1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 using namespace clang; 36 using namespace CodeGen; 37 38 /***/ 39 40 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 41 switch (CC) { 42 default: return llvm::CallingConv::C; 43 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 44 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 45 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 46 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 47 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 48 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 49 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 50 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 51 // TODO: Add support for __pascal to LLVM. 52 case CC_X86Pascal: return llvm::CallingConv::C; 53 // TODO: Add support for __vectorcall to LLVM. 54 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 55 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 56 case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL; 57 } 58 } 59 60 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 61 /// qualification. 62 /// FIXME: address space qualification? 63 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 64 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 65 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 66 } 67 68 /// Returns the canonical formal type of the given C++ method. 69 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 70 return MD->getType()->getCanonicalTypeUnqualified() 71 .getAs<FunctionProtoType>(); 72 } 73 74 /// Returns the "extra-canonicalized" return type, which discards 75 /// qualifiers on the return type. Codegen doesn't care about them, 76 /// and it makes ABI code a little easier to be able to assume that 77 /// all parameter and return types are top-level unqualified. 78 static CanQualType GetReturnType(QualType RetTy) { 79 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 80 } 81 82 /// Arrange the argument and result information for a value of the given 83 /// unprototyped freestanding function type. 84 const CGFunctionInfo & 85 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 86 // When translating an unprototyped function type, always use a 87 // variadic type. 88 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 89 /*instanceMethod=*/false, 90 /*chainCall=*/false, None, 91 FTNP->getExtInfo(), RequiredArgs(0)); 92 } 93 94 /// Arrange the LLVM function layout for a value of the given function 95 /// type, on top of any implicit parameters already stored. 96 static const CGFunctionInfo & 97 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 98 SmallVectorImpl<CanQualType> &prefix, 99 CanQual<FunctionProtoType> FTP) { 100 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 101 // FIXME: Kill copy. 102 prefix.append(FTP->param_type_begin(), FTP->param_type_end()); 103 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 104 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 105 /*chainCall=*/false, prefix, 106 FTP->getExtInfo(), required); 107 } 108 109 /// Arrange the argument and result information for a value of the 110 /// given freestanding function type. 111 const CGFunctionInfo & 112 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 113 SmallVector<CanQualType, 16> argTypes; 114 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 115 FTP); 116 } 117 118 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 119 // Set the appropriate calling convention for the Function. 120 if (D->hasAttr<StdCallAttr>()) 121 return CC_X86StdCall; 122 123 if (D->hasAttr<FastCallAttr>()) 124 return CC_X86FastCall; 125 126 if (D->hasAttr<ThisCallAttr>()) 127 return CC_X86ThisCall; 128 129 if (D->hasAttr<VectorCallAttr>()) 130 return CC_X86VectorCall; 131 132 if (D->hasAttr<PascalAttr>()) 133 return CC_X86Pascal; 134 135 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 136 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 137 138 if (D->hasAttr<IntelOclBiccAttr>()) 139 return CC_IntelOclBicc; 140 141 if (D->hasAttr<MSABIAttr>()) 142 return IsWindows ? CC_C : CC_X86_64Win64; 143 144 if (D->hasAttr<SysVABIAttr>()) 145 return IsWindows ? CC_X86_64SysV : CC_C; 146 147 return CC_C; 148 } 149 150 /// Arrange the argument and result information for a call to an 151 /// unknown C++ non-static member function of the given abstract type. 152 /// (Zero value of RD means we don't have any meaningful "this" argument type, 153 /// so fall back to a generic pointer type). 154 /// The member function must be an ordinary function, i.e. not a 155 /// constructor or destructor. 156 const CGFunctionInfo & 157 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 158 const FunctionProtoType *FTP) { 159 SmallVector<CanQualType, 16> argTypes; 160 161 // Add the 'this' pointer. 162 if (RD) 163 argTypes.push_back(GetThisType(Context, RD)); 164 else 165 argTypes.push_back(Context.VoidPtrTy); 166 167 return ::arrangeLLVMFunctionInfo( 168 *this, true, argTypes, 169 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 170 } 171 172 /// Arrange the argument and result information for a declaration or 173 /// definition of the given C++ non-static member function. The 174 /// member function must be an ordinary function, i.e. not a 175 /// constructor or destructor. 176 const CGFunctionInfo & 177 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 178 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 179 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 180 181 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 182 183 if (MD->isInstance()) { 184 // The abstract case is perfectly fine. 185 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 186 return arrangeCXXMethodType(ThisType, prototype.getTypePtr()); 187 } 188 189 return arrangeFreeFunctionType(prototype); 190 } 191 192 const CGFunctionInfo & 193 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 194 StructorType Type) { 195 196 SmallVector<CanQualType, 16> argTypes; 197 argTypes.push_back(GetThisType(Context, MD->getParent())); 198 199 GlobalDecl GD; 200 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 201 GD = GlobalDecl(CD, toCXXCtorType(Type)); 202 } else { 203 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 204 GD = GlobalDecl(DD, toCXXDtorType(Type)); 205 } 206 207 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 208 209 // Add the formal parameters. 210 argTypes.append(FTP->param_type_begin(), FTP->param_type_end()); 211 212 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 213 214 RequiredArgs required = 215 (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All); 216 217 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 218 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 219 ? argTypes.front() 220 : TheCXXABI.hasMostDerivedReturn(GD) 221 ? CGM.getContext().VoidPtrTy 222 : Context.VoidTy; 223 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 224 /*chainCall=*/false, argTypes, extInfo, 225 required); 226 } 227 228 /// Arrange a call to a C++ method, passing the given arguments. 229 const CGFunctionInfo & 230 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 231 const CXXConstructorDecl *D, 232 CXXCtorType CtorKind, 233 unsigned ExtraArgs) { 234 // FIXME: Kill copy. 235 SmallVector<CanQualType, 16> ArgTypes; 236 for (const auto &Arg : args) 237 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 238 239 CanQual<FunctionProtoType> FPT = GetFormalType(D); 240 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs); 241 GlobalDecl GD(D, CtorKind); 242 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 243 ? ArgTypes.front() 244 : TheCXXABI.hasMostDerivedReturn(GD) 245 ? CGM.getContext().VoidPtrTy 246 : Context.VoidTy; 247 248 FunctionType::ExtInfo Info = FPT->getExtInfo(); 249 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 250 /*chainCall=*/false, ArgTypes, Info, 251 Required); 252 } 253 254 /// Arrange the argument and result information for the declaration or 255 /// definition of the given function. 256 const CGFunctionInfo & 257 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 258 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 259 if (MD->isInstance()) 260 return arrangeCXXMethodDeclaration(MD); 261 262 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 263 264 assert(isa<FunctionType>(FTy)); 265 266 // When declaring a function without a prototype, always use a 267 // non-variadic type. 268 if (isa<FunctionNoProtoType>(FTy)) { 269 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 270 return arrangeLLVMFunctionInfo( 271 noProto->getReturnType(), /*instanceMethod=*/false, 272 /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All); 273 } 274 275 assert(isa<FunctionProtoType>(FTy)); 276 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 277 } 278 279 /// Arrange the argument and result information for the declaration or 280 /// definition of an Objective-C method. 281 const CGFunctionInfo & 282 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 283 // It happens that this is the same as a call with no optional 284 // arguments, except also using the formal 'self' type. 285 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 286 } 287 288 /// Arrange the argument and result information for the function type 289 /// through which to perform a send to the given Objective-C method, 290 /// using the given receiver type. The receiver type is not always 291 /// the 'self' type of the method or even an Objective-C pointer type. 292 /// This is *not* the right method for actually performing such a 293 /// message send, due to the possibility of optional arguments. 294 const CGFunctionInfo & 295 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 296 QualType receiverType) { 297 SmallVector<CanQualType, 16> argTys; 298 argTys.push_back(Context.getCanonicalParamType(receiverType)); 299 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 300 // FIXME: Kill copy? 301 for (const auto *I : MD->params()) { 302 argTys.push_back(Context.getCanonicalParamType(I->getType())); 303 } 304 305 FunctionType::ExtInfo einfo; 306 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 307 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 308 309 if (getContext().getLangOpts().ObjCAutoRefCount && 310 MD->hasAttr<NSReturnsRetainedAttr>()) 311 einfo = einfo.withProducesResult(true); 312 313 RequiredArgs required = 314 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 315 316 return arrangeLLVMFunctionInfo( 317 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 318 /*chainCall=*/false, argTys, einfo, required); 319 } 320 321 const CGFunctionInfo & 322 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 323 // FIXME: Do we need to handle ObjCMethodDecl? 324 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 325 326 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 327 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 328 329 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 330 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 331 332 return arrangeFunctionDeclaration(FD); 333 } 334 335 /// Arrange a thunk that takes 'this' as the first parameter followed by 336 /// varargs. Return a void pointer, regardless of the actual return type. 337 /// The body of the thunk will end in a musttail call to a function of the 338 /// correct type, and the caller will bitcast the function to the correct 339 /// prototype. 340 const CGFunctionInfo & 341 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 342 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 343 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 344 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 345 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 346 /*chainCall=*/false, ArgTys, 347 FTP->getExtInfo(), RequiredArgs(1)); 348 } 349 350 const CGFunctionInfo & 351 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 352 CXXCtorType CT) { 353 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 354 355 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 356 SmallVector<CanQualType, 2> ArgTys; 357 const CXXRecordDecl *RD = CD->getParent(); 358 ArgTys.push_back(GetThisType(Context, RD)); 359 if (CT == Ctor_CopyingClosure) 360 ArgTys.push_back(*FTP->param_type_begin()); 361 if (RD->getNumVBases() > 0) 362 ArgTys.push_back(Context.IntTy); 363 CallingConv CC = Context.getDefaultCallingConvention( 364 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 365 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 366 /*chainCall=*/false, ArgTys, 367 FunctionType::ExtInfo(CC), RequiredArgs::All); 368 } 369 370 /// Arrange a call as unto a free function, except possibly with an 371 /// additional number of formal parameters considered required. 372 static const CGFunctionInfo & 373 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 374 CodeGenModule &CGM, 375 const CallArgList &args, 376 const FunctionType *fnType, 377 unsigned numExtraRequiredArgs, 378 bool chainCall) { 379 assert(args.size() >= numExtraRequiredArgs); 380 381 // In most cases, there are no optional arguments. 382 RequiredArgs required = RequiredArgs::All; 383 384 // If we have a variadic prototype, the required arguments are the 385 // extra prefix plus the arguments in the prototype. 386 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 387 if (proto->isVariadic()) 388 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 389 390 // If we don't have a prototype at all, but we're supposed to 391 // explicitly use the variadic convention for unprototyped calls, 392 // treat all of the arguments as required but preserve the nominal 393 // possibility of variadics. 394 } else if (CGM.getTargetCodeGenInfo() 395 .isNoProtoCallVariadic(args, 396 cast<FunctionNoProtoType>(fnType))) { 397 required = RequiredArgs(args.size()); 398 } 399 400 // FIXME: Kill copy. 401 SmallVector<CanQualType, 16> argTypes; 402 for (const auto &arg : args) 403 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 404 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 405 /*instanceMethod=*/false, chainCall, 406 argTypes, fnType->getExtInfo(), required); 407 } 408 409 /// Figure out the rules for calling a function with the given formal 410 /// type using the given arguments. The arguments are necessary 411 /// because the function might be unprototyped, in which case it's 412 /// target-dependent in crazy ways. 413 const CGFunctionInfo & 414 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 415 const FunctionType *fnType, 416 bool chainCall) { 417 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 418 chainCall ? 1 : 0, chainCall); 419 } 420 421 /// A block function call is essentially a free-function call with an 422 /// extra implicit argument. 423 const CGFunctionInfo & 424 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 425 const FunctionType *fnType) { 426 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 427 /*chainCall=*/false); 428 } 429 430 const CGFunctionInfo & 431 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 432 const CallArgList &args, 433 FunctionType::ExtInfo info, 434 RequiredArgs required) { 435 // FIXME: Kill copy. 436 SmallVector<CanQualType, 16> argTypes; 437 for (const auto &Arg : args) 438 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 439 return arrangeLLVMFunctionInfo( 440 GetReturnType(resultType), /*instanceMethod=*/false, 441 /*chainCall=*/false, argTypes, info, required); 442 } 443 444 /// Arrange a call to a C++ method, passing the given arguments. 