1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 71 /// qualification. 72 /// FIXME: address space qualification? 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 76 } 77 78 /// Returns the canonical formal type of the given C++ method. 79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 80 return MD->getType()->getCanonicalTypeUnqualified() 81 .getAs<FunctionProtoType>(); 82 } 83 84 /// Returns the "extra-canonicalized" return type, which discards 85 /// qualifiers on the return type. Codegen doesn't care about them, 86 /// and it makes ABI code a little easier to be able to assume that 87 /// all parameter and return types are top-level unqualified. 88 static CanQualType GetReturnType(QualType RetTy) { 89 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 90 } 91 92 /// Arrange the argument and result information for a value of the given 93 /// unprototyped freestanding function type. 94 const CGFunctionInfo & 95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 96 // When translating an unprototyped function type, always use a 97 // variadic type. 98 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 99 /*instanceMethod=*/false, 100 /*chainCall=*/false, None, 101 FTNP->getExtInfo(), {}, RequiredArgs(0)); 102 } 103 104 static void addExtParameterInfosForCall( 105 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 const FunctionProtoType *proto, 107 unsigned prefixArgs, 108 unsigned totalArgs) { 109 assert(proto->hasExtParameterInfos()); 110 assert(paramInfos.size() <= prefixArgs); 111 assert(proto->getNumParams() + prefixArgs <= totalArgs); 112 113 paramInfos.reserve(totalArgs); 114 115 // Add default infos for any prefix args that don't already have infos. 116 paramInfos.resize(prefixArgs); 117 118 // Add infos for the prototype. 119 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 120 paramInfos.push_back(ParamInfo); 121 // pass_object_size params have no parameter info. 122 if (ParamInfo.hasPassObjectSize()) 123 paramInfos.emplace_back(); 124 } 125 126 assert(paramInfos.size() <= totalArgs && 127 "Did we forget to insert pass_object_size args?"); 128 // Add default infos for the variadic and/or suffix arguments. 129 paramInfos.resize(totalArgs); 130 } 131 132 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in 133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 134 static void appendParameterTypes(const CodeGenTypes &CGT, 135 SmallVectorImpl<CanQualType> &prefix, 136 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 137 CanQual<FunctionProtoType> FPT) { 138 // Fast path: don't touch param info if we don't need to. 139 if (!FPT->hasExtParameterInfos()) { 140 assert(paramInfos.empty() && 141 "We have paramInfos, but the prototype doesn't?"); 142 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 143 return; 144 } 145 146 unsigned PrefixSize = prefix.size(); 147 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 148 // parameters; the only thing that can change this is the presence of 149 // pass_object_size. So, we preallocate for the common case. 150 prefix.reserve(prefix.size() + FPT->getNumParams()); 151 152 auto ExtInfos = FPT->getExtParameterInfos(); 153 assert(ExtInfos.size() == FPT->getNumParams()); 154 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 155 prefix.push_back(FPT->getParamType(I)); 156 if (ExtInfos[I].hasPassObjectSize()) 157 prefix.push_back(CGT.getContext().getSizeType()); 158 } 159 160 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 161 prefix.size()); 162 } 163 164 /// Arrange the LLVM function layout for a value of the given function 165 /// type, on top of any implicit parameters already stored. 166 static const CGFunctionInfo & 167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 168 SmallVectorImpl<CanQualType> &prefix, 169 CanQual<FunctionProtoType> FTP, 170 const FunctionDecl *FD) { 171 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 172 RequiredArgs Required = 173 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 174 // FIXME: Kill copy. 175 appendParameterTypes(CGT, prefix, paramInfos, FTP); 176 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 177 178 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 179 /*chainCall=*/false, prefix, 180 FTP->getExtInfo(), paramInfos, 181 Required); 182 } 183 184 /// Arrange the argument and result information for a value of the 185 /// given freestanding function type. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 188 const FunctionDecl *FD) { 189 SmallVector<CanQualType, 16> argTypes; 190 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 191 FTP, FD); 192 } 193 194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 195 // Set the appropriate calling convention for the Function. 196 if (D->hasAttr<StdCallAttr>()) 197 return CC_X86StdCall; 198 199 if (D->hasAttr<FastCallAttr>()) 200 return CC_X86FastCall; 201 202 if (D->hasAttr<RegCallAttr>()) 203 return CC_X86RegCall; 204 205 if (D->hasAttr<ThisCallAttr>()) 206 return CC_X86ThisCall; 207 208 if (D->hasAttr<VectorCallAttr>()) 209 return CC_X86VectorCall; 210 211 if (D->hasAttr<PascalAttr>()) 212 return CC_X86Pascal; 213 214 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 215 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 216 217 if (D->hasAttr<IntelOclBiccAttr>()) 218 return CC_IntelOclBicc; 219 220 if (D->hasAttr<MSABIAttr>()) 221 return IsWindows ? CC_C : CC_X86_64Win64; 222 223 if (D->hasAttr<SysVABIAttr>()) 224 return IsWindows ? CC_X86_64SysV : CC_C; 225 226 if (D->hasAttr<PreserveMostAttr>()) 227 return CC_PreserveMost; 228 229 if (D->hasAttr<PreserveAllAttr>()) 230 return CC_PreserveAll; 231 232 return CC_C; 233 } 234 235 /// Arrange the argument and result information for a call to an 236 /// unknown C++ non-static member function of the given abstract type. 237 /// (Zero value of RD means we don't have any meaningful "this" argument type, 238 /// so fall back to a generic pointer type). 239 /// The member function must be an ordinary function, i.e. not a 240 /// constructor or destructor. 241 const CGFunctionInfo & 242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 243 const FunctionProtoType *FTP, 244 const CXXMethodDecl *MD) { 245 SmallVector<CanQualType, 16> argTypes; 246 247 // Add the 'this' pointer. 248 if (RD) 249 argTypes.push_back(GetThisType(Context, RD)); 250 else 251 argTypes.push_back(Context.VoidPtrTy); 252 253 return ::arrangeLLVMFunctionInfo( 254 *this, true, argTypes, 255 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 256 } 257 258 /// Arrange the argument and result information for a declaration or 259 /// definition of the given C++ non-static member function. The 260 /// member function must be an ordinary function, i.e. not a 261 /// constructor or destructor. 262 const CGFunctionInfo & 263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 264 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 265 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 266 267 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 268 269 if (MD->isInstance()) { 270 // The abstract case is perfectly fine. 271 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 272 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 273 } 274 275 return arrangeFreeFunctionType(prototype, MD); 276 } 277 278 bool CodeGenTypes::inheritingCtorHasParams( 279 const InheritedConstructor &Inherited, CXXCtorType Type) { 280 // Parameters are unnecessary if we're constructing a base class subobject 281 // and the inherited constructor lives in a virtual base. 282 return Type == Ctor_Complete || 283 !Inherited.getShadowDecl()->constructsVirtualBase() || 284 !Target.getCXXABI().hasConstructorVariants(); 285 } 286 287 const CGFunctionInfo & 288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 289 StructorType Type) { 290 291 SmallVector<CanQualType, 16> argTypes; 292 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 293 argTypes.push_back(GetThisType(Context, MD->getParent())); 294 295 bool PassParams = true; 296 297 GlobalDecl GD; 298 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 299 GD = GlobalDecl(CD, toCXXCtorType(Type)); 300 301 // A base class inheriting constructor doesn't get forwarded arguments 302 // needed to construct a virtual base (or base class thereof). 303 if (auto Inherited = CD->getInheritedConstructor()) 304 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 305 } else { 306 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 307 GD = GlobalDecl(DD, toCXXDtorType(Type)); 308 } 309 310 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 311 312 // Add the formal parameters. 313 if (PassParams) 314 appendParameterTypes(*this, argTypes, paramInfos, FTP); 315 316 CGCXXABI::AddedStructorArgs AddedArgs = 317 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 318 if (!paramInfos.empty()) { 319 // Note: prefix implies after the first param. 320 if (AddedArgs.Prefix) 321 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 322 FunctionProtoType::ExtParameterInfo{}); 323 if (AddedArgs.Suffix) 324 paramInfos.append(AddedArgs.Suffix, 325 FunctionProtoType::ExtParameterInfo{}); 326 } 327 328 RequiredArgs required = 329 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 330 : RequiredArgs::All); 331 332 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 333 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 334 ? argTypes.front() 335 : TheCXXABI.hasMostDerivedReturn(GD) 336 ? CGM.getContext().VoidPtrTy 337 : Context.VoidTy; 338 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 339 /*chainCall=*/false, argTypes, extInfo, 340 paramInfos, required); 341 } 342 343 static SmallVector<CanQualType, 16> 344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 345 SmallVector<CanQualType, 16> argTypes; 346 for (auto &arg : args) 347 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 348 return argTypes; 349 } 350 351 static SmallVector<CanQualType, 16> 352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 353 SmallVector<CanQualType, 16> argTypes; 354 for (auto &arg : args) 355 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 356 return argTypes; 357 } 358 359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 360 getExtParameterInfosForCall(const FunctionProtoType *proto, 361 unsigned prefixArgs, unsigned totalArgs) { 362 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 363 if (proto->hasExtParameterInfos()) { 364 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 365 } 366 return result; 367 } 368 369 /// Arrange a call to a C++ method, passing the given arguments. 370 /// 371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 372 /// parameter. 373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 374 /// args. 375 /// PassProtoArgs indicates whether `args` has args for the parameters in the 376 /// given CXXConstructorDecl. 377 const CGFunctionInfo & 378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 379 const CXXConstructorDecl *D, 380 CXXCtorType CtorKind, 381 unsigned ExtraPrefixArgs, 382 unsigned ExtraSuffixArgs, 383 bool PassProtoArgs) { 384 // FIXME: Kill copy. 385 SmallVector<CanQualType, 16> ArgTypes; 386 for (const auto &Arg : args) 387 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 388 389 // +1 for implicit this, which should always be args[0]. 390 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 391 392 CanQual<FunctionProtoType> FPT = GetFormalType(D); 393 RequiredArgs Required = 394 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 395 GlobalDecl GD(D, CtorKind); 396 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 397 ? ArgTypes.front() 398 : TheCXXABI.hasMostDerivedReturn(GD) 399 ? CGM.getContext().VoidPtrTy 400 : Context.VoidTy; 401 402 FunctionType::ExtInfo Info = FPT->getExtInfo(); 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 404 // If the prototype args are elided, we should only have ABI-specific args, 405 // which never have param info. 406 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 407 // ABI-specific suffix arguments are treated the same as variadic arguments. 408 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 409 ArgTypes.size()); 410 } 411 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 412 /*chainCall=*/false, ArgTypes, Info, 413 ParamInfos, Required); 414 } 415 416 /// Arrange the argument and result information for the declaration or 417 /// definition of the given function. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 420 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 421 if (MD->isInstance()) 422 return arrangeCXXMethodDeclaration(MD); 423 424 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 425 426 assert(isa<FunctionType>(FTy)); 427 428 // When declaring a function without a prototype, always use a 429 // non-variadic type. 430 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 431 return arrangeLLVMFunctionInfo( 432 noProto->getReturnType(), /*instanceMethod=*/false, 433 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 434 } 435 436 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 437 } 438 439 /// Arrange the argument and result information for the declaration or 440 /// definition of an Objective-C method. 441 const CGFunctionInfo & 442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 443 // It happens that this is the same as a call with no optional 444 // arguments, except also using the formal 'self' type. 445 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 446 } 447 448 /// Arrange the argument and result information for the function type 449 /// through which to perform a send to the given Objective-C method, 450 /// using the given receiver type. The receiver type is not always 451 /// the 'self' type of the method or even an Objective-C pointer type. 452 /// This is *not* the right method for actually performing such a 453 /// message send, due to the possibility of optional arguments. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 456 QualType receiverType) { 457 SmallVector<CanQualType, 16> argTys; 458 argTys.push_back(Context.getCanonicalParamType(receiverType)); 459 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 460 // FIXME: Kill copy? 461 for (const auto *I : MD->parameters()) { 462 argTys.push_back(Context.getCanonicalParamType(I->getType())); 463 } 464 465 FunctionType::ExtInfo einfo; 466 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 467 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 468 469 if (getContext().getLangOpts().ObjCAutoRefCount && 470 MD->hasAttr<NSReturnsRetainedAttr>()) 471 einfo = einfo.withProducesResult(true); 472 473 RequiredArgs required = 474 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 475 476 return arrangeLLVMFunctionInfo( 477 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 478 /*chainCall=*/false, argTys, einfo, {}, required); 479 } 480 481 const CGFunctionInfo & 482 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 483 const CallArgList &args) { 484 auto argTypes = getArgTypesForCall(Context, args); 485 FunctionType::ExtInfo einfo; 486 487 return arrangeLLVMFunctionInfo( 488 GetReturnType(returnType), /*instanceMethod=*/false, 489 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 490 } 491 492 const CGFunctionInfo & 493 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 494 // FIXME: Do we need to handle ObjCMethodDecl? 495 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 496 497 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 498 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 499 500 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 501 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 502 503 return arrangeFunctionDeclaration(FD); 504 } 505 506 /// Arrange a thunk that takes 'this' as the first parameter followed by 507 /// varargs. Return a void pointer, regardless of the actual return type. 508 /// The body of the thunk will end in a musttail call to a function of the 509 /// correct type, and the caller will bitcast the function to the correct 510 /// prototype. 511 const CGFunctionInfo & 512 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 513 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 514 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 515 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 516 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 517 /*chainCall=*/false, ArgTys, 518 FTP->getExtInfo(), {}, RequiredArgs(1)); 519 } 520 521 const CGFunctionInfo & 522 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 523 CXXCtorType CT) { 524 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 525 526 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 527 SmallVector<CanQualType, 2> ArgTys; 528 const CXXRecordDecl *RD = CD->getParent(); 529 ArgTys.push_back(GetThisType(Context, RD)); 530 if (CT == Ctor_CopyingClosure) 531 ArgTys.push_back(*FTP->param_type_begin()); 532 if (RD->getNumVBases() > 0) 533 ArgTys.push_back(Context.IntTy); 534 CallingConv CC = Context.getDefaultCallingConvention( 535 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 536 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 537 /*chainCall=*/false, ArgTys, 538 FunctionType::ExtInfo(CC), {}, 539 RequiredArgs::All); 540 } 541 542 /// Arrange a call as unto a free function, except possibly with an 543 /// additional number of formal parameters considered required. 544 static const CGFunctionInfo & 545 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 546 CodeGenModule &CGM, 547 const CallArgList &args, 548 const FunctionType *fnType, 549 unsigned numExtraRequiredArgs, 550 bool chainCall) { 551 assert(args.size() >= numExtraRequiredArgs); 552 553 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 554 555 // In most cases, there are no optional arguments. 556 RequiredArgs required = RequiredArgs::All; 557 558 // If we have a variadic prototype, the required arguments are the 559 // extra prefix plus the arguments in the prototype. 560 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 561 if (proto->isVariadic()) 562 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 563 564 if (proto->hasExtParameterInfos()) 565 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 566 args.size()); 567 568 // If we don't have a prototype at all, but we're supposed to 569 // explicitly use the variadic convention for unprototyped calls, 570 // treat all of the arguments as required but preserve the nominal 571 // possibility of variadics. 572 } else if (CGM.getTargetCodeGenInfo() 573 .isNoProtoCallVariadic(args, 574 cast<FunctionNoProtoType>(fnType))) { 575 required = RequiredArgs(args.size()); 576 } 577 578 // FIXME: Kill copy. 579 SmallVector<CanQualType, 16> argTypes; 580 for (const auto &arg : args) 581 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 582 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 583 /*instanceMethod=*/false, chainCall, 584 argTypes, fnType->getExtInfo(), paramInfos, 585 required); 586 } 587 588 /// Figure out the rules for calling a function with the given formal 589 /// type using the given arguments. The arguments are necessary 590 /// because the function might be unprototyped, in which case it's 591 /// target-dependent in crazy ways. 592 const CGFunctionInfo & 593 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 594 const FunctionType *fnType, 595 bool chainCall) { 596 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 597 chainCall ? 1 : 0, chainCall); 598 } 599 600 /// A block function is essentially a free function with an 601 /// extra implicit argument. 