1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69 
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
71 /// qualification.
72 /// FIXME: address space qualification?
73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
74   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
75   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
76 }
77 
78 /// Returns the canonical formal type of the given C++ method.
79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
80   return MD->getType()->getCanonicalTypeUnqualified()
81            .getAs<FunctionProtoType>();
82 }
83 
84 /// Returns the "extra-canonicalized" return type, which discards
85 /// qualifiers on the return type.  Codegen doesn't care about them,
86 /// and it makes ABI code a little easier to be able to assume that
87 /// all parameter and return types are top-level unqualified.
88 static CanQualType GetReturnType(QualType RetTy) {
89   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
90 }
91 
92 /// Arrange the argument and result information for a value of the given
93 /// unprototyped freestanding function type.
94 const CGFunctionInfo &
95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
96   // When translating an unprototyped function type, always use a
97   // variadic type.
98   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
99                                  /*instanceMethod=*/false,
100                                  /*chainCall=*/false, None,
101                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
102 }
103 
104 static void addExtParameterInfosForCall(
105          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
106                                         const FunctionProtoType *proto,
107                                         unsigned prefixArgs,
108                                         unsigned totalArgs) {
109   assert(proto->hasExtParameterInfos());
110   assert(paramInfos.size() <= prefixArgs);
111   assert(proto->getNumParams() + prefixArgs <= totalArgs);
112 
113   paramInfos.reserve(totalArgs);
114 
115   // Add default infos for any prefix args that don't already have infos.
116   paramInfos.resize(prefixArgs);
117 
118   // Add infos for the prototype.
119   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
120     paramInfos.push_back(ParamInfo);
121     // pass_object_size params have no parameter info.
122     if (ParamInfo.hasPassObjectSize())
123       paramInfos.emplace_back();
124   }
125 
126   assert(paramInfos.size() <= totalArgs &&
127          "Did we forget to insert pass_object_size args?");
128   // Add default infos for the variadic and/or suffix arguments.
129   paramInfos.resize(totalArgs);
130 }
131 
132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
134 static void appendParameterTypes(const CodeGenTypes &CGT,
135                                  SmallVectorImpl<CanQualType> &prefix,
136               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
137                                  CanQual<FunctionProtoType> FPT) {
138   // Fast path: don't touch param info if we don't need to.
139   if (!FPT->hasExtParameterInfos()) {
140     assert(paramInfos.empty() &&
141            "We have paramInfos, but the prototype doesn't?");
142     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
143     return;
144   }
145 
146   unsigned PrefixSize = prefix.size();
147   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
148   // parameters; the only thing that can change this is the presence of
149   // pass_object_size. So, we preallocate for the common case.
150   prefix.reserve(prefix.size() + FPT->getNumParams());
151 
152   auto ExtInfos = FPT->getExtParameterInfos();
153   assert(ExtInfos.size() == FPT->getNumParams());
154   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
155     prefix.push_back(FPT->getParamType(I));
156     if (ExtInfos[I].hasPassObjectSize())
157       prefix.push_back(CGT.getContext().getSizeType());
158   }
159 
160   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
161                               prefix.size());
162 }
163 
164 /// Arrange the LLVM function layout for a value of the given function
165 /// type, on top of any implicit parameters already stored.
166 static const CGFunctionInfo &
167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
168                         SmallVectorImpl<CanQualType> &prefix,
169                         CanQual<FunctionProtoType> FTP,
170                         const FunctionDecl *FD) {
171   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
172   RequiredArgs Required =
173       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
174   // FIXME: Kill copy.
175   appendParameterTypes(CGT, prefix, paramInfos, FTP);
176   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
177 
178   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
179                                      /*chainCall=*/false, prefix,
180                                      FTP->getExtInfo(), paramInfos,
181                                      Required);
182 }
183 
184 /// Arrange the argument and result information for a value of the
185 /// given freestanding function type.
186 const CGFunctionInfo &
187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
188                                       const FunctionDecl *FD) {
189   SmallVector<CanQualType, 16> argTypes;
190   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
191                                    FTP, FD);
192 }
193 
194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
195   // Set the appropriate calling convention for the Function.
196   if (D->hasAttr<StdCallAttr>())
197     return CC_X86StdCall;
198 
199   if (D->hasAttr<FastCallAttr>())
200     return CC_X86FastCall;
201 
202   if (D->hasAttr<RegCallAttr>())
203     return CC_X86RegCall;
204 
205   if (D->hasAttr<ThisCallAttr>())
206     return CC_X86ThisCall;
207 
208   if (D->hasAttr<VectorCallAttr>())
209     return CC_X86VectorCall;
210 
211   if (D->hasAttr<PascalAttr>())
212     return CC_X86Pascal;
213 
214   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
215     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
216 
217   if (D->hasAttr<IntelOclBiccAttr>())
218     return CC_IntelOclBicc;
219 
220   if (D->hasAttr<MSABIAttr>())
221     return IsWindows ? CC_C : CC_Win64;
222 
223   if (D->hasAttr<SysVABIAttr>())
224     return IsWindows ? CC_X86_64SysV : CC_C;
225 
226   if (D->hasAttr<PreserveMostAttr>())
227     return CC_PreserveMost;
228 
229   if (D->hasAttr<PreserveAllAttr>())
230     return CC_PreserveAll;
231 
232   return CC_C;
233 }
234 
235 /// Arrange the argument and result information for a call to an
236 /// unknown C++ non-static member function of the given abstract type.
237 /// (Zero value of RD means we don't have any meaningful "this" argument type,
238 ///  so fall back to a generic pointer type).
239 /// The member function must be an ordinary function, i.e. not a
240 /// constructor or destructor.
241 const CGFunctionInfo &
242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
243                                    const FunctionProtoType *FTP,
244                                    const CXXMethodDecl *MD) {
245   SmallVector<CanQualType, 16> argTypes;
246 
247   // Add the 'this' pointer.
248   if (RD)
249     argTypes.push_back(GetThisType(Context, RD));
250   else
251     argTypes.push_back(Context.VoidPtrTy);
252 
253   return ::arrangeLLVMFunctionInfo(
254       *this, true, argTypes,
255       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
256 }
257 
258 /// Arrange the argument and result information for a declaration or
259 /// definition of the given C++ non-static member function.  The
260 /// member function must be an ordinary function, i.e. not a
261 /// constructor or destructor.
262 const CGFunctionInfo &
263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
264   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
265   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
266 
267   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
268 
269   if (MD->isInstance()) {
270     // The abstract case is perfectly fine.
271     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
272     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
273   }
274 
275   return arrangeFreeFunctionType(prototype, MD);
276 }
277 
278 bool CodeGenTypes::inheritingCtorHasParams(
279     const InheritedConstructor &Inherited, CXXCtorType Type) {
280   // Parameters are unnecessary if we're constructing a base class subobject
281   // and the inherited constructor lives in a virtual base.
282   return Type == Ctor_Complete ||
283          !Inherited.getShadowDecl()->constructsVirtualBase() ||
284          !Target.getCXXABI().hasConstructorVariants();
285   }
286 
287 const CGFunctionInfo &
288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
289                                             StructorType Type) {
290 
291   SmallVector<CanQualType, 16> argTypes;
292   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
293   argTypes.push_back(GetThisType(Context, MD->getParent()));
294 
295   bool PassParams = true;
296 
297   GlobalDecl GD;
298   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
299     GD = GlobalDecl(CD, toCXXCtorType(Type));
300 
301     // A base class inheriting constructor doesn't get forwarded arguments
302     // needed to construct a virtual base (or base class thereof).
303     if (auto Inherited = CD->getInheritedConstructor())
304       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
305   } else {
306     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
307     GD = GlobalDecl(DD, toCXXDtorType(Type));
308   }
309 
310   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
311 
312   // Add the formal parameters.
313   if (PassParams)
314     appendParameterTypes(*this, argTypes, paramInfos, FTP);
315 
316   CGCXXABI::AddedStructorArgs AddedArgs =
317       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
318   if (!paramInfos.empty()) {
319     // Note: prefix implies after the first param.
320     if (AddedArgs.Prefix)
321       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
322                         FunctionProtoType::ExtParameterInfo{});
323     if (AddedArgs.Suffix)
324       paramInfos.append(AddedArgs.Suffix,
325                         FunctionProtoType::ExtParameterInfo{});
326   }
327 
328   RequiredArgs required =
329       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
330                                       : RequiredArgs::All);
331 
332   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
333   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
334                                ? argTypes.front()
335                                : TheCXXABI.hasMostDerivedReturn(GD)
336                                      ? CGM.getContext().VoidPtrTy
337                                      : Context.VoidTy;
338   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
339                                  /*chainCall=*/false, argTypes, extInfo,
340                                  paramInfos, required);
341 }
342 
343 static SmallVector<CanQualType, 16>
344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
345   SmallVector<CanQualType, 16> argTypes;
346   for (auto &arg : args)
347     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
348   return argTypes;
349 }
350 
351 static SmallVector<CanQualType, 16>
352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
353   SmallVector<CanQualType, 16> argTypes;
354   for (auto &arg : args)
355     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
356   return argTypes;
357 }
358 
359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
360 getExtParameterInfosForCall(const FunctionProtoType *proto,
361                             unsigned prefixArgs, unsigned totalArgs) {
362   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
363   if (proto->hasExtParameterInfos()) {
364     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
365   }
366   return result;
367 }
368 
369 /// Arrange a call to a C++ method, passing the given arguments.
370 ///
371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
372 /// parameter.
373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
374 /// args.
375 /// PassProtoArgs indicates whether `args` has args for the parameters in the
376 /// given CXXConstructorDecl.
377 const CGFunctionInfo &
378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
379                                         const CXXConstructorDecl *D,
380                                         CXXCtorType CtorKind,
381                                         unsigned ExtraPrefixArgs,
382                                         unsigned ExtraSuffixArgs,
383                                         bool PassProtoArgs) {
384   // FIXME: Kill copy.
385   SmallVector<CanQualType, 16> ArgTypes;
386   for (const auto &Arg : args)
387     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
388 
389   // +1 for implicit this, which should always be args[0].
390   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
391 
392   CanQual<FunctionProtoType> FPT = GetFormalType(D);
393   RequiredArgs Required =
394       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
395   GlobalDecl GD(D, CtorKind);
396   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
397                                ? ArgTypes.front()
398                                : TheCXXABI.hasMostDerivedReturn(GD)
399                                      ? CGM.getContext().VoidPtrTy
400                                      : Context.VoidTy;
401 
402   FunctionType::ExtInfo Info = FPT->getExtInfo();
403   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
404   // If the prototype args are elided, we should only have ABI-specific args,
405   // which never have param info.
406   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
407     // ABI-specific suffix arguments are treated the same as variadic arguments.
408     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
409                                 ArgTypes.size());
410   }
411   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
412                                  /*chainCall=*/false, ArgTypes, Info,
413                                  ParamInfos, Required);
414 }
415 
416 /// Arrange the argument and result information for the declaration or
417 /// definition of the given function.
418 const CGFunctionInfo &
419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
420   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
421     if (MD->isInstance())
422       return arrangeCXXMethodDeclaration(MD);
423 
424   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
425 
426   assert(isa<FunctionType>(FTy));
427 
428   // When declaring a function without a prototype, always use a
429   // non-variadic type.
430   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
431     return arrangeLLVMFunctionInfo(
432         noProto->getReturnType(), /*instanceMethod=*/false,
433         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
434   }
435 
436   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
437 }
438 
439 /// Arrange the argument and result information for the declaration or
440 /// definition of an Objective-C method.
441 const CGFunctionInfo &
442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
443   // It happens that this is the same as a call with no optional
444   // arguments, except also using the formal 'self' type.
445   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
446 }
447 
448 /// Arrange the argument and result information for the function type
449 /// through which to perform a send to the given Objective-C method,
450 /// using the given receiver type.  The receiver type is not always
451 /// the 'self' type of the method or even an Objective-C pointer type.
452 /// This is *not* the right method for actually performing such a
453 /// message send, due to the possibility of optional arguments.
454 const CGFunctionInfo &
455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
456                                               QualType receiverType) {
457   SmallVector<CanQualType, 16> argTys;
458   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
459   argTys.push_back(Context.getCanonicalParamType(receiverType));
460   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
461   // FIXME: Kill copy?
462   for (const auto *I : MD->parameters()) {
463     argTys.push_back(Context.getCanonicalParamType(I->getType()));
464     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
465         I->hasAttr<NoEscapeAttr>());
466     extParamInfos.push_back(extParamInfo);
467   }
468 
469   FunctionType::ExtInfo einfo;
470   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
471   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
472 
473   if (getContext().getLangOpts().ObjCAutoRefCount &&
474       MD->hasAttr<NSReturnsRetainedAttr>())
475     einfo = einfo.withProducesResult(true);
476 
477   RequiredArgs required =
478     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
479 
480   return arrangeLLVMFunctionInfo(
481       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
482       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
483 }
484 
485 const CGFunctionInfo &
486 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
487                                                  const CallArgList &args) {
488   auto argTypes = getArgTypesForCall(Context, args);
489   FunctionType::ExtInfo einfo;
490 
491   return arrangeLLVMFunctionInfo(
492       GetReturnType(returnType), /*instanceMethod=*/false,
493       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
494 }
495 
496 const CGFunctionInfo &
497 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
498   // FIXME: Do we need to handle ObjCMethodDecl?
499   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
500 
501   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
502     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
503 
504   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
505     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
506 
507   return arrangeFunctionDeclaration(FD);
508 }
509 
510 /// Arrange a thunk that takes 'this' as the first parameter followed by
511 /// varargs.  Return a void pointer, regardless of the actual return type.
512 /// The body of the thunk will end in a musttail call to a function of the
513 /// correct type, and the caller will bitcast the function to the correct
514 /// prototype.
515 const CGFunctionInfo &
516 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
517   assert(MD->isVirtual() && "only virtual memptrs have thunks");
518   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
519   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
520   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
521                                  /*chainCall=*/false, ArgTys,
522                                  FTP->getExtInfo(), {}, RequiredArgs(1));
523 }
524 
525 const CGFunctionInfo &
526 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
527                                    CXXCtorType CT) {
528   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
529 
530   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
531   SmallVector<CanQualType, 2> ArgTys;
532   const CXXRecordDecl *RD = CD->getParent();
533   ArgTys.push_back(GetThisType(Context, RD));
534   if (CT == Ctor_CopyingClosure)
535     ArgTys.push_back(*FTP->param_type_begin());
536   if (RD->getNumVBases() > 0)
537     ArgTys.push_back(Context.IntTy);
538   CallingConv CC = Context.getDefaultCallingConvention(
539       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
540   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
541                                  /*chainCall=*/false, ArgTys,
542                                  FunctionType::ExtInfo(CC), {},
543                                  RequiredArgs::All);
544 }
545 
546 /// Arrange a call as unto a free function, except possibly with an
547 /// additional number of formal parameters considered required.
548 static const CGFunctionInfo &
549 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
550                             CodeGenModule &CGM,
551                             const CallArgList &args,
552                             const FunctionType *fnType,
553                             unsigned numExtraRequiredArgs,
554                             bool chainCall) {
555   assert(args.size() >= numExtraRequiredArgs);
556 
557   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
558 
559   // In most cases, there are no optional arguments.
560   RequiredArgs required = RequiredArgs::All;
561 
562   // If we have a variadic prototype, the required arguments are the
563   // extra prefix plus the arguments in the prototype.
564   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
565     if (proto->isVariadic())
566       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
567 
568     if (proto->hasExtParameterInfos())
569       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
570                                   args.size());
571 
572   // If we don't have a prototype at all, but we're supposed to
573   // explicitly use the variadic convention for unprototyped calls,
574   // treat all of the arguments as required but preserve the nominal
575   // possibility of variadics.
576   } else if (CGM.getTargetCodeGenInfo()
577                 .isNoProtoCallVariadic(args,
578                                        cast<FunctionNoProtoType>(fnType))) {
579     required = RequiredArgs(args.size());
580   }
581 
582   // FIXME: Kill copy.
583   SmallVector<CanQualType, 16> argTypes;
584   for (const auto &arg : args)
585     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
586   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
587                                      /*instanceMethod=*/false, chainCall,
588                                      argTypes, fnType->getExtInfo(), paramInfos,
589                                      required);
590 }
591 
592 /// Figure out the rules for calling a function with the given formal
593 /// type using the given arguments.  The arguments are necessary
594 /// because the function might be unprototyped, in which case it's
595 /// target-dependent in crazy ways.
596 const CGFunctionInfo &
597 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
598                                       const FunctionType *fnType,
599                                       bool chainCall) {
600   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
601                                      chainCall ? 1 : 0, chainCall);
602 }
603 
604 /// A block function is essentially a free function with an
605 /// extra implicit argument.
606 const CGFunctionInfo &
607 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
608                                        const FunctionType *fnType) {
609   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
610                                      /*chainCall=*/false);
611 }
612 
613 const CGFunctionInfo &
614 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
615                                               const FunctionArgList &params) {
616   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
617   auto argTypes = getArgTypesForDeclaration(Context, params);
618 
619   return arrangeLLVMFunctionInfo(
620       GetReturnType(proto->getReturnType()),
621       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
622       proto->getExtInfo(), paramInfos,
623       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
624 }
625 
626 const CGFunctionInfo &
627 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
628                                          const CallArgList &args) {
629   // FIXME: Kill copy.
