1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification. Either or both of RD and MD may be null. A null RD indicates
73 /// that there is no meaningful 'this' type, and a null MD can occur when
74 /// calling a method pointer.
75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
76                                          const CXXMethodDecl *MD) {
77   QualType RecTy;
78   if (RD)
79     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
80   else
81     RecTy = Context.VoidTy;
82 
83   if (MD)
84     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
85   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
86 }
87 
88 /// Returns the canonical formal type of the given C++ method.
89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
90   return MD->getType()->getCanonicalTypeUnqualified()
91            .getAs<FunctionProtoType>();
92 }
93 
94 /// Returns the "extra-canonicalized" return type, which discards
95 /// qualifiers on the return type.  Codegen doesn't care about them,
96 /// and it makes ABI code a little easier to be able to assume that
97 /// all parameter and return types are top-level unqualified.
98 static CanQualType GetReturnType(QualType RetTy) {
99   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
100 }
101 
102 /// Arrange the argument and result information for a value of the given
103 /// unprototyped freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
106   // When translating an unprototyped function type, always use a
107   // variadic type.
108   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
109                                  /*instanceMethod=*/false,
110                                  /*chainCall=*/false, None,
111                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
112 }
113 
114 static void addExtParameterInfosForCall(
115          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
116                                         const FunctionProtoType *proto,
117                                         unsigned prefixArgs,
118                                         unsigned totalArgs) {
119   assert(proto->hasExtParameterInfos());
120   assert(paramInfos.size() <= prefixArgs);
121   assert(proto->getNumParams() + prefixArgs <= totalArgs);
122 
123   paramInfos.reserve(totalArgs);
124 
125   // Add default infos for any prefix args that don't already have infos.
126   paramInfos.resize(prefixArgs);
127 
128   // Add infos for the prototype.
129   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
130     paramInfos.push_back(ParamInfo);
131     // pass_object_size params have no parameter info.
132     if (ParamInfo.hasPassObjectSize())
133       paramInfos.emplace_back();
134   }
135 
136   assert(paramInfos.size() <= totalArgs &&
137          "Did we forget to insert pass_object_size args?");
138   // Add default infos for the variadic and/or suffix arguments.
139   paramInfos.resize(totalArgs);
140 }
141 
142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
144 static void appendParameterTypes(const CodeGenTypes &CGT,
145                                  SmallVectorImpl<CanQualType> &prefix,
146               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
147                                  CanQual<FunctionProtoType> FPT) {
148   // Fast path: don't touch param info if we don't need to.
149   if (!FPT->hasExtParameterInfos()) {
150     assert(paramInfos.empty() &&
151            "We have paramInfos, but the prototype doesn't?");
152     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
153     return;
154   }
155 
156   unsigned PrefixSize = prefix.size();
157   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
158   // parameters; the only thing that can change this is the presence of
159   // pass_object_size. So, we preallocate for the common case.
160   prefix.reserve(prefix.size() + FPT->getNumParams());
161 
162   auto ExtInfos = FPT->getExtParameterInfos();
163   assert(ExtInfos.size() == FPT->getNumParams());
164   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
165     prefix.push_back(FPT->getParamType(I));
166     if (ExtInfos[I].hasPassObjectSize())
167       prefix.push_back(CGT.getContext().getSizeType());
168   }
169 
170   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
171                               prefix.size());
172 }
173 
174 /// Arrange the LLVM function layout for a value of the given function
175 /// type, on top of any implicit parameters already stored.
176 static const CGFunctionInfo &
177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
178                         SmallVectorImpl<CanQualType> &prefix,
179                         CanQual<FunctionProtoType> FTP) {
180   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
181   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
182   // FIXME: Kill copy.
183   appendParameterTypes(CGT, prefix, paramInfos, FTP);
184   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
185 
186   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
187                                      /*chainCall=*/false, prefix,
188                                      FTP->getExtInfo(), paramInfos,
189                                      Required);
190 }
191 
192 /// Arrange the argument and result information for a value of the
193 /// given freestanding function type.
194 const CGFunctionInfo &
195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
196   SmallVector<CanQualType, 16> argTypes;
197   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
198                                    FTP);
199 }
200 
201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
202   // Set the appropriate calling convention for the Function.
203   if (D->hasAttr<StdCallAttr>())
204     return CC_X86StdCall;
205 
206   if (D->hasAttr<FastCallAttr>())
207     return CC_X86FastCall;
208 
209   if (D->hasAttr<RegCallAttr>())
210     return CC_X86RegCall;
211 
212   if (D->hasAttr<ThisCallAttr>())
213     return CC_X86ThisCall;
214 
215   if (D->hasAttr<VectorCallAttr>())
216     return CC_X86VectorCall;
217 
218   if (D->hasAttr<PascalAttr>())
219     return CC_X86Pascal;
220 
221   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
222     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
223 
224   if (D->hasAttr<AArch64VectorPcsAttr>())
225     return CC_AArch64VectorCall;
226 
227   if (D->hasAttr<IntelOclBiccAttr>())
228     return CC_IntelOclBicc;
229 
230   if (D->hasAttr<MSABIAttr>())
231     return IsWindows ? CC_C : CC_Win64;
232 
233   if (D->hasAttr<SysVABIAttr>())
234     return IsWindows ? CC_X86_64SysV : CC_C;
235 
236   if (D->hasAttr<PreserveMostAttr>())
237     return CC_PreserveMost;
238 
239   if (D->hasAttr<PreserveAllAttr>())
240     return CC_PreserveAll;
241 
242   return CC_C;
243 }
244 
245 /// Arrange the argument and result information for a call to an
246 /// unknown C++ non-static member function of the given abstract type.
247 /// (A null RD means we don't have any meaningful "this" argument type,
248 ///  so fall back to a generic pointer type).
249 /// The member function must be an ordinary function, i.e. not a
250 /// constructor or destructor.
251 const CGFunctionInfo &
252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
253                                    const FunctionProtoType *FTP,
254                                    const CXXMethodDecl *MD) {
255   SmallVector<CanQualType, 16> argTypes;
256 
257   // Add the 'this' pointer.
258   argTypes.push_back(DeriveThisType(RD, MD));
259 
260   return ::arrangeLLVMFunctionInfo(
261       *this, true, argTypes,
262       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
263 }
264 
265 /// Set calling convention for CUDA/HIP kernel.
266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
267                                            const FunctionDecl *FD) {
268   if (FD->hasAttr<CUDAGlobalAttr>()) {
269     const FunctionType *FT = FTy->getAs<FunctionType>();
270     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
271     FTy = FT->getCanonicalTypeUnqualified();
272   }
273 }
274 
275 /// Arrange the argument and result information for a declaration or
276 /// definition of the given C++ non-static member function.  The
277 /// member function must be an ordinary function, i.e. not a
278 /// constructor or destructor.
279 const CGFunctionInfo &
280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
281   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
282   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
283 
284   CanQualType FT = GetFormalType(MD).getAs<Type>();
285   setCUDAKernelCallingConvention(FT, CGM, MD);
286   auto prototype = FT.getAs<FunctionProtoType>();
287 
288   if (MD->isInstance()) {
289     // The abstract case is perfectly fine.