445 const CGFunctionInfo & 446 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 447 const FunctionProtoType *FPT, 448 RequiredArgs required) { 449 // FIXME: Kill copy. 450 SmallVector<CanQualType, 16> argTypes; 451 for (const auto &Arg : args) 452 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 453 454 FunctionType::ExtInfo info = FPT->getExtInfo(); 455 return arrangeLLVMFunctionInfo( 456 GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true, 457 /*chainCall=*/false, argTypes, info, required); 458 } 459 460 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration( 461 QualType resultType, const FunctionArgList &args, 462 const FunctionType::ExtInfo &info, bool isVariadic) { 463 // FIXME: Kill copy. 464 SmallVector<CanQualType, 16> argTypes; 465 for (auto Arg : args) 466 argTypes.push_back(Context.getCanonicalParamType(Arg->getType())); 467 468 RequiredArgs required = 469 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 470 return arrangeLLVMFunctionInfo( 471 GetReturnType(resultType), /*instanceMethod=*/false, 472 /*chainCall=*/false, argTypes, info, required); 473 } 474 475 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 476 return arrangeLLVMFunctionInfo( 477 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 478 None, FunctionType::ExtInfo(), RequiredArgs::All); 479 } 480 481 /// Arrange the argument and result information for an abstract value 482 /// of a given function type. This is the method which all of the 483 /// above functions ultimately defer to. 484 const CGFunctionInfo & 485 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 486 bool instanceMethod, 487 bool chainCall, 488 ArrayRef<CanQualType> argTypes, 489 FunctionType::ExtInfo info, 490 RequiredArgs required) { 491 assert(std::all_of(argTypes.begin(), argTypes.end(), 492 std::mem_fun_ref(&CanQualType::isCanonicalAsParam))); 493 494 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 495 496 // Lookup or create unique function info. 497 llvm::FoldingSetNodeID ID; 498 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required, 499 resultType, argTypes); 500 501 void *insertPos = nullptr; 502 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 503 if (FI) 504 return *FI; 505 506 // Construct the function info. We co-allocate the ArgInfos. 507 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 508 resultType, argTypes, required); 509 FunctionInfos.InsertNode(FI, insertPos); 510 511 bool inserted = FunctionsBeingProcessed.insert(FI).second; 512 (void)inserted; 513 assert(inserted && "Recursively being processed?"); 514 515 // Compute ABI information. 516 getABIInfo().computeInfo(*FI); 517 518 // Loop over all of the computed argument and return value info. If any of 519 // them are direct or extend without a specified coerce type, specify the 520 // default now. 521 ABIArgInfo &retInfo = FI->getReturnInfo(); 522 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 523 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 524 525 for (auto &I : FI->arguments()) 526 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 527 I.info.setCoerceToType(ConvertType(I.type)); 528 529 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 530 assert(erased && "Not in set?"); 531 532 return *FI; 533 } 534 535 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 536 bool instanceMethod, 537 bool chainCall, 538 const FunctionType::ExtInfo &info, 539 CanQualType resultType, 540 ArrayRef<CanQualType> argTypes, 541 RequiredArgs required) { 542 void *buffer = operator new(sizeof(CGFunctionInfo) + 543 sizeof(ArgInfo) * (argTypes.size() + 1)); 544 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 545 FI->CallingConvention = llvmCC; 546 FI->EffectiveCallingConvention = llvmCC; 547 FI->ASTCallingConvention = info.getCC(); 548 FI->InstanceMethod = instanceMethod; 549 FI->ChainCall = chainCall; 550 FI->NoReturn = info.getNoReturn(); 551 FI->ReturnsRetained = info.getProducesResult(); 552 FI->Required = required; 553 FI->HasRegParm = info.getHasRegParm(); 554 FI->RegParm = info.getRegParm(); 555 FI->ArgStruct = nullptr; 556 FI->NumArgs = argTypes.size(); 557 FI->getArgsBuffer()[0].type = resultType; 558 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 559 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 560 return FI; 561 } 562 563 /***/ 564 565 namespace { 566 // ABIArgInfo::Expand implementation. 567 568 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 569 struct TypeExpansion { 570 enum TypeExpansionKind { 571 // Elements of constant arrays are expanded recursively. 572 TEK_ConstantArray, 573 // Record fields are expanded recursively (but if record is a union, only 574 // the field with the largest size is expanded). 575 TEK_Record, 576 // For complex types, real and imaginary parts are expanded recursively. 577 TEK_Complex, 578 // All other types are not expandable. 579 TEK_None 580 }; 581 582 const TypeExpansionKind Kind; 583 584 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 585 virtual ~TypeExpansion() {} 586 }; 587 588 struct ConstantArrayExpansion : TypeExpansion { 589 QualType EltTy; 590 uint64_t NumElts; 591 592 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 593 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 594 static bool classof(const TypeExpansion *TE) { 595 return TE->Kind == TEK_ConstantArray; 596 } 597 }; 598 599 struct RecordExpansion : TypeExpansion { 600 SmallVector<const CXXBaseSpecifier *, 1> Bases; 601 602 SmallVector<const FieldDecl *, 1> Fields; 603 604 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 605 SmallVector<const FieldDecl *, 1> &&Fields) 606 : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {} 607 static bool classof(const TypeExpansion *TE) { 608 return TE->Kind == TEK_Record; 609 } 610 }; 611 612 struct ComplexExpansion : TypeExpansion { 613 QualType EltTy; 614 615 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 616 static bool classof(const TypeExpansion *TE) { 617 return TE->Kind == TEK_Complex; 618 } 619 }; 620 621 struct NoExpansion : TypeExpansion { 622 NoExpansion() : TypeExpansion(TEK_None) {} 623 static bool classof(const TypeExpansion *TE) { 624 return TE->Kind == TEK_None; 625 } 626 }; 627 } // namespace 628 629 static std::unique_ptr<TypeExpansion> 630 getTypeExpansion(QualType Ty, const ASTContext &Context) { 631 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 632 return llvm::make_unique<ConstantArrayExpansion>( 633 AT->getElementType(), AT->getSize().getZExtValue()); 634 } 635 if (const RecordType *RT = Ty->getAs<RecordType>()) { 636 SmallVector<const CXXBaseSpecifier *, 1> Bases; 637 SmallVector<const FieldDecl *, 1> Fields; 638 const RecordDecl *RD = RT->getDecl(); 639 assert(!RD->hasFlexibleArrayMember() && 640 "Cannot expand structure with flexible array."); 641 if (RD->isUnion()) { 642 // Unions can be here only in degenerative cases - all the fields are same 643 // after flattening. Thus we have to use the "largest" field. 644 const FieldDecl *LargestFD = nullptr; 645 CharUnits UnionSize = CharUnits::Zero(); 646 647 for (const auto *FD : RD->fields()) { 648 // Skip zero length bitfields. 649 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 650 continue; 651 assert(!FD->isBitField() && 652 "Cannot expand structure with bit-field members."); 653 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 654 if (UnionSize < FieldSize) { 655 UnionSize = FieldSize; 656 LargestFD = FD; 657 } 658 } 659 if (LargestFD) 660 Fields.push_back(LargestFD); 661 } else { 662 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 663 assert(!CXXRD->isDynamicClass() && 664 "cannot expand vtable pointers in dynamic classes"); 665 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 666 Bases.push_back(&BS); 667 } 668 669 for (const auto *FD : RD->fields()) { 670 // Skip zero length bitfields. 671 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 672 continue; 673 assert(!FD->isBitField() && 674 "Cannot expand structure with bit-field members."); 675 Fields.push_back(FD); 676 } 677 } 678 return llvm::make_unique<RecordExpansion>(std::move(Bases), 679 std::move(Fields)); 680 } 681 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 682 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 683 } 684 return llvm::make_unique<NoExpansion>(); 685 } 686 687 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 688 auto Exp = getTypeExpansion(Ty, Context); 689 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 690 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 691 } 692 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 693 int Res = 0; 694 for (auto BS : RExp->Bases) 695 Res += getExpansionSize(BS->getType(), Context); 696 for (auto FD : RExp->Fields) 697 Res += getExpansionSize(FD->getType(), Context); 698 return Res; 699 } 700 if (isa<ComplexExpansion>(Exp.get())) 701 return 2; 702 assert(isa<NoExpansion>(Exp.get())); 703 return 1; 704 } 705 706 void 707 CodeGenTypes::getExpandedTypes(QualType Ty, 708 SmallVectorImpl<llvm::Type *>::iterator &TI) { 709 auto Exp = getTypeExpansion(Ty, Context); 710 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 711 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 712 getExpandedTypes(CAExp->EltTy, TI); 713 } 714 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 715 for (auto BS : RExp->Bases) 716 getExpandedTypes(BS->getType(), TI); 717 for (auto FD : RExp->Fields) 718 getExpandedTypes(FD->getType(), TI); 719 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 720 llvm::Type *EltTy = ConvertType(CExp->EltTy); 721 *TI++ = EltTy; 722 *TI++ = EltTy; 723 } else { 724 assert(isa<NoExpansion>(Exp.get())); 725 *TI++ = ConvertType(Ty); 726 } 727 } 728 729 void CodeGenFunction::ExpandTypeFromArgs( 730 QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) { 731 assert(LV.isSimple() && 732 "Unexpected non-simple lvalue during struct expansion."); 733 734 auto Exp = getTypeExpansion(Ty, getContext()); 735 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 736 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 737 llvm::Value *EltAddr = 738 Builder.CreateConstGEP2_32(nullptr, LV.getAddress(), 0, i); 739 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 740 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 741 } 742 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 743 llvm::Value *This = LV.getAddress(); 744 for (const CXXBaseSpecifier *BS : RExp->Bases) { 745 // Perform a single step derived-to-base conversion. 746 llvm::Value *Base = 747 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 748 /*NullCheckValue=*/false, SourceLocation()); 749 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 750 751 // Recurse onto bases. 752 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 753 } 754 for (auto FD : RExp->Fields) { 755 // FIXME: What are the right qualifiers here? 756 LValue SubLV = EmitLValueForField(LV, FD); 757 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 758 } 759 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 760 llvm::Value *RealAddr = 761 Builder.CreateStructGEP(nullptr, LV.getAddress(), 0, "real"); 762 EmitStoreThroughLValue(RValue::get(*AI++), 763 MakeAddrLValue(RealAddr, CExp->EltTy)); 764 llvm::Value *ImagAddr = 765 Builder.CreateStructGEP(nullptr, LV.getAddress(), 1, "imag"); 766 EmitStoreThroughLValue(RValue::get(*AI++), 767 MakeAddrLValue(ImagAddr, CExp->EltTy)); 768 } else { 769 assert(isa<NoExpansion>(Exp.get())); 770 EmitStoreThroughLValue(RValue::get(*AI++), LV); 771 } 772 } 773 774 void CodeGenFunction::ExpandTypeToArgs( 775 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 776 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 777 auto Exp = getTypeExpansion(Ty, getContext()); 778 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 779 llvm::Value *Addr = RV.getAggregateAddr(); 780 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 781 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(nullptr, Addr, 0, i); 782 RValue EltRV = 783 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 784 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 785 } 786 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 787 llvm::Value *This = RV.getAggregateAddr(); 788 for (const CXXBaseSpecifier *BS : RExp->Bases) { 789 // Perform a single step derived-to-base conversion. 790 llvm::Value *Base = 791 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 792 /*NullCheckValue=*/false, SourceLocation()); 793 RValue BaseRV = RValue::getAggregate(Base); 794 795 // Recurse onto bases. 796 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 797 IRCallArgPos); 798 } 799 800 LValue LV = MakeAddrLValue(This, Ty); 801 for (auto FD : RExp->Fields) { 802 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 803 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 804 IRCallArgPos); 805 } 806 } else if (isa<ComplexExpansion>(Exp.get())) { 807 ComplexPairTy CV = RV.getComplexVal(); 808 IRCallArgs[IRCallArgPos++] = CV.first; 809 IRCallArgs[IRCallArgPos++] = CV.second; 810 } else { 811 assert(isa<NoExpansion>(Exp.get())); 812 assert(RV.isScalar() && 813 "Unexpected non-scalar rvalue during struct expansion."); 814 815 // Insert a bitcast as needed. 816 llvm::Value *V = RV.getScalarVal(); 817 if (IRCallArgPos < IRFuncTy->getNumParams() && 818 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 819 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 820 821 IRCallArgs[IRCallArgPos++] = V; 822 } 823 } 824 825 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 826 /// accessing some number of bytes out of it, try to gep into the struct to get 827 /// at its inner goodness. Dive as deep as possible without entering an element 828 /// with an in-memory size smaller than DstSize. 829 static llvm::Value * 830 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 831 llvm::StructType *SrcSTy, 832 uint64_t DstSize, CodeGenFunction &CGF) { 833 // We can't dive into a zero-element struct. 834 if (SrcSTy->getNumElements() == 0) return SrcPtr; 835 836 llvm::Type *FirstElt = SrcSTy->getElementType(0); 837 838 // If the first elt is at least as large as what we're looking for, or if the 839 // first element is the same size as the whole struct, we can enter it. The 840 // comparison must be made on the store size and not the alloca size. Using 841 // the alloca size may overstate the size of the load. 842 uint64_t FirstEltSize = 843 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 844 if (FirstEltSize < DstSize && 845 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 846 return SrcPtr; 847 848 // GEP into the first element. 849 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcSTy, SrcPtr, 0, 0, "coerce.dive"); 850 851 // If the first element is a struct, recurse. 852 llvm::Type *SrcTy = 853 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 854 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 855 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 856 857 return SrcPtr; 858 } 859 860 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 861 /// are either integers or pointers. This does a truncation of the value if it 862 /// is too large or a zero extension if it is too small. 863 /// 864 /// This behaves as if the value were coerced through memory, so on big-endian 865 /// targets the high bits are preserved in a truncation, while little-endian 866 /// targets preserve the low bits. 867 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 868 llvm::Type *Ty, 869 CodeGenFunction &CGF) { 870 if (Val->getType() == Ty) 871 return Val; 872 873 if (isa<llvm::PointerType>(Val->getType())) { 874 // If this is Pointer->Pointer avoid conversion to and from int. 875 if (isa<llvm::PointerType>(Ty)) 876 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 877 878 // Convert the pointer to an integer so we can play with its width. 879 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 880 } 881 882 llvm::Type *DestIntTy = Ty; 883 if (isa<llvm::PointerType>(DestIntTy)) 884 DestIntTy = CGF.IntPtrTy; 885 886 if (Val->getType() != DestIntTy) { 887 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 888 if (DL.isBigEndian()) { 889 // Preserve the high bits on big-endian targets. 890 // That is what memory coercion does. 891 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 892 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 893 894 if (SrcSize > DstSize) { 895 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 896 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 897 } else { 898 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 899 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 900 } 901 } else { 902 // Little-endian targets preserve the low bits. No shifts required. 903 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 904 } 905 } 906 907 if (isa<llvm::PointerType>(Ty)) 908 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 909 return Val; 910 } 911 912 913 914 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 915 /// a pointer to an object of type \arg Ty, known to be aligned to 916 /// \arg SrcAlign bytes. 917 /// 918 /// This safely handles the case when the src type is smaller than the 919 /// destination type; in this situation the values of bits which not 920 /// present in the src are undefined. 