1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 71 /// qualification. 72 /// FIXME: address space qualification? 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 76 } 77 78 /// Returns the canonical formal type of the given C++ method. 79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 80 return MD->getType()->getCanonicalTypeUnqualified() 81 .getAs<FunctionProtoType>(); 82 } 83 84 /// Returns the "extra-canonicalized" return type, which discards 85 /// qualifiers on the return type. Codegen doesn't care about them, 86 /// and it makes ABI code a little easier to be able to assume that 87 /// all parameter and return types are top-level unqualified. 88 static CanQualType GetReturnType(QualType RetTy) { 89 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 90 } 91 92 /// Arrange the argument and result information for a value of the given 93 /// unprototyped freestanding function type. 94 const CGFunctionInfo & 95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 96 // When translating an unprototyped function type, always use a 97 // variadic type. 98 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 99 /*instanceMethod=*/false, 100 /*chainCall=*/false, None, 101 FTNP->getExtInfo(), {}, RequiredArgs(0)); 102 } 103 104 static void addExtParameterInfosForCall( 105 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 const FunctionProtoType *proto, 107 unsigned prefixArgs, 108 unsigned totalArgs) { 109 assert(proto->hasExtParameterInfos()); 110 assert(paramInfos.size() <= prefixArgs); 111 assert(proto->getNumParams() + prefixArgs <= totalArgs); 112 113 paramInfos.reserve(totalArgs); 114 115 // Add default infos for any prefix args that don't already have infos. 116 paramInfos.resize(prefixArgs); 117 118 // Add infos for the prototype. 119 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 120 paramInfos.push_back(ParamInfo); 121 // pass_object_size params have no parameter info. 122 if (ParamInfo.hasPassObjectSize()) 123 paramInfos.emplace_back(); 124 } 125 126 assert(paramInfos.size() <= totalArgs && 127 "Did we forget to insert pass_object_size args?"); 128 // Add default infos for the variadic and/or suffix arguments. 129 paramInfos.resize(totalArgs); 130 } 131 132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 134 static void appendParameterTypes(const CodeGenTypes &CGT, 135 SmallVectorImpl<CanQualType> &prefix, 136 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 137 CanQual<FunctionProtoType> FPT) { 138 // Fast path: don't touch param info if we don't need to. 139 if (!FPT->hasExtParameterInfos()) { 140 assert(paramInfos.empty() && 141 "We have paramInfos, but the prototype doesn't?"); 142 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 143 return; 144 } 145 146 unsigned PrefixSize = prefix.size(); 147 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 148 // parameters; the only thing that can change this is the presence of 149 // pass_object_size. So, we preallocate for the common case. 150 prefix.reserve(prefix.size() + FPT->getNumParams()); 151 152 auto ExtInfos = FPT->getExtParameterInfos(); 153 assert(ExtInfos.size() == FPT->getNumParams()); 154 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 155 prefix.push_back(FPT->getParamType(I)); 156 if (ExtInfos[I].hasPassObjectSize()) 157 prefix.push_back(CGT.getContext().getSizeType()); 158 } 159 160 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 161 prefix.size()); 162 } 163 164 /// Arrange the LLVM function layout for a value of the given function 165 /// type, on top of any implicit parameters already stored. 166 static const CGFunctionInfo & 167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 168 SmallVectorImpl<CanQualType> &prefix, 169 CanQual<FunctionProtoType> FTP, 170 const FunctionDecl *FD) { 171 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 172 RequiredArgs Required = 173 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 174 // FIXME: Kill copy. 175 appendParameterTypes(CGT, prefix, paramInfos, FTP); 176 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 177 178 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 179 /*chainCall=*/false, prefix, 180 FTP->getExtInfo(), paramInfos, 181 Required); 182 } 183 184 /// Arrange the argument and result information for a value of the 185 /// given freestanding function type. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 188 const FunctionDecl *FD) { 189 SmallVector<CanQualType, 16> argTypes; 190 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 191 FTP, FD); 192 } 193 194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 195 // Set the appropriate calling convention for the Function. 196 if (D->hasAttr<StdCallAttr>()) 197 return CC_X86StdCall; 198 199 if (D->hasAttr<FastCallAttr>()) 200 return CC_X86FastCall; 201 202 if (D->hasAttr<RegCallAttr>()) 203 return CC_X86RegCall; 204 205 if (D->hasAttr<ThisCallAttr>()) 206 return CC_X86ThisCall; 207 208 if (D->hasAttr<VectorCallAttr>()) 209 return CC_X86VectorCall; 210 211 if (D->hasAttr<PascalAttr>()) 212 return CC_X86Pascal; 213 214 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 215 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 216 217 if (D->hasAttr<IntelOclBiccAttr>()) 218 return CC_IntelOclBicc; 219 220 if (D->hasAttr<MSABIAttr>()) 221 return IsWindows ? CC_C : CC_Win64; 222 223 if (D->hasAttr<SysVABIAttr>()) 224 return IsWindows ? CC_X86_64SysV : CC_C; 225 226 if (D->hasAttr<PreserveMostAttr>()) 227 return CC_PreserveMost; 228 229 if (D->hasAttr<PreserveAllAttr>()) 230 return CC_PreserveAll; 231 232 return CC_C; 233 } 234 235 /// Arrange the argument and result information for a call to an 236 /// unknown C++ non-static member function of the given abstract type. 237 /// (Zero value of RD means we don't have any meaningful "this" argument type, 238 /// so fall back to a generic pointer type). 239 /// The member function must be an ordinary function, i.e. not a 240 /// constructor or destructor. 241 const CGFunctionInfo & 242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 243 const FunctionProtoType *FTP, 244 const CXXMethodDecl *MD) { 245 SmallVector<CanQualType, 16> argTypes; 246 247 // Add the 'this' pointer. 248 if (RD) 249 argTypes.push_back(GetThisType(Context, RD)); 250 else 251 argTypes.push_back(Context.VoidPtrTy); 252 253 return ::arrangeLLVMFunctionInfo( 254 *this, true, argTypes, 255 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 256 } 257 258 /// Arrange the argument and result information for a declaration or 259 /// definition of the given C++ non-static member function. The 260 /// member function must be an ordinary function, i.e. not a 261 /// constructor or destructor. 262 const CGFunctionInfo & 263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 264 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 265 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 266 267 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 268 269 if (MD->isInstance()) { 270 // The abstract case is perfectly fine. 271 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 272 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 273 } 274 275 return arrangeFreeFunctionType(prototype, MD); 276 } 277 278 bool CodeGenTypes::inheritingCtorHasParams( 279 const InheritedConstructor &Inherited, CXXCtorType Type) { 280 // Parameters are unnecessary if we're constructing a base class subobject 281 // and the inherited constructor lives in a virtual base. 282 return Type == Ctor_Complete || 283 !Inherited.getShadowDecl()->constructsVirtualBase() || 284 !Target.getCXXABI().hasConstructorVariants(); 285 } 286 287 const CGFunctionInfo & 288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 289 StructorType Type) { 290 291 SmallVector<CanQualType, 16> argTypes; 292 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 293 argTypes.push_back(GetThisType(Context, MD->getParent())); 294 295 bool PassParams = true; 296 297 GlobalDecl GD; 298 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 299 GD = GlobalDecl(CD, toCXXCtorType(Type)); 300 301 // A base class inheriting constructor doesn't get forwarded arguments 302 // needed to construct a virtual base (or base class thereof). 303 if (auto Inherited = CD->getInheritedConstructor()) 304 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 305 } else { 306 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 307 GD = GlobalDecl(DD, toCXXDtorType(Type)); 308 } 309 310 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 311 312 // Add the formal parameters. 313 if (PassParams) 314 appendParameterTypes(*this, argTypes, paramInfos, FTP); 315 316 CGCXXABI::AddedStructorArgs AddedArgs = 317 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 318 if (!paramInfos.empty()) { 319 // Note: prefix implies after the first param. 320 if (AddedArgs.Prefix) 321 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 322 FunctionProtoType::ExtParameterInfo{}); 323 if (AddedArgs.Suffix) 324 paramInfos.append(AddedArgs.Suffix, 325 FunctionProtoType::ExtParameterInfo{}); 326 } 327 328 RequiredArgs required = 329 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 330 : RequiredArgs::All); 331 332 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 333 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 334 ? argTypes.front() 335 : TheCXXABI.hasMostDerivedReturn(GD) 336 ? CGM.getContext().VoidPtrTy 337 : Context.VoidTy; 338 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 339 /*chainCall=*/false, argTypes, extInfo, 340 paramInfos, required); 341 } 342 343 static SmallVector<CanQualType, 16> 344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 345 SmallVector<CanQualType, 16> argTypes; 346 for (auto &arg : args) 347 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 348 return argTypes; 349 } 350 351 static SmallVector<CanQualType, 16> 352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 353 SmallVector<CanQualType, 16> argTypes; 354 for (auto &arg : args) 355 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 356 return argTypes; 357 } 358 359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 360 getExtParameterInfosForCall(const FunctionProtoType *proto, 361 unsigned prefixArgs, unsigned totalArgs) { 362 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 363 if (proto->hasExtParameterInfos()) { 364 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 365 } 366 return result; 367 } 368 369 /// Arrange a call to a C++ method, passing the given arguments. 370 /// 371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 372 /// parameter. 373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 374 /// args. 375 /// PassProtoArgs indicates whether `args` has args for the parameters in the 376 /// given CXXConstructorDecl. 377 const CGFunctionInfo & 378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 379 const CXXConstructorDecl *D, 380 CXXCtorType CtorKind, 381 unsigned ExtraPrefixArgs, 382 unsigned ExtraSuffixArgs, 383 bool PassProtoArgs) { 384 // FIXME: Kill copy. 385 SmallVector<CanQualType, 16> ArgTypes; 386 for (const auto &Arg : args) 387 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 388 389 // +1 for implicit this, which should always be args[0]. 390 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 391 392 CanQual<FunctionProtoType> FPT = GetFormalType(D); 393 RequiredArgs Required = 394 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 395 GlobalDecl GD(D, CtorKind); 396 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 397 ? ArgTypes.front() 398 : TheCXXABI.hasMostDerivedReturn(GD) 399 ? CGM.getContext().VoidPtrTy 400 : Context.VoidTy; 401 402 FunctionType::ExtInfo Info = FPT->getExtInfo(); 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 404 // If the prototype args are elided, we should only have ABI-specific args, 405 // which never have param info. 406 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 407 // ABI-specific suffix arguments are treated the same as variadic arguments. 408 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 409 ArgTypes.size()); 410 } 411 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 412 /*chainCall=*/false, ArgTypes, Info, 413 ParamInfos, Required); 414 } 415 416 /// Arrange the argument and result information for the declaration or 417 /// definition of the given function. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 420 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 421 if (MD->isInstance()) 422 return arrangeCXXMethodDeclaration(MD); 423 424 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 425 426 assert(isa<FunctionType>(FTy)); 427 428 // When declaring a function without a prototype, always use a 429 // non-variadic type. 430 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 431 return arrangeLLVMFunctionInfo( 432 noProto->getReturnType(), /*instanceMethod=*/false, 433 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 434 } 435 436 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 437 } 438 439 /// Arrange the argument and result information for the declaration or 440 /// definition of an Objective-C method. 441 const CGFunctionInfo & 442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 443 // It happens that this is the same as a call with no optional 444 // arguments, except also using the formal 'self' type. 445 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 446 } 447 448 /// Arrange the argument and result information for the function type 449 /// through which to perform a send to the given Objective-C method, 450 /// using the given receiver type. The receiver type is not always 451 /// the 'self' type of the method or even an Objective-C pointer type. 452 /// This is *not* the right method for actually performing such a 453 /// message send, due to the possibility of optional arguments. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 456 QualType receiverType) { 457 SmallVector<CanQualType, 16> argTys; 458 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 459 argTys.push_back(Context.getCanonicalParamType(receiverType)); 460 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 461 // FIXME: Kill copy? 462 for (const auto *I : MD->parameters()) { 463 argTys.push_back(Context.getCanonicalParamType(I->getType())); 464 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 465 I->hasAttr<NoEscapeAttr>()); 466 extParamInfos.push_back(extParamInfo); 467 } 468 469 FunctionType::ExtInfo einfo; 470 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 471 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 472 473 if (getContext().getLangOpts().ObjCAutoRefCount && 474 MD->hasAttr<NSReturnsRetainedAttr>()) 475 einfo = einfo.withProducesResult(true); 476 477 RequiredArgs required = 478 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 479 480 return arrangeLLVMFunctionInfo( 481 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 482 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 483 } 484 485 const CGFunctionInfo & 486 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 487 const CallArgList &args) { 488 auto argTypes = getArgTypesForCall(Context, args); 489 FunctionType::ExtInfo einfo; 490 491 return arrangeLLVMFunctionInfo( 492 GetReturnType(returnType), /*instanceMethod=*/false, 493 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 494 } 495 496 const CGFunctionInfo & 497 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 498 // FIXME: Do we need to handle ObjCMethodDecl? 499 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 500 501 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 502 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 503 504 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 505 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 506 507 return arrangeFunctionDeclaration(FD); 508 } 509 510 /// Arrange a thunk that takes 'this' as the first parameter followed by 511 /// varargs. Return a void pointer, regardless of the actual return type. 512 /// The body of the thunk will end in a musttail call to a function of the 513 /// correct type, and the caller will bitcast the function to the correct 514 /// prototype. 515 const CGFunctionInfo & 516 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 517 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 518 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 519 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 520 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 521 /*chainCall=*/false, ArgTys, 522 FTP->getExtInfo(), {}, RequiredArgs(1)); 523 } 524 525 const CGFunctionInfo & 526 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 527 CXXCtorType CT) { 528 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 529 530 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 531 SmallVector<CanQualType, 2> ArgTys; 532 const CXXRecordDecl *RD = CD->getParent(); 533 ArgTys.push_back(GetThisType(Context, RD)); 534 if (CT == Ctor_CopyingClosure) 535 ArgTys.push_back(*FTP->param_type_begin()); 536 if (RD->getNumVBases() > 0) 537 ArgTys.push_back(Context.IntTy); 538 CallingConv CC = Context.getDefaultCallingConvention( 539 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 540 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 541 /*chainCall=*/false, ArgTys, 542 FunctionType::ExtInfo(CC), {}, 543 RequiredArgs::All); 544 } 545 546 /// Arrange a call as unto a free function, except possibly with an 547 /// additional number of formal parameters considered required. 548 static const CGFunctionInfo & 549 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 550 CodeGenModule &CGM, 551 const CallArgList &args, 552 const FunctionType *fnType, 553 unsigned numExtraRequiredArgs, 554 bool chainCall) { 555 assert(args.size() >= numExtraRequiredArgs); 556 557 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 558 559 // In most cases, there are no optional arguments. 560 RequiredArgs required = RequiredArgs::All; 561 562 // If we have a variadic prototype, the required arguments are the 563 // extra prefix plus the arguments in the prototype. 564 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 565 if (proto->isVariadic()) 566 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 567 568 if (proto->hasExtParameterInfos()) 569 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 570 args.size()); 571 572 // If we don't have a prototype at all, but we're supposed to 573 // explicitly use the variadic convention for unprototyped calls, 574 // treat all of the arguments as required but preserve the nominal 575 // possibility of variadics. 576 } else if (CGM.getTargetCodeGenInfo() 577 .isNoProtoCallVariadic(args, 578 cast<FunctionNoProtoType>(fnType))) { 579 required = RequiredArgs(args.size()); 580 } 581 582 // FIXME: Kill copy. 583 SmallVector<CanQualType, 16> argTypes; 584 for (const auto &arg : args) 585 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 586 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 587 /*instanceMethod=*/false, chainCall, 588 argTypes, fnType->getExtInfo(), paramInfos, 589 required); 590 } 591 592 /// Figure out the rules for calling a function with the given formal 593 /// type using the given arguments. The arguments are necessary 594 /// because the function might be unprototyped, in which case it's 595 /// target-dependent in crazy ways. 596 const CGFunctionInfo & 597 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 598 const FunctionType *fnType, 599 bool chainCall) { 600 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 601 chainCall ? 1 : 0, chainCall); 602 } 603 604 /// A block function is essentially a free function with an 605 /// extra implicit argument. 