsigned ArgNo = 0; 4523 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4524 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4525 I != E; ++I, ++info_it, ++ArgNo) { 4526 const ABIArgInfo &ArgInfo = info_it->info; 4527 4528 // Insert a padding argument to ensure proper alignment. 4529 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4530 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4531 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4532 4533 unsigned FirstIRArg, NumIRArgs; 4534 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4535 4536 switch (ArgInfo.getKind()) { 4537 case ABIArgInfo::InAlloca: { 4538 assert(NumIRArgs == 0); 4539 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4540 if (I->isAggregate()) { 4541 Address Addr = I->hasLValue() 4542 ? I->getKnownLValue().getAddress(*this) 4543 : I->getKnownRValue().getAggregateAddress(); 4544 llvm::Instruction *Placeholder = 4545 cast<llvm::Instruction>(Addr.getPointer()); 4546 4547 if (!ArgInfo.getInAllocaIndirect()) { 4548 // Replace the placeholder with the appropriate argument slot GEP. 4549 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4550 Builder.SetInsertPoint(Placeholder); 4551 Addr = Builder.CreateStructGEP(ArgMemory, 4552 ArgInfo.getInAllocaFieldIndex()); 4553 Builder.restoreIP(IP); 4554 } else { 4555 // For indirect things such as overaligned structs, replace the 4556 // placeholder with a regular aggregate temporary alloca. Store the 4557 // address of this alloca into the struct. 4558 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4559 Address ArgSlot = Builder.CreateStructGEP( 4560 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4561 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4562 } 4563 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4564 } else if (ArgInfo.getInAllocaIndirect()) { 4565 // Make a temporary alloca and store the address of it into the argument 4566 // struct. 4567 Address Addr = CreateMemTempWithoutCast( 4568 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4569 "indirect-arg-temp"); 4570 I->copyInto(*this, Addr); 4571 Address ArgSlot = 4572 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4573 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4574 } else { 4575 // Store the RValue into the argument struct. 4576 Address Addr = 4577 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4578 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4579 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4580 // There are some cases where a trivial bitcast is not avoidable. The 4581 // definition of a type later in a translation unit may change it's type 4582 // from {}* to (%struct.foo*)*. 4583 if (Addr.getType() != MemType) 4584 Addr = Builder.CreateBitCast(Addr, MemType); 4585 I->copyInto(*this, Addr); 4586 } 4587 break; 4588 } 4589 4590 case ABIArgInfo::Indirect: 4591 case ABIArgInfo::IndirectAliased: { 4592 assert(NumIRArgs == 1); 4593 if (!I->isAggregate()) { 4594 // Make a temporary alloca to pass the argument. 4595 Address Addr = CreateMemTempWithoutCast( 4596 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4597 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4598 4599 I->copyInto(*this, Addr); 4600 } else { 4601 // We want to avoid creating an unnecessary temporary+copy here; 4602 // however, we need one in three cases: 4603 // 1. If the argument is not byval, and we are required to copy the 4604 // source. (This case doesn't occur on any common architecture.) 4605 // 2. If the argument is byval, RV is not sufficiently aligned, and 4606 // we cannot force it to be sufficiently aligned. 4607 // 3. If the argument is byval, but RV is not located in default 4608 // or alloca address space. 4609 Address Addr = I->hasLValue() 4610 ? I->getKnownLValue().getAddress(*this) 4611 : I->getKnownRValue().getAggregateAddress(); 4612 llvm::Value *V = Addr.getPointer(); 4613 CharUnits Align = ArgInfo.getIndirectAlign(); 4614 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4615 4616 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4617 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4618 TD->getAllocaAddrSpace()) && 4619 "indirect argument must be in alloca address space"); 4620 4621 bool NeedCopy = false; 4622 4623 if (Addr.getAlignment() < Align && 4624 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4625 Align.getAsAlign()) { 4626 NeedCopy = true; 4627 } else if (I->hasLValue()) { 4628 auto LV = I->getKnownLValue(); 4629 auto AS = LV.getAddressSpace(); 4630 4631 if (!ArgInfo.getIndirectByVal() || 4632 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4633 NeedCopy = true; 4634 } 4635 if (!getLangOpts().OpenCL) { 4636 if ((ArgInfo.getIndirectByVal() && 4637 (AS != LangAS::Default && 4638 AS != CGM.getASTAllocaAddressSpace()))) { 4639 NeedCopy = true; 4640 } 4641 } 4642 // For OpenCL even if RV is located in default or alloca address space 4643 // we don't want to perform address space cast for it. 4644 else if ((ArgInfo.getIndirectByVal() && 4645 Addr.getType()->getAddressSpace() != IRFuncTy-> 4646 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4647 NeedCopy = true; 4648 } 4649 } 4650 4651 if (NeedCopy) { 4652 // Create an aligned temporary, and copy to it. 4653 Address AI = CreateMemTempWithoutCast( 4654 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4655 IRCallArgs[FirstIRArg] = AI.getPointer(); 4656 4657 // Emit lifetime markers for the temporary alloca. 