602 const CGFunctionInfo & 603 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 604 const FunctionType *fnType) { 605 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 606 /*chainCall=*/false); 607 } 608 609 const CGFunctionInfo & 610 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 611 const FunctionArgList ¶ms) { 612 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 613 auto argTypes = getArgTypesForDeclaration(Context, params); 614 615 return arrangeLLVMFunctionInfo( 616 GetReturnType(proto->getReturnType()), 617 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 618 proto->getExtInfo(), paramInfos, 619 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 620 } 621 622 const CGFunctionInfo & 623 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 624 const CallArgList &args) { 625 // FIXME: Kill copy. 626 SmallVector<CanQualType, 16> argTypes; 627 for (const auto &Arg : args) 628 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 629 return arrangeLLVMFunctionInfo( 630 GetReturnType(resultType), /*instanceMethod=*/false, 631 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 632 /*paramInfos=*/ {}, RequiredArgs::All); 633 } 634 635 const CGFunctionInfo & 636 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 637 const FunctionArgList &args) { 638 auto argTypes = getArgTypesForDeclaration(Context, args); 639 640 return arrangeLLVMFunctionInfo( 641 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 642 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 643 } 644 645 const CGFunctionInfo & 646 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 647 ArrayRef<CanQualType> argTypes) { 648 return arrangeLLVMFunctionInfo( 649 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 650 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 651 } 652 653 /// Arrange a call to a C++ method, passing the given arguments. 654 /// 655 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 656 /// does not count `this`. 657 const CGFunctionInfo & 658 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 659 const FunctionProtoType *proto, 660 RequiredArgs required, 661 unsigned numPrefixArgs) { 662 assert(numPrefixArgs + 1 <= args.size() && 663 "Emitting a call with less args than the required prefix?"); 664 // Add one to account for `this`. It's a bit awkward here, but we don't count 665 // `this` in similar places elsewhere. 666 auto paramInfos = 667 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 668 669 // FIXME: Kill copy. 670 auto argTypes = getArgTypesForCall(Context, args); 671 672 FunctionType::ExtInfo info = proto->getExtInfo(); 673 return arrangeLLVMFunctionInfo( 674 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 675 /*chainCall=*/false, argTypes, info, paramInfos, required); 676 } 677 678 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 679 return arrangeLLVMFunctionInfo( 680 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 681 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 682 } 683 684 const CGFunctionInfo & 685 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 686 const CallArgList &args) { 687 assert(signature.arg_size() <= args.size()); 688 if (signature.arg_size() == args.size()) 689 return signature; 690 691 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 692 auto sigParamInfos = signature.getExtParameterInfos(); 693 if (!sigParamInfos.empty()) { 694 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 695 paramInfos.resize(args.size()); 696 } 697 698 auto argTypes = getArgTypesForCall(Context, args); 699 700 assert(signature.getRequiredArgs().allowsOptionalArgs()); 701 return arrangeLLVMFunctionInfo(signature.getReturnType(), 702 signature.isInstanceMethod(), 703 signature.isChainCall(), 704 argTypes, 705 signature.getExtInfo(), 706 paramInfos, 707 signature.getRequiredArgs()); 708 } 709 710 /// Arrange the argument and result information for an abstract value 711 /// of a given function type. This is the method which all of the 712 /// above functions ultimately defer to. 713 const CGFunctionInfo & 714 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 715 bool instanceMethod, 716 bool chainCall, 717 ArrayRef<CanQualType> argTypes, 718 FunctionType::ExtInfo info, 719 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 720 RequiredArgs required) { 721 assert(std::all_of(argTypes.begin(), argTypes.end(), 722 [](CanQualType T) { return T.isCanonicalAsParam(); })); 723 724 // Lookup or create unique function info. 725 llvm::FoldingSetNodeID ID; 726 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 727 required, resultType, argTypes); 728 729 void *insertPos = nullptr; 730 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 731 if (FI) 732 return *FI; 733 734 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 735 736 // Construct the function info. We co-allocate the ArgInfos. 737 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 738 paramInfos, resultType, argTypes, required); 739 FunctionInfos.InsertNode(FI, insertPos); 740 741 bool inserted = FunctionsBeingProcessed.insert(FI).second; 742 (void)inserted; 743 assert(inserted && "Recursively being processed?"); 744 745 // Compute ABI information. 746 if (info.getCC() != CC_Swift) { 747 getABIInfo().computeInfo(*FI); 748 } else { 749 swiftcall::computeABIInfo(CGM, *FI); 750 } 751 752 // Loop over all of the computed argument and return value info. If any of 753 // them are direct or extend without a specified coerce type, specify the 754 // default now. 755 ABIArgInfo &retInfo = FI->getReturnInfo(); 756 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 757 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 758 759 for (auto &I : FI->arguments()) 760 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 761 I.info.setCoerceToType(ConvertType(I.type)); 762 763 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 764 assert(erased && "Not in set?"); 765 766 return *FI; 767 } 768 769 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 770 bool instanceMethod, 771 bool chainCall, 772 const FunctionType::ExtInfo &info, 773 ArrayRef<ExtParameterInfo> paramInfos, 774 CanQualType resultType, 775 ArrayRef<CanQualType> argTypes, 776 RequiredArgs required) { 777 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 778 779 void *buffer = 780 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 781 argTypes.size() + 1, paramInfos.size())); 782 783 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 784 FI->CallingConvention = llvmCC; 785 FI->EffectiveCallingConvention = llvmCC; 786 FI->ASTCallingConvention = info.getCC(); 787 FI->InstanceMethod = instanceMethod; 788 FI->ChainCall = chainCall; 789 FI->NoReturn = info.getNoReturn(); 790 FI->ReturnsRetained = info.getProducesResult(); 791 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 792 FI->Required = required; 793 FI->HasRegParm = info.getHasRegParm(); 794 FI->RegParm = info.getRegParm(); 795 FI->ArgStruct = nullptr; 796 FI->ArgStructAlign = 0; 797 FI->NumArgs = argTypes.size(); 798 FI->HasExtParameterInfos = !paramInfos.empty(); 799 FI->getArgsBuffer()[0].type = resultType; 800 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 801 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 802 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 803 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 804 return FI; 805 } 806 807 /***/ 808 809 namespace { 810 // ABIArgInfo::Expand implementation. 811 812 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 813 struct TypeExpansion { 814 enum TypeExpansionKind { 815 // Elements of constant arrays are expanded recursively. 816 TEK_ConstantArray, 817 // Record fields are expanded recursively (but if record is a union, only 818 // the field with the largest size is expanded). 819 TEK_Record, 820 // For complex types, real and imaginary parts are expanded recursively. 821 TEK_Complex, 822 // All other types are not expandable. 823 TEK_None 824 }; 825 826 const TypeExpansionKind Kind; 827 828 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 829 virtual ~TypeExpansion() {} 830 }; 831 832 struct ConstantArrayExpansion : TypeExpansion { 833 QualType EltTy; 834 uint64_t NumElts; 835 836 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 837 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 838 static bool classof(const TypeExpansion *TE) { 839 return TE->Kind == TEK_ConstantArray; 840 } 841 }; 842 843 struct RecordExpansion : TypeExpansion { 844 SmallVector<const CXXBaseSpecifier *, 1> Bases; 845 846 SmallVector<const FieldDecl *, 1> Fields; 847 848 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 849 SmallVector<const FieldDecl *, 1> &&Fields) 850 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 851 Fields(std::move(Fields)) {} 852 static bool classof(const TypeExpansion *TE) { 853 return TE->Kind == TEK_Record; 854 } 855 }; 856 857 struct ComplexExpansion : TypeExpansion { 858 QualType EltTy; 859 860 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 861 static bool classof(const TypeExpansion *TE) { 862 return TE->Kind == TEK_Complex; 863 } 864 }; 865 866 struct NoExpansion : TypeExpansion { 867 NoExpansion() : TypeExpansion(TEK_None) {} 868 static bool classof(const TypeExpansion *TE) { 869 return TE->Kind == TEK_None; 870 } 871 }; 872 } // namespace 873 874 static std::unique_ptr<TypeExpansion> 875 getTypeExpansion(QualType Ty, const ASTContext &Context) { 876 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 877 return llvm::make_unique<ConstantArrayExpansion>( 878 AT->getElementType(), AT->getSize().getZExtValue()); 879 } 880 if (const RecordType *RT = Ty->getAs<RecordType>()) { 881 SmallVector<const CXXBaseSpecifier *, 1> Bases; 882 SmallVector<const FieldDecl *, 1> Fields; 883 const RecordDecl *RD = RT->getDecl(); 884 assert(!RD->hasFlexibleArrayMember() && 885 "Cannot expand structure with flexible array."); 886 if (RD->isUnion()) { 887 // Unions can be here only in degenerative cases - all the fields are same 888 // after flattening. Thus we have to use the "largest" field. 889 const FieldDecl *LargestFD = nullptr; 890 CharUnits UnionSize = CharUnits::Zero(); 891 892 for (const auto *FD : RD->fields()) { 893 // Skip zero length bitfields. 894 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 895 continue; 896 assert(!FD->isBitField() && 897 "Cannot expand structure with bit-field members."); 898 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 899 if (UnionSize < FieldSize) { 900 UnionSize = FieldSize; 901 LargestFD = FD; 902 } 903 } 904 if (LargestFD) 905 Fields.push_back(LargestFD); 906 } else { 907 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 908 assert(!CXXRD->isDynamicClass() && 909 "cannot expand vtable pointers in dynamic classes"); 910 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 911 Bases.push_back(&BS); 912 } 913 914 for (const auto *FD : RD->fields()) { 915 // Skip zero length bitfields. 916 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 917 continue; 918 assert(!FD->isBitField() && 919 "Cannot expand structure with bit-field members."); 920 Fields.push_back(FD); 921 } 922 } 923 return llvm::make_unique<RecordExpansion>(std::move(Bases), 924 std::move(Fields)); 925 } 926 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 927 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 928 } 929 return llvm::make_unique<NoExpansion>(); 930 } 931 932 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 933 auto Exp = getTypeExpansion(Ty, Context); 934 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 935 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 936 } 937 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 938 int Res = 0; 939 for (auto BS : RExp->Bases) 940 Res += getExpansionSize(BS->getType(), Context); 941 for (auto FD : RExp->Fields) 942 Res += getExpansionSize(FD->getType(), Context); 943 return Res; 944 } 945 if (isa<ComplexExpansion>(Exp.get())) 946 return 2; 947 assert(isa<NoExpansion>(Exp.get())); 948 return 1; 949 } 950 951 void 952 CodeGenTypes::getExpandedTypes(QualType Ty, 953 SmallVectorImpl<llvm::Type *>::iterator &TI) { 954 auto Exp = getTypeExpansion(Ty, Context); 955 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 956 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 957 getExpandedTypes(CAExp->EltTy, TI); 958 } 959 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 960 for (auto BS : RExp->Bases) 961 getExpandedTypes(BS->getType(), TI); 962 for (auto FD : RExp->Fields) 963 getExpandedTypes(FD->getType(), TI); 964 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 965 llvm::Type *EltTy = ConvertType(CExp->EltTy); 966 *TI++ = EltTy; 967 *TI++ = EltTy; 968 } else { 969 assert(isa<NoExpansion>(Exp.get())); 970 *TI++ = ConvertType(Ty); 971 } 972 } 973 974 static void forConstantArrayExpansion(CodeGenFunction &CGF, 975 ConstantArrayExpansion *CAE, 976 Address BaseAddr, 977 llvm::function_ref<void(Address)> Fn) { 978 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 979 CharUnits EltAlign = 980 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 981 982 for (int i = 0, n = CAE->NumElts; i < n; i++) { 983 llvm::Value *EltAddr = 984 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 985 Fn(Address(EltAddr, EltAlign)); 986 } 987 } 988 989 void CodeGenFunction::ExpandTypeFromArgs( 990 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 991 assert(LV.isSimple() && 992 "Unexpected non-simple lvalue during struct expansion."); 993 994 auto Exp = getTypeExpansion(Ty, getContext()); 995 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 996 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 997 [&](Address EltAddr) { 998 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 999 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1000 }); 1001 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1002 Address This = LV.getAddress(); 1003 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1004 // Perform a single step derived-to-base conversion. 1005 Address Base = 1006 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1007 /*NullCheckValue=*/false, SourceLocation()); 1008 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1009 1010 // Recurse onto bases. 1011 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1012 } 1013 for (auto FD : RExp->Fields) { 1014 // FIXME: What are the right qualifiers here? 1015 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1016 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1017 } 1018 } else if (isa<ComplexExpansion>(Exp.get())) { 1019 auto realValue = *AI++; 1020 auto imagValue = *AI++; 1021 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1022 } else { 1023 assert(isa<NoExpansion>(Exp.get())); 1024 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1025 } 1026 } 1027 1028 void CodeGenFunction::ExpandTypeToArgs( 1029 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 1030 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1031 auto Exp = getTypeExpansion(Ty, getContext()); 1032 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1033 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 1034 [&](Address EltAddr) { 1035 RValue EltRV = 1036 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 1037 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 1038 }); 1039 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1040 Address This = RV.getAggregateAddress(); 1041 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1042 // Perform a single step derived-to-base conversion. 1043 Address Base = 1044 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1045 /*NullCheckValue=*/false, SourceLocation()); 1046 RValue BaseRV = RValue::getAggregate(Base); 1047 1048 // Recurse onto bases. 1049 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 1050 IRCallArgPos); 1051 } 1052 1053 LValue LV = MakeAddrLValue(This, Ty); 1054 for (auto FD : RExp->Fields) { 1055 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 1056 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 1057 IRCallArgPos); 1058 } 1059 } else if (isa<ComplexExpansion>(Exp.get())) { 1060 ComplexPairTy CV = RV.getComplexVal(); 1061 IRCallArgs[IRCallArgPos++] = CV.first; 1062 IRCallArgs[IRCallArgPos++] = CV.second; 1063 } else { 1064 assert(isa<NoExpansion>(Exp.get())); 1065 assert(RV.isScalar() && 1066 "Unexpected non-scalar rvalue during struct expansion."); 1067 1068 // Insert a bitcast as needed. 1069 llvm::Value *V = RV.getScalarVal(); 1070 if (IRCallArgPos < IRFuncTy->getNumParams() && 1071 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1072 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1073 1074 IRCallArgs[IRCallArgPos++] = V; 1075 } 1076 } 1077 1078 /// Create a temporary allocation for the purposes of coercion. 1079 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1080 CharUnits MinAlign) { 1081 // Don't use an alignment that's worse than what LLVM would prefer. 1082 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1083 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1084 1085 return CGF.CreateTempAlloca(Ty, Align); 1086 } 1087 1088 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1089 /// accessing some number of bytes out of it, try to gep into the struct to get 1090 /// at its inner goodness. Dive as deep as possible without entering an element 1091 /// with an in-memory size smaller than DstSize. 1092 static Address 1093 EnterStructPointerForCoercedAccess(Address SrcPtr, 1094 llvm::StructType *SrcSTy, 1095 uint64_t DstSize, CodeGenFunction &CGF) { 1096 // We can't dive into a zero-element struct. 1097 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1098 1099 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1100 1101 // If the first elt is at least as large as what we're looking for, or if the 1102 // first element is the same size as the whole struct, we can enter it. The 1103 // comparison must be made on the store size and not the alloca size. Using 1104 // the alloca size may overstate the size of the load. 1105 uint64_t FirstEltSize = 1106 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1107 if (FirstEltSize < DstSize && 1108 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1109 return SrcPtr; 1110 1111 // GEP into the first element. 1112 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1113 1114 // If the first element is a struct, recurse. 1115 llvm::Type *SrcTy = SrcPtr.getElementType(); 1116 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1117 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1118 1119 return SrcPtr; 1120 } 1121 1122 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1123 /// are either integers or pointers. This does a truncation of the value if it 1124 /// is too large or a zero extension if it is too small. 1125 /// 1126 /// This behaves as if the value were coerced through memory, so on big-endian 1127 /// targets the high bits are preserved in a truncation, while little-endian 1128 /// targets preserve the low bits. 1129 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1130 llvm::Type *Ty, 1131 CodeGenFunction &CGF) { 1132 if (Val->getType() == Ty) 1133 return Val; 1134 1135 if (isa<llvm::PointerType>(Val->getType())) { 1136 // If this is Pointer->Pointer avoid conversion to and from int. 1137 if (isa<llvm::PointerType>(Ty)) 1138 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1139 1140 // Convert the pointer to an integer so we can play with its width. 1141 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1142 } 1143 1144 llvm::Type *DestIntTy = Ty; 1145 if (isa<llvm::PointerType>(DestIntTy)) 1146 DestIntTy = CGF.IntPtrTy; 1147 1148 if (Val->getType() != DestIntTy) { 1149 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1150 if (DL.isBigEndian()) { 1151 // Preserve the high bits on big-endian targets. 