290     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
291     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
292   }
293 
294   return arrangeFreeFunctionType(prototype);
295 }
296 
297 bool CodeGenTypes::inheritingCtorHasParams(
298     const InheritedConstructor &Inherited, CXXCtorType Type) {
299   // Parameters are unnecessary if we're constructing a base class subobject
300   // and the inherited constructor lives in a virtual base.
301   return Type == Ctor_Complete ||
302          !Inherited.getShadowDecl()->constructsVirtualBase() ||
303          !Target.getCXXABI().hasConstructorVariants();
304 }
305 
306 const CGFunctionInfo &
307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
308   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
309 
310   SmallVector<CanQualType, 16> argTypes;
311   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
312   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
313 
314   bool PassParams = true;
315 
316   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317     // A base class inheriting constructor doesn't get forwarded arguments
318     // needed to construct a virtual base (or base class thereof).
319     if (auto Inherited = CD->getInheritedConstructor())
320       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
321   }
322 
323   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
324 
325   // Add the formal parameters.
326   if (PassParams)
327     appendParameterTypes(*this, argTypes, paramInfos, FTP);
328 
329   CGCXXABI::AddedStructorArgs AddedArgs =
330       TheCXXABI.buildStructorSignature(GD, argTypes);
331   if (!paramInfos.empty()) {
332     // Note: prefix implies after the first param.
333     if (AddedArgs.Prefix)
334       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
335                         FunctionProtoType::ExtParameterInfo{});
336     if (AddedArgs.Suffix)
337       paramInfos.append(AddedArgs.Suffix,
338                         FunctionProtoType::ExtParameterInfo{});
339   }
340 
341   RequiredArgs required =
342       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
343                                       : RequiredArgs::All);
344 
345   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
346   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
347                                ? argTypes.front()
348                                : TheCXXABI.hasMostDerivedReturn(GD)
349                                      ? CGM.getContext().VoidPtrTy
350                                      : Context.VoidTy;
351   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
352                                  /*chainCall=*/false, argTypes, extInfo,
353                                  paramInfos, required);
354 }
355 
356 static SmallVector<CanQualType, 16>
357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
358   SmallVector<CanQualType, 16> argTypes;
359   for (auto &arg : args)
360     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
361   return argTypes;
362 }
363 
364 static SmallVector<CanQualType, 16>
365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
366   SmallVector<CanQualType, 16> argTypes;
367   for (auto &arg : args)
368     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
369   return argTypes;
370 }
371 
372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
373 getExtParameterInfosForCall(const FunctionProtoType *proto,
374                             unsigned prefixArgs, unsigned totalArgs) {
375   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
376   if (proto->hasExtParameterInfos()) {
377     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
378   }
379   return result;
380 }
381 
382 /// Arrange a call to a C++ method, passing the given arguments.
383 ///
384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
385 /// parameter.
386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
387 /// args.
388 /// PassProtoArgs indicates whether `args` has args for the parameters in the
389 /// given CXXConstructorDecl.
390 const CGFunctionInfo &
391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
392                                         const CXXConstructorDecl *D,
393                                         CXXCtorType CtorKind,
394                                         unsigned ExtraPrefixArgs,
395                                         unsigned ExtraSuffixArgs,
396                                         bool PassProtoArgs) {
397   // FIXME: Kill copy.
398   SmallVector<CanQualType, 16> ArgTypes;
399   for (const auto &Arg : args)
400     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
401 
402   // +1 for implicit this, which should always be args[0].
403   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
404 
405   CanQual<FunctionProtoType> FPT = GetFormalType(D);
406   RequiredArgs Required = PassProtoArgs
407                               ? RequiredArgs::forPrototypePlus(
408                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
409                               : RequiredArgs::All;
410 
411   GlobalDecl GD(D, CtorKind);
412   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
413                                ? ArgTypes.front()
414                                : TheCXXABI.hasMostDerivedReturn(GD)
415                                      ? CGM.getContext().VoidPtrTy
416                                      : Context.VoidTy;
417 
418   FunctionType::ExtInfo Info = FPT->getExtInfo();
419   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
420   // If the prototype args are elided, we should only have ABI-specific args,
421   // which never have param info.
422   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
423     // ABI-specific suffix arguments are treated the same as variadic arguments.
424     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
425                                 ArgTypes.size());
426   }
427   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
428                                  /*chainCall=*/false, ArgTypes, Info,
429                                  ParamInfos, Required);
430 }
431 
432 /// Arrange the argument and result information for the declaration or
433 /// definition of the given function.
434 const CGFunctionInfo &
435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
436   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
437     if (MD->isInstance())
438       return arrangeCXXMethodDeclaration(MD);
439 
440   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
441 
442   assert(isa<FunctionType>(FTy));
443   setCUDAKernelCallingConvention(FTy, CGM, FD);
444 
445   // When declaring a function without a prototype, always use a
446   // non-variadic type.
447   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
448     return arrangeLLVMFunctionInfo(
449         noProto->getReturnType(), /*instanceMethod=*/false,
450         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
451   }
452 
453   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
454 }
455 
456 /// Arrange the argument and result information for the declaration or
457 /// definition of an Objective-C method.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
460   // It happens that this is the same as a call with no optional
461   // arguments, except also using the formal 'self' type.
462   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
463 }
464 
465 /// Arrange the argument and result information for the function type
466 /// through which to perform a send to the given Objective-C method,
467 /// using the given receiver type.  The receiver type is not always
468 /// the 'self' type of the method or even an Objective-C pointer type.
469 /// This is *not* the right method for actually performing such a
470 /// message send, due to the possibility of optional arguments.
471 const CGFunctionInfo &
472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
473                                               QualType receiverType) {
474   SmallVector<CanQualType, 16> argTys;
475   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
476   argTys.push_back(Context.getCanonicalParamType(receiverType));
477   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
478   // FIXME: Kill copy?
479   for (const auto *I : MD->parameters()) {
480     argTys.push_back(Context.getCanonicalParamType(I->getType()));
481     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
482         I->hasAttr<NoEscapeAttr>());
483     extParamInfos.push_back(extParamInfo);
484   }
485 
486   FunctionType::ExtInfo einfo;
487   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
488   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
489 
490   if (getContext().getLangOpts().ObjCAutoRefCount &&
491       MD->hasAttr<NSReturnsRetainedAttr>())
492     einfo = einfo.withProducesResult(true);
493 
494   RequiredArgs required =
495     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
496 
497   return arrangeLLVMFunctionInfo(
498       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
499       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
500 }
501 
502 const CGFunctionInfo &
503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
504                                                  const CallArgList &args) {
505   auto argTypes = getArgTypesForCall(Context, args);
506   FunctionType::ExtInfo einfo;
507 
508   return arrangeLLVMFunctionInfo(
509       GetReturnType(returnType), /*instanceMethod=*/false,
510       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
511 }
512 
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
515   // FIXME: Do we need to handle ObjCMethodDecl?