4658 uint64_t ByvalTempElementSize = 4659 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4660 llvm::Value *LifetimeSize = 4661 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4662 4663 // Add cleanup code to emit the end lifetime marker after the call. 4664 if (LifetimeSize) // In case we disabled lifetime markers. 4665 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4666 4667 // Generate the copy. 4668 I->copyInto(*this, AI); 4669 } else { 4670 // Skip the extra memcpy call. 4671 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4672 CGM.getDataLayout().getAllocaAddrSpace()); 4673 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4674 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4675 true); 4676 } 4677 } 4678 break; 4679 } 4680 4681 case ABIArgInfo::Ignore: 4682 assert(NumIRArgs == 0); 4683 break; 4684 4685 case ABIArgInfo::Extend: 4686 case ABIArgInfo::Direct: { 4687 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4688 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4689 ArgInfo.getDirectOffset() == 0) { 4690 assert(NumIRArgs == 1); 4691 llvm::Value *V; 4692 if (!I->isAggregate()) 4693 V = I->getKnownRValue().getScalarVal(); 4694 else 4695 V = Builder.CreateLoad( 4696 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4697 : I->getKnownRValue().getAggregateAddress()); 4698 4699 // Implement swifterror by copying into a new swifterror argument. 4700 // We'll write back in the normal path out of the call. 4701 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4702 == ParameterABI::SwiftErrorResult) { 4703 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4704 4705 QualType pointeeTy = I->Ty->getPointeeType(); 4706 swiftErrorArg = 4707 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4708 4709 swiftErrorTemp = 4710 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4711 V = swiftErrorTemp.getPointer(); 4712 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4713 4714 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4715 Builder.CreateStore(errorValue, swiftErrorTemp); 4716 } 4717 4718 // We might have to widen integers, but we should never truncate. 4719 if (ArgInfo.getCoerceToType() != V->getType() && 4720 V->getType()->isIntegerTy()) 4721 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4722 4723 // If the argument doesn't match, perform a bitcast to coerce it. This 4724 // can happen due to trivial type mismatches. 4725 if (FirstIRArg < IRFuncTy->getNumParams() && 4726 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4727 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4728 4729 IRCallArgs[FirstIRArg] = V; 4730 break; 4731 } 4732 4733 // FIXME: Avoid the conversion through memory if possible. 4734 Address Src = Address::invalid(); 4735 if (!I->isAggregate()) { 4736 Src = CreateMemTemp(I->Ty, "coerce"); 4737 I->copyInto(*this, Src); 4738 } else { 4739 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4740 : I->getKnownRValue().getAggregateAddress(); 4741 } 4742 4743 // If the value is offset in memory, apply the offset now. 4744 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4745 4746 // Fast-isel and the optimizer generally like scalar values better than 4747 // FCAs, so we flatten them if this is safe to do for this argument. 4748 llvm::StructType *STy = 4749 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4750 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4751 llvm::Type *SrcTy = Src.getElementType(); 4752 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4753 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4754 4755 // If the source type is smaller than the destination type of the 4756 // coerce-to logic, copy the source value into a temp alloca the size 4757 // of the destination type to allow loading all of it. The bits past 4758 // the source value are left undef. 4759 if (SrcSize < DstSize) { 4760 Address TempAlloca 4761 = CreateTempAlloca(STy, Src.getAlignment(), 4762 Src.getName() + ".coerce"); 4763 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4764 Src = TempAlloca; 4765 } else { 4766 Src = Builder.CreateBitCast(Src, 4767 STy->getPointerTo(Src.getAddressSpace())); 4768 } 4769 4770 assert(NumIRArgs == STy->getNumElements()); 4771 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4772 Address EltPtr = Builder.CreateStructGEP(Src, i); 4773 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4774 IRCallArgs[FirstIRArg + i] = LI; 4775 } 4776 } else { 4777 // In the simple case, just pass the coerced loaded value. 