1152 // That is what memory coercion does. 1153 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1154 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1155 1156 if (SrcSize > DstSize) { 1157 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1158 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1159 } else { 1160 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1161 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1162 } 1163 } else { 1164 // Little-endian targets preserve the low bits. No shifts required. 1165 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1166 } 1167 } 1168 1169 if (isa<llvm::PointerType>(Ty)) 1170 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1171 return Val; 1172 } 1173 1174 1175 1176 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1177 /// a pointer to an object of type \arg Ty, known to be aligned to 1178 /// \arg SrcAlign bytes. 1179 /// 1180 /// This safely handles the case when the src type is smaller than the 1181 /// destination type; in this situation the values of bits which not 1182 /// present in the src are undefined. 1183 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1184 CodeGenFunction &CGF) { 1185 llvm::Type *SrcTy = Src.getElementType(); 1186 1187 // If SrcTy and Ty are the same, just do a load. 1188 if (SrcTy == Ty) 1189 return CGF.Builder.CreateLoad(Src); 1190 1191 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1192 1193 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1194 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1195 SrcTy = Src.getType()->getElementType(); 1196 } 1197 1198 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1199 1200 // If the source and destination are integer or pointer types, just do an 1201 // extension or truncation to the desired type. 1202 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1203 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1204 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1205 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1206 } 1207 1208 // If load is legal, just bitcast the src pointer. 1209 if (SrcSize >= DstSize) { 1210 // Generally SrcSize is never greater than DstSize, since this means we are 1211 // losing bits. However, this can happen in cases where the structure has 1212 // additional padding, for example due to a user specified alignment. 1213 // 1214 // FIXME: Assert that we aren't truncating non-padding bits when have access 1215 // to that information. 1216 Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty)); 1217 return CGF.Builder.CreateLoad(Src); 1218 } 1219 1220 // Otherwise do coercion through memory. This is stupid, but simple. 1221 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1222 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1223 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 1224 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1225 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1226 false); 1227 return CGF.Builder.CreateLoad(Tmp); 1228 } 1229 1230 // Function to store a first-class aggregate into memory. We prefer to 1231 // store the elements rather than the aggregate to be more friendly to 1232 // fast-isel. 1233 // FIXME: Do we need to recurse here? 1234 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1235 Address Dest, bool DestIsVolatile) { 1236 // Prefer scalar stores to first-class aggregate stores. 1237 if (llvm::StructType *STy = 1238 dyn_cast<llvm::StructType>(Val->getType())) { 1239 const llvm::StructLayout *Layout = 1240 CGF.CGM.getDataLayout().getStructLayout(STy); 1241 1242 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1243 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1244 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1245 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1246 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1247 } 1248 } else { 1249 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1250 } 1251 } 1252 1253 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1254 /// where the source and destination may have different types. The 1255 /// destination is known to be aligned to \arg DstAlign bytes. 1256 /// 1257 /// This safely handles the case when the src type is larger than the 1258 /// destination type; the upper bits of the src will be lost. 1259 static void CreateCoercedStore(llvm::Value *Src, 1260 Address Dst, 1261 bool DstIsVolatile, 1262 CodeGenFunction &CGF) { 1263 llvm::Type *SrcTy = Src->getType(); 1264 llvm::Type *DstTy = Dst.getType()->getElementType(); 1265 if (SrcTy == DstTy) { 1266 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1267 return; 1268 } 1269 1270 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1271 1272 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1273 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1274 DstTy = Dst.getType()->getElementType(); 1275 } 1276 1277 // If the source and destination are integer or pointer types, just do an 1278 // extension or truncation to the desired type. 1279 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1280 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1281 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1282 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1283 return; 1284 } 1285 1286 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1287 1288 // If store is legal, just bitcast the src pointer. 1289 if (SrcSize <= DstSize) { 1290 Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy)); 1291 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1292 } else { 1293 // Otherwise do coercion through memory. This is stupid, but 1294 // simple. 1295 1296 // Generally SrcSize is never greater than DstSize, since this means we are 1297 // losing bits. However, this can happen in cases where the structure has 1298 // additional padding, for example due to a user specified alignment. 1299 // 1300 // FIXME: Assert that we aren't truncating non-padding bits when have access 1301 // to that information. 1302 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1303 CGF.Builder.CreateStore(Src, Tmp); 1304 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1305 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1306 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1307 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1308 false); 1309 } 1310 } 1311 1312 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1313 const ABIArgInfo &info) { 1314 if (unsigned offset = info.getDirectOffset()) { 1315 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1316 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1317 CharUnits::fromQuantity(offset)); 1318 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1319 } 1320 return addr; 1321 } 1322 1323 namespace { 1324 1325 /// Encapsulates information about the way function arguments from 1326 /// CGFunctionInfo should be passed to actual LLVM IR function. 1327 class ClangToLLVMArgMapping { 1328 static const unsigned InvalidIndex = ~0U; 1329 unsigned InallocaArgNo; 1330 unsigned SRetArgNo; 1331 unsigned TotalIRArgs; 1332 1333 /// Arguments of LLVM IR function corresponding to single Clang argument. 1334 struct IRArgs { 1335 unsigned PaddingArgIndex; 1336 // Argument is expanded to IR arguments at positions 1337 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1338 unsigned FirstArgIndex; 1339 unsigned NumberOfArgs; 1340 1341 IRArgs() 1342 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1343 NumberOfArgs(0) {} 1344 }; 1345 1346 SmallVector<IRArgs, 8> ArgInfo; 1347 1348 public: 1349 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1350 bool OnlyRequiredArgs = false) 1351 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1352 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1353 construct(Context, FI, OnlyRequiredArgs); 1354 } 1355 1356 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1357 unsigned getInallocaArgNo() const { 1358 assert(hasInallocaArg()); 1359 return InallocaArgNo; 1360 } 1361 1362 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1363 unsigned getSRetArgNo() const { 1364 assert(hasSRetArg()); 1365 return SRetArgNo; 1366 } 1367 1368 unsigned totalIRArgs() const { return TotalIRArgs; } 1369 1370 bool hasPaddingArg(unsigned ArgNo) const { 1371 assert(ArgNo < ArgInfo.size()); 1372 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1373 } 1374 unsigned getPaddingArgNo(unsigned ArgNo) const { 1375 assert(hasPaddingArg(ArgNo)); 1376 return ArgInfo[ArgNo].PaddingArgIndex; 1377 } 1378 1379 /// Returns index of first IR argument corresponding to ArgNo, and their 1380 /// quantity. 1381 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1382 assert(ArgNo < ArgInfo.size()); 1383 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1384 ArgInfo[ArgNo].NumberOfArgs); 1385 } 1386 1387 private: 1388 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1389 bool OnlyRequiredArgs); 1390 }; 1391 1392 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1393 const CGFunctionInfo &FI, 1394 bool OnlyRequiredArgs) { 1395 unsigned IRArgNo = 0; 1396 bool SwapThisWithSRet = false; 1397 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1398 1399 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1400 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1401 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1402 } 1403 1404 unsigned ArgNo = 0; 1405 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1406 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1407 ++I, ++ArgNo) { 1408 assert(I != FI.arg_end()); 1409 QualType ArgType = I->type; 1410 const ABIArgInfo &AI = I->info; 1411 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1412 auto &IRArgs = ArgInfo[ArgNo]; 1413 1414 if (AI.getPaddingType()) 1415 IRArgs.PaddingArgIndex = IRArgNo++; 1416 1417 switch (AI.getKind()) { 1418 case ABIArgInfo::Extend: 1419 case ABIArgInfo::Direct: { 1420 // FIXME: handle sseregparm someday... 1421 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1422 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1423 IRArgs.NumberOfArgs = STy->getNumElements(); 1424 } else { 1425 IRArgs.NumberOfArgs = 1; 1426 } 1427 break; 1428 } 1429 case ABIArgInfo::Indirect: 1430 IRArgs.NumberOfArgs = 1; 1431 break; 1432 case ABIArgInfo::Ignore: 1433 case ABIArgInfo::InAlloca: 1434 // ignore and inalloca doesn't have matching LLVM parameters. 1435 IRArgs.NumberOfArgs = 0; 1436 break; 1437 case ABIArgInfo::CoerceAndExpand: 1438 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1439 break; 1440 case ABIArgInfo::Expand: 1441 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1442 break; 1443 } 1444 1445 if (IRArgs.NumberOfArgs > 0) { 1446 IRArgs.FirstArgIndex = IRArgNo; 1447 IRArgNo += IRArgs.NumberOfArgs; 1448 } 1449 1450 // Skip over the sret parameter when it comes second. We already handled it 1451 // above. 1452 if (IRArgNo == 1 && SwapThisWithSRet) 1453 IRArgNo++; 1454 } 1455 assert(ArgNo == ArgInfo.size()); 1456 1457 if (FI.usesInAlloca()) 1458 InallocaArgNo = IRArgNo++; 1459 1460 TotalIRArgs = IRArgNo; 1461 } 1462 } // namespace 1463 1464 /***/ 1465 1466 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1467 return FI.getReturnInfo().isIndirect(); 1468 } 1469 1470 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1471 return ReturnTypeUsesSRet(FI) && 1472 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1473 } 1474 1475 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1476 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1477 switch (BT->getKind()) { 1478 default: 1479 return false; 1480 case BuiltinType::Float: 1481 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1482 case BuiltinType::Double: 1483 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1484 case BuiltinType::LongDouble: 1485 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1486 } 1487 } 1488 1489 return false; 1490 } 1491 1492 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1493 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1494 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1495 if (BT->getKind() == BuiltinType::LongDouble) 1496 return getTarget().useObjCFP2RetForComplexLongDouble(); 1497 } 1498 } 1499 1500 return false; 1501 } 1502 1503 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1504 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1505 return GetFunctionType(FI); 1506 } 1507 1508 llvm::FunctionType * 1509 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1510 1511 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1512 (void)Inserted; 1513 assert(Inserted && "Recursively being processed?"); 1514 1515 llvm::Type *resultType = nullptr; 1516 const ABIArgInfo &retAI = FI.getReturnInfo(); 1517 switch (retAI.getKind()) { 1518 case ABIArgInfo::Expand: 1519 llvm_unreachable("Invalid ABI kind for return argument"); 1520 1521 case ABIArgInfo::Extend: 1522 case ABIArgInfo::Direct: 1523 resultType = retAI.getCoerceToType(); 1524 break; 1525 1526 case ABIArgInfo::InAlloca: 1527 if (retAI.getInAllocaSRet()) { 1528 // sret things on win32 aren't void, they return the sret pointer. 1529 QualType ret = FI.getReturnType(); 1530 llvm::Type *ty = ConvertType(ret); 1531 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1532 resultType = llvm::PointerType::get(ty, addressSpace); 1533 } else { 1534 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1535 } 1536 break; 1537 1538 case ABIArgInfo::Indirect: 1539 case ABIArgInfo::Ignore: 1540 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1541 break; 1542 1543 case ABIArgInfo::CoerceAndExpand: 1544 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1545 break; 1546 } 1547 1548 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1549 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1550 1551 // Add type for sret argument. 1552 if (IRFunctionArgs.hasSRetArg()) { 1553 QualType Ret = FI.getReturnType(); 1554 llvm::Type *Ty = ConvertType(Ret); 1555 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1556 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1557 llvm::PointerType::get(Ty, AddressSpace); 1558 } 1559 1560 // Add type for inalloca argument. 1561 if (IRFunctionArgs.hasInallocaArg()) { 1562 auto ArgStruct = FI.getArgStruct(); 1563 assert(ArgStruct); 1564 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1565 } 1566 1567 // Add in all of the required arguments. 1568 unsigned ArgNo = 0; 1569 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1570 ie = it + FI.getNumRequiredArgs(); 1571 for (; it != ie; ++it, ++ArgNo) { 1572 const ABIArgInfo &ArgInfo = it->info; 1573 1574 // Insert a padding type to ensure proper alignment. 1575 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1576 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1577 ArgInfo.getPaddingType(); 1578 1579 unsigned FirstIRArg, NumIRArgs; 1580 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1581 1582 switch (ArgInfo.getKind()) { 1583 case ABIArgInfo::Ignore: 1584 case ABIArgInfo::InAlloca: 1585 assert(NumIRArgs == 0); 1586 break; 1587 1588 case ABIArgInfo::Indirect: { 1589 assert(NumIRArgs == 1); 1590 // indirect arguments are always on the stack, which is alloca addr space. 1591 llvm::Type *LTy = ConvertTypeForMem(it->type); 1592 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1593 CGM.getDataLayout().getAllocaAddrSpace()); 1594 break; 1595 } 1596 1597 case ABIArgInfo::Extend: 1598 case ABIArgInfo::Direct: { 1599 // Fast-isel and the optimizer generally like scalar values better than 1600 // FCAs, so we flatten them if this is safe to do for this argument. 1601 llvm::Type *argType = ArgInfo.getCoerceToType(); 1602 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1603 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1604 assert(NumIRArgs == st->getNumElements()); 1605 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1606 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1607 } else { 1608 assert(NumIRArgs == 1); 1609 ArgTypes[FirstIRArg] = argType; 1610 } 1611 break; 1612 } 1613 1614 case ABIArgInfo::CoerceAndExpand: { 1615 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1616 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1617 *ArgTypesIter++ = EltTy; 1618 } 1619 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1620 break; 1621 } 1622 1623 case ABIArgInfo::Expand: 1624 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1625 getExpandedTypes(it->type, ArgTypesIter); 1626 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1627 break; 1628 } 1629 } 1630 1631 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1632 assert(Erased && "Not in set?"); 1633 1634 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1635 } 1636 1637 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1638 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1639 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1640 1641 if (!isFuncTypeConvertible(FPT)) 1642 return llvm::StructType::get(getLLVMContext()); 1643 1644 const CGFunctionInfo *Info; 1645 if (isa<CXXDestructorDecl>(MD)) 1646 Info = 1647 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1648 else 1649 Info = &arrangeCXXMethodDeclaration(MD); 1650 return GetFunctionType(*Info); 1651 } 1652 1653 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1654 llvm::AttrBuilder &FuncAttrs, 1655 const FunctionProtoType *FPT) { 1656 if (!FPT) 1657 return; 1658 1659 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1660 FPT->isNothrow(Ctx)) 1661 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1662 } 1663 1664 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1665 bool AttrOnCallSite, 1666 llvm::AttrBuilder &FuncAttrs) { 1667 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1668 if (!HasOptnone) { 1669 if (CodeGenOpts.OptimizeSize) 1670 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1671 if (CodeGenOpts.OptimizeSize == 2) 1672 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1673 } 1674 1675 if (CodeGenOpts.DisableRedZone) 1676 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1677 if (CodeGenOpts.NoImplicitFloat) 1678 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1679 1680 if (AttrOnCallSite) { 1681 // Attributes that should go on the call site only. 1682 if (!CodeGenOpts.SimplifyLibCalls || 1683 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1684 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1685 if (!CodeGenOpts.TrapFuncName.empty()) 1686 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1687 } else { 1688 // Attributes that should go on the function, but not the call site. 1689 if (!CodeGenOpts.DisableFPElim) { 1690 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1691 } else if (CodeGenOpts.OmitLeafFramePointer) { 1692 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1693 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1694 } else { 1695 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1696 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1697 } 1698 1699 FuncAttrs.addAttribute("less-precise-fpmad", 1700 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1701 1702 if (!CodeGenOpts.FPDenormalMode.empty()) 1703 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1704 1705 FuncAttrs.addAttribute("no-trapping-math", 1706 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1707 1708 // TODO: Are these all needed? 