1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 using namespace clang;
43 using namespace CodeGen;
44 
45 /***/
46 
47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
48   switch (CC) {
49   default: return llvm::CallingConv::C;
50   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
51   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
52   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
53   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
54   case CC_Win64: return llvm::CallingConv::Win64;
55   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
56   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
57   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
58   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
59   // TODO: Add support for __pascal to LLVM.
60   case CC_X86Pascal: return llvm::CallingConv::C;
61   // TODO: Add support for __vectorcall to LLVM.
62   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
63   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
64   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
65   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
66   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
67   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
68   case CC_Swift: return llvm::CallingConv::Swift;
69   }
70 }
71 
72 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
73 /// qualification. Either or both of RD and MD may be null. A null RD indicates
74 /// that there is no meaningful 'this' type, and a null MD can occur when
75 /// calling a method pointer.
76 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
77                                          const CXXMethodDecl *MD) {
78   QualType RecTy;
79   if (RD)
80     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
81   else
82     RecTy = Context.VoidTy;
83 
84   if (MD)
85     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
86   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
87 }
88 
89 /// Returns the canonical formal type of the given C++ method.
90 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
91   return MD->getType()->getCanonicalTypeUnqualified()
92            .getAs<FunctionProtoType>();
93 }
94 
95 /// Returns the "extra-canonicalized" return type, which discards
96 /// qualifiers on the return type.  Codegen doesn't care about them,
97 /// and it makes ABI code a little easier to be able to assume that
98 /// all parameter and return types are top-level unqualified.
99 static CanQualType GetReturnType(QualType RetTy) {
100   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
101 }
102 
103 /// Arrange the argument and result information for a value of the given
104 /// unprototyped freestanding function type.
105 const CGFunctionInfo &
106 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
107   // When translating an unprototyped function type, always use a
108   // variadic type.
109   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
110                                  /*instanceMethod=*/false,
111                                  /*chainCall=*/false, None,
112                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
113 }
114 
115 static void addExtParameterInfosForCall(
116          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
117                                         const FunctionProtoType *proto,
118                                         unsigned prefixArgs,
119                                         unsigned totalArgs) {
120   assert(proto->hasExtParameterInfos());
121   assert(paramInfos.size() <= prefixArgs);
122   assert(proto->getNumParams() + prefixArgs <= totalArgs);
123 
124   paramInfos.reserve(totalArgs);
125 
126   // Add default infos for any prefix args that don't already have infos.
127   paramInfos.resize(prefixArgs);
128 
129   // Add infos for the prototype.
130   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
131     paramInfos.push_back(ParamInfo);
132     // pass_object_size params have no parameter info.
133     if (ParamInfo.hasPassObjectSize())
134       paramInfos.emplace_back();
135   }
136 
137   assert(paramInfos.size() <= totalArgs &&
138          "Did we forget to insert pass_object_size args?");
139   // Add default infos for the variadic and/or suffix arguments.
140   paramInfos.resize(totalArgs);
141 }
142 
143 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
144 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
145 static void appendParameterTypes(const CodeGenTypes &CGT,
146                                  SmallVectorImpl<CanQualType> &prefix,
147               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
148                                  CanQual<FunctionProtoType> FPT) {
149   // Fast path: don't touch param info if we don't need to.
150   if (!FPT->hasExtParameterInfos()) {
151     assert(paramInfos.empty() &&
152            "We have paramInfos, but the prototype doesn't?");
153     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
154     return;
155   }
156 
157   unsigned PrefixSize = prefix.size();
158   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
159   // parameters; the only thing that can change this is the presence of
160   // pass_object_size. So, we preallocate for the common case.
161   prefix.reserve(prefix.size() + FPT->getNumParams());
162 
163   auto ExtInfos = FPT->getExtParameterInfos();
164   assert(ExtInfos.size() == FPT->getNumParams());
165   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
166     prefix.push_back(FPT->getParamType(I));
167     if (ExtInfos[I].hasPassObjectSize())
168       prefix.push_back(CGT.getContext().getSizeType());
169   }
170 
171   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
172                               prefix.size());
173 }
174 
175 /// Arrange the LLVM function layout for a value of the given function
176 /// type, on top of any implicit parameters already stored.
177 static const CGFunctionInfo &
178 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
179                         SmallVectorImpl<CanQualType> &prefix,
180                         CanQual<FunctionProtoType> FTP) {
181   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
182   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
183   // FIXME: Kill copy.
184   appendParameterTypes(CGT, prefix, paramInfos, FTP);
185   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
186 
187   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
188                                      /*chainCall=*/false, prefix,
189                                      FTP->getExtInfo(), paramInfos,
190                                      Required);
191 }
192 
193 /// Arrange the argument and result information for a value of the
194 /// given freestanding function type.
195 const CGFunctionInfo &
196 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
197   SmallVector<CanQualType, 16> argTypes;
198   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
199                                    FTP);
200 }
201 
202 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
203                                                bool IsWindows) {
204   // Set the appropriate calling convention for the Function.
205   if (D->hasAttr<StdCallAttr>())
206     return CC_X86StdCall;
207 
208   if (D->hasAttr<FastCallAttr>())
209     return CC_X86FastCall;
210 
211   if (D->hasAttr<RegCallAttr>())
212     return CC_X86RegCall;
213 
214   if (D->hasAttr<ThisCallAttr>())
215     return CC_X86ThisCall;
216 
217   if (D->hasAttr<VectorCallAttr>())
218     return CC_X86VectorCall;
219 
220   if (D->hasAttr<PascalAttr>())
221     return CC_X86Pascal;
222 
223   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
224     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
225 
226   if (D->hasAttr<AArch64VectorPcsAttr>())
227     return CC_AArch64VectorCall;
228 
229   if (D->hasAttr<IntelOclBiccAttr>())
230     return CC_IntelOclBicc;
231 
232   if (D->hasAttr<MSABIAttr>())
233     return IsWindows ? CC_C : CC_Win64;
234 
235   if (D->hasAttr<SysVABIAttr>())
236     return IsWindows ? CC_X86_64SysV : CC_C;
237 
238   if (D->hasAttr<PreserveMostAttr>())
239     return CC_PreserveMost;
240 
241   if (D->hasAttr<PreserveAllAttr>())
242     return CC_PreserveAll;
243 
244   return CC_C;
245 }
246 
247 /// Arrange the argument and result information for a call to an
248 /// unknown C++ non-static member function of the given abstract type.
249 /// (A null RD means we don't have any meaningful "this" argument type,
250 ///  so fall back to a generic pointer type).
251 /// The member function must be an ordinary function, i.e. not a
252 /// constructor or destructor.
253 const CGFunctionInfo &
254 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
255                                    const FunctionProtoType *FTP,
256                                    const CXXMethodDecl *MD) {
257   SmallVector<CanQualType, 16> argTypes;
258 
259   // Add the 'this' pointer.
260   argTypes.push_back(DeriveThisType(RD, MD));
261 
262   return ::arrangeLLVMFunctionInfo(
263       *this, true, argTypes,
264       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
265 }
266 
267 /// Set calling convention for CUDA/HIP kernel.
268 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
269                                            const FunctionDecl *FD) {
270   if (FD->hasAttr<CUDAGlobalAttr>()) {
271     const FunctionType *FT = FTy->getAs<FunctionType>();
272     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
273     FTy = FT->getCanonicalTypeUnqualified();
274   }
275 }
276 
277 /// Arrange the argument and result information for a declaration or
278 /// definition of the given C++ non-static member function.  The
279 /// member function must be an ordinary function, i.e. not a
280 /// constructor or destructor.
281 const CGFunctionInfo &
282 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
283   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
284   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
285 
286   CanQualType FT = GetFormalType(MD).getAs<Type>();
287   setCUDAKernelCallingConvention(FT, CGM, MD);
288   auto prototype = FT.getAs<FunctionProtoType>();
289 
290   if (MD->isInstance()) {
291     // The abstract case is perfectly fine.
292     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
293     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
294   }
295 
296   return arrangeFreeFunctionType(prototype);
297 }
298 
299 bool CodeGenTypes::inheritingCtorHasParams(
300     const InheritedConstructor &Inherited, CXXCtorType Type) {
301   // Parameters are unnecessary if we're constructing a base class subobject
302   // and the inherited constructor lives in a virtual base.
303   return Type == Ctor_Complete ||
304          !Inherited.getShadowDecl()->constructsVirtualBase() ||
305          !Target.getCXXABI().hasConstructorVariants();
306 }
307 
308 const CGFunctionInfo &
309 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
310   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
311 
312   SmallVector<CanQualType, 16> argTypes;
313   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
314   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
315 
316   bool PassParams = true;
317 
318   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
319     // A base class inheriting constructor doesn't get forwarded arguments
320     // needed to construct a virtual base (or base class thereof).
321     if (auto Inherited = CD->getInheritedConstructor())
322       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
323   }
324 
325   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
326 
327   // Add the formal parameters.
328   if (PassParams)
329     appendParameterTypes(*this, argTypes, paramInfos, FTP);
330 
331   CGCXXABI::AddedStructorArgCounts AddedArgs =
332       TheCXXABI.buildStructorSignature(GD, argTypes);
333   if (!paramInfos.empty()) {
334     // Note: prefix implies after the first param.
335     if (AddedArgs.Prefix)
336       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
337                         FunctionProtoType::ExtParameterInfo{});
338     if (AddedArgs.Suffix)
339       paramInfos.append(AddedArgs.Suffix,
340                         FunctionProtoType::ExtParameterInfo{});
341   }
342 
343   RequiredArgs required =
344       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
345                                       : RequiredArgs::All);
346 
347   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
348   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
349                                ? argTypes.front()
350                                : TheCXXABI.hasMostDerivedReturn(GD)
351                                      ? CGM.getContext().VoidPtrTy
352                                      : Context.VoidTy;
353   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
354                                  /*chainCall=*/false, argTypes, extInfo,
355                                  paramInfos, required);
356 }
357 
358 static SmallVector<CanQualType, 16>
359 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
360   SmallVector<CanQualType, 16> argTypes;
361   for (auto &arg : args)
362     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
363   return argTypes;
364 }
365 
366 static SmallVector<CanQualType, 16>
367 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
368   SmallVector<CanQualType, 16> argTypes;
369   for (auto &arg : args)
370     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
371   return argTypes;
372 }
373 
374 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
375 getExtParameterInfosForCall(const FunctionProtoType *proto,
376                             unsigned prefixArgs, unsigned totalArgs) {
377   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
378   if (proto->hasExtParameterInfos()) {
379     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
380   }
381   return result;
382 }
383 
384 /// Arrange a call to a C++ method, passing the given arguments.
385 ///
386 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
387 /// parameter.
388 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
389 /// args.
390 /// PassProtoArgs indicates whether `args` has args for the parameters in the
391 /// given CXXConstructorDecl.
392 const CGFunctionInfo &
393 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
394                                         const CXXConstructorDecl *D,
395                                         CXXCtorType CtorKind,
396                                         unsigned ExtraPrefixArgs,
397                                         unsigned ExtraSuffixArgs,
398                                         bool PassProtoArgs) {
399   // FIXME: Kill copy.
400   SmallVector<CanQualType, 16> ArgTypes;
401   for (const auto &Arg : args)
402     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
403 
404   // +1 for implicit this, which should always be args[0].
405   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
406 
407   CanQual<FunctionProtoType> FPT = GetFormalType(D);
408   RequiredArgs Required = PassProtoArgs
409                               ? RequiredArgs::forPrototypePlus(
410                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
411                               : RequiredArgs::All;
412 
413   GlobalDecl GD(D, CtorKind);
414   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
415                                ? ArgTypes.front()
416                                : TheCXXABI.hasMostDerivedReturn(GD)
417                                      ? CGM.getContext().VoidPtrTy
418                                      : Context.VoidTy;
419 
420   FunctionType::ExtInfo Info = FPT->getExtInfo();
421   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
422   // If the prototype args are elided, we should only have ABI-specific args,
423   // which never have param info.
424   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
425     // ABI-specific suffix arguments are treated the same as variadic arguments.
426     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
427                                 ArgTypes.size());
428   }
429   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
430                                  /*chainCall=*/false, ArgTypes, Info,
431                                  ParamInfos, Required);
432 }
433 
434 /// Arrange the argument and result information for the declaration or
435 /// definition of the given function.
436 const CGFunctionInfo &
437 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
438   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
439     if (MD->isInstance())
440       return arrangeCXXMethodDeclaration(MD);
441 
442   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
443 
444   assert(isa<FunctionType>(FTy));
445   setCUDAKernelCallingConvention(FTy, CGM, FD);
446 
447   // When declaring a function without a prototype, always use a
448   // non-variadic type.
449   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
450     return arrangeLLVMFunctionInfo(
451         noProto->getReturnType(), /*instanceMethod=*/false,
452         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
453   }
454 
455   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
456 }
457 
458 /// Arrange the argument and result information for the declaration or
459 /// definition of an Objective-C method.
460 const CGFunctionInfo &
461 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
462   // It happens that this is the same as a call with no optional
463   // arguments, except also using the formal 'self' type.
464   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
465 }
466 
467 /// Arrange the argument and result information for the function type
468 /// through which to perform a send to the given Objective-C method,
469 /// using the given receiver type.  The receiver type is not always
470 /// the 'self' type of the method or even an Objective-C pointer type.
471 /// This is *not* the right method for actually performing such a
472 /// message send, due to the possibility of optional arguments.
473 const CGFunctionInfo &
474 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
475                                               QualType receiverType) {
476   SmallVector<CanQualType, 16> argTys;
477   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
478   argTys.push_back(Context.getCanonicalParamType(receiverType));
479   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
480   // FIXME: Kill copy?
481   for (const auto *I : MD->parameters()) {
482     argTys.push_back(Context.getCanonicalParamType(I->getType()));
483     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
484         I->hasAttr<NoEscapeAttr>());
485     extParamInfos.push_back(extParamInfo);
486   }
487 
488   FunctionType::ExtInfo einfo;
489   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
490   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
491 
492   if (getContext().getLangOpts().ObjCAutoRefCount &&
493       MD->hasAttr<NSReturnsRetainedAttr>())
494     einfo = einfo.withProducesResult(true);
495 
496   RequiredArgs required =
497     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
498 
499   return arrangeLLVMFunctionInfo(
500       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
501       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
502 }
503 
504 const CGFunctionInfo &
505 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
506                                                  const CallArgList &args) {
507   auto argTypes = getArgTypesForCall(Context, args);
508   FunctionType::ExtInfo einfo;
509 
510   return arrangeLLVMFunctionInfo(
511       GetReturnType(returnType), /*instanceMethod=*/false,
512       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
513 }
514 
515 const CGFunctionInfo &
516 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
517   // FIXME: Do we need to handle ObjCMethodDecl?
518   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
519 
520   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
521       isa<CXXDestructorDecl>(GD.getDecl()))
522     return arrangeCXXStructorDeclaration(GD);
523 
524   return arrangeFunctionDeclaration(FD);
525 }
526 
527 /// Arrange a thunk that takes 'this' as the first parameter followed by
528 /// varargs.  Return a void pointer, regardless of the actual return type.
529 /// The body of the thunk will end in a musttail call to a function of the
530 /// correct type, and the caller will bitcast the function to the correct
531 /// prototype.
532 const CGFunctionInfo &
533 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
534   assert(MD->isVirtual() && "only methods have thunks");
535   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
536   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
537   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
538                                  /*chainCall=*/false, ArgTys,
539                                  FTP->getExtInfo(), {}, RequiredArgs(1));
540 }
541 
542 const CGFunctionInfo &
543 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
544                                    CXXCtorType CT) {
545   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
546 
547   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
548   SmallVector<CanQualType, 2> ArgTys;
549   const CXXRecordDecl *RD = CD->getParent();
550   ArgTys.push_back(DeriveThisType(RD, CD));
551   if (CT == Ctor_CopyingClosure)
552     ArgTys.push_back(*FTP->param_type_begin());
553   if (RD->getNumVBases() > 0)
554     ArgTys.push_back(Context.IntTy);
555   CallingConv CC = Context.getDefaultCallingConvention(
556       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
557   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
558                                  /*chainCall=*/false, ArgTys,
559                                  FunctionType::ExtInfo(CC), {},
560                                  RequiredArgs::All);
561 }
562 
563 /// Arrange a call as unto a free function, except possibly with an
564 /// additional number of formal parameters considered required.
565 static const CGFunctionInfo &
566 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
567                             CodeGenModule &CGM,
568                             const CallArgList &args,
569                             const FunctionType *fnType,
570                             unsigned numExtraRequiredArgs,
571                             bool chainCall) {
572   assert(args.size() >= numExtraRequiredArgs);
573 
574   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
575 
576   // In most cases, there are no optional arguments.
577   RequiredArgs required = RequiredArgs::All;
578 
579   // If we have a variadic prototype, the required arguments are the
580   // extra prefix plus the arguments in the prototype.
581   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
582     if (proto->isVariadic())
583       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
584 
585     if (proto->hasExtParameterInfos())
586       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
587                                   args.size());
588 
589   // If we don't have a prototype at all, but we're supposed to
590   // explicitly use the variadic convention for unprototyped calls,
591   // treat all of the arguments as required but preserve the nominal
592   // possibility of variadics.
593   } else if (CGM.getTargetCodeGenInfo()
594                 .isNoProtoCallVariadic(args,
595                                        cast<FunctionNoProtoType>(fnType))) {
596     required = RequiredArgs(args.size());
597   }
598 
599   // FIXME: Kill copy.
600   SmallVector<CanQualType, 16> argTypes;
601   for (const auto &arg : args)
602     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
603   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
604                                      /*instanceMethod=*/false, chainCall,
605                                      argTypes, fnType->getExtInfo(), paramInfos,
606                                      required);
607 }
608 
609 /// Figure out the rules for calling a function with the given formal
610 /// type using the given arguments.  The arguments are necessary
611 /// because the function might be unprototyped, in which case it's
612 /// target-dependent in crazy ways.
613 const CGFunctionInfo &
614 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
615                                       const FunctionType *fnType,
616                                       bool chainCall) {
617   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
618                                      chainCall ? 1 : 0, chainCall);
619 }
620 
621 /// A block function is essentially a free function with an
622 /// extra implicit argument.
623 const CGFunctionInfo &
624 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
625                                        const FunctionType *fnType) {
626   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
627                                      /*chainCall=*/false);
628 }
629 
630 const CGFunctionInfo &
631 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
632                                               const FunctionArgList &params) {
633   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
634   auto argTypes = getArgTypesForDeclaration(Context, params);
635 
636   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
637                                  /*instanceMethod*/ false, /*chainCall*/ false,
638                                  argTypes, proto->getExtInfo(), paramInfos,
639                                  RequiredArgs::forPrototypePlus(proto, 1));
640 }
641 
642 const CGFunctionInfo &
643 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
644                                          const CallArgList &args) {
645   // FIXME: Kill copy.
646   SmallVector<CanQualType, 16> argTypes;
647   for (const auto &Arg : args)
648     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
649   return arrangeLLVMFunctionInfo(
650       GetReturnType(resultType), /*instanceMethod=*/false,
651       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
652       /*paramInfos=*/ {}, RequiredArgs::All);
653 }
654 
655 const CGFunctionInfo &
656 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
657                                                 const FunctionArgList &args) {
658   auto argTypes = getArgTypesForDeclaration(Context, args);
659 
660   return arrangeLLVMFunctionInfo(
661       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
662       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
663 }
664 
665 const CGFunctionInfo &
666 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
667                                               ArrayRef<CanQualType> argTypes) {
668   return arrangeLLVMFunctionInfo(
669       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
670       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
671 }
672 
673 /// Arrange a call to a C++ method, passing the given arguments.
674 ///
675 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
676 /// does not count `this`.
677 const CGFunctionInfo &
678 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
679                                    const FunctionProtoType *proto,
680                                    RequiredArgs required,
681                                    unsigned numPrefixArgs) {
682   assert(numPrefixArgs + 1 <= args.size() &&
683          "Emitting a call with less args than the required prefix?");
684   // Add one to account for `this`. It's a bit awkward here, but we don't count
685   // `this` in similar places elsewhere.
686   auto paramInfos =
687     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
688 
689   // FIXME: Kill copy.
690   auto argTypes = getArgTypesForCall(Context, args);
691 
692   FunctionType::ExtInfo info = proto->getExtInfo();
693   return arrangeLLVMFunctionInfo(
694       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
695       /*chainCall=*/false, argTypes, info, paramInfos, required);
696 }
697 
698 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
699   return arrangeLLVMFunctionInfo(
700       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
701       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
702 }
703 
704 const CGFunctionInfo &
705 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
706                           const CallArgList &args) {
707   assert(signature.arg_size() <= args.size());
708   if (signature.arg_size() == args.size())
709     return signature;
710 
711   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
712   auto sigParamInfos = signature.getExtParameterInfos();
713   if (!sigParamInfos.empty()) {
714     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
715     paramInfos.resize(args.size());
716   }
717 
718   auto argTypes = getArgTypesForCall(Context, args);
719 
720   assert(signature.getRequiredArgs().allowsOptionalArgs());
721   return arrangeLLVMFunctionInfo(signature.getReturnType(),
722                                  signature.isInstanceMethod(),
723                                  signature.isChainCall(),
724                                  argTypes,
725                                  signature.getExtInfo(),
726                                  paramInfos,
727                                  signature.getRequiredArgs());
728 }
729 
730 namespace clang {
731 namespace CodeGen {
732 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
733 }
734 }
735 
736 /// Arrange the argument and result information for an abstract value
737 /// of a given function type.  This is the method which all of the
738 /// above functions ultimately defer to.