4778 assert(NumIRArgs == 1); 4779 llvm::Value *Load = 4780 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4781 4782 if (CallInfo.isCmseNSCall()) { 4783 // For certain parameter types, clear padding bits, as they may reveal 4784 // sensitive information. 4785 // Small struct/union types are passed as integer arrays. 4786 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 4787 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 4788 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 4789 } 4790 IRCallArgs[FirstIRArg] = Load; 4791 } 4792 4793 break; 4794 } 4795 4796 case ABIArgInfo::CoerceAndExpand: { 4797 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4798 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4799 4800 llvm::Value *tempSize = nullptr; 4801 Address addr = Address::invalid(); 4802 Address AllocaAddr = Address::invalid(); 4803 if (I->isAggregate()) { 4804 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4805 : I->getKnownRValue().getAggregateAddress(); 4806 4807 } else { 4808 RValue RV = I->getKnownRValue(); 4809 assert(RV.isScalar()); // complex should always just be direct 4810 4811 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4812 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4813 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4814 4815 // Materialize to a temporary. 4816 addr = CreateTempAlloca( 4817 RV.getScalarVal()->getType(), 4818 CharUnits::fromQuantity(std::max( 4819 (unsigned)layout->getAlignment().value(), scalarAlign)), 4820 "tmp", 4821 /*ArraySize=*/nullptr, &AllocaAddr); 4822 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4823 4824 Builder.CreateStore(RV.getScalarVal(), addr); 4825 } 4826 4827 addr = Builder.CreateElementBitCast(addr, coercionType); 4828 4829 unsigned IRArgPos = FirstIRArg; 4830 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4831 llvm::Type *eltType = coercionType->getElementType(i); 4832 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4833 Address eltAddr = Builder.CreateStructGEP(addr, i); 4834 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4835 IRCallArgs[IRArgPos++] = elt; 4836 } 4837 assert(IRArgPos == FirstIRArg + NumIRArgs); 4838 4839 if (tempSize) { 4840 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4841 } 4842 4843 break; 4844 } 4845 4846 case ABIArgInfo::Expand: { 4847 unsigned IRArgPos = FirstIRArg; 4848 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4849 assert(IRArgPos == FirstIRArg + NumIRArgs); 4850 break; 4851 } 4852 } 4853 } 4854 4855 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4856 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4857 4858 // If we're using inalloca, set up that argument. 4859 if (ArgMemory.isValid()) { 4860 llvm::Value *Arg = ArgMemory.getPointer(); 4861 if (CallInfo.isVariadic()) { 4862 // When passing non-POD arguments by value to variadic functions, we will 4863 // end up with a variadic prototype and an inalloca call site. In such 4864 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4865 // the callee. 4866 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4867 CalleePtr = 4868 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4869 } else { 4870 llvm::Type *LastParamTy = 4871 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4872 if (Arg->getType() != LastParamTy) { 4873 #ifndef NDEBUG 4874 // Assert that these structs have equivalent element types. 4875 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4876 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4877 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4878 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4879 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4880 DE = DeclaredTy->element_end(), 4881 FI = FullTy->element_begin(); 4882 DI != DE; ++DI, ++FI) 4883 assert(*DI == *FI); 4884 #endif 4885 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4886 } 4887 } 4888 assert(IRFunctionArgs.hasInallocaArg()); 4889 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4890 } 4891 4892 // 2. Prepare the function pointer. 4893 4894 // If the callee is a bitcast of a non-variadic function to have a 4895 // variadic function pointer type, check to see if we can remove the 4896 // bitcast. This comes up with unprototyped functions. 4897 // 4898 // This makes the IR nicer, but more importantly it ensures that we 4899 // can inline the function at -O0 if it is marked always_inline. 