1709 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1710 FuncAttrs.addAttribute("no-infs-fp-math", 1711 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1712 FuncAttrs.addAttribute("no-nans-fp-math", 1713 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1714 FuncAttrs.addAttribute("unsafe-fp-math", 1715 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1716 FuncAttrs.addAttribute("use-soft-float", 1717 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1718 FuncAttrs.addAttribute("stack-protector-buffer-size", 1719 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1720 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1721 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1722 FuncAttrs.addAttribute( 1723 "correctly-rounded-divide-sqrt-fp-math", 1724 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1725 1726 // TODO: Reciprocal estimate codegen options should apply to instructions? 1727 std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals; 1728 if (!Recips.empty()) 1729 FuncAttrs.addAttribute("reciprocal-estimates", 1730 llvm::join(Recips.begin(), Recips.end(), ",")); 1731 1732 if (CodeGenOpts.StackRealignment) 1733 FuncAttrs.addAttribute("stackrealign"); 1734 if (CodeGenOpts.Backchain) 1735 FuncAttrs.addAttribute("backchain"); 1736 } 1737 1738 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1739 // Conservatively, mark all functions and calls in CUDA as convergent 1740 // (meaning, they may call an intrinsically convergent op, such as 1741 // __syncthreads(), and so can't have certain optimizations applied around 1742 // them). LLVM will remove this attribute where it safely can. 1743 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1744 1745 // Exceptions aren't supported in CUDA device code. 1746 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1747 1748 // Respect -fcuda-flush-denormals-to-zero. 1749 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1750 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1751 } 1752 } 1753 1754 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1755 llvm::AttrBuilder FuncAttrs; 1756 ConstructDefaultFnAttrList(F.getName(), 1757 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1758 /* AttrOnCallsite = */ false, FuncAttrs); 1759 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1760 } 1761 1762 void CodeGenModule::ConstructAttributeList( 1763 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1764 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1765 llvm::AttrBuilder FuncAttrs; 1766 llvm::AttrBuilder RetAttrs; 1767 1768 CallingConv = FI.getEffectiveCallingConvention(); 1769 if (FI.isNoReturn()) 1770 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1771 1772 // If we have information about the function prototype, we can learn 1773 // attributes form there. 1774 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1775 CalleeInfo.getCalleeFunctionProtoType()); 1776 1777 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1778 1779 bool HasOptnone = false; 1780 // FIXME: handle sseregparm someday... 1781 if (TargetDecl) { 1782 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1783 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1784 if (TargetDecl->hasAttr<NoThrowAttr>()) 1785 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1786 if (TargetDecl->hasAttr<NoReturnAttr>()) 1787 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1788 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1789 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1790 if (TargetDecl->hasAttr<ConvergentAttr>()) 1791 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1792 1793 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1794 AddAttributesFromFunctionProtoType( 1795 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1796 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1797 // These attributes are not inherited by overloads. 1798 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1799 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1800 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1801 } 1802 1803 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1804 if (TargetDecl->hasAttr<ConstAttr>()) { 1805 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1806 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1807 } else if (TargetDecl->hasAttr<PureAttr>()) { 1808 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1809 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1810 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1811 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1812 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1813 } 1814 if (TargetDecl->hasAttr<RestrictAttr>()) 1815 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1816 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1817 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1818 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1819 FuncAttrs.addAttribute("no_caller_saved_registers"); 1820 1821 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1822 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1823 Optional<unsigned> NumElemsParam; 1824 // alloc_size args are base-1, 0 means not present. 1825 if (unsigned N = AllocSize->getNumElemsParam()) 1826 NumElemsParam = N - 1; 1827 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1, 1828 NumElemsParam); 1829 } 1830 } 1831 1832 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1833 1834 if (CodeGenOpts.EnableSegmentedStacks && 1835 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1836 FuncAttrs.addAttribute("split-stack"); 1837 1838 if (!AttrOnCallSite) { 1839 bool DisableTailCalls = 1840 CodeGenOpts.DisableTailCalls || 1841 (TargetDecl && (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1842 TargetDecl->hasAttr<AnyX86InterruptAttr>())); 1843 FuncAttrs.addAttribute("disable-tail-calls", 1844 llvm::toStringRef(DisableTailCalls)); 1845 1846 // Add target-cpu and target-features attributes to functions. If 1847 // we have a decl for the function and it has a target attribute then 1848 // parse that and add it to the feature set. 1849 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1850 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1851 if (FD && FD->hasAttr<TargetAttr>()) { 1852 llvm::StringMap<bool> FeatureMap; 1853 getFunctionFeatureMap(FeatureMap, FD); 1854 1855 // Produce the canonical string for this set of features. 1856 std::vector<std::string> Features; 1857 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1858 ie = FeatureMap.end(); 1859 it != ie; ++it) 1860 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1861 1862 // Now add the target-cpu and target-features to the function. 1863 // While we populated the feature map above, we still need to 1864 // get and parse the target attribute so we can get the cpu for 1865 // the function. 1866 const auto *TD = FD->getAttr<TargetAttr>(); 1867 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1868 if (ParsedAttr.second != "") 1869 TargetCPU = ParsedAttr.second; 1870 if (TargetCPU != "") 1871 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1872 if (!Features.empty()) { 1873 std::sort(Features.begin(), Features.end()); 1874 FuncAttrs.addAttribute( 1875 "target-features", 1876 llvm::join(Features.begin(), Features.end(), ",")); 1877 } 1878 } else { 1879 // Otherwise just add the existing target cpu and target features to the 1880 // function. 1881 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1882 if (TargetCPU != "") 1883 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1884 if (!Features.empty()) { 1885 std::sort(Features.begin(), Features.end()); 1886 FuncAttrs.addAttribute( 1887 "target-features", 1888 llvm::join(Features.begin(), Features.end(), ",")); 1889 } 1890 } 1891 } 1892 1893 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1894 1895 QualType RetTy = FI.getReturnType(); 1896 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1897 switch (RetAI.getKind()) { 1898 case ABIArgInfo::Extend: 1899 if (RetTy->hasSignedIntegerRepresentation()) 1900 RetAttrs.addAttribute(llvm::Attribute::SExt); 1901 else if (RetTy->hasUnsignedIntegerRepresentation()) 1902 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1903 // FALL THROUGH 1904 case ABIArgInfo::Direct: 1905 if (RetAI.getInReg()) 1906 RetAttrs.addAttribute(llvm::Attribute::InReg); 1907 break; 1908 case ABIArgInfo::Ignore: 1909 break; 1910 1911 case ABIArgInfo::InAlloca: 1912 case ABIArgInfo::Indirect: { 1913 // inalloca and sret disable readnone and readonly 1914 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1915 .removeAttribute(llvm::Attribute::ReadNone); 1916 break; 1917 } 1918 1919 case ABIArgInfo::CoerceAndExpand: 1920 break; 1921 1922 case ABIArgInfo::Expand: 1923 llvm_unreachable("Invalid ABI kind for return argument"); 1924 } 1925 1926 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1927 QualType PTy = RefTy->getPointeeType(); 1928 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1929 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1930 .getQuantity()); 1931 else if (getContext().getTargetAddressSpace(PTy) == 0) 1932 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1933 } 1934 1935 bool hasUsedSRet = false; 1936 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 1937 1938 // Attach attributes to sret. 1939 if (IRFunctionArgs.hasSRetArg()) { 1940 llvm::AttrBuilder SRETAttrs; 1941 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1942 hasUsedSRet = true; 1943 if (RetAI.getInReg()) 1944 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1945 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 1946 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 1947 } 1948 1949 // Attach attributes to inalloca argument. 1950 if (IRFunctionArgs.hasInallocaArg()) { 1951 llvm::AttrBuilder Attrs; 1952 Attrs.addAttribute(llvm::Attribute::InAlloca); 1953 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 1954 llvm::AttributeSet::get(getLLVMContext(), Attrs); 1955 } 1956 1957 unsigned ArgNo = 0; 1958 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1959 E = FI.arg_end(); 1960 I != E; ++I, ++ArgNo) { 1961 QualType ParamType = I->type; 1962 const ABIArgInfo &AI = I->info; 1963 llvm::AttrBuilder Attrs; 1964 1965 // Add attribute for padding argument, if necessary. 1966 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1967 if (AI.getPaddingInReg()) { 1968 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1969 llvm::AttributeSet::get( 1970 getLLVMContext(), 1971 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 1972 } 1973 } 1974 1975 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1976 // have the corresponding parameter variable. It doesn't make 1977 // sense to do it here because parameters are so messed up. 1978 switch (AI.getKind()) { 1979 case ABIArgInfo::Extend: 1980 if (ParamType->isSignedIntegerOrEnumerationType()) 1981 Attrs.addAttribute(llvm::Attribute::SExt); 1982 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1983 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1984 Attrs.addAttribute(llvm::Attribute::SExt); 1985 else 1986 Attrs.addAttribute(llvm::Attribute::ZExt); 1987 } 1988 // FALL THROUGH 1989 case ABIArgInfo::Direct: 1990 if (ArgNo == 0 && FI.isChainCall()) 1991 Attrs.addAttribute(llvm::Attribute::Nest); 1992 else if (AI.getInReg()) 1993 Attrs.addAttribute(llvm::Attribute::InReg); 1994 break; 1995 1996 case ABIArgInfo::Indirect: { 1997 if (AI.getInReg()) 1998 Attrs.addAttribute(llvm::Attribute::InReg); 1999 2000 if (AI.getIndirectByVal()) 2001 Attrs.addAttribute(llvm::Attribute::ByVal); 2002 2003 CharUnits Align = AI.getIndirectAlign(); 2004 2005 // In a byval argument, it is important that the required 2006 // alignment of the type is honored, as LLVM might be creating a 2007 // *new* stack object, and needs to know what alignment to give 2008 // it. (Sometimes it can deduce a sensible alignment on its own, 2009 // but not if clang decides it must emit a packed struct, or the 2010 // user specifies increased alignment requirements.) 2011 // 2012 // This is different from indirect *not* byval, where the object 2013 // exists already, and the align attribute is purely 2014 // informative. 2015 assert(!Align.isZero()); 2016 2017 // For now, only add this when we have a byval argument. 2018 // TODO: be less lazy about updating test cases. 2019 if (AI.getIndirectByVal()) 2020 Attrs.addAlignmentAttr(Align.getQuantity()); 2021 2022 // byval disables readnone and readonly. 2023 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2024 .removeAttribute(llvm::Attribute::ReadNone); 2025 break; 2026 } 2027 case ABIArgInfo::Ignore: 2028 case ABIArgInfo::Expand: 2029 case ABIArgInfo::CoerceAndExpand: 2030 break; 2031 2032 case ABIArgInfo::InAlloca: 2033 // inalloca disables readnone and readonly. 2034 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2035 .removeAttribute(llvm::Attribute::ReadNone); 2036 continue; 2037 } 2038 2039 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2040 QualType PTy = RefTy->getPointeeType(); 2041 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2042 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2043 .getQuantity()); 2044 else if (getContext().getTargetAddressSpace(PTy) == 0) 2045 Attrs.addAttribute(llvm::Attribute::NonNull); 2046 } 2047 2048 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2049 case ParameterABI::Ordinary: 2050 break; 2051 2052 case ParameterABI::SwiftIndirectResult: { 2053 // Add 'sret' if we haven't already used it for something, but 2054 // only if the result is void. 2055 if (!hasUsedSRet && RetTy->isVoidType()) { 2056 Attrs.addAttribute(llvm::Attribute::StructRet); 2057 hasUsedSRet = true; 2058 } 2059 2060 // Add 'noalias' in either case. 2061 Attrs.addAttribute(llvm::Attribute::NoAlias); 2062 2063 // Add 'dereferenceable' and 'alignment'. 2064 auto PTy = ParamType->getPointeeType(); 2065 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2066 auto info = getContext().getTypeInfoInChars(PTy); 2067 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2068 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2069 info.second.getQuantity())); 2070 } 2071 break; 2072 } 2073 2074 case ParameterABI::SwiftErrorResult: 2075 Attrs.addAttribute(llvm::Attribute::SwiftError); 2076 break; 2077 2078 case ParameterABI::SwiftContext: 2079 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2080 break; 2081 } 2082 2083 if (Attrs.hasAttributes()) { 2084 unsigned FirstIRArg, NumIRArgs; 2085 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2086 for (unsigned i = 0; i < NumIRArgs; i++) 2087 ArgAttrs[FirstIRArg + i] = 2088 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2089 } 2090 } 2091 assert(ArgNo == FI.arg_size()); 2092 2093 AttrList = llvm::AttributeList::get( 2094 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2095 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2096 } 2097 2098 /// An argument came in as a promoted argument; demote it back to its 2099 /// declared type. 2100 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2101 const VarDecl *var, 2102 llvm::Value *value) { 2103 llvm::Type *varType = CGF.ConvertType(var->getType()); 2104 2105 // This can happen with promotions that actually don't change the 2106 // underlying type, like the enum promotions. 2107 if (value->getType() == varType) return value; 2108 2109 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2110 && "unexpected promotion type"); 2111 2112 if (isa<llvm::IntegerType>(varType)) 2113 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2114 2115 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2116 } 2117 2118 /// Returns the attribute (either parameter attribute, or function 2119 /// attribute), which declares argument ArgNo to be non-null. 2120 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2121 QualType ArgType, unsigned ArgNo) { 2122 // FIXME: __attribute__((nonnull)) can also be applied to: 2123 // - references to pointers, where the pointee is known to be 2124 // nonnull (apparently a Clang extension) 2125 // - transparent unions containing pointers 2126 // In the former case, LLVM IR cannot represent the constraint. In 2127 // the latter case, we have no guarantee that the transparent union 2128 // is in fact passed as a pointer. 2129 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2130 return nullptr; 2131 // First, check attribute on parameter itself. 2132 if (PVD) { 2133 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2134 return ParmNNAttr; 2135 } 2136 // Check function attributes. 2137 if (!FD) 2138 return nullptr; 2139 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2140 if (NNAttr->isNonNull(ArgNo)) 2141 return NNAttr; 2142 } 2143 return nullptr; 2144 } 2145 2146 namespace { 2147 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2148 Address Temp; 2149 Address Arg; 2150 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2151 void Emit(CodeGenFunction &CGF, Flags flags) override { 2152 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2153 CGF.Builder.CreateStore(errorValue, Arg); 2154 } 2155 }; 2156 } 2157 2158 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2159 llvm::Function *Fn, 2160 const FunctionArgList &Args) { 2161 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2162 // Naked functions don't have prologues. 2163 return; 2164 2165 // If this is an implicit-return-zero function, go ahead and 2166 // initialize the return value. TODO: it might be nice to have 2167 // a more general mechanism for this that didn't require synthesized 2168 // return statements. 2169 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2170 if (FD->hasImplicitReturnZero()) { 2171 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2172 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2173 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2174 Builder.CreateStore(Zero, ReturnValue); 2175 } 2176 } 2177 2178 // FIXME: We no longer need the types from FunctionArgList; lift up and 2179 // simplify. 2180 2181 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2182 // Flattened function arguments. 2183 SmallVector<llvm::Value *, 16> FnArgs; 2184 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2185 for (auto &Arg : Fn->args()) { 2186 FnArgs.push_back(&Arg); 2187 } 2188 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2189 2190 // If we're using inalloca, all the memory arguments are GEPs off of the last 2191 // parameter, which is a pointer to the complete memory area. 2192 Address ArgStruct = Address::invalid(); 2193 const llvm::StructLayout *ArgStructLayout = nullptr; 2194 if (IRFunctionArgs.hasInallocaArg()) { 2195 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2196 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2197 FI.getArgStructAlignment()); 2198 2199 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2200 } 2201 2202 // Name the struct return parameter. 