606 const CGFunctionInfo & 607 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 608 const FunctionType *fnType) { 609 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 610 /*chainCall=*/false); 611 } 612 613 const CGFunctionInfo & 614 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 615 const FunctionArgList ¶ms) { 616 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 617 auto argTypes = getArgTypesForDeclaration(Context, params); 618 619 return arrangeLLVMFunctionInfo( 620 GetReturnType(proto->getReturnType()), 621 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 622 proto->getExtInfo(), paramInfos, 623 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 624 } 625 626 const CGFunctionInfo & 627 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 628 const CallArgList &args) { 629 // FIXME: Kill copy. 630 SmallVector<CanQualType, 16> argTypes; 631 for (const auto &Arg : args) 632 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 633 return arrangeLLVMFunctionInfo( 634 GetReturnType(resultType), /*instanceMethod=*/false, 635 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 636 /*paramInfos=*/ {}, RequiredArgs::All); 637 } 638 639 const CGFunctionInfo & 640 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 641 const FunctionArgList &args) { 642 auto argTypes = getArgTypesForDeclaration(Context, args); 643 644 return arrangeLLVMFunctionInfo( 645 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 646 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 647 } 648 649 const CGFunctionInfo & 650 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 651 ArrayRef<CanQualType> argTypes) { 652 return arrangeLLVMFunctionInfo( 653 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 654 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 655 } 656 657 /// Arrange a call to a C++ method, passing the given arguments. 658 /// 659 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 660 /// does not count `this`. 661 const CGFunctionInfo & 662 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 663 const FunctionProtoType *proto, 664 RequiredArgs required, 665 unsigned numPrefixArgs) { 666 assert(numPrefixArgs + 1 <= args.size() && 667 "Emitting a call with less args than the required prefix?"); 668 // Add one to account for `this`. It's a bit awkward here, but we don't count 669 // `this` in similar places elsewhere. 670 auto paramInfos = 671 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 672 673 // FIXME: Kill copy. 674 auto argTypes = getArgTypesForCall(Context, args); 675 676 FunctionType::ExtInfo info = proto->getExtInfo(); 677 return arrangeLLVMFunctionInfo( 678 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 679 /*chainCall=*/false, argTypes, info, paramInfos, required); 680 } 681 682 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 683 return arrangeLLVMFunctionInfo( 684 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 685 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 686 } 687 688 const CGFunctionInfo & 689 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 690 const CallArgList &args) { 691 assert(signature.arg_size() <= args.size()); 692 if (signature.arg_size() == args.size()) 693 return signature; 694 695 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 696 auto sigParamInfos = signature.getExtParameterInfos(); 697 if (!sigParamInfos.empty()) { 698 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 699 paramInfos.resize(args.size()); 700 } 701 702 auto argTypes = getArgTypesForCall(Context, args); 703 704 assert(signature.getRequiredArgs().allowsOptionalArgs()); 705 return arrangeLLVMFunctionInfo(signature.getReturnType(), 706 signature.isInstanceMethod(), 707 signature.isChainCall(), 708 argTypes, 709 signature.getExtInfo(), 710 paramInfos, 711 signature.getRequiredArgs()); 712 } 713 714 namespace clang { 715 namespace CodeGen { 716 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 717 } 718 } 719 720 /// Arrange the argument and result information for an abstract value 721 /// of a given function type. This is the method which all of the 722 /// above functions ultimately defer to. 723 const CGFunctionInfo & 724 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 725 bool instanceMethod, 726 bool chainCall, 727 ArrayRef<CanQualType> argTypes, 728 FunctionType::ExtInfo info, 729 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 730 RequiredArgs required) { 731 assert(std::all_of(argTypes.begin(), argTypes.end(), 732 [](CanQualType T) { return T.isCanonicalAsParam(); })); 733 734 // Lookup or create unique function info. 735 llvm::FoldingSetNodeID ID; 736 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 737 required, resultType, argTypes); 738 739 void *insertPos = nullptr; 740 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 741 if (FI) 742 return *FI; 743 744 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 745 746 // Construct the function info. We co-allocate the ArgInfos. 747 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 748 paramInfos, resultType, argTypes, required); 749 FunctionInfos.InsertNode(FI, insertPos); 750 751 bool inserted = FunctionsBeingProcessed.insert(FI).second; 752 (void)inserted; 753 assert(inserted && "Recursively being processed?"); 754 755 // Compute ABI information. 756 if (CC == llvm::CallingConv::SPIR_KERNEL) { 757 // Force target independent argument handling for the host visible 758 // kernel functions. 759 computeSPIRKernelABIInfo(CGM, *FI); 760 } else if (info.getCC() == CC_Swift) { 761 swiftcall::computeABIInfo(CGM, *FI); 762 } else { 763 getABIInfo().computeInfo(*FI); 764 } 765 766 // Loop over all of the computed argument and return value info. If any of 767 // them are direct or extend without a specified coerce type, specify the 768 // default now. 769 ABIArgInfo &retInfo = FI->getReturnInfo(); 770 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 771 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 772 773 for (auto &I : FI->arguments()) 774 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 775 I.info.setCoerceToType(ConvertType(I.type)); 776 777 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 778 assert(erased && "Not in set?"); 779 780 return *FI; 781 } 782 783 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 784 bool instanceMethod, 785 bool chainCall, 786 const FunctionType::ExtInfo &info, 787 ArrayRef<ExtParameterInfo> paramInfos, 788 CanQualType resultType, 789 ArrayRef<CanQualType> argTypes, 790 RequiredArgs required) { 791 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 792 793 void *buffer = 794 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 795 argTypes.size() + 1, paramInfos.size())); 796 797 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 798 FI->CallingConvention = llvmCC; 799 FI->EffectiveCallingConvention = llvmCC; 800 FI->ASTCallingConvention = info.getCC(); 801 FI->InstanceMethod = instanceMethod; 802 FI->ChainCall = chainCall; 803 FI->NoReturn = info.getNoReturn(); 804 FI->ReturnsRetained = info.getProducesResult(); 805 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 806 FI->Required = required; 807 FI->HasRegParm = info.getHasRegParm(); 808 FI->RegParm = info.getRegParm(); 809 FI->ArgStruct = nullptr; 810 FI->ArgStructAlign = 0; 811 FI->NumArgs = argTypes.size(); 812 FI->HasExtParameterInfos = !paramInfos.empty(); 813 FI->getArgsBuffer()[0].type = resultType; 814 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 815 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 816 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 817 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 818 return FI; 819 } 820 821 /***/ 822 823 namespace { 824 // ABIArgInfo::Expand implementation. 825 826 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 827 struct TypeExpansion { 828 enum TypeExpansionKind { 829 // Elements of constant arrays are expanded recursively. 830 TEK_ConstantArray, 831 // Record fields are expanded recursively (but if record is a union, only 832 // the field with the largest size is expanded). 833 TEK_Record, 834 // For complex types, real and imaginary parts are expanded recursively. 835 TEK_Complex, 836 // All other types are not expandable. 837 TEK_None 838 }; 839 840 const TypeExpansionKind Kind; 841 842 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 843 virtual ~TypeExpansion() {} 844 }; 845 846 struct ConstantArrayExpansion : TypeExpansion { 847 QualType EltTy; 848 uint64_t NumElts; 849 850 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 851 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 852 static bool classof(const TypeExpansion *TE) { 853 return TE->Kind == TEK_ConstantArray; 854 } 855 }; 856 857 struct RecordExpansion : TypeExpansion { 858 SmallVector<const CXXBaseSpecifier *, 1> Bases; 859 860 SmallVector<const FieldDecl *, 1> Fields; 861 862 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 863 SmallVector<const FieldDecl *, 1> &&Fields) 864 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 865 Fields(std::move(Fields)) {} 866 static bool classof(const TypeExpansion *TE) { 867 return TE->Kind == TEK_Record; 868 } 869 }; 870 871 struct ComplexExpansion : TypeExpansion { 872 QualType EltTy; 873 874 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 875 static bool classof(const TypeExpansion *TE) { 876 return TE->Kind == TEK_Complex; 877 } 878 }; 879 880 struct NoExpansion : TypeExpansion { 881 NoExpansion() : TypeExpansion(TEK_None) {} 882 static bool classof(const TypeExpansion *TE) { 883 return TE->Kind == TEK_None; 884 } 885 }; 886 } // namespace 887 888 static std::unique_ptr<TypeExpansion> 889 getTypeExpansion(QualType Ty, const ASTContext &Context) { 890 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 891 return llvm::make_unique<ConstantArrayExpansion>( 892 AT->getElementType(), AT->getSize().getZExtValue()); 893 } 894 if (const RecordType *RT = Ty->getAs<RecordType>()) { 895 SmallVector<const CXXBaseSpecifier *, 1> Bases; 896 SmallVector<const FieldDecl *, 1> Fields; 897 const RecordDecl *RD = RT->getDecl(); 898 assert(!RD->hasFlexibleArrayMember() && 899 "Cannot expand structure with flexible array."); 900 if (RD->isUnion()) { 901 // Unions can be here only in degenerative cases - all the fields are same 902 // after flattening. Thus we have to use the "largest" field. 903 const FieldDecl *LargestFD = nullptr; 904 CharUnits UnionSize = CharUnits::Zero(); 905 906 for (const auto *FD : RD->fields()) { 907 // Skip zero length bitfields. 908 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 909 continue; 910 assert(!FD->isBitField() && 911 "Cannot expand structure with bit-field members."); 912 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 913 if (UnionSize < FieldSize) { 914 UnionSize = FieldSize; 915 LargestFD = FD; 916 } 917 } 918 if (LargestFD) 919 Fields.push_back(LargestFD); 920 } else { 921 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 922 assert(!CXXRD->isDynamicClass() && 923 "cannot expand vtable pointers in dynamic classes"); 924 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 925 Bases.push_back(&BS); 926 } 927 928 for (const auto *FD : RD->fields()) { 929 // Skip zero length bitfields. 930 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 931 continue; 932 assert(!FD->isBitField() && 933 "Cannot expand structure with bit-field members."); 934 Fields.push_back(FD); 935 } 936 } 937 return llvm::make_unique<RecordExpansion>(std::move(Bases), 938 std::move(Fields)); 939 } 940 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 941 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 942 } 943 return llvm::make_unique<NoExpansion>(); 944 } 945 946 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 947 auto Exp = getTypeExpansion(Ty, Context); 948 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 949 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 950 } 951 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 952 int Res = 0; 953 for (auto BS : RExp->Bases) 954 Res += getExpansionSize(BS->getType(), Context); 955 for (auto FD : RExp->Fields) 956 Res += getExpansionSize(FD->getType(), Context); 957 return Res; 958 } 959 if (isa<ComplexExpansion>(Exp.get())) 960 return 2; 961 assert(isa<NoExpansion>(Exp.get())); 962 return 1; 963 } 964 965 void 966 CodeGenTypes::getExpandedTypes(QualType Ty, 967 SmallVectorImpl<llvm::Type *>::iterator &TI) { 968 auto Exp = getTypeExpansion(Ty, Context); 969 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 970 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 971 getExpandedTypes(CAExp->EltTy, TI); 972 } 973 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 974 for (auto BS : RExp->Bases) 975 getExpandedTypes(BS->getType(), TI); 976 for (auto FD : RExp->Fields) 977 getExpandedTypes(FD->getType(), TI); 978 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 979 llvm::Type *EltTy = ConvertType(CExp->EltTy); 980 *TI++ = EltTy; 981 *TI++ = EltTy; 982 } else { 983 assert(isa<NoExpansion>(Exp.get())); 984 *TI++ = ConvertType(Ty); 985 } 986 } 987 988 static void forConstantArrayExpansion(CodeGenFunction &CGF, 989 ConstantArrayExpansion *CAE, 990 Address BaseAddr, 991 llvm::function_ref<void(Address)> Fn) { 992 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 993 CharUnits EltAlign = 994 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 995 996 for (int i = 0, n = CAE->NumElts; i < n; i++) { 997 llvm::Value *EltAddr = 998 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 999 Fn(Address(EltAddr, EltAlign)); 1000 } 1001 } 1002 1003 void CodeGenFunction::ExpandTypeFromArgs( 1004 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1005 assert(LV.isSimple() && 1006 "Unexpected non-simple lvalue during struct expansion."); 1007 1008 auto Exp = getTypeExpansion(Ty, getContext()); 1009 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1010 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1011 [&](Address EltAddr) { 1012 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1013 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1014 }); 1015 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1016 Address This = LV.getAddress(); 1017 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1018 // Perform a single step derived-to-base conversion. 1019 Address Base = 1020 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1021 /*NullCheckValue=*/false, SourceLocation()); 1022 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1023 1024 // Recurse onto bases. 1025 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1026 } 1027 for (auto FD : RExp->Fields) { 1028 // FIXME: What are the right qualifiers here? 1029 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1030 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1031 } 1032 } else if (isa<ComplexExpansion>(Exp.get())) { 1033 auto realValue = *AI++; 1034 auto imagValue = *AI++; 1035 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1036 } else { 1037 assert(isa<NoExpansion>(Exp.get())); 1038 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1039 } 1040 } 1041 1042 void CodeGenFunction::ExpandTypeToArgs( 1043 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 1044 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1045 auto Exp = getTypeExpansion(Ty, getContext()); 1046 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1047 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 1048 [&](Address EltAddr) { 1049 RValue EltRV = 1050 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 1051 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 1052 }); 1053 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1054 Address This = RV.getAggregateAddress(); 1055 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1056 // Perform a single step derived-to-base conversion. 1057 Address Base = 1058 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1059 /*NullCheckValue=*/false, SourceLocation()); 1060 RValue BaseRV = RValue::getAggregate(Base); 1061 1062 // Recurse onto bases. 1063 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 1064 IRCallArgPos); 1065 } 1066 1067 LValue LV = MakeAddrLValue(This, Ty); 1068 for (auto FD : RExp->Fields) { 1069 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 1070 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 1071 IRCallArgPos); 1072 } 1073 } else if (isa<ComplexExpansion>(Exp.get())) { 1074 ComplexPairTy CV = RV.getComplexVal(); 1075 IRCallArgs[IRCallArgPos++] = CV.first; 1076 IRCallArgs[IRCallArgPos++] = CV.second; 1077 } else { 1078 assert(isa<NoExpansion>(Exp.get())); 1079 assert(RV.isScalar() && 1080 "Unexpected non-scalar rvalue during struct expansion."); 1081 1082 // Insert a bitcast as needed. 1083 llvm::Value *V = RV.getScalarVal(); 1084 if (IRCallArgPos < IRFuncTy->getNumParams() && 1085 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1086 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1087 1088 IRCallArgs[IRCallArgPos++] = V; 1089 } 1090 } 1091 1092 /// Create a temporary allocation for the purposes of coercion. 1093 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1094 CharUnits MinAlign) { 1095 // Don't use an alignment that's worse than what LLVM would prefer. 1096 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1097 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1098 1099 return CGF.CreateTempAlloca(Ty, Align); 1100 } 1101 1102 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1103 /// accessing some number of bytes out of it, try to gep into the struct to get 1104 /// at its inner goodness. Dive as deep as possible without entering an element 1105 /// with an in-memory size smaller than DstSize. 1106 static Address 1107 EnterStructPointerForCoercedAccess(Address SrcPtr, 1108 llvm::StructType *SrcSTy, 1109 uint64_t DstSize, CodeGenFunction &CGF) { 1110 // We can't dive into a zero-element struct. 1111 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1112 1113 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1114 1115 // If the first elt is at least as large as what we're looking for, or if the 1116 // first element is the same size as the whole struct, we can enter it. The 1117 // comparison must be made on the store size and not the alloca size. Using 1118 // the alloca size may overstate the size of the load. 1119 uint64_t FirstEltSize = 1120 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1121 if (FirstEltSize < DstSize && 1122 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1123 return SrcPtr; 1124 1125 // GEP into the first element. 1126 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1127 1128 // If the first element is a struct, recurse. 1129 llvm::Type *SrcTy = SrcPtr.getElementType(); 1130 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1131 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1132 1133 return SrcPtr; 1134 } 1135 1136 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1137 /// are either integers or pointers. This does a truncation of the value if it 1138 /// is too large or a zero extension if it is too small. 1139 /// 1140 /// This behaves as if the value were coerced through memory, so on big-endian 1141 /// targets the high bits are preserved in a truncation, while little-endian 1142 /// targets preserve the low bits. 1143 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1144 llvm::Type *Ty, 1145 CodeGenFunction &CGF) { 1146 if (Val->getType() == Ty) 1147 return Val; 1148 1149 if (isa<llvm::PointerType>(Val->getType())) { 1150 // If this is Pointer->Pointer avoid conversion to and from int. 1151 if (isa<llvm::PointerType>(Ty)) 1152 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1153 1154 // Convert the pointer to an integer so we can play with its width. 1155 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1156 } 1157 1158 llvm::Type *DestIntTy = Ty; 1159 if (isa<llvm::PointerType>(DestIntTy)) 1160 DestIntTy = CGF.IntPtrTy; 1161 1162 if (Val->getType() != DestIntTy) { 1163 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1164 if (DL.isBigEndian()) { 1165 // Preserve the high bits on big-endian targets. 