516   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
517 
518   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
519       isa<CXXDestructorDecl>(GD.getDecl()))
520     return arrangeCXXStructorDeclaration(GD);
521 
522   return arrangeFunctionDeclaration(FD);
523 }
524 
525 /// Arrange a thunk that takes 'this' as the first parameter followed by
526 /// varargs.  Return a void pointer, regardless of the actual return type.
527 /// The body of the thunk will end in a musttail call to a function of the
528 /// correct type, and the caller will bitcast the function to the correct
529 /// prototype.
530 const CGFunctionInfo &
531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
532   assert(MD->isVirtual() && "only methods have thunks");
533   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
534   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
535   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
536                                  /*chainCall=*/false, ArgTys,
537                                  FTP->getExtInfo(), {}, RequiredArgs(1));
538 }
539 
540 const CGFunctionInfo &
541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
542                                    CXXCtorType CT) {
543   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
544 
545   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
546   SmallVector<CanQualType, 2> ArgTys;
547   const CXXRecordDecl *RD = CD->getParent();
548   ArgTys.push_back(DeriveThisType(RD, CD));
549   if (CT == Ctor_CopyingClosure)
550     ArgTys.push_back(*FTP->param_type_begin());
551   if (RD->getNumVBases() > 0)
552     ArgTys.push_back(Context.IntTy);
553   CallingConv CC = Context.getDefaultCallingConvention(
554       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
555   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
556                                  /*chainCall=*/false, ArgTys,
557                                  FunctionType::ExtInfo(CC), {},
558                                  RequiredArgs::All);
559 }
560 
561 /// Arrange a call as unto a free function, except possibly with an
562 /// additional number of formal parameters considered required.
563 static const CGFunctionInfo &
564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
565                             CodeGenModule &CGM,
566                             const CallArgList &args,
567                             const FunctionType *fnType,
568                             unsigned numExtraRequiredArgs,
569                             bool chainCall) {
570   assert(args.size() >= numExtraRequiredArgs);
571 
572   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
573 
574   // In most cases, there are no optional arguments.
575   RequiredArgs required = RequiredArgs::All;
576 
577   // If we have a variadic prototype, the required arguments are the
578   // extra prefix plus the arguments in the prototype.
579   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
580     if (proto->isVariadic())
581       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
582 
583     if (proto->hasExtParameterInfos())
584       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
585                                   args.size());
586 
587   // If we don't have a prototype at all, but we're supposed to
588   // explicitly use the variadic convention for unprototyped calls,
589   // treat all of the arguments as required but preserve the nominal
590   // possibility of variadics.
591   } else if (CGM.getTargetCodeGenInfo()
592                 .isNoProtoCallVariadic(args,
593                                        cast<FunctionNoProtoType>(fnType))) {
594     required = RequiredArgs(args.size());
595   }
596 
597   // FIXME: Kill copy.
598   SmallVector<CanQualType, 16> argTypes;
599   for (const auto &arg : args)
600     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
601   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
602                                      /*instanceMethod=*/false, chainCall,
603                                      argTypes, fnType->getExtInfo(), paramInfos,
604                                      required);
605 }
606 
607 /// Figure out the rules for calling a function with the given formal
608 /// type using the given arguments.  The arguments are necessary
609 /// because the function might be unprototyped, in which case it's
610 /// target-dependent in crazy ways.
611 const CGFunctionInfo &
612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
613                                       const FunctionType *fnType,
614                                       bool chainCall) {
615   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
616                                      chainCall ? 1 : 0, chainCall);
617 }
618 
619 /// A block function is essentially a free function with an
620 /// extra implicit argument.
621 const CGFunctionInfo &
622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
623                                        const FunctionType *fnType) {
624   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
625                                      /*chainCall=*/false);
626 }
627 
628 const CGFunctionInfo &
629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
630                                               const FunctionArgList &params) {
631   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
632   auto argTypes = getArgTypesForDeclaration(Context, params);
633 
634   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
635                                  /*instanceMethod*/ false, /*chainCall*/ false,
636                                  argTypes, proto->getExtInfo(), paramInfos,
637                                  RequiredArgs::forPrototypePlus(proto, 1));
638 }
639 
640 const CGFunctionInfo &
641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
642                                          const CallArgList &args) {
643   // FIXME: Kill copy.
644   SmallVector<CanQualType, 16> argTypes;
645   for (const auto &Arg : args)
646     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
647   return arrangeLLVMFunctionInfo(
648       GetReturnType(resultType), /*instanceMethod=*/false,
649       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
650       /*paramInfos=*/ {}, RequiredArgs::All);
651 }
652 
653 const CGFunctionInfo &
654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
655                                                 const FunctionArgList &args) {
656   auto argTypes = getArgTypesForDeclaration(Context, args);
657 
658   return arrangeLLVMFunctionInfo(
659       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
660       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
661 }
662 
663 const CGFunctionInfo &
664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
665                                               ArrayRef<CanQualType> argTypes) {
666   return arrangeLLVMFunctionInfo(
667       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
668       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
669 }
670 
671 /// Arrange a call to a C++ method, passing the given arguments.
672 ///
673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
674 /// does not count `this`.
675 const CGFunctionInfo &
676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
677                                    const FunctionProtoType *proto,
678                                    RequiredArgs required,
679                                    unsigned numPrefixArgs) {
680   assert(numPrefixArgs + 1 <= args.size() &&
681          "Emitting a call with less args than the required prefix?");
682   // Add one to account for `this`. It's a bit awkward here, but we don't count
683   // `this` in similar places elsewhere.
684   auto paramInfos =
685     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
686 
687   // FIXME: Kill copy.
688   auto argTypes = getArgTypesForCall(Context, args);
689 
690   FunctionType::ExtInfo info = proto->getExtInfo();
691   return arrangeLLVMFunctionInfo(
692       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
693       /*chainCall=*/false, argTypes, info, paramInfos, required);
694 }
695 
696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
697   return arrangeLLVMFunctionInfo(
698       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
699       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
700 }
701 
702 const CGFunctionInfo &
703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
704                           const CallArgList &args) {
705   assert(signature.arg_size() <= args.size());
706   if (signature.arg_size() == args.size())
707     return signature;
708 
709   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
710   auto sigParamInfos = signature.getExtParameterInfos();
711   if (!sigParamInfos.empty()) {
712     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
713     paramInfos.resize(args.size());
714   }
715 
716   auto argTypes = getArgTypesForCall(Context, args);
717 
718   assert(signature.getRequiredArgs().allowsOptionalArgs());
719   return arrangeLLVMFunctionInfo(signature.getReturnType(),
720                                  signature.isInstanceMethod(),
721                                  signature.isChainCall(),
722                                  argTypes,
723                                  signature.getExtInfo(),
724                                  paramInfos,
725                                  signature.getRequiredArgs());
726 }
727 
728 namespace clang {
729 namespace CodeGen {
730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
731 }
732 }
733 
734 /// Arrange the argument and result information for an abstract value
735 /// of a given function type.  This is the method which all of the
736 /// above functions ultimately defer to.
737 const CGFunctionInfo &
738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
739                                       bool instanceMethod,
740                                       bool chainCall,
741                                       ArrayRef<CanQualType> argTypes,
742                                       FunctionType::ExtInfo info,
743                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
744                                       RequiredArgs required) {
745   assert(llvm::all_of(argTypes,
746                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
747 
748   // Lookup or create unique function info.