2203 if (IRFunctionArgs.hasSRetArg()) { 2204 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2205 AI->setName("agg.result"); 2206 AI->addAttr(llvm::Attribute::NoAlias); 2207 } 2208 2209 // Track if we received the parameter as a pointer (indirect, byval, or 2210 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2211 // into a local alloca for us. 2212 SmallVector<ParamValue, 16> ArgVals; 2213 ArgVals.reserve(Args.size()); 2214 2215 // Create a pointer value for every parameter declaration. This usually 2216 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2217 // any cleanups or do anything that might unwind. We do that separately, so 2218 // we can push the cleanups in the correct order for the ABI. 2219 assert(FI.arg_size() == Args.size() && 2220 "Mismatch between function signature & arguments."); 2221 unsigned ArgNo = 0; 2222 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2223 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2224 i != e; ++i, ++info_it, ++ArgNo) { 2225 const VarDecl *Arg = *i; 2226 QualType Ty = info_it->type; 2227 const ABIArgInfo &ArgI = info_it->info; 2228 2229 bool isPromoted = 2230 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2231 2232 unsigned FirstIRArg, NumIRArgs; 2233 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2234 2235 switch (ArgI.getKind()) { 2236 case ABIArgInfo::InAlloca: { 2237 assert(NumIRArgs == 0); 2238 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2239 CharUnits FieldOffset = 2240 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2241 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2242 Arg->getName()); 2243 ArgVals.push_back(ParamValue::forIndirect(V)); 2244 break; 2245 } 2246 2247 case ABIArgInfo::Indirect: { 2248 assert(NumIRArgs == 1); 2249 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2250 2251 if (!hasScalarEvaluationKind(Ty)) { 2252 // Aggregates and complex variables are accessed by reference. All we 2253 // need to do is realign the value, if requested. 2254 Address V = ParamAddr; 2255 if (ArgI.getIndirectRealign()) { 2256 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2257 2258 // Copy from the incoming argument pointer to the temporary with the 2259 // appropriate alignment. 2260 // 2261 // FIXME: We should have a common utility for generating an aggregate 2262 // copy. 2263 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2264 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2265 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2266 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2267 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2268 V = AlignedTemp; 2269 } 2270 ArgVals.push_back(ParamValue::forIndirect(V)); 2271 } else { 2272 // Load scalar value from indirect argument. 2273 llvm::Value *V = 2274 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2275 2276 if (isPromoted) 2277 V = emitArgumentDemotion(*this, Arg, V); 2278 ArgVals.push_back(ParamValue::forDirect(V)); 2279 } 2280 break; 2281 } 2282 2283 case ABIArgInfo::Extend: 2284 case ABIArgInfo::Direct: { 2285 2286 // If we have the trivial case, handle it with no muss and fuss. 2287 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2288 ArgI.getCoerceToType() == ConvertType(Ty) && 2289 ArgI.getDirectOffset() == 0) { 2290 assert(NumIRArgs == 1); 2291 llvm::Value *V = FnArgs[FirstIRArg]; 2292 auto AI = cast<llvm::Argument>(V); 2293 2294 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2295 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2296 PVD->getFunctionScopeIndex())) 2297 AI->addAttr(llvm::Attribute::NonNull); 2298 2299 QualType OTy = PVD->getOriginalType(); 2300 if (const auto *ArrTy = 2301 getContext().getAsConstantArrayType(OTy)) { 2302 // A C99 array parameter declaration with the static keyword also 2303 // indicates dereferenceability, and if the size is constant we can 2304 // use the dereferenceable attribute (which requires the size in 2305 // bytes). 2306 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2307 QualType ETy = ArrTy->getElementType(); 2308 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2309 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2310 ArrSize) { 2311 llvm::AttrBuilder Attrs; 2312 Attrs.addDereferenceableAttr( 2313 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2314 AI->addAttrs(Attrs); 2315 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2316 AI->addAttr(llvm::Attribute::NonNull); 2317 } 2318 } 2319 } else if (const auto *ArrTy = 2320 getContext().getAsVariableArrayType(OTy)) { 2321 // For C99 VLAs with the static keyword, we don't know the size so 2322 // we can't use the dereferenceable attribute, but in addrspace(0) 2323 // we know that it must be nonnull. 2324 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2325 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2326 AI->addAttr(llvm::Attribute::NonNull); 2327 } 2328 2329 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2330 if (!AVAttr) 2331 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2332 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2333 if (AVAttr) { 2334 llvm::Value *AlignmentValue = 2335 EmitScalarExpr(AVAttr->getAlignment()); 2336 llvm::ConstantInt *AlignmentCI = 2337 cast<llvm::ConstantInt>(AlignmentValue); 2338 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2339 +llvm::Value::MaximumAlignment); 2340 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2341 } 2342 } 2343 2344 if (Arg->getType().isRestrictQualified()) 2345 AI->addAttr(llvm::Attribute::NoAlias); 2346 2347 // LLVM expects swifterror parameters to be used in very restricted 2348 // ways. Copy the value into a less-restricted temporary. 2349 if (FI.getExtParameterInfo(ArgNo).getABI() 2350 == ParameterABI::SwiftErrorResult) { 2351 QualType pointeeTy = Ty->getPointeeType(); 2352 assert(pointeeTy->isPointerType()); 2353 Address temp = 2354 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2355 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2356 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2357 Builder.CreateStore(incomingErrorValue, temp); 2358 V = temp.getPointer(); 2359 2360 // Push a cleanup to copy the value back at the end of the function. 2361 // The convention does not guarantee that the value will be written 2362 // back if the function exits with an unwind exception. 2363 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2364 } 2365 2366 // Ensure the argument is the correct type. 2367 if (V->getType() != ArgI.getCoerceToType()) 2368 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2369 2370 if (isPromoted) 2371 V = emitArgumentDemotion(*this, Arg, V); 2372 2373 // Because of merging of function types from multiple decls it is 2374 // possible for the type of an argument to not match the corresponding 2375 // type in the function type. Since we are codegening the callee 2376 // in here, add a cast to the argument type. 2377 llvm::Type *LTy = ConvertType(Arg->getType()); 2378 if (V->getType() != LTy) 2379 V = Builder.CreateBitCast(V, LTy); 2380 2381 ArgVals.push_back(ParamValue::forDirect(V)); 2382 break; 2383 } 2384 2385 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2386 Arg->getName()); 2387 2388 // Pointer to store into. 2389 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2390 2391 // Fast-isel and the optimizer generally like scalar values better than 2392 // FCAs, so we flatten them if this is safe to do for this argument. 2393 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2394 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2395 STy->getNumElements() > 1) { 2396 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2397 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2398 llvm::Type *DstTy = Ptr.getElementType(); 2399 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2400 2401 Address AddrToStoreInto = Address::invalid(); 2402 if (SrcSize <= DstSize) { 2403 AddrToStoreInto = 2404 Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 2405 } else { 2406 AddrToStoreInto = 2407 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2408 } 2409 2410 assert(STy->getNumElements() == NumIRArgs); 2411 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2412 auto AI = FnArgs[FirstIRArg + i]; 2413 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2414 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2415 Address EltPtr = 2416 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2417 Builder.CreateStore(AI, EltPtr); 2418 } 2419 2420 if (SrcSize > DstSize) { 2421 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2422 } 2423 2424 } else { 2425 // Simple case, just do a coerced store of the argument into the alloca. 2426 assert(NumIRArgs == 1); 2427 auto AI = FnArgs[FirstIRArg]; 2428 AI->setName(Arg->getName() + ".coerce"); 2429 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2430 } 2431 2432 // Match to what EmitParmDecl is expecting for this type. 2433 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2434 llvm::Value *V = 2435 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2436 if (isPromoted) 2437 V = emitArgumentDemotion(*this, Arg, V); 2438 ArgVals.push_back(ParamValue::forDirect(V)); 2439 } else { 2440 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2441 } 2442 break; 2443 } 2444 2445 case ABIArgInfo::CoerceAndExpand: { 2446 // Reconstruct into a temporary. 2447 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2448 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2449 2450 auto coercionType = ArgI.getCoerceAndExpandType(); 2451 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2452 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2453 2454 unsigned argIndex = FirstIRArg; 2455 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2456 llvm::Type *eltType = coercionType->getElementType(i); 2457 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2458 continue; 2459 2460 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2461 auto elt = FnArgs[argIndex++]; 2462 Builder.CreateStore(elt, eltAddr); 2463 } 2464 assert(argIndex == FirstIRArg + NumIRArgs); 2465 break; 2466 } 2467 2468 case ABIArgInfo::Expand: { 2469 // If this structure was expanded into multiple arguments then 2470 // we need to create a temporary and reconstruct it from the 2471 // arguments. 2472 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2473 LValue LV = MakeAddrLValue(Alloca, Ty); 2474 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2475 2476 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2477 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2478 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2479 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2480 auto AI = FnArgs[FirstIRArg + i]; 2481 AI->setName(Arg->getName() + "." + Twine(i)); 2482 } 2483 break; 2484 } 2485 2486 case ABIArgInfo::Ignore: 2487 assert(NumIRArgs == 0); 2488 // Initialize the local variable appropriately. 2489 if (!hasScalarEvaluationKind(Ty)) { 2490 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2491 } else { 2492 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2493 ArgVals.push_back(ParamValue::forDirect(U)); 2494 } 2495 break; 2496 } 2497 } 2498 2499 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2500 for (int I = Args.size() - 1; I >= 0; --I) 2501 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2502 } else { 2503 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2504 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2505 } 2506 } 2507 2508 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2509 while (insn->use_empty()) { 2510 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2511 if (!bitcast) return; 2512 2513 // This is "safe" because we would have used a ConstantExpr otherwise. 2514 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2515 bitcast->eraseFromParent(); 2516 } 2517 } 2518 2519 /// Try to emit a fused autorelease of a return result. 2520 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2521 llvm::Value *result) { 2522 // We must be immediately followed the cast. 2523 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2524 if (BB->empty()) return nullptr; 2525 if (&BB->back() != result) return nullptr; 2526 2527 llvm::Type *resultType = result->getType(); 2528 2529 // result is in a BasicBlock and is therefore an Instruction. 2530 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2531 2532 SmallVector<llvm::Instruction *, 4> InstsToKill; 2533 2534 // Look for: 2535 // %generator = bitcast %type1* %generator2 to %type2* 2536 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2537 // We would have emitted this as a constant if the operand weren't 2538 // an Instruction. 2539 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2540 2541 // Require the generator to be immediately followed by the cast. 2542 if (generator->getNextNode() != bitcast) 2543 return nullptr; 2544 2545 InstsToKill.push_back(bitcast); 2546 } 2547 2548 // Look for: 2549 // %generator = call i8* @objc_retain(i8* %originalResult) 2550 // or 2551 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2552 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2553 if (!call) return nullptr; 2554 2555 bool doRetainAutorelease; 2556 2557 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2558 doRetainAutorelease = true; 2559 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2560 .objc_retainAutoreleasedReturnValue) { 2561 doRetainAutorelease = false; 2562 2563 // If we emitted an assembly marker for this call (and the 2564 // ARCEntrypoints field should have been set if so), go looking 2565 // for that call. If we can't find it, we can't do this 2566 // optimization. But it should always be the immediately previous 2567 // instruction, unless we needed bitcasts around the call. 2568 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2569 llvm::Instruction *prev = call->getPrevNode(); 2570 assert(prev); 2571 if (isa<llvm::BitCastInst>(prev)) { 2572 prev = prev->getPrevNode(); 2573 assert(prev); 2574 } 2575 assert(isa<llvm::CallInst>(prev)); 2576 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2577 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2578 InstsToKill.push_back(prev); 2579 } 2580 } else { 2581 return nullptr; 2582 } 2583 2584 result = call->getArgOperand(0); 2585 InstsToKill.push_back(call); 2586 2587 // Keep killing bitcasts, for sanity. Note that we no longer care 2588 // about precise ordering as long as there's exactly one use. 2589 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2590 if (!bitcast->hasOneUse()) break; 2591 InstsToKill.push_back(bitcast); 2592 result = bitcast->getOperand(0); 2593 } 2594 2595 // Delete all the unnecessary instructions, from latest to earliest. 2596 for (auto *I : InstsToKill) 2597 I->eraseFromParent(); 2598 2599 // Do the fused retain/autorelease if we were asked to. 2600 if (doRetainAutorelease) 2601 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2602 2603 // Cast back to the result type. 2604 return CGF.Builder.CreateBitCast(result, resultType); 2605 } 2606 2607 /// If this is a +1 of the value of an immutable 'self', remove it. 2608 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2609 llvm::Value *result) { 2610 // This is only applicable to a method with an immutable 'self'. 2611 const ObjCMethodDecl *method = 2612 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2613 if (!method) return nullptr; 2614 const VarDecl *self = method->getSelfDecl(); 2615 if (!self->getType().isConstQualified()) return nullptr; 2616 2617 // Look for a retain call. 2618 llvm::CallInst *retainCall = 2619 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2620 if (!retainCall || 2621 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2622 return nullptr; 2623 2624 // Look for an ordinary load of 'self'. 2625 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2626 llvm::LoadInst *load = 2627 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2628 if (!load || load->isAtomic() || load->isVolatile() || 2629 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2630 return nullptr; 2631 2632 // Okay! Burn it all down. This relies for correctness on the 2633 // assumption that the retain is emitted as part of the return and 2634 // that thereafter everything is used "linearly". 2635 llvm::Type *resultType = result->getType(); 2636 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2637 assert(retainCall->use_empty()); 2638 retainCall->eraseFromParent(); 2639 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2640 2641 return CGF.Builder.CreateBitCast(load, resultType); 2642 } 2643 2644 /// Emit an ARC autorelease of the result of a function. 2645 /// 2646 /// \return the value to actually return from the function 2647 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2648 llvm::Value *result) { 2649 // If we're returning 'self', kill the initial retain. This is a 2650 // heuristic attempt to "encourage correctness" in the really unfortunate 2651 // case where we have a return of self during a dealloc and we desperately 2652 // need to avoid the possible autorelease. 2653 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2654 return self; 2655 2656 // At -O0, try to emit a fused retain/autorelease. 2657 if (CGF.shouldUseFusedARCCalls()) 2658 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2659 return fused; 2660 2661 return CGF.EmitARCAutoreleaseReturnValue(result); 2662 } 2663 2664 /// Heuristically search for a dominating store to the return-value slot. 2665 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2666 // Check if a User is a store which pointerOperand is the ReturnValue. 2667 // We are looking for stores to the ReturnValue, not for stores of the 2668 // ReturnValue to some other location. 2669 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2670 auto *SI = dyn_cast<llvm::StoreInst>(U); 2671 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2672 return nullptr; 2673 // These aren't actually possible for non-coerced returns, and we 2674 // only care about non-coerced returns on this code path. 2675 assert(!SI->isAtomic() && !SI->isVolatile()); 2676 return SI; 2677 }; 2678 // If there are multiple uses of the return-value slot, just check 2679 // for something immediately preceding the IP. Sometimes this can 2680 // happen with how we generate implicit-returns; it can also happen 2681 // with noreturn cleanups. 2682 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2683 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2684 if (IP->empty()) return nullptr; 2685 llvm::Instruction *I = &IP->back(); 2686 2687 // Skip lifetime markers 2688 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2689 IE = IP->rend(); 2690 II != IE; ++II) { 2691 if (llvm::IntrinsicInst *Intrinsic = 2692 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2693 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2694 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2695 ++II; 2696 if (II == IE) 2697 break; 2698 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2699 continue; 2700 } 2701 } 2702 I = &*II; 2703 break; 2704 } 2705 2706 return GetStoreIfValid(I); 2707 } 2708 2709 llvm::StoreInst *store = 2710 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2711 if (!store) return nullptr; 2712 2713 // Now do a first-and-dirty dominance check: just walk up the 2714 // single-predecessors chain from the current insertion point. 2715 llvm::BasicBlock *StoreBB = store->getParent(); 2716 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2717 while (IP != StoreBB) { 2718 if (!(IP = IP->getSinglePredecessor())) 2719 return nullptr; 2720 } 2721 2722 // Okay, the store's basic block dominates the insertion point; we 2723 // can do our thing. 2724 return store; 2725 } 2726 2727 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2728 bool EmitRetDbgLoc, 2729 SourceLocation EndLoc) { 2730 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2731 // Naked functions don't have epilogues. 2732 Builder.CreateUnreachable(); 2733 return; 2734 } 2735 2736 // Functions with no result always return void. 2737 if (!ReturnValue.isValid()) { 2738 Builder.CreateRetVoid(); 2739 return; 2740 } 2741 2742 llvm::DebugLoc RetDbgLoc; 2743 llvm::Value *RV = nullptr; 2744 QualType RetTy = FI.getReturnType(); 2745 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2746 2747 switch (RetAI.getKind()) { 2748 case ABIArgInfo::InAlloca: 2749 // Aggregrates get evaluated directly into the destination. Sometimes we 2750 // need to return the sret value in a register, though. 