4900 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4901 llvm::Value *Ptr) -> llvm::Function * { 4902 if (!CalleeFT->isVarArg()) 4903 return nullptr; 4904 4905 // Get underlying value if it's a bitcast 4906 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4907 if (CE->getOpcode() == llvm::Instruction::BitCast) 4908 Ptr = CE->getOperand(0); 4909 } 4910 4911 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4912 if (!OrigFn) 4913 return nullptr; 4914 4915 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4916 4917 // If the original type is variadic, or if any of the component types 4918 // disagree, we cannot remove the cast. 4919 if (OrigFT->isVarArg() || 4920 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4921 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4922 return nullptr; 4923 4924 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4925 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4926 return nullptr; 4927 4928 return OrigFn; 4929 }; 4930 4931 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4932 CalleePtr = OrigFn; 4933 IRFuncTy = OrigFn->getFunctionType(); 4934 } 4935 4936 // 3. Perform the actual call. 4937 4938 // Deactivate any cleanups that we're supposed to do immediately before 4939 // the call. 4940 if (!CallArgs.getCleanupsToDeactivate().empty()) 4941 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4942 4943 // Assert that the arguments we computed match up. The IR verifier 4944 // will catch this, but this is a common enough source of problems 4945 // during IRGen changes that it's way better for debugging to catch 4946 // it ourselves here. 4947 #ifndef NDEBUG 4948 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4949 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4950 // Inalloca argument can have different type. 4951 if (IRFunctionArgs.hasInallocaArg() && 4952 i == IRFunctionArgs.getInallocaArgNo()) 4953 continue; 4954 if (i < IRFuncTy->getNumParams()) 4955 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4956 } 4957 #endif 4958 4959 // Update the largest vector width if any arguments have vector types. 4960 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4961 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4962 LargestVectorWidth = 4963 std::max((uint64_t)LargestVectorWidth, 4964 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4965 } 4966 4967 // Compute the calling convention and attributes. 4968 unsigned CallingConv; 4969 llvm::AttributeList Attrs; 4970 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4971 Callee.getAbstractInfo(), Attrs, CallingConv, 4972 /*AttrOnCallSite=*/true); 4973 4974 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4975 if (FD->hasAttr<StrictFPAttr>()) 4976 // All calls within a strictfp function are marked strictfp 4977 Attrs = 4978 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4979 llvm::Attribute::StrictFP); 4980 4981 // Add call-site nomerge attribute if exists. 4982 if (InNoMergeAttributedStmt) 4983 Attrs = 4984 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4985 llvm::Attribute::NoMerge); 4986 4987 // Apply some call-site-specific attributes. 4988 // TODO: work this into building the attribute set. 4989 4990 // Apply always_inline to all calls within flatten functions. 4991 // FIXME: should this really take priority over __try, below? 4992 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4993 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 4994 Attrs = 4995 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4996 llvm::Attribute::AlwaysInline); 4997 } 4998 4999 // Disable inlining inside SEH __try blocks. 5000 if (isSEHTryScope()) { 5001 Attrs = 5002 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 5003 llvm::Attribute::NoInline); 5004 } 5005 5006 // Decide whether to use a call or an invoke. 5007 bool CannotThrow; 5008 if (currentFunctionUsesSEHTry()) { 5009 // SEH cares about asynchronous exceptions, so everything can "throw." 5010 CannotThrow = false; 5011 } else if (isCleanupPadScope() && 5012 EHPersonality::get(*this).isMSVCXXPersonality()) { 5013 // The MSVC++ personality will implicitly terminate the program if an 5014 // exception is thrown during a cleanup outside of a try/catch. 5015 // We don't need to model anything in IR to get this behavior. 5016 CannotThrow = true; 5017 } else { 5018 // Otherwise, nounwind call sites will never throw. 5019 CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind); 5020 5021 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5022 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5023 CannotThrow = true; 5024 } 5025 5026 // If we made a temporary, be sure to clean up after ourselves. Note that we 5027 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5028 // pop this cleanup later on. Being eager about this is OK, since this 5029 // temporary is 'invisible' outside of the callee. 