630   SmallVector<CanQualType, 16> argTypes;
631   for (const auto &Arg : args)
632     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
633   return arrangeLLVMFunctionInfo(
634       GetReturnType(resultType), /*instanceMethod=*/false,
635       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
636       /*paramInfos=*/ {}, RequiredArgs::All);
637 }
638 
639 const CGFunctionInfo &
640 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
641                                                 const FunctionArgList &args) {
642   auto argTypes = getArgTypesForDeclaration(Context, args);
643 
644   return arrangeLLVMFunctionInfo(
645       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
646       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
647 }
648 
649 const CGFunctionInfo &
650 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
651                                               ArrayRef<CanQualType> argTypes) {
652   return arrangeLLVMFunctionInfo(
653       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
654       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
655 }
656 
657 /// Arrange a call to a C++ method, passing the given arguments.
658 ///
659 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
660 /// does not count `this`.
661 const CGFunctionInfo &
662 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
663                                    const FunctionProtoType *proto,
664                                    RequiredArgs required,
665                                    unsigned numPrefixArgs) {
666   assert(numPrefixArgs + 1 <= args.size() &&
667          "Emitting a call with less args than the required prefix?");
668   // Add one to account for `this`. It's a bit awkward here, but we don't count
669   // `this` in similar places elsewhere.
670   auto paramInfos =
671     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
672 
673   // FIXME: Kill copy.
674   auto argTypes = getArgTypesForCall(Context, args);
675 
676   FunctionType::ExtInfo info = proto->getExtInfo();
677   return arrangeLLVMFunctionInfo(
678       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
679       /*chainCall=*/false, argTypes, info, paramInfos, required);
680 }
681 
682 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
683   return arrangeLLVMFunctionInfo(
684       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
685       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
686 }
687 
688 const CGFunctionInfo &
689 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
690                           const CallArgList &args) {
691   assert(signature.arg_size() <= args.size());
692   if (signature.arg_size() == args.size())
693     return signature;
694 
695   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
696   auto sigParamInfos = signature.getExtParameterInfos();
697   if (!sigParamInfos.empty()) {
698     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
699     paramInfos.resize(args.size());
700   }
701 
702   auto argTypes = getArgTypesForCall(Context, args);
703 
704   assert(signature.getRequiredArgs().allowsOptionalArgs());
705   return arrangeLLVMFunctionInfo(signature.getReturnType(),
706                                  signature.isInstanceMethod(),
707                                  signature.isChainCall(),
708                                  argTypes,
709                                  signature.getExtInfo(),
710                                  paramInfos,
711                                  signature.getRequiredArgs());
712 }
713 
714 namespace clang {
715 namespace CodeGen {
716 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
717 }
718 }
719 
720 /// Arrange the argument and result information for an abstract value
721 /// of a given function type.  This is the method which all of the
722 /// above functions ultimately defer to.
723 const CGFunctionInfo &
724 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
725                                       bool instanceMethod,
726                                       bool chainCall,
727                                       ArrayRef<CanQualType> argTypes,
728                                       FunctionType::ExtInfo info,
729                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
730                                       RequiredArgs required) {
731   assert(std::all_of(argTypes.begin(), argTypes.end(),
732                      [](CanQualType T) { return T.isCanonicalAsParam(); }));
733 
734   // Lookup or create unique function info.
735   llvm::FoldingSetNodeID ID;
736   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
737                           required, resultType, argTypes);
738 
739   void *insertPos = nullptr;
740   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
741   if (FI)
742     return *FI;
743 
744   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
745 
746   // Construct the function info.  We co-allocate the ArgInfos.
747   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
748                               paramInfos, resultType, argTypes, required);
749   FunctionInfos.InsertNode(FI, insertPos);
750 
751   bool inserted = FunctionsBeingProcessed.insert(FI).second;
752   (void)inserted;
753   assert(inserted && "Recursively being processed?");
754 
755   // Compute ABI information.
756   if (CC == llvm::CallingConv::SPIR_KERNEL) {
757     // Force target independent argument handling for the host visible
758     // kernel functions.
759     computeSPIRKernelABIInfo(CGM, *FI);
760   } else if (info.getCC() == CC_Swift) {
761     swiftcall::computeABIInfo(CGM, *FI);
762   } else {
763     getABIInfo().computeInfo(*FI);
764   }
765 
766   // Loop over all of the computed argument and return value info.  If any of
767   // them are direct or extend without a specified coerce type, specify the
768   // default now.
769   ABIArgInfo &retInfo = FI->getReturnInfo();
770   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
771     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
772 
773   for (auto &I : FI->arguments())
774     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
775       I.info.setCoerceToType(ConvertType(I.type));
776 
777   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
778   assert(erased && "Not in set?");
779 
780   return *FI;
781 }
782 
783 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
784                                        bool instanceMethod,
785                                        bool chainCall,
786                                        const FunctionType::ExtInfo &info,
787                                        ArrayRef<ExtParameterInfo> paramInfos,
788                                        CanQualType resultType,
789                                        ArrayRef<CanQualType> argTypes,
790                                        RequiredArgs required) {
791   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
792 
793   void *buffer =
794     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
795                                   argTypes.size() + 1, paramInfos.size()));
796 
797   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
798   FI->CallingConvention = llvmCC;
799   FI->EffectiveCallingConvention = llvmCC;
800   FI->ASTCallingConvention = info.getCC();
801   FI->InstanceMethod = instanceMethod;
802   FI->ChainCall = chainCall;
803   FI->NoReturn = info.getNoReturn();
804   FI->ReturnsRetained = info.getProducesResult();
805   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
806   FI->Required = required;
807   FI->HasRegParm = info.getHasRegParm();
808   FI->RegParm = info.getRegParm();
809   FI->ArgStruct = nullptr;
810   FI->ArgStructAlign = 0;
811   FI->NumArgs = argTypes.size();
812   FI->HasExtParameterInfos = !paramInfos.empty();
813   FI->getArgsBuffer()[0].type = resultType;
814   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
815     FI->getArgsBuffer()[i + 1].type = argTypes[i];
816   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
817     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
818   return FI;
819 }
820 
821 /***/
822 
823 namespace {
824 // ABIArgInfo::Expand implementation.
825 
826 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
827 struct TypeExpansion {
828   enum TypeExpansionKind {
829     // Elements of constant arrays are expanded recursively.
830     TEK_ConstantArray,
831     // Record fields are expanded recursively (but if record is a union, only
832     // the field with the largest size is expanded).
833     TEK_Record,
834     // For complex types, real and imaginary parts are expanded recursively.
835     TEK_Complex,
836     // All other types are not expandable.
837     TEK_None
838   };
839 
840   const TypeExpansionKind Kind;
841 
842   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
843   virtual ~TypeExpansion() {}
844 };
845 
846 struct ConstantArrayExpansion : TypeExpansion {
847   QualType EltTy;
848   uint64_t NumElts;
849 
850   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
851       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
852   static bool classof(const TypeExpansion *TE) {
853     return TE->Kind == TEK_ConstantArray;
854   }
855 };
856 
857 struct RecordExpansion : TypeExpansion {
858   SmallVector<const CXXBaseSpecifier *, 1> Bases;
859 
860   SmallVector<const FieldDecl *, 1> Fields;
861 
862   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
863                   SmallVector<const FieldDecl *, 1> &&Fields)
864       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
865         Fields(std::move(Fields)) {}
866   static bool classof(const TypeExpansion *TE) {
867     return TE->Kind == TEK_Record;
868   }
869 };
870 
871 struct ComplexExpansion : TypeExpansion {
872   QualType EltTy;
873 
874   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
875   static bool classof(const TypeExpansion *TE) {
876     return TE->Kind == TEK_Complex;
877   }
878 };
879 
880 struct NoExpansion : TypeExpansion {
881   NoExpansion() : TypeExpansion(TEK_None) {}
882   static bool classof(const TypeExpansion *TE) {
883     return TE->Kind == TEK_None;
884   }
885 };
886 }  // namespace
887 
888 static std::unique_ptr<TypeExpansion>
889 getTypeExpansion(QualType Ty, const ASTContext &Context) {
890   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
891     return llvm::make_unique<ConstantArrayExpansion>(
892         AT->getElementType(), AT->getSize().getZExtValue());
893   }
894   if (const RecordType *RT = Ty->getAs<RecordType>()) {
895     SmallVector<const CXXBaseSpecifier *, 1> Bases;
896     SmallVector<const FieldDecl *, 1> Fields;
897     const RecordDecl *RD = RT->getDecl();
898     assert(!RD->hasFlexibleArrayMember() &&
899            "Cannot expand structure with flexible array.");
900     if (RD->isUnion()) {
901       // Unions can be here only in degenerative cases - all the fields are same
902       // after flattening. Thus we have to use the "largest" field.
903       const FieldDecl *LargestFD = nullptr;
904       CharUnits UnionSize = CharUnits::Zero();
905 
906       for (const auto *FD : RD->fields()) {
907         // Skip zero length bitfields.
908         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
909           continue;
910         assert(!FD->isBitField() &&
911                "Cannot expand structure with bit-field members.");
912         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
913         if (UnionSize < FieldSize) {
914           UnionSize = FieldSize;
915           LargestFD = FD;
916         }
917       }
918       if (LargestFD)
919         Fields.push_back(LargestFD);
920     } else {
921       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
922         assert(!CXXRD->isDynamicClass() &&
923                "cannot expand vtable pointers in dynamic classes");
924         for (const CXXBaseSpecifier &BS : CXXRD->bases())
925           Bases.push_back(&BS);
926       }
927 
928       for (const auto *FD : RD->fields()) {
929         // Skip zero length bitfields.
930         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
931           continue;
932         assert(!FD->isBitField() &&
933                "Cannot expand structure with bit-field members.");
934         Fields.push_back(FD);
935       }
936     }
937     return llvm::make_unique<RecordExpansion>(std::move(Bases),
938                                               std::move(Fields));
939   }
940   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
941     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
942   }
943   return llvm::make_unique<NoExpansion>();
944 }
945 
946 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
947   auto Exp = getTypeExpansion(Ty, Context);
948   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
949     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
950   }
951   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
952     int Res = 0;
953     for (auto BS : RExp->Bases)
954       Res += getExpansionSize(BS->getType(), Context);
955     for (auto FD : RExp->Fields)
956       Res += getExpansionSize(FD->getType(), Context);
957     return Res;
958   }
959   if (isa<ComplexExpansion>(Exp.get()))
960     return 2;
961   assert(isa<NoExpansion>(Exp.get()));
962   return 1;
963 }
964 
965 void
966 CodeGenTypes::getExpandedTypes(QualType Ty,
967                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
968   auto Exp = getTypeExpansion(Ty, Context);
969   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
970     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
971       getExpandedTypes(CAExp->EltTy, TI);
972     }
973   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
974     for (auto BS : RExp->Bases)
975       getExpandedTypes(BS->getType(), TI);
976     for (auto FD : RExp->Fields)
977       getExpandedTypes(FD->getType(), TI);
978   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
979     llvm::Type *EltTy = ConvertType(CExp->EltTy);
980     *TI++ = EltTy;
981     *TI++ = EltTy;
982   } else {
983     assert(isa<NoExpansion>(Exp.get()));
984     *TI++ = ConvertType(Ty);
985   }
986 }
987 
988 static void forConstantArrayExpansion(CodeGenFunction &CGF,
989                                       ConstantArrayExpansion *CAE,
990                                       Address BaseAddr,
991                                       llvm::function_ref<void(Address)> Fn) {
992   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
993   CharUnits EltAlign =
994     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
995 
996   for (int i = 0, n = CAE->NumElts; i < n; i++) {
997     llvm::Value *EltAddr =
998       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
999     Fn(Address(EltAddr, EltAlign));
1000   }
1001 }
1002 
1003 void CodeGenFunction::ExpandTypeFromArgs(
1004     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1005   assert(LV.isSimple() &&
1006          "Unexpected non-simple lvalue during struct expansion.");
1007 
1008   auto Exp = getTypeExpansion(Ty, getContext());
1009   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1010     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1011                               [&](Address EltAddr) {
1012       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1013       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1014     });
1015   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1016     Address This = LV.getAddress();
1017     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1018       // Perform a single step derived-to-base conversion.
1019       Address Base =
1020           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1021                                 /*NullCheckValue=*/false, SourceLocation());
1022       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1023 
1024       // Recurse onto bases.
1025       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1026     }
1027     for (auto FD : RExp->Fields) {
1028       // FIXME: What are the right qualifiers here?
1029       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1030       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1031     }
1032   } else if (isa<ComplexExpansion>(Exp.get())) {
1033     auto realValue = *AI++;
1034     auto imagValue = *AI++;
1035     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1036   } else {
1037     assert(isa<NoExpansion>(Exp.get()));
1038     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1039   }
1040 }
1041 
1042 void CodeGenFunction::ExpandTypeToArgs(
1043     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
1044     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1045   auto Exp = getTypeExpansion(Ty, getContext());
1046   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1047     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
1048                               [&](Address EltAddr) {
1049       RValue EltRV =
1050           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
1051       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
1052     });
1053   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1054     Address This = RV.getAggregateAddress();
1055     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1056       // Perform a single step derived-to-base conversion.
1057       Address Base =
1058           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1059                                 /*NullCheckValue=*/false, SourceLocation());
1060       RValue BaseRV = RValue::getAggregate(Base);
1061 
1062       // Recurse onto bases.
1063       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
1064                        IRCallArgPos);
1065     }
1066 
1067     LValue LV = MakeAddrLValue(This, Ty);
1068     for (auto FD : RExp->Fields) {
1069       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
1070       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
1071                        IRCallArgPos);
1072     }
1073   } else if (isa<ComplexExpansion>(Exp.get())) {
1074     ComplexPairTy CV = RV.getComplexVal();
1075     IRCallArgs[IRCallArgPos++] = CV.first;
1076     IRCallArgs[IRCallArgPos++] = CV.second;
1077   } else {
1078     assert(isa<NoExpansion>(Exp.get()));
1079     assert(RV.isScalar() &&
1080            "Unexpected non-scalar rvalue during struct expansion.");
1081 
1082     // Insert a bitcast as needed.
1083     llvm::Value *V = RV.getScalarVal();
1084     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1085         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1086       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1087 
1088     IRCallArgs[IRCallArgPos++] = V;
1089   }
1090 }
1091 
1092 /// Create a temporary allocation for the purposes of coercion.
1093 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1094                                            CharUnits MinAlign) {
1095   // Don't use an alignment that's worse than what LLVM would prefer.
1096   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1097   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1098 
1099   return CGF.CreateTempAlloca(Ty, Align);
1100 }
1101 
1102 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1103 /// accessing some number of bytes out of it, try to gep into the struct to get
1104 /// at its inner goodness.  Dive as deep as possible without entering an element
1105 /// with an in-memory size smaller than DstSize.
1106 static Address
1107 EnterStructPointerForCoercedAccess(Address SrcPtr,
1108                                    llvm::StructType *SrcSTy,
1109                                    uint64_t DstSize, CodeGenFunction &CGF) {
1110   // We can't dive into a zero-element struct.
1111   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1112 
1113   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1114 
1115   // If the first elt is at least as large as what we're looking for, or if the
1116   // first element is the same size as the whole struct, we can enter it. The
1117   // comparison must be made on the store size and not the alloca size. Using
1118   // the alloca size may overstate the size of the load.
1119   uint64_t FirstEltSize =
1120     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1121   if (FirstEltSize < DstSize &&
1122       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1123     return SrcPtr;
1124 
1125   // GEP into the first element.
1126   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1127 
1128   // If the first element is a struct, recurse.
1129   llvm::Type *SrcTy = SrcPtr.getElementType();
1130   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1131     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1132 
1133   return SrcPtr;
1134 }
1135 
1136 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1137 /// are either integers or pointers.  This does a truncation of the value if it
1138 /// is too large or a zero extension if it is too small.
1139 ///
1140 /// This behaves as if the value were coerced through memory, so on big-endian
1141 /// targets the high bits are preserved in a truncation, while little-endian
1142 /// targets preserve the low bits.
1143 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1144                                              llvm::Type *Ty,
1145                                              CodeGenFunction &CGF) {
1146   if (Val->getType() == Ty)
1147     return Val;
1148 
1149   if (isa<llvm::PointerType>(Val->getType())) {
1150     // If this is Pointer->Pointer avoid conversion to and from int.
1151     if (isa<llvm::PointerType>(Ty))
1152       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1153 
1154     // Convert the pointer to an integer so we can play with its width.
1155     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1156   }
1157 
1158   llvm::Type *DestIntTy = Ty;
1159   if (isa<llvm::PointerType>(DestIntTy))
1160     DestIntTy = CGF.IntPtrTy;
1161 
1162   if (Val->getType() != DestIntTy) {
1163     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1164     if (DL.isBigEndian()) {
1165       // Preserve the high bits on big-endian targets.