2751 assert(hasAggregateEvaluationKind(RetTy)); 2752 if (RetAI.getInAllocaSRet()) { 2753 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2754 --EI; 2755 llvm::Value *ArgStruct = &*EI; 2756 llvm::Value *SRet = Builder.CreateStructGEP( 2757 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2758 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2759 } 2760 break; 2761 2762 case ABIArgInfo::Indirect: { 2763 auto AI = CurFn->arg_begin(); 2764 if (RetAI.isSRetAfterThis()) 2765 ++AI; 2766 switch (getEvaluationKind(RetTy)) { 2767 case TEK_Complex: { 2768 ComplexPairTy RT = 2769 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2770 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2771 /*isInit*/ true); 2772 break; 2773 } 2774 case TEK_Aggregate: 2775 // Do nothing; aggregrates get evaluated directly into the destination. 2776 break; 2777 case TEK_Scalar: 2778 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2779 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2780 /*isInit*/ true); 2781 break; 2782 } 2783 break; 2784 } 2785 2786 case ABIArgInfo::Extend: 2787 case ABIArgInfo::Direct: 2788 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2789 RetAI.getDirectOffset() == 0) { 2790 // The internal return value temp always will have pointer-to-return-type 2791 // type, just do a load. 2792 2793 // If there is a dominating store to ReturnValue, we can elide 2794 // the load, zap the store, and usually zap the alloca. 2795 if (llvm::StoreInst *SI = 2796 findDominatingStoreToReturnValue(*this)) { 2797 // Reuse the debug location from the store unless there is 2798 // cleanup code to be emitted between the store and return 2799 // instruction. 2800 if (EmitRetDbgLoc && !AutoreleaseResult) 2801 RetDbgLoc = SI->getDebugLoc(); 2802 // Get the stored value and nuke the now-dead store. 2803 RV = SI->getValueOperand(); 2804 SI->eraseFromParent(); 2805 2806 // If that was the only use of the return value, nuke it as well now. 2807 auto returnValueInst = ReturnValue.getPointer(); 2808 if (returnValueInst->use_empty()) { 2809 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2810 alloca->eraseFromParent(); 2811 ReturnValue = Address::invalid(); 2812 } 2813 } 2814 2815 // Otherwise, we have to do a simple load. 2816 } else { 2817 RV = Builder.CreateLoad(ReturnValue); 2818 } 2819 } else { 2820 // If the value is offset in memory, apply the offset now. 2821 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2822 2823 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2824 } 2825 2826 // In ARC, end functions that return a retainable type with a call 2827 // to objc_autoreleaseReturnValue. 2828 if (AutoreleaseResult) { 2829 #ifndef NDEBUG 2830 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2831 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2832 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2833 // CurCodeDecl or BlockInfo. 2834 QualType RT; 2835 2836 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2837 RT = FD->getReturnType(); 2838 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2839 RT = MD->getReturnType(); 2840 else if (isa<BlockDecl>(CurCodeDecl)) 2841 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2842 else 2843 llvm_unreachable("Unexpected function/method type"); 2844 2845 assert(getLangOpts().ObjCAutoRefCount && 2846 !FI.isReturnsRetained() && 2847 RT->isObjCRetainableType()); 2848 #endif 2849 RV = emitAutoreleaseOfResult(*this, RV); 2850 } 2851 2852 break; 2853 2854 case ABIArgInfo::Ignore: 2855 break; 2856 2857 case ABIArgInfo::CoerceAndExpand: { 2858 auto coercionType = RetAI.getCoerceAndExpandType(); 2859 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2860 2861 // Load all of the coerced elements out into results. 2862 llvm::SmallVector<llvm::Value*, 4> results; 2863 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2864 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2865 auto coercedEltType = coercionType->getElementType(i); 2866 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2867 continue; 2868 2869 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2870 auto elt = Builder.CreateLoad(eltAddr); 2871 results.push_back(elt); 2872 } 2873 2874 // If we have one result, it's the single direct result type. 2875 if (results.size() == 1) { 2876 RV = results[0]; 2877 2878 // Otherwise, we need to make a first-class aggregate. 2879 } else { 2880 // Construct a return type that lacks padding elements. 2881 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2882 2883 RV = llvm::UndefValue::get(returnType); 2884 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2885 RV = Builder.CreateInsertValue(RV, results[i], i); 2886 } 2887 } 2888 break; 2889 } 2890 2891 case ABIArgInfo::Expand: 2892 llvm_unreachable("Invalid ABI kind for return argument"); 2893 } 2894 2895 llvm::Instruction *Ret; 2896 if (RV) { 2897 EmitReturnValueCheck(RV, EndLoc); 2898 Ret = Builder.CreateRet(RV); 2899 } else { 2900 Ret = Builder.CreateRetVoid(); 2901 } 2902 2903 if (RetDbgLoc) 2904 Ret->setDebugLoc(std::move(RetDbgLoc)); 2905 } 2906 2907 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV, 2908 SourceLocation EndLoc) { 2909 // A current decl may not be available when emitting vtable thunks. 2910 if (!CurCodeDecl) 2911 return; 2912 2913 ReturnsNonNullAttr *RetNNAttr = nullptr; 2914 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2915 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2916 2917 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2918 return; 2919 2920 // Prefer the returns_nonnull attribute if it's present. 2921 SourceLocation AttrLoc; 2922 SanitizerMask CheckKind; 2923 SanitizerHandler Handler; 2924 if (RetNNAttr) { 2925 assert(!requiresReturnValueNullabilityCheck() && 2926 "Cannot check nullability and the nonnull attribute"); 2927 AttrLoc = RetNNAttr->getLocation(); 2928 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 2929 Handler = SanitizerHandler::NonnullReturn; 2930 } else { 2931 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 2932 if (auto *TSI = DD->getTypeSourceInfo()) 2933 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 2934 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 2935 CheckKind = SanitizerKind::NullabilityReturn; 2936 Handler = SanitizerHandler::NullabilityReturn; 2937 } 2938 2939 SanitizerScope SanScope(this); 2940 2941 llvm::BasicBlock *Check = nullptr; 2942 llvm::BasicBlock *NoCheck = nullptr; 2943 if (requiresReturnValueNullabilityCheck()) { 2944 // Before doing the nullability check, make sure that the preconditions for 2945 // the check are met. 2946 Check = createBasicBlock("nullcheck"); 2947 NoCheck = createBasicBlock("no.nullcheck"); 2948 Builder.CreateCondBr(RetValNullabilityPrecondition, Check, NoCheck); 2949 EmitBlock(Check); 2950 } 2951 2952 // Now do the null check. If the returns_nonnull attribute is present, this 2953 // is done unconditionally. 2954 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 2955 llvm::Constant *StaticData[] = { 2956 EmitCheckSourceLocation(EndLoc), EmitCheckSourceLocation(AttrLoc), 2957 }; 2958 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 2959 2960 if (requiresReturnValueNullabilityCheck()) 2961 EmitBlock(NoCheck); 2962 } 2963 2964 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2965 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2966 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2967 } 2968 2969 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2970 QualType Ty) { 2971 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2972 // placeholders. 2973 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2974 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 2975 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 2976 2977 // FIXME: When we generate this IR in one pass, we shouldn't need 2978 // this win32-specific alignment hack. 2979 CharUnits Align = CharUnits::fromQuantity(4); 2980 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 2981 2982 return AggValueSlot::forAddr(Address(Placeholder, Align), 2983 Ty.getQualifiers(), 2984 AggValueSlot::IsNotDestructed, 2985 AggValueSlot::DoesNotNeedGCBarriers, 2986 AggValueSlot::IsNotAliased); 2987 } 2988 2989 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 2990 const VarDecl *param, 2991 SourceLocation loc) { 2992 // StartFunction converted the ABI-lowered parameter(s) into a 2993 // local alloca. We need to turn that into an r-value suitable 2994 // for EmitCall. 2995 Address local = GetAddrOfLocalVar(param); 2996 2997 QualType type = param->getType(); 2998 2999 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 3000 "cannot emit delegate call arguments for inalloca arguments!"); 3001 3002 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3003 // but the argument needs to be the original pointer. 3004 if (type->isReferenceType()) { 3005 args.add(RValue::get(Builder.CreateLoad(local)), type); 3006 3007 // In ARC, move out of consumed arguments so that the release cleanup 3008 // entered by StartFunction doesn't cause an over-release. This isn't 3009 // optimal -O0 code generation, but it should get cleaned up when 3010 // optimization is enabled. This also assumes that delegate calls are 3011 // performed exactly once for a set of arguments, but that should be safe. 3012 } else if (getLangOpts().ObjCAutoRefCount && 3013 param->hasAttr<NSConsumedAttr>() && 3014 type->isObjCRetainableType()) { 3015 llvm::Value *ptr = Builder.CreateLoad(local); 3016 auto null = 3017 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3018 Builder.CreateStore(null, local); 3019 args.add(RValue::get(ptr), type); 3020 3021 // For the most part, we just need to load the alloca, except that 3022 // aggregate r-values are actually pointers to temporaries. 3023 } else { 3024 args.add(convertTempToRValue(local, type, loc), type); 3025 } 3026 } 3027 3028 static bool isProvablyNull(llvm::Value *addr) { 3029 return isa<llvm::ConstantPointerNull>(addr); 3030 } 3031 3032 /// Emit the actual writing-back of a writeback. 3033 static void emitWriteback(CodeGenFunction &CGF, 3034 const CallArgList::Writeback &writeback) { 3035 const LValue &srcLV = writeback.Source; 3036 Address srcAddr = srcLV.getAddress(); 3037 assert(!isProvablyNull(srcAddr.getPointer()) && 3038 "shouldn't have writeback for provably null argument"); 3039 3040 llvm::BasicBlock *contBB = nullptr; 3041 3042 // If the argument wasn't provably non-null, we need to null check 3043 // before doing the store. 3044 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 3045 if (!provablyNonNull) { 3046 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3047 contBB = CGF.createBasicBlock("icr.done"); 3048 3049 llvm::Value *isNull = 3050 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3051 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3052 CGF.EmitBlock(writebackBB); 3053 } 3054 3055 // Load the value to writeback. 3056 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3057 3058 // Cast it back, in case we're writing an id to a Foo* or something. 3059 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3060 "icr.writeback-cast"); 3061 3062 // Perform the writeback. 3063 3064 // If we have a "to use" value, it's something we need to emit a use 3065 // of. This has to be carefully threaded in: if it's done after the 3066 // release it's potentially undefined behavior (and the optimizer 3067 // will ignore it), and if it happens before the retain then the 3068 // optimizer could move the release there. 3069 if (writeback.ToUse) { 3070 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3071 3072 // Retain the new value. No need to block-copy here: the block's 3073 // being passed up the stack. 3074 value = CGF.EmitARCRetainNonBlock(value); 3075 3076 // Emit the intrinsic use here. 3077 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3078 3079 // Load the old value (primitively). 3080 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3081 3082 // Put the new value in place (primitively). 3083 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3084 3085 // Release the old value. 3086 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3087 3088 // Otherwise, we can just do a normal lvalue store. 3089 } else { 3090 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3091 } 3092 3093 // Jump to the continuation block. 3094 if (!provablyNonNull) 3095 CGF.EmitBlock(contBB); 3096 } 3097 3098 static void emitWritebacks(CodeGenFunction &CGF, 3099 const CallArgList &args) { 3100 for (const auto &I : args.writebacks()) 3101 emitWriteback(CGF, I); 3102 } 3103 3104 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3105 const CallArgList &CallArgs) { 3106 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 3107 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3108 CallArgs.getCleanupsToDeactivate(); 3109 // Iterate in reverse to increase the likelihood of popping the cleanup. 3110 for (const auto &I : llvm::reverse(Cleanups)) { 3111 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3112 I.IsActiveIP->eraseFromParent(); 3113 } 3114 } 3115 3116 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3117 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3118 if (uop->getOpcode() == UO_AddrOf) 3119 return uop->getSubExpr(); 3120 return nullptr; 3121 } 3122 3123 /// Emit an argument that's being passed call-by-writeback. That is, 3124 /// we are passing the address of an __autoreleased temporary; it 3125 /// might be copy-initialized with the current value of the given 3126 /// address, but it will definitely be copied out of after the call. 3127 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3128 const ObjCIndirectCopyRestoreExpr *CRE) { 3129 LValue srcLV; 3130 3131 // Make an optimistic effort to emit the address as an l-value. 3132 // This can fail if the argument expression is more complicated. 3133 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3134 srcLV = CGF.EmitLValue(lvExpr); 3135 3136 // Otherwise, just emit it as a scalar. 3137 } else { 3138 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3139 3140 QualType srcAddrType = 3141 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3142 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3143 } 3144 Address srcAddr = srcLV.getAddress(); 3145 3146 // The dest and src types don't necessarily match in LLVM terms 3147 // because of the crazy ObjC compatibility rules. 3148 3149 llvm::PointerType *destType = 3150 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3151 3152 // If the address is a constant null, just pass the appropriate null. 3153 if (isProvablyNull(srcAddr.getPointer())) { 3154 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3155 CRE->getType()); 3156 return; 3157 } 3158 3159 // Create the temporary. 3160 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3161 CGF.getPointerAlign(), 3162 "icr.temp"); 3163 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3164 // and that cleanup will be conditional if we can't prove that the l-value 3165 // isn't null, so we need to register a dominating point so that the cleanups 3166 // system will make valid IR. 3167 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3168 3169 // Zero-initialize it if we're not doing a copy-initialization. 3170 bool shouldCopy = CRE->shouldCopy(); 3171 if (!shouldCopy) { 3172 llvm::Value *null = 3173 llvm::ConstantPointerNull::get( 3174 cast<llvm::PointerType>(destType->getElementType())); 3175 CGF.Builder.CreateStore(null, temp); 3176 } 3177 3178 llvm::BasicBlock *contBB = nullptr; 3179 llvm::BasicBlock *originBB = nullptr; 3180 3181 // If the address is *not* known to be non-null, we need to switch. 3182 llvm::Value *finalArgument; 3183 3184 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 3185 if (provablyNonNull) { 3186 finalArgument = temp.getPointer(); 3187 } else { 3188 llvm::Value *isNull = 3189 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3190 3191 finalArgument = CGF.Builder.CreateSelect(isNull, 3192 llvm::ConstantPointerNull::get(destType), 3193 temp.getPointer(), "icr.argument"); 3194 3195 // If we need to copy, then the load has to be conditional, which 3196 // means we need control flow. 3197 if (shouldCopy) { 3198 originBB = CGF.Builder.GetInsertBlock(); 3199 contBB = CGF.createBasicBlock("icr.cont"); 3200 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3201 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3202 CGF.EmitBlock(copyBB); 3203 condEval.begin(CGF); 3204 } 3205 } 3206 3207 llvm::Value *valueToUse = nullptr; 3208 3209 // Perform a copy if necessary. 3210 if (shouldCopy) { 3211 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3212 assert(srcRV.isScalar()); 3213 3214 llvm::Value *src = srcRV.getScalarVal(); 3215 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3216 "icr.cast"); 3217 3218 // Use an ordinary store, not a store-to-lvalue. 3219 CGF.Builder.CreateStore(src, temp); 3220 3221 // If optimization is enabled, and the value was held in a 3222 // __strong variable, we need to tell the optimizer that this 3223 // value has to stay alive until we're doing the store back. 3224 // This is because the temporary is effectively unretained, 3225 // and so otherwise we can violate the high-level semantics. 3226 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3227 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3228 valueToUse = src; 3229 } 3230 } 3231 3232 // Finish the control flow if we needed it. 3233 if (shouldCopy && !provablyNonNull) { 3234 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3235 CGF.EmitBlock(contBB); 3236 3237 // Make a phi for the value to intrinsically use. 3238 if (valueToUse) { 3239 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3240 "icr.to-use"); 3241 phiToUse->addIncoming(valueToUse, copyBB); 3242 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3243 originBB); 3244 valueToUse = phiToUse; 3245 } 3246 3247 condEval.end(CGF); 3248 } 3249 3250 args.addWriteback(srcLV, temp, valueToUse); 3251 args.add(RValue::get(finalArgument), CRE->getType()); 3252 } 3253 3254 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3255 assert(!StackBase); 3256 3257 // Save the stack. 3258 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3259 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3260 } 3261 3262 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3263 if (StackBase) { 3264 // Restore the stack after the call. 3265 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3266 CGF.Builder.CreateCall(F, StackBase); 3267 } 3268 } 3269 3270 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3271 SourceLocation ArgLoc, 3272 AbstractCallee AC, 3273 unsigned ParmNum) { 3274 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3275 SanOpts.has(SanitizerKind::NullabilityArg))) 3276 return; 3277 3278 // The param decl may be missing in a variadic function. 3279 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3280 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3281 3282 // Prefer the nonnull attribute if it's present. 