921 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 922 llvm::Type *Ty, CharUnits SrcAlign, 923 CodeGenFunction &CGF) { 924 llvm::Type *SrcTy = 925 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 926 927 // If SrcTy and Ty are the same, just do a load. 928 if (SrcTy == Ty) 929 return CGF.Builder.CreateAlignedLoad(SrcPtr, SrcAlign.getQuantity()); 930 931 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 932 933 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 934 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 935 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 936 } 937 938 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 939 940 // If the source and destination are integer or pointer types, just do an 941 // extension or truncation to the desired type. 942 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 943 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 944 llvm::LoadInst *Load = 945 CGF.Builder.CreateAlignedLoad(SrcPtr, SrcAlign.getQuantity()); 946 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 947 } 948 949 // If load is legal, just bitcast the src pointer. 950 if (SrcSize >= DstSize) { 951 // Generally SrcSize is never greater than DstSize, since this means we are 952 // losing bits. However, this can happen in cases where the structure has 953 // additional padding, for example due to a user specified alignment. 954 // 955 // FIXME: Assert that we aren't truncating non-padding bits when have access 956 // to that information. 957 llvm::Value *Casted = 958 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 959 return CGF.Builder.CreateAlignedLoad(Casted, SrcAlign.getQuantity()); 960 } 961 962 // Otherwise do coercion through memory. This is stupid, but 963 // simple. 964 llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(Ty); 965 Tmp->setAlignment(SrcAlign.getQuantity()); 966 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 967 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 968 llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy); 969 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 970 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 971 SrcAlign.getQuantity(), false); 972 return CGF.Builder.CreateAlignedLoad(Tmp, SrcAlign.getQuantity()); 973 } 974 975 // Function to store a first-class aggregate into memory. We prefer to 976 // store the elements rather than the aggregate to be more friendly to 977 // fast-isel. 978 // FIXME: Do we need to recurse here? 979 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 980 llvm::Value *DestPtr, bool DestIsVolatile, 981 CharUnits DestAlign) { 982 // Prefer scalar stores to first-class aggregate stores. 983 if (llvm::StructType *STy = 984 dyn_cast<llvm::StructType>(Val->getType())) { 985 const llvm::StructLayout *Layout = 986 CGF.CGM.getDataLayout().getStructLayout(STy); 987 988 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 989 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(STy, DestPtr, 0, i); 990 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 991 uint64_t EltOffset = Layout->getElementOffset(i); 992 CharUnits EltAlign = 993 DestAlign.alignmentAtOffset(CharUnits::fromQuantity(EltOffset)); 994 CGF.Builder.CreateAlignedStore(Elt, EltPtr, EltAlign.getQuantity(), 995 DestIsVolatile); 996 } 997 } else { 998 CGF.Builder.CreateAlignedStore(Val, DestPtr, DestAlign.getQuantity(), 999 DestIsVolatile); 1000 } 1001 } 1002 1003 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1004 /// where the source and destination may have different types. The 1005 /// destination is known to be aligned to \arg DstAlign bytes. 1006 /// 1007 /// This safely handles the case when the src type is larger than the 1008 /// destination type; the upper bits of the src will be lost. 1009 static void CreateCoercedStore(llvm::Value *Src, 1010 llvm::Value *DstPtr, 1011 bool DstIsVolatile, 1012 CharUnits DstAlign, 1013 CodeGenFunction &CGF) { 1014 llvm::Type *SrcTy = Src->getType(); 1015 llvm::Type *DstTy = 1016 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 1017 if (SrcTy == DstTy) { 1018 CGF.Builder.CreateAlignedStore(Src, DstPtr, DstAlign.getQuantity(), 1019 DstIsVolatile); 1020 return; 1021 } 1022 1023 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1024 1025 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1026 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 1027 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 1028 } 1029 1030 // If the source and destination are integer or pointer types, just do an 1031 // extension or truncation to the desired type. 1032 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1033 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1034 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1035 CGF.Builder.CreateAlignedStore(Src, DstPtr, DstAlign.getQuantity(), 1036 DstIsVolatile); 1037 return; 1038 } 1039 1040 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1041 1042 // If store is legal, just bitcast the src pointer. 1043 if (SrcSize <= DstSize) { 1044 llvm::Value *Casted = 1045 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 1046 BuildAggStore(CGF, Src, Casted, DstIsVolatile, DstAlign); 1047 } else { 1048 // Otherwise do coercion through memory. This is stupid, but 1049 // simple. 1050 1051 // Generally SrcSize is never greater than DstSize, since this means we are 1052 // losing bits. However, this can happen in cases where the structure has 1053 // additional padding, for example due to a user specified alignment. 1054 // 1055 // FIXME: Assert that we aren't truncating non-padding bits when have access 1056 // to that information. 1057 llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(SrcTy); 1058 Tmp->setAlignment(DstAlign.getQuantity()); 1059 CGF.Builder.CreateAlignedStore(Src, Tmp, DstAlign.getQuantity()); 1060 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 1061 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 1062 llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy); 1063 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1064 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1065 DstAlign.getQuantity(), false); 1066 } 1067 } 1068 1069 namespace { 1070 1071 /// Encapsulates information about the way function arguments from 1072 /// CGFunctionInfo should be passed to actual LLVM IR function. 1073 class ClangToLLVMArgMapping { 1074 static const unsigned InvalidIndex = ~0U; 1075 unsigned InallocaArgNo; 1076 unsigned SRetArgNo; 1077 unsigned TotalIRArgs; 1078 1079 /// Arguments of LLVM IR function corresponding to single Clang argument. 1080 struct IRArgs { 1081 unsigned PaddingArgIndex; 1082 // Argument is expanded to IR arguments at positions 1083 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1084 unsigned FirstArgIndex; 1085 unsigned NumberOfArgs; 1086 1087 IRArgs() 1088 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1089 NumberOfArgs(0) {} 1090 }; 1091 1092 SmallVector<IRArgs, 8> ArgInfo; 1093 1094 public: 1095 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1096 bool OnlyRequiredArgs = false) 1097 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1098 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1099 construct(Context, FI, OnlyRequiredArgs); 1100 } 1101 1102 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1103 unsigned getInallocaArgNo() const { 1104 assert(hasInallocaArg()); 1105 return InallocaArgNo; 1106 } 1107 1108 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1109 unsigned getSRetArgNo() const { 1110 assert(hasSRetArg()); 1111 return SRetArgNo; 1112 } 1113 1114 unsigned totalIRArgs() const { return TotalIRArgs; } 1115 1116 bool hasPaddingArg(unsigned ArgNo) const { 1117 assert(ArgNo < ArgInfo.size()); 1118 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1119 } 1120 unsigned getPaddingArgNo(unsigned ArgNo) const { 1121 assert(hasPaddingArg(ArgNo)); 1122 return ArgInfo[ArgNo].PaddingArgIndex; 1123 } 1124 1125 /// Returns index of first IR argument corresponding to ArgNo, and their 1126 /// quantity. 1127 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1128 assert(ArgNo < ArgInfo.size()); 1129 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1130 ArgInfo[ArgNo].NumberOfArgs); 1131 } 1132 1133 private: 1134 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1135 bool OnlyRequiredArgs); 1136 }; 1137 1138 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1139 const CGFunctionInfo &FI, 1140 bool OnlyRequiredArgs) { 1141 unsigned IRArgNo = 0; 1142 bool SwapThisWithSRet = false; 1143 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1144 1145 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1146 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1147 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1148 } 1149 1150 unsigned ArgNo = 0; 1151 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1152 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1153 ++I, ++ArgNo) { 1154 assert(I != FI.arg_end()); 1155 QualType ArgType = I->type; 1156 const ABIArgInfo &AI = I->info; 1157 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1158 auto &IRArgs = ArgInfo[ArgNo]; 1159 1160 if (AI.getPaddingType()) 1161 IRArgs.PaddingArgIndex = IRArgNo++; 1162 1163 switch (AI.getKind()) { 1164 case ABIArgInfo::Extend: 1165 case ABIArgInfo::Direct: { 1166 // FIXME: handle sseregparm someday... 1167 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1168 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1169 IRArgs.NumberOfArgs = STy->getNumElements(); 1170 } else { 1171 IRArgs.NumberOfArgs = 1; 1172 } 1173 break; 1174 } 1175 case ABIArgInfo::Indirect: 1176 IRArgs.NumberOfArgs = 1; 1177 break; 1178 case ABIArgInfo::Ignore: 1179 case ABIArgInfo::InAlloca: 1180 // ignore and inalloca doesn't have matching LLVM parameters. 1181 IRArgs.NumberOfArgs = 0; 1182 break; 1183 case ABIArgInfo::Expand: { 1184 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1185 break; 1186 } 1187 } 1188 1189 if (IRArgs.NumberOfArgs > 0) { 1190 IRArgs.FirstArgIndex = IRArgNo; 1191 IRArgNo += IRArgs.NumberOfArgs; 1192 } 1193 1194 // Skip over the sret parameter when it comes second. We already handled it 1195 // above. 1196 if (IRArgNo == 1 && SwapThisWithSRet) 1197 IRArgNo++; 1198 } 1199 assert(ArgNo == ArgInfo.size()); 1200 1201 if (FI.usesInAlloca()) 1202 InallocaArgNo = IRArgNo++; 1203 1204 TotalIRArgs = IRArgNo; 1205 } 1206 } // namespace 1207 1208 /***/ 1209 1210 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1211 return FI.getReturnInfo().isIndirect(); 1212 } 1213 1214 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1215 return ReturnTypeUsesSRet(FI) && 1216 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1217 } 1218 1219 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1220 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1221 switch (BT->getKind()) { 1222 default: 1223 return false; 1224 case BuiltinType::Float: 1225 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1226 case BuiltinType::Double: 1227 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1228 case BuiltinType::LongDouble: 1229 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1230 } 1231 } 1232 1233 return false; 1234 } 1235 1236 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1237 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1238 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1239 if (BT->getKind() == BuiltinType::LongDouble) 1240 return getTarget().useObjCFP2RetForComplexLongDouble(); 1241 } 1242 } 1243 1244 return false; 1245 } 1246 1247 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1248 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1249 return GetFunctionType(FI); 1250 } 1251 1252 llvm::FunctionType * 1253 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1254 1255 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1256 (void)Inserted; 1257 assert(Inserted && "Recursively being processed?"); 1258 1259 llvm::Type *resultType = nullptr; 1260 const ABIArgInfo &retAI = FI.getReturnInfo(); 1261 switch (retAI.getKind()) { 1262 case ABIArgInfo::Expand: 1263 llvm_unreachable("Invalid ABI kind for return argument"); 1264 1265 case ABIArgInfo::Extend: 1266 case ABIArgInfo::Direct: 1267 resultType = retAI.getCoerceToType(); 1268 break; 1269 1270 case ABIArgInfo::InAlloca: 1271 if (retAI.getInAllocaSRet()) { 1272 // sret things on win32 aren't void, they return the sret pointer. 1273 QualType ret = FI.getReturnType(); 1274 llvm::Type *ty = ConvertType(ret); 1275 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1276 resultType = llvm::PointerType::get(ty, addressSpace); 1277 } else { 1278 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1279 } 1280 break; 1281 1282 case ABIArgInfo::Indirect: { 1283 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 1284 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1285 break; 1286 } 1287 1288 case ABIArgInfo::Ignore: 1289 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1290 break; 1291 } 1292 1293 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1294 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1295 1296 // Add type for sret argument. 1297 if (IRFunctionArgs.hasSRetArg()) { 1298 QualType Ret = FI.getReturnType(); 1299 llvm::Type *Ty = ConvertType(Ret); 1300 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1301 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1302 llvm::PointerType::get(Ty, AddressSpace); 1303 } 1304 1305 // Add type for inalloca argument. 1306 if (IRFunctionArgs.hasInallocaArg()) { 1307 auto ArgStruct = FI.getArgStruct(); 1308 assert(ArgStruct); 1309 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1310 } 1311 1312 // Add in all of the required arguments. 1313 unsigned ArgNo = 0; 1314 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1315 ie = it + FI.getNumRequiredArgs(); 1316 for (; it != ie; ++it, ++ArgNo) { 1317 const ABIArgInfo &ArgInfo = it->info; 1318 1319 // Insert a padding type to ensure proper alignment. 1320 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1321 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1322 ArgInfo.getPaddingType(); 1323 1324 unsigned FirstIRArg, NumIRArgs; 1325 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1326 1327 switch (ArgInfo.getKind()) { 1328 case ABIArgInfo::Ignore: 1329 case ABIArgInfo::InAlloca: 1330 assert(NumIRArgs == 0); 1331 break; 1332 1333 case ABIArgInfo::Indirect: { 1334 assert(NumIRArgs == 1); 1335 // indirect arguments are always on the stack, which is addr space #0. 1336 llvm::Type *LTy = ConvertTypeForMem(it->type); 1337 ArgTypes[FirstIRArg] = LTy->getPointerTo(); 1338 break; 1339 } 1340 1341 case ABIArgInfo::Extend: 1342 case ABIArgInfo::Direct: { 1343 // Fast-isel and the optimizer generally like scalar values better than 1344 // FCAs, so we flatten them if this is safe to do for this argument. 1345 llvm::Type *argType = ArgInfo.getCoerceToType(); 1346 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1347 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1348 assert(NumIRArgs == st->getNumElements()); 1349 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1350 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1351 } else { 1352 assert(NumIRArgs == 1); 1353 ArgTypes[FirstIRArg] = argType; 1354 } 1355 break; 1356 } 1357 1358 case ABIArgInfo::Expand: 1359 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1360 getExpandedTypes(it->type, ArgTypesIter); 1361 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1362 break; 1363 } 1364 } 1365 1366 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1367 assert(Erased && "Not in set?"); 1368 1369 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1370 } 1371 1372 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1373 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1374 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1375 1376 if (!isFuncTypeConvertible(FPT)) 1377 return llvm::StructType::get(getLLVMContext()); 1378 1379 const CGFunctionInfo *Info; 1380 if (isa<CXXDestructorDecl>(MD)) 1381 Info = 1382 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1383 else 1384 Info = &arrangeCXXMethodDeclaration(MD); 1385 return GetFunctionType(*Info); 1386 } 1387 1388 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 1389 const Decl *TargetDecl, 1390 AttributeListType &PAL, 1391 unsigned &CallingConv, 1392 bool AttrOnCallSite) { 1393 llvm::AttrBuilder FuncAttrs; 1394 llvm::AttrBuilder RetAttrs; 1395 bool HasOptnone = false; 1396 1397 CallingConv = FI.getEffectiveCallingConvention(); 1398 1399 if (FI.isNoReturn()) 1400 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1401 1402 // FIXME: handle sseregparm someday... 