739 const CGFunctionInfo &
740 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
741                                       bool instanceMethod,
742                                       bool chainCall,
743                                       ArrayRef<CanQualType> argTypes,
744                                       FunctionType::ExtInfo info,
745                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
746                                       RequiredArgs required) {
747   assert(llvm::all_of(argTypes,
748                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
749 
750   // Lookup or create unique function info.
751   llvm::FoldingSetNodeID ID;
752   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
753                           required, resultType, argTypes);
754 
755   void *insertPos = nullptr;
756   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
757   if (FI)
758     return *FI;
759 
760   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
761 
762   // Construct the function info.  We co-allocate the ArgInfos.
763   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
764                               paramInfos, resultType, argTypes, required);
765   FunctionInfos.InsertNode(FI, insertPos);
766 
767   bool inserted = FunctionsBeingProcessed.insert(FI).second;
768   (void)inserted;
769   assert(inserted && "Recursively being processed?");
770 
771   // Compute ABI information.
772   if (CC == llvm::CallingConv::SPIR_KERNEL) {
773     // Force target independent argument handling for the host visible
774     // kernel functions.
775     computeSPIRKernelABIInfo(CGM, *FI);
776   } else if (info.getCC() == CC_Swift) {
777     swiftcall::computeABIInfo(CGM, *FI);
778   } else {
779     getABIInfo().computeInfo(*FI);
780   }
781 
782   // Loop over all of the computed argument and return value info.  If any of
783   // them are direct or extend without a specified coerce type, specify the
784   // default now.
785   ABIArgInfo &retInfo = FI->getReturnInfo();
786   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
787     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
788 
789   for (auto &I : FI->arguments())
790     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
791       I.info.setCoerceToType(ConvertType(I.type));
792 
793   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
794   assert(erased && "Not in set?");
795 
796   return *FI;
797 }
798 
799 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
800                                        bool instanceMethod,
801                                        bool chainCall,
802                                        const FunctionType::ExtInfo &info,
803                                        ArrayRef<ExtParameterInfo> paramInfos,
804                                        CanQualType resultType,
805                                        ArrayRef<CanQualType> argTypes,
806                                        RequiredArgs required) {
807   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
808   assert(!required.allowsOptionalArgs() ||
809          required.getNumRequiredArgs() <= argTypes.size());
810 
811   void *buffer =
812     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
813                                   argTypes.size() + 1, paramInfos.size()));
814 
815   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
816   FI->CallingConvention = llvmCC;
817   FI->EffectiveCallingConvention = llvmCC;
818   FI->ASTCallingConvention = info.getCC();
819   FI->InstanceMethod = instanceMethod;
820   FI->ChainCall = chainCall;
821   FI->CmseNSCall = info.getCmseNSCall();
822   FI->NoReturn = info.getNoReturn();
823   FI->ReturnsRetained = info.getProducesResult();
824   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
825   FI->NoCfCheck = info.getNoCfCheck();
826   FI->Required = required;
827   FI->HasRegParm = info.getHasRegParm();
828   FI->RegParm = info.getRegParm();
829   FI->ArgStruct = nullptr;
830   FI->ArgStructAlign = 0;
831   FI->NumArgs = argTypes.size();
832   FI->HasExtParameterInfos = !paramInfos.empty();
833   FI->getArgsBuffer()[0].type = resultType;
834   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
835     FI->getArgsBuffer()[i + 1].type = argTypes[i];
836   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
837     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
838   return FI;
839 }
840 
841 /***/
842 
843 namespace {
844 // ABIArgInfo::Expand implementation.
845 
846 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
847 struct TypeExpansion {
848   enum TypeExpansionKind {
849     // Elements of constant arrays are expanded recursively.
850     TEK_ConstantArray,
851     // Record fields are expanded recursively (but if record is a union, only
852     // the field with the largest size is expanded).
853     TEK_Record,
854     // For complex types, real and imaginary parts are expanded recursively.
855     TEK_Complex,
856     // All other types are not expandable.
857     TEK_None
858   };
859 
860   const TypeExpansionKind Kind;
861 
862   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
863   virtual ~TypeExpansion() {}
864 };
865 
866 struct ConstantArrayExpansion : TypeExpansion {
867   QualType EltTy;
868   uint64_t NumElts;
869 
870   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
871       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
872   static bool classof(const TypeExpansion *TE) {
873     return TE->Kind == TEK_ConstantArray;
874   }
875 };
876 
877 struct RecordExpansion : TypeExpansion {
878   SmallVector<const CXXBaseSpecifier *, 1> Bases;
879 
880   SmallVector<const FieldDecl *, 1> Fields;
881 
882   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
883                   SmallVector<const FieldDecl *, 1> &&Fields)
884       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
885         Fields(std::move(Fields)) {}
886   static bool classof(const TypeExpansion *TE) {
887     return TE->Kind == TEK_Record;
888   }
889 };
890 
891 struct ComplexExpansion : TypeExpansion {
892   QualType EltTy;
893 
894   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
895   static bool classof(const TypeExpansion *TE) {
896     return TE->Kind == TEK_Complex;
897   }
898 };
899 
900 struct NoExpansion : TypeExpansion {
901   NoExpansion() : TypeExpansion(TEK_None) {}
902   static bool classof(const TypeExpansion *TE) {
903     return TE->Kind == TEK_None;
904   }
905 };
906 }  // namespace
907 
908 static std::unique_ptr<TypeExpansion>
909 getTypeExpansion(QualType Ty, const ASTContext &Context) {
910   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
911     return std::make_unique<ConstantArrayExpansion>(
912         AT->getElementType(), AT->getSize().getZExtValue());
913   }
914   if (const RecordType *RT = Ty->getAs<RecordType>()) {
915     SmallVector<const CXXBaseSpecifier *, 1> Bases;
916     SmallVector<const FieldDecl *, 1> Fields;
917     const RecordDecl *RD = RT->getDecl();
918     assert(!RD->hasFlexibleArrayMember() &&
919            "Cannot expand structure with flexible array.");
920     if (RD->isUnion()) {
921       // Unions can be here only in degenerative cases - all the fields are same
922       // after flattening. Thus we have to use the "largest" field.
923       const FieldDecl *LargestFD = nullptr;
924       CharUnits UnionSize = CharUnits::Zero();
925 
926       for (const auto *FD : RD->fields()) {
927         if (FD->isZeroLengthBitField(Context))
928           continue;
929         assert(!FD->isBitField() &&
930                "Cannot expand structure with bit-field members.");
931         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
932         if (UnionSize < FieldSize) {
933           UnionSize = FieldSize;
934           LargestFD = FD;
935         }
936       }
937       if (LargestFD)
938         Fields.push_back(LargestFD);
939     } else {
940       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
941         assert(!CXXRD->isDynamicClass() &&
942                "cannot expand vtable pointers in dynamic classes");
943         for (const CXXBaseSpecifier &BS : CXXRD->bases())
944           Bases.push_back(&BS);
945       }
946 
947       for (const auto *FD : RD->fields()) {
948         if (FD->isZeroLengthBitField(Context))
949           continue;
950         assert(!FD->isBitField() &&
951                "Cannot expand structure with bit-field members.");
952         Fields.push_back(FD);
953       }
954     }
955     return std::make_unique<RecordExpansion>(std::move(Bases),
956                                               std::move(Fields));
957   }
958   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
959     return std::make_unique<ComplexExpansion>(CT->getElementType());
960   }
961   return std::make_unique<NoExpansion>();
962 }
963 
964 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
965   auto Exp = getTypeExpansion(Ty, Context);
966   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
967     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
968   }
969   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
970     int Res = 0;
971     for (auto BS : RExp->Bases)
972       Res += getExpansionSize(BS->getType(), Context);
973     for (auto FD : RExp->Fields)
974       Res += getExpansionSize(FD->getType(), Context);
975     return Res;
976   }
977   if (isa<ComplexExpansion>(Exp.get()))
978     return 2;
979   assert(isa<NoExpansion>(Exp.get()));
980   return 1;
981 }
982 
983 void
984 CodeGenTypes::getExpandedTypes(QualType Ty,
985                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
986   auto Exp = getTypeExpansion(Ty, Context);
987   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
988     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
989       getExpandedTypes(CAExp->EltTy, TI);
990     }
991   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
992     for (auto BS : RExp->Bases)
993       getExpandedTypes(BS->getType(), TI);
994     for (auto FD : RExp->Fields)
995       getExpandedTypes(FD->getType(), TI);
996   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
997     llvm::Type *EltTy = ConvertType(CExp->EltTy);
998     *TI++ = EltTy;
999     *TI++ = EltTy;
1000   } else {
1001     assert(isa<NoExpansion>(Exp.get()));
1002     *TI++ = ConvertType(Ty);
1003   }
1004 }
1005 
1006 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1007                                       ConstantArrayExpansion *CAE,
1008                                       Address BaseAddr,
1009                                       llvm::function_ref<void(Address)> Fn) {
1010   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1011   CharUnits EltAlign =
1012     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1013 
1014   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1015     llvm::Value *EltAddr =
1016       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1017     Fn(Address(EltAddr, EltAlign));
1018   }
1019 }
1020 
1021 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1022                                          llvm::Function::arg_iterator &AI) {
1023   assert(LV.isSimple() &&
1024          "Unexpected non-simple lvalue during struct expansion.");
1025 
1026   auto Exp = getTypeExpansion(Ty, getContext());
1027   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1028     forConstantArrayExpansion(
1029         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1030           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1031           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1032         });
1033   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1034     Address This = LV.getAddress(*this);
1035     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1036       // Perform a single step derived-to-base conversion.
1037       Address Base =
1038           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1039                                 /*NullCheckValue=*/false, SourceLocation());
1040       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1041 
1042       // Recurse onto bases.
1043       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1044     }
1045     for (auto FD : RExp->Fields) {
1046       // FIXME: What are the right qualifiers here?
1047       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1048       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1049     }
1050   } else if (isa<ComplexExpansion>(Exp.get())) {
1051     auto realValue = &*AI++;
1052     auto imagValue = &*AI++;
1053     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1054   } else {
1055     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1056     // primitive store.
1057     assert(isa<NoExpansion>(Exp.get()));
1058     if (LV.isBitField())
1059       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1060     else
1061       EmitStoreOfScalar(&*AI++, LV);
1062   }
1063 }
1064 
1065 void CodeGenFunction::ExpandTypeToArgs(
1066     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1067     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1068   auto Exp = getTypeExpansion(Ty, getContext());
1069   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1070     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1071                                    : Arg.getKnownRValue().getAggregateAddress();
1072     forConstantArrayExpansion(
1073         *this, CAExp, Addr, [&](Address EltAddr) {
1074           CallArg EltArg = CallArg(
1075               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1076               CAExp->EltTy);
1077           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1078                            IRCallArgPos);
1079         });
1080   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1081     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1082                                    : Arg.getKnownRValue().getAggregateAddress();
1083     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1084       // Perform a single step derived-to-base conversion.
1085       Address Base =
1086           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1087                                 /*NullCheckValue=*/false, SourceLocation());
1088       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1089 
1090       // Recurse onto bases.
1091       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1092                        IRCallArgPos);
1093     }
1094 
1095     LValue LV = MakeAddrLValue(This, Ty);
1096     for (auto FD : RExp->Fields) {
1097       CallArg FldArg =
1098           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1099       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1100                        IRCallArgPos);
1101     }
1102   } else if (isa<ComplexExpansion>(Exp.get())) {
1103     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1104     IRCallArgs[IRCallArgPos++] = CV.first;
1105     IRCallArgs[IRCallArgPos++] = CV.second;
1106   } else {
1107     assert(isa<NoExpansion>(Exp.get()));
1108     auto RV = Arg.getKnownRValue();
1109     assert(RV.isScalar() &&
1110            "Unexpected non-scalar rvalue during struct expansion.");
1111 
1112     // Insert a bitcast as needed.
1113     llvm::Value *V = RV.getScalarVal();
1114     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1115         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1116       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1117 
1118     IRCallArgs[IRCallArgPos++] = V;
1119   }
1120 }
1121 
1122 /// Create a temporary allocation for the purposes of coercion.
1123 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1124                                            CharUnits MinAlign,
1125                                            const Twine &Name = "tmp") {
1126   // Don't use an alignment that's worse than what LLVM would prefer.
1127   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1128   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1129 
1130   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1131 }
1132 
1133 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1134 /// accessing some number of bytes out of it, try to gep into the struct to get
1135 /// at its inner goodness.  Dive as deep as possible without entering an element
1136 /// with an in-memory size smaller than DstSize.
1137 static Address
1138 EnterStructPointerForCoercedAccess(Address SrcPtr,
1139                                    llvm::StructType *SrcSTy,
1140                                    uint64_t DstSize, CodeGenFunction &CGF) {
1141   // We can't dive into a zero-element struct.
1142   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1143 
1144   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1145 
1146   // If the first elt is at least as large as what we're looking for, or if the
1147   // first element is the same size as the whole struct, we can enter it. The
1148   // comparison must be made on the store size and not the alloca size. Using
1149   // the alloca size may overstate the size of the load.
1150   uint64_t FirstEltSize =
1151     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1152   if (FirstEltSize < DstSize &&
1153       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1154     return SrcPtr;
1155 
1156   // GEP into the first element.
1157   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1158 
1159   // If the first element is a struct, recurse.
1160   llvm::Type *SrcTy = SrcPtr.getElementType();
1161   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1162     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1163 
1164   return SrcPtr;
1165 }
1166 
1167 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1168 /// are either integers or pointers.  This does a truncation of the value if it
1169 /// is too large or a zero extension if it is too small.
1170 ///
1171 /// This behaves as if the value were coerced through memory, so on big-endian
1172 /// targets the high bits are preserved in a truncation, while little-endian
1173 /// targets preserve the low bits.
1174 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1175                                              llvm::Type *Ty,
1176                                              CodeGenFunction &CGF) {
1177   if (Val->getType() == Ty)
1178     return Val;
1179 
1180   if (isa<llvm::PointerType>(Val->getType())) {
1181     // If this is Pointer->Pointer avoid conversion to and from int.
1182     if (isa<llvm::PointerType>(Ty))
1183       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1184 
1185     // Convert the pointer to an integer so we can play with its width.
1186     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1187   }
1188 
1189   llvm::Type *DestIntTy = Ty;
1190   if (isa<llvm::PointerType>(DestIntTy))
1191     DestIntTy = CGF.IntPtrTy;
1192 
1193   if (Val->getType() != DestIntTy) {
1194     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1195     if (DL.isBigEndian()) {
1196       // Preserve the high bits on big-endian targets.
1197       // That is what memory coercion does.
1198       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1199       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1200 
1201       if (SrcSize > DstSize) {
1202         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1203         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1204       } else {
1205         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1206         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1207       }
1208     } else {
1209       // Little-endian targets preserve the low bits. No shifts required.
1210       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1211     }
1212   }
1213 
1214   if (isa<llvm::PointerType>(Ty))
1215     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1216   return Val;
1217 }
1218 
1219 
1220 
1221 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1222 /// a pointer to an object of type \arg Ty, known to be aligned to
1223 /// \arg SrcAlign bytes.
1224 ///
1225 /// This safely handles the case when the src type is smaller than the
1226 /// destination type; in this situation the values of bits which not
1227 /// present in the src are undefined.
1228 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1229                                       CodeGenFunction &CGF) {
1230   llvm::Type *SrcTy = Src.getElementType();
1231 
1232   // If SrcTy and Ty are the same, just do a load.
1233   if (SrcTy == Ty)
1234     return CGF.Builder.CreateLoad(Src);
1235 
1236   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1237 
1238   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1239     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1240                                              DstSize.getFixedSize(), CGF);
1241     SrcTy = Src.getElementType();
1242   }
1243 
1244   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1245 
1246   // If the source and destination are integer or pointer types, just do an
1247   // extension or truncation to the desired type.
1248   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1249       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1250     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1251     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1252   }
1253 
1254   // If load is legal, just bitcast the src pointer.
1255   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1256       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1257     // Generally SrcSize is never greater than DstSize, since this means we are
1258     // losing bits. However, this can happen in cases where the structure has
1259     // additional padding, for example due to a user specified alignment.
1260     //
1261     // FIXME: Assert that we aren't truncating non-padding bits when have access
1262     // to that information.
1263     Src = CGF.Builder.CreateBitCast(Src,
1264                                     Ty->getPointerTo(Src.getAddressSpace()));
1265     return CGF.Builder.CreateLoad(Src);
1266   }
1267 
1268   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1269   // the types match, use the llvm.experimental.vector.insert intrinsic to
1270   // perform the conversion.
1271   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1272     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1273       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1274         auto *Load = CGF.Builder.CreateLoad(Src);
1275         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1276         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1277         return CGF.Builder.CreateInsertVector(ScalableDst, UndefVec, Load, Zero,
1278                                               "castScalableSve");
1279       }
1280     }
1281   }
1282 
1283   // Otherwise do coercion through memory. This is stupid, but simple.
1284   Address Tmp =
1285       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1286   CGF.Builder.CreateMemCpy(
1287       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1288       Src.getAlignment().getAsAlign(),
1289       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1290   return CGF.Builder.CreateLoad(Tmp);
1291 }
1292 
1293 // Function to store a first-class aggregate into memory.  We prefer to
1294 // store the elements rather than the aggregate to be more friendly to
1295 // fast-isel.
1296 // FIXME: Do we need to recurse here?
1297 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1298                                          bool DestIsVolatile) {
1299   // Prefer scalar stores to first-class aggregate stores.
1300   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1301     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1302       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1303       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1304       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1305     }
1306   } else {
1307     Builder.CreateStore(Val, Dest, DestIsVolatile);
1308   }
1309 }
1310 
1311 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1312 /// where the source and destination may have different types.  The
1313 /// destination is known to be aligned to \arg DstAlign bytes.
1314 ///
1315 /// This safely handles the case when the src type is larger than the
1316 /// destination type; the upper bits of the src will be lost.
1317 static void CreateCoercedStore(llvm::Value *Src,
1318                                Address Dst,
1319                                bool DstIsVolatile,
1320                                CodeGenFunction &CGF) {
1321   llvm::Type *SrcTy = Src->getType();
1322   llvm::Type *DstTy = Dst.getElementType();
1323   if (SrcTy == DstTy) {
1324     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1325     return;
1326   }
1327 
1328   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1329 
1330   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1331     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1332                                              SrcSize.getFixedSize(), CGF);
1333     DstTy = Dst.getElementType();
1334   }
1335 
1336   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1337   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1338   if (SrcPtrTy && DstPtrTy &&
1339       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1340     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1341     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1342     return;
1343   }
1344 
1345   // If the source and destination are integer or pointer types, just do an
1346   // extension or truncation to the desired type.
1347   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1348       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1349     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1350     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1351     return;
1352   }
1353 
1354   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1355 
1356   // If store is legal, just bitcast the src pointer.
1357   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1358       isa<llvm::ScalableVectorType>(DstTy) ||
1359       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1360     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1361     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1362   } else {
1363     // Otherwise do coercion through memory. This is stupid, but
1364     // simple.
1365 
1366     // Generally SrcSize is never greater than DstSize, since this means we are
1367     // losing bits. However, this can happen in cases where the structure has
1368     // additional padding, for example due to a user specified alignment.
1369     //
1370     // FIXME: Assert that we aren't truncating non-padding bits when have access
1371     // to that information.
1372     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1373     CGF.Builder.CreateStore(Src, Tmp);
1374     CGF.Builder.CreateMemCpy(
1375         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1376         Tmp.getAlignment().getAsAlign(),
1377         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1378   }
1379 }
1380 
1381 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1382                                    const ABIArgInfo &info) {
1383   if (unsigned offset = info.getDirectOffset()) {
1384     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1385     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1386                                              CharUnits::fromQuantity(offset));
1387     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1388   }
1389   return addr;
1390 }
1391 
1392 namespace {
1393 
1394 /// Encapsulates information about the way function arguments from
1395 /// CGFunctionInfo should be passed to actual LLVM IR function.
1396 class ClangToLLVMArgMapping {
1397   static const unsigned InvalidIndex = ~0U;
1398   unsigned InallocaArgNo;
1399   unsigned SRetArgNo;
1400   unsigned TotalIRArgs;
1401 
1402   /// Arguments of LLVM IR function corresponding to single Clang argument.
1403   struct IRArgs {
1404     unsigned PaddingArgIndex;
1405     // Argument is expanded to IR arguments at positions
1406     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1407     unsigned FirstArgIndex;
1408     unsigned NumberOfArgs;
1409 
1410     IRArgs()
1411         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1412           NumberOfArgs(0) {}
1413   };
1414 
1415   SmallVector<IRArgs, 8> ArgInfo;
1416 
1417 public:
1418   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1419                         bool OnlyRequiredArgs = false)
1420       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1421         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1422     construct(Context, FI, OnlyRequiredArgs);
1423   }
1424 
1425   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1426   unsigned getInallocaArgNo() const {
1427     assert(hasInallocaArg());
1428     return InallocaArgNo;
1429   }
1430 
1431   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1432   unsigned getSRetArgNo() const {
1433     assert(hasSRetArg());
1434     return SRetArgNo;
1435   }
1436 
1437   unsigned totalIRArgs() const { return TotalIRArgs; }
1438 
1439   bool hasPaddingArg(unsigned ArgNo) const {
1440     assert(ArgNo < ArgInfo.size());
1441     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1442   }
1443   unsigned getPaddingArgNo(unsigned ArgNo) const {
1444     assert(hasPaddingArg(ArgNo));
1445     return ArgInfo[ArgNo].PaddingArgIndex;
1446   }
1447 
1448   /// Returns index of first IR argument corresponding to ArgNo, and their
1449   /// quantity.