5030 if (UnusedReturnSizePtr) 5031 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5032 UnusedReturnSizePtr); 5033 5034 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5035 5036 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5037 getBundlesForFunclet(CalleePtr); 5038 5039 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5040 if (FD->hasAttr<StrictFPAttr>()) 5041 // All calls within a strictfp function are marked strictfp 5042 Attrs = 5043 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 5044 llvm::Attribute::StrictFP); 5045 5046 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5047 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5048 5049 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5050 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5051 5052 // Emit the actual call/invoke instruction. 5053 llvm::CallBase *CI; 5054 if (!InvokeDest) { 5055 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5056 } else { 5057 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5058 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5059 BundleList); 5060 EmitBlock(Cont); 5061 } 5062 if (callOrInvoke) 5063 *callOrInvoke = CI; 5064 5065 // If this is within a function that has the guard(nocf) attribute and is an 5066 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5067 // Control Flow Guard checks should not be added, even if the call is inlined. 5068 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5069 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5070 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5071 Attrs = Attrs.addAttribute( 5072 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf"); 5073 } 5074 } 5075 5076 // Apply the attributes and calling convention. 5077 CI->setAttributes(Attrs); 5078 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5079 5080 // Apply various metadata. 5081 5082 if (!CI->getType()->isVoidTy()) 5083 CI->setName("call"); 5084 5085 // Update largest vector width from the return type. 5086 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 5087 LargestVectorWidth = 5088 std::max((uint64_t)LargestVectorWidth, 5089 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5090 5091 // Insert instrumentation or attach profile metadata at indirect call sites. 5092 // For more details, see the comment before the definition of 5093 // IPVK_IndirectCallTarget in InstrProfData.inc. 5094 if (!CI->getCalledFunction()) 5095 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5096 CI, CalleePtr); 5097 5098 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5099 // optimizer it can aggressively ignore unwind edges. 5100 if (CGM.getLangOpts().ObjCAutoRefCount) 5101 AddObjCARCExceptionMetadata(CI); 5102 5103 // Suppress tail calls if requested. 5104 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5105 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5106 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5107 } 5108 5109 // Add metadata for calls to MSAllocator functions 5110 if (getDebugInfo() && TargetDecl && 5111 TargetDecl->hasAttr<MSAllocatorAttr>()) 5112 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5113 5114 // 4. Finish the call. 5115 5116 // If the call doesn't return, finish the basic block and clear the 5117 // insertion point; this allows the rest of IRGen to discard 5118 // unreachable code. 5119 if (CI->doesNotReturn()) { 5120 if (UnusedReturnSizePtr) 5121 PopCleanupBlock(); 5122 5123 // Strip away the noreturn attribute to better diagnose unreachable UB. 5124 if (SanOpts.has(SanitizerKind::Unreachable)) { 5125 // Also remove from function since CallBase::hasFnAttr additionally checks 5126 // attributes of the called function. 5127 if (auto *F = CI->getCalledFunction()) 5128 F->removeFnAttr(llvm::Attribute::NoReturn); 5129 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 5130 llvm::Attribute::NoReturn); 5131 5132 // Avoid incompatibility with ASan which relies on the `noreturn` 5133 // attribute to insert handler calls. 5134 if (SanOpts.hasOneOf(SanitizerKind::Address | 5135 SanitizerKind::KernelAddress)) { 5136 SanitizerScope SanScope(this); 5137 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5138 Builder.SetInsertPoint(CI); 5139 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5140 llvm::FunctionCallee Fn = 5141 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5142 EmitNounwindRuntimeCall(Fn); 5143 } 5144 } 5145 5146 EmitUnreachable(Loc); 5147 Builder.ClearInsertionPoint(); 5148 5149 // FIXME: For now, emit a dummy basic block because expr emitters in 5150 // generally are not ready to handle emitting expressions at unreachable 5151 // points. 5152 EnsureInsertPoint(); 5153 5154 // Return a reasonable RValue. 5155 return GetUndefRValue(RetTy); 5156 } 5157 5158 // Perform the swifterror writeback. 5159 if (swiftErrorTemp.isValid()) { 5160 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5161 Builder.CreateStore(errorResult, swiftErrorArg); 5162 } 5163 5164 // Emit any call-associated writebacks immediately. Arguably this 5165 // should happen after any return-value munging. 