1403 if (TargetDecl) { 1404 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1405 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1406 if (TargetDecl->hasAttr<NoThrowAttr>()) 1407 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1408 if (TargetDecl->hasAttr<NoReturnAttr>()) 1409 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1410 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1411 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1412 1413 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1414 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 1415 if (FPT && FPT->isNothrow(getContext())) 1416 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1417 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1418 // These attributes are not inherited by overloads. 1419 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1420 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1421 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1422 } 1423 1424 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1425 if (TargetDecl->hasAttr<ConstAttr>()) { 1426 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1427 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1428 } else if (TargetDecl->hasAttr<PureAttr>()) { 1429 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1430 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1431 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1432 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1433 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1434 } 1435 if (TargetDecl->hasAttr<RestrictAttr>()) 1436 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1437 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1438 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1439 1440 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1441 } 1442 1443 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1444 if (!HasOptnone) { 1445 if (CodeGenOpts.OptimizeSize) 1446 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1447 if (CodeGenOpts.OptimizeSize == 2) 1448 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1449 } 1450 1451 if (CodeGenOpts.DisableRedZone) 1452 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1453 if (CodeGenOpts.NoImplicitFloat) 1454 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1455 if (CodeGenOpts.EnableSegmentedStacks && 1456 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1457 FuncAttrs.addAttribute("split-stack"); 1458 1459 if (AttrOnCallSite) { 1460 // Attributes that should go on the call site only. 1461 if (!CodeGenOpts.SimplifyLibCalls) 1462 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1463 if (!CodeGenOpts.TrapFuncName.empty()) 1464 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1465 } else { 1466 // Attributes that should go on the function, but not the call site. 1467 if (!CodeGenOpts.DisableFPElim) { 1468 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1469 } else if (CodeGenOpts.OmitLeafFramePointer) { 1470 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1471 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1472 } else { 1473 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1474 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1475 } 1476 1477 FuncAttrs.addAttribute("disable-tail-calls", 1478 llvm::toStringRef(CodeGenOpts.DisableTailCalls)); 1479 FuncAttrs.addAttribute("less-precise-fpmad", 1480 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1481 FuncAttrs.addAttribute("no-infs-fp-math", 1482 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1483 FuncAttrs.addAttribute("no-nans-fp-math", 1484 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1485 FuncAttrs.addAttribute("unsafe-fp-math", 1486 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1487 FuncAttrs.addAttribute("use-soft-float", 1488 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1489 FuncAttrs.addAttribute("stack-protector-buffer-size", 1490 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1491 1492 if (!CodeGenOpts.StackRealignment) 1493 FuncAttrs.addAttribute("no-realign-stack"); 1494 1495 // Add target-cpu and target-features attributes to functions. If 1496 // we have a decl for the function and it has a target attribute then 1497 // parse that and add it to the feature set. 1498 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1499 1500 // TODO: Features gets us the features on the command line including 1501 // feature dependencies. For canonicalization purposes we might want to 1502 // avoid putting features in the target-features set if we know it'll be 1503 // one of the default features in the backend, e.g. corei7-avx and +avx or 1504 // figure out non-explicit dependencies. 1505 // Canonicalize the existing features in a new feature map. 1506 // TODO: Migrate the existing backends to keep the map around rather than 1507 // the vector. 1508 llvm::StringMap<bool> FeatureMap; 1509 for (auto F : getTarget().getTargetOpts().Features) { 1510 const char *Name = F.c_str(); 1511 bool Enabled = Name[0] == '+'; 1512 getTarget().setFeatureEnabled(FeatureMap, Name + 1, Enabled); 1513 } 1514 1515 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1516 if (FD) { 1517 if (const auto *TD = FD->getAttr<TargetAttr>()) { 1518 StringRef FeaturesStr = TD->getFeatures(); 1519 SmallVector<StringRef, 1> AttrFeatures; 1520 FeaturesStr.split(AttrFeatures, ","); 1521 1522 // Grab the various features and prepend a "+" to turn on the feature to 1523 // the backend and add them to our existing set of features. 1524 for (auto &Feature : AttrFeatures) { 1525 // Go ahead and trim whitespace rather than either erroring or 1526 // accepting it weirdly. 1527 Feature = Feature.trim(); 1528 1529 // While we're here iterating check for a different target cpu. 1530 if (Feature.startswith("arch=")) 1531 TargetCPU = Feature.split("=").second.trim(); 1532 else if (Feature.startswith("tune=")) 1533 // We don't support cpu tuning this way currently. 1534 ; 1535 else if (Feature.startswith("fpmath=")) 1536 // TODO: Support the fpmath option this way. It will require checking 1537 // overall feature validity for the function with the rest of the 1538 // attributes on the function. 1539 ; 1540 else if (Feature.startswith("mno-")) 1541 getTarget().setFeatureEnabled(FeatureMap, Feature.split("-").second, 1542 false); 1543 else 1544 getTarget().setFeatureEnabled(FeatureMap, Feature, true); 1545 } 1546 } 1547 } 1548 1549 // Produce the canonical string for this set of features. 1550 std::vector<std::string> Features; 1551 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1552 ie = FeatureMap.end(); 1553 it != ie; ++it) 1554 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1555 1556 // Now add the target-cpu and target-features to the function. 1557 if (TargetCPU != "") 1558 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1559 if (!Features.empty()) { 1560 std::sort(Features.begin(), Features.end()); 1561 FuncAttrs.addAttribute("target-features", 1562 llvm::join(Features.begin(), Features.end(), ",")); 1563 } 1564 } 1565 1566 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1567 1568 QualType RetTy = FI.getReturnType(); 1569 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1570 switch (RetAI.getKind()) { 1571 case ABIArgInfo::Extend: 1572 if (RetTy->hasSignedIntegerRepresentation()) 1573 RetAttrs.addAttribute(llvm::Attribute::SExt); 1574 else if (RetTy->hasUnsignedIntegerRepresentation()) 1575 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1576 // FALL THROUGH 1577 case ABIArgInfo::Direct: 1578 if (RetAI.getInReg()) 1579 RetAttrs.addAttribute(llvm::Attribute::InReg); 1580 break; 1581 case ABIArgInfo::Ignore: 1582 break; 1583 1584 case ABIArgInfo::InAlloca: 1585 case ABIArgInfo::Indirect: { 1586 // inalloca and sret disable readnone and readonly 1587 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1588 .removeAttribute(llvm::Attribute::ReadNone); 1589 break; 1590 } 1591 1592 case ABIArgInfo::Expand: 1593 llvm_unreachable("Invalid ABI kind for return argument"); 1594 } 1595 1596 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1597 QualType PTy = RefTy->getPointeeType(); 1598 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1599 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1600 .getQuantity()); 1601 else if (getContext().getTargetAddressSpace(PTy) == 0) 1602 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1603 } 1604 1605 // Attach return attributes. 1606 if (RetAttrs.hasAttributes()) { 1607 PAL.push_back(llvm::AttributeSet::get( 1608 getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs)); 1609 } 1610 1611 // Attach attributes to sret. 1612 if (IRFunctionArgs.hasSRetArg()) { 1613 llvm::AttrBuilder SRETAttrs; 1614 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1615 if (RetAI.getInReg()) 1616 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1617 PAL.push_back(llvm::AttributeSet::get( 1618 getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs)); 1619 } 1620 1621 // Attach attributes to inalloca argument. 1622 if (IRFunctionArgs.hasInallocaArg()) { 1623 llvm::AttrBuilder Attrs; 1624 Attrs.addAttribute(llvm::Attribute::InAlloca); 1625 PAL.push_back(llvm::AttributeSet::get( 1626 getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs)); 1627 } 1628 1629 unsigned ArgNo = 0; 1630 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1631 E = FI.arg_end(); 1632 I != E; ++I, ++ArgNo) { 1633 QualType ParamType = I->type; 1634 const ABIArgInfo &AI = I->info; 1635 llvm::AttrBuilder Attrs; 1636 1637 // Add attribute for padding argument, if necessary. 1638 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1639 if (AI.getPaddingInReg()) 1640 PAL.push_back(llvm::AttributeSet::get( 1641 getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1, 1642 llvm::Attribute::InReg)); 1643 } 1644 1645 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1646 // have the corresponding parameter variable. It doesn't make 1647 // sense to do it here because parameters are so messed up. 1648 switch (AI.getKind()) { 1649 case ABIArgInfo::Extend: 1650 if (ParamType->isSignedIntegerOrEnumerationType()) 1651 Attrs.addAttribute(llvm::Attribute::SExt); 1652 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1653 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1654 Attrs.addAttribute(llvm::Attribute::SExt); 1655 else 1656 Attrs.addAttribute(llvm::Attribute::ZExt); 1657 } 1658 // FALL THROUGH 1659 case ABIArgInfo::Direct: 1660 if (ArgNo == 0 && FI.isChainCall()) 1661 Attrs.addAttribute(llvm::Attribute::Nest); 1662 else if (AI.getInReg()) 1663 Attrs.addAttribute(llvm::Attribute::InReg); 1664 break; 1665 1666 case ABIArgInfo::Indirect: 1667 if (AI.getInReg()) 1668 Attrs.addAttribute(llvm::Attribute::InReg); 1669 1670 if (AI.getIndirectByVal()) 1671 Attrs.addAttribute(llvm::Attribute::ByVal); 1672 1673 Attrs.addAlignmentAttr(AI.getIndirectAlign()); 1674 1675 // byval disables readnone and readonly. 1676 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1677 .removeAttribute(llvm::Attribute::ReadNone); 1678 break; 1679 1680 case ABIArgInfo::Ignore: 1681 case ABIArgInfo::Expand: 1682 continue; 1683 1684 case ABIArgInfo::InAlloca: 1685 // inalloca disables readnone and readonly. 1686 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1687 .removeAttribute(llvm::Attribute::ReadNone); 1688 continue; 1689 } 1690 1691 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 1692 QualType PTy = RefTy->getPointeeType(); 1693 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1694 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1695 .getQuantity()); 1696 else if (getContext().getTargetAddressSpace(PTy) == 0) 1697 Attrs.addAttribute(llvm::Attribute::NonNull); 1698 } 1699 1700 if (Attrs.hasAttributes()) { 1701 unsigned FirstIRArg, NumIRArgs; 1702 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1703 for (unsigned i = 0; i < NumIRArgs; i++) 1704 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), 1705 FirstIRArg + i + 1, Attrs)); 1706 } 1707 } 1708 assert(ArgNo == FI.arg_size()); 1709 1710 if (FuncAttrs.hasAttributes()) 1711 PAL.push_back(llvm:: 1712 AttributeSet::get(getLLVMContext(), 1713 llvm::AttributeSet::FunctionIndex, 1714 FuncAttrs)); 1715 } 1716 1717 /// An argument came in as a promoted argument; demote it back to its 1718 /// declared type. 1719 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1720 const VarDecl *var, 1721 llvm::Value *value) { 1722 llvm::Type *varType = CGF.ConvertType(var->getType()); 1723 1724 // This can happen with promotions that actually don't change the 1725 // underlying type, like the enum promotions. 1726 if (value->getType() == varType) return value; 1727 1728 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1729 && "unexpected promotion type"); 1730 1731 if (isa<llvm::IntegerType>(varType)) 1732 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1733 1734 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1735 } 1736 1737 /// Returns the attribute (either parameter attribute, or function 1738 /// attribute), which declares argument ArgNo to be non-null. 1739 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 1740 QualType ArgType, unsigned ArgNo) { 1741 // FIXME: __attribute__((nonnull)) can also be applied to: 1742 // - references to pointers, where the pointee is known to be 1743 // nonnull (apparently a Clang extension) 1744 // - transparent unions containing pointers 1745 // In the former case, LLVM IR cannot represent the constraint. In 1746 // the latter case, we have no guarantee that the transparent union 1747 // is in fact passed as a pointer. 1748 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 1749 return nullptr; 1750 // First, check attribute on parameter itself. 1751 if (PVD) { 1752 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 1753 return ParmNNAttr; 1754 } 1755 // Check function attributes. 1756 if (!FD) 1757 return nullptr; 1758 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 1759 if (NNAttr->isNonNull(ArgNo)) 1760 return NNAttr; 1761 } 1762 return nullptr; 1763 } 1764 1765 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1766 llvm::Function *Fn, 1767 const FunctionArgList &Args) { 1768 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 1769 // Naked functions don't have prologues. 1770 return; 1771 1772 // If this is an implicit-return-zero function, go ahead and 1773 // initialize the return value. TODO: it might be nice to have 1774 // a more general mechanism for this that didn't require synthesized 1775 // return statements. 1776 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 1777 if (FD->hasImplicitReturnZero()) { 1778 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 1779 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1780 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1781 Builder.CreateStore(Zero, ReturnValue); 1782 } 1783 } 1784 1785 // FIXME: We no longer need the types from FunctionArgList; lift up and 1786 // simplify. 1787 1788 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 1789 // Flattened function arguments. 1790 SmallVector<llvm::Argument *, 16> FnArgs; 1791 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 1792 for (auto &Arg : Fn->args()) { 1793 FnArgs.push_back(&Arg); 1794 } 1795 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 1796 1797 // If we're using inalloca, all the memory arguments are GEPs off of the last 1798 // parameter, which is a pointer to the complete memory area. 1799 llvm::Value *ArgStruct = nullptr; 1800 if (IRFunctionArgs.hasInallocaArg()) { 1801 ArgStruct = FnArgs[IRFunctionArgs.getInallocaArgNo()]; 1802 assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo()); 1803 } 1804 1805 // Name the struct return parameter. 1806 if (IRFunctionArgs.hasSRetArg()) { 1807 auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()]; 1808 AI->setName("agg.result"); 1809 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1, 1810 llvm::Attribute::NoAlias)); 1811 } 1812 1813 // Track if we received the parameter as a pointer (indirect, byval, or 1814 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 1815 // into a local alloca for us. 1816 enum ValOrPointer { HaveValue = 0, HavePointer = 1 }; 1817 typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr; 1818 SmallVector<ValueAndIsPtr, 16> ArgVals; 1819 ArgVals.reserve(Args.size()); 1820 1821 // Create a pointer value for every parameter declaration. This usually 1822 // entails copying one or more LLVM IR arguments into an alloca. Don't push 1823 // any cleanups or do anything that might unwind. We do that separately, so 1824 // we can push the cleanups in the correct order for the ABI. 1825 assert(FI.arg_size() == Args.size() && 1826 "Mismatch between function signature & arguments."); 1827 unsigned ArgNo = 0; 1828 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1829 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1830 i != e; ++i, ++info_it, ++ArgNo) { 1831 const VarDecl *Arg = *i; 1832 QualType Ty = info_it->type; 1833 const ABIArgInfo &ArgI = info_it->info; 1834 1835 bool isPromoted = 1836 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1837 1838 unsigned FirstIRArg, NumIRArgs; 1839 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1840 1841 switch (ArgI.getKind()) { 1842 case ABIArgInfo::InAlloca: { 1843 assert(NumIRArgs == 0); 1844 llvm::Value *V = 1845 Builder.CreateStructGEP(FI.getArgStruct(), ArgStruct, 1846 ArgI.getInAllocaFieldIndex(), Arg->getName()); 1847 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 1848 break; 1849 } 1850 1851 case ABIArgInfo::Indirect: { 1852 assert(NumIRArgs == 1); 1853 llvm::Value *V = FnArgs[FirstIRArg]; 1854 1855 if (!hasScalarEvaluationKind(Ty)) { 1856 // Aggregates and complex variables are accessed by reference. All we 1857 // need to do is realign the value, if requested 1858 if (ArgI.getIndirectRealign()) { 1859 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 1860 1861 // Copy from the incoming argument pointer to the temporary with the 1862 // appropriate alignment. 