1450   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1451     assert(ArgNo < ArgInfo.size());
1452     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1453                           ArgInfo[ArgNo].NumberOfArgs);
1454   }
1455 
1456 private:
1457   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1458                  bool OnlyRequiredArgs);
1459 };
1460 
1461 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1462                                       const CGFunctionInfo &FI,
1463                                       bool OnlyRequiredArgs) {
1464   unsigned IRArgNo = 0;
1465   bool SwapThisWithSRet = false;
1466   const ABIArgInfo &RetAI = FI.getReturnInfo();
1467 
1468   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1469     SwapThisWithSRet = RetAI.isSRetAfterThis();
1470     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1471   }
1472 
1473   unsigned ArgNo = 0;
1474   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1475   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1476        ++I, ++ArgNo) {
1477     assert(I != FI.arg_end());
1478     QualType ArgType = I->type;
1479     const ABIArgInfo &AI = I->info;
1480     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1481     auto &IRArgs = ArgInfo[ArgNo];
1482 
1483     if (AI.getPaddingType())
1484       IRArgs.PaddingArgIndex = IRArgNo++;
1485 
1486     switch (AI.getKind()) {
1487     case ABIArgInfo::Extend:
1488     case ABIArgInfo::Direct: {
1489       // FIXME: handle sseregparm someday...
1490       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1491       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1492         IRArgs.NumberOfArgs = STy->getNumElements();
1493       } else {
1494         IRArgs.NumberOfArgs = 1;
1495       }
1496       break;
1497     }
1498     case ABIArgInfo::Indirect:
1499     case ABIArgInfo::IndirectAliased:
1500       IRArgs.NumberOfArgs = 1;
1501       break;
1502     case ABIArgInfo::Ignore:
1503     case ABIArgInfo::InAlloca:
1504       // ignore and inalloca doesn't have matching LLVM parameters.
1505       IRArgs.NumberOfArgs = 0;
1506       break;
1507     case ABIArgInfo::CoerceAndExpand:
1508       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1509       break;
1510     case ABIArgInfo::Expand:
1511       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1512       break;
1513     }
1514 
1515     if (IRArgs.NumberOfArgs > 0) {
1516       IRArgs.FirstArgIndex = IRArgNo;
1517       IRArgNo += IRArgs.NumberOfArgs;
1518     }
1519 
1520     // Skip over the sret parameter when it comes second.  We already handled it
1521     // above.
1522     if (IRArgNo == 1 && SwapThisWithSRet)
1523       IRArgNo++;
1524   }
1525   assert(ArgNo == ArgInfo.size());
1526 
1527   if (FI.usesInAlloca())
1528     InallocaArgNo = IRArgNo++;
1529 
1530   TotalIRArgs = IRArgNo;
1531 }
1532 }  // namespace
1533 
1534 /***/
1535 
1536 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1537   const auto &RI = FI.getReturnInfo();
1538   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1539 }
1540 
1541 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1542   return ReturnTypeUsesSRet(FI) &&
1543          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1544 }
1545 
1546 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1547   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1548     switch (BT->getKind()) {
1549     default:
1550       return false;
1551     case BuiltinType::Float:
1552       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1553     case BuiltinType::Double:
1554       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1555     case BuiltinType::LongDouble:
1556       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1557     }
1558   }
1559 
1560   return false;
1561 }
1562 
1563 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1564   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1565     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1566       if (BT->getKind() == BuiltinType::LongDouble)
1567         return getTarget().useObjCFP2RetForComplexLongDouble();
1568     }
1569   }
1570 
1571   return false;
1572 }
1573 
1574 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1575   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1576   return GetFunctionType(FI);
1577 }
1578 
1579 llvm::FunctionType *
1580 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1581 
1582   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1583   (void)Inserted;
1584   assert(Inserted && "Recursively being processed?");
1585 
1586   llvm::Type *resultType = nullptr;
1587   const ABIArgInfo &retAI = FI.getReturnInfo();
1588   switch (retAI.getKind()) {
1589   case ABIArgInfo::Expand:
1590   case ABIArgInfo::IndirectAliased:
1591     llvm_unreachable("Invalid ABI kind for return argument");
1592 
1593   case ABIArgInfo::Extend:
1594   case ABIArgInfo::Direct:
1595     resultType = retAI.getCoerceToType();
1596     break;
1597 
1598   case ABIArgInfo::InAlloca:
1599     if (retAI.getInAllocaSRet()) {
1600       // sret things on win32 aren't void, they return the sret pointer.
1601       QualType ret = FI.getReturnType();
1602       llvm::Type *ty = ConvertType(ret);
1603       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1604       resultType = llvm::PointerType::get(ty, addressSpace);
1605     } else {
1606       resultType = llvm::Type::getVoidTy(getLLVMContext());
1607     }
1608     break;
1609 
1610   case ABIArgInfo::Indirect:
1611   case ABIArgInfo::Ignore:
1612     resultType = llvm::Type::getVoidTy(getLLVMContext());
1613     break;
1614 
1615   case ABIArgInfo::CoerceAndExpand:
1616     resultType = retAI.getUnpaddedCoerceAndExpandType();
1617     break;
1618   }
1619 
1620   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1621   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1622 
1623   // Add type for sret argument.
1624   if (IRFunctionArgs.hasSRetArg()) {
1625     QualType Ret = FI.getReturnType();
1626     llvm::Type *Ty = ConvertType(Ret);
1627     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1628     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1629         llvm::PointerType::get(Ty, AddressSpace);
1630   }
1631 
1632   // Add type for inalloca argument.
1633   if (IRFunctionArgs.hasInallocaArg()) {
1634     auto ArgStruct = FI.getArgStruct();
1635     assert(ArgStruct);
1636     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1637   }
1638 
1639   // Add in all of the required arguments.
1640   unsigned ArgNo = 0;
1641   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1642                                      ie = it + FI.getNumRequiredArgs();
1643   for (; it != ie; ++it, ++ArgNo) {
1644     const ABIArgInfo &ArgInfo = it->info;
1645 
1646     // Insert a padding type to ensure proper alignment.
1647     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1648       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1649           ArgInfo.getPaddingType();
1650 
1651     unsigned FirstIRArg, NumIRArgs;
1652     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1653 
1654     switch (ArgInfo.getKind()) {
1655     case ABIArgInfo::Ignore:
1656     case ABIArgInfo::InAlloca:
1657       assert(NumIRArgs == 0);
1658       break;
1659 
1660     case ABIArgInfo::Indirect: {
1661       assert(NumIRArgs == 1);
1662       // indirect arguments are always on the stack, which is alloca addr space.
1663       llvm::Type *LTy = ConvertTypeForMem(it->type);
1664       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1665           CGM.getDataLayout().getAllocaAddrSpace());
1666       break;
1667     }
1668     case ABIArgInfo::IndirectAliased: {
1669       assert(NumIRArgs == 1);
1670       llvm::Type *LTy = ConvertTypeForMem(it->type);
1671       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1672       break;
1673     }
1674     case ABIArgInfo::Extend:
1675     case ABIArgInfo::Direct: {
1676       // Fast-isel and the optimizer generally like scalar values better than
1677       // FCAs, so we flatten them if this is safe to do for this argument.
1678       llvm::Type *argType = ArgInfo.getCoerceToType();
1679       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1680       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1681         assert(NumIRArgs == st->getNumElements());
1682         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1683           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1684       } else {
1685         assert(NumIRArgs == 1);
1686         ArgTypes[FirstIRArg] = argType;
1687       }
1688       break;
1689     }
1690 
1691     case ABIArgInfo::CoerceAndExpand: {
1692       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1693       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1694         *ArgTypesIter++ = EltTy;
1695       }
1696       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1697       break;
1698     }
1699 
1700     case ABIArgInfo::Expand:
1701       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1702       getExpandedTypes(it->type, ArgTypesIter);
1703       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1704       break;
1705     }
1706   }
1707 
1708   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1709   assert(Erased && "Not in set?");
1710 
1711   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1712 }
1713 
1714 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1715   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1716   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1717 
1718   if (!isFuncTypeConvertible(FPT))
1719     return llvm::StructType::get(getLLVMContext());
1720 
1721   return GetFunctionType(GD);
1722 }
1723 
1724 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1725                                                llvm::AttrBuilder &FuncAttrs,
1726                                                const FunctionProtoType *FPT) {
1727   if (!FPT)
1728     return;
1729 
1730   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1731       FPT->isNothrow())
1732     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1733 }
1734 
1735 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1736                                           QualType ReturnType) {
1737   // We can't just discard the return value for a record type with a
1738   // complex destructor or a non-trivially copyable type.
1739   if (const RecordType *RT =
1740           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1741     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1742       return ClassDecl->hasTrivialDestructor();
1743   }
1744   return ReturnType.isTriviallyCopyableType(Context);
1745 }
1746 
1747 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1748                                                  bool HasOptnone,
1749                                                  bool AttrOnCallSite,
1750                                                llvm::AttrBuilder &FuncAttrs) {
1751   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1752   if (!HasOptnone) {
1753     if (CodeGenOpts.OptimizeSize)
1754       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1755     if (CodeGenOpts.OptimizeSize == 2)
1756       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1757   }
1758 
1759   if (CodeGenOpts.DisableRedZone)
1760     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1761   if (CodeGenOpts.IndirectTlsSegRefs)
1762     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1763   if (CodeGenOpts.NoImplicitFloat)
1764     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1765 
1766   if (AttrOnCallSite) {
1767     // Attributes that should go on the call site only.
1768     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1769       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1770     if (!CodeGenOpts.TrapFuncName.empty())
1771       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1772   } else {
1773     StringRef FpKind;
1774     switch (CodeGenOpts.getFramePointer()) {
1775     case CodeGenOptions::FramePointerKind::None:
1776       FpKind = "none";
1777       break;
1778     case CodeGenOptions::FramePointerKind::NonLeaf:
1779       FpKind = "non-leaf";
1780       break;
1781     case CodeGenOptions::FramePointerKind::All:
1782       FpKind = "all";
1783       break;
1784     }
1785     FuncAttrs.addAttribute("frame-pointer", FpKind);
1786 
1787     if (CodeGenOpts.LessPreciseFPMAD)
1788       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1789 
1790     if (CodeGenOpts.NullPointerIsValid)
1791       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1792 
1793     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1794       FuncAttrs.addAttribute("denormal-fp-math",
1795                              CodeGenOpts.FPDenormalMode.str());
1796     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1797       FuncAttrs.addAttribute(
1798           "denormal-fp-math-f32",
1799           CodeGenOpts.FP32DenormalMode.str());
1800     }
1801 
1802     if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1803       FuncAttrs.addAttribute("no-trapping-math", "true");
1804 
1805     // Strict (compliant) code is the default, so only add this attribute to
1806     // indicate that we are trying to workaround a problem case.
1807     if (!CodeGenOpts.StrictFloatCastOverflow)
1808       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1809 
1810     // TODO: Are these all needed?
1811     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1812     if (LangOpts.NoHonorInfs)
1813       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1814     if (LangOpts.NoHonorNaNs)
1815       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1816     if (LangOpts.UnsafeFPMath)
1817       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1818     if (CodeGenOpts.SoftFloat)
1819       FuncAttrs.addAttribute("use-soft-float", "true");
1820     FuncAttrs.addAttribute("stack-protector-buffer-size",
1821                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1822     if (LangOpts.NoSignedZero)
1823       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1824 
1825     // TODO: Reciprocal estimate codegen options should apply to instructions?
1826     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1827     if (!Recips.empty())
1828       FuncAttrs.addAttribute("reciprocal-estimates",
1829                              llvm::join(Recips, ","));
1830 
1831     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1832         CodeGenOpts.PreferVectorWidth != "none")
1833       FuncAttrs.addAttribute("prefer-vector-width",
1834                              CodeGenOpts.PreferVectorWidth);
1835 
1836     if (CodeGenOpts.StackRealignment)
1837       FuncAttrs.addAttribute("stackrealign");
1838     if (CodeGenOpts.Backchain)
1839       FuncAttrs.addAttribute("backchain");
1840     if (CodeGenOpts.EnableSegmentedStacks)
1841       FuncAttrs.addAttribute("split-stack");
1842 
1843     if (CodeGenOpts.SpeculativeLoadHardening)
1844       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1845   }
1846 
1847   if (getLangOpts().assumeFunctionsAreConvergent()) {
1848     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1849     // convergent (meaning, they may call an intrinsically convergent op, such
1850     // as __syncthreads() / barrier(), and so can't have certain optimizations
1851     // applied around them).  LLVM will remove this attribute where it safely
1852     // can.
1853     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1854   }
1855 
1856   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1857     // Exceptions aren't supported in CUDA device code.
1858     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1859   }
1860 
1861   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1862     StringRef Var, Value;
1863     std::tie(Var, Value) = Attr.split('=');
1864     FuncAttrs.addAttribute(Var, Value);
1865   }
1866 }
1867 
1868 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1869   llvm::AttrBuilder FuncAttrs;
1870   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1871                                /* AttrOnCallSite = */ false, FuncAttrs);
1872   // TODO: call GetCPUAndFeaturesAttributes?
1873   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1874 }
1875 
1876 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1877                                                    llvm::AttrBuilder &attrs) {
1878   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1879                                /*for call*/ false, attrs);
1880   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1881 }
1882 
1883 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1884                                    const LangOptions &LangOpts,
1885                                    const NoBuiltinAttr *NBA = nullptr) {
1886   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1887     SmallString<32> AttributeName;
1888     AttributeName += "no-builtin-";
1889     AttributeName += BuiltinName;
1890     FuncAttrs.addAttribute(AttributeName);
1891   };
1892 
1893   // First, handle the language options passed through -fno-builtin.
1894   if (LangOpts.NoBuiltin) {
1895     // -fno-builtin disables them all.
1896     FuncAttrs.addAttribute("no-builtins");
1897     return;
1898   }
1899 
1900   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1901   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1902 
1903   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1904   // the source.
1905   if (!NBA)
1906     return;
1907 
1908   // If there is a wildcard in the builtin names specified through the
1909   // attribute, disable them all.
1910   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1911     FuncAttrs.addAttribute("no-builtins");
1912     return;
1913   }
1914 
1915   // And last, add the rest of the builtin names.
1916   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1917 }
1918 
1919 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
1920                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
1921                              bool CheckCoerce = true) {
1922   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
1923   if (AI.getKind() == ABIArgInfo::Indirect)
1924     return true;
1925   if (AI.getKind() == ABIArgInfo::Extend)
1926     return true;
1927   if (!DL.typeSizeEqualsStoreSize(Ty))
1928     // TODO: This will result in a modest amount of values not marked noundef
1929     // when they could be. We care about values that *invisibly* contain undef
1930     // bits from the perspective of LLVM IR.
1931     return false;
1932   if (CheckCoerce && AI.canHaveCoerceToType()) {
1933     llvm::Type *CoerceTy = AI.getCoerceToType();
1934     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
1935                                   DL.getTypeSizeInBits(Ty)))
1936       // If we're coercing to a type with a greater size than the canonical one,
1937       // we're introducing new undef bits.
1938       // Coercing to a type of smaller or equal size is ok, as we know that
1939       // there's no internal padding (typeSizeEqualsStoreSize).
1940       return false;
1941   }
1942   if (QTy->isExtIntType())
1943     return true;
1944   if (QTy->isReferenceType())
1945     return true;
1946   if (QTy->isNullPtrType())
1947     return false;
1948   if (QTy->isMemberPointerType())
1949     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
1950     // now, never mark them.
1951     return false;
1952   if (QTy->isScalarType()) {
1953     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
1954       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
1955     return true;
1956   }
1957   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
1958     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
1959   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
1960     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
1961   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
1962     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
1963 
1964   // TODO: Some structs may be `noundef`, in specific situations.
1965   return false;
1966 }
1967 
1968 /// Construct the IR attribute list of a function or call.
1969 ///
1970 /// When adding an attribute, please consider where it should be handled:
1971 ///
1972 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1973 ///     part of the global target configuration (but perhaps can be
1974 ///     overridden on a per-function basis).  Adding attributes there
1975 ///     will cause them to also be set in frontends that build on Clang's
1976 ///     target-configuration logic, as well as for code defined in library
1977 ///     modules such as CUDA's libdevice.
1978 ///
1979 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1980 ///     and adds declaration-specific, convention-specific, and
1981 ///     frontend-specific logic.  The last is of particular importance:
1982 ///     attributes that restrict how the frontend generates code must be
1983 ///     added here rather than getDefaultFunctionAttributes.
1984 ///
1985 void CodeGenModule::ConstructAttributeList(
1986     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1987     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1988   llvm::AttrBuilder FuncAttrs;
1989   llvm::AttrBuilder RetAttrs;
1990 
1991   // Collect function IR attributes from the CC lowering.
1992   // We'll collect the paramete and result attributes later.
1993   CallingConv = FI.getEffectiveCallingConvention();
1994   if (FI.isNoReturn())
1995     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1996   if (FI.isCmseNSCall())
1997     FuncAttrs.addAttribute("cmse_nonsecure_call");
1998 
1999   // Collect function IR attributes from the callee prototype if we have one.
2000   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2001                                      CalleeInfo.getCalleeFunctionProtoType());
2002 
2003   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2004 
2005   bool HasOptnone = false;
2006   // The NoBuiltinAttr attached to the target FunctionDecl.
2007   const NoBuiltinAttr *NBA = nullptr;
2008 
2009   // Collect function IR attributes based on declaration-specific
2010   // information.
2011   // FIXME: handle sseregparm someday...
2012   if (TargetDecl) {
2013     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2014       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2015     if (TargetDecl->hasAttr<NoThrowAttr>())
2016       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2017     if (TargetDecl->hasAttr<NoReturnAttr>())
2018       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2019     if (TargetDecl->hasAttr<ColdAttr>())
2020       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2021     if (TargetDecl->hasAttr<HotAttr>())
2022       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2023     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2024       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2025     if (TargetDecl->hasAttr<ConvergentAttr>())
2026       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2027 
2028     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2029       AddAttributesFromFunctionProtoType(
2030           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2031       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2032         // A sane operator new returns a non-aliasing pointer.
2033         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2034         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2035             (Kind == OO_New || Kind == OO_Array_New))
2036           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2037       }
2038       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2039       const bool IsVirtualCall = MD && MD->isVirtual();
2040       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2041       // virtual function. These attributes are not inherited by overloads.
2042       if (!(AttrOnCallSite && IsVirtualCall)) {
2043         if (Fn->isNoReturn())
2044           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2045         NBA = Fn->getAttr<NoBuiltinAttr>();
2046       }
2047       // Only place nomerge attribute on call sites, never functions. This
2048       // allows it to work on indirect virtual function calls.
2049       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2050         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2051 
2052       // Add known guaranteed alignment for allocation functions.
2053       if (unsigned BuiltinID = Fn->getBuiltinID()) {
2054         switch (BuiltinID) {
2055         case Builtin::BIaligned_alloc:
2056         case Builtin::BIcalloc:
2057         case Builtin::BImalloc:
2058         case Builtin::BImemalign:
2059         case Builtin::BIrealloc:
2060         case Builtin::BIstrdup:
2061         case Builtin::BIstrndup:
2062           RetAttrs.addAlignmentAttr(Context.getTargetInfo().getNewAlign() /
2063                                     Context.getTargetInfo().getCharWidth());
2064           break;
2065         default:
2066           break;
2067         }
2068       }
2069     }
2070 
2071     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2072     if (TargetDecl->hasAttr<ConstAttr>()) {
2073       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2074       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2075       // gcc specifies that 'const' functions have greater restrictions than
2076       // 'pure' functions, so they also cannot have infinite loops.
2077       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2078     } else if (TargetDecl->hasAttr<PureAttr>()) {
2079       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2080       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2081       // gcc specifies that 'pure' functions cannot have infinite loops.
2082       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2083     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2084       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2085       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2086     }
2087     if (TargetDecl->hasAttr<RestrictAttr>())
2088       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2089     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2090         !CodeGenOpts.NullPointerIsValid)
2091       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2092     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2093       FuncAttrs.addAttribute("no_caller_saved_registers");
2094     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2095       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2096     if (TargetDecl->hasAttr<LeafAttr>())
2097       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2098 
2099     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2100     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2101       Optional<unsigned> NumElemsParam;
2102       if (AllocSize->getNumElemsParam().isValid())
2103         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2104       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2105                                  NumElemsParam);
2106     }
2107 
2108     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2109       if (getLangOpts().OpenCLVersion <= 120) {
2110         // OpenCL v1.2 Work groups are always uniform
2111         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2112       } else {
2113         // OpenCL v2.0 Work groups may be whether uniform or not.
2114         // '-cl-uniform-work-group-size' compile option gets a hint
2115         // to the compiler that the global work-size be a multiple of
2116         // the work-group size specified to clEnqueueNDRangeKernel
2117         // (i.e. work groups are uniform).