1166 // That is what memory coercion does. 1167 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1168 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1169 1170 if (SrcSize > DstSize) { 1171 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1172 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1173 } else { 1174 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1175 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1176 } 1177 } else { 1178 // Little-endian targets preserve the low bits. No shifts required. 1179 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1180 } 1181 } 1182 1183 if (isa<llvm::PointerType>(Ty)) 1184 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1185 return Val; 1186 } 1187 1188 1189 1190 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1191 /// a pointer to an object of type \arg Ty, known to be aligned to 1192 /// \arg SrcAlign bytes. 1193 /// 1194 /// This safely handles the case when the src type is smaller than the 1195 /// destination type; in this situation the values of bits which not 1196 /// present in the src are undefined. 1197 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1198 CodeGenFunction &CGF) { 1199 llvm::Type *SrcTy = Src.getElementType(); 1200 1201 // If SrcTy and Ty are the same, just do a load. 1202 if (SrcTy == Ty) 1203 return CGF.Builder.CreateLoad(Src); 1204 1205 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1206 1207 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1208 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1209 SrcTy = Src.getType()->getElementType(); 1210 } 1211 1212 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1213 1214 // If the source and destination are integer or pointer types, just do an 1215 // extension or truncation to the desired type. 1216 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1217 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1218 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1219 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1220 } 1221 1222 // If load is legal, just bitcast the src pointer. 1223 if (SrcSize >= DstSize) { 1224 // Generally SrcSize is never greater than DstSize, since this means we are 1225 // losing bits. However, this can happen in cases where the structure has 1226 // additional padding, for example due to a user specified alignment. 1227 // 1228 // FIXME: Assert that we aren't truncating non-padding bits when have access 1229 // to that information. 1230 Src = CGF.Builder.CreateBitCast(Src, 1231 Ty->getPointerTo(Src.getAddressSpace())); 1232 return CGF.Builder.CreateLoad(Src); 1233 } 1234 1235 // Otherwise do coercion through memory. This is stupid, but simple. 1236 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1237 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1238 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.AllocaInt8PtrTy); 1239 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1240 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1241 false); 1242 return CGF.Builder.CreateLoad(Tmp); 1243 } 1244 1245 // Function to store a first-class aggregate into memory. We prefer to 1246 // store the elements rather than the aggregate to be more friendly to 1247 // fast-isel. 1248 // FIXME: Do we need to recurse here? 1249 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1250 Address Dest, bool DestIsVolatile) { 1251 // Prefer scalar stores to first-class aggregate stores. 1252 if (llvm::StructType *STy = 1253 dyn_cast<llvm::StructType>(Val->getType())) { 1254 const llvm::StructLayout *Layout = 1255 CGF.CGM.getDataLayout().getStructLayout(STy); 1256 1257 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1258 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1259 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1260 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1261 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1262 } 1263 } else { 1264 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1265 } 1266 } 1267 1268 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1269 /// where the source and destination may have different types. The 1270 /// destination is known to be aligned to \arg DstAlign bytes. 1271 /// 1272 /// This safely handles the case when the src type is larger than the 1273 /// destination type; the upper bits of the src will be lost. 1274 static void CreateCoercedStore(llvm::Value *Src, 1275 Address Dst, 1276 bool DstIsVolatile, 1277 CodeGenFunction &CGF) { 1278 llvm::Type *SrcTy = Src->getType(); 1279 llvm::Type *DstTy = Dst.getType()->getElementType(); 1280 if (SrcTy == DstTy) { 1281 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1282 return; 1283 } 1284 1285 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1286 1287 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1288 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1289 DstTy = Dst.getType()->getElementType(); 1290 } 1291 1292 // If the source and destination are integer or pointer types, just do an 1293 // extension or truncation to the desired type. 1294 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1295 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1296 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1297 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1298 return; 1299 } 1300 1301 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1302 1303 // If store is legal, just bitcast the src pointer. 1304 if (SrcSize <= DstSize) { 1305 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1306 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1307 } else { 1308 // Otherwise do coercion through memory. This is stupid, but 1309 // simple. 1310 1311 // Generally SrcSize is never greater than DstSize, since this means we are 1312 // losing bits. However, this can happen in cases where the structure has 1313 // additional padding, for example due to a user specified alignment. 1314 // 1315 // FIXME: Assert that we aren't truncating non-padding bits when have access 1316 // to that information. 1317 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1318 CGF.Builder.CreateStore(Src, Tmp); 1319 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1320 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.AllocaInt8PtrTy); 1321 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1322 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1323 false); 1324 } 1325 } 1326 1327 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1328 const ABIArgInfo &info) { 1329 if (unsigned offset = info.getDirectOffset()) { 1330 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1331 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1332 CharUnits::fromQuantity(offset)); 1333 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1334 } 1335 return addr; 1336 } 1337 1338 namespace { 1339 1340 /// Encapsulates information about the way function arguments from 1341 /// CGFunctionInfo should be passed to actual LLVM IR function. 1342 class ClangToLLVMArgMapping { 1343 static const unsigned InvalidIndex = ~0U; 1344 unsigned InallocaArgNo; 1345 unsigned SRetArgNo; 1346 unsigned TotalIRArgs; 1347 1348 /// Arguments of LLVM IR function corresponding to single Clang argument. 1349 struct IRArgs { 1350 unsigned PaddingArgIndex; 1351 // Argument is expanded to IR arguments at positions 1352 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1353 unsigned FirstArgIndex; 1354 unsigned NumberOfArgs; 1355 1356 IRArgs() 1357 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1358 NumberOfArgs(0) {} 1359 }; 1360 1361 SmallVector<IRArgs, 8> ArgInfo; 1362 1363 public: 1364 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1365 bool OnlyRequiredArgs = false) 1366 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1367 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1368 construct(Context, FI, OnlyRequiredArgs); 1369 } 1370 1371 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1372 unsigned getInallocaArgNo() const { 1373 assert(hasInallocaArg()); 1374 return InallocaArgNo; 1375 } 1376 1377 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1378 unsigned getSRetArgNo() const { 1379 assert(hasSRetArg()); 1380 return SRetArgNo; 1381 } 1382 1383 unsigned totalIRArgs() const { return TotalIRArgs; } 1384 1385 bool hasPaddingArg(unsigned ArgNo) const { 1386 assert(ArgNo < ArgInfo.size()); 1387 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1388 } 1389 unsigned getPaddingArgNo(unsigned ArgNo) const { 1390 assert(hasPaddingArg(ArgNo)); 1391 return ArgInfo[ArgNo].PaddingArgIndex; 1392 } 1393 1394 /// Returns index of first IR argument corresponding to ArgNo, and their 1395 /// quantity. 1396 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1397 assert(ArgNo < ArgInfo.size()); 1398 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1399 ArgInfo[ArgNo].NumberOfArgs); 1400 } 1401 1402 private: 1403 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1404 bool OnlyRequiredArgs); 1405 }; 1406 1407 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1408 const CGFunctionInfo &FI, 1409 bool OnlyRequiredArgs) { 1410 unsigned IRArgNo = 0; 1411 bool SwapThisWithSRet = false; 1412 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1413 1414 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1415 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1416 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1417 } 1418 1419 unsigned ArgNo = 0; 1420 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1421 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1422 ++I, ++ArgNo) { 1423 assert(I != FI.arg_end()); 1424 QualType ArgType = I->type; 1425 const ABIArgInfo &AI = I->info; 1426 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1427 auto &IRArgs = ArgInfo[ArgNo]; 1428 1429 if (AI.getPaddingType()) 1430 IRArgs.PaddingArgIndex = IRArgNo++; 1431 1432 switch (AI.getKind()) { 1433 case ABIArgInfo::Extend: 1434 case ABIArgInfo::Direct: { 1435 // FIXME: handle sseregparm someday... 1436 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1437 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1438 IRArgs.NumberOfArgs = STy->getNumElements(); 1439 } else { 1440 IRArgs.NumberOfArgs = 1; 1441 } 1442 break; 1443 } 1444 case ABIArgInfo::Indirect: 1445 IRArgs.NumberOfArgs = 1; 1446 break; 1447 case ABIArgInfo::Ignore: 1448 case ABIArgInfo::InAlloca: 1449 // ignore and inalloca doesn't have matching LLVM parameters. 1450 IRArgs.NumberOfArgs = 0; 1451 break; 1452 case ABIArgInfo::CoerceAndExpand: 1453 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1454 break; 1455 case ABIArgInfo::Expand: 1456 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1457 break; 1458 } 1459 1460 if (IRArgs.NumberOfArgs > 0) { 1461 IRArgs.FirstArgIndex = IRArgNo; 1462 IRArgNo += IRArgs.NumberOfArgs; 1463 } 1464 1465 // Skip over the sret parameter when it comes second. We already handled it 1466 // above. 1467 if (IRArgNo == 1 && SwapThisWithSRet) 1468 IRArgNo++; 1469 } 1470 assert(ArgNo == ArgInfo.size()); 1471 1472 if (FI.usesInAlloca()) 1473 InallocaArgNo = IRArgNo++; 1474 1475 TotalIRArgs = IRArgNo; 1476 } 1477 } // namespace 1478 1479 /***/ 1480 1481 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1482 const auto &RI = FI.getReturnInfo(); 1483 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1484 } 1485 1486 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1487 return ReturnTypeUsesSRet(FI) && 1488 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1489 } 1490 1491 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1492 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1493 switch (BT->getKind()) { 1494 default: 1495 return false; 1496 case BuiltinType::Float: 1497 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1498 case BuiltinType::Double: 1499 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1500 case BuiltinType::LongDouble: 1501 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1502 } 1503 } 1504 1505 return false; 1506 } 1507 1508 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1509 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1510 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1511 if (BT->getKind() == BuiltinType::LongDouble) 1512 return getTarget().useObjCFP2RetForComplexLongDouble(); 1513 } 1514 } 1515 1516 return false; 1517 } 1518 1519 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1520 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1521 return GetFunctionType(FI); 1522 } 1523 1524 llvm::FunctionType * 1525 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1526 1527 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1528 (void)Inserted; 1529 assert(Inserted && "Recursively being processed?"); 1530 1531 llvm::Type *resultType = nullptr; 1532 const ABIArgInfo &retAI = FI.getReturnInfo(); 1533 switch (retAI.getKind()) { 1534 case ABIArgInfo::Expand: 1535 llvm_unreachable("Invalid ABI kind for return argument"); 1536 1537 case ABIArgInfo::Extend: 1538 case ABIArgInfo::Direct: 1539 resultType = retAI.getCoerceToType(); 1540 break; 1541 1542 case ABIArgInfo::InAlloca: 1543 if (retAI.getInAllocaSRet()) { 1544 // sret things on win32 aren't void, they return the sret pointer. 1545 QualType ret = FI.getReturnType(); 1546 llvm::Type *ty = ConvertType(ret); 1547 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1548 resultType = llvm::PointerType::get(ty, addressSpace); 1549 } else { 1550 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1551 } 1552 break; 1553 1554 case ABIArgInfo::Indirect: 1555 case ABIArgInfo::Ignore: 1556 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1557 break; 1558 1559 case ABIArgInfo::CoerceAndExpand: 1560 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1561 break; 1562 } 1563 1564 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1565 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1566 1567 // Add type for sret argument. 1568 if (IRFunctionArgs.hasSRetArg()) { 1569 QualType Ret = FI.getReturnType(); 1570 llvm::Type *Ty = ConvertType(Ret); 1571 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1572 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1573 llvm::PointerType::get(Ty, AddressSpace); 1574 } 1575 1576 // Add type for inalloca argument. 1577 if (IRFunctionArgs.hasInallocaArg()) { 1578 auto ArgStruct = FI.getArgStruct(); 1579 assert(ArgStruct); 1580 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1581 } 1582 1583 // Add in all of the required arguments. 1584 unsigned ArgNo = 0; 1585 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1586 ie = it + FI.getNumRequiredArgs(); 1587 for (; it != ie; ++it, ++ArgNo) { 1588 const ABIArgInfo &ArgInfo = it->info; 1589 1590 // Insert a padding type to ensure proper alignment. 1591 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1592 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1593 ArgInfo.getPaddingType(); 1594 1595 unsigned FirstIRArg, NumIRArgs; 1596 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1597 1598 switch (ArgInfo.getKind()) { 1599 case ABIArgInfo::Ignore: 1600 case ABIArgInfo::InAlloca: 1601 assert(NumIRArgs == 0); 1602 break; 1603 1604 case ABIArgInfo::Indirect: { 1605 assert(NumIRArgs == 1); 1606 // indirect arguments are always on the stack, which is alloca addr space. 1607 llvm::Type *LTy = ConvertTypeForMem(it->type); 1608 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1609 CGM.getDataLayout().getAllocaAddrSpace()); 1610 break; 1611 } 1612 1613 case ABIArgInfo::Extend: 1614 case ABIArgInfo::Direct: { 1615 // Fast-isel and the optimizer generally like scalar values better than 1616 // FCAs, so we flatten them if this is safe to do for this argument. 1617 llvm::Type *argType = ArgInfo.getCoerceToType(); 1618 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1619 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1620 assert(NumIRArgs == st->getNumElements()); 1621 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1622 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1623 } else { 1624 assert(NumIRArgs == 1); 1625 ArgTypes[FirstIRArg] = argType; 1626 } 1627 break; 1628 } 1629 1630 case ABIArgInfo::CoerceAndExpand: { 1631 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1632 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1633 *ArgTypesIter++ = EltTy; 1634 } 1635 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1636 break; 1637 } 1638 1639 case ABIArgInfo::Expand: 1640 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1641 getExpandedTypes(it->type, ArgTypesIter); 1642 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1643 break; 1644 } 1645 } 1646 1647 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1648 assert(Erased && "Not in set?"); 1649 1650 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1651 } 1652 1653 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1654 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1655 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1656 1657 if (!isFuncTypeConvertible(FPT)) 1658 return llvm::StructType::get(getLLVMContext()); 1659 1660 const CGFunctionInfo *Info; 1661 if (isa<CXXDestructorDecl>(MD)) 1662 Info = 1663 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1664 else 1665 Info = &arrangeCXXMethodDeclaration(MD); 1666 return GetFunctionType(*Info); 1667 } 1668 1669 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1670 llvm::AttrBuilder &FuncAttrs, 1671 const FunctionProtoType *FPT) { 1672 if (!FPT) 1673 return; 1674 1675 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1676 FPT->isNothrow(Ctx)) 1677 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1678 } 1679 1680 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1681 bool AttrOnCallSite, 1682 llvm::AttrBuilder &FuncAttrs) { 1683 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1684 if (!HasOptnone) { 1685 if (CodeGenOpts.OptimizeSize) 1686 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1687 if (CodeGenOpts.OptimizeSize == 2) 1688 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1689 } 1690 1691 if (CodeGenOpts.DisableRedZone) 1692 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1693 if (CodeGenOpts.NoImplicitFloat) 1694 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1695 1696 if (AttrOnCallSite) { 1697 // Attributes that should go on the call site only. 1698 if (!CodeGenOpts.SimplifyLibCalls || 1699 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1700 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1701 if (!CodeGenOpts.TrapFuncName.empty()) 1702 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1703 } else { 1704 // Attributes that should go on the function, but not the call site. 1705 if (!CodeGenOpts.DisableFPElim) { 1706 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1707 } else if (CodeGenOpts.OmitLeafFramePointer) { 1708 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1709 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1710 } else { 1711 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1712 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1713 } 1714 1715 FuncAttrs.addAttribute("less-precise-fpmad", 1716 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1717 1718 if (!CodeGenOpts.FPDenormalMode.empty()) 1719 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1720 1721 FuncAttrs.addAttribute("no-trapping-math", 1722 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1723 1724 // TODO: Are these all needed? 1725 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1726 FuncAttrs.addAttribute("no-infs-fp-math", 1727 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1728 FuncAttrs.addAttribute("no-nans-fp-math", 1729 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1730 FuncAttrs.addAttribute("unsafe-fp-math", 1731 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1732 FuncAttrs.addAttribute("use-soft-float", 1733 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1734 FuncAttrs.addAttribute("stack-protector-buffer-size", 1735 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1736 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1737 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1738 FuncAttrs.addAttribute( 1739 "correctly-rounded-divide-sqrt-fp-math", 1740 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1741 1742 // TODO: Reciprocal estimate codegen options should apply to instructions? 