749   llvm::FoldingSetNodeID ID;
750   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
751                           required, resultType, argTypes);
752 
753   void *insertPos = nullptr;
754   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
755   if (FI)
756     return *FI;
757 
758   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
759 
760   // Construct the function info.  We co-allocate the ArgInfos.
761   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
762                               paramInfos, resultType, argTypes, required);
763   FunctionInfos.InsertNode(FI, insertPos);
764 
765   bool inserted = FunctionsBeingProcessed.insert(FI).second;
766   (void)inserted;
767   assert(inserted && "Recursively being processed?");
768 
769   // Compute ABI information.
770   if (CC == llvm::CallingConv::SPIR_KERNEL) {
771     // Force target independent argument handling for the host visible
772     // kernel functions.
773     computeSPIRKernelABIInfo(CGM, *FI);
774   } else if (info.getCC() == CC_Swift) {
775     swiftcall::computeABIInfo(CGM, *FI);
776   } else {
777     getABIInfo().computeInfo(*FI);
778   }
779 
780   // Loop over all of the computed argument and return value info.  If any of
781   // them are direct or extend without a specified coerce type, specify the
782   // default now.
783   ABIArgInfo &retInfo = FI->getReturnInfo();
784   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
785     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
786 
787   for (auto &I : FI->arguments())
788     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
789       I.info.setCoerceToType(ConvertType(I.type));
790 
791   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
792   assert(erased && "Not in set?");
793 
794   return *FI;
795 }
796 
797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
798                                        bool instanceMethod,
799                                        bool chainCall,
800                                        const FunctionType::ExtInfo &info,
801                                        ArrayRef<ExtParameterInfo> paramInfos,
802                                        CanQualType resultType,
803                                        ArrayRef<CanQualType> argTypes,
804                                        RequiredArgs required) {
805   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
806   assert(!required.allowsOptionalArgs() ||
807          required.getNumRequiredArgs() <= argTypes.size());
808 
809   void *buffer =
810     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
811                                   argTypes.size() + 1, paramInfos.size()));
812 
813   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
814   FI->CallingConvention = llvmCC;
815   FI->EffectiveCallingConvention = llvmCC;
816   FI->ASTCallingConvention = info.getCC();
817   FI->InstanceMethod = instanceMethod;
818   FI->ChainCall = chainCall;
819   FI->CmseNSCall = info.getCmseNSCall();
820   FI->NoReturn = info.getNoReturn();
821   FI->ReturnsRetained = info.getProducesResult();
822   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
823   FI->NoCfCheck = info.getNoCfCheck();
824   FI->Required = required;
825   FI->HasRegParm = info.getHasRegParm();
826   FI->RegParm = info.getRegParm();
827   FI->ArgStruct = nullptr;
828   FI->ArgStructAlign = 0;
829   FI->NumArgs = argTypes.size();
830   FI->HasExtParameterInfos = !paramInfos.empty();
831   FI->getArgsBuffer()[0].type = resultType;
832   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
833     FI->getArgsBuffer()[i + 1].type = argTypes[i];
834   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
835     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
836   return FI;
837 }
838 
839 /***/
840 
841 namespace {
842 // ABIArgInfo::Expand implementation.
843 
844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
845 struct TypeExpansion {
846   enum TypeExpansionKind {
847     // Elements of constant arrays are expanded recursively.
848     TEK_ConstantArray,
849     // Record fields are expanded recursively (but if record is a union, only
850     // the field with the largest size is expanded).
851     TEK_Record,
852     // For complex types, real and imaginary parts are expanded recursively.
853     TEK_Complex,
854     // All other types are not expandable.
855     TEK_None
856   };
857 
858   const TypeExpansionKind Kind;
859 
860   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
861   virtual ~TypeExpansion() {}
862 };
863 
864 struct ConstantArrayExpansion : TypeExpansion {
865   QualType EltTy;
866   uint64_t NumElts;
867 
868   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
869       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
870   static bool classof(const TypeExpansion *TE) {
871     return TE->Kind == TEK_ConstantArray;
872   }
873 };
874 
875 struct RecordExpansion : TypeExpansion {
876   SmallVector<const CXXBaseSpecifier *, 1> Bases;
877 
878   SmallVector<const FieldDecl *, 1> Fields;
879 
880   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
881                   SmallVector<const FieldDecl *, 1> &&Fields)
882       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
883         Fields(std::move(Fields)) {}
884   static bool classof(const TypeExpansion *TE) {
885     return TE->Kind == TEK_Record;
886   }
887 };
888 
889 struct ComplexExpansion : TypeExpansion {
890   QualType EltTy;
891 
892   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_Complex;
895   }
896 };
897 
898 struct NoExpansion : TypeExpansion {
899   NoExpansion() : TypeExpansion(TEK_None) {}
900   static bool classof(const TypeExpansion *TE) {
901     return TE->Kind == TEK_None;
902   }
903 };
904 }  // namespace
905 
906 static std::unique_ptr<TypeExpansion>
907 getTypeExpansion(QualType Ty, const ASTContext &Context) {
908   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
909     return std::make_unique<ConstantArrayExpansion>(
910         AT->getElementType(), AT->getSize().getZExtValue());
911   }
912   if (const RecordType *RT = Ty->getAs<RecordType>()) {
913     SmallVector<const CXXBaseSpecifier *, 1> Bases;
914     SmallVector<const FieldDecl *, 1> Fields;
915     const RecordDecl *RD = RT->getDecl();
916     assert(!RD->hasFlexibleArrayMember() &&
917            "Cannot expand structure with flexible array.");
918     if (RD->isUnion()) {
919       // Unions can be here only in degenerative cases - all the fields are same
920       // after flattening. Thus we have to use the "largest" field.