2118         FuncAttrs.addAttribute("uniform-work-group-size",
2119                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2120       }
2121     }
2122 
2123     std::string AssumptionValueStr;
2124     for (AssumptionAttr *AssumptionA :
2125          TargetDecl->specific_attrs<AssumptionAttr>()) {
2126       std::string AS = AssumptionA->getAssumption().str();
2127       if (!AS.empty() && !AssumptionValueStr.empty())
2128         AssumptionValueStr += ",";
2129       AssumptionValueStr += AS;
2130     }
2131 
2132     if (!AssumptionValueStr.empty())
2133       FuncAttrs.addAttribute(llvm::AssumptionAttrKey, AssumptionValueStr);
2134   }
2135 
2136   // Attach "no-builtins" attributes to:
2137   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2138   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2139   // The attributes can come from:
2140   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2141   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2142   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2143 
2144   // Collect function IR attributes based on global settiings.
2145   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2146 
2147   // Override some default IR attributes based on declaration-specific
2148   // information.
2149   if (TargetDecl) {
2150     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2151       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2152     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2153       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2154     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2155       FuncAttrs.removeAttribute("split-stack");
2156 
2157     // Add NonLazyBind attribute to function declarations when -fno-plt
2158     // is used.
2159     // FIXME: what if we just haven't processed the function definition
2160     // yet, or if it's an external definition like C99 inline?
2161     if (CodeGenOpts.NoPLT) {
2162       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2163         if (!Fn->isDefined() && !AttrOnCallSite) {
2164           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2165         }
2166       }
2167     }
2168   }
2169 
2170   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2171   // functions with -funique-internal-linkage-names.
2172   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2173     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2174       if (this->getFunctionLinkage(Fn) == llvm::GlobalValue::InternalLinkage)
2175         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2176                                "selected");
2177     }
2178   }
2179 
2180   // Collect non-call-site function IR attributes from declaration-specific
2181   // information.
2182   if (!AttrOnCallSite) {
2183     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2184       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2185 
2186     // Whether tail calls are enabled.
2187     auto shouldDisableTailCalls = [&] {
2188       // Should this be honored in getDefaultFunctionAttributes?
2189       if (CodeGenOpts.DisableTailCalls)
2190         return true;
2191 
2192       if (!TargetDecl)
2193         return false;
2194 
2195       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2196           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2197         return true;
2198 
2199       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2200         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2201           if (!BD->doesNotEscape())
2202             return true;
2203       }
2204 
2205       return false;
2206     };
2207     if (shouldDisableTailCalls())
2208       FuncAttrs.addAttribute("disable-tail-calls", "true");
2209 
2210     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2211     // handles these separately to set them based on the global defaults.
2212     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2213   }
2214 
2215   // Collect attributes from arguments and return values.
2216   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2217 
2218   QualType RetTy = FI.getReturnType();
2219   const ABIArgInfo &RetAI = FI.getReturnInfo();
2220   const llvm::DataLayout &DL = getDataLayout();
2221 
2222   // C++ explicitly makes returning undefined values UB. C's rule only applies
2223   // to used values, so we never mark them noundef for now.
2224   bool HasStrictReturn = getLangOpts().CPlusPlus;
2225   if (TargetDecl) {
2226     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2227       HasStrictReturn &= !FDecl->isExternC();
2228     else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2229       // Function pointer
2230       HasStrictReturn &= !VDecl->isExternC();
2231   }
2232 
2233   // We don't want to be too aggressive with the return checking, unless
2234   // it's explicit in the code opts or we're using an appropriate sanitizer.
2235   // Try to respect what the programmer intended.
2236   HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2237                      !MayDropFunctionReturn(getContext(), RetTy) ||
2238                      getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2239                      getLangOpts().Sanitize.has(SanitizerKind::Return);
2240 
2241   // Determine if the return type could be partially undef
2242   if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2243     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2244         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2245       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2246   }
2247 
2248   switch (RetAI.getKind()) {
2249   case ABIArgInfo::Extend:
2250     if (RetAI.isSignExt())
2251       RetAttrs.addAttribute(llvm::Attribute::SExt);
2252     else
2253       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2254     LLVM_FALLTHROUGH;
2255   case ABIArgInfo::Direct:
2256     if (RetAI.getInReg())
2257       RetAttrs.addAttribute(llvm::Attribute::InReg);
2258     break;
2259   case ABIArgInfo::Ignore:
2260     break;
2261 
2262   case ABIArgInfo::InAlloca:
2263   case ABIArgInfo::Indirect: {
2264     // inalloca and sret disable readnone and readonly
2265     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2266       .removeAttribute(llvm::Attribute::ReadNone);
2267     break;
2268   }
2269 
2270   case ABIArgInfo::CoerceAndExpand:
2271     break;
2272 
2273   case ABIArgInfo::Expand:
2274   case ABIArgInfo::IndirectAliased:
2275     llvm_unreachable("Invalid ABI kind for return argument");
2276   }
2277 
2278   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2279     QualType PTy = RefTy->getPointeeType();
2280     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2281       RetAttrs.addDereferenceableAttr(
2282           getMinimumObjectSize(PTy).getQuantity());
2283     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2284         !CodeGenOpts.NullPointerIsValid)
2285       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2286     if (PTy->isObjectType()) {
2287       llvm::Align Alignment =
2288           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2289       RetAttrs.addAlignmentAttr(Alignment);
2290     }
2291   }
2292 
2293   bool hasUsedSRet = false;
2294   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2295 
2296   // Attach attributes to sret.
2297   if (IRFunctionArgs.hasSRetArg()) {
2298     llvm::AttrBuilder SRETAttrs;
2299     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2300     hasUsedSRet = true;
2301     if (RetAI.getInReg())
2302       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2303     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2304     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2305         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2306   }
2307 
2308   // Attach attributes to inalloca argument.
2309   if (IRFunctionArgs.hasInallocaArg()) {
2310     llvm::AttrBuilder Attrs;
2311     Attrs.addInAllocaAttr(FI.getArgStruct());
2312     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2313         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2314   }
2315 
2316   // Apply `nonnull` and `dereferencable(N)` to the `this` argument.
2317   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2318       !FI.arg_begin()->type->isVoidPointerType()) {
2319     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2320 
2321     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2322 
2323     llvm::AttrBuilder Attrs;
2324 
2325     if (!CodeGenOpts.NullPointerIsValid &&
2326         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2327       Attrs.addAttribute(llvm::Attribute::NonNull);
2328       Attrs.addDereferenceableAttr(
2329           getMinimumObjectSize(
2330               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2331               .getQuantity());
2332     } else {
2333       // FIXME dereferenceable should be correct here, regardless of
2334       // NullPointerIsValid. However, dereferenceable currently does not always
2335       // respect NullPointerIsValid and may imply nonnull and break the program.
2336       // See https://reviews.llvm.org/D66618 for discussions.
2337       Attrs.addDereferenceableOrNullAttr(
2338           getMinimumObjectSize(
2339               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2340               .getQuantity());
2341     }
2342 
2343     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2344   }
2345 
2346   unsigned ArgNo = 0;
2347   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2348                                           E = FI.arg_end();
2349        I != E; ++I, ++ArgNo) {
2350     QualType ParamType = I->type;
2351     const ABIArgInfo &AI = I->info;
2352     llvm::AttrBuilder Attrs;
2353 
2354     // Add attribute for padding argument, if necessary.
2355     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2356       if (AI.getPaddingInReg()) {
2357         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2358             llvm::AttributeSet::get(
2359                 getLLVMContext(),
2360                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2361       }
2362     }
2363 
2364     // Decide whether the argument we're handling could be partially undef
2365     bool ArgNoUndef = DetermineNoUndef(ParamType, getTypes(), DL, AI);
2366     if (CodeGenOpts.EnableNoundefAttrs && ArgNoUndef)
2367       Attrs.addAttribute(llvm::Attribute::NoUndef);
2368 
2369     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2370     // have the corresponding parameter variable.  It doesn't make
2371     // sense to do it here because parameters are so messed up.
2372     switch (AI.getKind()) {
2373     case ABIArgInfo::Extend:
2374       if (AI.isSignExt())
2375         Attrs.addAttribute(llvm::Attribute::SExt);
2376       else
2377         Attrs.addAttribute(llvm::Attribute::ZExt);
2378       LLVM_FALLTHROUGH;
2379     case ABIArgInfo::Direct:
2380       if (ArgNo == 0 && FI.isChainCall())
2381         Attrs.addAttribute(llvm::Attribute::Nest);
2382       else if (AI.getInReg())
2383         Attrs.addAttribute(llvm::Attribute::InReg);
2384       Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2385       break;
2386 
2387     case ABIArgInfo::Indirect: {
2388       if (AI.getInReg())
2389         Attrs.addAttribute(llvm::Attribute::InReg);
2390 
2391       if (AI.getIndirectByVal())
2392         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2393 
2394       auto *Decl = ParamType->getAsRecordDecl();
2395       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2396           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2397         // When calling the function, the pointer passed in will be the only
2398         // reference to the underlying object. Mark it accordingly.
2399         Attrs.addAttribute(llvm::Attribute::NoAlias);
2400 
2401       // TODO: We could add the byref attribute if not byval, but it would
2402       // require updating many testcases.
2403 
2404       CharUnits Align = AI.getIndirectAlign();
2405 
2406       // In a byval argument, it is important that the required
2407       // alignment of the type is honored, as LLVM might be creating a
2408       // *new* stack object, and needs to know what alignment to give
2409       // it. (Sometimes it can deduce a sensible alignment on its own,
2410       // but not if clang decides it must emit a packed struct, or the
2411       // user specifies increased alignment requirements.)
2412       //
2413       // This is different from indirect *not* byval, where the object
2414       // exists already, and the align attribute is purely
2415       // informative.
2416       assert(!Align.isZero());
2417 
2418       // For now, only add this when we have a byval argument.
2419       // TODO: be less lazy about updating test cases.
2420       if (AI.getIndirectByVal())
2421         Attrs.addAlignmentAttr(Align.getQuantity());
2422 
2423       // byval disables readnone and readonly.
2424       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2425         .removeAttribute(llvm::Attribute::ReadNone);
2426 
2427       break;
2428     }
2429     case ABIArgInfo::IndirectAliased: {
2430       CharUnits Align = AI.getIndirectAlign();
2431       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2432       Attrs.addAlignmentAttr(Align.getQuantity());
2433       break;
2434     }
2435     case ABIArgInfo::Ignore:
2436     case ABIArgInfo::Expand:
2437     case ABIArgInfo::CoerceAndExpand:
2438       break;
2439 
2440     case ABIArgInfo::InAlloca:
2441       // inalloca disables readnone and readonly.
2442       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2443           .removeAttribute(llvm::Attribute::ReadNone);
2444       continue;
2445     }
2446 
2447     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2448       QualType PTy = RefTy->getPointeeType();
2449       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2450         Attrs.addDereferenceableAttr(
2451             getMinimumObjectSize(PTy).getQuantity());
2452       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2453           !CodeGenOpts.NullPointerIsValid)
2454         Attrs.addAttribute(llvm::Attribute::NonNull);
2455       if (PTy->isObjectType()) {
2456         llvm::Align Alignment =
2457             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2458         Attrs.addAlignmentAttr(Alignment);
2459       }
2460     }
2461 
2462     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2463     case ParameterABI::Ordinary:
2464       break;
2465 
2466     case ParameterABI::SwiftIndirectResult: {
2467       // Add 'sret' if we haven't already used it for something, but
2468       // only if the result is void.
2469       if (!hasUsedSRet && RetTy->isVoidType()) {
2470         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2471         hasUsedSRet = true;
2472       }
2473 
2474       // Add 'noalias' in either case.
2475       Attrs.addAttribute(llvm::Attribute::NoAlias);
2476 
2477       // Add 'dereferenceable' and 'alignment'.
2478       auto PTy = ParamType->getPointeeType();
2479       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2480         auto info = getContext().getTypeInfoInChars(PTy);
2481         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2482         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2483       }
2484       break;
2485     }
2486 
2487     case ParameterABI::SwiftErrorResult:
2488       Attrs.addAttribute(llvm::Attribute::SwiftError);
2489       break;
2490 
2491     case ParameterABI::SwiftContext:
2492       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2493       break;
2494     }
2495 
2496     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2497       Attrs.addAttribute(llvm::Attribute::NoCapture);
2498 
2499     if (Attrs.hasAttributes()) {
2500       unsigned FirstIRArg, NumIRArgs;
2501       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2502       for (unsigned i = 0; i < NumIRArgs; i++)
2503         ArgAttrs[FirstIRArg + i] =
2504             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2505     }
2506   }
2507   assert(ArgNo == FI.arg_size());
2508 
2509   AttrList = llvm::AttributeList::get(
2510       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2511       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2512 }
2513 
2514 /// An argument came in as a promoted argument; demote it back to its
2515 /// declared type.
2516 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2517                                          const VarDecl *var,
2518                                          llvm::Value *value) {
2519   llvm::Type *varType = CGF.ConvertType(var->getType());
2520 
2521   // This can happen with promotions that actually don't change the
2522   // underlying type, like the enum promotions.
2523   if (value->getType() == varType) return value;
2524 
2525   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2526          && "unexpected promotion type");
2527 
2528   if (isa<llvm::IntegerType>(varType))
2529     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2530 
2531   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2532 }
2533 
2534 /// Returns the attribute (either parameter attribute, or function
2535 /// attribute), which declares argument ArgNo to be non-null.
2536 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2537                                          QualType ArgType, unsigned ArgNo) {
2538   // FIXME: __attribute__((nonnull)) can also be applied to:
2539   //   - references to pointers, where the pointee is known to be
2540   //     nonnull (apparently a Clang extension)
2541   //   - transparent unions containing pointers
2542   // In the former case, LLVM IR cannot represent the constraint. In
2543   // the latter case, we have no guarantee that the transparent union
2544   // is in fact passed as a pointer.
2545   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2546     return nullptr;
2547   // First, check attribute on parameter itself.
2548   if (PVD) {
2549     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2550       return ParmNNAttr;
2551   }
2552   // Check function attributes.
2553   if (!FD)
2554     return nullptr;
2555   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2556     if (NNAttr->isNonNull(ArgNo))
2557       return NNAttr;
2558   }
2559   return nullptr;
2560 }
2561 
2562 namespace {
2563   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2564     Address Temp;
2565     Address Arg;
2566     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2567     void Emit(CodeGenFunction &CGF, Flags flags) override {
2568       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2569       CGF.Builder.CreateStore(errorValue, Arg);
2570     }
2571   };
2572 }
2573 
2574 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2575                                          llvm::Function *Fn,
2576                                          const FunctionArgList &Args) {
2577   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2578     // Naked functions don't have prologues.
2579     return;
2580 
2581   // If this is an implicit-return-zero function, go ahead and
2582   // initialize the return value.  TODO: it might be nice to have
2583   // a more general mechanism for this that didn't require synthesized
2584   // return statements.
2585   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2586     if (FD->hasImplicitReturnZero()) {
2587       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2588       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2589       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2590       Builder.CreateStore(Zero, ReturnValue);
2591     }
2592   }
2593 
2594   // FIXME: We no longer need the types from FunctionArgList; lift up and
2595   // simplify.
2596 
2597   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2598   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2599 
2600   // If we're using inalloca, all the memory arguments are GEPs off of the last
2601   // parameter, which is a pointer to the complete memory area.
2602   Address ArgStruct = Address::invalid();
2603   if (IRFunctionArgs.hasInallocaArg()) {
2604     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2605                         FI.getArgStructAlignment());
2606 
2607     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2608   }
2609 
2610   // Name the struct return parameter.
2611   if (IRFunctionArgs.hasSRetArg()) {
2612     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2613     AI->setName("agg.result");
2614     AI->addAttr(llvm::Attribute::NoAlias);
2615   }
2616 
2617   // Track if we received the parameter as a pointer (indirect, byval, or
2618   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2619   // into a local alloca for us.
2620   SmallVector<ParamValue, 16> ArgVals;
2621   ArgVals.reserve(Args.size());
2622 
2623   // Create a pointer value for every parameter declaration.  This usually
2624   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2625   // any cleanups or do anything that might unwind.  We do that separately, so
2626   // we can push the cleanups in the correct order for the ABI.
2627   assert(FI.arg_size() == Args.size() &&
2628          "Mismatch between function signature & arguments.");
2629   unsigned ArgNo = 0;
2630   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2631   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2632        i != e; ++i, ++info_it, ++ArgNo) {
2633     const VarDecl *Arg = *i;
2634     const ABIArgInfo &ArgI = info_it->info;
2635 
2636     bool isPromoted =
2637       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2638     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2639     // the parameter is promoted. In this case we convert to
2640     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2641     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2642     assert(hasScalarEvaluationKind(Ty) ==
2643            hasScalarEvaluationKind(Arg->getType()));
2644 
2645     unsigned FirstIRArg, NumIRArgs;
2646     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2647 
2648     switch (ArgI.getKind()) {
2649     case ABIArgInfo::InAlloca: {
2650       assert(NumIRArgs == 0);
2651       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2652       Address V =
2653           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2654       if (ArgI.getInAllocaIndirect())
2655         V = Address(Builder.CreateLoad(V),
2656                     getContext().getTypeAlignInChars(Ty));
2657       ArgVals.push_back(ParamValue::forIndirect(V));
2658       break;
2659     }
2660 
2661     case ABIArgInfo::Indirect:
2662     case ABIArgInfo::IndirectAliased: {
2663       assert(NumIRArgs == 1);
2664       Address ParamAddr =
2665           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2666 
2667       if (!hasScalarEvaluationKind(Ty)) {
2668         // Aggregates and complex variables are accessed by reference. All we
2669         // need to do is realign the value, if requested. Also, if the address
2670         // may be aliased, copy it to ensure that the parameter variable is
2671         // mutable and has a unique adress, as C requires.
2672         Address V = ParamAddr;
2673         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2674           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2675 
2676           // Copy from the incoming argument pointer to the temporary with the
2677           // appropriate alignment.
2678           //
2679           // FIXME: We should have a common utility for generating an aggregate
2680           // copy.
2681           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2682           Builder.CreateMemCpy(
2683               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2684               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2685               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2686           V = AlignedTemp;
2687         }
2688         ArgVals.push_back(ParamValue::forIndirect(V));
2689       } else {
2690         // Load scalar value from indirect argument.
2691         llvm::Value *V =
2692             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2693 
2694         if (isPromoted)
2695           V = emitArgumentDemotion(*this, Arg, V);
2696         ArgVals.push_back(ParamValue::forDirect(V));
2697       }
2698       break;
2699     }
2700 
2701     case ABIArgInfo::Extend:
2702     case ABIArgInfo::Direct: {
2703       auto AI = Fn->getArg(FirstIRArg);
2704       llvm::Type *LTy = ConvertType(Arg->getType());
2705 
2706       // Prepare parameter attributes. So far, only attributes for pointer
2707       // parameters are prepared. See
2708       // http://llvm.org/docs/LangRef.html#paramattrs.
2709       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2710           ArgI.getCoerceToType()->isPointerTy()) {
2711         assert(NumIRArgs == 1);
2712 
2713         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2714           // Set `nonnull` attribute if any.
2715           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2716                              PVD->getFunctionScopeIndex()) &&
2717               !CGM.getCodeGenOpts().NullPointerIsValid)
2718             AI->addAttr(llvm::Attribute::NonNull);
2719 
2720           QualType OTy = PVD->getOriginalType();
2721           if (const auto *ArrTy =
2722               getContext().getAsConstantArrayType(OTy)) {
2723             // A C99 array parameter declaration with the static keyword also
2724             // indicates dereferenceability, and if the size is constant we can
2725             // use the dereferenceable attribute (which requires the size in
2726             // bytes).
2727             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2728               QualType ETy = ArrTy->getElementType();
2729               llvm::Align Alignment =
2730                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2731               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2732               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2733               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2734                   ArrSize) {
2735                 llvm::AttrBuilder Attrs;
2736                 Attrs.addDereferenceableAttr(
2737                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2738                     ArrSize);
2739                 AI->addAttrs(Attrs);
2740               } else if (getContext().getTargetInfo().getNullPointerValue(
2741                              ETy.getAddressSpace()) == 0 &&
2742                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2743                 AI->addAttr(llvm::Attribute::NonNull);
2744               }
2745             }
2746           } else if (const auto *ArrTy =
2747                      getContext().getAsVariableArrayType(OTy)) {
2748             // For C99 VLAs with the static keyword, we don't know the size so
2749             // we can't use the dereferenceable attribute, but in addrspace(0)
2750             // we know that it must be nonnull.
2751             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2752               QualType ETy = ArrTy->getElementType();
2753               llvm::Align Alignment =
2754                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2755               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2756               if (!getContext().getTargetAddressSpace(ETy) &&
2757                   !CGM.getCodeGenOpts().NullPointerIsValid)
2758                 AI->addAttr(llvm::Attribute::NonNull);
2759             }
2760           }
2761 
2762           // Set `align` attribute if any.
2763           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2764           if (!AVAttr)
2765             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2766               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2767           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2768             // If alignment-assumption sanitizer is enabled, we do *not* add
2769             // alignment attribute here, but emit normal alignment assumption,
2770             // so the UBSAN check could function.
2771             llvm::ConstantInt *AlignmentCI =
2772                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2773             unsigned AlignmentInt =
2774                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2775             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2776               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2777               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2778                   llvm::Align(AlignmentInt)));
2779             }
2780           }
2781         }
2782 
2783         // Set 'noalias' if an argument type has the `restrict` qualifier.
2784         if (Arg->getType().isRestrictQualified())
2785           AI->addAttr(llvm::Attribute::NoAlias);
2786       }
2787 
2788       // Prepare the argument value. If we have the trivial case, handle it
2789       // with no muss and fuss.
2790       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2791           ArgI.getCoerceToType() == ConvertType(Ty) &&
2792           ArgI.getDirectOffset() == 0) {
2793         assert(NumIRArgs == 1);
2794 
2795         // LLVM expects swifterror parameters to be used in very restricted
2796         // ways.  Copy the value into a less-restricted temporary.