1743 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1744 if (!Recips.empty()) 1745 FuncAttrs.addAttribute("reciprocal-estimates", 1746 llvm::join(Recips, ",")); 1747 1748 if (!CodeGenOpts.PreferVectorWidth.empty() && 1749 CodeGenOpts.PreferVectorWidth != "none") 1750 FuncAttrs.addAttribute("prefer-vector-width", 1751 CodeGenOpts.PreferVectorWidth); 1752 1753 if (CodeGenOpts.StackRealignment) 1754 FuncAttrs.addAttribute("stackrealign"); 1755 if (CodeGenOpts.Backchain) 1756 FuncAttrs.addAttribute("backchain"); 1757 } 1758 1759 if (getLangOpts().assumeFunctionsAreConvergent()) { 1760 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1761 // convergent (meaning, they may call an intrinsically convergent op, such 1762 // as __syncthreads() / barrier(), and so can't have certain optimizations 1763 // applied around them). LLVM will remove this attribute where it safely 1764 // can. 1765 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1766 } 1767 1768 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1769 // Exceptions aren't supported in CUDA device code. 1770 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1771 1772 // Respect -fcuda-flush-denormals-to-zero. 1773 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1774 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1775 } 1776 } 1777 1778 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1779 llvm::AttrBuilder FuncAttrs; 1780 ConstructDefaultFnAttrList(F.getName(), 1781 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1782 /* AttrOnCallsite = */ false, FuncAttrs); 1783 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1784 } 1785 1786 void CodeGenModule::ConstructAttributeList( 1787 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1788 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1789 llvm::AttrBuilder FuncAttrs; 1790 llvm::AttrBuilder RetAttrs; 1791 1792 CallingConv = FI.getEffectiveCallingConvention(); 1793 if (FI.isNoReturn()) 1794 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1795 1796 // If we have information about the function prototype, we can learn 1797 // attributes form there. 1798 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1799 CalleeInfo.getCalleeFunctionProtoType()); 1800 1801 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1802 1803 bool HasOptnone = false; 1804 // FIXME: handle sseregparm someday... 1805 if (TargetDecl) { 1806 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1807 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1808 if (TargetDecl->hasAttr<NoThrowAttr>()) 1809 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1810 if (TargetDecl->hasAttr<NoReturnAttr>()) 1811 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1812 if (TargetDecl->hasAttr<ColdAttr>()) 1813 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1814 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1815 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1816 if (TargetDecl->hasAttr<ConvergentAttr>()) 1817 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1818 1819 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1820 AddAttributesFromFunctionProtoType( 1821 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1822 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1823 // These attributes are not inherited by overloads. 1824 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1825 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1826 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1827 } 1828 1829 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1830 if (TargetDecl->hasAttr<ConstAttr>()) { 1831 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1832 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1833 } else if (TargetDecl->hasAttr<PureAttr>()) { 1834 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1835 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1836 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1837 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1838 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1839 } 1840 if (TargetDecl->hasAttr<RestrictAttr>()) 1841 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1842 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1843 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1844 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1845 FuncAttrs.addAttribute("no_caller_saved_registers"); 1846 1847 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1848 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1849 Optional<unsigned> NumElemsParam; 1850 if (AllocSize->numElemsParam().isValid()) 1851 NumElemsParam = AllocSize->numElemsParam().getLLVMIndex(); 1852 FuncAttrs.addAllocSizeAttr(AllocSize->elemSizeParam().getLLVMIndex(), 1853 NumElemsParam); 1854 } 1855 } 1856 1857 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1858 1859 if (CodeGenOpts.EnableSegmentedStacks && 1860 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1861 FuncAttrs.addAttribute("split-stack"); 1862 1863 // Add NonLazyBind attribute to function declarations when -fno-plt 1864 // is used. 1865 if (TargetDecl && CodeGenOpts.NoPLT) { 1866 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1867 if (!Fn->isDefined() && !AttrOnCallSite) { 1868 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1869 } 1870 } 1871 } 1872 1873 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1874 if (getLangOpts().OpenCLVersion <= 120) { 1875 // OpenCL v1.2 Work groups are always uniform 1876 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1877 } else { 1878 // OpenCL v2.0 Work groups may be whether uniform or not. 1879 // '-cl-uniform-work-group-size' compile option gets a hint 1880 // to the compiler that the global work-size be a multiple of 1881 // the work-group size specified to clEnqueueNDRangeKernel 1882 // (i.e. work groups are uniform). 1883 FuncAttrs.addAttribute("uniform-work-group-size", 1884 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1885 } 1886 } 1887 1888 if (!AttrOnCallSite) { 1889 bool DisableTailCalls = false; 1890 1891 if (CodeGenOpts.DisableTailCalls) 1892 DisableTailCalls = true; 1893 else if (TargetDecl) { 1894 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1895 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1896 DisableTailCalls = true; 1897 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1898 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1899 if (!BD->doesNotEscape()) 1900 DisableTailCalls = true; 1901 } 1902 } 1903 1904 FuncAttrs.addAttribute("disable-tail-calls", 1905 llvm::toStringRef(DisableTailCalls)); 1906 GetCPUAndFeaturesAttributes(TargetDecl, FuncAttrs); 1907 } 1908 1909 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1910 1911 QualType RetTy = FI.getReturnType(); 1912 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1913 switch (RetAI.getKind()) { 1914 case ABIArgInfo::Extend: 1915 if (RetAI.isSignExt()) 1916 RetAttrs.addAttribute(llvm::Attribute::SExt); 1917 else 1918 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1919 LLVM_FALLTHROUGH; 1920 case ABIArgInfo::Direct: 1921 if (RetAI.getInReg()) 1922 RetAttrs.addAttribute(llvm::Attribute::InReg); 1923 break; 1924 case ABIArgInfo::Ignore: 1925 break; 1926 1927 case ABIArgInfo::InAlloca: 1928 case ABIArgInfo::Indirect: { 1929 // inalloca and sret disable readnone and readonly 1930 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1931 .removeAttribute(llvm::Attribute::ReadNone); 1932 break; 1933 } 1934 1935 case ABIArgInfo::CoerceAndExpand: 1936 break; 1937 1938 case ABIArgInfo::Expand: 1939 llvm_unreachable("Invalid ABI kind for return argument"); 1940 } 1941 1942 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1943 QualType PTy = RefTy->getPointeeType(); 1944 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1945 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1946 .getQuantity()); 1947 else if (getContext().getTargetAddressSpace(PTy) == 0) 1948 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1949 } 1950 1951 bool hasUsedSRet = false; 1952 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 1953 1954 // Attach attributes to sret. 1955 if (IRFunctionArgs.hasSRetArg()) { 1956 llvm::AttrBuilder SRETAttrs; 1957 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1958 hasUsedSRet = true; 1959 if (RetAI.getInReg()) 1960 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1961 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 1962 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 1963 } 1964 1965 // Attach attributes to inalloca argument. 1966 if (IRFunctionArgs.hasInallocaArg()) { 1967 llvm::AttrBuilder Attrs; 1968 Attrs.addAttribute(llvm::Attribute::InAlloca); 1969 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 1970 llvm::AttributeSet::get(getLLVMContext(), Attrs); 1971 } 1972 1973 unsigned ArgNo = 0; 1974 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1975 E = FI.arg_end(); 1976 I != E; ++I, ++ArgNo) { 1977 QualType ParamType = I->type; 1978 const ABIArgInfo &AI = I->info; 1979 llvm::AttrBuilder Attrs; 1980 1981 // Add attribute for padding argument, if necessary. 1982 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1983 if (AI.getPaddingInReg()) { 1984 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1985 llvm::AttributeSet::get( 1986 getLLVMContext(), 1987 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 1988 } 1989 } 1990 1991 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1992 // have the corresponding parameter variable. It doesn't make 1993 // sense to do it here because parameters are so messed up. 1994 switch (AI.getKind()) { 1995 case ABIArgInfo::Extend: 1996 if (AI.isSignExt()) 1997 Attrs.addAttribute(llvm::Attribute::SExt); 1998 else 1999 Attrs.addAttribute(llvm::Attribute::ZExt); 2000 LLVM_FALLTHROUGH; 2001 case ABIArgInfo::Direct: 2002 if (ArgNo == 0 && FI.isChainCall()) 2003 Attrs.addAttribute(llvm::Attribute::Nest); 2004 else if (AI.getInReg()) 2005 Attrs.addAttribute(llvm::Attribute::InReg); 2006 break; 2007 2008 case ABIArgInfo::Indirect: { 2009 if (AI.getInReg()) 2010 Attrs.addAttribute(llvm::Attribute::InReg); 2011 2012 if (AI.getIndirectByVal()) 2013 Attrs.addAttribute(llvm::Attribute::ByVal); 2014 2015 CharUnits Align = AI.getIndirectAlign(); 2016 2017 // In a byval argument, it is important that the required 2018 // alignment of the type is honored, as LLVM might be creating a 2019 // *new* stack object, and needs to know what alignment to give 2020 // it. (Sometimes it can deduce a sensible alignment on its own, 2021 // but not if clang decides it must emit a packed struct, or the 2022 // user specifies increased alignment requirements.) 2023 // 2024 // This is different from indirect *not* byval, where the object 2025 // exists already, and the align attribute is purely 2026 // informative. 2027 assert(!Align.isZero()); 2028 2029 // For now, only add this when we have a byval argument. 2030 // TODO: be less lazy about updating test cases. 2031 if (AI.getIndirectByVal()) 2032 Attrs.addAlignmentAttr(Align.getQuantity()); 2033 2034 // byval disables readnone and readonly. 2035 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2036 .removeAttribute(llvm::Attribute::ReadNone); 2037 break; 2038 } 2039 case ABIArgInfo::Ignore: 2040 case ABIArgInfo::Expand: 2041 case ABIArgInfo::CoerceAndExpand: 2042 break; 2043 2044 case ABIArgInfo::InAlloca: 2045 // inalloca disables readnone and readonly. 2046 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2047 .removeAttribute(llvm::Attribute::ReadNone); 2048 continue; 2049 } 2050 2051 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2052 QualType PTy = RefTy->getPointeeType(); 2053 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2054 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2055 .getQuantity()); 2056 else if (getContext().getTargetAddressSpace(PTy) == 0) 2057 Attrs.addAttribute(llvm::Attribute::NonNull); 2058 } 2059 2060 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2061 case ParameterABI::Ordinary: 2062 break; 2063 2064 case ParameterABI::SwiftIndirectResult: { 2065 // Add 'sret' if we haven't already used it for something, but 2066 // only if the result is void. 2067 if (!hasUsedSRet && RetTy->isVoidType()) { 2068 Attrs.addAttribute(llvm::Attribute::StructRet); 2069 hasUsedSRet = true; 2070 } 2071 2072 // Add 'noalias' in either case. 2073 Attrs.addAttribute(llvm::Attribute::NoAlias); 2074 2075 // Add 'dereferenceable' and 'alignment'. 2076 auto PTy = ParamType->getPointeeType(); 2077 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2078 auto info = getContext().getTypeInfoInChars(PTy); 2079 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2080 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2081 info.second.getQuantity())); 2082 } 2083 break; 2084 } 2085 2086 case ParameterABI::SwiftErrorResult: 2087 Attrs.addAttribute(llvm::Attribute::SwiftError); 2088 break; 2089 2090 case ParameterABI::SwiftContext: 2091 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2092 break; 2093 } 2094 2095 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2096 Attrs.addAttribute(llvm::Attribute::NoCapture); 2097 2098 if (Attrs.hasAttributes()) { 2099 unsigned FirstIRArg, NumIRArgs; 2100 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2101 for (unsigned i = 0; i < NumIRArgs; i++) 2102 ArgAttrs[FirstIRArg + i] = 2103 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2104 } 2105 } 2106 assert(ArgNo == FI.arg_size()); 2107 2108 AttrList = llvm::AttributeList::get( 2109 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2110 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2111 } 2112 2113 /// An argument came in as a promoted argument; demote it back to its 2114 /// declared type. 2115 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2116 const VarDecl *var, 2117 llvm::Value *value) { 2118 llvm::Type *varType = CGF.ConvertType(var->getType()); 2119 2120 // This can happen with promotions that actually don't change the 2121 // underlying type, like the enum promotions. 2122 if (value->getType() == varType) return value; 2123 2124 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2125 && "unexpected promotion type"); 2126 2127 if (isa<llvm::IntegerType>(varType)) 2128 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2129 2130 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2131 } 2132 2133 /// Returns the attribute (either parameter attribute, or function 2134 /// attribute), which declares argument ArgNo to be non-null. 2135 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2136 QualType ArgType, unsigned ArgNo) { 2137 // FIXME: __attribute__((nonnull)) can also be applied to: 2138 // - references to pointers, where the pointee is known to be 2139 // nonnull (apparently a Clang extension) 2140 // - transparent unions containing pointers 2141 // In the former case, LLVM IR cannot represent the constraint. In 2142 // the latter case, we have no guarantee that the transparent union 2143 // is in fact passed as a pointer. 2144 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2145 return nullptr; 2146 // First, check attribute on parameter itself. 2147 if (PVD) { 2148 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2149 return ParmNNAttr; 2150 } 2151 // Check function attributes. 2152 if (!FD) 2153 return nullptr; 2154 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2155 if (NNAttr->isNonNull(ArgNo)) 2156 return NNAttr; 2157 } 2158 return nullptr; 2159 } 2160 2161 namespace { 2162 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2163 Address Temp; 2164 Address Arg; 2165 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2166 void Emit(CodeGenFunction &CGF, Flags flags) override { 2167 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2168 CGF.Builder.CreateStore(errorValue, Arg); 2169 } 2170 }; 2171 } 2172 2173 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2174 llvm::Function *Fn, 2175 const FunctionArgList &Args) { 2176 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2177 // Naked functions don't have prologues. 2178 return; 2179 2180 // If this is an implicit-return-zero function, go ahead and 2181 // initialize the return value. TODO: it might be nice to have 2182 // a more general mechanism for this that didn't require synthesized 2183 // return statements. 2184 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2185 if (FD->hasImplicitReturnZero()) { 2186 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2187 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2188 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2189 Builder.CreateStore(Zero, ReturnValue); 2190 } 2191 } 2192 2193 // FIXME: We no longer need the types from FunctionArgList; lift up and 2194 // simplify. 2195 2196 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2197 // Flattened function arguments. 2198 SmallVector<llvm::Value *, 16> FnArgs; 2199 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2200 for (auto &Arg : Fn->args()) { 2201 FnArgs.push_back(&Arg); 2202 } 2203 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2204 2205 // If we're using inalloca, all the memory arguments are GEPs off of the last 2206 // parameter, which is a pointer to the complete memory area. 2207 Address ArgStruct = Address::invalid(); 2208 const llvm::StructLayout *ArgStructLayout = nullptr; 2209 if (IRFunctionArgs.hasInallocaArg()) { 2210 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2211 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2212 FI.getArgStructAlignment()); 2213 2214 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2215 } 2216 2217 // Name the struct return parameter. 2218 if (IRFunctionArgs.hasSRetArg()) { 2219 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2220 AI->setName("agg.result"); 2221 AI->addAttr(llvm::Attribute::NoAlias); 2222 } 2223 2224 // Track if we received the parameter as a pointer (indirect, byval, or 2225 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2226 // into a local alloca for us. 2227 SmallVector<ParamValue, 16> ArgVals; 2228 ArgVals.reserve(Args.size()); 2229 2230 // Create a pointer value for every parameter declaration. This usually 2231 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2232 // any cleanups or do anything that might unwind. We do that separately, so 2233 // we can push the cleanups in the correct order for the ABI. 2234 assert(FI.arg_size() == Args.size() && 2235 "Mismatch between function signature & arguments."); 2236 unsigned ArgNo = 0; 2237 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2238 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2239 i != e; ++i, ++info_it, ++ArgNo) { 2240 const VarDecl *Arg = *i; 2241 const ABIArgInfo &ArgI = info_it->info; 2242 2243 bool isPromoted = 2244 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2245 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2246 // the parameter is promoted. In this case we convert to 2247 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2248 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2249 assert(hasScalarEvaluationKind(Ty) == 2250 hasScalarEvaluationKind(Arg->getType())); 2251 2252 unsigned FirstIRArg, NumIRArgs; 2253 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2254 2255 switch (ArgI.getKind()) { 2256 case ABIArgInfo::InAlloca: { 2257 assert(NumIRArgs == 0); 2258 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2259 CharUnits FieldOffset = 2260 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2261 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2262 Arg->getName()); 2263 ArgVals.push_back(ParamValue::forIndirect(V)); 2264 break; 2265 } 2266 2267 case ABIArgInfo::Indirect: { 2268 assert(NumIRArgs == 1); 2269 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2270 2271 if (!hasScalarEvaluationKind(Ty)) { 2272 // Aggregates and complex variables are accessed by reference. All we 2273 // need to do is realign the value, if requested. 