921       const FieldDecl *LargestFD = nullptr;
922       CharUnits UnionSize = CharUnits::Zero();
923 
924       for (const auto *FD : RD->fields()) {
925         if (FD->isZeroLengthBitField(Context))
926           continue;
927         assert(!FD->isBitField() &&
928                "Cannot expand structure with bit-field members.");
929         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
930         if (UnionSize < FieldSize) {
931           UnionSize = FieldSize;
932           LargestFD = FD;
933         }
934       }
935       if (LargestFD)
936         Fields.push_back(LargestFD);
937     } else {
938       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
939         assert(!CXXRD->isDynamicClass() &&
940                "cannot expand vtable pointers in dynamic classes");
941         for (const CXXBaseSpecifier &BS : CXXRD->bases())
942           Bases.push_back(&BS);
943       }
944 
945       for (const auto *FD : RD->fields()) {
946         if (FD->isZeroLengthBitField(Context))
947           continue;
948         assert(!FD->isBitField() &&
949                "Cannot expand structure with bit-field members.");
950         Fields.push_back(FD);
951       }
952     }
953     return std::make_unique<RecordExpansion>(std::move(Bases),
954                                               std::move(Fields));
955   }
956   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
957     return std::make_unique<ComplexExpansion>(CT->getElementType());
958   }
959   return std::make_unique<NoExpansion>();
960 }
961 
962 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
963   auto Exp = getTypeExpansion(Ty, Context);
964   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
965     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
966   }
967   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
968     int Res = 0;
969     for (auto BS : RExp->Bases)
970       Res += getExpansionSize(BS->getType(), Context);
971     for (auto FD : RExp->Fields)
972       Res += getExpansionSize(FD->getType(), Context);
973     return Res;
974   }
975   if (isa<ComplexExpansion>(Exp.get()))
976     return 2;
977   assert(isa<NoExpansion>(Exp.get()));
978   return 1;
979 }
980 
981 void
982 CodeGenTypes::getExpandedTypes(QualType Ty,
983                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
984   auto Exp = getTypeExpansion(Ty, Context);
985   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
986     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
987       getExpandedTypes(CAExp->EltTy, TI);
988     }
989   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     for (auto BS : RExp->Bases)
991       getExpandedTypes(BS->getType(), TI);
992     for (auto FD : RExp->Fields)
993       getExpandedTypes(FD->getType(), TI);
994   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
995     llvm::Type *EltTy = ConvertType(CExp->EltTy);
996     *TI++ = EltTy;
997     *TI++ = EltTy;
998   } else {
999     assert(isa<NoExpansion>(Exp.get()));
1000     *TI++ = ConvertType(Ty);
1001   }
1002 }
1003 
1004 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1005                                       ConstantArrayExpansion *CAE,
1006                                       Address BaseAddr,
1007                                       llvm::function_ref<void(Address)> Fn) {
1008   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1009   CharUnits EltAlign =
1010     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1011 
1012   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1013     llvm::Value *EltAddr =
1014       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1015     Fn(Address(EltAddr, EltAlign));
1016   }
1017 }
1018 
1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1020                                          llvm::Function::arg_iterator &AI) {
1021   assert(LV.isSimple() &&
1022          "Unexpected non-simple lvalue during struct expansion.");
1023 
1024   auto Exp = getTypeExpansion(Ty, getContext());
1025   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1026     forConstantArrayExpansion(
1027         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1028           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1029           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1030         });
1031   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1032     Address This = LV.getAddress(*this);
1033     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1034       // Perform a single step derived-to-base conversion.
1035       Address Base =
1036           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1037                                 /*NullCheckValue=*/false, SourceLocation());
1038       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1039 
1040       // Recurse onto bases.
1041       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1042     }
1043     for (auto FD : RExp->Fields) {
1044       // FIXME: What are the right qualifiers here?
1045       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1046       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1047     }
1048   } else if (isa<ComplexExpansion>(Exp.get())) {
1049     auto realValue = &*AI++;
1050     auto imagValue = &*AI++;
1051     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1052   } else {
1053     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1054     // primitive store.
1055     assert(isa<NoExpansion>(Exp.get()));
1056     if (LV.isBitField())
1057       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1058     else
1059       EmitStoreOfScalar(&*AI++, LV);
1060   }
1061 }
1062 
1063 void CodeGenFunction::ExpandTypeToArgs(
1064     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1065     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1066   auto Exp = getTypeExpansion(Ty, getContext());
1067   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1068     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1069                                    : Arg.getKnownRValue().getAggregateAddress();
1070     forConstantArrayExpansion(
1071         *this, CAExp, Addr, [&](Address EltAddr) {
1072           CallArg EltArg = CallArg(
1073               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1074               CAExp->EltTy);
1075           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1076                            IRCallArgPos);
1077         });
1078   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1079     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1080                                    : Arg.getKnownRValue().getAggregateAddress();
1081     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1082       // Perform a single step derived-to-base conversion.
1083       Address Base =
1084           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1085                                 /*NullCheckValue=*/false, SourceLocation());
1086       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1087 
1088       // Recurse onto bases.
1089       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1090                        IRCallArgPos);
1091     }
1092 
1093     LValue LV = MakeAddrLValue(This, Ty);
1094     for (auto FD : RExp->Fields) {
1095       CallArg FldArg =
1096           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1097       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1098                        IRCallArgPos);
1099     }
1100   } else if (isa<ComplexExpansion>(Exp.get())) {
1101     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1102     IRCallArgs[IRCallArgPos++] = CV.first;
1103     IRCallArgs[IRCallArgPos++] = CV.second;
1104   } else {
1105     assert(isa<NoExpansion>(Exp.get()));
1106     auto RV = Arg.getKnownRValue();
1107     assert(RV.isScalar() &&
1108            "Unexpected non-scalar rvalue during struct expansion.");
1109 
1110     // Insert a bitcast as needed.
1111     llvm::Value *V = RV.getScalarVal();
1112     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1113         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1114       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1115 
1116     IRCallArgs[IRCallArgPos++] = V;
1117   }
1118 }
1119 
1120 /// Create a temporary allocation for the purposes of coercion.
1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1122                                            CharUnits MinAlign) {
1123   // Don't use an alignment that's worse than what LLVM would prefer.
1124   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1125   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1126 
1127   return CGF.CreateTempAlloca(Ty, Align);
1128 }
1129 
1130 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1131 /// accessing some number of bytes out of it, try to gep into the struct to get
1132 /// at its inner goodness.  Dive as deep as possible without entering an element
1133 /// with an in-memory size smaller than DstSize.
1134 static Address
1135 EnterStructPointerForCoercedAccess(Address SrcPtr,
1136                                    llvm::StructType *SrcSTy,
1137                                    uint64_t DstSize, CodeGenFunction &CGF) {
1138   // We can't dive into a zero-element struct.
1139   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1140 
1141   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1142 
1143   // If the first elt is at least as large as what we're looking for, or if the
1144   // first element is the same size as the whole struct, we can enter it. The
1145   // comparison must be made on the store size and not the alloca size. Using
1146   // the alloca size may overstate the size of the load.
1147   uint64_t FirstEltSize =
1148     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1149   if (FirstEltSize < DstSize &&
1150       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1151     return SrcPtr;
1152 
1153   // GEP into the first element.
1154   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1155 
1156   // If the first element is a struct, recurse.
1157   llvm::Type *SrcTy = SrcPtr.getElementType();
1158   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1159     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1160 
1161   return SrcPtr;
1162 }
1163 
1164 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1165 /// are either integers or pointers.  This does a truncation of the value if it
1166 /// is too large or a zero extension if it is too small.
1167 ///
1168 /// This behaves as if the value were coerced through memory, so on big-endian
1169 /// targets the high bits are preserved in a truncation, while little-endian
1170 /// targets preserve the low bits.
1171 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1172                                              llvm::Type *Ty,
1173                                              CodeGenFunction &CGF) {
1174   if (Val->getType() == Ty)
1175     return Val;
1176 
1177   if (isa<llvm::PointerType>(Val->getType())) {
1178     // If this is Pointer->Pointer avoid conversion to and from int.
1179     if (isa<llvm::PointerType>(Ty))
1180       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1181 
1182     // Convert the pointer to an integer so we can play with its width.