1863 // 1864 // FIXME: We should have a common utility for generating an aggregate 1865 // copy. 1866 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 1867 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1868 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 1869 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 1870 Builder.CreateMemCpy(Dst, 1871 Src, 1872 llvm::ConstantInt::get(IntPtrTy, 1873 Size.getQuantity()), 1874 ArgI.getIndirectAlign(), 1875 false); 1876 V = AlignedTemp; 1877 } 1878 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 1879 } else { 1880 // Load scalar value from indirect argument. 1881 V = EmitLoadOfScalar(V, false, ArgI.getIndirectAlign(), Ty, 1882 Arg->getLocStart()); 1883 1884 if (isPromoted) 1885 V = emitArgumentDemotion(*this, Arg, V); 1886 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 1887 } 1888 break; 1889 } 1890 1891 case ABIArgInfo::Extend: 1892 case ABIArgInfo::Direct: { 1893 1894 // If we have the trivial case, handle it with no muss and fuss. 1895 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1896 ArgI.getCoerceToType() == ConvertType(Ty) && 1897 ArgI.getDirectOffset() == 0) { 1898 assert(NumIRArgs == 1); 1899 auto AI = FnArgs[FirstIRArg]; 1900 llvm::Value *V = AI; 1901 1902 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 1903 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 1904 PVD->getFunctionScopeIndex())) 1905 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1906 AI->getArgNo() + 1, 1907 llvm::Attribute::NonNull)); 1908 1909 QualType OTy = PVD->getOriginalType(); 1910 if (const auto *ArrTy = 1911 getContext().getAsConstantArrayType(OTy)) { 1912 // A C99 array parameter declaration with the static keyword also 1913 // indicates dereferenceability, and if the size is constant we can 1914 // use the dereferenceable attribute (which requires the size in 1915 // bytes). 1916 if (ArrTy->getSizeModifier() == ArrayType::Static) { 1917 QualType ETy = ArrTy->getElementType(); 1918 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 1919 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 1920 ArrSize) { 1921 llvm::AttrBuilder Attrs; 1922 Attrs.addDereferenceableAttr( 1923 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 1924 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1925 AI->getArgNo() + 1, Attrs)); 1926 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 1927 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1928 AI->getArgNo() + 1, 1929 llvm::Attribute::NonNull)); 1930 } 1931 } 1932 } else if (const auto *ArrTy = 1933 getContext().getAsVariableArrayType(OTy)) { 1934 // For C99 VLAs with the static keyword, we don't know the size so 1935 // we can't use the dereferenceable attribute, but in addrspace(0) 1936 // we know that it must be nonnull. 1937 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 1938 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 1939 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1940 AI->getArgNo() + 1, 1941 llvm::Attribute::NonNull)); 1942 } 1943 1944 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 1945 if (!AVAttr) 1946 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 1947 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 1948 if (AVAttr) { 1949 llvm::Value *AlignmentValue = 1950 EmitScalarExpr(AVAttr->getAlignment()); 1951 llvm::ConstantInt *AlignmentCI = 1952 cast<llvm::ConstantInt>(AlignmentValue); 1953 unsigned Alignment = 1954 std::min((unsigned) AlignmentCI->getZExtValue(), 1955 +llvm::Value::MaximumAlignment); 1956 1957 llvm::AttrBuilder Attrs; 1958 Attrs.addAlignmentAttr(Alignment); 1959 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1960 AI->getArgNo() + 1, Attrs)); 1961 } 1962 } 1963 1964 if (Arg->getType().isRestrictQualified()) 1965 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1966 AI->getArgNo() + 1, 1967 llvm::Attribute::NoAlias)); 1968 1969 // Ensure the argument is the correct type. 1970 if (V->getType() != ArgI.getCoerceToType()) 1971 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1972 1973 if (isPromoted) 1974 V = emitArgumentDemotion(*this, Arg, V); 1975 1976 if (const CXXMethodDecl *MD = 1977 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 1978 if (MD->isVirtual() && Arg == CXXABIThisDecl) 1979 V = CGM.getCXXABI(). 1980 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V); 1981 } 1982 1983 // Because of merging of function types from multiple decls it is 1984 // possible for the type of an argument to not match the corresponding 1985 // type in the function type. Since we are codegening the callee 1986 // in here, add a cast to the argument type. 1987 llvm::Type *LTy = ConvertType(Arg->getType()); 1988 if (V->getType() != LTy) 1989 V = Builder.CreateBitCast(V, LTy); 1990 1991 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 1992 break; 1993 } 1994 1995 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); 1996 1997 // The alignment we need to use is the max of the requested alignment for 1998 // the argument plus the alignment required by our access code below. 1999 unsigned AlignmentToUse = 2000 CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType()); 2001 AlignmentToUse = std::max(AlignmentToUse, 2002 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 2003 2004 Alloca->setAlignment(AlignmentToUse); 2005 llvm::Value *V = Alloca; 2006 llvm::Value *Ptr = V; // Pointer to store into. 2007 CharUnits PtrAlign = CharUnits::fromQuantity(AlignmentToUse); 2008 2009 // If the value is offset in memory, apply the offset now. 2010 if (unsigned Offs = ArgI.getDirectOffset()) { 2011 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 2012 Ptr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), Ptr, Offs); 2013 Ptr = Builder.CreateBitCast(Ptr, 2014 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 2015 PtrAlign = PtrAlign.alignmentAtOffset(CharUnits::fromQuantity(Offs)); 2016 } 2017 2018 // Fast-isel and the optimizer generally like scalar values better than 2019 // FCAs, so we flatten them if this is safe to do for this argument. 2020 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2021 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2022 STy->getNumElements() > 1) { 2023 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2024 llvm::Type *DstTy = 2025 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 2026 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2027 2028 if (SrcSize <= DstSize) { 2029 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 2030 2031 assert(STy->getNumElements() == NumIRArgs); 2032 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2033 auto AI = FnArgs[FirstIRArg + i]; 2034 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2035 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, Ptr, 0, i); 2036 Builder.CreateStore(AI, EltPtr); 2037 } 2038 } else { 2039 llvm::AllocaInst *TempAlloca = 2040 CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); 2041 TempAlloca->setAlignment(AlignmentToUse); 2042 llvm::Value *TempV = TempAlloca; 2043 2044 assert(STy->getNumElements() == NumIRArgs); 2045 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2046 auto AI = FnArgs[FirstIRArg + i]; 2047 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2048 llvm::Value *EltPtr = 2049 Builder.CreateConstGEP2_32(ArgI.getCoerceToType(), TempV, 0, i); 2050 Builder.CreateStore(AI, EltPtr); 2051 } 2052 2053 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); 2054 } 2055 } else { 2056 // Simple case, just do a coerced store of the argument into the alloca. 2057 assert(NumIRArgs == 1); 2058 auto AI = FnArgs[FirstIRArg]; 2059 AI->setName(Arg->getName() + ".coerce"); 2060 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, PtrAlign, *this); 2061 } 2062 2063 2064 // Match to what EmitParmDecl is expecting for this type. 2065 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2066 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart()); 2067 if (isPromoted) 2068 V = emitArgumentDemotion(*this, Arg, V); 2069 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 2070 } else { 2071 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 2072 } 2073 break; 2074 } 2075 2076 case ABIArgInfo::Expand: { 2077 // If this structure was expanded into multiple arguments then 2078 // we need to create a temporary and reconstruct it from the 2079 // arguments. 2080 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 2081 CharUnits Align = getContext().getDeclAlign(Arg); 2082 Alloca->setAlignment(Align.getQuantity()); 2083 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 2084 ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer)); 2085 2086 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2087 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2088 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2089 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2090 auto AI = FnArgs[FirstIRArg + i]; 2091 AI->setName(Arg->getName() + "." + Twine(i)); 2092 } 2093 break; 2094 } 2095 2096 case ABIArgInfo::Ignore: 2097 assert(NumIRArgs == 0); 2098 // Initialize the local variable appropriately. 2099 if (!hasScalarEvaluationKind(Ty)) { 2100 ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer)); 2101 } else { 2102 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2103 ArgVals.push_back(ValueAndIsPtr(U, HaveValue)); 2104 } 2105 break; 2106 } 2107 } 2108 2109 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2110 for (int I = Args.size() - 1; I >= 0; --I) 2111 EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(), 2112 I + 1); 2113 } else { 2114 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2115 EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(), 2116 I + 1); 2117 } 2118 } 2119 2120 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2121 while (insn->use_empty()) { 2122 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2123 if (!bitcast) return; 2124 2125 // This is "safe" because we would have used a ConstantExpr otherwise. 2126 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2127 bitcast->eraseFromParent(); 2128 } 2129 } 2130 2131 /// Try to emit a fused autorelease of a return result. 2132 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2133 llvm::Value *result) { 2134 // We must be immediately followed the cast. 2135 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2136 if (BB->empty()) return nullptr; 2137 if (&BB->back() != result) return nullptr; 2138 2139 llvm::Type *resultType = result->getType(); 2140 2141 // result is in a BasicBlock and is therefore an Instruction. 2142 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2143 2144 SmallVector<llvm::Instruction*,4> insnsToKill; 2145 2146 // Look for: 2147 // %generator = bitcast %type1* %generator2 to %type2* 2148 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2149 // We would have emitted this as a constant if the operand weren't 2150 // an Instruction. 2151 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2152 2153 // Require the generator to be immediately followed by the cast. 2154 if (generator->getNextNode() != bitcast) 2155 return nullptr; 2156 2157 insnsToKill.push_back(bitcast); 2158 } 2159 2160 // Look for: 2161 // %generator = call i8* @objc_retain(i8* %originalResult) 2162 // or 2163 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2164 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2165 if (!call) return nullptr; 2166 2167 bool doRetainAutorelease; 2168 2169 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 2170 doRetainAutorelease = true; 2171 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 2172 .objc_retainAutoreleasedReturnValue) { 2173 doRetainAutorelease = false; 2174 2175 // If we emitted an assembly marker for this call (and the 2176 // ARCEntrypoints field should have been set if so), go looking 2177 // for that call. If we can't find it, we can't do this 2178 // optimization. But it should always be the immediately previous 2179 // instruction, unless we needed bitcasts around the call. 2180 if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) { 2181 llvm::Instruction *prev = call->getPrevNode(); 2182 assert(prev); 2183 if (isa<llvm::BitCastInst>(prev)) { 2184 prev = prev->getPrevNode(); 2185 assert(prev); 2186 } 2187 assert(isa<llvm::CallInst>(prev)); 2188 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2189 CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker); 2190 insnsToKill.push_back(prev); 2191 } 2192 } else { 2193 return nullptr; 2194 } 2195 2196 result = call->getArgOperand(0); 2197 insnsToKill.push_back(call); 2198 2199 // Keep killing bitcasts, for sanity. Note that we no longer care 2200 // about precise ordering as long as there's exactly one use. 2201 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2202 if (!bitcast->hasOneUse()) break; 2203 insnsToKill.push_back(bitcast); 2204 result = bitcast->getOperand(0); 2205 } 2206 2207 // Delete all the unnecessary instructions, from latest to earliest. 2208 for (SmallVectorImpl<llvm::Instruction*>::iterator 2209 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 2210 (*i)->eraseFromParent(); 2211 2212 // Do the fused retain/autorelease if we were asked to. 2213 if (doRetainAutorelease) 2214 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2215 2216 // Cast back to the result type. 2217 return CGF.Builder.CreateBitCast(result, resultType); 2218 } 2219 2220 /// If this is a +1 of the value of an immutable 'self', remove it. 2221 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2222 llvm::Value *result) { 2223 // This is only applicable to a method with an immutable 'self'. 2224 const ObjCMethodDecl *method = 2225 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2226 if (!method) return nullptr; 2227 const VarDecl *self = method->getSelfDecl(); 2228 if (!self->getType().isConstQualified()) return nullptr; 2229 2230 // Look for a retain call. 2231 llvm::CallInst *retainCall = 2232 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2233 if (!retainCall || 2234 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 2235 return nullptr; 2236 2237 // Look for an ordinary load of 'self'. 2238 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2239 llvm::LoadInst *load = 2240 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2241 if (!load || load->isAtomic() || load->isVolatile() || 2242 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 2243 return nullptr; 2244 2245 // Okay! Burn it all down. This relies for correctness on the 2246 // assumption that the retain is emitted as part of the return and 2247 // that thereafter everything is used "linearly". 2248 llvm::Type *resultType = result->getType(); 2249 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2250 assert(retainCall->use_empty()); 2251 retainCall->eraseFromParent(); 2252 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2253 2254 return CGF.Builder.CreateBitCast(load, resultType); 2255 } 2256 2257 /// Emit an ARC autorelease of the result of a function. 2258 /// 2259 /// \return the value to actually return from the function 2260 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2261 llvm::Value *result) { 2262 // If we're returning 'self', kill the initial retain. This is a 2263 // heuristic attempt to "encourage correctness" in the really unfortunate 2264 // case where we have a return of self during a dealloc and we desperately 2265 // need to avoid the possible autorelease. 