2274 Address V = ParamAddr; 2275 if (ArgI.getIndirectRealign()) { 2276 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2277 2278 // Copy from the incoming argument pointer to the temporary with the 2279 // appropriate alignment. 2280 // 2281 // FIXME: We should have a common utility for generating an aggregate 2282 // copy. 2283 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2284 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2285 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2286 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2287 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2288 V = AlignedTemp; 2289 } 2290 ArgVals.push_back(ParamValue::forIndirect(V)); 2291 } else { 2292 // Load scalar value from indirect argument. 2293 llvm::Value *V = 2294 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2295 2296 if (isPromoted) 2297 V = emitArgumentDemotion(*this, Arg, V); 2298 ArgVals.push_back(ParamValue::forDirect(V)); 2299 } 2300 break; 2301 } 2302 2303 case ABIArgInfo::Extend: 2304 case ABIArgInfo::Direct: { 2305 2306 // If we have the trivial case, handle it with no muss and fuss. 2307 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2308 ArgI.getCoerceToType() == ConvertType(Ty) && 2309 ArgI.getDirectOffset() == 0) { 2310 assert(NumIRArgs == 1); 2311 llvm::Value *V = FnArgs[FirstIRArg]; 2312 auto AI = cast<llvm::Argument>(V); 2313 2314 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2315 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2316 PVD->getFunctionScopeIndex())) 2317 AI->addAttr(llvm::Attribute::NonNull); 2318 2319 QualType OTy = PVD->getOriginalType(); 2320 if (const auto *ArrTy = 2321 getContext().getAsConstantArrayType(OTy)) { 2322 // A C99 array parameter declaration with the static keyword also 2323 // indicates dereferenceability, and if the size is constant we can 2324 // use the dereferenceable attribute (which requires the size in 2325 // bytes). 2326 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2327 QualType ETy = ArrTy->getElementType(); 2328 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2329 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2330 ArrSize) { 2331 llvm::AttrBuilder Attrs; 2332 Attrs.addDereferenceableAttr( 2333 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2334 AI->addAttrs(Attrs); 2335 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2336 AI->addAttr(llvm::Attribute::NonNull); 2337 } 2338 } 2339 } else if (const auto *ArrTy = 2340 getContext().getAsVariableArrayType(OTy)) { 2341 // For C99 VLAs with the static keyword, we don't know the size so 2342 // we can't use the dereferenceable attribute, but in addrspace(0) 2343 // we know that it must be nonnull. 2344 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2345 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2346 AI->addAttr(llvm::Attribute::NonNull); 2347 } 2348 2349 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2350 if (!AVAttr) 2351 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2352 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2353 if (AVAttr) { 2354 llvm::Value *AlignmentValue = 2355 EmitScalarExpr(AVAttr->getAlignment()); 2356 llvm::ConstantInt *AlignmentCI = 2357 cast<llvm::ConstantInt>(AlignmentValue); 2358 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2359 +llvm::Value::MaximumAlignment); 2360 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2361 } 2362 } 2363 2364 if (Arg->getType().isRestrictQualified()) 2365 AI->addAttr(llvm::Attribute::NoAlias); 2366 2367 // LLVM expects swifterror parameters to be used in very restricted 2368 // ways. Copy the value into a less-restricted temporary. 2369 if (FI.getExtParameterInfo(ArgNo).getABI() 2370 == ParameterABI::SwiftErrorResult) { 2371 QualType pointeeTy = Ty->getPointeeType(); 2372 assert(pointeeTy->isPointerType()); 2373 Address temp = 2374 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2375 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2376 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2377 Builder.CreateStore(incomingErrorValue, temp); 2378 V = temp.getPointer(); 2379 2380 // Push a cleanup to copy the value back at the end of the function. 2381 // The convention does not guarantee that the value will be written 2382 // back if the function exits with an unwind exception. 2383 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2384 } 2385 2386 // Ensure the argument is the correct type. 2387 if (V->getType() != ArgI.getCoerceToType()) 2388 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2389 2390 if (isPromoted) 2391 V = emitArgumentDemotion(*this, Arg, V); 2392 2393 // Because of merging of function types from multiple decls it is 2394 // possible for the type of an argument to not match the corresponding 2395 // type in the function type. Since we are codegening the callee 2396 // in here, add a cast to the argument type. 2397 llvm::Type *LTy = ConvertType(Arg->getType()); 2398 if (V->getType() != LTy) 2399 V = Builder.CreateBitCast(V, LTy); 2400 2401 ArgVals.push_back(ParamValue::forDirect(V)); 2402 break; 2403 } 2404 2405 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2406 Arg->getName()); 2407 2408 // Pointer to store into. 2409 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2410 2411 // Fast-isel and the optimizer generally like scalar values better than 2412 // FCAs, so we flatten them if this is safe to do for this argument. 2413 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2414 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2415 STy->getNumElements() > 1) { 2416 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2417 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2418 llvm::Type *DstTy = Ptr.getElementType(); 2419 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2420 2421 Address AddrToStoreInto = Address::invalid(); 2422 if (SrcSize <= DstSize) { 2423 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2424 } else { 2425 AddrToStoreInto = 2426 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2427 } 2428 2429 assert(STy->getNumElements() == NumIRArgs); 2430 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2431 auto AI = FnArgs[FirstIRArg + i]; 2432 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2433 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2434 Address EltPtr = 2435 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2436 Builder.CreateStore(AI, EltPtr); 2437 } 2438 2439 if (SrcSize > DstSize) { 2440 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2441 } 2442 2443 } else { 2444 // Simple case, just do a coerced store of the argument into the alloca. 2445 assert(NumIRArgs == 1); 2446 auto AI = FnArgs[FirstIRArg]; 2447 AI->setName(Arg->getName() + ".coerce"); 2448 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2449 } 2450 2451 // Match to what EmitParmDecl is expecting for this type. 2452 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2453 llvm::Value *V = 2454 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2455 if (isPromoted) 2456 V = emitArgumentDemotion(*this, Arg, V); 2457 ArgVals.push_back(ParamValue::forDirect(V)); 2458 } else { 2459 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2460 } 2461 break; 2462 } 2463 2464 case ABIArgInfo::CoerceAndExpand: { 2465 // Reconstruct into a temporary. 2466 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2467 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2468 2469 auto coercionType = ArgI.getCoerceAndExpandType(); 2470 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2471 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2472 2473 unsigned argIndex = FirstIRArg; 2474 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2475 llvm::Type *eltType = coercionType->getElementType(i); 2476 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2477 continue; 2478 2479 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2480 auto elt = FnArgs[argIndex++]; 2481 Builder.CreateStore(elt, eltAddr); 2482 } 2483 assert(argIndex == FirstIRArg + NumIRArgs); 2484 break; 2485 } 2486 2487 case ABIArgInfo::Expand: { 2488 // If this structure was expanded into multiple arguments then 2489 // we need to create a temporary and reconstruct it from the 2490 // arguments. 2491 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2492 LValue LV = MakeAddrLValue(Alloca, Ty); 2493 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2494 2495 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2496 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2497 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2498 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2499 auto AI = FnArgs[FirstIRArg + i]; 2500 AI->setName(Arg->getName() + "." + Twine(i)); 2501 } 2502 break; 2503 } 2504 2505 case ABIArgInfo::Ignore: 2506 assert(NumIRArgs == 0); 2507 // Initialize the local variable appropriately. 2508 if (!hasScalarEvaluationKind(Ty)) { 2509 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2510 } else { 2511 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2512 ArgVals.push_back(ParamValue::forDirect(U)); 2513 } 2514 break; 2515 } 2516 } 2517 2518 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2519 for (int I = Args.size() - 1; I >= 0; --I) 2520 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2521 } else { 2522 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2523 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2524 } 2525 } 2526 2527 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2528 while (insn->use_empty()) { 2529 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2530 if (!bitcast) return; 2531 2532 // This is "safe" because we would have used a ConstantExpr otherwise. 2533 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2534 bitcast->eraseFromParent(); 2535 } 2536 } 2537 2538 /// Try to emit a fused autorelease of a return result. 2539 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2540 llvm::Value *result) { 2541 // We must be immediately followed the cast. 2542 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2543 if (BB->empty()) return nullptr; 2544 if (&BB->back() != result) return nullptr; 2545 2546 llvm::Type *resultType = result->getType(); 2547 2548 // result is in a BasicBlock and is therefore an Instruction. 2549 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2550 2551 SmallVector<llvm::Instruction *, 4> InstsToKill; 2552 2553 // Look for: 2554 // %generator = bitcast %type1* %generator2 to %type2* 2555 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2556 // We would have emitted this as a constant if the operand weren't 2557 // an Instruction. 2558 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2559 2560 // Require the generator to be immediately followed by the cast. 2561 if (generator->getNextNode() != bitcast) 2562 return nullptr; 2563 2564 InstsToKill.push_back(bitcast); 2565 } 2566 2567 // Look for: 2568 // %generator = call i8* @objc_retain(i8* %originalResult) 2569 // or 2570 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2571 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2572 if (!call) return nullptr; 2573 2574 bool doRetainAutorelease; 2575 2576 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2577 doRetainAutorelease = true; 2578 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2579 .objc_retainAutoreleasedReturnValue) { 2580 doRetainAutorelease = false; 2581 2582 // If we emitted an assembly marker for this call (and the 2583 // ARCEntrypoints field should have been set if so), go looking 2584 // for that call. If we can't find it, we can't do this 2585 // optimization. But it should always be the immediately previous 2586 // instruction, unless we needed bitcasts around the call. 2587 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2588 llvm::Instruction *prev = call->getPrevNode(); 2589 assert(prev); 2590 if (isa<llvm::BitCastInst>(prev)) { 2591 prev = prev->getPrevNode(); 2592 assert(prev); 2593 } 2594 assert(isa<llvm::CallInst>(prev)); 2595 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2596 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2597 InstsToKill.push_back(prev); 2598 } 2599 } else { 2600 return nullptr; 2601 } 2602 2603 result = call->getArgOperand(0); 2604 InstsToKill.push_back(call); 2605 2606 // Keep killing bitcasts, for sanity. Note that we no longer care 2607 // about precise ordering as long as there's exactly one use. 2608 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2609 if (!bitcast->hasOneUse()) break; 2610 InstsToKill.push_back(bitcast); 2611 result = bitcast->getOperand(0); 2612 } 2613 2614 // Delete all the unnecessary instructions, from latest to earliest. 2615 for (auto *I : InstsToKill) 2616 I->eraseFromParent(); 2617 2618 // Do the fused retain/autorelease if we were asked to. 2619 if (doRetainAutorelease) 2620 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2621 2622 // Cast back to the result type. 2623 return CGF.Builder.CreateBitCast(result, resultType); 2624 } 2625 2626 /// If this is a +1 of the value of an immutable 'self', remove it. 2627 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2628 llvm::Value *result) { 2629 // This is only applicable to a method with an immutable 'self'. 2630 const ObjCMethodDecl *method = 2631 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2632 if (!method) return nullptr; 2633 const VarDecl *self = method->getSelfDecl(); 2634 if (!self->getType().isConstQualified()) return nullptr; 2635 2636 // Look for a retain call. 2637 llvm::CallInst *retainCall = 2638 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2639 if (!retainCall || 2640 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2641 return nullptr; 2642 2643 // Look for an ordinary load of 'self'. 2644 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2645 llvm::LoadInst *load = 2646 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2647 if (!load || load->isAtomic() || load->isVolatile() || 2648 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2649 return nullptr; 2650 2651 // Okay! Burn it all down. This relies for correctness on the 2652 // assumption that the retain is emitted as part of the return and 2653 // that thereafter everything is used "linearly". 2654 llvm::Type *resultType = result->getType(); 2655 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2656 assert(retainCall->use_empty()); 2657 retainCall->eraseFromParent(); 2658 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2659 2660 return CGF.Builder.CreateBitCast(load, resultType); 2661 } 2662 2663 /// Emit an ARC autorelease of the result of a function. 2664 /// 2665 /// \return the value to actually return from the function 2666 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2667 llvm::Value *result) { 2668 // If we're returning 'self', kill the initial retain. This is a 2669 // heuristic attempt to "encourage correctness" in the really unfortunate 2670 // case where we have a return of self during a dealloc and we desperately 2671 // need to avoid the possible autorelease. 2672 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2673 return self; 2674 2675 // At -O0, try to emit a fused retain/autorelease. 2676 if (CGF.shouldUseFusedARCCalls()) 2677 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2678 return fused; 2679 2680 return CGF.EmitARCAutoreleaseReturnValue(result); 2681 } 2682 2683 /// Heuristically search for a dominating store to the return-value slot. 2684 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2685 // Check if a User is a store which pointerOperand is the ReturnValue. 2686 // We are looking for stores to the ReturnValue, not for stores of the 2687 // ReturnValue to some other location. 2688 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2689 auto *SI = dyn_cast<llvm::StoreInst>(U); 2690 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2691 return nullptr; 2692 // These aren't actually possible for non-coerced returns, and we 2693 // only care about non-coerced returns on this code path. 2694 assert(!SI->isAtomic() && !SI->isVolatile()); 2695 return SI; 2696 }; 2697 // If there are multiple uses of the return-value slot, just check 2698 // for something immediately preceding the IP. Sometimes this can 2699 // happen with how we generate implicit-returns; it can also happen 2700 // with noreturn cleanups. 2701 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2702 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2703 if (IP->empty()) return nullptr; 2704 llvm::Instruction *I = &IP->back(); 2705 2706 // Skip lifetime markers 2707 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2708 IE = IP->rend(); 2709 II != IE; ++II) { 2710 if (llvm::IntrinsicInst *Intrinsic = 2711 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2712 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2713 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2714 ++II; 2715 if (II == IE) 2716 break; 2717 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2718 continue; 2719 } 2720 } 2721 I = &*II; 2722 break; 2723 } 2724 2725 return GetStoreIfValid(I); 2726 } 2727 2728 llvm::StoreInst *store = 2729 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2730 if (!store) return nullptr; 2731 2732 // Now do a first-and-dirty dominance check: just walk up the 2733 // single-predecessors chain from the current insertion point. 2734 llvm::BasicBlock *StoreBB = store->getParent(); 2735 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2736 while (IP != StoreBB) { 2737 if (!(IP = IP->getSinglePredecessor())) 2738 return nullptr; 2739 } 2740 2741 // Okay, the store's basic block dominates the insertion point; we 2742 // can do our thing. 2743 return store; 2744 } 2745 2746 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2747 bool EmitRetDbgLoc, 2748 SourceLocation EndLoc) { 2749 if (FI.isNoReturn()) { 2750 // Noreturn functions don't return. 2751 EmitUnreachable(EndLoc); 2752 return; 2753 } 2754 2755 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2756 // Naked functions don't have epilogues. 2757 Builder.CreateUnreachable(); 2758 return; 2759 } 2760 2761 // Functions with no result always return void. 2762 if (!ReturnValue.isValid()) { 2763 Builder.CreateRetVoid(); 2764 return; 2765 } 2766 2767 llvm::DebugLoc RetDbgLoc; 2768 llvm::Value *RV = nullptr; 2769 QualType RetTy = FI.getReturnType(); 2770 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2771 2772 switch (RetAI.getKind()) { 2773 case ABIArgInfo::InAlloca: 2774 // Aggregrates get evaluated directly into the destination. Sometimes we 2775 // need to return the sret value in a register, though. 2776 assert(hasAggregateEvaluationKind(RetTy)); 2777 if (RetAI.getInAllocaSRet()) { 2778 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2779 --EI; 2780 llvm::Value *ArgStruct = &*EI; 2781 llvm::Value *SRet = Builder.CreateStructGEP( 2782 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2783 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2784 } 2785 break; 2786 2787 case ABIArgInfo::Indirect: { 2788 auto AI = CurFn->arg_begin(); 2789 if (RetAI.isSRetAfterThis()) 2790 ++AI; 2791 switch (getEvaluationKind(RetTy)) { 2792 case TEK_Complex: { 2793 ComplexPairTy RT = 2794 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2795 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2796 /*isInit*/ true); 2797 break; 2798 } 2799 case TEK_Aggregate: 2800 // Do nothing; aggregrates get evaluated directly into the destination. 