1166       // That is what memory coercion does.
1167       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1168       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1169 
1170       if (SrcSize > DstSize) {
1171         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1172         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1173       } else {
1174         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1175         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1176       }
1177     } else {
1178       // Little-endian targets preserve the low bits. No shifts required.
1179       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1180     }
1181   }
1182 
1183   if (isa<llvm::PointerType>(Ty))
1184     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1185   return Val;
1186 }
1187 
1188 
1189 
1190 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1191 /// a pointer to an object of type \arg Ty, known to be aligned to
1192 /// \arg SrcAlign bytes.
1193 ///
1194 /// This safely handles the case when the src type is smaller than the
1195 /// destination type; in this situation the values of bits which not
1196 /// present in the src are undefined.
1197 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1198                                       CodeGenFunction &CGF) {
1199   llvm::Type *SrcTy = Src.getElementType();
1200 
1201   // If SrcTy and Ty are the same, just do a load.
1202   if (SrcTy == Ty)
1203     return CGF.Builder.CreateLoad(Src);
1204 
1205   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1206 
1207   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1208     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1209     SrcTy = Src.getType()->getElementType();
1210   }
1211 
1212   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1213 
1214   // If the source and destination are integer or pointer types, just do an
1215   // extension or truncation to the desired type.
1216   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1217       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1218     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1219     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1220   }
1221 
1222   // If load is legal, just bitcast the src pointer.
1223   if (SrcSize >= DstSize) {
1224     // Generally SrcSize is never greater than DstSize, since this means we are
1225     // losing bits. However, this can happen in cases where the structure has
1226     // additional padding, for example due to a user specified alignment.
1227     //
1228     // FIXME: Assert that we aren't truncating non-padding bits when have access
1229     // to that information.
1230     Src = CGF.Builder.CreateBitCast(Src,
1231                                     Ty->getPointerTo(Src.getAddressSpace()));
1232     return CGF.Builder.CreateLoad(Src);
1233   }
1234 
1235   // Otherwise do coercion through memory. This is stupid, but simple.
1236   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1237   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy);
1238   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.AllocaInt8PtrTy);
1239   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1240       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1241       false);
1242   return CGF.Builder.CreateLoad(Tmp);
1243 }
1244 
1245 // Function to store a first-class aggregate into memory.  We prefer to
1246 // store the elements rather than the aggregate to be more friendly to
1247 // fast-isel.
1248 // FIXME: Do we need to recurse here?
1249 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1250                           Address Dest, bool DestIsVolatile) {
1251   // Prefer scalar stores to first-class aggregate stores.
1252   if (llvm::StructType *STy =
1253         dyn_cast<llvm::StructType>(Val->getType())) {
1254     const llvm::StructLayout *Layout =
1255       CGF.CGM.getDataLayout().getStructLayout(STy);
1256 
1257     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1258       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1259       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1260       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1261       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1262     }
1263   } else {
1264     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1265   }
1266 }
1267 
1268 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1269 /// where the source and destination may have different types.  The
1270 /// destination is known to be aligned to \arg DstAlign bytes.
1271 ///
1272 /// This safely handles the case when the src type is larger than the
1273 /// destination type; the upper bits of the src will be lost.
1274 static void CreateCoercedStore(llvm::Value *Src,
1275                                Address Dst,
1276                                bool DstIsVolatile,
1277                                CodeGenFunction &CGF) {
1278   llvm::Type *SrcTy = Src->getType();
1279   llvm::Type *DstTy = Dst.getType()->getElementType();
1280   if (SrcTy == DstTy) {
1281     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1282     return;
1283   }
1284 
1285   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1286 
1287   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1288     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1289     DstTy = Dst.getType()->getElementType();
1290   }
1291 
1292   // If the source and destination are integer or pointer types, just do an
1293   // extension or truncation to the desired type.
1294   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1295       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1296     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1297     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1298     return;
1299   }
1300 
1301   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1302 
1303   // If store is legal, just bitcast the src pointer.
1304   if (SrcSize <= DstSize) {
1305     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1306     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1307   } else {
1308     // Otherwise do coercion through memory. This is stupid, but
1309     // simple.
1310 
1311     // Generally SrcSize is never greater than DstSize, since this means we are
1312     // losing bits. However, this can happen in cases where the structure has
1313     // additional padding, for example due to a user specified alignment.
1314     //
1315     // FIXME: Assert that we aren't truncating non-padding bits when have access
1316     // to that information.
1317     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1318     CGF.Builder.CreateStore(Src, Tmp);
1319     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy);
1320     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.AllocaInt8PtrTy);
1321     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1322         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1323         false);
1324   }
1325 }
1326 
1327 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1328                                    const ABIArgInfo &info) {
1329   if (unsigned offset = info.getDirectOffset()) {
1330     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1331     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1332                                              CharUnits::fromQuantity(offset));
1333     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1334   }
1335   return addr;
1336 }
1337 
1338 namespace {
1339 
1340 /// Encapsulates information about the way function arguments from
1341 /// CGFunctionInfo should be passed to actual LLVM IR function.
1342 class ClangToLLVMArgMapping {
1343   static const unsigned InvalidIndex = ~0U;
1344   unsigned InallocaArgNo;
1345   unsigned SRetArgNo;
1346   unsigned TotalIRArgs;
1347 
1348   /// Arguments of LLVM IR function corresponding to single Clang argument.
1349   struct IRArgs {
1350     unsigned PaddingArgIndex;
1351     // Argument is expanded to IR arguments at positions
1352     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1353     unsigned FirstArgIndex;
1354     unsigned NumberOfArgs;
1355 
1356     IRArgs()
1357         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1358           NumberOfArgs(0) {}
1359   };
1360 
1361   SmallVector<IRArgs, 8> ArgInfo;
1362 
1363 public:
1364   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1365                         bool OnlyRequiredArgs = false)
1366       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1367         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1368     construct(Context, FI, OnlyRequiredArgs);
1369   }
1370 
1371   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1372   unsigned getInallocaArgNo() const {
1373     assert(hasInallocaArg());
1374     return InallocaArgNo;
1375   }
1376 
1377   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1378   unsigned getSRetArgNo() const {
1379     assert(hasSRetArg());
1380     return SRetArgNo;
1381   }
1382 
1383   unsigned totalIRArgs() const { return TotalIRArgs; }
1384 
1385   bool hasPaddingArg(unsigned ArgNo) const {
1386     assert(ArgNo < ArgInfo.size());
1387     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1388   }
1389   unsigned getPaddingArgNo(unsigned ArgNo) const {
1390     assert(hasPaddingArg(ArgNo));
1391     return ArgInfo[ArgNo].PaddingArgIndex;
1392   }
1393 
1394   /// Returns index of first IR argument corresponding to ArgNo, and their
1395   /// quantity.
1396   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1397     assert(ArgNo < ArgInfo.size());
1398     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1399                           ArgInfo[ArgNo].NumberOfArgs);
1400   }
1401 
1402 private:
1403   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1404                  bool OnlyRequiredArgs);
1405 };
1406 
1407 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1408                                       const CGFunctionInfo &FI,
1409                                       bool OnlyRequiredArgs) {
1410   unsigned IRArgNo = 0;
1411   bool SwapThisWithSRet = false;
1412   const ABIArgInfo &RetAI = FI.getReturnInfo();
1413 
1414   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1415     SwapThisWithSRet = RetAI.isSRetAfterThis();
1416     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1417   }
1418 
1419   unsigned ArgNo = 0;
1420   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1421   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1422        ++I, ++ArgNo) {
1423     assert(I != FI.arg_end());
1424     QualType ArgType = I->type;
1425     const ABIArgInfo &AI = I->info;
1426     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1427     auto &IRArgs = ArgInfo[ArgNo];
1428 
1429     if (AI.getPaddingType())
1430       IRArgs.PaddingArgIndex = IRArgNo++;
1431 
1432     switch (AI.getKind()) {
1433     case ABIArgInfo::Extend:
1434     case ABIArgInfo::Direct: {
1435       // FIXME: handle sseregparm someday...
1436       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1437       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1438         IRArgs.NumberOfArgs = STy->getNumElements();
1439       } else {
1440         IRArgs.NumberOfArgs = 1;
1441       }
1442       break;
1443     }
1444     case ABIArgInfo::Indirect:
1445       IRArgs.NumberOfArgs = 1;
1446       break;
1447     case ABIArgInfo::Ignore:
1448     case ABIArgInfo::InAlloca:
1449       // ignore and inalloca doesn't have matching LLVM parameters.
1450       IRArgs.NumberOfArgs = 0;
1451       break;
1452     case ABIArgInfo::CoerceAndExpand:
1453       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1454       break;
1455     case ABIArgInfo::Expand:
1456       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1457       break;
1458     }
1459 
1460     if (IRArgs.NumberOfArgs > 0) {
1461       IRArgs.FirstArgIndex = IRArgNo;
1462       IRArgNo += IRArgs.NumberOfArgs;
1463     }
1464 
1465     // Skip over the sret parameter when it comes second.  We already handled it
1466     // above.
1467     if (IRArgNo == 1 && SwapThisWithSRet)
1468       IRArgNo++;
1469   }
1470   assert(ArgNo == ArgInfo.size());
1471 
1472   if (FI.usesInAlloca())
1473     InallocaArgNo = IRArgNo++;
1474 
1475   TotalIRArgs = IRArgNo;
1476 }
1477 }  // namespace
1478 
1479 /***/
1480 
1481 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1482   const auto &RI = FI.getReturnInfo();
1483   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1484 }
1485 
1486 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1487   return ReturnTypeUsesSRet(FI) &&
1488          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1489 }
1490 
1491 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1492   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1493     switch (BT->getKind()) {
1494     default:
1495       return false;
1496     case BuiltinType::Float:
1497       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1498     case BuiltinType::Double:
1499       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1500     case BuiltinType::LongDouble:
1501       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1502     }
1503   }
1504 
1505   return false;
1506 }
1507 
1508 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1509   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1510     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1511       if (BT->getKind() == BuiltinType::LongDouble)
1512         return getTarget().useObjCFP2RetForComplexLongDouble();
1513     }
1514   }
1515 
1516   return false;
1517 }
1518 
1519 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1520   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1521   return GetFunctionType(FI);
1522 }
1523 
1524 llvm::FunctionType *
1525 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1526 
1527   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1528   (void)Inserted;
1529   assert(Inserted && "Recursively being processed?");
1530 
1531   llvm::Type *resultType = nullptr;
1532   const ABIArgInfo &retAI = FI.getReturnInfo();
1533   switch (retAI.getKind()) {
1534   case ABIArgInfo::Expand:
1535     llvm_unreachable("Invalid ABI kind for return argument");
1536 
1537   case ABIArgInfo::Extend:
1538   case ABIArgInfo::Direct:
1539     resultType = retAI.getCoerceToType();
1540     break;
1541 
1542   case ABIArgInfo::InAlloca:
1543     if (retAI.getInAllocaSRet()) {
1544       // sret things on win32 aren't void, they return the sret pointer.
1545       QualType ret = FI.getReturnType();
1546       llvm::Type *ty = ConvertType(ret);
1547       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1548       resultType = llvm::PointerType::get(ty, addressSpace);
1549     } else {
1550       resultType = llvm::Type::getVoidTy(getLLVMContext());
1551     }
1552     break;
1553 
1554   case ABIArgInfo::Indirect:
1555   case ABIArgInfo::Ignore:
1556     resultType = llvm::Type::getVoidTy(getLLVMContext());
1557     break;
1558 
1559   case ABIArgInfo::CoerceAndExpand:
1560     resultType = retAI.getUnpaddedCoerceAndExpandType();
1561     break;
1562   }
1563 
1564   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1565   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1566 
1567   // Add type for sret argument.
1568   if (IRFunctionArgs.hasSRetArg()) {
1569     QualType Ret = FI.getReturnType();
1570     llvm::Type *Ty = ConvertType(Ret);
1571     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1572     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1573         llvm::PointerType::get(Ty, AddressSpace);
1574   }
1575 
1576   // Add type for inalloca argument.
1577   if (IRFunctionArgs.hasInallocaArg()) {
1578     auto ArgStruct = FI.getArgStruct();
1579     assert(ArgStruct);
1580     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1581   }
1582 
1583   // Add in all of the required arguments.
1584   unsigned ArgNo = 0;
1585   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1586                                      ie = it + FI.getNumRequiredArgs();
1587   for (; it != ie; ++it, ++ArgNo) {
1588     const ABIArgInfo &ArgInfo = it->info;
1589 
1590     // Insert a padding type to ensure proper alignment.
1591     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1592       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1593           ArgInfo.getPaddingType();
1594 
1595     unsigned FirstIRArg, NumIRArgs;
1596     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1597 
1598     switch (ArgInfo.getKind()) {
1599     case ABIArgInfo::Ignore:
1600     case ABIArgInfo::InAlloca:
1601       assert(NumIRArgs == 0);
1602       break;
1603 
1604     case ABIArgInfo::Indirect: {
1605       assert(NumIRArgs == 1);
1606       // indirect arguments are always on the stack, which is alloca addr space.
1607       llvm::Type *LTy = ConvertTypeForMem(it->type);
1608       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1609           CGM.getDataLayout().getAllocaAddrSpace());
1610       break;
1611     }
1612 
1613     case ABIArgInfo::Extend:
1614     case ABIArgInfo::Direct: {
1615       // Fast-isel and the optimizer generally like scalar values better than
1616       // FCAs, so we flatten them if this is safe to do for this argument.
1617       llvm::Type *argType = ArgInfo.getCoerceToType();
1618       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1619       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1620         assert(NumIRArgs == st->getNumElements());
1621         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1622           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1623       } else {
1624         assert(NumIRArgs == 1);
1625         ArgTypes[FirstIRArg] = argType;
1626       }
1627       break;
1628     }
1629 
1630     case ABIArgInfo::CoerceAndExpand: {
1631       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1632       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1633         *ArgTypesIter++ = EltTy;
1634       }
1635       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1636       break;
1637     }
1638 
1639     case ABIArgInfo::Expand:
1640       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1641       getExpandedTypes(it->type, ArgTypesIter);
1642       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1643       break;
1644     }
1645   }
1646 
1647   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1648   assert(Erased && "Not in set?");
1649 
1650   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1651 }
1652 
1653 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1654   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1655   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1656 
1657   if (!isFuncTypeConvertible(FPT))
1658     return llvm::StructType::get(getLLVMContext());
1659 
1660   const CGFunctionInfo *Info;
1661   if (isa<CXXDestructorDecl>(MD))
1662     Info =
1663         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1664   else
1665     Info = &arrangeCXXMethodDeclaration(MD);
1666   return GetFunctionType(*Info);
1667 }
1668 
1669 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1670                                                llvm::AttrBuilder &FuncAttrs,
1671                                                const FunctionProtoType *FPT) {
1672   if (!FPT)
1673     return;
1674 
1675   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1676       FPT->isNothrow(Ctx))
1677     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1678 }
1679 
1680 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1681                                                bool AttrOnCallSite,
1682                                                llvm::AttrBuilder &FuncAttrs) {
1683   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1684   if (!HasOptnone) {
1685     if (CodeGenOpts.OptimizeSize)
1686       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1687     if (CodeGenOpts.OptimizeSize == 2)
1688       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1689   }
1690 
1691   if (CodeGenOpts.DisableRedZone)
1692     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1693   if (CodeGenOpts.NoImplicitFloat)
1694     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1695 
1696   if (AttrOnCallSite) {
1697     // Attributes that should go on the call site only.
1698     if (!CodeGenOpts.SimplifyLibCalls ||
1699         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1700       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1701     if (!CodeGenOpts.TrapFuncName.empty())
1702       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1703   } else {
1704     // Attributes that should go on the function, but not the call site.
1705     if (!CodeGenOpts.DisableFPElim) {
1706       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1707     } else if (CodeGenOpts.OmitLeafFramePointer) {
1708       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1709       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1710     } else {
1711       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1712       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1713     }
1714 
1715     FuncAttrs.addAttribute("less-precise-fpmad",
1716                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1717 
1718     if (!CodeGenOpts.FPDenormalMode.empty())
1719       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1720 
1721     FuncAttrs.addAttribute("no-trapping-math",
1722                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1723 
1724     // TODO: Are these all needed?
1725     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1726     FuncAttrs.addAttribute("no-infs-fp-math",
1727                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1728     FuncAttrs.addAttribute("no-nans-fp-math",
1729                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1730     FuncAttrs.addAttribute("unsafe-fp-math",
1731                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1732     FuncAttrs.addAttribute("use-soft-float",
1733                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1734     FuncAttrs.addAttribute("stack-protector-buffer-size",
1735                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1736     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1737                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1738     FuncAttrs.addAttribute(
1739         "correctly-rounded-divide-sqrt-fp-math",
1740         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1741 
1742     // TODO: Reciprocal estimate codegen options should apply to instructions?