2266 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2267 return self; 2268 2269 // At -O0, try to emit a fused retain/autorelease. 2270 if (CGF.shouldUseFusedARCCalls()) 2271 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2272 return fused; 2273 2274 return CGF.EmitARCAutoreleaseReturnValue(result); 2275 } 2276 2277 /// Heuristically search for a dominating store to the return-value slot. 2278 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2279 // If there are multiple uses of the return-value slot, just check 2280 // for something immediately preceding the IP. Sometimes this can 2281 // happen with how we generate implicit-returns; it can also happen 2282 // with noreturn cleanups. 2283 if (!CGF.ReturnValue->hasOneUse()) { 2284 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2285 if (IP->empty()) return nullptr; 2286 llvm::Instruction *I = &IP->back(); 2287 2288 // Skip lifetime markers 2289 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2290 IE = IP->rend(); 2291 II != IE; ++II) { 2292 if (llvm::IntrinsicInst *Intrinsic = 2293 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2294 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2295 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2296 ++II; 2297 if (II == IE) 2298 break; 2299 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2300 continue; 2301 } 2302 } 2303 I = &*II; 2304 break; 2305 } 2306 2307 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(I); 2308 if (!store) return nullptr; 2309 if (store->getPointerOperand() != CGF.ReturnValue) return nullptr; 2310 assert(!store->isAtomic() && !store->isVolatile()); // see below 2311 return store; 2312 } 2313 2314 llvm::StoreInst *store = 2315 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back()); 2316 if (!store) return nullptr; 2317 2318 // These aren't actually possible for non-coerced returns, and we 2319 // only care about non-coerced returns on this code path. 2320 assert(!store->isAtomic() && !store->isVolatile()); 2321 2322 // Now do a first-and-dirty dominance check: just walk up the 2323 // single-predecessors chain from the current insertion point. 2324 llvm::BasicBlock *StoreBB = store->getParent(); 2325 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2326 while (IP != StoreBB) { 2327 if (!(IP = IP->getSinglePredecessor())) 2328 return nullptr; 2329 } 2330 2331 // Okay, the store's basic block dominates the insertion point; we 2332 // can do our thing. 2333 return store; 2334 } 2335 2336 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2337 bool EmitRetDbgLoc, 2338 SourceLocation EndLoc) { 2339 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2340 // Naked functions don't have epilogues. 2341 Builder.CreateUnreachable(); 2342 return; 2343 } 2344 2345 // Functions with no result always return void. 2346 if (!ReturnValue) { 2347 Builder.CreateRetVoid(); 2348 return; 2349 } 2350 2351 llvm::DebugLoc RetDbgLoc; 2352 llvm::Value *RV = nullptr; 2353 QualType RetTy = FI.getReturnType(); 2354 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2355 2356 switch (RetAI.getKind()) { 2357 case ABIArgInfo::InAlloca: 2358 // Aggregrates get evaluated directly into the destination. Sometimes we 2359 // need to return the sret value in a register, though. 2360 assert(hasAggregateEvaluationKind(RetTy)); 2361 if (RetAI.getInAllocaSRet()) { 2362 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2363 --EI; 2364 llvm::Value *ArgStruct = EI; 2365 llvm::Value *SRet = Builder.CreateStructGEP( 2366 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2367 RV = Builder.CreateLoad(SRet, "sret"); 2368 } 2369 break; 2370 2371 case ABIArgInfo::Indirect: { 2372 auto AI = CurFn->arg_begin(); 2373 if (RetAI.isSRetAfterThis()) 2374 ++AI; 2375 switch (getEvaluationKind(RetTy)) { 2376 case TEK_Complex: { 2377 ComplexPairTy RT = 2378 EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy), 2379 EndLoc); 2380 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy), 2381 /*isInit*/ true); 2382 break; 2383 } 2384 case TEK_Aggregate: 2385 // Do nothing; aggregrates get evaluated directly into the destination. 2386 break; 2387 case TEK_Scalar: 2388 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2389 MakeNaturalAlignAddrLValue(AI, RetTy), 2390 /*isInit*/ true); 2391 break; 2392 } 2393 break; 2394 } 2395 2396 case ABIArgInfo::Extend: 2397 case ABIArgInfo::Direct: 2398 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2399 RetAI.getDirectOffset() == 0) { 2400 // The internal return value temp always will have pointer-to-return-type 2401 // type, just do a load. 2402 2403 // If there is a dominating store to ReturnValue, we can elide 2404 // the load, zap the store, and usually zap the alloca. 2405 if (llvm::StoreInst *SI = 2406 findDominatingStoreToReturnValue(*this)) { 2407 // Reuse the debug location from the store unless there is 2408 // cleanup code to be emitted between the store and return 2409 // instruction. 2410 if (EmitRetDbgLoc && !AutoreleaseResult) 2411 RetDbgLoc = SI->getDebugLoc(); 2412 // Get the stored value and nuke the now-dead store. 2413 RV = SI->getValueOperand(); 2414 SI->eraseFromParent(); 2415 2416 // If that was the only use of the return value, nuke it as well now. 2417 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 2418 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 2419 ReturnValue = nullptr; 2420 } 2421 2422 // Otherwise, we have to do a simple load. 2423 } else { 2424 RV = Builder.CreateLoad(ReturnValue); 2425 } 2426 } else { 2427 llvm::Value *V = ReturnValue; 2428 CharUnits Align = getContext().getTypeAlignInChars(RetTy); 2429 // If the value is offset in memory, apply the offset now. 2430 if (unsigned Offs = RetAI.getDirectOffset()) { 2431 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 2432 V = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), V, Offs); 2433 V = Builder.CreateBitCast(V, 2434 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 2435 Align = Align.alignmentAtOffset(CharUnits::fromQuantity(Offs)); 2436 } 2437 2438 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), Align, *this); 2439 } 2440 2441 // In ARC, end functions that return a retainable type with a call 2442 // to objc_autoreleaseReturnValue. 2443 if (AutoreleaseResult) { 2444 assert(getLangOpts().ObjCAutoRefCount && 2445 !FI.isReturnsRetained() && 2446 RetTy->isObjCRetainableType()); 2447 RV = emitAutoreleaseOfResult(*this, RV); 2448 } 2449 2450 break; 2451 2452 case ABIArgInfo::Ignore: 2453 break; 2454 2455 case ABIArgInfo::Expand: 2456 llvm_unreachable("Invalid ABI kind for return argument"); 2457 } 2458 2459 llvm::Instruction *Ret; 2460 if (RV) { 2461 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) { 2462 if (auto RetNNAttr = CurGD.getDecl()->getAttr<ReturnsNonNullAttr>()) { 2463 SanitizerScope SanScope(this); 2464 llvm::Value *Cond = Builder.CreateICmpNE( 2465 RV, llvm::Constant::getNullValue(RV->getType())); 2466 llvm::Constant *StaticData[] = { 2467 EmitCheckSourceLocation(EndLoc), 2468 EmitCheckSourceLocation(RetNNAttr->getLocation()), 2469 }; 2470 EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute), 2471 "nonnull_return", StaticData, None); 2472 } 2473 } 2474 Ret = Builder.CreateRet(RV); 2475 } else { 2476 Ret = Builder.CreateRetVoid(); 2477 } 2478 2479 if (RetDbgLoc) 2480 Ret->setDebugLoc(std::move(RetDbgLoc)); 2481 } 2482 2483 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2484 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2485 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2486 } 2487 2488 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) { 2489 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2490 // placeholders. 2491 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2492 llvm::Value *Placeholder = 2493 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo()); 2494 Placeholder = CGF.Builder.CreateLoad(Placeholder); 2495 return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(), 2496 Ty.getQualifiers(), 2497 AggValueSlot::IsNotDestructed, 2498 AggValueSlot::DoesNotNeedGCBarriers, 2499 AggValueSlot::IsNotAliased); 2500 } 2501 2502 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 2503 const VarDecl *param, 2504 SourceLocation loc) { 2505 // StartFunction converted the ABI-lowered parameter(s) into a 2506 // local alloca. We need to turn that into an r-value suitable 2507 // for EmitCall. 2508 llvm::Value *local = GetAddrOfLocalVar(param); 2509 2510 QualType type = param->getType(); 2511 2512 // For the most part, we just need to load the alloca, except: 2513 // 1) aggregate r-values are actually pointers to temporaries, and 2514 // 2) references to non-scalars are pointers directly to the aggregate. 2515 // I don't know why references to scalars are different here. 2516 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 2517 if (!hasScalarEvaluationKind(ref->getPointeeType())) 2518 return args.add(RValue::getAggregate(local), type); 2519 2520 // Locals which are references to scalars are represented 2521 // with allocas holding the pointer. 2522 return args.add(RValue::get(Builder.CreateLoad(local)), type); 2523 } 2524 2525 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 2526 "cannot emit delegate call arguments for inalloca arguments!"); 2527 2528 args.add(convertTempToRValue(local, type, loc), type); 2529 } 2530 2531 static bool isProvablyNull(llvm::Value *addr) { 2532 return isa<llvm::ConstantPointerNull>(addr); 2533 } 2534 2535 static bool isProvablyNonNull(llvm::Value *addr) { 2536 return isa<llvm::AllocaInst>(addr); 2537 } 2538 2539 /// Emit the actual writing-back of a writeback. 2540 static void emitWriteback(CodeGenFunction &CGF, 2541 const CallArgList::Writeback &writeback) { 2542 const LValue &srcLV = writeback.Source; 2543 llvm::Value *srcAddr = srcLV.getAddress(); 2544 assert(!isProvablyNull(srcAddr) && 2545 "shouldn't have writeback for provably null argument"); 2546 2547 llvm::BasicBlock *contBB = nullptr; 2548 2549 // If the argument wasn't provably non-null, we need to null check 2550 // before doing the store. 2551 bool provablyNonNull = isProvablyNonNull(srcAddr); 2552 if (!provablyNonNull) { 2553 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 2554 contBB = CGF.createBasicBlock("icr.done"); 2555 2556 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 2557 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 2558 CGF.EmitBlock(writebackBB); 2559 } 2560 2561 // Load the value to writeback. 2562 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 2563 2564 // Cast it back, in case we're writing an id to a Foo* or something. 2565 value = CGF.Builder.CreateBitCast(value, 2566 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 2567 "icr.writeback-cast"); 2568 2569 // Perform the writeback. 2570 2571 // If we have a "to use" value, it's something we need to emit a use 2572 // of. This has to be carefully threaded in: if it's done after the 2573 // release it's potentially undefined behavior (and the optimizer 2574 // will ignore it), and if it happens before the retain then the 2575 // optimizer could move the release there. 2576 if (writeback.ToUse) { 2577 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 2578 2579 // Retain the new value. No need to block-copy here: the block's 2580 // being passed up the stack. 2581 value = CGF.EmitARCRetainNonBlock(value); 2582 2583 // Emit the intrinsic use here. 2584 CGF.EmitARCIntrinsicUse(writeback.ToUse); 2585 2586 // Load the old value (primitively). 2587 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 2588 2589 // Put the new value in place (primitively). 2590 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 2591 2592 // Release the old value. 2593 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 2594 2595 // Otherwise, we can just do a normal lvalue store. 2596 } else { 2597 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 2598 } 2599 2600 // Jump to the continuation block. 2601 if (!provablyNonNull) 2602 CGF.EmitBlock(contBB); 2603 } 2604 2605 static void emitWritebacks(CodeGenFunction &CGF, 2606 const CallArgList &args) { 2607 for (const auto &I : args.writebacks()) 2608 emitWriteback(CGF, I); 2609 } 2610 2611 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 2612 const CallArgList &CallArgs) { 2613 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 2614 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 2615 CallArgs.getCleanupsToDeactivate(); 2616 // Iterate in reverse to increase the likelihood of popping the cleanup. 2617 for (const auto &I : llvm::reverse(Cleanups)) { 2618 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 2619 I.IsActiveIP->eraseFromParent(); 2620 } 2621 } 2622 2623 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 2624 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 2625 if (uop->getOpcode() == UO_AddrOf) 2626 return uop->getSubExpr(); 2627 return nullptr; 2628 } 2629 2630 /// Emit an argument that's being passed call-by-writeback. That is, 2631 /// we are passing the address of 2632 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 2633 const ObjCIndirectCopyRestoreExpr *CRE) { 2634 LValue srcLV; 2635 2636 // Make an optimistic effort to emit the address as an l-value. 2637 // This can fail if the argument expression is more complicated. 2638 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 2639 srcLV = CGF.EmitLValue(lvExpr); 2640 2641 // Otherwise, just emit it as a scalar. 2642 } else { 2643 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 2644 2645 QualType srcAddrType = 2646 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 2647 srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType); 2648 } 2649 llvm::Value *srcAddr = srcLV.getAddress(); 2650 2651 // The dest and src types don't necessarily match in LLVM terms 2652 // because of the crazy ObjC compatibility rules. 2653 2654 llvm::PointerType *destType = 2655 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 2656 2657 // If the address is a constant null, just pass the appropriate null. 2658 if (isProvablyNull(srcAddr)) { 2659 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 2660 CRE->getType()); 2661 return; 2662 } 2663 2664 // Create the temporary. 2665 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 2666 "icr.temp"); 2667 // Loading an l-value can introduce a cleanup if the l-value is __weak, 2668 // and that cleanup will be conditional if we can't prove that the l-value 2669 // isn't null, so we need to register a dominating point so that the cleanups 2670 // system will make valid IR. 2671 CodeGenFunction::ConditionalEvaluation condEval(CGF); 2672 2673 // Zero-initialize it if we're not doing a copy-initialization. 2674 bool shouldCopy = CRE->shouldCopy(); 2675 if (!shouldCopy) { 2676 llvm::Value *null = 2677 llvm::ConstantPointerNull::get( 2678 cast<llvm::PointerType>(destType->getElementType())); 2679 CGF.Builder.CreateStore(null, temp); 2680 } 2681 2682 llvm::BasicBlock *contBB = nullptr; 2683 llvm::BasicBlock *originBB = nullptr; 2684 2685 // If the address is *not* known to be non-null, we need to switch. 2686 llvm::Value *finalArgument; 2687 2688 bool provablyNonNull = isProvablyNonNull(srcAddr); 2689 if (provablyNonNull) { 2690 finalArgument = temp; 2691 } else { 2692 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 2693 2694 finalArgument = CGF.Builder.CreateSelect(isNull, 2695 llvm::ConstantPointerNull::get(destType), 2696 temp, "icr.argument"); 2697 2698 // If we need to copy, then the load has to be conditional, which 2699 // means we need control flow. 2700 if (shouldCopy) { 2701 originBB = CGF.Builder.GetInsertBlock(); 2702 contBB = CGF.createBasicBlock("icr.cont"); 2703 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 2704 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 2705 CGF.EmitBlock(copyBB); 2706 condEval.begin(CGF); 2707 } 2708 } 2709 2710 llvm::Value *valueToUse = nullptr; 2711 2712 // Perform a copy if necessary. 2713 if (shouldCopy) { 2714 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 2715 assert(srcRV.isScalar()); 2716 2717 llvm::Value *src = srcRV.getScalarVal(); 2718 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 2719 "icr.cast"); 2720 2721 // Use an ordinary store, not a store-to-lvalue. 2722 CGF.Builder.CreateStore(src, temp); 2723 2724 // If optimization is enabled, and the value was held in a 2725 // __strong variable, we need to tell the optimizer that this 2726 // value has to stay alive until we're doing the store back. 2727 // This is because the temporary is effectively unretained, 2728 // and so otherwise we can violate the high-level semantics. 