3283 const NonNullAttr *NNAttr = nullptr; 3284 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3285 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3286 3287 bool CanCheckNullability = false; 3288 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3289 auto Nullability = PVD->getType()->getNullability(getContext()); 3290 CanCheckNullability = Nullability && 3291 *Nullability == NullabilityKind::NonNull && 3292 PVD->getTypeSourceInfo(); 3293 } 3294 3295 if (!NNAttr && !CanCheckNullability) 3296 return; 3297 3298 SourceLocation AttrLoc; 3299 SanitizerMask CheckKind; 3300 SanitizerHandler Handler; 3301 if (NNAttr) { 3302 AttrLoc = NNAttr->getLocation(); 3303 CheckKind = SanitizerKind::NonnullAttribute; 3304 Handler = SanitizerHandler::NonnullArg; 3305 } else { 3306 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3307 CheckKind = SanitizerKind::NullabilityArg; 3308 Handler = SanitizerHandler::NullabilityArg; 3309 } 3310 3311 SanitizerScope SanScope(this); 3312 assert(RV.isScalar()); 3313 llvm::Value *V = RV.getScalarVal(); 3314 llvm::Value *Cond = 3315 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3316 llvm::Constant *StaticData[] = { 3317 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3318 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3319 }; 3320 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3321 } 3322 3323 void CodeGenFunction::EmitCallArgs( 3324 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3325 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3326 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3327 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3328 3329 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3330 // because arguments are destroyed left to right in the callee. As a special 3331 // case, there are certain language constructs that require left-to-right 3332 // evaluation, and in those cases we consider the evaluation order requirement 3333 // to trump the "destruction order is reverse construction order" guarantee. 3334 bool LeftToRight = 3335 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3336 ? Order == EvaluationOrder::ForceLeftToRight 3337 : Order != EvaluationOrder::ForceRightToLeft; 3338 3339 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3340 RValue EmittedArg) { 3341 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3342 return; 3343 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3344 if (PS == nullptr) 3345 return; 3346 3347 const auto &Context = getContext(); 3348 auto SizeTy = Context.getSizeType(); 3349 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3350 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3351 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3352 EmittedArg.getScalarVal()); 3353 Args.add(RValue::get(V), SizeTy); 3354 // If we're emitting args in reverse, be sure to do so with 3355 // pass_object_size, as well. 3356 if (!LeftToRight) 3357 std::swap(Args.back(), *(&Args.back() - 1)); 3358 }; 3359 3360 // Insert a stack save if we're going to need any inalloca args. 3361 bool HasInAllocaArgs = false; 3362 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3363 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3364 I != E && !HasInAllocaArgs; ++I) 3365 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3366 if (HasInAllocaArgs) { 3367 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3368 Args.allocateArgumentMemory(*this); 3369 } 3370 } 3371 3372 // Evaluate each argument in the appropriate order. 3373 size_t CallArgsStart = Args.size(); 3374 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3375 unsigned Idx = LeftToRight ? I : E - I - 1; 3376 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3377 unsigned InitialArgSize = Args.size(); 3378 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3379 // In particular, we depend on it being the last arg in Args, and the 3380 // objectsize bits depend on there only being one arg if !LeftToRight. 3381 assert(InitialArgSize + 1 == Args.size() && 3382 "The code below depends on only adding one arg per EmitCallArg"); 3383 (void)InitialArgSize; 3384 RValue RVArg = Args.back().RV; 3385 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3386 ParamsToSkip + Idx); 3387 // @llvm.objectsize should never have side-effects and shouldn't need 3388 // destruction/cleanups, so we can safely "emit" it after its arg, 3389 // regardless of right-to-leftness 3390 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3391 } 3392 3393 if (!LeftToRight) { 3394 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3395 // IR function. 3396 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3397 } 3398 } 3399 3400 namespace { 3401 3402 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3403 DestroyUnpassedArg(Address Addr, QualType Ty) 3404 : Addr(Addr), Ty(Ty) {} 3405 3406 Address Addr; 3407 QualType Ty; 3408 3409 void Emit(CodeGenFunction &CGF, Flags flags) override { 3410 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3411 assert(!Dtor->isTrivial()); 3412 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3413 /*Delegating=*/false, Addr); 3414 } 3415 }; 3416 3417 struct DisableDebugLocationUpdates { 3418 CodeGenFunction &CGF; 3419 bool disabledDebugInfo; 3420 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3421 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3422 CGF.disableDebugInfo(); 3423 } 3424 ~DisableDebugLocationUpdates() { 3425 if (disabledDebugInfo) 3426 CGF.enableDebugInfo(); 3427 } 3428 }; 3429 3430 } // end anonymous namespace 3431 3432 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3433 QualType type) { 3434 DisableDebugLocationUpdates Dis(*this, E); 3435 if (const ObjCIndirectCopyRestoreExpr *CRE 3436 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3437 assert(getLangOpts().ObjCAutoRefCount); 3438 assert(getContext().hasSameUnqualifiedType(E->getType(), type)); 3439 return emitWritebackArg(*this, args, CRE); 3440 } 3441 3442 assert(type->isReferenceType() == E->isGLValue() && 3443 "reference binding to unmaterialized r-value!"); 3444 3445 if (E->isGLValue()) { 3446 assert(E->getObjectKind() == OK_Ordinary); 3447 return args.add(EmitReferenceBindingToExpr(E), type); 3448 } 3449 3450 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3451 3452 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3453 // However, we still have to push an EH-only cleanup in case we unwind before 3454 // we make it to the call. 3455 if (HasAggregateEvalKind && 3456 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3457 // If we're using inalloca, use the argument memory. Otherwise, use a 3458 // temporary. 3459 AggValueSlot Slot; 3460 if (args.isUsingInAlloca()) 3461 Slot = createPlaceholderSlot(*this, type); 3462 else 3463 Slot = CreateAggTemp(type, "agg.tmp"); 3464 3465 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3466 bool DestroyedInCallee = 3467 RD && RD->hasNonTrivialDestructor() && 3468 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 3469 if (DestroyedInCallee) 3470 Slot.setExternallyDestructed(); 3471 3472 EmitAggExpr(E, Slot); 3473 RValue RV = Slot.asRValue(); 3474 args.add(RV, type); 3475 3476 if (DestroyedInCallee) { 3477 // Create a no-op GEP between the placeholder and the cleanup so we can 3478 // RAUW it successfully. It also serves as a marker of the first 3479 // instruction where the cleanup is active. 3480 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3481 type); 3482 // This unreachable is a temporary marker which will be removed later. 3483 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3484 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3485 } 3486 return; 3487 } 3488 3489 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3490 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3491 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3492 assert(L.isSimple()); 3493 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 3494 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 3495 } else { 3496 // We can't represent a misaligned lvalue in the CallArgList, so copy 3497 // to an aligned temporary now. 3498 Address tmp = CreateMemTemp(type); 3499 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 3500 args.add(RValue::getAggregate(tmp), type); 3501 } 3502 return; 3503 } 3504 3505 args.add(EmitAnyExprToTemp(E), type); 3506 } 3507 3508 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3509 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3510 // implicitly widens null pointer constants that are arguments to varargs 3511 // functions to pointer-sized ints. 3512 if (!getTarget().getTriple().isOSWindows()) 3513 return Arg->getType(); 3514 3515 if (Arg->getType()->isIntegerType() && 3516 getContext().getTypeSize(Arg->getType()) < 3517 getContext().getTargetInfo().getPointerWidth(0) && 3518 Arg->isNullPointerConstant(getContext(), 3519 Expr::NPC_ValueDependentIsNotNull)) { 3520 return getContext().getIntPtrType(); 3521 } 3522 3523 return Arg->getType(); 3524 } 3525 3526 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3527 // optimizer it can aggressively ignore unwind edges. 3528 void 3529 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3530 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3531 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3532 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3533 CGM.getNoObjCARCExceptionsMetadata()); 3534 } 3535 3536 /// Emits a call to the given no-arguments nounwind runtime function. 3537 llvm::CallInst * 3538 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3539 const llvm::Twine &name) { 3540 return EmitNounwindRuntimeCall(callee, None, name); 3541 } 3542 3543 /// Emits a call to the given nounwind runtime function. 3544 llvm::CallInst * 3545 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3546 ArrayRef<llvm::Value*> args, 3547 const llvm::Twine &name) { 3548 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3549 call->setDoesNotThrow(); 3550 return call; 3551 } 3552 3553 /// Emits a simple call (never an invoke) to the given no-arguments 3554 /// runtime function. 3555 llvm::CallInst * 3556 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3557 const llvm::Twine &name) { 3558 return EmitRuntimeCall(callee, None, name); 3559 } 3560 3561 // Calls which may throw must have operand bundles indicating which funclet 3562 // they are nested within. 3563 static void 3564 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad, 3565 SmallVectorImpl<llvm::OperandBundleDef> &BundleList) { 3566 // There is no need for a funclet operand bundle if we aren't inside a 3567 // funclet. 3568 if (!CurrentFuncletPad) 3569 return; 3570 3571 // Skip intrinsics which cannot throw. 3572 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3573 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3574 return; 3575 3576 BundleList.emplace_back("funclet", CurrentFuncletPad); 3577 } 3578 3579 /// Emits a simple call (never an invoke) to the given runtime function. 3580 llvm::CallInst * 3581 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3582 ArrayRef<llvm::Value*> args, 3583 const llvm::Twine &name) { 3584 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3585 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3586 3587 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name); 3588 call->setCallingConv(getRuntimeCC()); 3589 return call; 3590 } 3591 3592 /// Emits a call or invoke to the given noreturn runtime function. 3593 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3594 ArrayRef<llvm::Value*> args) { 3595 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3596 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3597 3598 if (getInvokeDest()) { 3599 llvm::InvokeInst *invoke = 3600 Builder.CreateInvoke(callee, 3601 getUnreachableBlock(), 3602 getInvokeDest(), 3603 args, 3604 BundleList); 3605 invoke->setDoesNotReturn(); 3606 invoke->setCallingConv(getRuntimeCC()); 3607 } else { 3608 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3609 call->setDoesNotReturn(); 3610 call->setCallingConv(getRuntimeCC()); 3611 Builder.CreateUnreachable(); 3612 } 3613 } 3614 3615 /// Emits a call or invoke instruction to the given nullary runtime function. 3616 llvm::CallSite 3617 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3618 const Twine &name) { 3619 return EmitRuntimeCallOrInvoke(callee, None, name); 3620 } 3621 3622 /// Emits a call or invoke instruction to the given runtime function. 3623 llvm::CallSite 3624 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3625 ArrayRef<llvm::Value*> args, 3626 const Twine &name) { 3627 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3628 callSite.setCallingConv(getRuntimeCC()); 3629 return callSite; 3630 } 3631 3632 /// Emits a call or invoke instruction to the given function, depending 3633 /// on the current state of the EH stack. 3634 llvm::CallSite 3635 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3636 ArrayRef<llvm::Value *> Args, 3637 const Twine &Name) { 3638 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3639 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3640 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3641 3642 llvm::Instruction *Inst; 3643 if (!InvokeDest) 3644 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3645 else { 3646 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3647 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3648 Name); 3649 EmitBlock(ContBB); 3650 } 3651 3652 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3653 // optimizer it can aggressively ignore unwind edges. 3654 if (CGM.getLangOpts().ObjCAutoRefCount) 3655 AddObjCARCExceptionMetadata(Inst); 3656 3657 return llvm::CallSite(Inst); 3658 } 3659 3660 /// \brief Store a non-aggregate value to an address to initialize it. For 3661 /// initialization, a non-atomic store will be used. 3662 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3663 LValue Dst) { 3664 if (Src.isScalar()) 3665 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3666 else 3667 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3668 } 3669 3670 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3671 llvm::Value *New) { 3672 DeferredReplacements.push_back(std::make_pair(Old, New)); 3673 } 3674 3675 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3676 const CGCallee &Callee, 3677 ReturnValueSlot ReturnValue, 3678 const CallArgList &CallArgs, 3679 llvm::Instruction **callOrInvoke) { 3680 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3681 3682 assert(Callee.isOrdinary()); 3683 3684 // Handle struct-return functions by passing a pointer to the 3685 // location that we would like to return into. 3686 QualType RetTy = CallInfo.getReturnType(); 3687 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3688 3689 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3690 3691 // 1. Set up the arguments. 3692 3693 // If we're using inalloca, insert the allocation after the stack save. 3694 // FIXME: Do this earlier rather than hacking it in here! 3695 Address ArgMemory = Address::invalid(); 3696 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3697 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3698 const llvm::DataLayout &DL = CGM.getDataLayout(); 3699 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3700 llvm::Instruction *IP = CallArgs.getStackBase(); 3701 llvm::AllocaInst *AI; 3702 if (IP) { 3703 IP = IP->getNextNode(); 3704 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3705 "argmem", IP); 3706 } else { 3707 AI = CreateTempAlloca(ArgStruct, "argmem"); 3708 } 3709 auto Align = CallInfo.getArgStructAlignment(); 3710 AI->setAlignment(Align.getQuantity()); 3711 AI->setUsedWithInAlloca(true); 3712 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3713 ArgMemory = Address(AI, Align); 3714 } 3715 3716 // Helper function to drill into the inalloca allocation. 3717 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3718 auto FieldOffset = 3719 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3720 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3721 }; 3722 3723 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3724 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3725 3726 // If the call returns a temporary with struct return, create a temporary 3727 // alloca to hold the result, unless one is given to us. 3728 Address SRetPtr = Address::invalid(); 3729 size_t UnusedReturnSize = 0; 3730 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3731 if (!ReturnValue.isNull()) { 3732 SRetPtr = ReturnValue.getValue(); 3733 } else { 3734 SRetPtr = CreateMemTemp(RetTy); 3735 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3736 uint64_t size = 3737 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3738 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3739 UnusedReturnSize = size; 3740 } 3741 } 3742 if (IRFunctionArgs.hasSRetArg()) { 3743 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3744 } else if (RetAI.isInAlloca()) { 3745 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3746 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3747 } 3748 } 3749 3750 Address swiftErrorTemp = Address::invalid(); 3751 Address swiftErrorArg = Address::invalid(); 3752 3753 // Translate all of the arguments as necessary to match the IR lowering. 3754 assert(CallInfo.arg_size() == CallArgs.size() && 3755 "Mismatch between function signature & arguments."); 3756 unsigned ArgNo = 0; 3757 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3758 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3759 I != E; ++I, ++info_it, ++ArgNo) { 3760 const ABIArgInfo &ArgInfo = info_it->info; 3761 RValue RV = I->RV; 3762 3763 // Insert a padding argument to ensure proper alignment. 3764 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3765 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3766 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3767 3768 unsigned FirstIRArg, NumIRArgs; 3769 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3770 3771 switch (ArgInfo.getKind()) { 3772 case ABIArgInfo::InAlloca: { 3773 assert(NumIRArgs == 0); 3774 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3775 if (RV.isAggregate()) { 3776 // Replace the placeholder with the appropriate argument slot GEP. 3777 llvm::Instruction *Placeholder = 3778 cast<llvm::Instruction>(RV.getAggregatePointer()); 3779 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3780 Builder.SetInsertPoint(Placeholder); 3781 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3782 Builder.restoreIP(IP); 3783 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3784 } else { 3785 // Store the RValue into the argument struct. 3786 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3787 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3788 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3789 // There are some cases where a trivial bitcast is not avoidable. The 3790 // definition of a type later in a translation unit may change it's type 3791 // from {}* to (%struct.foo*)*. 3792 if (Addr.getType() != MemType) 3793 Addr = Builder.CreateBitCast(Addr, MemType); 3794 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3795 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3796 } 3797 break; 3798 } 3799 3800 case ABIArgInfo::Indirect: { 3801 assert(NumIRArgs == 1); 3802 if (RV.isScalar() || RV.isComplex()) { 3803 // Make a temporary alloca to pass the argument. 3804 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3805 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3806 3807 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3808 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3809 } else { 3810 // We want to avoid creating an unnecessary temporary+copy here; 3811 // however, we need one in three cases: 3812 // 1. If the argument is not byval, and we are required to copy the 3813 // source. (This case doesn't occur on any common architecture.) 3814 // 2. If the argument is byval, RV is not sufficiently aligned, and 3815 // we cannot force it to be sufficiently aligned. 3816 // 3. If the argument is byval, but RV is located in an address space 3817 // different than that of the argument (0). 