2797         llvm::Value *V = AI;
2798         if (FI.getExtParameterInfo(ArgNo).getABI()
2799               == ParameterABI::SwiftErrorResult) {
2800           QualType pointeeTy = Ty->getPointeeType();
2801           assert(pointeeTy->isPointerType());
2802           Address temp =
2803             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2804           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2805           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2806           Builder.CreateStore(incomingErrorValue, temp);
2807           V = temp.getPointer();
2808 
2809           // Push a cleanup to copy the value back at the end of the function.
2810           // The convention does not guarantee that the value will be written
2811           // back if the function exits with an unwind exception.
2812           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2813         }
2814 
2815         // Ensure the argument is the correct type.
2816         if (V->getType() != ArgI.getCoerceToType())
2817           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2818 
2819         if (isPromoted)
2820           V = emitArgumentDemotion(*this, Arg, V);
2821 
2822         // Because of merging of function types from multiple decls it is
2823         // possible for the type of an argument to not match the corresponding
2824         // type in the function type. Since we are codegening the callee
2825         // in here, add a cast to the argument type.
2826         llvm::Type *LTy = ConvertType(Arg->getType());
2827         if (V->getType() != LTy)
2828           V = Builder.CreateBitCast(V, LTy);
2829 
2830         ArgVals.push_back(ParamValue::forDirect(V));
2831         break;
2832       }
2833 
2834       // VLST arguments are coerced to VLATs at the function boundary for
2835       // ABI consistency. If this is a VLST that was coerced to
2836       // a VLAT at the function boundary and the types match up, use
2837       // llvm.experimental.vector.extract to convert back to the original
2838       // VLST.
2839       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2840         auto *Coerced = Fn->getArg(FirstIRArg);
2841         if (auto *VecTyFrom =
2842                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2843           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2844             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2845 
2846             assert(NumIRArgs == 1);
2847             Coerced->setName(Arg->getName() + ".coerce");
2848             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2849                 VecTyTo, Coerced, Zero, "castFixedSve")));
2850             break;
2851           }
2852         }
2853       }
2854 
2855       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2856                                      Arg->getName());
2857 
2858       // Pointer to store into.
2859       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2860 
2861       // Fast-isel and the optimizer generally like scalar values better than
2862       // FCAs, so we flatten them if this is safe to do for this argument.
2863       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2864       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2865           STy->getNumElements() > 1) {
2866         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2867         llvm::Type *DstTy = Ptr.getElementType();
2868         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2869 
2870         Address AddrToStoreInto = Address::invalid();
2871         if (SrcSize <= DstSize) {
2872           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2873         } else {
2874           AddrToStoreInto =
2875             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2876         }
2877 
2878         assert(STy->getNumElements() == NumIRArgs);
2879         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2880           auto AI = Fn->getArg(FirstIRArg + i);
2881           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2882           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2883           Builder.CreateStore(AI, EltPtr);
2884         }
2885 
2886         if (SrcSize > DstSize) {
2887           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2888         }
2889 
2890       } else {
2891         // Simple case, just do a coerced store of the argument into the alloca.
2892         assert(NumIRArgs == 1);
2893         auto AI = Fn->getArg(FirstIRArg);
2894         AI->setName(Arg->getName() + ".coerce");
2895         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2896       }
2897 
2898       // Match to what EmitParmDecl is expecting for this type.
2899       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2900         llvm::Value *V =
2901             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2902         if (isPromoted)
2903           V = emitArgumentDemotion(*this, Arg, V);
2904         ArgVals.push_back(ParamValue::forDirect(V));
2905       } else {
2906         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2907       }
2908       break;
2909     }
2910 
2911     case ABIArgInfo::CoerceAndExpand: {
2912       // Reconstruct into a temporary.
2913       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2914       ArgVals.push_back(ParamValue::forIndirect(alloca));
2915 
2916       auto coercionType = ArgI.getCoerceAndExpandType();
2917       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2918 
2919       unsigned argIndex = FirstIRArg;
2920       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2921         llvm::Type *eltType = coercionType->getElementType(i);
2922         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2923           continue;
2924 
2925         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2926         auto elt = Fn->getArg(argIndex++);
2927         Builder.CreateStore(elt, eltAddr);
2928       }
2929       assert(argIndex == FirstIRArg + NumIRArgs);
2930       break;
2931     }
2932 
2933     case ABIArgInfo::Expand: {
2934       // If this structure was expanded into multiple arguments then
2935       // we need to create a temporary and reconstruct it from the
2936       // arguments.
2937       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2938       LValue LV = MakeAddrLValue(Alloca, Ty);
2939       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2940 
2941       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2942       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2943       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2944       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2945         auto AI = Fn->getArg(FirstIRArg + i);
2946         AI->setName(Arg->getName() + "." + Twine(i));
2947       }
2948       break;
2949     }
2950 
2951     case ABIArgInfo::Ignore:
2952       assert(NumIRArgs == 0);
2953       // Initialize the local variable appropriately.
2954       if (!hasScalarEvaluationKind(Ty)) {
2955         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2956       } else {
2957         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2958         ArgVals.push_back(ParamValue::forDirect(U));
2959       }
2960       break;
2961     }
2962   }
2963 
2964   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2965     for (int I = Args.size() - 1; I >= 0; --I)
2966       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2967   } else {
2968     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2969       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2970   }
2971 }
2972 
2973 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2974   while (insn->use_empty()) {
2975     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2976     if (!bitcast) return;
2977 
2978     // This is "safe" because we would have used a ConstantExpr otherwise.
2979     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2980     bitcast->eraseFromParent();
2981   }
2982 }
2983 
2984 /// Try to emit a fused autorelease of a return result.
2985 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2986                                                     llvm::Value *result) {
2987   // We must be immediately followed the cast.
2988   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2989   if (BB->empty()) return nullptr;
2990   if (&BB->back() != result) return nullptr;
2991 
2992   llvm::Type *resultType = result->getType();
2993 
2994   // result is in a BasicBlock and is therefore an Instruction.
2995   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2996 
2997   SmallVector<llvm::Instruction *, 4> InstsToKill;
2998 
2999   // Look for:
3000   //  %generator = bitcast %type1* %generator2 to %type2*
3001   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3002     // We would have emitted this as a constant if the operand weren't
3003     // an Instruction.
3004     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3005 
3006     // Require the generator to be immediately followed by the cast.
3007     if (generator->getNextNode() != bitcast)
3008       return nullptr;
3009 
3010     InstsToKill.push_back(bitcast);
3011   }
3012 
3013   // Look for:
3014   //   %generator = call i8* @objc_retain(i8* %originalResult)
3015   // or
3016   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3017   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3018   if (!call) return nullptr;
3019 
3020   bool doRetainAutorelease;
3021 
3022   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3023     doRetainAutorelease = true;
3024   } else if (call->getCalledOperand() ==
3025              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3026     doRetainAutorelease = false;
3027 
3028     // If we emitted an assembly marker for this call (and the
3029     // ARCEntrypoints field should have been set if so), go looking
3030     // for that call.  If we can't find it, we can't do this
3031     // optimization.  But it should always be the immediately previous
3032     // instruction, unless we needed bitcasts around the call.
3033     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3034       llvm::Instruction *prev = call->getPrevNode();
3035       assert(prev);
3036       if (isa<llvm::BitCastInst>(prev)) {
3037         prev = prev->getPrevNode();
3038         assert(prev);
3039       }
3040       assert(isa<llvm::CallInst>(prev));
3041       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3042              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3043       InstsToKill.push_back(prev);
3044     }
3045   } else {
3046     return nullptr;
3047   }
3048 
3049   result = call->getArgOperand(0);
3050   InstsToKill.push_back(call);
3051 
3052   // Keep killing bitcasts, for sanity.  Note that we no longer care
3053   // about precise ordering as long as there's exactly one use.
3054   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3055     if (!bitcast->hasOneUse()) break;
3056     InstsToKill.push_back(bitcast);
3057     result = bitcast->getOperand(0);
3058   }
3059 
3060   // Delete all the unnecessary instructions, from latest to earliest.
3061   for (auto *I : InstsToKill)
3062     I->eraseFromParent();
3063 
3064   // Do the fused retain/autorelease if we were asked to.
3065   if (doRetainAutorelease)
3066     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3067 
3068   // Cast back to the result type.
3069   return CGF.Builder.CreateBitCast(result, resultType);
3070 }
3071 
3072 /// If this is a +1 of the value of an immutable 'self', remove it.
3073 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3074                                           llvm::Value *result) {
3075   // This is only applicable to a method with an immutable 'self'.
3076   const ObjCMethodDecl *method =
3077     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3078   if (!method) return nullptr;
3079   const VarDecl *self = method->getSelfDecl();
3080   if (!self->getType().isConstQualified()) return nullptr;
3081 
3082   // Look for a retain call.
3083   llvm::CallInst *retainCall =
3084     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3085   if (!retainCall || retainCall->getCalledOperand() !=
3086                          CGF.CGM.getObjCEntrypoints().objc_retain)
3087     return nullptr;
3088 
3089   // Look for an ordinary load of 'self'.
3090   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3091   llvm::LoadInst *load =
3092     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3093   if (!load || load->isAtomic() || load->isVolatile() ||
3094       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3095     return nullptr;
3096 
3097   // Okay!  Burn it all down.  This relies for correctness on the
3098   // assumption that the retain is emitted as part of the return and
3099   // that thereafter everything is used "linearly".
3100   llvm::Type *resultType = result->getType();
3101   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3102   assert(retainCall->use_empty());
3103   retainCall->eraseFromParent();
3104   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3105 
3106   return CGF.Builder.CreateBitCast(load, resultType);
3107 }
3108 
3109 /// Emit an ARC autorelease of the result of a function.
3110 ///
3111 /// \return the value to actually return from the function
3112 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3113                                             llvm::Value *result) {
3114   // If we're returning 'self', kill the initial retain.  This is a
3115   // heuristic attempt to "encourage correctness" in the really unfortunate
3116   // case where we have a return of self during a dealloc and we desperately
3117   // need to avoid the possible autorelease.
3118   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3119     return self;
3120 
3121   // At -O0, try to emit a fused retain/autorelease.
3122   if (CGF.shouldUseFusedARCCalls())
3123     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3124       return fused;
3125 
3126   return CGF.EmitARCAutoreleaseReturnValue(result);
3127 }
3128 
3129 /// Heuristically search for a dominating store to the return-value slot.
3130 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3131   // Check if a User is a store which pointerOperand is the ReturnValue.
3132   // We are looking for stores to the ReturnValue, not for stores of the
3133   // ReturnValue to some other location.
3134   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3135     auto *SI = dyn_cast<llvm::StoreInst>(U);
3136     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
3137       return nullptr;
3138     // These aren't actually possible for non-coerced returns, and we
3139     // only care about non-coerced returns on this code path.
3140     assert(!SI->isAtomic() && !SI->isVolatile());
3141     return SI;
3142   };
3143   // If there are multiple uses of the return-value slot, just check
3144   // for something immediately preceding the IP.  Sometimes this can
3145   // happen with how we generate implicit-returns; it can also happen
3146   // with noreturn cleanups.
3147   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3148     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3149     if (IP->empty()) return nullptr;
3150     llvm::Instruction *I = &IP->back();
3151 
3152     // Skip lifetime markers
3153     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
3154                                             IE = IP->rend();
3155          II != IE; ++II) {
3156       if (llvm::IntrinsicInst *Intrinsic =
3157               dyn_cast<llvm::IntrinsicInst>(&*II)) {
3158         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
3159           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
3160           ++II;
3161           if (II == IE)
3162             break;
3163           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
3164             continue;
3165         }
3166       }
3167       I = &*II;
3168       break;
3169     }
3170 
3171     return GetStoreIfValid(I);
3172   }
3173 
3174   llvm::StoreInst *store =
3175       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3176   if (!store) return nullptr;
3177 
3178   // Now do a first-and-dirty dominance check: just walk up the
3179   // single-predecessors chain from the current insertion point.
3180   llvm::BasicBlock *StoreBB = store->getParent();
3181   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3182   while (IP != StoreBB) {
3183     if (!(IP = IP->getSinglePredecessor()))
3184       return nullptr;
3185   }
3186 
3187   // Okay, the store's basic block dominates the insertion point; we
3188   // can do our thing.
3189   return store;
3190 }
3191 
3192 // Helper functions for EmitCMSEClearRecord
3193 
3194 // Set the bits corresponding to a field having width `BitWidth` and located at
3195 // offset `BitOffset` (from the least significant bit) within a storage unit of
3196 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3197 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3198 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3199                         int BitWidth, int CharWidth) {
3200   assert(CharWidth <= 64);
3201   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3202 
3203   int Pos = 0;
3204   if (BitOffset >= CharWidth) {
3205     Pos += BitOffset / CharWidth;
3206     BitOffset = BitOffset % CharWidth;
3207   }
3208 
3209   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3210   if (BitOffset + BitWidth >= CharWidth) {
3211     Bits[Pos++] |= (Used << BitOffset) & Used;
3212     BitWidth -= CharWidth - BitOffset;
3213     BitOffset = 0;
3214   }
3215 
3216   while (BitWidth >= CharWidth) {
3217     Bits[Pos++] = Used;
3218     BitWidth -= CharWidth;
3219   }
3220 
3221   if (BitWidth > 0)
3222     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3223 }
3224 
3225 // Set the bits corresponding to a field having width `BitWidth` and located at
3226 // offset `BitOffset` (from the least significant bit) within a storage unit of
3227 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3228 // `Bits` corresponds to one target byte. Use target endian layout.
3229 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3230                         int StorageSize, int BitOffset, int BitWidth,
3231                         int CharWidth, bool BigEndian) {
3232 
3233   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3234   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3235 
3236   if (BigEndian)
3237     std::reverse(TmpBits.begin(), TmpBits.end());
3238 
3239   for (uint64_t V : TmpBits)
3240     Bits[StorageOffset++] |= V;
3241 }
3242 
3243 static void setUsedBits(CodeGenModule &, QualType, int,
3244                         SmallVectorImpl<uint64_t> &);
3245 
3246 // Set the bits in `Bits`, which correspond to the value representations of
3247 // the actual members of the record type `RTy`. Note that this function does
3248 // not handle base classes, virtual tables, etc, since they cannot happen in
3249 // CMSE function arguments or return. The bit mask corresponds to the target
3250 // memory layout, i.e. it's endian dependent.
3251 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3252                         SmallVectorImpl<uint64_t> &Bits) {
3253   ASTContext &Context = CGM.getContext();
3254   int CharWidth = Context.getCharWidth();
3255   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3256   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3257   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3258 
3259   int Idx = 0;
3260   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3261     const FieldDecl *F = *I;
3262 
3263     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3264         F->getType()->isIncompleteArrayType())
3265       continue;
3266 
3267     if (F->isBitField()) {
3268       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3269       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3270                   BFI.StorageSize / CharWidth, BFI.Offset,
3271                   BFI.Size, CharWidth,
3272                   CGM.getDataLayout().isBigEndian());
3273       continue;
3274     }
3275 
3276     setUsedBits(CGM, F->getType(),
3277                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3278   }
3279 }
3280 
3281 // Set the bits in `Bits`, which correspond to the value representations of
3282 // the elements of an array type `ATy`.
3283 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3284                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3285   const ASTContext &Context = CGM.getContext();
3286 
3287   QualType ETy = Context.getBaseElementType(ATy);
3288   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3289   SmallVector<uint64_t, 4> TmpBits(Size);
3290   setUsedBits(CGM, ETy, 0, TmpBits);
3291 
3292   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3293     auto Src = TmpBits.begin();
3294     auto Dst = Bits.begin() + Offset + I * Size;
3295     for (int J = 0; J < Size; ++J)
3296       *Dst++ |= *Src++;
3297   }
3298 }
3299 
3300 // Set the bits in `Bits`, which correspond to the value representations of
3301 // the type `QTy`.
3302 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3303                         SmallVectorImpl<uint64_t> &Bits) {
3304   if (const auto *RTy = QTy->getAs<RecordType>())
3305     return setUsedBits(CGM, RTy, Offset, Bits);
3306 
3307   ASTContext &Context = CGM.getContext();
3308   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3309     return setUsedBits(CGM, ATy, Offset, Bits);
3310 
3311   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3312   if (Size <= 0)
3313     return;
3314 
3315   std::fill_n(Bits.begin() + Offset, Size,
3316               (uint64_t(1) << Context.getCharWidth()) - 1);
3317 }
3318 
3319 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3320                                    int Pos, int Size, int CharWidth,
3321                                    bool BigEndian) {
3322   assert(Size > 0);
3323   uint64_t Mask = 0;
3324   if (BigEndian) {
3325     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3326          ++P)
3327       Mask = (Mask << CharWidth) | *P;
3328   } else {
3329     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3330     do
3331       Mask = (Mask << CharWidth) | *--P;
3332     while (P != End);
3333   }
3334   return Mask;
3335 }
3336 
3337 // Emit code to clear the bits in a record, which aren't a part of any user
3338 // declared member, when the record is a function return.
3339 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3340                                                   llvm::IntegerType *ITy,
3341                                                   QualType QTy) {
3342   assert(Src->getType() == ITy);
3343   assert(ITy->getScalarSizeInBits() <= 64);
3344 
3345   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3346   int Size = DataLayout.getTypeStoreSize(ITy);
3347   SmallVector<uint64_t, 4> Bits(Size);
3348   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3349 
3350   int CharWidth = CGM.getContext().getCharWidth();
3351   uint64_t Mask =
3352       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3353 
3354   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3355 }
3356 
3357 // Emit code to clear the bits in a record, which aren't a part of any user
3358 // declared member, when the record is a function argument.
3359 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3360                                                   llvm::ArrayType *ATy,
3361                                                   QualType QTy) {
3362   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3363   int Size = DataLayout.getTypeStoreSize(ATy);
3364   SmallVector<uint64_t, 16> Bits(Size);
3365   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3366 
3367   // Clear each element of the LLVM array.
3368   int CharWidth = CGM.getContext().getCharWidth();
3369   int CharsPerElt =
3370       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3371   int MaskIndex = 0;
3372   llvm::Value *R = llvm::UndefValue::get(ATy);
3373   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3374     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3375                                        DataLayout.isBigEndian());
3376     MaskIndex += CharsPerElt;
3377     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3378     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3379     R = Builder.CreateInsertValue(R, T1, I);
3380   }
3381 
3382   return R;
3383 }
3384 
3385 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3386                                          bool EmitRetDbgLoc,
3387                                          SourceLocation EndLoc) {
3388   if (FI.isNoReturn()) {
3389     // Noreturn functions don't return.
3390     EmitUnreachable(EndLoc);
3391     return;
3392   }
3393 
3394   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3395     // Naked functions don't have epilogues.
3396     Builder.CreateUnreachable();
3397     return;
3398   }
3399 
3400   // Functions with no result always return void.
3401   if (!ReturnValue.isValid()) {
3402     Builder.CreateRetVoid();
3403     return;
3404   }
3405 
3406   llvm::DebugLoc RetDbgLoc;
3407   llvm::Value *RV = nullptr;
3408   QualType RetTy = FI.getReturnType();
3409   const ABIArgInfo &RetAI = FI.getReturnInfo();
3410 
3411   switch (RetAI.getKind()) {
3412   case ABIArgInfo::InAlloca:
3413     // Aggregrates get evaluated directly into the destination.  Sometimes we
3414     // need to return the sret value in a register, though.
3415     assert(hasAggregateEvaluationKind(RetTy));
3416     if (RetAI.getInAllocaSRet()) {
3417       llvm::Function::arg_iterator EI = CurFn->arg_end();
3418       --EI;
3419       llvm::Value *ArgStruct = &*EI;
3420       llvm::Value *SRet = Builder.CreateStructGEP(
3421           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3422       llvm::Type *Ty =
3423           cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3424       RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3425     }
3426     break;
3427 
3428   case ABIArgInfo::Indirect: {
3429     auto AI = CurFn->arg_begin();
3430     if (RetAI.isSRetAfterThis())
3431       ++AI;
3432     switch (getEvaluationKind(RetTy)) {
3433     case TEK_Complex: {
3434       ComplexPairTy RT =
3435         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3436       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3437                          /*isInit*/ true);
3438       break;
3439     }
3440     case TEK_Aggregate:
3441       // Do nothing; aggregrates get evaluated directly into the destination.
3442       break;
3443     case TEK_Scalar:
3444       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3445                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3446                         /*isInit*/ true);
3447       break;
3448     }
3449     break;
3450   }
3451 
3452   case ABIArgInfo::Extend:
3453   case ABIArgInfo::Direct:
3454     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3455         RetAI.getDirectOffset() == 0) {
3456       // The internal return value temp always will have pointer-to-return-type
3457       // type, just do a load.
3458 
3459       // If there is a dominating store to ReturnValue, we can elide
3460       // the load, zap the store, and usually zap the alloca.
3461       if (llvm::StoreInst *SI =
3462               findDominatingStoreToReturnValue(*this)) {
3463         // Reuse the debug location from the store unless there is
3464         // cleanup code to be emitted between the store and return
3465         // instruction.
3466         if (EmitRetDbgLoc && !AutoreleaseResult)
3467           RetDbgLoc = SI->getDebugLoc();
3468         // Get the stored value and nuke the now-dead store.
3469         RV = SI->getValueOperand();
3470         SI->eraseFromParent();
3471 
3472       // Otherwise, we have to do a simple load.