2729 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 2730 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 2731 valueToUse = src; 2732 } 2733 } 2734 2735 // Finish the control flow if we needed it. 2736 if (shouldCopy && !provablyNonNull) { 2737 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 2738 CGF.EmitBlock(contBB); 2739 2740 // Make a phi for the value to intrinsically use. 2741 if (valueToUse) { 2742 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 2743 "icr.to-use"); 2744 phiToUse->addIncoming(valueToUse, copyBB); 2745 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 2746 originBB); 2747 valueToUse = phiToUse; 2748 } 2749 2750 condEval.end(CGF); 2751 } 2752 2753 args.addWriteback(srcLV, temp, valueToUse); 2754 args.add(RValue::get(finalArgument), CRE->getType()); 2755 } 2756 2757 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 2758 assert(!StackBase && !StackCleanup.isValid()); 2759 2760 // Save the stack. 2761 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 2762 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 2763 2764 // Control gets really tied up in landing pads, so we have to spill the 2765 // stacksave to an alloca to avoid violating SSA form. 2766 // TODO: This is dead if we never emit the cleanup. We should create the 2767 // alloca and store lazily on the first cleanup emission. 2768 StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem"); 2769 CGF.Builder.CreateStore(StackBase, StackBaseMem); 2770 CGF.pushStackRestore(EHCleanup, StackBaseMem); 2771 StackCleanup = CGF.EHStack.getInnermostEHScope(); 2772 assert(StackCleanup.isValid()); 2773 } 2774 2775 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 2776 if (StackBase) { 2777 CGF.DeactivateCleanupBlock(StackCleanup, StackBase); 2778 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 2779 // We could load StackBase from StackBaseMem, but in the non-exceptional 2780 // case we can skip it. 2781 CGF.Builder.CreateCall(F, StackBase); 2782 } 2783 } 2784 2785 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 2786 SourceLocation ArgLoc, 2787 const FunctionDecl *FD, 2788 unsigned ParmNum) { 2789 if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD) 2790 return; 2791 auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr; 2792 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 2793 auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo); 2794 if (!NNAttr) 2795 return; 2796 SanitizerScope SanScope(this); 2797 assert(RV.isScalar()); 2798 llvm::Value *V = RV.getScalarVal(); 2799 llvm::Value *Cond = 2800 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 2801 llvm::Constant *StaticData[] = { 2802 EmitCheckSourceLocation(ArgLoc), 2803 EmitCheckSourceLocation(NNAttr->getLocation()), 2804 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 2805 }; 2806 EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute), 2807 "nonnull_arg", StaticData, None); 2808 } 2809 2810 void CodeGenFunction::EmitCallArgs( 2811 CallArgList &Args, ArrayRef<QualType> ArgTypes, 2812 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 2813 const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) { 2814 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 2815 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 2816 // because arguments are destroyed left to right in the callee. 2817 if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2818 // Insert a stack save if we're going to need any inalloca args. 2819 bool HasInAllocaArgs = false; 2820 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 2821 I != E && !HasInAllocaArgs; ++I) 2822 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 2823 if (HasInAllocaArgs) { 2824 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 2825 Args.allocateArgumentMemory(*this); 2826 } 2827 2828 // Evaluate each argument. 2829 size_t CallArgsStart = Args.size(); 2830 for (int I = ArgTypes.size() - 1; I >= 0; --I) { 2831 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 2832 EmitCallArg(Args, *Arg, ArgTypes[I]); 2833 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 2834 CalleeDecl, ParamsToSkip + I); 2835 } 2836 2837 // Un-reverse the arguments we just evaluated so they match up with the LLVM 2838 // IR function. 2839 std::reverse(Args.begin() + CallArgsStart, Args.end()); 2840 return; 2841 } 2842 2843 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 2844 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 2845 assert(Arg != ArgRange.end()); 2846 EmitCallArg(Args, *Arg, ArgTypes[I]); 2847 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 2848 CalleeDecl, ParamsToSkip + I); 2849 } 2850 } 2851 2852 namespace { 2853 2854 struct DestroyUnpassedArg : EHScopeStack::Cleanup { 2855 DestroyUnpassedArg(llvm::Value *Addr, QualType Ty) 2856 : Addr(Addr), Ty(Ty) {} 2857 2858 llvm::Value *Addr; 2859 QualType Ty; 2860 2861 void Emit(CodeGenFunction &CGF, Flags flags) override { 2862 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 2863 assert(!Dtor->isTrivial()); 2864 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 2865 /*Delegating=*/false, Addr); 2866 } 2867 }; 2868 2869 } 2870 2871 struct DisableDebugLocationUpdates { 2872 CodeGenFunction &CGF; 2873 bool disabledDebugInfo; 2874 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 2875 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 2876 CGF.disableDebugInfo(); 2877 } 2878 ~DisableDebugLocationUpdates() { 2879 if (disabledDebugInfo) 2880 CGF.enableDebugInfo(); 2881 } 2882 }; 2883 2884 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 2885 QualType type) { 2886 DisableDebugLocationUpdates Dis(*this, E); 2887 if (const ObjCIndirectCopyRestoreExpr *CRE 2888 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 2889 assert(getLangOpts().ObjCAutoRefCount); 2890 assert(getContext().hasSameType(E->getType(), type)); 2891 return emitWritebackArg(*this, args, CRE); 2892 } 2893 2894 assert(type->isReferenceType() == E->isGLValue() && 2895 "reference binding to unmaterialized r-value!"); 2896 2897 if (E->isGLValue()) { 2898 assert(E->getObjectKind() == OK_Ordinary); 2899 return args.add(EmitReferenceBindingToExpr(E), type); 2900 } 2901 2902 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 2903 2904 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 2905 // However, we still have to push an EH-only cleanup in case we unwind before 2906 // we make it to the call. 2907 if (HasAggregateEvalKind && 2908 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2909 // If we're using inalloca, use the argument memory. Otherwise, use a 2910 // temporary. 2911 AggValueSlot Slot; 2912 if (args.isUsingInAlloca()) 2913 Slot = createPlaceholderSlot(*this, type); 2914 else 2915 Slot = CreateAggTemp(type, "agg.tmp"); 2916 2917 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2918 bool DestroyedInCallee = 2919 RD && RD->hasNonTrivialDestructor() && 2920 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 2921 if (DestroyedInCallee) 2922 Slot.setExternallyDestructed(); 2923 2924 EmitAggExpr(E, Slot); 2925 RValue RV = Slot.asRValue(); 2926 args.add(RV, type); 2927 2928 if (DestroyedInCallee) { 2929 // Create a no-op GEP between the placeholder and the cleanup so we can 2930 // RAUW it successfully. It also serves as a marker of the first 2931 // instruction where the cleanup is active. 2932 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type); 2933 // This unreachable is a temporary marker which will be removed later. 2934 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 2935 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 2936 } 2937 return; 2938 } 2939 2940 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 2941 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 2942 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 2943 assert(L.isSimple()); 2944 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 2945 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 2946 } else { 2947 // We can't represent a misaligned lvalue in the CallArgList, so copy 2948 // to an aligned temporary now. 2949 llvm::Value *tmp = CreateMemTemp(type); 2950 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(), 2951 L.getAlignment()); 2952 args.add(RValue::getAggregate(tmp), type); 2953 } 2954 return; 2955 } 2956 2957 args.add(EmitAnyExprToTemp(E), type); 2958 } 2959 2960 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 2961 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 2962 // implicitly widens null pointer constants that are arguments to varargs 2963 // functions to pointer-sized ints. 2964 if (!getTarget().getTriple().isOSWindows()) 2965 return Arg->getType(); 2966 2967 if (Arg->getType()->isIntegerType() && 2968 getContext().getTypeSize(Arg->getType()) < 2969 getContext().getTargetInfo().getPointerWidth(0) && 2970 Arg->isNullPointerConstant(getContext(), 2971 Expr::NPC_ValueDependentIsNotNull)) { 2972 return getContext().getIntPtrType(); 2973 } 2974 2975 return Arg->getType(); 2976 } 2977 2978 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2979 // optimizer it can aggressively ignore unwind edges. 2980 void 2981 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 2982 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 2983 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 2984 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 2985 CGM.getNoObjCARCExceptionsMetadata()); 2986 } 2987 2988 /// Emits a call to the given no-arguments nounwind runtime function. 2989 llvm::CallInst * 2990 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2991 const llvm::Twine &name) { 2992 return EmitNounwindRuntimeCall(callee, None, name); 2993 } 2994 2995 /// Emits a call to the given nounwind runtime function. 2996 llvm::CallInst * 2997 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2998 ArrayRef<llvm::Value*> args, 2999 const llvm::Twine &name) { 3000 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3001 call->setDoesNotThrow(); 3002 return call; 3003 } 3004 3005 /// Emits a simple call (never an invoke) to the given no-arguments 3006 /// runtime function. 3007 llvm::CallInst * 3008 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3009 const llvm::Twine &name) { 3010 return EmitRuntimeCall(callee, None, name); 3011 } 3012 3013 /// Emits a simple call (never an invoke) to the given runtime 3014 /// function. 3015 llvm::CallInst * 3016 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3017 ArrayRef<llvm::Value*> args, 3018 const llvm::Twine &name) { 3019 llvm::CallInst *call = Builder.CreateCall(callee, args, name); 3020 call->setCallingConv(getRuntimeCC()); 3021 return call; 3022 } 3023 3024 /// Emits a call or invoke to the given noreturn runtime function. 3025 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3026 ArrayRef<llvm::Value*> args) { 3027 if (getInvokeDest()) { 3028 llvm::InvokeInst *invoke = 3029 Builder.CreateInvoke(callee, 3030 getUnreachableBlock(), 3031 getInvokeDest(), 3032 args); 3033 invoke->setDoesNotReturn(); 3034 invoke->setCallingConv(getRuntimeCC()); 3035 } else { 3036 llvm::CallInst *call = Builder.CreateCall(callee, args); 3037 call->setDoesNotReturn(); 3038 call->setCallingConv(getRuntimeCC()); 3039 Builder.CreateUnreachable(); 3040 } 3041 } 3042 3043 /// Emits a call or invoke instruction to the given nullary runtime 3044 /// function. 3045 llvm::CallSite 3046 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3047 const Twine &name) { 3048 return EmitRuntimeCallOrInvoke(callee, None, name); 3049 } 3050 3051 /// Emits a call or invoke instruction to the given runtime function. 3052 llvm::CallSite 3053 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3054 ArrayRef<llvm::Value*> args, 3055 const Twine &name) { 3056 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3057 callSite.setCallingConv(getRuntimeCC()); 3058 return callSite; 3059 } 3060 3061 llvm::CallSite 3062 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3063 const Twine &Name) { 3064 return EmitCallOrInvoke(Callee, None, Name); 3065 } 3066 3067 /// Emits a call or invoke instruction to the given function, depending 3068 /// on the current state of the EH stack. 3069 llvm::CallSite 3070 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3071 ArrayRef<llvm::Value *> Args, 3072 const Twine &Name) { 3073 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3074 3075 llvm::Instruction *Inst; 3076 if (!InvokeDest) 3077 Inst = Builder.CreateCall(Callee, Args, Name); 3078 else { 3079 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3080 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 3081 EmitBlock(ContBB); 3082 } 3083 3084 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3085 // optimizer it can aggressively ignore unwind edges. 3086 if (CGM.getLangOpts().ObjCAutoRefCount) 3087 AddObjCARCExceptionMetadata(Inst); 3088 3089 return llvm::CallSite(Inst); 3090 } 3091 3092 /// \brief Store a non-aggregate value to an address to initialize it. For 3093 /// initialization, a non-atomic store will be used. 3094 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3095 LValue Dst) { 3096 if (Src.isScalar()) 3097 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3098 else 3099 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3100 } 3101 3102 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3103 llvm::Value *New) { 3104 DeferredReplacements.push_back(std::make_pair(Old, New)); 3105 } 3106 3107 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3108 llvm::Value *Callee, 3109 ReturnValueSlot ReturnValue, 3110 const CallArgList &CallArgs, 3111 const Decl *TargetDecl, 3112 llvm::Instruction **callOrInvoke) { 3113 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3114 3115 // Handle struct-return functions by passing a pointer to the 3116 // location that we would like to return into. 3117 QualType RetTy = CallInfo.getReturnType(); 3118 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3119 3120 llvm::FunctionType *IRFuncTy = 3121 cast<llvm::FunctionType>( 3122 cast<llvm::PointerType>(Callee->getType())->getElementType()); 3123 3124 // If we're using inalloca, insert the allocation after the stack save. 3125 // FIXME: Do this earlier rather than hacking it in here! 3126 llvm::AllocaInst *ArgMemory = nullptr; 3127 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3128 llvm::Instruction *IP = CallArgs.getStackBase(); 3129 llvm::AllocaInst *AI; 3130 if (IP) { 3131 IP = IP->getNextNode(); 3132 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP); 3133 } else { 3134 AI = CreateTempAlloca(ArgStruct, "argmem"); 3135 } 3136 AI->setUsedWithInAlloca(true); 3137 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3138 ArgMemory = AI; 3139 } 3140 3141 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3142 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3143 3144 // If the call returns a temporary with struct return, create a temporary 3145 // alloca to hold the result, unless one is given to us. 3146 llvm::Value *SRetPtr = nullptr; 3147 size_t UnusedReturnSize = 0; 3148 if (RetAI.isIndirect() || RetAI.isInAlloca()) { 3149 SRetPtr = ReturnValue.getValue(); 3150 if (!SRetPtr) { 3151 SRetPtr = CreateMemTemp(RetTy); 3152 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3153 uint64_t size = 3154 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3155 if (EmitLifetimeStart(size, SRetPtr)) 3156 UnusedReturnSize = size; 3157 } 3158 } 3159 if (IRFunctionArgs.hasSRetArg()) { 3160 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr; 3161 } else { 3162 llvm::Value *Addr = 3163 Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory, 3164 RetAI.getInAllocaFieldIndex()); 3165 Builder.CreateStore(SRetPtr, Addr); 3166 } 3167 } 3168 3169 assert(CallInfo.arg_size() == CallArgs.size() && 3170 "Mismatch between function signature & arguments."); 3171 unsigned ArgNo = 0; 3172 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3173 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3174 I != E; ++I, ++info_it, ++ArgNo) { 3175 const ABIArgInfo &ArgInfo = info_it->info; 3176 RValue RV = I->RV; 3177 3178 CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty); 3179 3180 // Insert a padding argument to ensure proper alignment. 