1743     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1744     if (!Recips.empty())
1745       FuncAttrs.addAttribute("reciprocal-estimates",
1746                              llvm::join(Recips, ","));
1747 
1748     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1749         CodeGenOpts.PreferVectorWidth != "none")
1750       FuncAttrs.addAttribute("prefer-vector-width",
1751                              CodeGenOpts.PreferVectorWidth);
1752 
1753     if (CodeGenOpts.StackRealignment)
1754       FuncAttrs.addAttribute("stackrealign");
1755     if (CodeGenOpts.Backchain)
1756       FuncAttrs.addAttribute("backchain");
1757   }
1758 
1759   if (getLangOpts().assumeFunctionsAreConvergent()) {
1760     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1761     // convergent (meaning, they may call an intrinsically convergent op, such
1762     // as __syncthreads() / barrier(), and so can't have certain optimizations
1763     // applied around them).  LLVM will remove this attribute where it safely
1764     // can.
1765     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1766   }
1767 
1768   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1769     // Exceptions aren't supported in CUDA device code.
1770     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1771 
1772     // Respect -fcuda-flush-denormals-to-zero.
1773     if (getLangOpts().CUDADeviceFlushDenormalsToZero)
1774       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1775   }
1776 }
1777 
1778 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1779   llvm::AttrBuilder FuncAttrs;
1780   ConstructDefaultFnAttrList(F.getName(),
1781                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1782                              /* AttrOnCallsite = */ false, FuncAttrs);
1783   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1784 }
1785 
1786 void CodeGenModule::ConstructAttributeList(
1787     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1788     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1789   llvm::AttrBuilder FuncAttrs;
1790   llvm::AttrBuilder RetAttrs;
1791 
1792   CallingConv = FI.getEffectiveCallingConvention();
1793   if (FI.isNoReturn())
1794     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1795 
1796   // If we have information about the function prototype, we can learn
1797   // attributes form there.
1798   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1799                                      CalleeInfo.getCalleeFunctionProtoType());
1800 
1801   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1802 
1803   bool HasOptnone = false;
1804   // FIXME: handle sseregparm someday...
1805   if (TargetDecl) {
1806     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1807       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1808     if (TargetDecl->hasAttr<NoThrowAttr>())
1809       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1810     if (TargetDecl->hasAttr<NoReturnAttr>())
1811       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1812     if (TargetDecl->hasAttr<ColdAttr>())
1813       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1814     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1815       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1816     if (TargetDecl->hasAttr<ConvergentAttr>())
1817       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1818 
1819     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1820       AddAttributesFromFunctionProtoType(
1821           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1822       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1823       // These attributes are not inherited by overloads.
1824       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1825       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1826         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1827     }
1828 
1829     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1830     if (TargetDecl->hasAttr<ConstAttr>()) {
1831       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1832       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1833     } else if (TargetDecl->hasAttr<PureAttr>()) {
1834       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1835       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1836     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1837       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1838       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1839     }
1840     if (TargetDecl->hasAttr<RestrictAttr>())
1841       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1842     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1843       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1844     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1845       FuncAttrs.addAttribute("no_caller_saved_registers");
1846 
1847     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1848     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1849       Optional<unsigned> NumElemsParam;
1850       if (AllocSize->numElemsParam().isValid())
1851         NumElemsParam = AllocSize->numElemsParam().getLLVMIndex();
1852       FuncAttrs.addAllocSizeAttr(AllocSize->elemSizeParam().getLLVMIndex(),
1853                                  NumElemsParam);
1854     }
1855   }
1856 
1857   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1858 
1859   if (CodeGenOpts.EnableSegmentedStacks &&
1860       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1861     FuncAttrs.addAttribute("split-stack");
1862 
1863   // Add NonLazyBind attribute to function declarations when -fno-plt
1864   // is used.
1865   if (TargetDecl && CodeGenOpts.NoPLT) {
1866     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1867       if (!Fn->isDefined() && !AttrOnCallSite) {
1868         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1869       }
1870     }
1871   }
1872 
1873   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1874     if (getLangOpts().OpenCLVersion <= 120) {
1875       // OpenCL v1.2 Work groups are always uniform
1876       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1877     } else {
1878       // OpenCL v2.0 Work groups may be whether uniform or not.
1879       // '-cl-uniform-work-group-size' compile option gets a hint
1880       // to the compiler that the global work-size be a multiple of
1881       // the work-group size specified to clEnqueueNDRangeKernel
1882       // (i.e. work groups are uniform).
1883       FuncAttrs.addAttribute("uniform-work-group-size",
1884                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1885     }
1886   }
1887 
1888   if (!AttrOnCallSite) {
1889     bool DisableTailCalls = false;
1890 
1891     if (CodeGenOpts.DisableTailCalls)
1892       DisableTailCalls = true;
1893     else if (TargetDecl) {
1894       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1895           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1896         DisableTailCalls = true;
1897       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1898         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1899           if (!BD->doesNotEscape())
1900             DisableTailCalls = true;
1901       }
1902     }
1903 
1904     FuncAttrs.addAttribute("disable-tail-calls",
1905                            llvm::toStringRef(DisableTailCalls));
1906     GetCPUAndFeaturesAttributes(TargetDecl, FuncAttrs);
1907   }
1908 
1909   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1910 
1911   QualType RetTy = FI.getReturnType();
1912   const ABIArgInfo &RetAI = FI.getReturnInfo();
1913   switch (RetAI.getKind()) {
1914   case ABIArgInfo::Extend:
1915     if (RetAI.isSignExt())
1916       RetAttrs.addAttribute(llvm::Attribute::SExt);
1917     else
1918       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1919     LLVM_FALLTHROUGH;
1920   case ABIArgInfo::Direct:
1921     if (RetAI.getInReg())
1922       RetAttrs.addAttribute(llvm::Attribute::InReg);
1923     break;
1924   case ABIArgInfo::Ignore:
1925     break;
1926 
1927   case ABIArgInfo::InAlloca:
1928   case ABIArgInfo::Indirect: {
1929     // inalloca and sret disable readnone and readonly
1930     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1931       .removeAttribute(llvm::Attribute::ReadNone);
1932     break;
1933   }
1934 
1935   case ABIArgInfo::CoerceAndExpand:
1936     break;
1937 
1938   case ABIArgInfo::Expand:
1939     llvm_unreachable("Invalid ABI kind for return argument");
1940   }
1941 
1942   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1943     QualType PTy = RefTy->getPointeeType();
1944     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1945       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1946                                         .getQuantity());
1947     else if (getContext().getTargetAddressSpace(PTy) == 0)
1948       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1949   }
1950 
1951   bool hasUsedSRet = false;
1952   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
1953 
1954   // Attach attributes to sret.
1955   if (IRFunctionArgs.hasSRetArg()) {
1956     llvm::AttrBuilder SRETAttrs;
1957     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1958     hasUsedSRet = true;
1959     if (RetAI.getInReg())
1960       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1961     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
1962         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
1963   }
1964 
1965   // Attach attributes to inalloca argument.
1966   if (IRFunctionArgs.hasInallocaArg()) {
1967     llvm::AttrBuilder Attrs;
1968     Attrs.addAttribute(llvm::Attribute::InAlloca);
1969     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
1970         llvm::AttributeSet::get(getLLVMContext(), Attrs);
1971   }
1972 
1973   unsigned ArgNo = 0;
1974   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1975                                           E = FI.arg_end();
1976        I != E; ++I, ++ArgNo) {
1977     QualType ParamType = I->type;
1978     const ABIArgInfo &AI = I->info;
1979     llvm::AttrBuilder Attrs;
1980 
1981     // Add attribute for padding argument, if necessary.
1982     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1983       if (AI.getPaddingInReg()) {
1984         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1985             llvm::AttributeSet::get(
1986                 getLLVMContext(),
1987                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
1988       }
1989     }
1990 
1991     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1992     // have the corresponding parameter variable.  It doesn't make
1993     // sense to do it here because parameters are so messed up.
1994     switch (AI.getKind()) {
1995     case ABIArgInfo::Extend:
1996       if (AI.isSignExt())
1997         Attrs.addAttribute(llvm::Attribute::SExt);
1998       else
1999         Attrs.addAttribute(llvm::Attribute::ZExt);
2000       LLVM_FALLTHROUGH;
2001     case ABIArgInfo::Direct:
2002       if (ArgNo == 0 && FI.isChainCall())
2003         Attrs.addAttribute(llvm::Attribute::Nest);
2004       else if (AI.getInReg())
2005         Attrs.addAttribute(llvm::Attribute::InReg);
2006       break;
2007 
2008     case ABIArgInfo::Indirect: {
2009       if (AI.getInReg())
2010         Attrs.addAttribute(llvm::Attribute::InReg);
2011 
2012       if (AI.getIndirectByVal())
2013         Attrs.addAttribute(llvm::Attribute::ByVal);
2014 
2015       CharUnits Align = AI.getIndirectAlign();
2016 
2017       // In a byval argument, it is important that the required
2018       // alignment of the type is honored, as LLVM might be creating a
2019       // *new* stack object, and needs to know what alignment to give
2020       // it. (Sometimes it can deduce a sensible alignment on its own,
2021       // but not if clang decides it must emit a packed struct, or the
2022       // user specifies increased alignment requirements.)
2023       //
2024       // This is different from indirect *not* byval, where the object
2025       // exists already, and the align attribute is purely
2026       // informative.
2027       assert(!Align.isZero());
2028 
2029       // For now, only add this when we have a byval argument.
2030       // TODO: be less lazy about updating test cases.
2031       if (AI.getIndirectByVal())
2032         Attrs.addAlignmentAttr(Align.getQuantity());
2033 
2034       // byval disables readnone and readonly.
2035       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2036         .removeAttribute(llvm::Attribute::ReadNone);
2037       break;
2038     }
2039     case ABIArgInfo::Ignore:
2040     case ABIArgInfo::Expand:
2041     case ABIArgInfo::CoerceAndExpand:
2042       break;
2043 
2044     case ABIArgInfo::InAlloca:
2045       // inalloca disables readnone and readonly.
2046       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2047           .removeAttribute(llvm::Attribute::ReadNone);
2048       continue;
2049     }
2050 
2051     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2052       QualType PTy = RefTy->getPointeeType();
2053       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2054         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2055                                        .getQuantity());
2056       else if (getContext().getTargetAddressSpace(PTy) == 0)
2057         Attrs.addAttribute(llvm::Attribute::NonNull);
2058     }
2059 
2060     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2061     case ParameterABI::Ordinary:
2062       break;
2063 
2064     case ParameterABI::SwiftIndirectResult: {
2065       // Add 'sret' if we haven't already used it for something, but
2066       // only if the result is void.
2067       if (!hasUsedSRet && RetTy->isVoidType()) {
2068         Attrs.addAttribute(llvm::Attribute::StructRet);
2069         hasUsedSRet = true;
2070       }
2071 
2072       // Add 'noalias' in either case.
2073       Attrs.addAttribute(llvm::Attribute::NoAlias);
2074 
2075       // Add 'dereferenceable' and 'alignment'.
2076       auto PTy = ParamType->getPointeeType();
2077       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2078         auto info = getContext().getTypeInfoInChars(PTy);
2079         Attrs.addDereferenceableAttr(info.first.getQuantity());
2080         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2081                                                  info.second.getQuantity()));
2082       }
2083       break;
2084     }
2085 
2086     case ParameterABI::SwiftErrorResult:
2087       Attrs.addAttribute(llvm::Attribute::SwiftError);
2088       break;
2089 
2090     case ParameterABI::SwiftContext:
2091       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2092       break;
2093     }
2094 
2095     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2096       Attrs.addAttribute(llvm::Attribute::NoCapture);
2097 
2098     if (Attrs.hasAttributes()) {
2099       unsigned FirstIRArg, NumIRArgs;
2100       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2101       for (unsigned i = 0; i < NumIRArgs; i++)
2102         ArgAttrs[FirstIRArg + i] =
2103             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2104     }
2105   }
2106   assert(ArgNo == FI.arg_size());
2107 
2108   AttrList = llvm::AttributeList::get(
2109       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2110       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2111 }
2112 
2113 /// An argument came in as a promoted argument; demote it back to its
2114 /// declared type.
2115 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2116                                          const VarDecl *var,
2117                                          llvm::Value *value) {
2118   llvm::Type *varType = CGF.ConvertType(var->getType());
2119 
2120   // This can happen with promotions that actually don't change the
2121   // underlying type, like the enum promotions.
2122   if (value->getType() == varType) return value;
2123 
2124   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2125          && "unexpected promotion type");
2126 
2127   if (isa<llvm::IntegerType>(varType))
2128     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2129 
2130   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2131 }
2132 
2133 /// Returns the attribute (either parameter attribute, or function
2134 /// attribute), which declares argument ArgNo to be non-null.
2135 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2136                                          QualType ArgType, unsigned ArgNo) {
2137   // FIXME: __attribute__((nonnull)) can also be applied to:
2138   //   - references to pointers, where the pointee is known to be
2139   //     nonnull (apparently a Clang extension)
2140   //   - transparent unions containing pointers
2141   // In the former case, LLVM IR cannot represent the constraint. In
2142   // the latter case, we have no guarantee that the transparent union
2143   // is in fact passed as a pointer.
2144   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2145     return nullptr;
2146   // First, check attribute on parameter itself.
2147   if (PVD) {
2148     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2149       return ParmNNAttr;
2150   }
2151   // Check function attributes.
2152   if (!FD)
2153     return nullptr;
2154   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2155     if (NNAttr->isNonNull(ArgNo))
2156       return NNAttr;
2157   }
2158   return nullptr;
2159 }
2160 
2161 namespace {
2162   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2163     Address Temp;
2164     Address Arg;
2165     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2166     void Emit(CodeGenFunction &CGF, Flags flags) override {
2167       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2168       CGF.Builder.CreateStore(errorValue, Arg);
2169     }
2170   };
2171 }
2172 
2173 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2174                                          llvm::Function *Fn,
2175                                          const FunctionArgList &Args) {
2176   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2177     // Naked functions don't have prologues.
2178     return;
2179 
2180   // If this is an implicit-return-zero function, go ahead and
2181   // initialize the return value.  TODO: it might be nice to have
2182   // a more general mechanism for this that didn't require synthesized
2183   // return statements.
2184   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2185     if (FD->hasImplicitReturnZero()) {
2186       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2187       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2188       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2189       Builder.CreateStore(Zero, ReturnValue);
2190     }
2191   }
2192 
2193   // FIXME: We no longer need the types from FunctionArgList; lift up and
2194   // simplify.
2195 
2196   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2197   // Flattened function arguments.
2198   SmallVector<llvm::Value *, 16> FnArgs;
2199   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2200   for (auto &Arg : Fn->args()) {
2201     FnArgs.push_back(&Arg);
2202   }
2203   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2204 
2205   // If we're using inalloca, all the memory arguments are GEPs off of the last
2206   // parameter, which is a pointer to the complete memory area.
2207   Address ArgStruct = Address::invalid();
2208   const llvm::StructLayout *ArgStructLayout = nullptr;
2209   if (IRFunctionArgs.hasInallocaArg()) {
2210     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2211     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2212                         FI.getArgStructAlignment());
2213 
2214     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2215   }
2216 
2217   // Name the struct return parameter.
2218   if (IRFunctionArgs.hasSRetArg()) {
2219     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2220     AI->setName("agg.result");
2221     AI->addAttr(llvm::Attribute::NoAlias);
2222   }
2223 
2224   // Track if we received the parameter as a pointer (indirect, byval, or
2225   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2226   // into a local alloca for us.
2227   SmallVector<ParamValue, 16> ArgVals;
2228   ArgVals.reserve(Args.size());
2229 
2230   // Create a pointer value for every parameter declaration.  This usually
2231   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2232   // any cleanups or do anything that might unwind.  We do that separately, so
2233   // we can push the cleanups in the correct order for the ABI.
2234   assert(FI.arg_size() == Args.size() &&
2235          "Mismatch between function signature & arguments.");
2236   unsigned ArgNo = 0;
2237   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2238   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2239        i != e; ++i, ++info_it, ++ArgNo) {
2240     const VarDecl *Arg = *i;
2241     const ABIArgInfo &ArgI = info_it->info;
2242 
2243     bool isPromoted =
2244       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2245     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2246     // the parameter is promoted. In this case we convert to
2247     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2248     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2249     assert(hasScalarEvaluationKind(Ty) ==
2250            hasScalarEvaluationKind(Arg->getType()));
2251 
2252     unsigned FirstIRArg, NumIRArgs;
2253     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2254 
2255     switch (ArgI.getKind()) {
2256     case ABIArgInfo::InAlloca: {
2257       assert(NumIRArgs == 0);
2258       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2259       CharUnits FieldOffset =
2260         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2261       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2262                                           Arg->getName());
2263       ArgVals.push_back(ParamValue::forIndirect(V));
2264       break;
2265     }
2266 
2267     case ABIArgInfo::Indirect: {
2268       assert(NumIRArgs == 1);
2269       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2270 
2271       if (!hasScalarEvaluationKind(Ty)) {
2272         // Aggregates and complex variables are accessed by reference.  All we
2273         // need to do is realign the value, if requested.