1183     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1184   }
1185 
1186   llvm::Type *DestIntTy = Ty;
1187   if (isa<llvm::PointerType>(DestIntTy))
1188     DestIntTy = CGF.IntPtrTy;
1189 
1190   if (Val->getType() != DestIntTy) {
1191     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1192     if (DL.isBigEndian()) {
1193       // Preserve the high bits on big-endian targets.
1194       // That is what memory coercion does.
1195       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1196       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1197 
1198       if (SrcSize > DstSize) {
1199         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1200         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1201       } else {
1202         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1203         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1204       }
1205     } else {
1206       // Little-endian targets preserve the low bits. No shifts required.
1207       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1208     }
1209   }
1210 
1211   if (isa<llvm::PointerType>(Ty))
1212     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1213   return Val;
1214 }
1215 
1216 
1217 
1218 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1219 /// a pointer to an object of type \arg Ty, known to be aligned to
1220 /// \arg SrcAlign bytes.
1221 ///
1222 /// This safely handles the case when the src type is smaller than the
1223 /// destination type; in this situation the values of bits which not
1224 /// present in the src are undefined.
1225 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1226                                       CodeGenFunction &CGF) {
1227   llvm::Type *SrcTy = Src.getElementType();
1228 
1229   // If SrcTy and Ty are the same, just do a load.
1230   if (SrcTy == Ty)
1231     return CGF.Builder.CreateLoad(Src);
1232 
1233   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1234 
1235   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1236     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1237     SrcTy = Src.getElementType();
1238   }
1239 
1240   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1241 
1242   // If the source and destination are integer or pointer types, just do an
1243   // extension or truncation to the desired type.
1244   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1245       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1246     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1247     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1248   }
1249 
1250   // If load is legal, just bitcast the src pointer.
1251   if (SrcSize >= DstSize) {
1252     // Generally SrcSize is never greater than DstSize, since this means we are
1253     // losing bits. However, this can happen in cases where the structure has
1254     // additional padding, for example due to a user specified alignment.
1255     //
1256     // FIXME: Assert that we aren't truncating non-padding bits when have access
1257     // to that information.
1258     Src = CGF.Builder.CreateBitCast(Src,
1259                                     Ty->getPointerTo(Src.getAddressSpace()));
1260     return CGF.Builder.CreateLoad(Src);
1261   }
1262 
1263   // Otherwise do coercion through memory. This is stupid, but simple.
1264   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1265   CGF.Builder.CreateMemCpy(Tmp.getPointer(), Tmp.getAlignment().getAsAlign(),
1266                            Src.getPointer(), Src.getAlignment().getAsAlign(),
1267                            llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize));
1268   return CGF.Builder.CreateLoad(Tmp);
1269 }
1270 
1271 // Function to store a first-class aggregate into memory.  We prefer to
1272 // store the elements rather than the aggregate to be more friendly to
1273 // fast-isel.
1274 // FIXME: Do we need to recurse here?
1275 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1276                           Address Dest, bool DestIsVolatile) {
1277   // Prefer scalar stores to first-class aggregate stores.
1278   if (llvm::StructType *STy =
1279         dyn_cast<llvm::StructType>(Val->getType())) {
1280     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1281       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
1282       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1283       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1284     }
1285   } else {
1286     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1287   }
1288 }
1289 
1290 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1291 /// where the source and destination may have different types.  The
1292 /// destination is known to be aligned to \arg DstAlign bytes.
1293 ///
1294 /// This safely handles the case when the src type is larger than the
1295 /// destination type; the upper bits of the src will be lost.
1296 static void CreateCoercedStore(llvm::Value *Src,
1297                                Address Dst,
1298                                bool DstIsVolatile,
1299                                CodeGenFunction &CGF) {
1300   llvm::Type *SrcTy = Src->getType();
1301   llvm::Type *DstTy = Dst.getElementType();
1302   if (SrcTy == DstTy) {
1303     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1304     return;
1305   }
1306 
1307   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1308 
1309   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1310     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1311     DstTy = Dst.getElementType();
1312   }
1313 
1314   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1315   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1316   if (SrcPtrTy && DstPtrTy &&
1317       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1318     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1319     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1320     return;
1321   }
1322 
1323   // If the source and destination are integer or pointer types, just do an
1324   // extension or truncation to the desired type.
1325   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1326       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1327     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1328     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1329     return;
1330   }
1331 
1332   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1333 
1334   // If store is legal, just bitcast the src pointer.
1335   if (SrcSize <= DstSize) {
1336     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1337     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1338   } else {
1339     // Otherwise do coercion through memory. This is stupid, but
1340     // simple.
1341 
1342     // Generally SrcSize is never greater than DstSize, since this means we are
1343     // losing bits. However, this can happen in cases where the structure has
1344     // additional padding, for example due to a user specified alignment.
1345     //
1346     // FIXME: Assert that we aren't truncating non-padding bits when have access
1347     // to that information.
1348     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1349     CGF.Builder.CreateStore(Src, Tmp);
1350     CGF.Builder.CreateMemCpy(Dst.getPointer(), Dst.getAlignment().getAsAlign(),
1351                              Tmp.getPointer(), Tmp.getAlignment().getAsAlign(),
1352                              llvm::ConstantInt::get(CGF.IntPtrTy, DstSize));
1353   }
1354 }
1355 
1356 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1357                                    const ABIArgInfo &info) {
1358   if (unsigned offset = info.getDirectOffset()) {
1359     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1360     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1361                                              CharUnits::fromQuantity(offset));
1362     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1363   }
1364   return addr;
1365 }
1366 
1367 namespace {
1368 
1369 /// Encapsulates information about the way function arguments from
1370 /// CGFunctionInfo should be passed to actual LLVM IR function.
1371 class ClangToLLVMArgMapping {
1372   static const unsigned InvalidIndex = ~0U;
1373   unsigned InallocaArgNo;
1374   unsigned SRetArgNo;
1375   unsigned TotalIRArgs;
1376 
1377   /// Arguments of LLVM IR function corresponding to single Clang argument.
1378   struct IRArgs {
1379     unsigned PaddingArgIndex;
1380     // Argument is expanded to IR arguments at positions
1381     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1382     unsigned FirstArgIndex;
1383     unsigned NumberOfArgs;
1384 
1385     IRArgs()
1386         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1387           NumberOfArgs(0) {}
1388   };
1389 
1390   SmallVector<IRArgs, 8> ArgInfo;
1391 
1392 public:
1393   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1394                         bool OnlyRequiredArgs = false)
1395       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1396         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1397     construct(Context, FI, OnlyRequiredArgs);
1398   }
1399 
1400   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1401   unsigned getInallocaArgNo() const {
1402     assert(hasInallocaArg());
1403     return InallocaArgNo;
1404   }
1405 
1406   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1407   unsigned getSRetArgNo() const {
1408     assert(hasSRetArg());
1409     return SRetArgNo;
1410   }
1411 
1412   unsigned totalIRArgs() const { return TotalIRArgs; }
1413 
1414   bool hasPaddingArg(unsigned ArgNo) const {
1415     assert(ArgNo < ArgInfo.size());
1416     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1417   }
1418   unsigned getPaddingArgNo(unsigned ArgNo) const {
1419     assert(hasPaddingArg(ArgNo));
1420     return ArgInfo[ArgNo].PaddingArgIndex;
1421   }
1422 
1423   /// Returns index of first IR argument corresponding to ArgNo, and their
1424   /// quantity.