2801 break; 2802 case TEK_Scalar: 2803 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2804 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2805 /*isInit*/ true); 2806 break; 2807 } 2808 break; 2809 } 2810 2811 case ABIArgInfo::Extend: 2812 case ABIArgInfo::Direct: 2813 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2814 RetAI.getDirectOffset() == 0) { 2815 // The internal return value temp always will have pointer-to-return-type 2816 // type, just do a load. 2817 2818 // If there is a dominating store to ReturnValue, we can elide 2819 // the load, zap the store, and usually zap the alloca. 2820 if (llvm::StoreInst *SI = 2821 findDominatingStoreToReturnValue(*this)) { 2822 // Reuse the debug location from the store unless there is 2823 // cleanup code to be emitted between the store and return 2824 // instruction. 2825 if (EmitRetDbgLoc && !AutoreleaseResult) 2826 RetDbgLoc = SI->getDebugLoc(); 2827 // Get the stored value and nuke the now-dead store. 2828 RV = SI->getValueOperand(); 2829 SI->eraseFromParent(); 2830 2831 // If that was the only use of the return value, nuke it as well now. 2832 auto returnValueInst = ReturnValue.getPointer(); 2833 if (returnValueInst->use_empty()) { 2834 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2835 alloca->eraseFromParent(); 2836 ReturnValue = Address::invalid(); 2837 } 2838 } 2839 2840 // Otherwise, we have to do a simple load. 2841 } else { 2842 RV = Builder.CreateLoad(ReturnValue); 2843 } 2844 } else { 2845 // If the value is offset in memory, apply the offset now. 2846 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2847 2848 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2849 } 2850 2851 // In ARC, end functions that return a retainable type with a call 2852 // to objc_autoreleaseReturnValue. 2853 if (AutoreleaseResult) { 2854 #ifndef NDEBUG 2855 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2856 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2857 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2858 // CurCodeDecl or BlockInfo. 2859 QualType RT; 2860 2861 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2862 RT = FD->getReturnType(); 2863 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2864 RT = MD->getReturnType(); 2865 else if (isa<BlockDecl>(CurCodeDecl)) 2866 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2867 else 2868 llvm_unreachable("Unexpected function/method type"); 2869 2870 assert(getLangOpts().ObjCAutoRefCount && 2871 !FI.isReturnsRetained() && 2872 RT->isObjCRetainableType()); 2873 #endif 2874 RV = emitAutoreleaseOfResult(*this, RV); 2875 } 2876 2877 break; 2878 2879 case ABIArgInfo::Ignore: 2880 break; 2881 2882 case ABIArgInfo::CoerceAndExpand: { 2883 auto coercionType = RetAI.getCoerceAndExpandType(); 2884 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2885 2886 // Load all of the coerced elements out into results. 2887 llvm::SmallVector<llvm::Value*, 4> results; 2888 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2889 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2890 auto coercedEltType = coercionType->getElementType(i); 2891 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2892 continue; 2893 2894 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2895 auto elt = Builder.CreateLoad(eltAddr); 2896 results.push_back(elt); 2897 } 2898 2899 // If we have one result, it's the single direct result type. 2900 if (results.size() == 1) { 2901 RV = results[0]; 2902 2903 // Otherwise, we need to make a first-class aggregate. 2904 } else { 2905 // Construct a return type that lacks padding elements. 2906 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2907 2908 RV = llvm::UndefValue::get(returnType); 2909 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2910 RV = Builder.CreateInsertValue(RV, results[i], i); 2911 } 2912 } 2913 break; 2914 } 2915 2916 case ABIArgInfo::Expand: 2917 llvm_unreachable("Invalid ABI kind for return argument"); 2918 } 2919 2920 llvm::Instruction *Ret; 2921 if (RV) { 2922 EmitReturnValueCheck(RV); 2923 Ret = Builder.CreateRet(RV); 2924 } else { 2925 Ret = Builder.CreateRetVoid(); 2926 } 2927 2928 if (RetDbgLoc) 2929 Ret->setDebugLoc(std::move(RetDbgLoc)); 2930 } 2931 2932 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2933 // A current decl may not be available when emitting vtable thunks. 2934 if (!CurCodeDecl) 2935 return; 2936 2937 ReturnsNonNullAttr *RetNNAttr = nullptr; 2938 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2939 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2940 2941 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2942 return; 2943 2944 // Prefer the returns_nonnull attribute if it's present. 2945 SourceLocation AttrLoc; 2946 SanitizerMask CheckKind; 2947 SanitizerHandler Handler; 2948 if (RetNNAttr) { 2949 assert(!requiresReturnValueNullabilityCheck() && 2950 "Cannot check nullability and the nonnull attribute"); 2951 AttrLoc = RetNNAttr->getLocation(); 2952 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 2953 Handler = SanitizerHandler::NonnullReturn; 2954 } else { 2955 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 2956 if (auto *TSI = DD->getTypeSourceInfo()) 2957 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 2958 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 2959 CheckKind = SanitizerKind::NullabilityReturn; 2960 Handler = SanitizerHandler::NullabilityReturn; 2961 } 2962 2963 SanitizerScope SanScope(this); 2964 2965 // Make sure the "return" source location is valid. If we're checking a 2966 // nullability annotation, make sure the preconditions for the check are met. 2967 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 2968 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 2969 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 2970 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 2971 if (requiresReturnValueNullabilityCheck()) 2972 CanNullCheck = 2973 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 2974 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 2975 EmitBlock(Check); 2976 2977 // Now do the null check. 2978 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 2979 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 2980 llvm::Value *DynamicData[] = {SLocPtr}; 2981 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 2982 2983 EmitBlock(NoCheck); 2984 2985 #ifndef NDEBUG 2986 // The return location should not be used after the check has been emitted. 2987 ReturnLocation = Address::invalid(); 2988 #endif 2989 } 2990 2991 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2992 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2993 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2994 } 2995 2996 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2997 QualType Ty) { 2998 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2999 // placeholders. 3000 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3001 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3002 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3003 3004 // FIXME: When we generate this IR in one pass, we shouldn't need 3005 // this win32-specific alignment hack. 3006 CharUnits Align = CharUnits::fromQuantity(4); 3007 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3008 3009 return AggValueSlot::forAddr(Address(Placeholder, Align), 3010 Ty.getQualifiers(), 3011 AggValueSlot::IsNotDestructed, 3012 AggValueSlot::DoesNotNeedGCBarriers, 3013 AggValueSlot::IsNotAliased); 3014 } 3015 3016 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3017 const VarDecl *param, 3018 SourceLocation loc) { 3019 // StartFunction converted the ABI-lowered parameter(s) into a 3020 // local alloca. We need to turn that into an r-value suitable 3021 // for EmitCall. 3022 Address local = GetAddrOfLocalVar(param); 3023 3024 QualType type = param->getType(); 3025 3026 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 3027 "cannot emit delegate call arguments for inalloca arguments!"); 3028 3029 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3030 // but the argument needs to be the original pointer. 3031 if (type->isReferenceType()) { 3032 args.add(RValue::get(Builder.CreateLoad(local)), type); 3033 3034 // In ARC, move out of consumed arguments so that the release cleanup 3035 // entered by StartFunction doesn't cause an over-release. This isn't 3036 // optimal -O0 code generation, but it should get cleaned up when 3037 // optimization is enabled. This also assumes that delegate calls are 3038 // performed exactly once for a set of arguments, but that should be safe. 3039 } else if (getLangOpts().ObjCAutoRefCount && 3040 param->hasAttr<NSConsumedAttr>() && 3041 type->isObjCRetainableType()) { 3042 llvm::Value *ptr = Builder.CreateLoad(local); 3043 auto null = 3044 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3045 Builder.CreateStore(null, local); 3046 args.add(RValue::get(ptr), type); 3047 3048 // For the most part, we just need to load the alloca, except that 3049 // aggregate r-values are actually pointers to temporaries. 3050 } else { 3051 args.add(convertTempToRValue(local, type, loc), type); 3052 } 3053 } 3054 3055 static bool isProvablyNull(llvm::Value *addr) { 3056 return isa<llvm::ConstantPointerNull>(addr); 3057 } 3058 3059 /// Emit the actual writing-back of a writeback. 3060 static void emitWriteback(CodeGenFunction &CGF, 3061 const CallArgList::Writeback &writeback) { 3062 const LValue &srcLV = writeback.Source; 3063 Address srcAddr = srcLV.getAddress(); 3064 assert(!isProvablyNull(srcAddr.getPointer()) && 3065 "shouldn't have writeback for provably null argument"); 3066 3067 llvm::BasicBlock *contBB = nullptr; 3068 3069 // If the argument wasn't provably non-null, we need to null check 3070 // before doing the store. 3071 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3072 CGF.CGM.getDataLayout()); 3073 if (!provablyNonNull) { 3074 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3075 contBB = CGF.createBasicBlock("icr.done"); 3076 3077 llvm::Value *isNull = 3078 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3079 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3080 CGF.EmitBlock(writebackBB); 3081 } 3082 3083 // Load the value to writeback. 3084 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3085 3086 // Cast it back, in case we're writing an id to a Foo* or something. 3087 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3088 "icr.writeback-cast"); 3089 3090 // Perform the writeback. 3091 3092 // If we have a "to use" value, it's something we need to emit a use 3093 // of. This has to be carefully threaded in: if it's done after the 3094 // release it's potentially undefined behavior (and the optimizer 3095 // will ignore it), and if it happens before the retain then the 3096 // optimizer could move the release there. 3097 if (writeback.ToUse) { 3098 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3099 3100 // Retain the new value. No need to block-copy here: the block's 3101 // being passed up the stack. 3102 value = CGF.EmitARCRetainNonBlock(value); 3103 3104 // Emit the intrinsic use here. 3105 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3106 3107 // Load the old value (primitively). 3108 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3109 3110 // Put the new value in place (primitively). 3111 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3112 3113 // Release the old value. 3114 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3115 3116 // Otherwise, we can just do a normal lvalue store. 3117 } else { 3118 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3119 } 3120 3121 // Jump to the continuation block. 3122 if (!provablyNonNull) 3123 CGF.EmitBlock(contBB); 3124 } 3125 3126 static void emitWritebacks(CodeGenFunction &CGF, 3127 const CallArgList &args) { 3128 for (const auto &I : args.writebacks()) 3129 emitWriteback(CGF, I); 3130 } 3131 3132 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3133 const CallArgList &CallArgs) { 3134 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3135 CallArgs.getCleanupsToDeactivate(); 3136 // Iterate in reverse to increase the likelihood of popping the cleanup. 3137 for (const auto &I : llvm::reverse(Cleanups)) { 3138 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3139 I.IsActiveIP->eraseFromParent(); 3140 } 3141 } 3142 3143 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3144 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3145 if (uop->getOpcode() == UO_AddrOf) 3146 return uop->getSubExpr(); 3147 return nullptr; 3148 } 3149 3150 /// Emit an argument that's being passed call-by-writeback. That is, 3151 /// we are passing the address of an __autoreleased temporary; it 3152 /// might be copy-initialized with the current value of the given 3153 /// address, but it will definitely be copied out of after the call. 3154 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3155 const ObjCIndirectCopyRestoreExpr *CRE) { 3156 LValue srcLV; 3157 3158 // Make an optimistic effort to emit the address as an l-value. 3159 // This can fail if the argument expression is more complicated. 3160 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3161 srcLV = CGF.EmitLValue(lvExpr); 3162 3163 // Otherwise, just emit it as a scalar. 3164 } else { 3165 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3166 3167 QualType srcAddrType = 3168 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3169 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3170 } 3171 Address srcAddr = srcLV.getAddress(); 3172 3173 // The dest and src types don't necessarily match in LLVM terms 3174 // because of the crazy ObjC compatibility rules. 3175 3176 llvm::PointerType *destType = 3177 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3178 3179 // If the address is a constant null, just pass the appropriate null. 3180 if (isProvablyNull(srcAddr.getPointer())) { 3181 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3182 CRE->getType()); 3183 return; 3184 } 3185 3186 // Create the temporary. 3187 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3188 CGF.getPointerAlign(), 3189 "icr.temp"); 3190 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3191 // and that cleanup will be conditional if we can't prove that the l-value 3192 // isn't null, so we need to register a dominating point so that the cleanups 3193 // system will make valid IR. 3194 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3195 3196 // Zero-initialize it if we're not doing a copy-initialization. 3197 bool shouldCopy = CRE->shouldCopy(); 3198 if (!shouldCopy) { 3199 llvm::Value *null = 3200 llvm::ConstantPointerNull::get( 3201 cast<llvm::PointerType>(destType->getElementType())); 3202 CGF.Builder.CreateStore(null, temp); 3203 } 3204 3205 llvm::BasicBlock *contBB = nullptr; 3206 llvm::BasicBlock *originBB = nullptr; 3207 3208 // If the address is *not* known to be non-null, we need to switch. 3209 llvm::Value *finalArgument; 3210 3211 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3212 CGF.CGM.getDataLayout()); 3213 if (provablyNonNull) { 3214 finalArgument = temp.getPointer(); 3215 } else { 3216 llvm::Value *isNull = 3217 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3218 3219 finalArgument = CGF.Builder.CreateSelect(isNull, 3220 llvm::ConstantPointerNull::get(destType), 3221 temp.getPointer(), "icr.argument"); 3222 3223 // If we need to copy, then the load has to be conditional, which 3224 // means we need control flow. 3225 if (shouldCopy) { 3226 originBB = CGF.Builder.GetInsertBlock(); 3227 contBB = CGF.createBasicBlock("icr.cont"); 3228 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3229 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3230 CGF.EmitBlock(copyBB); 3231 condEval.begin(CGF); 3232 } 3233 } 3234 3235 llvm::Value *valueToUse = nullptr; 3236 3237 // Perform a copy if necessary. 3238 if (shouldCopy) { 3239 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3240 assert(srcRV.isScalar()); 3241 3242 llvm::Value *src = srcRV.getScalarVal(); 3243 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3244 "icr.cast"); 3245 3246 // Use an ordinary store, not a store-to-lvalue. 3247 CGF.Builder.CreateStore(src, temp); 3248 3249 // If optimization is enabled, and the value was held in a 3250 // __strong variable, we need to tell the optimizer that this 3251 // value has to stay alive until we're doing the store back. 3252 // This is because the temporary is effectively unretained, 3253 // and so otherwise we can violate the high-level semantics. 3254 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3255 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3256 valueToUse = src; 3257 } 3258 } 3259 3260 // Finish the control flow if we needed it. 3261 if (shouldCopy && !provablyNonNull) { 3262 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3263 CGF.EmitBlock(contBB); 3264 3265 // Make a phi for the value to intrinsically use. 3266 if (valueToUse) { 3267 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3268 "icr.to-use"); 3269 phiToUse->addIncoming(valueToUse, copyBB); 3270 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3271 originBB); 3272 valueToUse = phiToUse; 3273 } 3274 3275 condEval.end(CGF); 3276 } 3277 3278 args.addWriteback(srcLV, temp, valueToUse); 3279 args.add(RValue::get(finalArgument), CRE->getType()); 3280 } 3281 3282 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3283 assert(!StackBase); 3284 3285 // Save the stack. 3286 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3287 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3288 } 3289 3290 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3291 if (StackBase) { 3292 // Restore the stack after the call. 3293 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3294 CGF.Builder.CreateCall(F, StackBase); 3295 } 3296 } 3297 3298 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3299 SourceLocation ArgLoc, 3300 AbstractCallee AC, 3301 unsigned ParmNum) { 3302 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3303 SanOpts.has(SanitizerKind::NullabilityArg))) 3304 return; 3305 3306 // The param decl may be missing in a variadic function. 3307 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3308 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3309 3310 // Prefer the nonnull attribute if it's present. 3311 const NonNullAttr *NNAttr = nullptr; 3312 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3313 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3314 3315 bool CanCheckNullability = false; 3316 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3317 auto Nullability = PVD->getType()->getNullability(getContext()); 3318 CanCheckNullability = Nullability && 3319 *Nullability == NullabilityKind::NonNull && 3320 PVD->getTypeSourceInfo(); 3321 } 3322 3323 if (!NNAttr && !CanCheckNullability) 3324 return; 3325 3326 SourceLocation AttrLoc; 3327 SanitizerMask CheckKind; 3328 SanitizerHandler Handler; 3329 if (NNAttr) { 3330 AttrLoc = NNAttr->getLocation(); 3331 CheckKind = SanitizerKind::NonnullAttribute; 3332 Handler = SanitizerHandler::NonnullArg; 3333 } else { 3334 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3335 CheckKind = SanitizerKind::NullabilityArg; 3336 Handler = SanitizerHandler::NullabilityArg; 3337 } 3338 3339 SanitizerScope SanScope(this); 3340 assert(RV.isScalar()); 3341 llvm::Value *V = RV.getScalarVal(); 3342 llvm::Value *Cond = 3343 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3344 llvm::Constant *StaticData[] = { 3345 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3346 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3347 }; 3348 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3349 } 3350 3351 void CodeGenFunction::EmitCallArgs( 3352 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3353 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3354 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3355 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3356 3357 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3358 // because arguments are destroyed left to right in the callee. As a special 3359 // case, there are certain language constructs that require left-to-right 3360 // evaluation, and in those cases we consider the evaluation order requirement 3361 // to trump the "destruction order is reverse construction order" guarantee. 