2274         Address V = ParamAddr;
2275         if (ArgI.getIndirectRealign()) {
2276           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2277 
2278           // Copy from the incoming argument pointer to the temporary with the
2279           // appropriate alignment.
2280           //
2281           // FIXME: We should have a common utility for generating an aggregate
2282           // copy.
2283           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2284           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2285           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2286           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2287           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2288           V = AlignedTemp;
2289         }
2290         ArgVals.push_back(ParamValue::forIndirect(V));
2291       } else {
2292         // Load scalar value from indirect argument.
2293         llvm::Value *V =
2294           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
2295 
2296         if (isPromoted)
2297           V = emitArgumentDemotion(*this, Arg, V);
2298         ArgVals.push_back(ParamValue::forDirect(V));
2299       }
2300       break;
2301     }
2302 
2303     case ABIArgInfo::Extend:
2304     case ABIArgInfo::Direct: {
2305 
2306       // If we have the trivial case, handle it with no muss and fuss.
2307       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2308           ArgI.getCoerceToType() == ConvertType(Ty) &&
2309           ArgI.getDirectOffset() == 0) {
2310         assert(NumIRArgs == 1);
2311         llvm::Value *V = FnArgs[FirstIRArg];
2312         auto AI = cast<llvm::Argument>(V);
2313 
2314         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2315           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2316                              PVD->getFunctionScopeIndex()))
2317             AI->addAttr(llvm::Attribute::NonNull);
2318 
2319           QualType OTy = PVD->getOriginalType();
2320           if (const auto *ArrTy =
2321               getContext().getAsConstantArrayType(OTy)) {
2322             // A C99 array parameter declaration with the static keyword also
2323             // indicates dereferenceability, and if the size is constant we can
2324             // use the dereferenceable attribute (which requires the size in
2325             // bytes).
2326             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2327               QualType ETy = ArrTy->getElementType();
2328               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2329               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2330                   ArrSize) {
2331                 llvm::AttrBuilder Attrs;
2332                 Attrs.addDereferenceableAttr(
2333                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2334                 AI->addAttrs(Attrs);
2335               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
2336                 AI->addAttr(llvm::Attribute::NonNull);
2337               }
2338             }
2339           } else if (const auto *ArrTy =
2340                      getContext().getAsVariableArrayType(OTy)) {
2341             // For C99 VLAs with the static keyword, we don't know the size so
2342             // we can't use the dereferenceable attribute, but in addrspace(0)
2343             // we know that it must be nonnull.
2344             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2345                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
2346               AI->addAttr(llvm::Attribute::NonNull);
2347           }
2348 
2349           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2350           if (!AVAttr)
2351             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2352               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2353           if (AVAttr) {
2354             llvm::Value *AlignmentValue =
2355               EmitScalarExpr(AVAttr->getAlignment());
2356             llvm::ConstantInt *AlignmentCI =
2357               cast<llvm::ConstantInt>(AlignmentValue);
2358             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2359                                           +llvm::Value::MaximumAlignment);
2360             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2361           }
2362         }
2363 
2364         if (Arg->getType().isRestrictQualified())
2365           AI->addAttr(llvm::Attribute::NoAlias);
2366 
2367         // LLVM expects swifterror parameters to be used in very restricted
2368         // ways.  Copy the value into a less-restricted temporary.
2369         if (FI.getExtParameterInfo(ArgNo).getABI()
2370               == ParameterABI::SwiftErrorResult) {
2371           QualType pointeeTy = Ty->getPointeeType();
2372           assert(pointeeTy->isPointerType());
2373           Address temp =
2374             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2375           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2376           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2377           Builder.CreateStore(incomingErrorValue, temp);
2378           V = temp.getPointer();
2379 
2380           // Push a cleanup to copy the value back at the end of the function.
2381           // The convention does not guarantee that the value will be written
2382           // back if the function exits with an unwind exception.
2383           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2384         }
2385 
2386         // Ensure the argument is the correct type.
2387         if (V->getType() != ArgI.getCoerceToType())
2388           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2389 
2390         if (isPromoted)
2391           V = emitArgumentDemotion(*this, Arg, V);
2392 
2393         // Because of merging of function types from multiple decls it is
2394         // possible for the type of an argument to not match the corresponding
2395         // type in the function type. Since we are codegening the callee
2396         // in here, add a cast to the argument type.
2397         llvm::Type *LTy = ConvertType(Arg->getType());
2398         if (V->getType() != LTy)
2399           V = Builder.CreateBitCast(V, LTy);
2400 
2401         ArgVals.push_back(ParamValue::forDirect(V));
2402         break;
2403       }
2404 
2405       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2406                                      Arg->getName());
2407 
2408       // Pointer to store into.
2409       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2410 
2411       // Fast-isel and the optimizer generally like scalar values better than
2412       // FCAs, so we flatten them if this is safe to do for this argument.
2413       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2414       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2415           STy->getNumElements() > 1) {
2416         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2417         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2418         llvm::Type *DstTy = Ptr.getElementType();
2419         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2420 
2421         Address AddrToStoreInto = Address::invalid();
2422         if (SrcSize <= DstSize) {
2423           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2424         } else {
2425           AddrToStoreInto =
2426             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2427         }
2428 
2429         assert(STy->getNumElements() == NumIRArgs);
2430         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2431           auto AI = FnArgs[FirstIRArg + i];
2432           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2433           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2434           Address EltPtr =
2435             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2436           Builder.CreateStore(AI, EltPtr);
2437         }
2438 
2439         if (SrcSize > DstSize) {
2440           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2441         }
2442 
2443       } else {
2444         // Simple case, just do a coerced store of the argument into the alloca.
2445         assert(NumIRArgs == 1);
2446         auto AI = FnArgs[FirstIRArg];
2447         AI->setName(Arg->getName() + ".coerce");
2448         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2449       }
2450 
2451       // Match to what EmitParmDecl is expecting for this type.
2452       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2453         llvm::Value *V =
2454           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2455         if (isPromoted)
2456           V = emitArgumentDemotion(*this, Arg, V);
2457         ArgVals.push_back(ParamValue::forDirect(V));
2458       } else {
2459         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2460       }
2461       break;
2462     }
2463 
2464     case ABIArgInfo::CoerceAndExpand: {
2465       // Reconstruct into a temporary.
2466       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2467       ArgVals.push_back(ParamValue::forIndirect(alloca));
2468 
2469       auto coercionType = ArgI.getCoerceAndExpandType();
2470       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2471       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2472 
2473       unsigned argIndex = FirstIRArg;
2474       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2475         llvm::Type *eltType = coercionType->getElementType(i);
2476         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2477           continue;
2478 
2479         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2480         auto elt = FnArgs[argIndex++];
2481         Builder.CreateStore(elt, eltAddr);
2482       }
2483       assert(argIndex == FirstIRArg + NumIRArgs);
2484       break;
2485     }
2486 
2487     case ABIArgInfo::Expand: {
2488       // If this structure was expanded into multiple arguments then
2489       // we need to create a temporary and reconstruct it from the
2490       // arguments.
2491       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2492       LValue LV = MakeAddrLValue(Alloca, Ty);
2493       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2494 
2495       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2496       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2497       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2498       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2499         auto AI = FnArgs[FirstIRArg + i];
2500         AI->setName(Arg->getName() + "." + Twine(i));
2501       }
2502       break;
2503     }
2504 
2505     case ABIArgInfo::Ignore:
2506       assert(NumIRArgs == 0);
2507       // Initialize the local variable appropriately.
2508       if (!hasScalarEvaluationKind(Ty)) {
2509         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2510       } else {
2511         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2512         ArgVals.push_back(ParamValue::forDirect(U));
2513       }
2514       break;
2515     }
2516   }
2517 
2518   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2519     for (int I = Args.size() - 1; I >= 0; --I)
2520       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2521   } else {
2522     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2523       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2524   }
2525 }
2526 
2527 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2528   while (insn->use_empty()) {
2529     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2530     if (!bitcast) return;
2531 
2532     // This is "safe" because we would have used a ConstantExpr otherwise.
2533     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2534     bitcast->eraseFromParent();
2535   }
2536 }
2537 
2538 /// Try to emit a fused autorelease of a return result.
2539 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2540                                                     llvm::Value *result) {
2541   // We must be immediately followed the cast.
2542   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2543   if (BB->empty()) return nullptr;
2544   if (&BB->back() != result) return nullptr;
2545 
2546   llvm::Type *resultType = result->getType();
2547 
2548   // result is in a BasicBlock and is therefore an Instruction.
2549   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2550 
2551   SmallVector<llvm::Instruction *, 4> InstsToKill;
2552 
2553   // Look for:
2554   //  %generator = bitcast %type1* %generator2 to %type2*
2555   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2556     // We would have emitted this as a constant if the operand weren't
2557     // an Instruction.
2558     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2559 
2560     // Require the generator to be immediately followed by the cast.
2561     if (generator->getNextNode() != bitcast)
2562       return nullptr;
2563 
2564     InstsToKill.push_back(bitcast);
2565   }
2566 
2567   // Look for:
2568   //   %generator = call i8* @objc_retain(i8* %originalResult)
2569   // or
2570   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2571   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2572   if (!call) return nullptr;
2573 
2574   bool doRetainAutorelease;
2575 
2576   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2577     doRetainAutorelease = true;
2578   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2579                                           .objc_retainAutoreleasedReturnValue) {
2580     doRetainAutorelease = false;
2581 
2582     // If we emitted an assembly marker for this call (and the
2583     // ARCEntrypoints field should have been set if so), go looking
2584     // for that call.  If we can't find it, we can't do this
2585     // optimization.  But it should always be the immediately previous
2586     // instruction, unless we needed bitcasts around the call.
2587     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2588       llvm::Instruction *prev = call->getPrevNode();
2589       assert(prev);
2590       if (isa<llvm::BitCastInst>(prev)) {
2591         prev = prev->getPrevNode();
2592         assert(prev);
2593       }
2594       assert(isa<llvm::CallInst>(prev));
2595       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2596                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2597       InstsToKill.push_back(prev);
2598     }
2599   } else {
2600     return nullptr;
2601   }
2602 
2603   result = call->getArgOperand(0);
2604   InstsToKill.push_back(call);
2605 
2606   // Keep killing bitcasts, for sanity.  Note that we no longer care
2607   // about precise ordering as long as there's exactly one use.
2608   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2609     if (!bitcast->hasOneUse()) break;
2610     InstsToKill.push_back(bitcast);
2611     result = bitcast->getOperand(0);
2612   }
2613 
2614   // Delete all the unnecessary instructions, from latest to earliest.
2615   for (auto *I : InstsToKill)
2616     I->eraseFromParent();
2617 
2618   // Do the fused retain/autorelease if we were asked to.
2619   if (doRetainAutorelease)
2620     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2621 
2622   // Cast back to the result type.
2623   return CGF.Builder.CreateBitCast(result, resultType);
2624 }
2625 
2626 /// If this is a +1 of the value of an immutable 'self', remove it.
2627 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2628                                           llvm::Value *result) {
2629   // This is only applicable to a method with an immutable 'self'.
2630   const ObjCMethodDecl *method =
2631     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2632   if (!method) return nullptr;
2633   const VarDecl *self = method->getSelfDecl();
2634   if (!self->getType().isConstQualified()) return nullptr;
2635 
2636   // Look for a retain call.
2637   llvm::CallInst *retainCall =
2638     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2639   if (!retainCall ||
2640       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2641     return nullptr;
2642 
2643   // Look for an ordinary load of 'self'.
2644   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2645   llvm::LoadInst *load =
2646     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2647   if (!load || load->isAtomic() || load->isVolatile() ||
2648       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2649     return nullptr;
2650 
2651   // Okay!  Burn it all down.  This relies for correctness on the
2652   // assumption that the retain is emitted as part of the return and
2653   // that thereafter everything is used "linearly".
2654   llvm::Type *resultType = result->getType();
2655   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2656   assert(retainCall->use_empty());
2657   retainCall->eraseFromParent();
2658   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2659 
2660   return CGF.Builder.CreateBitCast(load, resultType);
2661 }
2662 
2663 /// Emit an ARC autorelease of the result of a function.
2664 ///
2665 /// \return the value to actually return from the function
2666 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2667                                             llvm::Value *result) {
2668   // If we're returning 'self', kill the initial retain.  This is a
2669   // heuristic attempt to "encourage correctness" in the really unfortunate
2670   // case where we have a return of self during a dealloc and we desperately
2671   // need to avoid the possible autorelease.
2672   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2673     return self;
2674 
2675   // At -O0, try to emit a fused retain/autorelease.
2676   if (CGF.shouldUseFusedARCCalls())
2677     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2678       return fused;
2679 
2680   return CGF.EmitARCAutoreleaseReturnValue(result);
2681 }
2682 
2683 /// Heuristically search for a dominating store to the return-value slot.
2684 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2685   // Check if a User is a store which pointerOperand is the ReturnValue.
2686   // We are looking for stores to the ReturnValue, not for stores of the
2687   // ReturnValue to some other location.
2688   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2689     auto *SI = dyn_cast<llvm::StoreInst>(U);
2690     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2691       return nullptr;
2692     // These aren't actually possible for non-coerced returns, and we
2693     // only care about non-coerced returns on this code path.
2694     assert(!SI->isAtomic() && !SI->isVolatile());
2695     return SI;
2696   };
2697   // If there are multiple uses of the return-value slot, just check
2698   // for something immediately preceding the IP.  Sometimes this can
2699   // happen with how we generate implicit-returns; it can also happen
2700   // with noreturn cleanups.
2701   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2702     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2703     if (IP->empty()) return nullptr;
2704     llvm::Instruction *I = &IP->back();
2705 
2706     // Skip lifetime markers
2707     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2708                                             IE = IP->rend();
2709          II != IE; ++II) {
2710       if (llvm::IntrinsicInst *Intrinsic =
2711               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2712         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2713           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2714           ++II;
2715           if (II == IE)
2716             break;
2717           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2718             continue;
2719         }
2720       }
2721       I = &*II;
2722       break;
2723     }
2724 
2725     return GetStoreIfValid(I);
2726   }
2727 
2728   llvm::StoreInst *store =
2729       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2730   if (!store) return nullptr;
2731 
2732   // Now do a first-and-dirty dominance check: just walk up the
2733   // single-predecessors chain from the current insertion point.
2734   llvm::BasicBlock *StoreBB = store->getParent();
2735   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2736   while (IP != StoreBB) {
2737     if (!(IP = IP->getSinglePredecessor()))
2738       return nullptr;
2739   }
2740 
2741   // Okay, the store's basic block dominates the insertion point; we
2742   // can do our thing.
2743   return store;
2744 }
2745 
2746 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2747                                          bool EmitRetDbgLoc,
2748                                          SourceLocation EndLoc) {
2749   if (FI.isNoReturn()) {
2750     // Noreturn functions don't return.
2751     EmitUnreachable(EndLoc);
2752     return;
2753   }
2754 
2755   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2756     // Naked functions don't have epilogues.
2757     Builder.CreateUnreachable();
2758     return;
2759   }
2760 
2761   // Functions with no result always return void.
2762   if (!ReturnValue.isValid()) {
2763     Builder.CreateRetVoid();
2764     return;
2765   }
2766 
2767   llvm::DebugLoc RetDbgLoc;
2768   llvm::Value *RV = nullptr;
2769   QualType RetTy = FI.getReturnType();
2770   const ABIArgInfo &RetAI = FI.getReturnInfo();
2771 
2772   switch (RetAI.getKind()) {
2773   case ABIArgInfo::InAlloca:
2774     // Aggregrates get evaluated directly into the destination.  Sometimes we
2775     // need to return the sret value in a register, though.
2776     assert(hasAggregateEvaluationKind(RetTy));
2777     if (RetAI.getInAllocaSRet()) {
2778       llvm::Function::arg_iterator EI = CurFn->arg_end();
2779       --EI;
2780       llvm::Value *ArgStruct = &*EI;
2781       llvm::Value *SRet = Builder.CreateStructGEP(
2782           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2783       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2784     }
2785     break;
2786 
2787   case ABIArgInfo::Indirect: {
2788     auto AI = CurFn->arg_begin();
2789     if (RetAI.isSRetAfterThis())
2790       ++AI;
2791     switch (getEvaluationKind(RetTy)) {
2792     case TEK_Complex: {
2793       ComplexPairTy RT =
2794         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2795       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2796                          /*isInit*/ true);
2797       break;
2798     }
2799     case TEK_Aggregate:
2800       // Do nothing; aggregrates get evaluated directly into the destination.
2801       break;
2802     case TEK_Scalar:
2803       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2804                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2805                         /*isInit*/ true);
2806       break;
2807     }
2808     break;
2809   }
2810 
2811   case ABIArgInfo::Extend:
2812   case ABIArgInfo::Direct:
2813     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2814         RetAI.getDirectOffset() == 0) {
2815       // The internal return value temp always will have pointer-to-return-type
2816       // type, just do a load.
2817 
2818       // If there is a dominating store to ReturnValue, we can elide
2819       // the load, zap the store, and usually zap the alloca.
2820       if (llvm::StoreInst *SI =
2821               findDominatingStoreToReturnValue(*this)) {
2822         // Reuse the debug location from the store unless there is
2823         // cleanup code to be emitted between the store and return
2824         // instruction.