3818 Address Addr = RV.getAggregateAddress(); 3819 CharUnits Align = ArgInfo.getIndirectAlign(); 3820 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3821 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3822 const unsigned ArgAddrSpace = 3823 (FirstIRArg < IRFuncTy->getNumParams() 3824 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3825 : 0); 3826 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3827 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3828 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3829 Align.getQuantity(), *TD) 3830 < Align.getQuantity()) || 3831 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3832 // Create an aligned temporary, and copy to it. 3833 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3834 IRCallArgs[FirstIRArg] = AI.getPointer(); 3835 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3836 } else { 3837 // Skip the extra memcpy call. 3838 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3839 } 3840 } 3841 break; 3842 } 3843 3844 case ABIArgInfo::Ignore: 3845 assert(NumIRArgs == 0); 3846 break; 3847 3848 case ABIArgInfo::Extend: 3849 case ABIArgInfo::Direct: { 3850 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3851 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3852 ArgInfo.getDirectOffset() == 0) { 3853 assert(NumIRArgs == 1); 3854 llvm::Value *V; 3855 if (RV.isScalar()) 3856 V = RV.getScalarVal(); 3857 else 3858 V = Builder.CreateLoad(RV.getAggregateAddress()); 3859 3860 // Implement swifterror by copying into a new swifterror argument. 3861 // We'll write back in the normal path out of the call. 3862 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3863 == ParameterABI::SwiftErrorResult) { 3864 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3865 3866 QualType pointeeTy = I->Ty->getPointeeType(); 3867 swiftErrorArg = 3868 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3869 3870 swiftErrorTemp = 3871 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3872 V = swiftErrorTemp.getPointer(); 3873 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3874 3875 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3876 Builder.CreateStore(errorValue, swiftErrorTemp); 3877 } 3878 3879 // We might have to widen integers, but we should never truncate. 3880 if (ArgInfo.getCoerceToType() != V->getType() && 3881 V->getType()->isIntegerTy()) 3882 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3883 3884 // If the argument doesn't match, perform a bitcast to coerce it. This 3885 // can happen due to trivial type mismatches. 3886 if (FirstIRArg < IRFuncTy->getNumParams() && 3887 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3888 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3889 3890 IRCallArgs[FirstIRArg] = V; 3891 break; 3892 } 3893 3894 // FIXME: Avoid the conversion through memory if possible. 3895 Address Src = Address::invalid(); 3896 if (RV.isScalar() || RV.isComplex()) { 3897 Src = CreateMemTemp(I->Ty, "coerce"); 3898 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3899 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3900 } else { 3901 Src = RV.getAggregateAddress(); 3902 } 3903 3904 // If the value is offset in memory, apply the offset now. 3905 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3906 3907 // Fast-isel and the optimizer generally like scalar values better than 3908 // FCAs, so we flatten them if this is safe to do for this argument. 3909 llvm::StructType *STy = 3910 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3911 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3912 llvm::Type *SrcTy = Src.getType()->getElementType(); 3913 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3914 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3915 3916 // If the source type is smaller than the destination type of the 3917 // coerce-to logic, copy the source value into a temp alloca the size 3918 // of the destination type to allow loading all of it. The bits past 3919 // the source value are left undef. 3920 if (SrcSize < DstSize) { 3921 Address TempAlloca 3922 = CreateTempAlloca(STy, Src.getAlignment(), 3923 Src.getName() + ".coerce"); 3924 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3925 Src = TempAlloca; 3926 } else { 3927 Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy)); 3928 } 3929 3930 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3931 assert(NumIRArgs == STy->getNumElements()); 3932 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3933 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3934 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3935 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3936 IRCallArgs[FirstIRArg + i] = LI; 3937 } 3938 } else { 3939 // In the simple case, just pass the coerced loaded value. 3940 assert(NumIRArgs == 1); 3941 IRCallArgs[FirstIRArg] = 3942 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3943 } 3944 3945 break; 3946 } 3947 3948 case ABIArgInfo::CoerceAndExpand: { 3949 auto coercionType = ArgInfo.getCoerceAndExpandType(); 3950 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 3951 3952 llvm::Value *tempSize = nullptr; 3953 Address addr = Address::invalid(); 3954 if (RV.isAggregate()) { 3955 addr = RV.getAggregateAddress(); 3956 } else { 3957 assert(RV.isScalar()); // complex should always just be direct 3958 3959 llvm::Type *scalarType = RV.getScalarVal()->getType(); 3960 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 3961 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 3962 3963 tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize); 3964 3965 // Materialize to a temporary. 3966 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 3967 CharUnits::fromQuantity(std::max(layout->getAlignment(), 3968 scalarAlign))); 3969 EmitLifetimeStart(scalarSize, addr.getPointer()); 3970 3971 Builder.CreateStore(RV.getScalarVal(), addr); 3972 } 3973 3974 addr = Builder.CreateElementBitCast(addr, coercionType); 3975 3976 unsigned IRArgPos = FirstIRArg; 3977 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3978 llvm::Type *eltType = coercionType->getElementType(i); 3979 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 3980 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 3981 llvm::Value *elt = Builder.CreateLoad(eltAddr); 3982 IRCallArgs[IRArgPos++] = elt; 3983 } 3984 assert(IRArgPos == FirstIRArg + NumIRArgs); 3985 3986 if (tempSize) { 3987 EmitLifetimeEnd(tempSize, addr.getPointer()); 3988 } 3989 3990 break; 3991 } 3992 3993 case ABIArgInfo::Expand: 3994 unsigned IRArgPos = FirstIRArg; 3995 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 3996 assert(IRArgPos == FirstIRArg + NumIRArgs); 3997 break; 3998 } 3999 } 4000 4001 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4002 4003 // If we're using inalloca, set up that argument. 4004 if (ArgMemory.isValid()) { 4005 llvm::Value *Arg = ArgMemory.getPointer(); 4006 if (CallInfo.isVariadic()) { 4007 // When passing non-POD arguments by value to variadic functions, we will 4008 // end up with a variadic prototype and an inalloca call site. In such 4009 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4010 // the callee. 4011 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4012 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4013 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4014 } else { 4015 llvm::Type *LastParamTy = 4016 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4017 if (Arg->getType() != LastParamTy) { 4018 #ifndef NDEBUG 4019 // Assert that these structs have equivalent element types. 4020 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4021 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4022 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4023 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4024 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4025 DE = DeclaredTy->element_end(), 4026 FI = FullTy->element_begin(); 4027 DI != DE; ++DI, ++FI) 4028 assert(*DI == *FI); 4029 #endif 4030 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4031 } 4032 } 4033 assert(IRFunctionArgs.hasInallocaArg()); 4034 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4035 } 4036 4037 // 2. Prepare the function pointer. 4038 4039 // If the callee is a bitcast of a non-variadic function to have a 4040 // variadic function pointer type, check to see if we can remove the 4041 // bitcast. This comes up with unprototyped functions. 4042 // 4043 // This makes the IR nicer, but more importantly it ensures that we 4044 // can inline the function at -O0 if it is marked always_inline. 4045 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4046 llvm::FunctionType *CalleeFT = 4047 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4048 if (!CalleeFT->isVarArg()) 4049 return Ptr; 4050 4051 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4052 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4053 return Ptr; 4054 4055 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4056 if (!OrigFn) 4057 return Ptr; 4058 4059 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4060 4061 // If the original type is variadic, or if any of the component types 4062 // disagree, we cannot remove the cast. 4063 if (OrigFT->isVarArg() || 4064 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4065 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4066 return Ptr; 4067 4068 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4069 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4070 return Ptr; 4071 4072 return OrigFn; 4073 }; 4074 CalleePtr = simplifyVariadicCallee(CalleePtr); 4075 4076 // 3. Perform the actual call. 4077 4078 // Deactivate any cleanups that we're supposed to do immediately before 4079 // the call. 4080 if (!CallArgs.getCleanupsToDeactivate().empty()) 4081 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4082 4083 // Assert that the arguments we computed match up. The IR verifier 4084 // will catch this, but this is a common enough source of problems 4085 // during IRGen changes that it's way better for debugging to catch 4086 // it ourselves here. 4087 #ifndef NDEBUG 4088 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4089 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4090 // Inalloca argument can have different type. 4091 if (IRFunctionArgs.hasInallocaArg() && 4092 i == IRFunctionArgs.getInallocaArgNo()) 4093 continue; 4094 if (i < IRFuncTy->getNumParams()) 4095 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4096 } 4097 #endif 4098 4099 // Compute the calling convention and attributes. 4100 unsigned CallingConv; 4101 llvm::AttributeList Attrs; 4102 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4103 Callee.getAbstractInfo(), Attrs, CallingConv, 4104 /*AttrOnCallSite=*/true); 4105 4106 // Apply some call-site-specific attributes. 4107 // TODO: work this into building the attribute set. 4108 4109 // Apply always_inline to all calls within flatten functions. 4110 // FIXME: should this really take priority over __try, below? 4111 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4112 !(Callee.getAbstractInfo().getCalleeDecl() && 4113 Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { 4114 Attrs = 4115 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4116 llvm::Attribute::AlwaysInline); 4117 } 4118 4119 // Disable inlining inside SEH __try blocks. 4120 if (isSEHTryScope()) { 4121 Attrs = 4122 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4123 llvm::Attribute::NoInline); 4124 } 4125 4126 // Decide whether to use a call or an invoke. 4127 bool CannotThrow; 4128 if (currentFunctionUsesSEHTry()) { 4129 // SEH cares about asynchronous exceptions, so everything can "throw." 4130 CannotThrow = false; 4131 } else if (isCleanupPadScope() && 4132 EHPersonality::get(*this).isMSVCXXPersonality()) { 4133 // The MSVC++ personality will implicitly terminate the program if an 4134 // exception is thrown during a cleanup outside of a try/catch. 4135 // We don't need to model anything in IR to get this behavior. 4136 CannotThrow = true; 4137 } else { 4138 // Otherwise, nounwind call sites will never throw. 4139 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4140 llvm::Attribute::NoUnwind); 4141 } 4142 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4143 4144 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4145 getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList); 4146 4147 // Emit the actual call/invoke instruction. 4148 llvm::CallSite CS; 4149 if (!InvokeDest) { 4150 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4151 } else { 4152 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4153 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4154 BundleList); 4155 EmitBlock(Cont); 4156 } 4157 llvm::Instruction *CI = CS.getInstruction(); 4158 if (callOrInvoke) 4159 *callOrInvoke = CI; 4160 4161 // Apply the attributes and calling convention. 4162 CS.setAttributes(Attrs); 4163 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4164 4165 // Apply various metadata. 4166 4167 if (!CI->getType()->isVoidTy()) 4168 CI->setName("call"); 4169 4170 // Insert instrumentation or attach profile metadata at indirect call sites. 4171 // For more details, see the comment before the definition of 4172 // IPVK_IndirectCallTarget in InstrProfData.inc. 4173 if (!CS.getCalledFunction()) 4174 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4175 CI, CalleePtr); 4176 4177 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4178 // optimizer it can aggressively ignore unwind edges. 4179 if (CGM.getLangOpts().ObjCAutoRefCount) 4180 AddObjCARCExceptionMetadata(CI); 4181 4182 // Suppress tail calls if requested. 4183 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4184 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4185 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4186 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4187 } 4188 4189 // 4. Finish the call. 4190 4191 // If the call doesn't return, finish the basic block and clear the 4192 // insertion point; this allows the rest of IRGen to discard 4193 // unreachable code. 4194 if (CS.doesNotReturn()) { 4195 if (UnusedReturnSize) 4196 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4197 SRetPtr.getPointer()); 4198 4199 Builder.CreateUnreachable(); 4200 Builder.ClearInsertionPoint(); 4201 4202 // FIXME: For now, emit a dummy basic block because expr emitters in 4203 // generally are not ready to handle emitting expressions at unreachable 4204 // points. 4205 EnsureInsertPoint(); 4206 4207 // Return a reasonable RValue. 4208 return GetUndefRValue(RetTy); 4209 } 4210 4211 // Perform the swifterror writeback. 4212 if (swiftErrorTemp.isValid()) { 4213 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4214 Builder.CreateStore(errorResult, swiftErrorArg); 4215 } 4216 4217 // Emit any call-associated writebacks immediately. Arguably this 4218 // should happen after any return-value munging. 4219 if (CallArgs.hasWritebacks()) 4220 emitWritebacks(*this, CallArgs); 4221 4222 // The stack cleanup for inalloca arguments has to run out of the normal 4223 // lexical order, so deactivate it and run it manually here. 4224 CallArgs.freeArgumentMemory(*this); 4225 4226 // Extract the return value. 4227 RValue Ret = [&] { 4228 switch (RetAI.getKind()) { 4229 case ABIArgInfo::CoerceAndExpand: { 4230 auto coercionType = RetAI.getCoerceAndExpandType(); 4231 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4232 4233 Address addr = SRetPtr; 4234 addr = Builder.CreateElementBitCast(addr, coercionType); 4235 4236 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4237 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4238 4239 unsigned unpaddedIndex = 0; 4240 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4241 llvm::Type *eltType = coercionType->getElementType(i); 4242 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4243 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4244 llvm::Value *elt = CI; 4245 if (requiresExtract) 4246 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4247 else 4248 assert(unpaddedIndex == 0); 4249 Builder.CreateStore(elt, eltAddr); 4250 } 4251 // FALLTHROUGH 4252 } 4253 4254 case ABIArgInfo::InAlloca: 4255 case ABIArgInfo::Indirect: { 4256 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4257 if (UnusedReturnSize) 4258 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4259 SRetPtr.getPointer()); 4260 return ret; 4261 } 4262 4263 case ABIArgInfo::Ignore: 4264 // If we are ignoring an argument that had a result, make sure to 4265 // construct the appropriate return value for our caller. 4266 return GetUndefRValue(RetTy); 4267 4268 case ABIArgInfo::Extend: 4269 case ABIArgInfo::Direct: { 4270 llvm::Type *RetIRTy = ConvertType(RetTy); 4271 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4272 switch (getEvaluationKind(RetTy)) { 4273 case TEK_Complex: { 4274 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4275 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4276 return RValue::getComplex(std::make_pair(Real, Imag)); 4277 } 4278 case TEK_Aggregate: { 4279 Address DestPtr = ReturnValue.getValue(); 4280 bool DestIsVolatile = ReturnValue.isVolatile(); 4281 4282 if (!DestPtr.isValid()) { 4283 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4284 DestIsVolatile = false; 4285 } 4286 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4287 return RValue::getAggregate(DestPtr); 4288 } 4289 case TEK_Scalar: { 4290 // If the argument doesn't match, perform a bitcast to coerce it. This 4291 // can happen due to trivial type mismatches. 4292 llvm::Value *V = CI; 4293 if (V->getType() != RetIRTy) 4294 V = Builder.CreateBitCast(V, RetIRTy); 4295 return RValue::get(V); 4296 } 4297 } 4298 llvm_unreachable("bad evaluation kind"); 4299 } 4300 4301 Address DestPtr = ReturnValue.getValue(); 4302 bool DestIsVolatile = ReturnValue.isVolatile(); 4303 4304 if (!DestPtr.isValid()) { 4305 DestPtr = CreateMemTemp(RetTy, "coerce"); 4306 DestIsVolatile = false; 4307 } 4308 4309 // If the value is offset in memory, apply the offset now. 4310 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4311 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4312 4313 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4314 } 4315 4316 case ABIArgInfo::Expand: 4317 llvm_unreachable("Invalid ABI kind for return argument"); 4318 } 4319 4320 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4321 } (); 4322 4323 // Emit the assume_aligned check on the return value. 4324 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4325 if (Ret.isScalar() && TargetDecl) { 4326 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4327 llvm::Value *OffsetValue = nullptr; 4328 if (const auto *Offset = AA->getOffset()) 4329 OffsetValue = EmitScalarExpr(Offset); 4330 4331 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4332 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4333 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4334 OffsetValue); 4335 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4336 llvm::Value *ParamVal = 4337 CallArgs[AA->getParamIndex() - 1].RV.getScalarVal(); 4338 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4339 } 4340 } 4341 4342 return Ret; 4343 } 4344 4345 /* VarArg handling */ 4346 4347 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4348 VAListAddr = VE->isMicrosoftABI() 4349 ? EmitMSVAListRef(VE->getSubExpr()) 4350 : EmitVAListRef(VE->getSubExpr()); 4351 QualType Ty = VE->getType(); 4352 if (VE->isMicrosoftABI()) 4353 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4354 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4355 } 4356