5166 if (CallArgs.hasWritebacks()) 5167 emitWritebacks(*this, CallArgs); 5168 5169 // The stack cleanup for inalloca arguments has to run out of the normal 5170 // lexical order, so deactivate it and run it manually here. 5171 CallArgs.freeArgumentMemory(*this); 5172 5173 // Extract the return value. 5174 RValue Ret = [&] { 5175 switch (RetAI.getKind()) { 5176 case ABIArgInfo::CoerceAndExpand: { 5177 auto coercionType = RetAI.getCoerceAndExpandType(); 5178 5179 Address addr = SRetPtr; 5180 addr = Builder.CreateElementBitCast(addr, coercionType); 5181 5182 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5183 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5184 5185 unsigned unpaddedIndex = 0; 5186 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5187 llvm::Type *eltType = coercionType->getElementType(i); 5188 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5189 Address eltAddr = Builder.CreateStructGEP(addr, i); 5190 llvm::Value *elt = CI; 5191 if (requiresExtract) 5192 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5193 else 5194 assert(unpaddedIndex == 0); 5195 Builder.CreateStore(elt, eltAddr); 5196 } 5197 // FALLTHROUGH 5198 LLVM_FALLTHROUGH; 5199 } 5200 5201 case ABIArgInfo::InAlloca: 5202 case ABIArgInfo::Indirect: { 5203 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5204 if (UnusedReturnSizePtr) 5205 PopCleanupBlock(); 5206 return ret; 5207 } 5208 5209 case ABIArgInfo::Ignore: 5210 // If we are ignoring an argument that had a result, make sure to 5211 // construct the appropriate return value for our caller. 5212 return GetUndefRValue(RetTy); 5213 5214 case ABIArgInfo::Extend: 5215 case ABIArgInfo::Direct: { 5216 llvm::Type *RetIRTy = ConvertType(RetTy); 5217 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5218 switch (getEvaluationKind(RetTy)) { 5219 case TEK_Complex: { 5220 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5221 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5222 return RValue::getComplex(std::make_pair(Real, Imag)); 5223 } 5224 case TEK_Aggregate: { 5225 Address DestPtr = ReturnValue.getValue(); 5226 bool DestIsVolatile = ReturnValue.isVolatile(); 5227 5228 if (!DestPtr.isValid()) { 5229 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5230 DestIsVolatile = false; 5231 } 5232 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5233 return RValue::getAggregate(DestPtr); 5234 } 5235 case TEK_Scalar: { 5236 // If the argument doesn't match, perform a bitcast to coerce it. This 5237 // can happen due to trivial type mismatches. 5238 llvm::Value *V = CI; 5239 if (V->getType() != RetIRTy) 5240 V = Builder.CreateBitCast(V, RetIRTy); 5241 return RValue::get(V); 5242 } 5243 } 5244 llvm_unreachable("bad evaluation kind"); 5245 } 5246 5247 Address DestPtr = ReturnValue.getValue(); 5248 bool DestIsVolatile = ReturnValue.isVolatile(); 5249 5250 if (!DestPtr.isValid()) { 5251 DestPtr = CreateMemTemp(RetTy, "coerce"); 5252 DestIsVolatile = false; 5253 } 5254 5255 // If the value is offset in memory, apply the offset now. 5256 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5257 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5258 5259 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5260 } 5261 5262 case ABIArgInfo::Expand: 5263 case ABIArgInfo::IndirectAliased: 5264 llvm_unreachable("Invalid ABI kind for return argument"); 5265 } 5266 5267 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5268 } (); 5269 5270 // Emit the assume_aligned check on the return value. 5271 if (Ret.isScalar() && TargetDecl) { 5272 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5273 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5274 } 5275 5276 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5277 // we can't use the full cleanup mechanism. 5278 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5279 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5280 5281 if (!ReturnValue.isExternallyDestructed() && 5282 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5283 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5284 RetTy); 5285 5286 return Ret; 5287 } 5288 5289 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5290 if (isVirtual()) { 5291 const CallExpr *CE = getVirtualCallExpr(); 5292 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5293 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5294 CE ? CE->getBeginLoc() : SourceLocation()); 5295 } 5296 5297 return *this; 5298 } 5299 5300 /* VarArg handling */ 5301 5302 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5303 VAListAddr = VE->isMicrosoftABI() 5304 ? EmitMSVAListRef(VE->getSubExpr()) 5305 : EmitVAListRef(VE->getSubExpr()); 5306 QualType Ty = VE->getType(); 5307 if (VE->isMicrosoftABI()) 5308 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5309 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5310 } 5311