3362 bool LeftToRight = 3363 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3364 ? Order == EvaluationOrder::ForceLeftToRight 3365 : Order != EvaluationOrder::ForceRightToLeft; 3366 3367 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3368 RValue EmittedArg) { 3369 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3370 return; 3371 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3372 if (PS == nullptr) 3373 return; 3374 3375 const auto &Context = getContext(); 3376 auto SizeTy = Context.getSizeType(); 3377 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3378 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3379 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3380 EmittedArg.getScalarVal()); 3381 Args.add(RValue::get(V), SizeTy); 3382 // If we're emitting args in reverse, be sure to do so with 3383 // pass_object_size, as well. 3384 if (!LeftToRight) 3385 std::swap(Args.back(), *(&Args.back() - 1)); 3386 }; 3387 3388 // Insert a stack save if we're going to need any inalloca args. 3389 bool HasInAllocaArgs = false; 3390 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3391 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3392 I != E && !HasInAllocaArgs; ++I) 3393 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3394 if (HasInAllocaArgs) { 3395 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3396 Args.allocateArgumentMemory(*this); 3397 } 3398 } 3399 3400 // Evaluate each argument in the appropriate order. 3401 size_t CallArgsStart = Args.size(); 3402 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3403 unsigned Idx = LeftToRight ? I : E - I - 1; 3404 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3405 unsigned InitialArgSize = Args.size(); 3406 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3407 // the argument and parameter match or the objc method is parameterized. 3408 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3409 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3410 ArgTypes[Idx]) || 3411 (isa<ObjCMethodDecl>(AC.getDecl()) && 3412 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3413 "Argument and parameter types don't match"); 3414 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3415 // In particular, we depend on it being the last arg in Args, and the 3416 // objectsize bits depend on there only being one arg if !LeftToRight. 3417 assert(InitialArgSize + 1 == Args.size() && 3418 "The code below depends on only adding one arg per EmitCallArg"); 3419 (void)InitialArgSize; 3420 RValue RVArg = Args.back().RV; 3421 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3422 ParamsToSkip + Idx); 3423 // @llvm.objectsize should never have side-effects and shouldn't need 3424 // destruction/cleanups, so we can safely "emit" it after its arg, 3425 // regardless of right-to-leftness 3426 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3427 } 3428 3429 if (!LeftToRight) { 3430 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3431 // IR function. 3432 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3433 } 3434 } 3435 3436 namespace { 3437 3438 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3439 DestroyUnpassedArg(Address Addr, QualType Ty) 3440 : Addr(Addr), Ty(Ty) {} 3441 3442 Address Addr; 3443 QualType Ty; 3444 3445 void Emit(CodeGenFunction &CGF, Flags flags) override { 3446 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3447 if (DtorKind == QualType::DK_cxx_destructor) { 3448 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3449 assert(!Dtor->isTrivial()); 3450 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3451 /*Delegating=*/false, Addr); 3452 } else { 3453 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3454 } 3455 } 3456 }; 3457 3458 struct DisableDebugLocationUpdates { 3459 CodeGenFunction &CGF; 3460 bool disabledDebugInfo; 3461 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3462 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3463 CGF.disableDebugInfo(); 3464 } 3465 ~DisableDebugLocationUpdates() { 3466 if (disabledDebugInfo) 3467 CGF.enableDebugInfo(); 3468 } 3469 }; 3470 3471 } // end anonymous namespace 3472 3473 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3474 QualType type) { 3475 DisableDebugLocationUpdates Dis(*this, E); 3476 if (const ObjCIndirectCopyRestoreExpr *CRE 3477 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3478 assert(getLangOpts().ObjCAutoRefCount); 3479 return emitWritebackArg(*this, args, CRE); 3480 } 3481 3482 assert(type->isReferenceType() == E->isGLValue() && 3483 "reference binding to unmaterialized r-value!"); 3484 3485 if (E->isGLValue()) { 3486 assert(E->getObjectKind() == OK_Ordinary); 3487 return args.add(EmitReferenceBindingToExpr(E), type); 3488 } 3489 3490 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3491 3492 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3493 // However, we still have to push an EH-only cleanup in case we unwind before 3494 // we make it to the call. 3495 if (HasAggregateEvalKind && getContext().isParamDestroyedInCallee(type)) { 3496 // If we're using inalloca, use the argument memory. Otherwise, use a 3497 // temporary. 3498 AggValueSlot Slot; 3499 if (args.isUsingInAlloca()) 3500 Slot = createPlaceholderSlot(*this, type); 3501 else 3502 Slot = CreateAggTemp(type, "agg.tmp"); 3503 3504 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3505 if (const auto *RD = type->getAsCXXRecordDecl()) { 3506 DestroyedInCallee = 3507 RD && RD->hasNonTrivialDestructor() && 3508 (CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default || 3509 RD->hasTrivialABIOverride()); 3510 } else { 3511 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3512 } 3513 3514 if (DestroyedInCallee) 3515 Slot.setExternallyDestructed(); 3516 3517 EmitAggExpr(E, Slot); 3518 RValue RV = Slot.asRValue(); 3519 args.add(RV, type); 3520 3521 if (DestroyedInCallee && NeedsEHCleanup) { 3522 // Create a no-op GEP between the placeholder and the cleanup so we can 3523 // RAUW it successfully. It also serves as a marker of the first 3524 // instruction where the cleanup is active. 3525 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3526 type); 3527 // This unreachable is a temporary marker which will be removed later. 3528 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3529 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3530 } 3531 return; 3532 } 3533 3534 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3535 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3536 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3537 assert(L.isSimple()); 3538 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 3539 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 3540 } else { 3541 // We can't represent a misaligned lvalue in the CallArgList, so copy 3542 // to an aligned temporary now. 3543 LValue Dest = MakeAddrLValue(CreateMemTemp(type), type); 3544 EmitAggregateCopy(Dest, L, type, L.isVolatile()); 3545 args.add(RValue::getAggregate(Dest.getAddress()), type); 3546 } 3547 return; 3548 } 3549 3550 args.add(EmitAnyExprToTemp(E), type); 3551 } 3552 3553 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3554 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3555 // implicitly widens null pointer constants that are arguments to varargs 3556 // functions to pointer-sized ints. 3557 if (!getTarget().getTriple().isOSWindows()) 3558 return Arg->getType(); 3559 3560 if (Arg->getType()->isIntegerType() && 3561 getContext().getTypeSize(Arg->getType()) < 3562 getContext().getTargetInfo().getPointerWidth(0) && 3563 Arg->isNullPointerConstant(getContext(), 3564 Expr::NPC_ValueDependentIsNotNull)) { 3565 return getContext().getIntPtrType(); 3566 } 3567 3568 return Arg->getType(); 3569 } 3570 3571 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3572 // optimizer it can aggressively ignore unwind edges. 3573 void 3574 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3575 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3576 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3577 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3578 CGM.getNoObjCARCExceptionsMetadata()); 3579 } 3580 3581 /// Emits a call to the given no-arguments nounwind runtime function. 3582 llvm::CallInst * 3583 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3584 const llvm::Twine &name) { 3585 return EmitNounwindRuntimeCall(callee, None, name); 3586 } 3587 3588 /// Emits a call to the given nounwind runtime function. 3589 llvm::CallInst * 3590 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3591 ArrayRef<llvm::Value*> args, 3592 const llvm::Twine &name) { 3593 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3594 call->setDoesNotThrow(); 3595 return call; 3596 } 3597 3598 /// Emits a simple call (never an invoke) to the given no-arguments 3599 /// runtime function. 3600 llvm::CallInst * 3601 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3602 const llvm::Twine &name) { 3603 return EmitRuntimeCall(callee, None, name); 3604 } 3605 3606 // Calls which may throw must have operand bundles indicating which funclet 3607 // they are nested within. 3608 SmallVector<llvm::OperandBundleDef, 1> 3609 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3610 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3611 // There is no need for a funclet operand bundle if we aren't inside a 3612 // funclet. 3613 if (!CurrentFuncletPad) 3614 return BundleList; 3615 3616 // Skip intrinsics which cannot throw. 3617 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3618 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3619 return BundleList; 3620 3621 BundleList.emplace_back("funclet", CurrentFuncletPad); 3622 return BundleList; 3623 } 3624 3625 /// Emits a simple call (never an invoke) to the given runtime function. 3626 llvm::CallInst * 3627 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3628 ArrayRef<llvm::Value*> args, 3629 const llvm::Twine &name) { 3630 llvm::CallInst *call = 3631 Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); 3632 call->setCallingConv(getRuntimeCC()); 3633 return call; 3634 } 3635 3636 /// Emits a call or invoke to the given noreturn runtime function. 3637 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3638 ArrayRef<llvm::Value*> args) { 3639 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3640 getBundlesForFunclet(callee); 3641 3642 if (getInvokeDest()) { 3643 llvm::InvokeInst *invoke = 3644 Builder.CreateInvoke(callee, 3645 getUnreachableBlock(), 3646 getInvokeDest(), 3647 args, 3648 BundleList); 3649 invoke->setDoesNotReturn(); 3650 invoke->setCallingConv(getRuntimeCC()); 3651 } else { 3652 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3653 call->setDoesNotReturn(); 3654 call->setCallingConv(getRuntimeCC()); 3655 Builder.CreateUnreachable(); 3656 } 3657 } 3658 3659 /// Emits a call or invoke instruction to the given nullary runtime function. 3660 llvm::CallSite 3661 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3662 const Twine &name) { 3663 return EmitRuntimeCallOrInvoke(callee, None, name); 3664 } 3665 3666 /// Emits a call or invoke instruction to the given runtime function. 3667 llvm::CallSite 3668 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3669 ArrayRef<llvm::Value*> args, 3670 const Twine &name) { 3671 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3672 callSite.setCallingConv(getRuntimeCC()); 3673 return callSite; 3674 } 3675 3676 /// Emits a call or invoke instruction to the given function, depending 3677 /// on the current state of the EH stack. 3678 llvm::CallSite 3679 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3680 ArrayRef<llvm::Value *> Args, 3681 const Twine &Name) { 3682 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3683 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3684 getBundlesForFunclet(Callee); 3685 3686 llvm::Instruction *Inst; 3687 if (!InvokeDest) 3688 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3689 else { 3690 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3691 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3692 Name); 3693 EmitBlock(ContBB); 3694 } 3695 3696 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3697 // optimizer it can aggressively ignore unwind edges. 3698 if (CGM.getLangOpts().ObjCAutoRefCount) 3699 AddObjCARCExceptionMetadata(Inst); 3700 3701 return llvm::CallSite(Inst); 3702 } 3703 3704 /// \brief Store a non-aggregate value to an address to initialize it. For 3705 /// initialization, a non-atomic store will be used. 3706 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3707 LValue Dst) { 3708 if (Src.isScalar()) 3709 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3710 else 3711 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3712 } 3713 3714 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3715 llvm::Value *New) { 3716 DeferredReplacements.push_back(std::make_pair(Old, New)); 3717 } 3718 3719 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3720 const CGCallee &Callee, 3721 ReturnValueSlot ReturnValue, 3722 const CallArgList &CallArgs, 3723 llvm::Instruction **callOrInvoke, 3724 SourceLocation Loc) { 3725 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3726 3727 assert(Callee.isOrdinary() || Callee.isVirtual()); 3728 3729 // Handle struct-return functions by passing a pointer to the 3730 // location that we would like to return into. 3731 QualType RetTy = CallInfo.getReturnType(); 3732 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3733 3734 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3735 3736 // 1. Set up the arguments. 3737 3738 // If we're using inalloca, insert the allocation after the stack save. 3739 // FIXME: Do this earlier rather than hacking it in here! 3740 Address ArgMemory = Address::invalid(); 3741 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3742 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3743 const llvm::DataLayout &DL = CGM.getDataLayout(); 3744 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3745 llvm::Instruction *IP = CallArgs.getStackBase(); 3746 llvm::AllocaInst *AI; 3747 if (IP) { 3748 IP = IP->getNextNode(); 3749 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3750 "argmem", IP); 3751 } else { 3752 AI = CreateTempAlloca(ArgStruct, "argmem"); 3753 } 3754 auto Align = CallInfo.getArgStructAlignment(); 3755 AI->setAlignment(Align.getQuantity()); 3756 AI->setUsedWithInAlloca(true); 3757 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3758 ArgMemory = Address(AI, Align); 3759 } 3760 3761 // Helper function to drill into the inalloca allocation. 3762 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3763 auto FieldOffset = 3764 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3765 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3766 }; 3767 3768 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3769 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3770 3771 // If the call returns a temporary with struct return, create a temporary 3772 // alloca to hold the result, unless one is given to us. 3773 Address SRetPtr = Address::invalid(); 3774 size_t UnusedReturnSize = 0; 3775 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3776 if (!ReturnValue.isNull()) { 3777 SRetPtr = ReturnValue.getValue(); 3778 } else { 3779 SRetPtr = CreateMemTemp(RetTy); 3780 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3781 uint64_t size = 3782 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3783 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3784 UnusedReturnSize = size; 3785 } 3786 } 3787 if (IRFunctionArgs.hasSRetArg()) { 3788 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3789 } else if (RetAI.isInAlloca()) { 3790 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3791 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3792 } 3793 } 3794 3795 Address swiftErrorTemp = Address::invalid(); 3796 Address swiftErrorArg = Address::invalid(); 3797 3798 // Translate all of the arguments as necessary to match the IR lowering. 3799 assert(CallInfo.arg_size() == CallArgs.size() && 3800 "Mismatch between function signature & arguments."); 3801 unsigned ArgNo = 0; 3802 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3803 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3804 I != E; ++I, ++info_it, ++ArgNo) { 3805 const ABIArgInfo &ArgInfo = info_it->info; 3806 RValue RV = I->RV; 3807 3808 // Insert a padding argument to ensure proper alignment. 3809 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3810 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3811 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3812 3813 unsigned FirstIRArg, NumIRArgs; 3814 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3815 3816 switch (ArgInfo.getKind()) { 3817 case ABIArgInfo::InAlloca: { 3818 assert(NumIRArgs == 0); 3819 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3820 if (RV.isAggregate()) { 3821 // Replace the placeholder with the appropriate argument slot GEP. 3822 llvm::Instruction *Placeholder = 3823 cast<llvm::Instruction>(RV.getAggregatePointer()); 3824 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3825 Builder.SetInsertPoint(Placeholder); 3826 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3827 Builder.restoreIP(IP); 3828 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3829 } else { 3830 // Store the RValue into the argument struct. 3831 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3832 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3833 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3834 // There are some cases where a trivial bitcast is not avoidable. The 3835 // definition of a type later in a translation unit may change it's type 3836 // from {}* to (%struct.foo*)*. 3837 if (Addr.getType() != MemType) 3838 Addr = Builder.CreateBitCast(Addr, MemType); 3839 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3840 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3841 } 3842 break; 3843 } 3844 3845 case ABIArgInfo::Indirect: { 3846 assert(NumIRArgs == 1); 3847 if (RV.isScalar() || RV.isComplex()) { 3848 // Make a temporary alloca to pass the argument. 3849 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3850 "indirect-arg-temp", false); 3851 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3852 3853 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3854 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3855 } else { 3856 // We want to avoid creating an unnecessary temporary+copy here; 3857 // however, we need one in three cases: 3858 // 1. If the argument is not byval, and we are required to copy the 3859 // source. (This case doesn't occur on any common architecture.) 3860 // 2. If the argument is byval, RV is not sufficiently aligned, and 3861 // we cannot force it to be sufficiently aligned. 3862 // 3. If the argument is byval, but RV is located in an address space 3863 // different than that of the argument (0). 