2825         if (EmitRetDbgLoc && !AutoreleaseResult)
2826           RetDbgLoc = SI->getDebugLoc();
2827         // Get the stored value and nuke the now-dead store.
2828         RV = SI->getValueOperand();
2829         SI->eraseFromParent();
2830 
2831         // If that was the only use of the return value, nuke it as well now.
2832         auto returnValueInst = ReturnValue.getPointer();
2833         if (returnValueInst->use_empty()) {
2834           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2835             alloca->eraseFromParent();
2836             ReturnValue = Address::invalid();
2837           }
2838         }
2839 
2840       // Otherwise, we have to do a simple load.
2841       } else {
2842         RV = Builder.CreateLoad(ReturnValue);
2843       }
2844     } else {
2845       // If the value is offset in memory, apply the offset now.
2846       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2847 
2848       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2849     }
2850 
2851     // In ARC, end functions that return a retainable type with a call
2852     // to objc_autoreleaseReturnValue.
2853     if (AutoreleaseResult) {
2854 #ifndef NDEBUG
2855       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2856       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2857       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2858       // CurCodeDecl or BlockInfo.
2859       QualType RT;
2860 
2861       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2862         RT = FD->getReturnType();
2863       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2864         RT = MD->getReturnType();
2865       else if (isa<BlockDecl>(CurCodeDecl))
2866         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2867       else
2868         llvm_unreachable("Unexpected function/method type");
2869 
2870       assert(getLangOpts().ObjCAutoRefCount &&
2871              !FI.isReturnsRetained() &&
2872              RT->isObjCRetainableType());
2873 #endif
2874       RV = emitAutoreleaseOfResult(*this, RV);
2875     }
2876 
2877     break;
2878 
2879   case ABIArgInfo::Ignore:
2880     break;
2881 
2882   case ABIArgInfo::CoerceAndExpand: {
2883     auto coercionType = RetAI.getCoerceAndExpandType();
2884     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2885 
2886     // Load all of the coerced elements out into results.
2887     llvm::SmallVector<llvm::Value*, 4> results;
2888     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2889     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2890       auto coercedEltType = coercionType->getElementType(i);
2891       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2892         continue;
2893 
2894       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2895       auto elt = Builder.CreateLoad(eltAddr);
2896       results.push_back(elt);
2897     }
2898 
2899     // If we have one result, it's the single direct result type.
2900     if (results.size() == 1) {
2901       RV = results[0];
2902 
2903     // Otherwise, we need to make a first-class aggregate.
2904     } else {
2905       // Construct a return type that lacks padding elements.
2906       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2907 
2908       RV = llvm::UndefValue::get(returnType);
2909       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2910         RV = Builder.CreateInsertValue(RV, results[i], i);
2911       }
2912     }
2913     break;
2914   }
2915 
2916   case ABIArgInfo::Expand:
2917     llvm_unreachable("Invalid ABI kind for return argument");
2918   }
2919 
2920   llvm::Instruction *Ret;
2921   if (RV) {
2922     EmitReturnValueCheck(RV);
2923     Ret = Builder.CreateRet(RV);
2924   } else {
2925     Ret = Builder.CreateRetVoid();
2926   }
2927 
2928   if (RetDbgLoc)
2929     Ret->setDebugLoc(std::move(RetDbgLoc));
2930 }
2931 
2932 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2933   // A current decl may not be available when emitting vtable thunks.
2934   if (!CurCodeDecl)
2935     return;
2936 
2937   ReturnsNonNullAttr *RetNNAttr = nullptr;
2938   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2939     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
2940 
2941   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
2942     return;
2943 
2944   // Prefer the returns_nonnull attribute if it's present.
2945   SourceLocation AttrLoc;
2946   SanitizerMask CheckKind;
2947   SanitizerHandler Handler;
2948   if (RetNNAttr) {
2949     assert(!requiresReturnValueNullabilityCheck() &&
2950            "Cannot check nullability and the nonnull attribute");
2951     AttrLoc = RetNNAttr->getLocation();
2952     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
2953     Handler = SanitizerHandler::NonnullReturn;
2954   } else {
2955     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
2956       if (auto *TSI = DD->getTypeSourceInfo())
2957         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
2958           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
2959     CheckKind = SanitizerKind::NullabilityReturn;
2960     Handler = SanitizerHandler::NullabilityReturn;
2961   }
2962 
2963   SanitizerScope SanScope(this);
2964 
2965   // Make sure the "return" source location is valid. If we're checking a
2966   // nullability annotation, make sure the preconditions for the check are met.
2967   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
2968   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
2969   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
2970   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
2971   if (requiresReturnValueNullabilityCheck())
2972     CanNullCheck =
2973         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
2974   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
2975   EmitBlock(Check);
2976 
2977   // Now do the null check.
2978   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
2979   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
2980   llvm::Value *DynamicData[] = {SLocPtr};
2981   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
2982 
2983   EmitBlock(NoCheck);
2984 
2985 #ifndef NDEBUG
2986   // The return location should not be used after the check has been emitted.
2987   ReturnLocation = Address::invalid();
2988 #endif
2989 }
2990 
2991 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2992   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2993   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2994 }
2995 
2996 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2997                                           QualType Ty) {
2998   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2999   // placeholders.
3000   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3001   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3002   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3003 
3004   // FIXME: When we generate this IR in one pass, we shouldn't need
3005   // this win32-specific alignment hack.
3006   CharUnits Align = CharUnits::fromQuantity(4);
3007   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3008 
3009   return AggValueSlot::forAddr(Address(Placeholder, Align),
3010                                Ty.getQualifiers(),
3011                                AggValueSlot::IsNotDestructed,
3012                                AggValueSlot::DoesNotNeedGCBarriers,
3013                                AggValueSlot::IsNotAliased);
3014 }
3015 
3016 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3017                                           const VarDecl *param,
3018                                           SourceLocation loc) {
3019   // StartFunction converted the ABI-lowered parameter(s) into a
3020   // local alloca.  We need to turn that into an r-value suitable
3021   // for EmitCall.
3022   Address local = GetAddrOfLocalVar(param);
3023 
3024   QualType type = param->getType();
3025 
3026   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
3027          "cannot emit delegate call arguments for inalloca arguments!");
3028 
3029   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3030   // but the argument needs to be the original pointer.
3031   if (type->isReferenceType()) {
3032     args.add(RValue::get(Builder.CreateLoad(local)), type);
3033 
3034   // In ARC, move out of consumed arguments so that the release cleanup
3035   // entered by StartFunction doesn't cause an over-release.  This isn't
3036   // optimal -O0 code generation, but it should get cleaned up when
3037   // optimization is enabled.  This also assumes that delegate calls are
3038   // performed exactly once for a set of arguments, but that should be safe.
3039   } else if (getLangOpts().ObjCAutoRefCount &&
3040              param->hasAttr<NSConsumedAttr>() &&
3041              type->isObjCRetainableType()) {
3042     llvm::Value *ptr = Builder.CreateLoad(local);
3043     auto null =
3044       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3045     Builder.CreateStore(null, local);
3046     args.add(RValue::get(ptr), type);
3047 
3048   // For the most part, we just need to load the alloca, except that
3049   // aggregate r-values are actually pointers to temporaries.
3050   } else {
3051     args.add(convertTempToRValue(local, type, loc), type);
3052   }
3053 }
3054 
3055 static bool isProvablyNull(llvm::Value *addr) {
3056   return isa<llvm::ConstantPointerNull>(addr);
3057 }
3058 
3059 /// Emit the actual writing-back of a writeback.
3060 static void emitWriteback(CodeGenFunction &CGF,
3061                           const CallArgList::Writeback &writeback) {
3062   const LValue &srcLV = writeback.Source;
3063   Address srcAddr = srcLV.getAddress();
3064   assert(!isProvablyNull(srcAddr.getPointer()) &&
3065          "shouldn't have writeback for provably null argument");
3066 
3067   llvm::BasicBlock *contBB = nullptr;
3068 
3069   // If the argument wasn't provably non-null, we need to null check
3070   // before doing the store.
3071   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3072                                               CGF.CGM.getDataLayout());
3073   if (!provablyNonNull) {
3074     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3075     contBB = CGF.createBasicBlock("icr.done");
3076 
3077     llvm::Value *isNull =
3078       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3079     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3080     CGF.EmitBlock(writebackBB);
3081   }
3082 
3083   // Load the value to writeback.
3084   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3085 
3086   // Cast it back, in case we're writing an id to a Foo* or something.
3087   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3088                                     "icr.writeback-cast");
3089 
3090   // Perform the writeback.
3091 
3092   // If we have a "to use" value, it's something we need to emit a use
3093   // of.  This has to be carefully threaded in: if it's done after the
3094   // release it's potentially undefined behavior (and the optimizer
3095   // will ignore it), and if it happens before the retain then the
3096   // optimizer could move the release there.
3097   if (writeback.ToUse) {
3098     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3099 
3100     // Retain the new value.  No need to block-copy here:  the block's
3101     // being passed up the stack.
3102     value = CGF.EmitARCRetainNonBlock(value);
3103 
3104     // Emit the intrinsic use here.
3105     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3106 
3107     // Load the old value (primitively).
3108     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3109 
3110     // Put the new value in place (primitively).
3111     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3112 
3113     // Release the old value.
3114     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3115 
3116   // Otherwise, we can just do a normal lvalue store.
3117   } else {
3118     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3119   }
3120 
3121   // Jump to the continuation block.
3122   if (!provablyNonNull)
3123     CGF.EmitBlock(contBB);
3124 }
3125 
3126 static void emitWritebacks(CodeGenFunction &CGF,
3127                            const CallArgList &args) {
3128   for (const auto &I : args.writebacks())
3129     emitWriteback(CGF, I);
3130 }
3131 
3132 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3133                                             const CallArgList &CallArgs) {
3134   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3135     CallArgs.getCleanupsToDeactivate();
3136   // Iterate in reverse to increase the likelihood of popping the cleanup.
3137   for (const auto &I : llvm::reverse(Cleanups)) {
3138     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3139     I.IsActiveIP->eraseFromParent();
3140   }
3141 }
3142 
3143 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3144   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3145     if (uop->getOpcode() == UO_AddrOf)
3146       return uop->getSubExpr();
3147   return nullptr;
3148 }
3149 
3150 /// Emit an argument that's being passed call-by-writeback.  That is,
3151 /// we are passing the address of an __autoreleased temporary; it
3152 /// might be copy-initialized with the current value of the given
3153 /// address, but it will definitely be copied out of after the call.
3154 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3155                              const ObjCIndirectCopyRestoreExpr *CRE) {
3156   LValue srcLV;
3157 
3158   // Make an optimistic effort to emit the address as an l-value.
3159   // This can fail if the argument expression is more complicated.
3160   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3161     srcLV = CGF.EmitLValue(lvExpr);
3162 
3163   // Otherwise, just emit it as a scalar.
3164   } else {
3165     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3166 
3167     QualType srcAddrType =
3168       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3169     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3170   }
3171   Address srcAddr = srcLV.getAddress();
3172 
3173   // The dest and src types don't necessarily match in LLVM terms
3174   // because of the crazy ObjC compatibility rules.
3175 
3176   llvm::PointerType *destType =
3177     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3178 
3179   // If the address is a constant null, just pass the appropriate null.
3180   if (isProvablyNull(srcAddr.getPointer())) {
3181     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3182              CRE->getType());
3183     return;
3184   }
3185 
3186   // Create the temporary.
3187   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3188                                       CGF.getPointerAlign(),
3189                                       "icr.temp");
3190   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3191   // and that cleanup will be conditional if we can't prove that the l-value
3192   // isn't null, so we need to register a dominating point so that the cleanups
3193   // system will make valid IR.
3194   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3195 
3196   // Zero-initialize it if we're not doing a copy-initialization.
3197   bool shouldCopy = CRE->shouldCopy();
3198   if (!shouldCopy) {
3199     llvm::Value *null =
3200       llvm::ConstantPointerNull::get(
3201         cast<llvm::PointerType>(destType->getElementType()));
3202     CGF.Builder.CreateStore(null, temp);
3203   }
3204 
3205   llvm::BasicBlock *contBB = nullptr;
3206   llvm::BasicBlock *originBB = nullptr;
3207 
3208   // If the address is *not* known to be non-null, we need to switch.
3209   llvm::Value *finalArgument;
3210 
3211   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3212                                               CGF.CGM.getDataLayout());
3213   if (provablyNonNull) {
3214     finalArgument = temp.getPointer();
3215   } else {
3216     llvm::Value *isNull =
3217       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3218 
3219     finalArgument = CGF.Builder.CreateSelect(isNull,
3220                                    llvm::ConstantPointerNull::get(destType),
3221                                              temp.getPointer(), "icr.argument");
3222 
3223     // If we need to copy, then the load has to be conditional, which
3224     // means we need control flow.
3225     if (shouldCopy) {
3226       originBB = CGF.Builder.GetInsertBlock();
3227       contBB = CGF.createBasicBlock("icr.cont");
3228       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3229       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3230       CGF.EmitBlock(copyBB);
3231       condEval.begin(CGF);
3232     }
3233   }
3234 
3235   llvm::Value *valueToUse = nullptr;
3236 
3237   // Perform a copy if necessary.
3238   if (shouldCopy) {
3239     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3240     assert(srcRV.isScalar());
3241 
3242     llvm::Value *src = srcRV.getScalarVal();
3243     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3244                                     "icr.cast");
3245 
3246     // Use an ordinary store, not a store-to-lvalue.
3247     CGF.Builder.CreateStore(src, temp);
3248 
3249     // If optimization is enabled, and the value was held in a
3250     // __strong variable, we need to tell the optimizer that this
3251     // value has to stay alive until we're doing the store back.
3252     // This is because the temporary is effectively unretained,
3253     // and so otherwise we can violate the high-level semantics.
3254     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3255         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3256       valueToUse = src;
3257     }
3258   }
3259 
3260   // Finish the control flow if we needed it.
3261   if (shouldCopy && !provablyNonNull) {
3262     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3263     CGF.EmitBlock(contBB);
3264 
3265     // Make a phi for the value to intrinsically use.
3266     if (valueToUse) {
3267       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3268                                                       "icr.to-use");
3269       phiToUse->addIncoming(valueToUse, copyBB);
3270       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3271                             originBB);
3272       valueToUse = phiToUse;
3273     }
3274 
3275     condEval.end(CGF);
3276   }
3277 
3278   args.addWriteback(srcLV, temp, valueToUse);
3279   args.add(RValue::get(finalArgument), CRE->getType());
3280 }
3281 
3282 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3283   assert(!StackBase);
3284 
3285   // Save the stack.
3286   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3287   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3288 }
3289 
3290 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3291   if (StackBase) {
3292     // Restore the stack after the call.
3293     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3294     CGF.Builder.CreateCall(F, StackBase);
3295   }
3296 }
3297 
3298 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3299                                           SourceLocation ArgLoc,
3300                                           AbstractCallee AC,
3301                                           unsigned ParmNum) {
3302   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3303                          SanOpts.has(SanitizerKind::NullabilityArg)))
3304     return;
3305 
3306   // The param decl may be missing in a variadic function.
3307   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3308   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3309 
3310   // Prefer the nonnull attribute if it's present.
3311   const NonNullAttr *NNAttr = nullptr;
3312   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3313     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3314 
3315   bool CanCheckNullability = false;
3316   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3317     auto Nullability = PVD->getType()->getNullability(getContext());
3318     CanCheckNullability = Nullability &&
3319                           *Nullability == NullabilityKind::NonNull &&
3320                           PVD->getTypeSourceInfo();
3321   }
3322 
3323   if (!NNAttr && !CanCheckNullability)
3324     return;
3325 
3326   SourceLocation AttrLoc;
3327   SanitizerMask CheckKind;
3328   SanitizerHandler Handler;
3329   if (NNAttr) {
3330     AttrLoc = NNAttr->getLocation();
3331     CheckKind = SanitizerKind::NonnullAttribute;
3332     Handler = SanitizerHandler::NonnullArg;
3333   } else {
3334     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3335     CheckKind = SanitizerKind::NullabilityArg;
3336     Handler = SanitizerHandler::NullabilityArg;
3337   }
3338 
3339   SanitizerScope SanScope(this);
3340   assert(RV.isScalar());
3341   llvm::Value *V = RV.getScalarVal();
3342   llvm::Value *Cond =
3343       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3344   llvm::Constant *StaticData[] = {
3345       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3346       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3347   };
3348   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3349 }
3350 
3351 void CodeGenFunction::EmitCallArgs(
3352     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3353     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3354     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3355   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3356 
3357   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3358   // because arguments are destroyed left to right in the callee. As a special
3359   // case, there are certain language constructs that require left-to-right
3360   // evaluation, and in those cases we consider the evaluation order requirement
3361   // to trump the "destruction order is reverse construction order" guarantee.