3473       } else {
3474         RV = Builder.CreateLoad(ReturnValue);
3475       }
3476     } else {
3477       // If the value is offset in memory, apply the offset now.
3478       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3479 
3480       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3481     }
3482 
3483     // In ARC, end functions that return a retainable type with a call
3484     // to objc_autoreleaseReturnValue.
3485     if (AutoreleaseResult) {
3486 #ifndef NDEBUG
3487       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3488       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3489       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3490       // CurCodeDecl or BlockInfo.
3491       QualType RT;
3492 
3493       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3494         RT = FD->getReturnType();
3495       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3496         RT = MD->getReturnType();
3497       else if (isa<BlockDecl>(CurCodeDecl))
3498         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3499       else
3500         llvm_unreachable("Unexpected function/method type");
3501 
3502       assert(getLangOpts().ObjCAutoRefCount &&
3503              !FI.isReturnsRetained() &&
3504              RT->isObjCRetainableType());
3505 #endif
3506       RV = emitAutoreleaseOfResult(*this, RV);
3507     }
3508 
3509     break;
3510 
3511   case ABIArgInfo::Ignore:
3512     break;
3513 
3514   case ABIArgInfo::CoerceAndExpand: {
3515     auto coercionType = RetAI.getCoerceAndExpandType();
3516 
3517     // Load all of the coerced elements out into results.
3518     llvm::SmallVector<llvm::Value*, 4> results;
3519     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3520     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3521       auto coercedEltType = coercionType->getElementType(i);
3522       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3523         continue;
3524 
3525       auto eltAddr = Builder.CreateStructGEP(addr, i);
3526       auto elt = Builder.CreateLoad(eltAddr);
3527       results.push_back(elt);
3528     }
3529 
3530     // If we have one result, it's the single direct result type.
3531     if (results.size() == 1) {
3532       RV = results[0];
3533 
3534     // Otherwise, we need to make a first-class aggregate.
3535     } else {
3536       // Construct a return type that lacks padding elements.
3537       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3538 
3539       RV = llvm::UndefValue::get(returnType);
3540       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3541         RV = Builder.CreateInsertValue(RV, results[i], i);
3542       }
3543     }
3544     break;
3545   }
3546   case ABIArgInfo::Expand:
3547   case ABIArgInfo::IndirectAliased:
3548     llvm_unreachable("Invalid ABI kind for return argument");
3549   }
3550 
3551   llvm::Instruction *Ret;
3552   if (RV) {
3553     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3554       // For certain return types, clear padding bits, as they may reveal
3555       // sensitive information.
3556       // Small struct/union types are passed as integers.
3557       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3558       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3559         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3560     }
3561     EmitReturnValueCheck(RV);
3562     Ret = Builder.CreateRet(RV);
3563   } else {
3564     Ret = Builder.CreateRetVoid();
3565   }
3566 
3567   if (RetDbgLoc)
3568     Ret->setDebugLoc(std::move(RetDbgLoc));
3569 }
3570 
3571 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3572   // A current decl may not be available when emitting vtable thunks.
3573   if (!CurCodeDecl)
3574     return;
3575 
3576   // If the return block isn't reachable, neither is this check, so don't emit
3577   // it.
3578   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3579     return;
3580 
3581   ReturnsNonNullAttr *RetNNAttr = nullptr;
3582   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3583     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3584 
3585   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3586     return;
3587 
3588   // Prefer the returns_nonnull attribute if it's present.
3589   SourceLocation AttrLoc;
3590   SanitizerMask CheckKind;
3591   SanitizerHandler Handler;
3592   if (RetNNAttr) {
3593     assert(!requiresReturnValueNullabilityCheck() &&
3594            "Cannot check nullability and the nonnull attribute");
3595     AttrLoc = RetNNAttr->getLocation();
3596     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3597     Handler = SanitizerHandler::NonnullReturn;
3598   } else {
3599     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3600       if (auto *TSI = DD->getTypeSourceInfo())
3601         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3602           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3603     CheckKind = SanitizerKind::NullabilityReturn;
3604     Handler = SanitizerHandler::NullabilityReturn;
3605   }
3606 
3607   SanitizerScope SanScope(this);
3608 
3609   // Make sure the "return" source location is valid. If we're checking a
3610   // nullability annotation, make sure the preconditions for the check are met.
3611   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3612   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3613   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3614   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3615   if (requiresReturnValueNullabilityCheck())
3616     CanNullCheck =
3617         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3618   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3619   EmitBlock(Check);
3620 
3621   // Now do the null check.
3622   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3623   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3624   llvm::Value *DynamicData[] = {SLocPtr};
3625   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3626 
3627   EmitBlock(NoCheck);
3628 
3629 #ifndef NDEBUG
3630   // The return location should not be used after the check has been emitted.
3631   ReturnLocation = Address::invalid();
3632 #endif
3633 }
3634 
3635 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3636   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3637   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3638 }
3639 
3640 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3641                                           QualType Ty) {
3642   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3643   // placeholders.
3644   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3645   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3646   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3647 
3648   // FIXME: When we generate this IR in one pass, we shouldn't need
3649   // this win32-specific alignment hack.
3650   CharUnits Align = CharUnits::fromQuantity(4);
3651   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3652 
3653   return AggValueSlot::forAddr(Address(Placeholder, Align),
3654                                Ty.getQualifiers(),
3655                                AggValueSlot::IsNotDestructed,
3656                                AggValueSlot::DoesNotNeedGCBarriers,
3657                                AggValueSlot::IsNotAliased,
3658                                AggValueSlot::DoesNotOverlap);
3659 }
3660 
3661 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3662                                           const VarDecl *param,
3663                                           SourceLocation loc) {
3664   // StartFunction converted the ABI-lowered parameter(s) into a
3665   // local alloca.  We need to turn that into an r-value suitable
3666   // for EmitCall.
3667   Address local = GetAddrOfLocalVar(param);
3668 
3669   QualType type = param->getType();
3670 
3671   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3672     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3673   }
3674 
3675   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3676   // but the argument needs to be the original pointer.
3677   if (type->isReferenceType()) {
3678     args.add(RValue::get(Builder.CreateLoad(local)), type);
3679 
3680   // In ARC, move out of consumed arguments so that the release cleanup
3681   // entered by StartFunction doesn't cause an over-release.  This isn't
3682   // optimal -O0 code generation, but it should get cleaned up when
3683   // optimization is enabled.  This also assumes that delegate calls are
3684   // performed exactly once for a set of arguments, but that should be safe.
3685   } else if (getLangOpts().ObjCAutoRefCount &&
3686              param->hasAttr<NSConsumedAttr>() &&
3687              type->isObjCRetainableType()) {
3688     llvm::Value *ptr = Builder.CreateLoad(local);
3689     auto null =
3690       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3691     Builder.CreateStore(null, local);
3692     args.add(RValue::get(ptr), type);
3693 
3694   // For the most part, we just need to load the alloca, except that
3695   // aggregate r-values are actually pointers to temporaries.
3696   } else {
3697     args.add(convertTempToRValue(local, type, loc), type);
3698   }
3699 
3700   // Deactivate the cleanup for the callee-destructed param that was pushed.
3701   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3702       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3703       param->needsDestruction(getContext())) {
3704     EHScopeStack::stable_iterator cleanup =
3705         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3706     assert(cleanup.isValid() &&
3707            "cleanup for callee-destructed param not recorded");
3708     // This unreachable is a temporary marker which will be removed later.
3709     llvm::Instruction *isActive = Builder.CreateUnreachable();
3710     args.addArgCleanupDeactivation(cleanup, isActive);
3711   }
3712 }
3713 
3714 static bool isProvablyNull(llvm::Value *addr) {
3715   return isa<llvm::ConstantPointerNull>(addr);
3716 }
3717 
3718 /// Emit the actual writing-back of a writeback.
3719 static void emitWriteback(CodeGenFunction &CGF,
3720                           const CallArgList::Writeback &writeback) {
3721   const LValue &srcLV = writeback.Source;
3722   Address srcAddr = srcLV.getAddress(CGF);
3723   assert(!isProvablyNull(srcAddr.getPointer()) &&
3724          "shouldn't have writeback for provably null argument");
3725 
3726   llvm::BasicBlock *contBB = nullptr;
3727 
3728   // If the argument wasn't provably non-null, we need to null check
3729   // before doing the store.
3730   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3731                                               CGF.CGM.getDataLayout());
3732   if (!provablyNonNull) {
3733     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3734     contBB = CGF.createBasicBlock("icr.done");
3735 
3736     llvm::Value *isNull =
3737       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3738     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3739     CGF.EmitBlock(writebackBB);
3740   }
3741 
3742   // Load the value to writeback.
3743   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3744 
3745   // Cast it back, in case we're writing an id to a Foo* or something.
3746   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3747                                     "icr.writeback-cast");
3748 
3749   // Perform the writeback.
3750 
3751   // If we have a "to use" value, it's something we need to emit a use
3752   // of.  This has to be carefully threaded in: if it's done after the
3753   // release it's potentially undefined behavior (and the optimizer
3754   // will ignore it), and if it happens before the retain then the
3755   // optimizer could move the release there.
3756   if (writeback.ToUse) {
3757     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3758 
3759     // Retain the new value.  No need to block-copy here:  the block's
3760     // being passed up the stack.
3761     value = CGF.EmitARCRetainNonBlock(value);
3762 
3763     // Emit the intrinsic use here.
3764     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3765 
3766     // Load the old value (primitively).
3767     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3768 
3769     // Put the new value in place (primitively).
3770     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3771 
3772     // Release the old value.
3773     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3774 
3775   // Otherwise, we can just do a normal lvalue store.
3776   } else {
3777     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3778   }
3779 
3780   // Jump to the continuation block.
3781   if (!provablyNonNull)
3782     CGF.EmitBlock(contBB);
3783 }
3784 
3785 static void emitWritebacks(CodeGenFunction &CGF,
3786                            const CallArgList &args) {
3787   for (const auto &I : args.writebacks())
3788     emitWriteback(CGF, I);
3789 }
3790 
3791 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3792                                             const CallArgList &CallArgs) {
3793   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3794     CallArgs.getCleanupsToDeactivate();
3795   // Iterate in reverse to increase the likelihood of popping the cleanup.
3796   for (const auto &I : llvm::reverse(Cleanups)) {
3797     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3798     I.IsActiveIP->eraseFromParent();
3799   }
3800 }
3801 
3802 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3803   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3804     if (uop->getOpcode() == UO_AddrOf)
3805       return uop->getSubExpr();
3806   return nullptr;
3807 }
3808 
3809 /// Emit an argument that's being passed call-by-writeback.  That is,
3810 /// we are passing the address of an __autoreleased temporary; it
3811 /// might be copy-initialized with the current value of the given
3812 /// address, but it will definitely be copied out of after the call.
3813 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3814                              const ObjCIndirectCopyRestoreExpr *CRE) {
3815   LValue srcLV;
3816 
3817   // Make an optimistic effort to emit the address as an l-value.
3818   // This can fail if the argument expression is more complicated.
3819   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3820     srcLV = CGF.EmitLValue(lvExpr);
3821 
3822   // Otherwise, just emit it as a scalar.
3823   } else {
3824     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3825 
3826     QualType srcAddrType =
3827       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3828     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3829   }
3830   Address srcAddr = srcLV.getAddress(CGF);
3831 
3832   // The dest and src types don't necessarily match in LLVM terms
3833   // because of the crazy ObjC compatibility rules.
3834 
3835   llvm::PointerType *destType =
3836     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3837 
3838   // If the address is a constant null, just pass the appropriate null.
3839   if (isProvablyNull(srcAddr.getPointer())) {
3840     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3841              CRE->getType());
3842     return;
3843   }
3844 
3845   // Create the temporary.
3846   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3847                                       CGF.getPointerAlign(),
3848                                       "icr.temp");
3849   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3850   // and that cleanup will be conditional if we can't prove that the l-value
3851   // isn't null, so we need to register a dominating point so that the cleanups
3852   // system will make valid IR.
3853   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3854 
3855   // Zero-initialize it if we're not doing a copy-initialization.
3856   bool shouldCopy = CRE->shouldCopy();
3857   if (!shouldCopy) {
3858     llvm::Value *null =
3859       llvm::ConstantPointerNull::get(
3860         cast<llvm::PointerType>(destType->getElementType()));
3861     CGF.Builder.CreateStore(null, temp);
3862   }
3863 
3864   llvm::BasicBlock *contBB = nullptr;
3865   llvm::BasicBlock *originBB = nullptr;
3866 
3867   // If the address is *not* known to be non-null, we need to switch.
3868   llvm::Value *finalArgument;
3869 
3870   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3871                                               CGF.CGM.getDataLayout());
3872   if (provablyNonNull) {
3873     finalArgument = temp.getPointer();
3874   } else {
3875     llvm::Value *isNull =
3876       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3877 
3878     finalArgument = CGF.Builder.CreateSelect(isNull,
3879                                    llvm::ConstantPointerNull::get(destType),
3880                                              temp.getPointer(), "icr.argument");
3881 
3882     // If we need to copy, then the load has to be conditional, which
3883     // means we need control flow.
3884     if (shouldCopy) {
3885       originBB = CGF.Builder.GetInsertBlock();
3886       contBB = CGF.createBasicBlock("icr.cont");
3887       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3888       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3889       CGF.EmitBlock(copyBB);
3890       condEval.begin(CGF);
3891     }
3892   }
3893 
3894   llvm::Value *valueToUse = nullptr;
3895 
3896   // Perform a copy if necessary.
3897   if (shouldCopy) {
3898     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3899     assert(srcRV.isScalar());
3900 
3901     llvm::Value *src = srcRV.getScalarVal();
3902     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3903                                     "icr.cast");
3904 
3905     // Use an ordinary store, not a store-to-lvalue.
3906     CGF.Builder.CreateStore(src, temp);
3907 
3908     // If optimization is enabled, and the value was held in a
3909     // __strong variable, we need to tell the optimizer that this
3910     // value has to stay alive until we're doing the store back.
3911     // This is because the temporary is effectively unretained,
3912     // and so otherwise we can violate the high-level semantics.
3913     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3914         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3915       valueToUse = src;
3916     }
3917   }
3918 
3919   // Finish the control flow if we needed it.
3920   if (shouldCopy && !provablyNonNull) {
3921     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3922     CGF.EmitBlock(contBB);
3923 
3924     // Make a phi for the value to intrinsically use.
3925     if (valueToUse) {
3926       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3927                                                       "icr.to-use");
3928       phiToUse->addIncoming(valueToUse, copyBB);
3929       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3930                             originBB);
3931       valueToUse = phiToUse;
3932     }
3933 
3934     condEval.end(CGF);
3935   }
3936 
3937   args.addWriteback(srcLV, temp, valueToUse);
3938   args.add(RValue::get(finalArgument), CRE->getType());
3939 }
3940 
3941 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3942   assert(!StackBase);
3943 
3944   // Save the stack.
3945   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3946   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3947 }
3948 
3949 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3950   if (StackBase) {
3951     // Restore the stack after the call.
3952     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3953     CGF.Builder.CreateCall(F, StackBase);
3954   }
3955 }
3956 
3957 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3958                                           SourceLocation ArgLoc,
3959                                           AbstractCallee AC,
3960                                           unsigned ParmNum) {
3961   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3962                          SanOpts.has(SanitizerKind::NullabilityArg)))
3963     return;
3964 
3965   // The param decl may be missing in a variadic function.
3966   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3967   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3968 
3969   // Prefer the nonnull attribute if it's present.
3970   const NonNullAttr *NNAttr = nullptr;
3971   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3972     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3973 
3974   bool CanCheckNullability = false;
3975   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3976     auto Nullability = PVD->getType()->getNullability(getContext());
3977     CanCheckNullability = Nullability &&
3978                           *Nullability == NullabilityKind::NonNull &&
3979                           PVD->getTypeSourceInfo();
3980   }
3981 
3982   if (!NNAttr && !CanCheckNullability)
3983     return;
3984 
3985   SourceLocation AttrLoc;
3986   SanitizerMask CheckKind;
3987   SanitizerHandler Handler;
3988   if (NNAttr) {
3989     AttrLoc = NNAttr->getLocation();
3990     CheckKind = SanitizerKind::NonnullAttribute;
3991     Handler = SanitizerHandler::NonnullArg;
3992   } else {
3993     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3994     CheckKind = SanitizerKind::NullabilityArg;
3995     Handler = SanitizerHandler::NullabilityArg;
3996   }
3997 
3998   SanitizerScope SanScope(this);
3999   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4000   llvm::Constant *StaticData[] = {
4001       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4002       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4003   };
4004   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
4005 }
4006 
4007 // Check if the call is going to use the inalloca convention. This needs to
4008 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4009 // later, so we can't check it directly.
4010 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4011                             ArrayRef<QualType> ArgTypes) {
4012   // The Swift calling convention doesn't go through the target-specific
4013   // argument classification, so it never uses inalloca.
4014   // TODO: Consider limiting inalloca use to only calling conventions supported
4015   // by MSVC.
4016   if (ExplicitCC == CC_Swift)
4017     return false;
4018   if (!CGM.getTarget().getCXXABI().isMicrosoft())
4019     return false;
4020   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4021     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4022   });
4023 }
4024 
4025 #ifndef NDEBUG
4026 // Determine whether the given argument is an Objective-C method
4027 // that may have type parameters in its signature.
4028 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4029   const DeclContext *dc = method->getDeclContext();
4030   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4031     return classDecl->getTypeParamListAsWritten();
4032   }
4033 
4034   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4035     return catDecl->getTypeParamList();
4036   }
4037 
4038   return false;
4039 }
4040 #endif
4041 
4042 /// EmitCallArgs - Emit call arguments for a function.
4043 void CodeGenFunction::EmitCallArgs(
4044     CallArgList &Args, PrototypeWrapper Prototype,
4045     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4046     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4047   SmallVector<QualType, 16> ArgTypes;
4048 
4049   assert((ParamsToSkip == 0 || Prototype.P) &&
4050          "Can't skip parameters if type info is not provided");
4051 
4052   // This variable only captures *explicitly* written conventions, not those
4053   // applied by default via command line flags or target defaults, such as
4054   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4055   // require knowing if this is a C++ instance method or being able to see
4056   // unprototyped FunctionTypes.
4057   CallingConv ExplicitCC = CC_C;
4058 
4059   // First, if a prototype was provided, use those argument types.
4060   bool IsVariadic = false;
4061   if (Prototype.P) {
4062     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4063     if (MD) {
4064       IsVariadic = MD->isVariadic();
4065       ExplicitCC = getCallingConventionForDecl(
4066           MD, CGM.getTarget().getTriple().isOSWindows());
4067       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4068                       MD->param_type_end());
4069     } else {
4070       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4071       IsVariadic = FPT->isVariadic();
4072       ExplicitCC = FPT->getExtInfo().getCC();
4073       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4074                       FPT->param_type_end());
4075     }
4076 
4077 #ifndef NDEBUG
4078     // Check that the prototyped types match the argument expression types.
4079     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4080     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4081     for (QualType Ty : ArgTypes) {
4082       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4083       assert(
4084           (isGenericMethod || Ty->isVariablyModifiedType() ||
4085            Ty.getNonReferenceType()->isObjCRetainableType() ||
4086            getContext()
4087                    .getCanonicalType(Ty.getNonReferenceType())
4088                    .getTypePtr() ==
4089                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4090           "type mismatch in call argument!");
4091       ++Arg;
4092     }
4093 
4094     // Either we've emitted all the call args, or we have a call to variadic
4095     // function.
4096     assert((Arg == ArgRange.end() || IsVariadic) &&
4097            "Extra arguments in non-variadic function!");
4098 #endif
4099   }
4100 
4101   // If we still have any arguments, emit them using the type of the argument.
4102   for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()),
4103                                   ArgRange.end()))
4104     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4105   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4106 
4107   // We must evaluate arguments from right to left in the MS C++ ABI,
4108   // because arguments are destroyed left to right in the callee. As a special
4109   // case, there are certain language constructs that require left-to-right
4110   // evaluation, and in those cases we consider the evaluation order requirement
4111   // to trump the "destruction order is reverse construction order" guarantee.
4112   bool LeftToRight =
4113       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4114           ? Order == EvaluationOrder::ForceLeftToRight
4115           : Order != EvaluationOrder::ForceRightToLeft;
4116 
4117   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4118                                          RValue EmittedArg) {
4119     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4120       return;
4121     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4122     if (PS == nullptr)
4123       return;
4124 
4125     const auto &Context = getContext();
4126     auto SizeTy = Context.getSizeType();
4127     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4128     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4129     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4130                                                      EmittedArg.getScalarVal(),
4131                                                      PS->isDynamic());
4132     Args.add(RValue::get(V), SizeTy);
4133     // If we're emitting args in reverse, be sure to do so with
4134     // pass_object_size, as well.
4135     if (!LeftToRight)
4136       std::swap(Args.back(), *(&Args.back() - 1));
4137   };
4138 
4139   // Insert a stack save if we're going to need any inalloca args.
4140   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4141     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4142            "inalloca only supported on x86");
4143     Args.allocateArgumentMemory(*this);
4144   }
4145 
4146   // Evaluate each argument in the appropriate order.
4147   size_t CallArgsStart = Args.size();
4148   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4149     unsigned Idx = LeftToRight ? I : E - I - 1;
4150     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4151     unsigned InitialArgSize = Args.size();
4152     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4153     // the argument and parameter match or the objc method is parameterized.