3864 Address Addr = RV.getAggregateAddress(); 3865 CharUnits Align = ArgInfo.getIndirectAlign(); 3866 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3867 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3868 const unsigned ArgAddrSpace = 3869 (FirstIRArg < IRFuncTy->getNumParams() 3870 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3871 : 0); 3872 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3873 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3874 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3875 Align.getQuantity(), *TD) 3876 < Align.getQuantity()) || 3877 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3878 // Create an aligned temporary, and copy to it. 3879 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3880 "byval-temp", false); 3881 IRCallArgs[FirstIRArg] = AI.getPointer(); 3882 LValue Dest = MakeAddrLValue(AI, I->Ty); 3883 LValue Src = MakeAddrLValue(Addr, I->Ty); 3884 EmitAggregateCopy(Dest, Src, I->Ty, RV.isVolatileQualified()); 3885 } else { 3886 // Skip the extra memcpy call. 3887 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3888 } 3889 } 3890 break; 3891 } 3892 3893 case ABIArgInfo::Ignore: 3894 assert(NumIRArgs == 0); 3895 break; 3896 3897 case ABIArgInfo::Extend: 3898 case ABIArgInfo::Direct: { 3899 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3900 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3901 ArgInfo.getDirectOffset() == 0) { 3902 assert(NumIRArgs == 1); 3903 llvm::Value *V; 3904 if (RV.isScalar()) 3905 V = RV.getScalarVal(); 3906 else 3907 V = Builder.CreateLoad(RV.getAggregateAddress()); 3908 3909 // Implement swifterror by copying into a new swifterror argument. 3910 // We'll write back in the normal path out of the call. 3911 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3912 == ParameterABI::SwiftErrorResult) { 3913 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3914 3915 QualType pointeeTy = I->Ty->getPointeeType(); 3916 swiftErrorArg = 3917 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3918 3919 swiftErrorTemp = 3920 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3921 V = swiftErrorTemp.getPointer(); 3922 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3923 3924 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3925 Builder.CreateStore(errorValue, swiftErrorTemp); 3926 } 3927 3928 // We might have to widen integers, but we should never truncate. 3929 if (ArgInfo.getCoerceToType() != V->getType() && 3930 V->getType()->isIntegerTy()) 3931 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3932 3933 // If the argument doesn't match, perform a bitcast to coerce it. This 3934 // can happen due to trivial type mismatches. 3935 if (FirstIRArg < IRFuncTy->getNumParams() && 3936 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3937 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3938 3939 IRCallArgs[FirstIRArg] = V; 3940 break; 3941 } 3942 3943 // FIXME: Avoid the conversion through memory if possible. 3944 Address Src = Address::invalid(); 3945 if (RV.isScalar() || RV.isComplex()) { 3946 Src = CreateMemTemp(I->Ty, "coerce"); 3947 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3948 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3949 } else { 3950 Src = RV.getAggregateAddress(); 3951 } 3952 3953 // If the value is offset in memory, apply the offset now. 3954 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3955 3956 // Fast-isel and the optimizer generally like scalar values better than 3957 // FCAs, so we flatten them if this is safe to do for this argument. 3958 llvm::StructType *STy = 3959 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3960 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3961 llvm::Type *SrcTy = Src.getType()->getElementType(); 3962 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3963 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3964 3965 // If the source type is smaller than the destination type of the 3966 // coerce-to logic, copy the source value into a temp alloca the size 3967 // of the destination type to allow loading all of it. The bits past 3968 // the source value are left undef. 3969 if (SrcSize < DstSize) { 3970 Address TempAlloca 3971 = CreateTempAlloca(STy, Src.getAlignment(), 3972 Src.getName() + ".coerce"); 3973 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3974 Src = TempAlloca; 3975 } else { 3976 Src = Builder.CreateBitCast(Src, 3977 STy->getPointerTo(Src.getAddressSpace())); 3978 } 3979 3980 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3981 assert(NumIRArgs == STy->getNumElements()); 3982 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3983 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3984 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3985 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3986 IRCallArgs[FirstIRArg + i] = LI; 3987 } 3988 } else { 3989 // In the simple case, just pass the coerced loaded value. 3990 assert(NumIRArgs == 1); 3991 IRCallArgs[FirstIRArg] = 3992 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3993 } 3994 3995 break; 3996 } 3997 3998 case ABIArgInfo::CoerceAndExpand: { 3999 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4000 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4001 4002 llvm::Value *tempSize = nullptr; 4003 Address addr = Address::invalid(); 4004 if (RV.isAggregate()) { 4005 addr = RV.getAggregateAddress(); 4006 } else { 4007 assert(RV.isScalar()); // complex should always just be direct 4008 4009 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4010 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4011 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4012 4013 tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize); 4014 4015 // Materialize to a temporary. 4016 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 4017 CharUnits::fromQuantity(std::max(layout->getAlignment(), 4018 scalarAlign))); 4019 EmitLifetimeStart(scalarSize, addr.getPointer()); 4020 4021 Builder.CreateStore(RV.getScalarVal(), addr); 4022 } 4023 4024 addr = Builder.CreateElementBitCast(addr, coercionType); 4025 4026 unsigned IRArgPos = FirstIRArg; 4027 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4028 llvm::Type *eltType = coercionType->getElementType(i); 4029 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4030 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4031 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4032 IRCallArgs[IRArgPos++] = elt; 4033 } 4034 assert(IRArgPos == FirstIRArg + NumIRArgs); 4035 4036 if (tempSize) { 4037 EmitLifetimeEnd(tempSize, addr.getPointer()); 4038 } 4039 4040 break; 4041 } 4042 4043 case ABIArgInfo::Expand: 4044 unsigned IRArgPos = FirstIRArg; 4045 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 4046 assert(IRArgPos == FirstIRArg + NumIRArgs); 4047 break; 4048 } 4049 } 4050 4051 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4052 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4053 4054 // If we're using inalloca, set up that argument. 4055 if (ArgMemory.isValid()) { 4056 llvm::Value *Arg = ArgMemory.getPointer(); 4057 if (CallInfo.isVariadic()) { 4058 // When passing non-POD arguments by value to variadic functions, we will 4059 // end up with a variadic prototype and an inalloca call site. In such 4060 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4061 // the callee. 4062 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4063 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4064 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4065 } else { 4066 llvm::Type *LastParamTy = 4067 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4068 if (Arg->getType() != LastParamTy) { 4069 #ifndef NDEBUG 4070 // Assert that these structs have equivalent element types. 4071 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4072 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4073 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4074 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4075 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4076 DE = DeclaredTy->element_end(), 4077 FI = FullTy->element_begin(); 4078 DI != DE; ++DI, ++FI) 4079 assert(*DI == *FI); 4080 #endif 4081 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4082 } 4083 } 4084 assert(IRFunctionArgs.hasInallocaArg()); 4085 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4086 } 4087 4088 // 2. Prepare the function pointer. 4089 4090 // If the callee is a bitcast of a non-variadic function to have a 4091 // variadic function pointer type, check to see if we can remove the 4092 // bitcast. This comes up with unprototyped functions. 4093 // 4094 // This makes the IR nicer, but more importantly it ensures that we 4095 // can inline the function at -O0 if it is marked always_inline. 4096 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4097 llvm::FunctionType *CalleeFT = 4098 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4099 if (!CalleeFT->isVarArg()) 4100 return Ptr; 4101 4102 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4103 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4104 return Ptr; 4105 4106 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4107 if (!OrigFn) 4108 return Ptr; 4109 4110 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4111 4112 // If the original type is variadic, or if any of the component types 4113 // disagree, we cannot remove the cast. 4114 if (OrigFT->isVarArg() || 4115 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4116 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4117 return Ptr; 4118 4119 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4120 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4121 return Ptr; 4122 4123 return OrigFn; 4124 }; 4125 CalleePtr = simplifyVariadicCallee(CalleePtr); 4126 4127 // 3. Perform the actual call. 4128 4129 // Deactivate any cleanups that we're supposed to do immediately before 4130 // the call. 4131 if (!CallArgs.getCleanupsToDeactivate().empty()) 4132 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4133 4134 // Assert that the arguments we computed match up. The IR verifier 4135 // will catch this, but this is a common enough source of problems 4136 // during IRGen changes that it's way better for debugging to catch 4137 // it ourselves here. 4138 #ifndef NDEBUG 4139 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4140 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4141 // Inalloca argument can have different type. 4142 if (IRFunctionArgs.hasInallocaArg() && 4143 i == IRFunctionArgs.getInallocaArgNo()) 4144 continue; 4145 if (i < IRFuncTy->getNumParams()) 4146 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4147 } 4148 #endif 4149 4150 // Compute the calling convention and attributes. 4151 unsigned CallingConv; 4152 llvm::AttributeList Attrs; 4153 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4154 Callee.getAbstractInfo(), Attrs, CallingConv, 4155 /*AttrOnCallSite=*/true); 4156 4157 // Apply some call-site-specific attributes. 4158 // TODO: work this into building the attribute set. 4159 4160 // Apply always_inline to all calls within flatten functions. 4161 // FIXME: should this really take priority over __try, below? 4162 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4163 !(Callee.getAbstractInfo().getCalleeDecl() && 4164 Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { 4165 Attrs = 4166 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4167 llvm::Attribute::AlwaysInline); 4168 } 4169 4170 // Disable inlining inside SEH __try blocks. 4171 if (isSEHTryScope()) { 4172 Attrs = 4173 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4174 llvm::Attribute::NoInline); 4175 } 4176 4177 // Decide whether to use a call or an invoke. 4178 bool CannotThrow; 4179 if (currentFunctionUsesSEHTry()) { 4180 // SEH cares about asynchronous exceptions, so everything can "throw." 4181 CannotThrow = false; 4182 } else if (isCleanupPadScope() && 4183 EHPersonality::get(*this).isMSVCXXPersonality()) { 4184 // The MSVC++ personality will implicitly terminate the program if an 4185 // exception is thrown during a cleanup outside of a try/catch. 4186 // We don't need to model anything in IR to get this behavior. 4187 CannotThrow = true; 4188 } else { 4189 // Otherwise, nounwind call sites will never throw. 4190 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4191 llvm::Attribute::NoUnwind); 4192 } 4193 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4194 4195 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4196 getBundlesForFunclet(CalleePtr); 4197 4198 // Emit the actual call/invoke instruction. 4199 llvm::CallSite CS; 4200 if (!InvokeDest) { 4201 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4202 } else { 4203 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4204 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4205 BundleList); 4206 EmitBlock(Cont); 4207 } 4208 llvm::Instruction *CI = CS.getInstruction(); 4209 if (callOrInvoke) 4210 *callOrInvoke = CI; 4211 4212 // Apply the attributes and calling convention. 4213 CS.setAttributes(Attrs); 4214 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4215 4216 // Apply various metadata. 4217 4218 if (!CI->getType()->isVoidTy()) 4219 CI->setName("call"); 4220 4221 // Insert instrumentation or attach profile metadata at indirect call sites. 4222 // For more details, see the comment before the definition of 4223 // IPVK_IndirectCallTarget in InstrProfData.inc. 4224 if (!CS.getCalledFunction()) 4225 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4226 CI, CalleePtr); 4227 4228 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4229 // optimizer it can aggressively ignore unwind edges. 4230 if (CGM.getLangOpts().ObjCAutoRefCount) 4231 AddObjCARCExceptionMetadata(CI); 4232 4233 // Suppress tail calls if requested. 4234 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4235 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4236 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4237 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4238 } 4239 4240 // 4. Finish the call. 4241 4242 // If the call doesn't return, finish the basic block and clear the 4243 // insertion point; this allows the rest of IRGen to discard 4244 // unreachable code. 4245 if (CS.doesNotReturn()) { 4246 if (UnusedReturnSize) 4247 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4248 SRetPtr.getPointer()); 4249 4250 // Strip away the noreturn attribute to better diagnose unreachable UB. 4251 if (SanOpts.has(SanitizerKind::Unreachable)) { 4252 if (auto *F = CS.getCalledFunction()) 4253 F->removeFnAttr(llvm::Attribute::NoReturn); 4254 CS.removeAttribute(llvm::AttributeList::FunctionIndex, 4255 llvm::Attribute::NoReturn); 4256 } 4257 4258 EmitUnreachable(Loc); 4259 Builder.ClearInsertionPoint(); 4260 4261 // FIXME: For now, emit a dummy basic block because expr emitters in 4262 // generally are not ready to handle emitting expressions at unreachable 4263 // points. 4264 EnsureInsertPoint(); 4265 4266 // Return a reasonable RValue. 4267 return GetUndefRValue(RetTy); 4268 } 4269 4270 // Perform the swifterror writeback. 4271 if (swiftErrorTemp.isValid()) { 4272 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4273 Builder.CreateStore(errorResult, swiftErrorArg); 4274 } 4275 4276 // Emit any call-associated writebacks immediately. Arguably this 4277 // should happen after any return-value munging. 4278 if (CallArgs.hasWritebacks()) 4279 emitWritebacks(*this, CallArgs); 4280 4281 // The stack cleanup for inalloca arguments has to run out of the normal 4282 // lexical order, so deactivate it and run it manually here. 4283 CallArgs.freeArgumentMemory(*this); 4284 4285 // Extract the return value. 4286 RValue Ret = [&] { 4287 switch (RetAI.getKind()) { 4288 case ABIArgInfo::CoerceAndExpand: { 4289 auto coercionType = RetAI.getCoerceAndExpandType(); 4290 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4291 4292 Address addr = SRetPtr; 4293 addr = Builder.CreateElementBitCast(addr, coercionType); 4294 4295 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4296 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4297 4298 unsigned unpaddedIndex = 0; 4299 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4300 llvm::Type *eltType = coercionType->getElementType(i); 4301 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4302 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4303 llvm::Value *elt = CI; 4304 if (requiresExtract) 4305 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4306 else 4307 assert(unpaddedIndex == 0); 4308 Builder.CreateStore(elt, eltAddr); 4309 } 4310 // FALLTHROUGH 4311 LLVM_FALLTHROUGH; 4312 } 4313 4314 case ABIArgInfo::InAlloca: 4315 case ABIArgInfo::Indirect: { 4316 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4317 if (UnusedReturnSize) 4318 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4319 SRetPtr.getPointer()); 4320 return ret; 4321 } 4322 4323 case ABIArgInfo::Ignore: 4324 // If we are ignoring an argument that had a result, make sure to 4325 // construct the appropriate return value for our caller. 4326 return GetUndefRValue(RetTy); 4327 4328 case ABIArgInfo::Extend: 4329 case ABIArgInfo::Direct: { 4330 llvm::Type *RetIRTy = ConvertType(RetTy); 4331 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4332 switch (getEvaluationKind(RetTy)) { 4333 case TEK_Complex: { 4334 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4335 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4336 return RValue::getComplex(std::make_pair(Real, Imag)); 4337 } 4338 case TEK_Aggregate: { 4339 Address DestPtr = ReturnValue.getValue(); 4340 bool DestIsVolatile = ReturnValue.isVolatile(); 4341 4342 if (!DestPtr.isValid()) { 4343 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4344 DestIsVolatile = false; 4345 } 4346 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4347 return RValue::getAggregate(DestPtr); 4348 } 4349 case TEK_Scalar: { 4350 // If the argument doesn't match, perform a bitcast to coerce it. This 4351 // can happen due to trivial type mismatches. 4352 llvm::Value *V = CI; 4353 if (V->getType() != RetIRTy) 4354 V = Builder.CreateBitCast(V, RetIRTy); 4355 return RValue::get(V); 4356 } 4357 } 4358 llvm_unreachable("bad evaluation kind"); 4359 } 4360 4361 Address DestPtr = ReturnValue.getValue(); 4362 bool DestIsVolatile = ReturnValue.isVolatile(); 4363 4364 if (!DestPtr.isValid()) { 4365 DestPtr = CreateMemTemp(RetTy, "coerce"); 4366 DestIsVolatile = false; 4367 } 4368 4369 // If the value is offset in memory, apply the offset now. 4370 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4371 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4372 4373 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4374 } 4375 4376 case ABIArgInfo::Expand: 4377 llvm_unreachable("Invalid ABI kind for return argument"); 4378 } 4379 4380 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4381 } (); 4382 4383 // Emit the assume_aligned check on the return value. 4384 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4385 if (Ret.isScalar() && TargetDecl) { 4386 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4387 llvm::Value *OffsetValue = nullptr; 4388 if (const auto *Offset = AA->getOffset()) 4389 OffsetValue = EmitScalarExpr(Offset); 4390 4391 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4392 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4393 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4394 OffsetValue); 4395 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4396 llvm::Value *ParamVal = 4397 CallArgs[AA->paramIndex().getLLVMIndex()].RV.getScalarVal(); 4398 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4399 } 4400 } 4401 4402 return Ret; 4403 } 4404 4405 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4406 if (isVirtual()) { 4407 const CallExpr *CE = getVirtualCallExpr(); 4408 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4409 CGF, getVirtualMethodDecl(), getThisAddress(), 4410 getFunctionType(), CE ? CE->getLocStart() : SourceLocation()); 4411 } 4412 4413 return *this; 4414 } 4415 4416 /* VarArg handling */ 4417 4418 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4419 VAListAddr = VE->isMicrosoftABI() 4420 ? EmitMSVAListRef(VE->getSubExpr()) 4421 : EmitVAListRef(VE->getSubExpr()); 4422 QualType Ty = VE->getType(); 4423 if (VE->isMicrosoftABI()) 4424 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4425 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4426 } 4427