3362   bool LeftToRight =
3363       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3364           ? Order == EvaluationOrder::ForceLeftToRight
3365           : Order != EvaluationOrder::ForceRightToLeft;
3366 
3367   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3368                                          RValue EmittedArg) {
3369     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3370       return;
3371     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3372     if (PS == nullptr)
3373       return;
3374 
3375     const auto &Context = getContext();
3376     auto SizeTy = Context.getSizeType();
3377     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3378     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3379     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3380                                                      EmittedArg.getScalarVal());
3381     Args.add(RValue::get(V), SizeTy);
3382     // If we're emitting args in reverse, be sure to do so with
3383     // pass_object_size, as well.
3384     if (!LeftToRight)
3385       std::swap(Args.back(), *(&Args.back() - 1));
3386   };
3387 
3388   // Insert a stack save if we're going to need any inalloca args.
3389   bool HasInAllocaArgs = false;
3390   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3391     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3392          I != E && !HasInAllocaArgs; ++I)
3393       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3394     if (HasInAllocaArgs) {
3395       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3396       Args.allocateArgumentMemory(*this);
3397     }
3398   }
3399 
3400   // Evaluate each argument in the appropriate order.
3401   size_t CallArgsStart = Args.size();
3402   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3403     unsigned Idx = LeftToRight ? I : E - I - 1;
3404     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3405     unsigned InitialArgSize = Args.size();
3406     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3407     // the argument and parameter match or the objc method is parameterized.
3408     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3409             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3410                                                 ArgTypes[Idx]) ||
3411             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3412              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3413            "Argument and parameter types don't match");
3414     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3415     // In particular, we depend on it being the last arg in Args, and the
3416     // objectsize bits depend on there only being one arg if !LeftToRight.
3417     assert(InitialArgSize + 1 == Args.size() &&
3418            "The code below depends on only adding one arg per EmitCallArg");
3419     (void)InitialArgSize;
3420     RValue RVArg = Args.back().RV;
3421     EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3422                         ParamsToSkip + Idx);
3423     // @llvm.objectsize should never have side-effects and shouldn't need
3424     // destruction/cleanups, so we can safely "emit" it after its arg,
3425     // regardless of right-to-leftness
3426     MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3427   }
3428 
3429   if (!LeftToRight) {
3430     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3431     // IR function.
3432     std::reverse(Args.begin() + CallArgsStart, Args.end());
3433   }
3434 }
3435 
3436 namespace {
3437 
3438 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3439   DestroyUnpassedArg(Address Addr, QualType Ty)
3440       : Addr(Addr), Ty(Ty) {}
3441 
3442   Address Addr;
3443   QualType Ty;
3444 
3445   void Emit(CodeGenFunction &CGF, Flags flags) override {
3446     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3447     if (DtorKind == QualType::DK_cxx_destructor) {
3448       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3449       assert(!Dtor->isTrivial());
3450       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3451                                 /*Delegating=*/false, Addr);
3452     } else {
3453       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3454     }
3455   }
3456 };
3457 
3458 struct DisableDebugLocationUpdates {
3459   CodeGenFunction &CGF;
3460   bool disabledDebugInfo;
3461   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3462     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3463       CGF.disableDebugInfo();
3464   }
3465   ~DisableDebugLocationUpdates() {
3466     if (disabledDebugInfo)
3467       CGF.enableDebugInfo();
3468   }
3469 };
3470 
3471 } // end anonymous namespace
3472 
3473 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3474                                   QualType type) {
3475   DisableDebugLocationUpdates Dis(*this, E);
3476   if (const ObjCIndirectCopyRestoreExpr *CRE
3477         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3478     assert(getLangOpts().ObjCAutoRefCount);
3479     return emitWritebackArg(*this, args, CRE);
3480   }
3481 
3482   assert(type->isReferenceType() == E->isGLValue() &&
3483          "reference binding to unmaterialized r-value!");
3484 
3485   if (E->isGLValue()) {
3486     assert(E->getObjectKind() == OK_Ordinary);
3487     return args.add(EmitReferenceBindingToExpr(E), type);
3488   }
3489 
3490   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3491 
3492   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3493   // However, we still have to push an EH-only cleanup in case we unwind before
3494   // we make it to the call.
3495   if (HasAggregateEvalKind && getContext().isParamDestroyedInCallee(type)) {
3496     // If we're using inalloca, use the argument memory.  Otherwise, use a
3497     // temporary.
3498     AggValueSlot Slot;
3499     if (args.isUsingInAlloca())
3500       Slot = createPlaceholderSlot(*this, type);
3501     else
3502       Slot = CreateAggTemp(type, "agg.tmp");
3503 
3504     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3505     if (const auto *RD = type->getAsCXXRecordDecl()) {
3506       DestroyedInCallee =
3507           RD && RD->hasNonTrivialDestructor() &&
3508           (CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default ||
3509            RD->hasTrivialABIOverride());
3510     } else {
3511       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3512     }
3513 
3514     if (DestroyedInCallee)
3515       Slot.setExternallyDestructed();
3516 
3517     EmitAggExpr(E, Slot);
3518     RValue RV = Slot.asRValue();
3519     args.add(RV, type);
3520 
3521     if (DestroyedInCallee && NeedsEHCleanup) {
3522       // Create a no-op GEP between the placeholder and the cleanup so we can
3523       // RAUW it successfully.  It also serves as a marker of the first
3524       // instruction where the cleanup is active.
3525       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3526                                               type);
3527       // This unreachable is a temporary marker which will be removed later.
3528       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3529       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3530     }
3531     return;
3532   }
3533 
3534   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3535       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3536     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3537     assert(L.isSimple());
3538     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
3539       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
3540     } else {
3541       // We can't represent a misaligned lvalue in the CallArgList, so copy
3542       // to an aligned temporary now.
3543       LValue Dest = MakeAddrLValue(CreateMemTemp(type), type);
3544       EmitAggregateCopy(Dest, L, type, L.isVolatile());
3545       args.add(RValue::getAggregate(Dest.getAddress()), type);
3546     }
3547     return;
3548   }
3549 
3550   args.add(EmitAnyExprToTemp(E), type);
3551 }
3552 
3553 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3554   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3555   // implicitly widens null pointer constants that are arguments to varargs
3556   // functions to pointer-sized ints.
3557   if (!getTarget().getTriple().isOSWindows())
3558     return Arg->getType();
3559 
3560   if (Arg->getType()->isIntegerType() &&
3561       getContext().getTypeSize(Arg->getType()) <
3562           getContext().getTargetInfo().getPointerWidth(0) &&
3563       Arg->isNullPointerConstant(getContext(),
3564                                  Expr::NPC_ValueDependentIsNotNull)) {
3565     return getContext().getIntPtrType();
3566   }
3567 
3568   return Arg->getType();
3569 }
3570 
3571 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3572 // optimizer it can aggressively ignore unwind edges.
3573 void
3574 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3575   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3576       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3577     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3578                       CGM.getNoObjCARCExceptionsMetadata());
3579 }
3580 
3581 /// Emits a call to the given no-arguments nounwind runtime function.
3582 llvm::CallInst *
3583 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3584                                          const llvm::Twine &name) {
3585   return EmitNounwindRuntimeCall(callee, None, name);
3586 }
3587 
3588 /// Emits a call to the given nounwind runtime function.
3589 llvm::CallInst *
3590 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3591                                          ArrayRef<llvm::Value*> args,
3592                                          const llvm::Twine &name) {
3593   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3594   call->setDoesNotThrow();
3595   return call;
3596 }
3597 
3598 /// Emits a simple call (never an invoke) to the given no-arguments
3599 /// runtime function.
3600 llvm::CallInst *
3601 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3602                                  const llvm::Twine &name) {
3603   return EmitRuntimeCall(callee, None, name);
3604 }
3605 
3606 // Calls which may throw must have operand bundles indicating which funclet
3607 // they are nested within.
3608 SmallVector<llvm::OperandBundleDef, 1>
3609 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3610   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3611   // There is no need for a funclet operand bundle if we aren't inside a
3612   // funclet.
3613   if (!CurrentFuncletPad)
3614     return BundleList;
3615 
3616   // Skip intrinsics which cannot throw.
3617   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3618   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3619     return BundleList;
3620 
3621   BundleList.emplace_back("funclet", CurrentFuncletPad);
3622   return BundleList;
3623 }
3624 
3625 /// Emits a simple call (never an invoke) to the given runtime function.
3626 llvm::CallInst *
3627 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3628                                  ArrayRef<llvm::Value*> args,
3629                                  const llvm::Twine &name) {
3630   llvm::CallInst *call =
3631       Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name);
3632   call->setCallingConv(getRuntimeCC());
3633   return call;
3634 }
3635 
3636 /// Emits a call or invoke to the given noreturn runtime function.
3637 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3638                                                ArrayRef<llvm::Value*> args) {
3639   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3640       getBundlesForFunclet(callee);
3641 
3642   if (getInvokeDest()) {
3643     llvm::InvokeInst *invoke =
3644       Builder.CreateInvoke(callee,
3645                            getUnreachableBlock(),
3646                            getInvokeDest(),
3647                            args,
3648                            BundleList);
3649     invoke->setDoesNotReturn();
3650     invoke->setCallingConv(getRuntimeCC());
3651   } else {
3652     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3653     call->setDoesNotReturn();
3654     call->setCallingConv(getRuntimeCC());
3655     Builder.CreateUnreachable();
3656   }
3657 }
3658 
3659 /// Emits a call or invoke instruction to the given nullary runtime function.
3660 llvm::CallSite
3661 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3662                                          const Twine &name) {
3663   return EmitRuntimeCallOrInvoke(callee, None, name);
3664 }
3665 
3666 /// Emits a call or invoke instruction to the given runtime function.
3667 llvm::CallSite
3668 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3669                                          ArrayRef<llvm::Value*> args,
3670                                          const Twine &name) {
3671   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3672   callSite.setCallingConv(getRuntimeCC());
3673   return callSite;
3674 }
3675 
3676 /// Emits a call or invoke instruction to the given function, depending
3677 /// on the current state of the EH stack.
3678 llvm::CallSite
3679 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3680                                   ArrayRef<llvm::Value *> Args,
3681                                   const Twine &Name) {
3682   llvm::BasicBlock *InvokeDest = getInvokeDest();
3683   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3684       getBundlesForFunclet(Callee);
3685 
3686   llvm::Instruction *Inst;
3687   if (!InvokeDest)
3688     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3689   else {
3690     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3691     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3692                                 Name);
3693     EmitBlock(ContBB);
3694   }
3695 
3696   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3697   // optimizer it can aggressively ignore unwind edges.
3698   if (CGM.getLangOpts().ObjCAutoRefCount)
3699     AddObjCARCExceptionMetadata(Inst);
3700 
3701   return llvm::CallSite(Inst);
3702 }
3703 
3704 /// \brief Store a non-aggregate value to an address to initialize it.  For
3705 /// initialization, a non-atomic store will be used.
3706 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3707                                         LValue Dst) {
3708   if (Src.isScalar())
3709     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3710   else
3711     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3712 }
3713 
3714 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3715                                                   llvm::Value *New) {
3716   DeferredReplacements.push_back(std::make_pair(Old, New));
3717 }
3718 
3719 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3720                                  const CGCallee &Callee,
3721                                  ReturnValueSlot ReturnValue,
3722                                  const CallArgList &CallArgs,
3723                                  llvm::Instruction **callOrInvoke,
3724                                  SourceLocation Loc) {
3725   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3726 
3727   assert(Callee.isOrdinary() || Callee.isVirtual());
3728 
3729   // Handle struct-return functions by passing a pointer to the
3730   // location that we would like to return into.
3731   QualType RetTy = CallInfo.getReturnType();
3732   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3733 
3734   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3735 
3736   // 1. Set up the arguments.
3737 
3738   // If we're using inalloca, insert the allocation after the stack save.
3739   // FIXME: Do this earlier rather than hacking it in here!
3740   Address ArgMemory = Address::invalid();
3741   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3742   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3743     const llvm::DataLayout &DL = CGM.getDataLayout();
3744     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3745     llvm::Instruction *IP = CallArgs.getStackBase();
3746     llvm::AllocaInst *AI;
3747     if (IP) {
3748       IP = IP->getNextNode();
3749       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3750                                 "argmem", IP);
3751     } else {
3752       AI = CreateTempAlloca(ArgStruct, "argmem");
3753     }
3754     auto Align = CallInfo.getArgStructAlignment();
3755     AI->setAlignment(Align.getQuantity());
3756     AI->setUsedWithInAlloca(true);
3757     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3758     ArgMemory = Address(AI, Align);
3759   }
3760 
3761   // Helper function to drill into the inalloca allocation.
3762   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3763     auto FieldOffset =
3764       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3765     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3766   };
3767 
3768   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3769   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3770 
3771   // If the call returns a temporary with struct return, create a temporary
3772   // alloca to hold the result, unless one is given to us.
3773   Address SRetPtr = Address::invalid();
3774   size_t UnusedReturnSize = 0;
3775   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3776     if (!ReturnValue.isNull()) {
3777       SRetPtr = ReturnValue.getValue();
3778     } else {
3779       SRetPtr = CreateMemTemp(RetTy);
3780       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3781         uint64_t size =
3782             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3783         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3784           UnusedReturnSize = size;
3785       }
3786     }
3787     if (IRFunctionArgs.hasSRetArg()) {
3788       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3789     } else if (RetAI.isInAlloca()) {
3790       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3791       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3792     }
3793   }
3794 
3795   Address swiftErrorTemp = Address::invalid();
3796   Address swiftErrorArg = Address::invalid();
3797 
3798   // Translate all of the arguments as necessary to match the IR lowering.
3799   assert(CallInfo.arg_size() == CallArgs.size() &&
3800          "Mismatch between function signature & arguments.");
3801   unsigned ArgNo = 0;
3802   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3803   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3804        I != E; ++I, ++info_it, ++ArgNo) {
3805     const ABIArgInfo &ArgInfo = info_it->info;
3806     RValue RV = I->RV;
3807 
3808     // Insert a padding argument to ensure proper alignment.
3809     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3810       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3811           llvm::UndefValue::get(ArgInfo.getPaddingType());
3812 
3813     unsigned FirstIRArg, NumIRArgs;
3814     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3815 
3816     switch (ArgInfo.getKind()) {
3817     case ABIArgInfo::InAlloca: {
3818       assert(NumIRArgs == 0);
3819       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3820       if (RV.isAggregate()) {
3821         // Replace the placeholder with the appropriate argument slot GEP.
3822         llvm::Instruction *Placeholder =
3823             cast<llvm::Instruction>(RV.getAggregatePointer());
3824         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3825         Builder.SetInsertPoint(Placeholder);
3826         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3827         Builder.restoreIP(IP);
3828         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3829       } else {
3830         // Store the RValue into the argument struct.
3831         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3832         unsigned AS = Addr.getType()->getPointerAddressSpace();
3833         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3834         // There are some cases where a trivial bitcast is not avoidable.  The
3835         // definition of a type later in a translation unit may change it's type
3836         // from {}* to (%struct.foo*)*.
3837         if (Addr.getType() != MemType)
3838           Addr = Builder.CreateBitCast(Addr, MemType);
3839         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3840         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3841       }
3842       break;
3843     }
3844 
3845     case ABIArgInfo::Indirect: {
3846       assert(NumIRArgs == 1);
3847       if (RV.isScalar() || RV.isComplex()) {
3848         // Make a temporary alloca to pass the argument.
3849         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
3850                                      "indirect-arg-temp", false);
3851         IRCallArgs[FirstIRArg] = Addr.getPointer();
3852 
3853         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3854         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3855       } else {
3856         // We want to avoid creating an unnecessary temporary+copy here;
3857         // however, we need one in three cases:
3858         // 1. If the argument is not byval, and we are required to copy the
3859         //    source.  (This case doesn't occur on any common architecture.)
3860         // 2. If the argument is byval, RV is not sufficiently aligned, and
3861         //    we cannot force it to be sufficiently aligned.
3862         // 3. If the argument is byval, but RV is located in an address space
3863         //    different than that of the argument (0).
3864         Address Addr = RV.getAggregateAddress();
3865         CharUnits Align = ArgInfo.getIndirectAlign();
3866         const llvm::DataLayout *TD = &CGM.getDataLayout();
3867         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3868         const unsigned ArgAddrSpace =
3869             (FirstIRArg < IRFuncTy->getNumParams()
3870                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3871                  : 0);
3872         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3873             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3874              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3875                                               Align.getQuantity(), *TD)
3876                < Align.getQuantity()) ||
3877             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3878           // Create an aligned temporary, and copy to it.
3879           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
3880                                      "byval-temp", false);
3881           IRCallArgs[FirstIRArg] = AI.getPointer();
3882           LValue Dest = MakeAddrLValue(AI, I->Ty);
3883           LValue Src = MakeAddrLValue(Addr, I->Ty);
3884           EmitAggregateCopy(Dest, Src, I->Ty, RV.isVolatileQualified());
3885         } else {
3886           // Skip the extra memcpy call.