4154     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4155             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4156                                                 ArgTypes[Idx]) ||
4157             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4158              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4159            "Argument and parameter types don't match");
4160     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4161     // In particular, we depend on it being the last arg in Args, and the
4162     // objectsize bits depend on there only being one arg if !LeftToRight.
4163     assert(InitialArgSize + 1 == Args.size() &&
4164            "The code below depends on only adding one arg per EmitCallArg");
4165     (void)InitialArgSize;
4166     // Since pointer argument are never emitted as LValue, it is safe to emit
4167     // non-null argument check for r-value only.
4168     if (!Args.back().hasLValue()) {
4169       RValue RVArg = Args.back().getKnownRValue();
4170       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4171                           ParamsToSkip + Idx);
4172       // @llvm.objectsize should never have side-effects and shouldn't need
4173       // destruction/cleanups, so we can safely "emit" it after its arg,
4174       // regardless of right-to-leftness
4175       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4176     }
4177   }
4178 
4179   if (!LeftToRight) {
4180     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4181     // IR function.
4182     std::reverse(Args.begin() + CallArgsStart, Args.end());
4183   }
4184 }
4185 
4186 namespace {
4187 
4188 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4189   DestroyUnpassedArg(Address Addr, QualType Ty)
4190       : Addr(Addr), Ty(Ty) {}
4191 
4192   Address Addr;
4193   QualType Ty;
4194 
4195   void Emit(CodeGenFunction &CGF, Flags flags) override {
4196     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4197     if (DtorKind == QualType::DK_cxx_destructor) {
4198       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4199       assert(!Dtor->isTrivial());
4200       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4201                                 /*Delegating=*/false, Addr, Ty);
4202     } else {
4203       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4204     }
4205   }
4206 };
4207 
4208 struct DisableDebugLocationUpdates {
4209   CodeGenFunction &CGF;
4210   bool disabledDebugInfo;
4211   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4212     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4213       CGF.disableDebugInfo();
4214   }
4215   ~DisableDebugLocationUpdates() {
4216     if (disabledDebugInfo)
4217       CGF.enableDebugInfo();
4218   }
4219 };
4220 
4221 } // end anonymous namespace
4222 
4223 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4224   if (!HasLV)
4225     return RV;
4226   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4227   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4228                         LV.isVolatile());
4229   IsUsed = true;
4230   return RValue::getAggregate(Copy.getAddress(CGF));
4231 }
4232 
4233 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4234   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4235   if (!HasLV && RV.isScalar())
4236     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4237   else if (!HasLV && RV.isComplex())
4238     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4239   else {
4240     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4241     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4242     // We assume that call args are never copied into subobjects.
4243     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4244                           HasLV ? LV.isVolatileQualified()
4245                                 : RV.isVolatileQualified());
4246   }
4247   IsUsed = true;
4248 }
4249 
4250 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4251                                   QualType type) {
4252   DisableDebugLocationUpdates Dis(*this, E);
4253   if (const ObjCIndirectCopyRestoreExpr *CRE
4254         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4255     assert(getLangOpts().ObjCAutoRefCount);
4256     return emitWritebackArg(*this, args, CRE);
4257   }
4258 
4259   assert(type->isReferenceType() == E->isGLValue() &&
4260          "reference binding to unmaterialized r-value!");
4261 
4262   if (E->isGLValue()) {
4263     assert(E->getObjectKind() == OK_Ordinary);
4264     return args.add(EmitReferenceBindingToExpr(E), type);
4265   }
4266 
4267   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4268 
4269   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4270   // However, we still have to push an EH-only cleanup in case we unwind before
4271   // we make it to the call.
4272   if (HasAggregateEvalKind &&
4273       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4274     // If we're using inalloca, use the argument memory.  Otherwise, use a
4275     // temporary.
4276     AggValueSlot Slot;
4277     if (args.isUsingInAlloca())
4278       Slot = createPlaceholderSlot(*this, type);
4279     else
4280       Slot = CreateAggTemp(type, "agg.tmp");
4281 
4282     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4283     if (const auto *RD = type->getAsCXXRecordDecl())
4284       DestroyedInCallee = RD->hasNonTrivialDestructor();
4285     else
4286       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4287 
4288     if (DestroyedInCallee)
4289       Slot.setExternallyDestructed();
4290 
4291     EmitAggExpr(E, Slot);
4292     RValue RV = Slot.asRValue();
4293     args.add(RV, type);
4294 
4295     if (DestroyedInCallee && NeedsEHCleanup) {
4296       // Create a no-op GEP between the placeholder and the cleanup so we can
4297       // RAUW it successfully.  It also serves as a marker of the first
4298       // instruction where the cleanup is active.
4299       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4300                                               type);
4301       // This unreachable is a temporary marker which will be removed later.
4302       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4303       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4304     }
4305     return;
4306   }
4307 
4308   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4309       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4310     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4311     assert(L.isSimple());
4312     args.addUncopiedAggregate(L, type);
4313     return;
4314   }
4315 
4316   args.add(EmitAnyExprToTemp(E), type);
4317 }
4318 
4319 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4320   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4321   // implicitly widens null pointer constants that are arguments to varargs
4322   // functions to pointer-sized ints.
4323   if (!getTarget().getTriple().isOSWindows())
4324     return Arg->getType();
4325 
4326   if (Arg->getType()->isIntegerType() &&
4327       getContext().getTypeSize(Arg->getType()) <
4328           getContext().getTargetInfo().getPointerWidth(0) &&
4329       Arg->isNullPointerConstant(getContext(),
4330                                  Expr::NPC_ValueDependentIsNotNull)) {
4331     return getContext().getIntPtrType();
4332   }
4333 
4334   return Arg->getType();
4335 }
4336 
4337 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4338 // optimizer it can aggressively ignore unwind edges.
4339 void
4340 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4341   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4342       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4343     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4344                       CGM.getNoObjCARCExceptionsMetadata());
4345 }
4346 
4347 /// Emits a call to the given no-arguments nounwind runtime function.
4348 llvm::CallInst *
4349 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4350                                          const llvm::Twine &name) {
4351   return EmitNounwindRuntimeCall(callee, None, name);
4352 }
4353 
4354 /// Emits a call to the given nounwind runtime function.
4355 llvm::CallInst *
4356 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4357                                          ArrayRef<llvm::Value *> args,
4358                                          const llvm::Twine &name) {
4359   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4360   call->setDoesNotThrow();
4361   return call;
4362 }
4363 
4364 /// Emits a simple call (never an invoke) to the given no-arguments
4365 /// runtime function.
4366 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4367                                                  const llvm::Twine &name) {
4368   return EmitRuntimeCall(callee, None, name);
4369 }
4370 
4371 // Calls which may throw must have operand bundles indicating which funclet
4372 // they are nested within.
4373 SmallVector<llvm::OperandBundleDef, 1>
4374 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4375   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4376   // There is no need for a funclet operand bundle if we aren't inside a
4377   // funclet.
4378   if (!CurrentFuncletPad)
4379     return BundleList;
4380 
4381   // Skip intrinsics which cannot throw.
4382   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4383   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4384     return BundleList;
4385 
4386   BundleList.emplace_back("funclet", CurrentFuncletPad);
4387   return BundleList;
4388 }
4389 
4390 /// Emits a simple call (never an invoke) to the given runtime function.
4391 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4392                                                  ArrayRef<llvm::Value *> args,
4393                                                  const llvm::Twine &name) {
4394   llvm::CallInst *call = Builder.CreateCall(
4395       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4396   call->setCallingConv(getRuntimeCC());
4397   return call;
4398 }
4399 
4400 /// Emits a call or invoke to the given noreturn runtime function.
4401 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4402     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4403   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4404       getBundlesForFunclet(callee.getCallee());
4405 
4406   if (getInvokeDest()) {
4407     llvm::InvokeInst *invoke =
4408       Builder.CreateInvoke(callee,
4409                            getUnreachableBlock(),
4410                            getInvokeDest(),
4411                            args,
4412                            BundleList);
4413     invoke->setDoesNotReturn();
4414     invoke->setCallingConv(getRuntimeCC());
4415   } else {
4416     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4417     call->setDoesNotReturn();
4418     call->setCallingConv(getRuntimeCC());
4419     Builder.CreateUnreachable();
4420   }
4421 }
4422 
4423 /// Emits a call or invoke instruction to the given nullary runtime function.
4424 llvm::CallBase *
4425 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4426                                          const Twine &name) {
4427   return EmitRuntimeCallOrInvoke(callee, None, name);
4428 }
4429 
4430 /// Emits a call or invoke instruction to the given runtime function.
4431 llvm::CallBase *
4432 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4433                                          ArrayRef<llvm::Value *> args,
4434                                          const Twine &name) {
4435   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4436   call->setCallingConv(getRuntimeCC());
4437   return call;
4438 }
4439 
4440 /// Emits a call or invoke instruction to the given function, depending
4441 /// on the current state of the EH stack.
4442 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4443                                                   ArrayRef<llvm::Value *> Args,
4444                                                   const Twine &Name) {
4445   llvm::BasicBlock *InvokeDest = getInvokeDest();
4446   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4447       getBundlesForFunclet(Callee.getCallee());
4448 
4449   llvm::CallBase *Inst;
4450   if (!InvokeDest)
4451     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4452   else {
4453     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4454     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4455                                 Name);
4456     EmitBlock(ContBB);
4457   }
4458 
4459   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4460   // optimizer it can aggressively ignore unwind edges.
4461   if (CGM.getLangOpts().ObjCAutoRefCount)
4462     AddObjCARCExceptionMetadata(Inst);
4463 
4464   return Inst;
4465 }
4466 
4467 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4468                                                   llvm::Value *New) {
4469   DeferredReplacements.push_back(
4470       std::make_pair(llvm::WeakTrackingVH(Old), New));
4471 }
4472 
4473 namespace {
4474 
4475 /// Specify given \p NewAlign as the alignment of return value attribute. If
4476 /// such attribute already exists, re-set it to the maximal one of two options.
4477 LLVM_NODISCARD llvm::AttributeList
4478 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4479                                 const llvm::AttributeList &Attrs,
4480                                 llvm::Align NewAlign) {
4481   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4482   if (CurAlign >= NewAlign)
4483     return Attrs;
4484   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4485   return Attrs
4486       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4487                        llvm::Attribute::AttrKind::Alignment)
4488       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4489 }
4490 
4491 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4492 protected:
4493   CodeGenFunction &CGF;
4494 
4495   /// We do nothing if this is, or becomes, nullptr.
4496   const AlignedAttrTy *AA = nullptr;
4497 
4498   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4499   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4500 
4501   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4502       : CGF(CGF_) {
4503     if (!FuncDecl)
4504       return;
4505     AA = FuncDecl->getAttr<AlignedAttrTy>();
4506   }
4507 
4508 public:
4509   /// If we can, materialize the alignment as an attribute on return value.
4510   LLVM_NODISCARD llvm::AttributeList
4511   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4512     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4513       return Attrs;
4514     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4515     if (!AlignmentCI)
4516       return Attrs;
4517     // We may legitimately have non-power-of-2 alignment here.
4518     // If so, this is UB land, emit it via `@llvm.assume` instead.
4519     if (!AlignmentCI->getValue().isPowerOf2())
4520       return Attrs;
4521     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4522         CGF.getLLVMContext(), Attrs,
4523         llvm::Align(
4524             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4525     AA = nullptr; // We're done. Disallow doing anything else.
4526     return NewAttrs;
4527   }
4528 
4529   /// Emit alignment assumption.
4530   /// This is a general fallback that we take if either there is an offset,
4531   /// or the alignment is variable or we are sanitizing for alignment.
4532   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4533     if (!AA)
4534       return;
4535     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4536                                 AA->getLocation(), Alignment, OffsetCI);
4537     AA = nullptr; // We're done. Disallow doing anything else.
4538   }
4539 };
4540 
4541 /// Helper data structure to emit `AssumeAlignedAttr`.
4542 class AssumeAlignedAttrEmitter final
4543     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4544 public:
4545   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4546       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4547     if (!AA)
4548       return;
4549     // It is guaranteed that the alignment/offset are constants.
4550     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4551     if (Expr *Offset = AA->getOffset()) {
4552       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4553       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4554         OffsetCI = nullptr;
4555     }
4556   }
4557 };
4558 
4559 /// Helper data structure to emit `AllocAlignAttr`.
4560 class AllocAlignAttrEmitter final
4561     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4562 public:
4563   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4564                         const CallArgList &CallArgs)
4565       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4566     if (!AA)
4567       return;
4568     // Alignment may or may not be a constant, and that is okay.
4569     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4570                     .getRValue(CGF)
4571                     .getScalarVal();
4572   }
4573 };
4574 
4575 } // namespace
4576 
4577 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4578                                  const CGCallee &Callee,
4579                                  ReturnValueSlot ReturnValue,
4580                                  const CallArgList &CallArgs,
4581                                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4582                                  SourceLocation Loc) {
4583   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4584 
4585   assert(Callee.isOrdinary() || Callee.isVirtual());
4586 
4587   // Handle struct-return functions by passing a pointer to the
4588   // location that we would like to return into.
4589   QualType RetTy = CallInfo.getReturnType();
4590   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4591 
4592   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4593 
4594   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4595   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4596     // We can only guarantee that a function is called from the correct
4597     // context/function based on the appropriate target attributes,
4598     // so only check in the case where we have both always_inline and target
4599     // since otherwise we could be making a conditional call after a check for
4600     // the proper cpu features (and it won't cause code generation issues due to
4601     // function based code generation).
4602     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4603         TargetDecl->hasAttr<TargetAttr>())
4604       checkTargetFeatures(Loc, FD);
4605 
4606     // Some architectures (such as x86-64) have the ABI changed based on
4607     // attribute-target/features. Give them a chance to diagnose.
4608     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4609         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4610   }
4611 
4612 #ifndef NDEBUG
4613   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4614     // For an inalloca varargs function, we don't expect CallInfo to match the
4615     // function pointer's type, because the inalloca struct a will have extra
4616     // fields in it for the varargs parameters.  Code later in this function
4617     // bitcasts the function pointer to the type derived from CallInfo.
4618     //
4619     // In other cases, we assert that the types match up (until pointers stop
4620     // having pointee types).
4621     llvm::Type *TypeFromVal;
4622     if (Callee.isVirtual())
4623       TypeFromVal = Callee.getVirtualFunctionType();
4624     else
4625       TypeFromVal =
4626           Callee.getFunctionPointer()->getType()->getPointerElementType();
4627     assert(IRFuncTy == TypeFromVal);
4628   }
4629 #endif
4630 
4631   // 1. Set up the arguments.
4632 
4633   // If we're using inalloca, insert the allocation after the stack save.
4634   // FIXME: Do this earlier rather than hacking it in here!
4635   Address ArgMemory = Address::invalid();
4636   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4637     const llvm::DataLayout &DL = CGM.getDataLayout();
4638     llvm::Instruction *IP = CallArgs.getStackBase();
4639     llvm::AllocaInst *AI;
4640     if (IP) {
4641       IP = IP->getNextNode();
4642       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4643                                 "argmem", IP);
4644     } else {
4645       AI = CreateTempAlloca(ArgStruct, "argmem");
4646     }
4647     auto Align = CallInfo.getArgStructAlignment();
4648     AI->setAlignment(Align.getAsAlign());
4649     AI->setUsedWithInAlloca(true);
4650     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4651     ArgMemory = Address(AI, Align);
4652   }
4653 
4654   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4655   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4656 
4657   // If the call returns a temporary with struct return, create a temporary
4658   // alloca to hold the result, unless one is given to us.
4659   Address SRetPtr = Address::invalid();
4660   Address SRetAlloca = Address::invalid();
4661   llvm::Value *UnusedReturnSizePtr = nullptr;
4662   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4663     if (!ReturnValue.isNull()) {
4664       SRetPtr = ReturnValue.getValue();
4665     } else {
4666       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4667       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4668         uint64_t size =
4669             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4670         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4671       }
4672     }
4673     if (IRFunctionArgs.hasSRetArg()) {
4674       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4675     } else if (RetAI.isInAlloca()) {
4676       Address Addr =
4677           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4678       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4679     }
4680   }
4681 
4682   Address swiftErrorTemp = Address::invalid();
4683   Address swiftErrorArg = Address::invalid();
4684 
4685   // When passing arguments using temporary allocas, we need to add the
4686   // appropriate lifetime markers. This vector keeps track of all the lifetime
4687   // markers that need to be ended right after the call.
4688   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4689 
4690   // Translate all of the arguments as necessary to match the IR lowering.
4691   assert(CallInfo.arg_size() == CallArgs.size() &&
4692          "Mismatch between function signature & arguments.");
4693   unsigned ArgNo = 0;
4694   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4695   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4696        I != E; ++I, ++info_it, ++ArgNo) {
4697     const ABIArgInfo &ArgInfo = info_it->info;
4698 
4699     // Insert a padding argument to ensure proper alignment.
4700     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4701       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4702           llvm::UndefValue::get(ArgInfo.getPaddingType());
4703 
4704     unsigned FirstIRArg, NumIRArgs;
4705     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4706 
4707     switch (ArgInfo.getKind()) {
4708     case ABIArgInfo::InAlloca: {
4709       assert(NumIRArgs == 0);
4710       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4711       if (I->isAggregate()) {
4712         Address Addr = I->hasLValue()
4713                            ? I->getKnownLValue().getAddress(*this)
4714                            : I->getKnownRValue().getAggregateAddress();
4715         llvm::Instruction *Placeholder =
4716             cast<llvm::Instruction>(Addr.getPointer());
4717 
4718         if (!ArgInfo.getInAllocaIndirect()) {
4719           // Replace the placeholder with the appropriate argument slot GEP.
4720           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4721           Builder.SetInsertPoint(Placeholder);
4722           Addr = Builder.CreateStructGEP(ArgMemory,
4723                                          ArgInfo.getInAllocaFieldIndex());
4724           Builder.restoreIP(IP);
4725         } else {
4726           // For indirect things such as overaligned structs, replace the
4727           // placeholder with a regular aggregate temporary alloca. Store the
4728           // address of this alloca into the struct.
4729           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4730           Address ArgSlot = Builder.CreateStructGEP(
4731               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4732           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4733         }
4734         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4735       } else if (ArgInfo.getInAllocaIndirect()) {
4736         // Make a temporary alloca and store the address of it into the argument
4737         // struct.
4738         Address Addr = CreateMemTempWithoutCast(
4739             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4740             "indirect-arg-temp");
4741         I->copyInto(*this, Addr);
4742         Address ArgSlot =
4743             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4744         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4745       } else {
4746         // Store the RValue into the argument struct.
4747         Address Addr =
4748             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4749         unsigned AS = Addr.getType()->getPointerAddressSpace();
4750         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4751         // There are some cases where a trivial bitcast is not avoidable.  The
4752         // definition of a type later in a translation unit may change it's type
4753         // from {}* to (%struct.foo*)*.
4754         if (Addr.getType() != MemType)
4755           Addr = Builder.CreateBitCast(Addr, MemType);
4756         I->copyInto(*this, Addr);
4757       }
4758       break;
4759     }
4760 
4761     case ABIArgInfo::Indirect:
4762     case ABIArgInfo::IndirectAliased: {
4763       assert(NumIRArgs == 1);
4764       if (!I->isAggregate()) {
4765         // Make a temporary alloca to pass the argument.
4766         Address Addr = CreateMemTempWithoutCast(
4767             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4768         IRCallArgs[FirstIRArg] = Addr.getPointer();
4769 
4770         I->copyInto(*this, Addr);
4771       } else {
4772         // We want to avoid creating an unnecessary temporary+copy here;
4773         // however, we need one in three cases:
4774         // 1. If the argument is not byval, and we are required to copy the
4775         //    source.  (This case doesn't occur on any common architecture.)
4776         // 2. If the argument is byval, RV is not sufficiently aligned, and
4777         //    we cannot force it to be sufficiently aligned.
4778         // 3. If the argument is byval, but RV is not located in default
4779         //    or alloca address space.
4780         Address Addr = I->hasLValue()
4781                            ? I->getKnownLValue().getAddress(*this)
4782                            : I->getKnownRValue().getAggregateAddress();
4783         llvm::Value *V = Addr.getPointer();
4784         CharUnits Align = ArgInfo.getIndirectAlign();
4785         const llvm::DataLayout *TD = &CGM.getDataLayout();
4786 
4787         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4788                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4789                     TD->getAllocaAddrSpace()) &&
4790                "indirect argument must be in alloca address space");
4791 
4792         bool NeedCopy = false;
4793 
4794         if (Addr.getAlignment() < Align &&
4795             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4796                 Align.getAsAlign()) {
4797           NeedCopy = true;
4798         } else if (I->hasLValue()) {
4799           auto LV = I->getKnownLValue();
4800           auto AS = LV.getAddressSpace();
4801 
4802           if (!ArgInfo.getIndirectByVal() ||
4803               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4804             NeedCopy = true;
4805           }
4806           if (!getLangOpts().OpenCL) {
4807             if ((ArgInfo.getIndirectByVal() &&
4808                 (AS != LangAS::Default &&
4809                  AS != CGM.getASTAllocaAddressSpace()))) {
4810               NeedCopy = true;
4811             }
4812           }
4813           // For OpenCL even if RV is located in default or alloca address space
4814           // we don't want to perform address space cast for it.
4815           else if ((ArgInfo.getIndirectByVal() &&
4816                     Addr.getType()->getAddressSpace() != IRFuncTy->
4817                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4818             NeedCopy = true;
4819           }
4820         }
4821 
4822         if (NeedCopy) {
4823           // Create an aligned temporary, and copy to it.