3181 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3182 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3183 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3184 3185 unsigned FirstIRArg, NumIRArgs; 3186 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3187 3188 switch (ArgInfo.getKind()) { 3189 case ABIArgInfo::InAlloca: { 3190 assert(NumIRArgs == 0); 3191 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3192 if (RV.isAggregate()) { 3193 // Replace the placeholder with the appropriate argument slot GEP. 3194 llvm::Instruction *Placeholder = 3195 cast<llvm::Instruction>(RV.getAggregateAddr()); 3196 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3197 Builder.SetInsertPoint(Placeholder); 3198 llvm::Value *Addr = 3199 Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory, 3200 ArgInfo.getInAllocaFieldIndex()); 3201 Builder.restoreIP(IP); 3202 deferPlaceholderReplacement(Placeholder, Addr); 3203 } else { 3204 // Store the RValue into the argument struct. 3205 llvm::Value *Addr = 3206 Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory, 3207 ArgInfo.getInAllocaFieldIndex()); 3208 unsigned AS = Addr->getType()->getPointerAddressSpace(); 3209 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3210 // There are some cases where a trivial bitcast is not avoidable. The 3211 // definition of a type later in a translation unit may change it's type 3212 // from {}* to (%struct.foo*)*. 3213 if (Addr->getType() != MemType) 3214 Addr = Builder.CreateBitCast(Addr, MemType); 3215 LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign); 3216 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3217 } 3218 break; 3219 } 3220 3221 case ABIArgInfo::Indirect: { 3222 assert(NumIRArgs == 1); 3223 if (RV.isScalar() || RV.isComplex()) { 3224 // Make a temporary alloca to pass the argument. 3225 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 3226 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 3227 AI->setAlignment(ArgInfo.getIndirectAlign()); 3228 IRCallArgs[FirstIRArg] = AI; 3229 3230 LValue argLV = MakeAddrLValue(AI, I->Ty, TypeAlign); 3231 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3232 } else { 3233 // We want to avoid creating an unnecessary temporary+copy here; 3234 // however, we need one in three cases: 3235 // 1. If the argument is not byval, and we are required to copy the 3236 // source. (This case doesn't occur on any common architecture.) 3237 // 2. If the argument is byval, RV is not sufficiently aligned, and 3238 // we cannot force it to be sufficiently aligned. 3239 // 3. If the argument is byval, but RV is located in an address space 3240 // different than that of the argument (0). 3241 llvm::Value *Addr = RV.getAggregateAddr(); 3242 unsigned Align = ArgInfo.getIndirectAlign(); 3243 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3244 const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace(); 3245 const unsigned ArgAddrSpace = 3246 (FirstIRArg < IRFuncTy->getNumParams() 3247 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3248 : 0); 3249 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3250 (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align && 3251 llvm::getOrEnforceKnownAlignment(Addr, Align, *TD) < Align) || 3252 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3253 // Create an aligned temporary, and copy to it. 3254 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 3255 if (Align > AI->getAlignment()) 3256 AI->setAlignment(Align); 3257 IRCallArgs[FirstIRArg] = AI; 3258 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3259 } else { 3260 // Skip the extra memcpy call. 3261 IRCallArgs[FirstIRArg] = Addr; 3262 } 3263 } 3264 break; 3265 } 3266 3267 case ABIArgInfo::Ignore: 3268 assert(NumIRArgs == 0); 3269 break; 3270 3271 case ABIArgInfo::Extend: 3272 case ABIArgInfo::Direct: { 3273 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3274 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3275 ArgInfo.getDirectOffset() == 0) { 3276 assert(NumIRArgs == 1); 3277 llvm::Value *V; 3278 if (RV.isScalar()) 3279 V = RV.getScalarVal(); 3280 else 3281 V = Builder.CreateLoad(RV.getAggregateAddr()); 3282 3283 // We might have to widen integers, but we should never truncate. 3284 if (ArgInfo.getCoerceToType() != V->getType() && 3285 V->getType()->isIntegerTy()) 3286 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3287 3288 // If the argument doesn't match, perform a bitcast to coerce it. This 3289 // can happen due to trivial type mismatches. 3290 if (FirstIRArg < IRFuncTy->getNumParams() && 3291 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3292 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3293 IRCallArgs[FirstIRArg] = V; 3294 break; 3295 } 3296 3297 // FIXME: Avoid the conversion through memory if possible. 3298 llvm::Value *SrcPtr; 3299 CharUnits SrcAlign; 3300 if (RV.isScalar() || RV.isComplex()) { 3301 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 3302 SrcAlign = TypeAlign; 3303 LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign); 3304 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3305 } else { 3306 SrcPtr = RV.getAggregateAddr(); 3307 // This alignment is guaranteed by EmitCallArg. 3308 SrcAlign = TypeAlign; 3309 } 3310 3311 // If the value is offset in memory, apply the offset now. 3312 if (unsigned Offs = ArgInfo.getDirectOffset()) { 3313 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 3314 SrcPtr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), SrcPtr, Offs); 3315 SrcPtr = Builder.CreateBitCast(SrcPtr, 3316 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 3317 SrcAlign = SrcAlign.alignmentAtOffset(CharUnits::fromQuantity(Offs)); 3318 } 3319 3320 // Fast-isel and the optimizer generally like scalar values better than 3321 // FCAs, so we flatten them if this is safe to do for this argument. 3322 llvm::StructType *STy = 3323 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3324 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3325 llvm::Type *SrcTy = 3326 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 3327 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3328 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3329 3330 // If the source type is smaller than the destination type of the 3331 // coerce-to logic, copy the source value into a temp alloca the size 3332 // of the destination type to allow loading all of it. The bits past 3333 // the source value are left undef. 3334 if (SrcSize < DstSize) { 3335 llvm::AllocaInst *TempAlloca 3336 = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce"); 3337 Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0); 3338 SrcPtr = TempAlloca; 3339 } else { 3340 SrcPtr = Builder.CreateBitCast(SrcPtr, 3341 llvm::PointerType::getUnqual(STy)); 3342 } 3343 3344 assert(NumIRArgs == STy->getNumElements()); 3345 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3346 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, SrcPtr, 0, i); 3347 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 3348 // We don't know what we're loading from. 3349 LI->setAlignment(1); 3350 IRCallArgs[FirstIRArg + i] = LI; 3351 } 3352 } else { 3353 // In the simple case, just pass the coerced loaded value. 3354 assert(NumIRArgs == 1); 3355 IRCallArgs[FirstIRArg] = 3356 CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 3357 SrcAlign, *this); 3358 } 3359 3360 break; 3361 } 3362 3363 case ABIArgInfo::Expand: 3364 unsigned IRArgPos = FirstIRArg; 3365 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 3366 assert(IRArgPos == FirstIRArg + NumIRArgs); 3367 break; 3368 } 3369 } 3370 3371 if (ArgMemory) { 3372 llvm::Value *Arg = ArgMemory; 3373 if (CallInfo.isVariadic()) { 3374 // When passing non-POD arguments by value to variadic functions, we will 3375 // end up with a variadic prototype and an inalloca call site. In such 3376 // cases, we can't do any parameter mismatch checks. Give up and bitcast 3377 // the callee. 3378 unsigned CalleeAS = 3379 cast<llvm::PointerType>(Callee->getType())->getAddressSpace(); 3380 Callee = Builder.CreateBitCast( 3381 Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS)); 3382 } else { 3383 llvm::Type *LastParamTy = 3384 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 3385 if (Arg->getType() != LastParamTy) { 3386 #ifndef NDEBUG 3387 // Assert that these structs have equivalent element types. 3388 llvm::StructType *FullTy = CallInfo.getArgStruct(); 3389 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 3390 cast<llvm::PointerType>(LastParamTy)->getElementType()); 3391 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 3392 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 3393 DE = DeclaredTy->element_end(), 3394 FI = FullTy->element_begin(); 3395 DI != DE; ++DI, ++FI) 3396 assert(*DI == *FI); 3397 #endif 3398 Arg = Builder.CreateBitCast(Arg, LastParamTy); 3399 } 3400 } 3401 assert(IRFunctionArgs.hasInallocaArg()); 3402 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 3403 } 3404 3405 if (!CallArgs.getCleanupsToDeactivate().empty()) 3406 deactivateArgCleanupsBeforeCall(*this, CallArgs); 3407 3408 // If the callee is a bitcast of a function to a varargs pointer to function 3409 // type, check to see if we can remove the bitcast. This handles some cases 3410 // with unprototyped functions. 3411 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 3412 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 3413 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 3414 llvm::FunctionType *CurFT = 3415 cast<llvm::FunctionType>(CurPT->getElementType()); 3416 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 3417 3418 if (CE->getOpcode() == llvm::Instruction::BitCast && 3419 ActualFT->getReturnType() == CurFT->getReturnType() && 3420 ActualFT->getNumParams() == CurFT->getNumParams() && 3421 ActualFT->getNumParams() == IRCallArgs.size() && 3422 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 3423 bool ArgsMatch = true; 3424 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 3425 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 3426 ArgsMatch = false; 3427 break; 3428 } 3429 3430 // Strip the cast if we can get away with it. This is a nice cleanup, 3431 // but also allows us to inline the function at -O0 if it is marked 3432 // always_inline. 3433 if (ArgsMatch) 3434 Callee = CalleeF; 3435 } 3436 } 3437 3438 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 3439 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 3440 // Inalloca argument can have different type. 3441 if (IRFunctionArgs.hasInallocaArg() && 3442 i == IRFunctionArgs.getInallocaArgNo()) 3443 continue; 3444 if (i < IRFuncTy->getNumParams()) 3445 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 3446 } 3447 3448 unsigned CallingConv; 3449 CodeGen::AttributeListType AttributeList; 3450 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, 3451 CallingConv, true); 3452 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 3453 AttributeList); 3454 3455 llvm::BasicBlock *InvokeDest = nullptr; 3456 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 3457 llvm::Attribute::NoUnwind) || 3458 currentFunctionUsesSEHTry()) 3459 InvokeDest = getInvokeDest(); 3460 3461 llvm::CallSite CS; 3462 if (!InvokeDest) { 3463 CS = Builder.CreateCall(Callee, IRCallArgs); 3464 } else { 3465 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 3466 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs); 3467 EmitBlock(Cont); 3468 } 3469 if (callOrInvoke) 3470 *callOrInvoke = CS.getInstruction(); 3471 3472 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 3473 !CS.hasFnAttr(llvm::Attribute::NoInline)) 3474 Attrs = 3475 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3476 llvm::Attribute::AlwaysInline); 3477 3478 // Disable inlining inside SEH __try blocks. 3479 if (isSEHTryScope()) 3480 Attrs = 3481 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3482 llvm::Attribute::NoInline); 3483 3484 CS.setAttributes(Attrs); 3485 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 3486 3487 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3488 // optimizer it can aggressively ignore unwind edges. 3489 if (CGM.getLangOpts().ObjCAutoRefCount) 3490 AddObjCARCExceptionMetadata(CS.getInstruction()); 3491 3492 // If the call doesn't return, finish the basic block and clear the 3493 // insertion point; this allows the rest of IRgen to discard 3494 // unreachable code. 3495 if (CS.doesNotReturn()) { 3496 if (UnusedReturnSize) 3497 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3498 SRetPtr); 3499 3500 Builder.CreateUnreachable(); 3501 Builder.ClearInsertionPoint(); 3502 3503 // FIXME: For now, emit a dummy basic block because expr emitters in 3504 // generally are not ready to handle emitting expressions at unreachable 3505 // points. 3506 EnsureInsertPoint(); 3507 3508 // Return a reasonable RValue. 3509 return GetUndefRValue(RetTy); 3510 } 3511 3512 llvm::Instruction *CI = CS.getInstruction(); 3513 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 3514 CI->setName("call"); 3515 3516 // Emit any writebacks immediately. Arguably this should happen 3517 // after any return-value munging. 3518 if (CallArgs.hasWritebacks()) 3519 emitWritebacks(*this, CallArgs); 3520 3521 // The stack cleanup for inalloca arguments has to run out of the normal 3522 // lexical order, so deactivate it and run it manually here. 3523 CallArgs.freeArgumentMemory(*this); 3524 3525 RValue Ret = [&] { 3526 switch (RetAI.getKind()) { 3527 case ABIArgInfo::InAlloca: 3528 case ABIArgInfo::Indirect: { 3529 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 3530 if (UnusedReturnSize) 3531 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3532 SRetPtr); 3533 return ret; 3534 } 3535 3536 case ABIArgInfo::Ignore: 3537 // If we are ignoring an argument that had a result, make sure to 3538 // construct the appropriate return value for our caller. 3539 return GetUndefRValue(RetTy); 3540 3541 case ABIArgInfo::Extend: 3542 case ABIArgInfo::Direct: { 3543 llvm::Type *RetIRTy = ConvertType(RetTy); 3544 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 3545 switch (getEvaluationKind(RetTy)) { 3546 case TEK_Complex: { 3547 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 3548 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 3549 return RValue::getComplex(std::make_pair(Real, Imag)); 3550 } 3551 case TEK_Aggregate: { 3552 llvm::Value *DestPtr = ReturnValue.getValue(); 3553 bool DestIsVolatile = ReturnValue.isVolatile(); 3554 CharUnits DestAlign = getContext().getTypeAlignInChars(RetTy); 3555 3556 if (!DestPtr) { 3557 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 3558 DestIsVolatile = false; 3559 } 3560 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, DestAlign); 3561 return RValue::getAggregate(DestPtr); 3562 } 3563 case TEK_Scalar: { 3564 // If the argument doesn't match, perform a bitcast to coerce it. This 3565 // can happen due to trivial type mismatches. 3566 llvm::Value *V = CI; 3567 if (V->getType() != RetIRTy) 3568 V = Builder.CreateBitCast(V, RetIRTy); 3569 return RValue::get(V); 3570 } 3571 } 3572 llvm_unreachable("bad evaluation kind"); 3573 } 3574 3575 llvm::Value *DestPtr = ReturnValue.getValue(); 3576 bool DestIsVolatile = ReturnValue.isVolatile(); 3577 CharUnits DestAlign = getContext().getTypeAlignInChars(RetTy); 3578 3579 if (!DestPtr) { 3580 DestPtr = CreateMemTemp(RetTy, "coerce"); 3581 DestIsVolatile = false; 3582 } 3583 3584 // If the value is offset in memory, apply the offset now. 3585 llvm::Value *StorePtr = DestPtr; 3586 CharUnits StoreAlign = DestAlign; 3587 if (unsigned Offs = RetAI.getDirectOffset()) { 3588 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 3589 StorePtr = 3590 Builder.CreateConstGEP1_32(Builder.getInt8Ty(), StorePtr, Offs); 3591 StorePtr = Builder.CreateBitCast(StorePtr, 3592 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 3593 StoreAlign = 3594 StoreAlign.alignmentAtOffset(CharUnits::fromQuantity(Offs)); 3595 } 3596 CreateCoercedStore(CI, StorePtr, DestIsVolatile, StoreAlign, *this); 3597 3598 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 3599 } 3600 3601 case ABIArgInfo::Expand: 3602 llvm_unreachable("Invalid ABI kind for return argument"); 3603 } 3604 3605 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 3606 } (); 3607 3608 if (Ret.isScalar() && TargetDecl) { 3609 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 3610 llvm::Value *OffsetValue = nullptr; 3611 if (const auto *Offset = AA->getOffset()) 3612 OffsetValue = EmitScalarExpr(Offset); 3613 3614 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 3615 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 3616 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 3617 OffsetValue); 3618 } 3619 } 3620 3621 return Ret; 3622 } 3623 3624 /* VarArg handling */ 3625 3626 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 3627 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 3628 } 3629