3887           IRCallArgs[FirstIRArg] = Addr.getPointer();
3888         }
3889       }
3890       break;
3891     }
3892 
3893     case ABIArgInfo::Ignore:
3894       assert(NumIRArgs == 0);
3895       break;
3896 
3897     case ABIArgInfo::Extend:
3898     case ABIArgInfo::Direct: {
3899       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3900           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3901           ArgInfo.getDirectOffset() == 0) {
3902         assert(NumIRArgs == 1);
3903         llvm::Value *V;
3904         if (RV.isScalar())
3905           V = RV.getScalarVal();
3906         else
3907           V = Builder.CreateLoad(RV.getAggregateAddress());
3908 
3909         // Implement swifterror by copying into a new swifterror argument.
3910         // We'll write back in the normal path out of the call.
3911         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
3912               == ParameterABI::SwiftErrorResult) {
3913           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
3914 
3915           QualType pointeeTy = I->Ty->getPointeeType();
3916           swiftErrorArg =
3917             Address(V, getContext().getTypeAlignInChars(pointeeTy));
3918 
3919           swiftErrorTemp =
3920             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3921           V = swiftErrorTemp.getPointer();
3922           cast<llvm::AllocaInst>(V)->setSwiftError(true);
3923 
3924           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
3925           Builder.CreateStore(errorValue, swiftErrorTemp);
3926         }
3927 
3928         // We might have to widen integers, but we should never truncate.
3929         if (ArgInfo.getCoerceToType() != V->getType() &&
3930             V->getType()->isIntegerTy())
3931           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3932 
3933         // If the argument doesn't match, perform a bitcast to coerce it.  This
3934         // can happen due to trivial type mismatches.
3935         if (FirstIRArg < IRFuncTy->getNumParams() &&
3936             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3937           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3938 
3939         IRCallArgs[FirstIRArg] = V;
3940         break;
3941       }
3942 
3943       // FIXME: Avoid the conversion through memory if possible.
3944       Address Src = Address::invalid();
3945       if (RV.isScalar() || RV.isComplex()) {
3946         Src = CreateMemTemp(I->Ty, "coerce");
3947         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3948         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3949       } else {
3950         Src = RV.getAggregateAddress();
3951       }
3952 
3953       // If the value is offset in memory, apply the offset now.
3954       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3955 
3956       // Fast-isel and the optimizer generally like scalar values better than
3957       // FCAs, so we flatten them if this is safe to do for this argument.
3958       llvm::StructType *STy =
3959             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3960       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3961         llvm::Type *SrcTy = Src.getType()->getElementType();
3962         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3963         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3964 
3965         // If the source type is smaller than the destination type of the
3966         // coerce-to logic, copy the source value into a temp alloca the size
3967         // of the destination type to allow loading all of it. The bits past
3968         // the source value are left undef.
3969         if (SrcSize < DstSize) {
3970           Address TempAlloca
3971             = CreateTempAlloca(STy, Src.getAlignment(),
3972                                Src.getName() + ".coerce");
3973           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3974           Src = TempAlloca;
3975         } else {
3976           Src = Builder.CreateBitCast(Src,
3977                                       STy->getPointerTo(Src.getAddressSpace()));
3978         }
3979 
3980         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3981         assert(NumIRArgs == STy->getNumElements());
3982         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3983           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3984           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3985           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3986           IRCallArgs[FirstIRArg + i] = LI;
3987         }
3988       } else {
3989         // In the simple case, just pass the coerced loaded value.
3990         assert(NumIRArgs == 1);
3991         IRCallArgs[FirstIRArg] =
3992           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3993       }
3994 
3995       break;
3996     }
3997 
3998     case ABIArgInfo::CoerceAndExpand: {
3999       auto coercionType = ArgInfo.getCoerceAndExpandType();
4000       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4001 
4002       llvm::Value *tempSize = nullptr;
4003       Address addr = Address::invalid();
4004       if (RV.isAggregate()) {
4005         addr = RV.getAggregateAddress();
4006       } else {
4007         assert(RV.isScalar()); // complex should always just be direct
4008 
4009         llvm::Type *scalarType = RV.getScalarVal()->getType();
4010         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4011         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4012 
4013         tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize);
4014 
4015         // Materialize to a temporary.
4016         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4017                  CharUnits::fromQuantity(std::max(layout->getAlignment(),
4018                                                   scalarAlign)));
4019         EmitLifetimeStart(scalarSize, addr.getPointer());
4020 
4021         Builder.CreateStore(RV.getScalarVal(), addr);
4022       }
4023 
4024       addr = Builder.CreateElementBitCast(addr, coercionType);
4025 
4026       unsigned IRArgPos = FirstIRArg;
4027       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4028         llvm::Type *eltType = coercionType->getElementType(i);
4029         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4030         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4031         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4032         IRCallArgs[IRArgPos++] = elt;
4033       }
4034       assert(IRArgPos == FirstIRArg + NumIRArgs);
4035 
4036       if (tempSize) {
4037         EmitLifetimeEnd(tempSize, addr.getPointer());
4038       }
4039 
4040       break;
4041     }
4042 
4043     case ABIArgInfo::Expand:
4044       unsigned IRArgPos = FirstIRArg;
4045       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
4046       assert(IRArgPos == FirstIRArg + NumIRArgs);
4047       break;
4048     }
4049   }
4050 
4051   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4052   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4053 
4054   // If we're using inalloca, set up that argument.
4055   if (ArgMemory.isValid()) {
4056     llvm::Value *Arg = ArgMemory.getPointer();
4057     if (CallInfo.isVariadic()) {
4058       // When passing non-POD arguments by value to variadic functions, we will
4059       // end up with a variadic prototype and an inalloca call site.  In such
4060       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4061       // the callee.
4062       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4063       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4064       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4065     } else {
4066       llvm::Type *LastParamTy =
4067           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4068       if (Arg->getType() != LastParamTy) {
4069 #ifndef NDEBUG
4070         // Assert that these structs have equivalent element types.
4071         llvm::StructType *FullTy = CallInfo.getArgStruct();
4072         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4073             cast<llvm::PointerType>(LastParamTy)->getElementType());
4074         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4075         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4076                                                 DE = DeclaredTy->element_end(),
4077                                                 FI = FullTy->element_begin();
4078              DI != DE; ++DI, ++FI)
4079           assert(*DI == *FI);
4080 #endif
4081         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4082       }
4083     }
4084     assert(IRFunctionArgs.hasInallocaArg());
4085     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4086   }
4087 
4088   // 2. Prepare the function pointer.
4089 
4090   // If the callee is a bitcast of a non-variadic function to have a
4091   // variadic function pointer type, check to see if we can remove the
4092   // bitcast.  This comes up with unprototyped functions.
4093   //
4094   // This makes the IR nicer, but more importantly it ensures that we
4095   // can inline the function at -O0 if it is marked always_inline.
4096   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4097     llvm::FunctionType *CalleeFT =
4098       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4099     if (!CalleeFT->isVarArg())
4100       return Ptr;
4101 
4102     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4103     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4104       return Ptr;
4105 
4106     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4107     if (!OrigFn)
4108       return Ptr;
4109 
4110     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4111 
4112     // If the original type is variadic, or if any of the component types
4113     // disagree, we cannot remove the cast.
4114     if (OrigFT->isVarArg() ||
4115         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4116         OrigFT->getReturnType() != CalleeFT->getReturnType())
4117       return Ptr;
4118 
4119     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4120       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4121         return Ptr;
4122 
4123     return OrigFn;
4124   };
4125   CalleePtr = simplifyVariadicCallee(CalleePtr);
4126 
4127   // 3. Perform the actual call.
4128 
4129   // Deactivate any cleanups that we're supposed to do immediately before
4130   // the call.
4131   if (!CallArgs.getCleanupsToDeactivate().empty())
4132     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4133 
4134   // Assert that the arguments we computed match up.  The IR verifier
4135   // will catch this, but this is a common enough source of problems
4136   // during IRGen changes that it's way better for debugging to catch
4137   // it ourselves here.
4138 #ifndef NDEBUG
4139   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4140   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4141     // Inalloca argument can have different type.
4142     if (IRFunctionArgs.hasInallocaArg() &&
4143         i == IRFunctionArgs.getInallocaArgNo())
4144       continue;
4145     if (i < IRFuncTy->getNumParams())
4146       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4147   }
4148 #endif
4149 
4150   // Compute the calling convention and attributes.
4151   unsigned CallingConv;
4152   llvm::AttributeList Attrs;
4153   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4154                              Callee.getAbstractInfo(), Attrs, CallingConv,
4155                              /*AttrOnCallSite=*/true);
4156 
4157   // Apply some call-site-specific attributes.
4158   // TODO: work this into building the attribute set.
4159 
4160   // Apply always_inline to all calls within flatten functions.
4161   // FIXME: should this really take priority over __try, below?
4162   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4163       !(Callee.getAbstractInfo().getCalleeDecl() &&
4164         Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) {
4165     Attrs =
4166         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4167                            llvm::Attribute::AlwaysInline);
4168   }
4169 
4170   // Disable inlining inside SEH __try blocks.
4171   if (isSEHTryScope()) {
4172     Attrs =
4173         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4174                            llvm::Attribute::NoInline);
4175   }
4176 
4177   // Decide whether to use a call or an invoke.
4178   bool CannotThrow;
4179   if (currentFunctionUsesSEHTry()) {
4180     // SEH cares about asynchronous exceptions, so everything can "throw."
4181     CannotThrow = false;
4182   } else if (isCleanupPadScope() &&
4183              EHPersonality::get(*this).isMSVCXXPersonality()) {
4184     // The MSVC++ personality will implicitly terminate the program if an
4185     // exception is thrown during a cleanup outside of a try/catch.
4186     // We don't need to model anything in IR to get this behavior.
4187     CannotThrow = true;
4188   } else {
4189     // Otherwise, nounwind call sites will never throw.
4190     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4191                                      llvm::Attribute::NoUnwind);
4192   }
4193   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4194 
4195   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4196       getBundlesForFunclet(CalleePtr);
4197 
4198   // Emit the actual call/invoke instruction.
4199   llvm::CallSite CS;
4200   if (!InvokeDest) {
4201     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4202   } else {
4203     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4204     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4205                               BundleList);
4206     EmitBlock(Cont);
4207   }
4208   llvm::Instruction *CI = CS.getInstruction();
4209   if (callOrInvoke)
4210     *callOrInvoke = CI;
4211 
4212   // Apply the attributes and calling convention.
4213   CS.setAttributes(Attrs);
4214   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4215 
4216   // Apply various metadata.
4217 
4218   if (!CI->getType()->isVoidTy())
4219     CI->setName("call");
4220 
4221   // Insert instrumentation or attach profile metadata at indirect call sites.
4222   // For more details, see the comment before the definition of
4223   // IPVK_IndirectCallTarget in InstrProfData.inc.
4224   if (!CS.getCalledFunction())
4225     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4226                      CI, CalleePtr);
4227 
4228   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4229   // optimizer it can aggressively ignore unwind edges.
4230   if (CGM.getLangOpts().ObjCAutoRefCount)
4231     AddObjCARCExceptionMetadata(CI);
4232 
4233   // Suppress tail calls if requested.
4234   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4235     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4236     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4237       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4238   }
4239 
4240   // 4. Finish the call.
4241 
4242   // If the call doesn't return, finish the basic block and clear the
4243   // insertion point; this allows the rest of IRGen to discard
4244   // unreachable code.
4245   if (CS.doesNotReturn()) {
4246     if (UnusedReturnSize)
4247       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4248                       SRetPtr.getPointer());
4249 
4250     // Strip away the noreturn attribute to better diagnose unreachable UB.
4251     if (SanOpts.has(SanitizerKind::Unreachable)) {
4252       if (auto *F = CS.getCalledFunction())
4253         F->removeFnAttr(llvm::Attribute::NoReturn);
4254       CS.removeAttribute(llvm::AttributeList::FunctionIndex,
4255                          llvm::Attribute::NoReturn);
4256     }
4257 
4258     EmitUnreachable(Loc);
4259     Builder.ClearInsertionPoint();
4260 
4261     // FIXME: For now, emit a dummy basic block because expr emitters in
4262     // generally are not ready to handle emitting expressions at unreachable
4263     // points.
4264     EnsureInsertPoint();
4265 
4266     // Return a reasonable RValue.
4267     return GetUndefRValue(RetTy);
4268   }
4269 
4270   // Perform the swifterror writeback.
4271   if (swiftErrorTemp.isValid()) {
4272     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4273     Builder.CreateStore(errorResult, swiftErrorArg);
4274   }
4275 
4276   // Emit any call-associated writebacks immediately.  Arguably this
4277   // should happen after any return-value munging.
4278   if (CallArgs.hasWritebacks())
4279     emitWritebacks(*this, CallArgs);
4280 
4281   // The stack cleanup for inalloca arguments has to run out of the normal
4282   // lexical order, so deactivate it and run it manually here.
4283   CallArgs.freeArgumentMemory(*this);
4284 
4285   // Extract the return value.
4286   RValue Ret = [&] {
4287     switch (RetAI.getKind()) {
4288     case ABIArgInfo::CoerceAndExpand: {
4289       auto coercionType = RetAI.getCoerceAndExpandType();
4290       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4291 
4292       Address addr = SRetPtr;
4293       addr = Builder.CreateElementBitCast(addr, coercionType);
4294 
4295       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4296       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4297 
4298       unsigned unpaddedIndex = 0;
4299       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4300         llvm::Type *eltType = coercionType->getElementType(i);
4301         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4302         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4303         llvm::Value *elt = CI;
4304         if (requiresExtract)
4305           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4306         else
4307           assert(unpaddedIndex == 0);
4308         Builder.CreateStore(elt, eltAddr);
4309       }
4310       // FALLTHROUGH
4311       LLVM_FALLTHROUGH;
4312     }
4313 
4314     case ABIArgInfo::InAlloca:
4315     case ABIArgInfo::Indirect: {
4316       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4317       if (UnusedReturnSize)
4318         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4319                         SRetPtr.getPointer());
4320       return ret;
4321     }
4322 
4323     case ABIArgInfo::Ignore:
4324       // If we are ignoring an argument that had a result, make sure to
4325       // construct the appropriate return value for our caller.
4326       return GetUndefRValue(RetTy);
4327 
4328     case ABIArgInfo::Extend:
4329     case ABIArgInfo::Direct: {
4330       llvm::Type *RetIRTy = ConvertType(RetTy);
4331       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4332         switch (getEvaluationKind(RetTy)) {
4333         case TEK_Complex: {
4334           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4335           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4336           return RValue::getComplex(std::make_pair(Real, Imag));
4337         }
4338         case TEK_Aggregate: {
4339           Address DestPtr = ReturnValue.getValue();
4340           bool DestIsVolatile = ReturnValue.isVolatile();
4341 
4342           if (!DestPtr.isValid()) {
4343             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4344             DestIsVolatile = false;
4345           }
4346           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4347           return RValue::getAggregate(DestPtr);
4348         }
4349         case TEK_Scalar: {
4350           // If the argument doesn't match, perform a bitcast to coerce it.  This
4351           // can happen due to trivial type mismatches.
4352           llvm::Value *V = CI;
4353           if (V->getType() != RetIRTy)
4354             V = Builder.CreateBitCast(V, RetIRTy);
4355           return RValue::get(V);
4356         }
4357         }
4358         llvm_unreachable("bad evaluation kind");
4359       }
4360 
4361       Address DestPtr = ReturnValue.getValue();
4362       bool DestIsVolatile = ReturnValue.isVolatile();
4363 
4364       if (!DestPtr.isValid()) {
4365         DestPtr = CreateMemTemp(RetTy, "coerce");
4366         DestIsVolatile = false;
4367       }
4368 
4369       // If the value is offset in memory, apply the offset now.
4370       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4371       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4372 
4373       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4374     }
4375 
4376     case ABIArgInfo::Expand:
4377       llvm_unreachable("Invalid ABI kind for return argument");
4378     }
4379 
4380     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4381   } ();
4382 
4383   // Emit the assume_aligned check on the return value.
4384   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4385   if (Ret.isScalar() && TargetDecl) {
4386     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4387       llvm::Value *OffsetValue = nullptr;
4388       if (const auto *Offset = AA->getOffset())
4389         OffsetValue = EmitScalarExpr(Offset);
4390 
4391       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4392       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4393       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4394                               OffsetValue);
4395     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4396       llvm::Value *ParamVal =
4397           CallArgs[AA->paramIndex().getLLVMIndex()].RV.getScalarVal();
4398       EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal);
4399     }
4400   }
4401 
4402   return Ret;
4403 }
4404 
4405 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4406   if (isVirtual()) {
4407     const CallExpr *CE = getVirtualCallExpr();
4408     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4409         CGF, getVirtualMethodDecl(), getThisAddress(),
4410         getFunctionType(), CE ? CE->getLocStart() : SourceLocation());
4411   }
4412 
4413   return *this;
4414 }
4415 
4416 /* VarArg handling */
4417 
4418 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4419   VAListAddr = VE->isMicrosoftABI()
4420                  ? EmitMSVAListRef(VE->getSubExpr())
4421                  : EmitVAListRef(VE->getSubExpr());
4422   QualType Ty = VE->getType();
4423   if (VE->isMicrosoftABI())
4424     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4425   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4426 }
4427