1425   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1426     assert(ArgNo < ArgInfo.size());
1427     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1428                           ArgInfo[ArgNo].NumberOfArgs);
1429   }
1430 
1431 private:
1432   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1433                  bool OnlyRequiredArgs);
1434 };
1435 
1436 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1437                                       const CGFunctionInfo &FI,
1438                                       bool OnlyRequiredArgs) {
1439   unsigned IRArgNo = 0;
1440   bool SwapThisWithSRet = false;
1441   const ABIArgInfo &RetAI = FI.getReturnInfo();
1442 
1443   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1444     SwapThisWithSRet = RetAI.isSRetAfterThis();
1445     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1446   }
1447 
1448   unsigned ArgNo = 0;
1449   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1450   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1451        ++I, ++ArgNo) {
1452     assert(I != FI.arg_end());
1453     QualType ArgType = I->type;
1454     const ABIArgInfo &AI = I->info;
1455     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1456     auto &IRArgs = ArgInfo[ArgNo];
1457 
1458     if (AI.getPaddingType())
1459       IRArgs.PaddingArgIndex = IRArgNo++;
1460 
1461     switch (AI.getKind()) {
1462     case ABIArgInfo::Extend:
1463     case ABIArgInfo::Direct: {
1464       // FIXME: handle sseregparm someday...
1465       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1466       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1467         IRArgs.NumberOfArgs = STy->getNumElements();
1468       } else {
1469         IRArgs.NumberOfArgs = 1;
1470       }
1471       break;
1472     }
1473     case ABIArgInfo::Indirect:
1474       IRArgs.NumberOfArgs = 1;
1475       break;
1476     case ABIArgInfo::Ignore:
1477     case ABIArgInfo::InAlloca:
1478       // ignore and inalloca doesn't have matching LLVM parameters.
1479       IRArgs.NumberOfArgs = 0;
1480       break;
1481     case ABIArgInfo::CoerceAndExpand:
1482       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1483       break;
1484     case ABIArgInfo::Expand:
1485       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1486       break;
1487     }
1488 
1489     if (IRArgs.NumberOfArgs > 0) {
1490       IRArgs.FirstArgIndex = IRArgNo;
1491       IRArgNo += IRArgs.NumberOfArgs;
1492     }
1493 
1494     // Skip over the sret parameter when it comes second.  We already handled it
1495     // above.
1496     if (IRArgNo == 1 && SwapThisWithSRet)
1497       IRArgNo++;
1498   }
1499   assert(ArgNo == ArgInfo.size());
1500 
1501   if (FI.usesInAlloca())
1502     InallocaArgNo = IRArgNo++;
1503 
1504   TotalIRArgs = IRArgNo;
1505 }
1506 }  // namespace
1507 
1508 /***/
1509 
1510 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1511   const auto &RI = FI.getReturnInfo();
1512   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1513 }
1514 
1515 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1516   return ReturnTypeUsesSRet(FI) &&
1517          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1518 }
1519 
1520 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1521   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1522     switch (BT->getKind()) {
1523     default:
1524       return false;
1525     case BuiltinType::Float:
1526       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1527     case BuiltinType::Double:
1528       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1529     case BuiltinType::LongDouble:
1530       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1531     }
1532   }
1533 
1534   return false;
1535 }
1536 
1537 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1538   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1539     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1540       if (BT->getKind() == BuiltinType::LongDouble)
1541         return getTarget().useObjCFP2RetForComplexLongDouble();
1542     }
1543   }
1544 
1545   return false;
1546 }
1547 
1548 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1549   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1550   return GetFunctionType(FI);
1551 }
1552 
1553 llvm::FunctionType *
1554 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1555 
1556   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1557   (void)Inserted;
1558   assert(Inserted && "Recursively being processed?");
1559 
1560   llvm::Type *resultType = nullptr;
1561   const ABIArgInfo &retAI = FI.getReturnInfo();
1562   switch (retAI.getKind()) {
1563   case ABIArgInfo::Expand:
1564     llvm_unreachable("Invalid ABI kind for return argument");
1565 
1566   case ABIArgInfo::Extend:
1567   case ABIArgInfo::Direct:
1568     resultType = retAI.getCoerceToType();
1569     break;
1570 
1571   case ABIArgInfo::InAlloca:
1572     if (retAI.getInAllocaSRet()) {
1573       // sret things on win32 aren't void, they return the sret pointer.
1574       QualType ret = FI.getReturnType();
1575       llvm::Type *ty = ConvertType(ret);
1576       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1577       resultType = llvm::PointerType::get(ty, addressSpace);
1578     } else {
1579       resultType = llvm::Type::getVoidTy(getLLVMContext());
1580     }
1581     break;
1582 
1583   case ABIArgInfo::Indirect:
1584   case ABIArgInfo::Ignore:
1585     resultType = llvm::Type::getVoidTy(getLLVMContext());
1586     break;
1587 
1588   case ABIArgInfo::CoerceAndExpand:
1589     resultType = retAI.getUnpaddedCoerceAndExpandType();
1590     break;
1591   }
1592 
1593   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1594   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1595 
1596   // Add type for sret argument.
1597   if (IRFunctionArgs.hasSRetArg()) {
1598     QualType Ret = FI.getReturnType();
1599     llvm::Type *Ty = ConvertType(Ret);
1600     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1601     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1602         llvm::PointerType::get(Ty, AddressSpace);
1603   }
1604 
1605   // Add type for inalloca argument.
1606   if (IRFunctionArgs.hasInallocaArg()) {
1607     auto ArgStruct = FI.getArgStruct();
1608     assert(ArgStruct);
1609     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1610   }
1611 
1612   // Add in all of the required arguments.
1613   unsigned ArgNo = 0;
1614   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1615                                      ie = it + FI.getNumRequiredArgs();
1616   for (; it != ie; ++it, ++ArgNo) {
1617     const ABIArgInfo &ArgInfo = it->info;
1618 
1619     // Insert a padding type to ensure proper alignment.
1620     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1621       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1622           ArgInfo.getPaddingType();
1623 
1624     unsigned FirstIRArg, NumIRArgs;
1625     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1626 
1627     switch (ArgInfo.getKind()) {
1628     case ABIArgInfo::Ignore:
1629     case ABIArgInfo::InAlloca:
1630       assert(NumIRArgs == 0);
1631       break;
1632 
1633     case ABIArgInfo::Indirect: {
1634       assert(NumIRArgs == 1);
1635       // indirect arguments are always on the stack, which is alloca addr space.
1636       llvm::Type *LTy = ConvertTypeForMem(it->type);
1637       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1638           CGM.getDataLayout().getAllocaAddrSpace());
1639       break;
1640     }
1641 
1642     case ABIArgInfo::Extend:
1643     case ABIArgInfo::Direct: {
1644       // Fast-isel and the optimizer generally like scalar values better than
1645       // FCAs, so we flatten them if this is safe to do for this argument.