4824           Address AI = CreateMemTempWithoutCast(
4825               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4826           IRCallArgs[FirstIRArg] = AI.getPointer();
4827 
4828           // Emit lifetime markers for the temporary alloca.
4829           uint64_t ByvalTempElementSize =
4830               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4831           llvm::Value *LifetimeSize =
4832               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4833 
4834           // Add cleanup code to emit the end lifetime marker after the call.
4835           if (LifetimeSize) // In case we disabled lifetime markers.
4836             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4837 
4838           // Generate the copy.
4839           I->copyInto(*this, AI);
4840         } else {
4841           // Skip the extra memcpy call.
4842           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4843               CGM.getDataLayout().getAllocaAddrSpace());
4844           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4845               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4846               true);
4847         }
4848       }
4849       break;
4850     }
4851 
4852     case ABIArgInfo::Ignore:
4853       assert(NumIRArgs == 0);
4854       break;
4855 
4856     case ABIArgInfo::Extend:
4857     case ABIArgInfo::Direct: {
4858       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4859           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4860           ArgInfo.getDirectOffset() == 0) {
4861         assert(NumIRArgs == 1);
4862         llvm::Value *V;
4863         if (!I->isAggregate())
4864           V = I->getKnownRValue().getScalarVal();
4865         else
4866           V = Builder.CreateLoad(
4867               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4868                              : I->getKnownRValue().getAggregateAddress());
4869 
4870         // Implement swifterror by copying into a new swifterror argument.
4871         // We'll write back in the normal path out of the call.
4872         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4873               == ParameterABI::SwiftErrorResult) {
4874           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4875 
4876           QualType pointeeTy = I->Ty->getPointeeType();
4877           swiftErrorArg =
4878             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4879 
4880           swiftErrorTemp =
4881             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4882           V = swiftErrorTemp.getPointer();
4883           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4884 
4885           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4886           Builder.CreateStore(errorValue, swiftErrorTemp);
4887         }
4888 
4889         // We might have to widen integers, but we should never truncate.
4890         if (ArgInfo.getCoerceToType() != V->getType() &&
4891             V->getType()->isIntegerTy())
4892           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4893 
4894         // If the argument doesn't match, perform a bitcast to coerce it.  This
4895         // can happen due to trivial type mismatches.
4896         if (FirstIRArg < IRFuncTy->getNumParams() &&
4897             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4898           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4899 
4900         IRCallArgs[FirstIRArg] = V;
4901         break;
4902       }
4903 
4904       // FIXME: Avoid the conversion through memory if possible.
4905       Address Src = Address::invalid();
4906       if (!I->isAggregate()) {
4907         Src = CreateMemTemp(I->Ty, "coerce");
4908         I->copyInto(*this, Src);
4909       } else {
4910         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4911                              : I->getKnownRValue().getAggregateAddress();
4912       }
4913 
4914       // If the value is offset in memory, apply the offset now.
4915       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4916 
4917       // Fast-isel and the optimizer generally like scalar values better than
4918       // FCAs, so we flatten them if this is safe to do for this argument.
4919       llvm::StructType *STy =
4920             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4921       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4922         llvm::Type *SrcTy = Src.getElementType();
4923         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4924         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4925 
4926         // If the source type is smaller than the destination type of the
4927         // coerce-to logic, copy the source value into a temp alloca the size
4928         // of the destination type to allow loading all of it. The bits past
4929         // the source value are left undef.
4930         if (SrcSize < DstSize) {
4931           Address TempAlloca
4932             = CreateTempAlloca(STy, Src.getAlignment(),
4933                                Src.getName() + ".coerce");
4934           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4935           Src = TempAlloca;
4936         } else {
4937           Src = Builder.CreateBitCast(Src,
4938                                       STy->getPointerTo(Src.getAddressSpace()));
4939         }
4940 
4941         assert(NumIRArgs == STy->getNumElements());
4942         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4943           Address EltPtr = Builder.CreateStructGEP(Src, i);
4944           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4945           IRCallArgs[FirstIRArg + i] = LI;
4946         }
4947       } else {
4948         // In the simple case, just pass the coerced loaded value.
4949         assert(NumIRArgs == 1);
4950         llvm::Value *Load =
4951             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4952 
4953         if (CallInfo.isCmseNSCall()) {
4954           // For certain parameter types, clear padding bits, as they may reveal
4955           // sensitive information.
4956           // Small struct/union types are passed as integer arrays.
4957           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4958           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4959             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4960         }
4961         IRCallArgs[FirstIRArg] = Load;
4962       }
4963 
4964       break;
4965     }
4966 
4967     case ABIArgInfo::CoerceAndExpand: {
4968       auto coercionType = ArgInfo.getCoerceAndExpandType();
4969       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4970 
4971       llvm::Value *tempSize = nullptr;
4972       Address addr = Address::invalid();
4973       Address AllocaAddr = Address::invalid();
4974       if (I->isAggregate()) {
4975         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4976                               : I->getKnownRValue().getAggregateAddress();
4977 
4978       } else {
4979         RValue RV = I->getKnownRValue();
4980         assert(RV.isScalar()); // complex should always just be direct
4981 
4982         llvm::Type *scalarType = RV.getScalarVal()->getType();
4983         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4984         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4985 
4986         // Materialize to a temporary.
4987         addr = CreateTempAlloca(
4988             RV.getScalarVal()->getType(),
4989             CharUnits::fromQuantity(std::max(
4990                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4991             "tmp",
4992             /*ArraySize=*/nullptr, &AllocaAddr);
4993         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4994 
4995         Builder.CreateStore(RV.getScalarVal(), addr);
4996       }
4997 
4998       addr = Builder.CreateElementBitCast(addr, coercionType);
4999 
5000       unsigned IRArgPos = FirstIRArg;
5001       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5002         llvm::Type *eltType = coercionType->getElementType(i);
5003         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5004         Address eltAddr = Builder.CreateStructGEP(addr, i);
5005         llvm::Value *elt = Builder.CreateLoad(eltAddr);
5006         IRCallArgs[IRArgPos++] = elt;
5007       }
5008       assert(IRArgPos == FirstIRArg + NumIRArgs);
5009 
5010       if (tempSize) {
5011         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5012       }
5013 
5014       break;
5015     }
5016 
5017     case ABIArgInfo::Expand: {
5018       unsigned IRArgPos = FirstIRArg;
5019       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5020       assert(IRArgPos == FirstIRArg + NumIRArgs);
5021       break;
5022     }
5023     }
5024   }
5025 
5026   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5027   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5028 
5029   // If we're using inalloca, set up that argument.
5030   if (ArgMemory.isValid()) {
5031     llvm::Value *Arg = ArgMemory.getPointer();
5032     if (CallInfo.isVariadic()) {
5033       // When passing non-POD arguments by value to variadic functions, we will
5034       // end up with a variadic prototype and an inalloca call site.  In such
5035       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
5036       // the callee.
5037       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5038       CalleePtr =
5039           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5040     } else {
5041       llvm::Type *LastParamTy =
5042           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5043       if (Arg->getType() != LastParamTy) {
5044 #ifndef NDEBUG
5045         // Assert that these structs have equivalent element types.
5046         llvm::StructType *FullTy = CallInfo.getArgStruct();
5047         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5048             cast<llvm::PointerType>(LastParamTy)->getElementType());
5049         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5050         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
5051                                                 DE = DeclaredTy->element_end(),
5052                                                 FI = FullTy->element_begin();
5053              DI != DE; ++DI, ++FI)
5054           assert(*DI == *FI);
5055 #endif
5056         Arg = Builder.CreateBitCast(Arg, LastParamTy);
5057       }
5058     }
5059     assert(IRFunctionArgs.hasInallocaArg());
5060     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5061   }
5062 
5063   // 2. Prepare the function pointer.
5064 
5065   // If the callee is a bitcast of a non-variadic function to have a
5066   // variadic function pointer type, check to see if we can remove the
5067   // bitcast.  This comes up with unprototyped functions.
5068   //
5069   // This makes the IR nicer, but more importantly it ensures that we
5070   // can inline the function at -O0 if it is marked always_inline.
5071   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5072                                    llvm::Value *Ptr) -> llvm::Function * {
5073     if (!CalleeFT->isVarArg())
5074       return nullptr;
5075 
5076     // Get underlying value if it's a bitcast
5077     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5078       if (CE->getOpcode() == llvm::Instruction::BitCast)
5079         Ptr = CE->getOperand(0);
5080     }
5081 
5082     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5083     if (!OrigFn)
5084       return nullptr;
5085 
5086     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5087 
5088     // If the original type is variadic, or if any of the component types
5089     // disagree, we cannot remove the cast.
5090     if (OrigFT->isVarArg() ||
5091         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5092         OrigFT->getReturnType() != CalleeFT->getReturnType())
5093       return nullptr;
5094 
5095     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5096       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5097         return nullptr;
5098 
5099     return OrigFn;
5100   };
5101 
5102   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5103     CalleePtr = OrigFn;
5104     IRFuncTy = OrigFn->getFunctionType();
5105   }
5106 
5107   // 3. Perform the actual call.
5108 
5109   // Deactivate any cleanups that we're supposed to do immediately before
5110   // the call.
5111   if (!CallArgs.getCleanupsToDeactivate().empty())
5112     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5113 
5114   // Assert that the arguments we computed match up.  The IR verifier
5115   // will catch this, but this is a common enough source of problems
5116   // during IRGen changes that it's way better for debugging to catch
5117   // it ourselves here.
5118 #ifndef NDEBUG
5119   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5120   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5121     // Inalloca argument can have different type.
5122     if (IRFunctionArgs.hasInallocaArg() &&
5123         i == IRFunctionArgs.getInallocaArgNo())
5124       continue;
5125     if (i < IRFuncTy->getNumParams())
5126       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5127   }
5128 #endif
5129 
5130   // Update the largest vector width if any arguments have vector types.
5131   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5132     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
5133       LargestVectorWidth =
5134           std::max((uint64_t)LargestVectorWidth,
5135                    VT->getPrimitiveSizeInBits().getKnownMinSize());
5136   }
5137 
5138   // Compute the calling convention and attributes.
5139   unsigned CallingConv;
5140   llvm::AttributeList Attrs;
5141   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5142                              Callee.getAbstractInfo(), Attrs, CallingConv,
5143                              /*AttrOnCallSite=*/true);
5144 
5145   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5146     if (FD->hasAttr<StrictFPAttr>())
5147       // All calls within a strictfp function are marked strictfp
5148       Attrs =
5149         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5150                            llvm::Attribute::StrictFP);
5151 
5152   // Add call-site nomerge attribute if exists.
5153   if (InNoMergeAttributedStmt)
5154     Attrs =
5155         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5156                            llvm::Attribute::NoMerge);
5157 
5158   // Apply some call-site-specific attributes.
5159   // TODO: work this into building the attribute set.
5160 
5161   // Apply always_inline to all calls within flatten functions.
5162   // FIXME: should this really take priority over __try, below?
5163   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5164       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5165     Attrs =
5166         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5167                            llvm::Attribute::AlwaysInline);
5168   }
5169 
5170   // Disable inlining inside SEH __try blocks.
5171   if (isSEHTryScope()) {
5172     Attrs =
5173         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5174                            llvm::Attribute::NoInline);
5175   }
5176 
5177   // Decide whether to use a call or an invoke.
5178   bool CannotThrow;
5179   if (currentFunctionUsesSEHTry()) {
5180     // SEH cares about asynchronous exceptions, so everything can "throw."
5181     CannotThrow = false;
5182   } else if (isCleanupPadScope() &&
5183              EHPersonality::get(*this).isMSVCXXPersonality()) {
5184     // The MSVC++ personality will implicitly terminate the program if an
5185     // exception is thrown during a cleanup outside of a try/catch.
5186     // We don't need to model anything in IR to get this behavior.
5187     CannotThrow = true;
5188   } else {
5189     // Otherwise, nounwind call sites will never throw.
5190     CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
5191 
5192     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5193       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5194         CannotThrow = true;
5195   }
5196 
5197   // If we made a temporary, be sure to clean up after ourselves. Note that we
5198   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5199   // pop this cleanup later on. Being eager about this is OK, since this
5200   // temporary is 'invisible' outside of the callee.
5201   if (UnusedReturnSizePtr)
5202     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5203                                          UnusedReturnSizePtr);
5204 
5205   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5206 
5207   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5208       getBundlesForFunclet(CalleePtr);
5209 
5210   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5211     if (FD->hasAttr<StrictFPAttr>())
5212       // All calls within a strictfp function are marked strictfp
5213       Attrs =
5214         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5215                            llvm::Attribute::StrictFP);
5216 
5217   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5218   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5219 
5220   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5221   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5222 
5223   // Emit the actual call/invoke instruction.
5224   llvm::CallBase *CI;
5225   if (!InvokeDest) {
5226     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5227   } else {
5228     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5229     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5230                               BundleList);
5231     EmitBlock(Cont);
5232   }
5233   if (callOrInvoke)
5234     *callOrInvoke = CI;
5235 
5236   // If this is within a function that has the guard(nocf) attribute and is an
5237   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5238   // Control Flow Guard checks should not be added, even if the call is inlined.
5239   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5240     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5241       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5242         Attrs = Attrs.addAttribute(
5243             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
5244     }
5245   }
5246 
5247   // Apply the attributes and calling convention.
5248   CI->setAttributes(Attrs);
5249   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5250 
5251   // Apply various metadata.
5252 
5253   if (!CI->getType()->isVoidTy())
5254     CI->setName("call");
5255 
5256   // Update largest vector width from the return type.
5257   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
5258     LargestVectorWidth =
5259         std::max((uint64_t)LargestVectorWidth,
5260                  VT->getPrimitiveSizeInBits().getKnownMinSize());
5261 
5262   // Insert instrumentation or attach profile metadata at indirect call sites.
5263   // For more details, see the comment before the definition of
5264   // IPVK_IndirectCallTarget in InstrProfData.inc.
5265   if (!CI->getCalledFunction())
5266     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5267                      CI, CalleePtr);
5268 
5269   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5270   // optimizer it can aggressively ignore unwind edges.
5271   if (CGM.getLangOpts().ObjCAutoRefCount)
5272     AddObjCARCExceptionMetadata(CI);
5273 
5274   // Set tail call kind if necessary.
5275   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5276     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5277       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5278     else if (IsMustTail)
5279       Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5280   }
5281 
5282   // Add metadata for calls to MSAllocator functions
5283   if (getDebugInfo() && TargetDecl &&
5284       TargetDecl->hasAttr<MSAllocatorAttr>())
5285     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5286 
5287   // 4. Finish the call.
5288 
5289   // If the call doesn't return, finish the basic block and clear the
5290   // insertion point; this allows the rest of IRGen to discard
5291   // unreachable code.
5292   if (CI->doesNotReturn()) {
5293     if (UnusedReturnSizePtr)
5294       PopCleanupBlock();
5295 
5296     // Strip away the noreturn attribute to better diagnose unreachable UB.
5297     if (SanOpts.has(SanitizerKind::Unreachable)) {
5298       // Also remove from function since CallBase::hasFnAttr additionally checks
5299       // attributes of the called function.
5300       if (auto *F = CI->getCalledFunction())
5301         F->removeFnAttr(llvm::Attribute::NoReturn);
5302       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
5303                           llvm::Attribute::NoReturn);
5304 
5305       // Avoid incompatibility with ASan which relies on the `noreturn`
5306       // attribute to insert handler calls.
5307       if (SanOpts.hasOneOf(SanitizerKind::Address |
5308                            SanitizerKind::KernelAddress)) {
5309         SanitizerScope SanScope(this);
5310         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5311         Builder.SetInsertPoint(CI);
5312         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5313         llvm::FunctionCallee Fn =
5314             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5315         EmitNounwindRuntimeCall(Fn);
5316       }
5317     }
5318 
5319     EmitUnreachable(Loc);
5320     Builder.ClearInsertionPoint();
5321 
5322     // FIXME: For now, emit a dummy basic block because expr emitters in
5323     // generally are not ready to handle emitting expressions at unreachable
5324     // points.
5325     EnsureInsertPoint();
5326 
5327     // Return a reasonable RValue.
5328     return GetUndefRValue(RetTy);
5329   }
5330 
5331   // If this is a musttail call, return immediately. We do not branch to the
5332   // epilogue in this case.
5333   if (IsMustTail) {
5334     for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5335          ++it) {
5336       EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5337       if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5338         CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5339     }
5340     if (CI->getType()->isVoidTy())
5341       Builder.CreateRetVoid();
5342     else
5343       Builder.CreateRet(CI);
5344     Builder.ClearInsertionPoint();
5345     EnsureInsertPoint();
5346     return GetUndefRValue(RetTy);
5347   }
5348 
5349   // Perform the swifterror writeback.
5350   if (swiftErrorTemp.isValid()) {
5351     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5352     Builder.CreateStore(errorResult, swiftErrorArg);
5353   }
5354 
5355   // Emit any call-associated writebacks immediately.  Arguably this
5356   // should happen after any return-value munging.
5357   if (CallArgs.hasWritebacks())
5358     emitWritebacks(*this, CallArgs);
5359 
5360   // The stack cleanup for inalloca arguments has to run out of the normal
5361   // lexical order, so deactivate it and run it manually here.
5362   CallArgs.freeArgumentMemory(*this);
5363 
5364   // Extract the return value.
5365   RValue Ret = [&] {
5366     switch (RetAI.getKind()) {
5367     case ABIArgInfo::CoerceAndExpand: {
5368       auto coercionType = RetAI.getCoerceAndExpandType();
5369 
5370       Address addr = SRetPtr;
5371       addr = Builder.CreateElementBitCast(addr, coercionType);
5372 
5373       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5374       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5375 
5376       unsigned unpaddedIndex = 0;
5377       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5378         llvm::Type *eltType = coercionType->getElementType(i);
5379         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5380         Address eltAddr = Builder.CreateStructGEP(addr, i);
5381         llvm::Value *elt = CI;
5382         if (requiresExtract)
5383           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5384         else
5385           assert(unpaddedIndex == 0);
5386         Builder.CreateStore(elt, eltAddr);
5387       }
5388       // FALLTHROUGH
5389       LLVM_FALLTHROUGH;
5390     }
5391 
5392     case ABIArgInfo::InAlloca:
5393     case ABIArgInfo::Indirect: {
5394       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5395       if (UnusedReturnSizePtr)
5396         PopCleanupBlock();
5397       return ret;
5398     }
5399 
5400     case ABIArgInfo::Ignore:
5401       // If we are ignoring an argument that had a result, make sure to
5402       // construct the appropriate return value for our caller.
5403       return GetUndefRValue(RetTy);
5404 
5405     case ABIArgInfo::Extend:
5406     case ABIArgInfo::Direct: {
5407       llvm::Type *RetIRTy = ConvertType(RetTy);
5408       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5409         switch (getEvaluationKind(RetTy)) {
5410         case TEK_Complex: {
5411           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5412           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5413           return RValue::getComplex(std::make_pair(Real, Imag));
5414         }
5415         case TEK_Aggregate: {
5416           Address DestPtr = ReturnValue.getValue();
5417           bool DestIsVolatile = ReturnValue.isVolatile();
5418 
5419           if (!DestPtr.isValid()) {
5420             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5421             DestIsVolatile = false;
5422           }
5423           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5424           return RValue::getAggregate(DestPtr);
5425         }
5426         case TEK_Scalar: {
5427           // If the argument doesn't match, perform a bitcast to coerce it.  This
5428           // can happen due to trivial type mismatches.
5429           llvm::Value *V = CI;
5430           if (V->getType() != RetIRTy)
5431             V = Builder.CreateBitCast(V, RetIRTy);
5432           return RValue::get(V);
5433         }
5434         }
5435         llvm_unreachable("bad evaluation kind");
5436       }
5437 
5438       Address DestPtr = ReturnValue.getValue();
5439       bool DestIsVolatile = ReturnValue.isVolatile();
5440 
5441       if (!DestPtr.isValid()) {
5442         DestPtr = CreateMemTemp(RetTy, "coerce");
5443         DestIsVolatile = false;
5444       }
5445 
5446       // If the value is offset in memory, apply the offset now.
5447       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5448       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5449 
5450       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5451     }
5452 
5453     case ABIArgInfo::Expand:
5454     case ABIArgInfo::IndirectAliased:
5455       llvm_unreachable("Invalid ABI kind for return argument");
5456     }
5457 
5458     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5459   } ();
5460 
5461   // Emit the assume_aligned check on the return value.
5462   if (Ret.isScalar() && TargetDecl) {
5463     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5464     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5465   }
5466 
5467   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5468   // we can't use the full cleanup mechanism.
5469   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5470     LifetimeEnd.Emit(*this, /*Flags=*/{});
5471 
5472   if (!ReturnValue.isExternallyDestructed() &&
5473       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5474     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5475                 RetTy);
5476 
5477   return Ret;
5478 }
5479 
5480 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5481   if (isVirtual()) {
5482     const CallExpr *CE = getVirtualCallExpr();
5483     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5484         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5485         CE ? CE->getBeginLoc() : SourceLocation());
5486   }
5487 
5488   return *this;
5489 }
5490 
5491 /* VarArg handling */
5492 
5493 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5494   VAListAddr = VE->isMicrosoftABI()
5495                  ? EmitMSVAListRef(VE->getSubExpr())
5496                  : EmitVAListRef(VE->getSubExpr());
5497   QualType Ty = VE->getType();
5498   if (VE->isMicrosoftABI())
5499     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5500   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5501 }
5502