1646       llvm::Type *argType = ArgInfo.getCoerceToType();
1647       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1648       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1649         assert(NumIRArgs == st->getNumElements());
1650         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1651           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1652       } else {
1653         assert(NumIRArgs == 1);
1654         ArgTypes[FirstIRArg] = argType;
1655       }
1656       break;
1657     }
1658 
1659     case ABIArgInfo::CoerceAndExpand: {
1660       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1661       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1662         *ArgTypesIter++ = EltTy;
1663       }
1664       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1665       break;
1666     }
1667 
1668     case ABIArgInfo::Expand:
1669       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1670       getExpandedTypes(it->type, ArgTypesIter);
1671       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1672       break;
1673     }
1674   }
1675 
1676   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1677   assert(Erased && "Not in set?");
1678 
1679   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1680 }
1681 
1682 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1683   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1684   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1685 
1686   if (!isFuncTypeConvertible(FPT))
1687     return llvm::StructType::get(getLLVMContext());
1688 
1689   return GetFunctionType(GD);
1690 }
1691 
1692 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1693                                                llvm::AttrBuilder &FuncAttrs,
1694                                                const FunctionProtoType *FPT) {
1695   if (!FPT)
1696     return;
1697 
1698   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1699       FPT->isNothrow())
1700     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1701 }
1702 
1703 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1704                                                bool AttrOnCallSite,
1705                                                llvm::AttrBuilder &FuncAttrs) {
1706   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1707   if (!HasOptnone) {
1708     if (CodeGenOpts.OptimizeSize)
1709       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1710     if (CodeGenOpts.OptimizeSize == 2)
1711       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1712   }
1713 
1714   if (CodeGenOpts.DisableRedZone)
1715     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1716   if (CodeGenOpts.IndirectTlsSegRefs)
1717     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1718   if (CodeGenOpts.NoImplicitFloat)
1719     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1720 
1721   if (AttrOnCallSite) {
1722     // Attributes that should go on the call site only.
1723     if (!CodeGenOpts.SimplifyLibCalls ||
1724         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1725       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1726     if (!CodeGenOpts.TrapFuncName.empty())
1727       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1728   } else {
1729     StringRef FpKind;
1730     switch (CodeGenOpts.getFramePointer()) {
1731     case CodeGenOptions::FramePointerKind::None:
1732       FpKind = "none";
1733       break;
1734     case CodeGenOptions::FramePointerKind::NonLeaf:
1735       FpKind = "non-leaf";
1736       break;
1737     case CodeGenOptions::FramePointerKind::All:
1738       FpKind = "all";
1739       break;
1740     }
1741     FuncAttrs.addAttribute("frame-pointer", FpKind);
1742 
1743     FuncAttrs.addAttribute("less-precise-fpmad",
1744                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1745 
1746     if (CodeGenOpts.NullPointerIsValid)
1747       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1748 
1749     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1750       FuncAttrs.addAttribute("denormal-fp-math",
1751                              CodeGenOpts.FPDenormalMode.str());
1752     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1753       FuncAttrs.addAttribute(
1754           "denormal-fp-math-f32",
1755           CodeGenOpts.FP32DenormalMode.str());
1756     }
1757 
1758     FuncAttrs.addAttribute("no-trapping-math",
1759                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1760 
1761     // Strict (compliant) code is the default, so only add this attribute to
1762     // indicate that we are trying to workaround a problem case.
1763     if (!CodeGenOpts.StrictFloatCastOverflow)
1764       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1765 
1766     // TODO: Are these all needed?
1767     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1768     FuncAttrs.addAttribute("no-infs-fp-math",
1769                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1770     FuncAttrs.addAttribute("no-nans-fp-math",
1771                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1772     FuncAttrs.addAttribute("unsafe-fp-math",
1773                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1774     FuncAttrs.addAttribute("use-soft-float",
1775                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1776     FuncAttrs.addAttribute("stack-protector-buffer-size",
1777                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1778     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1779                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1780     FuncAttrs.addAttribute(
1781         "correctly-rounded-divide-sqrt-fp-math",
1782         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1783 
1784     // TODO: Reciprocal estimate codegen options should apply to instructions?
1785     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1786     if (!Recips.empty())
1787       FuncAttrs.addAttribute("reciprocal-estimates",
1788                              llvm::join(Recips, ","));
1789 
1790     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1791         CodeGenOpts.PreferVectorWidth != "none")
1792       FuncAttrs.addAttribute("prefer-vector-width",
1793                              CodeGenOpts.PreferVectorWidth);
1794 
1795     if (CodeGenOpts.StackRealignment)
1796       FuncAttrs.addAttribute("stackrealign");
1797     if (CodeGenOpts.Backchain)
1798       FuncAttrs.addAttribute("backchain");
1799 
1800     if (CodeGenOpts.SpeculativeLoadHardening)
1801       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1802   }
1803 
1804   if (getLangOpts().assumeFunctionsAreConvergent()) {
1805     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1806     // convergent (meaning, they may call an intrinsically convergent op, such
1807     // as __syncthreads() / barrier(), and so can't have certain optimizations
1808     // applied around them).  LLVM will remove this attribute where it safely
1809     // can.
1810     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1811   }
1812 
1813   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1814     // Exceptions aren't supported in CUDA device code.
1815     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1816   }
1817 
1818   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1819     StringRef Var, Value;
1820     std::tie(Var, Value) = Attr.split('=');
1821     FuncAttrs.addAttribute(Var, Value);
1822   }
1823 }
1824 
1825 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1826   llvm::AttrBuilder FuncAttrs;
1827   ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(),
1828                              /* AttrOnCallSite = */ false, FuncAttrs);
1829   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1830 }
1831 
1832 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1833                                    const LangOptions &LangOpts,
1834                                    const NoBuiltinAttr *NBA = nullptr) {
1835   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1836     SmallString<32> AttributeName;
1837     AttributeName += "no-builtin-";
1838     AttributeName += BuiltinName;
1839     FuncAttrs.addAttribute(AttributeName);
1840   };
1841 
1842   // First, handle the language options passed through -fno-builtin.
1843   if (LangOpts.NoBuiltin) {
1844     // -fno-builtin disables them all.
1845     FuncAttrs.addAttribute("no-builtins");
1846     return;
1847   }
1848 
1849   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1850   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1851 
1852   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1853   // the source.
1854   if (!NBA)
1855     return;
1856 
1857   // If there is a wildcard in the builtin names specified through the
1858   // attribute, disable them all.
1859   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1860     FuncAttrs.addAttribute("no-builtins");
1861     return;
1862   }
1863 
1864   // And last, add the rest of the builtin names.
1865   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1866 }
1867 
1868 void CodeGenModule::ConstructAttributeList(
1869     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1870     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1871   llvm::AttrBuilder FuncAttrs;
1872   llvm::AttrBuilder RetAttrs;
1873 
1874   CallingConv = FI.getEffectiveCallingConvention();
1875   if (FI.isNoReturn())
1876     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1877 
1878   if (FI.isCmseNSCall())
1879     FuncAttrs.addAttribute("cmse_nonsecure_call");
1880 
1881   // If we have information about the function prototype, we can learn
1882   // attributes from there.
1883   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1884                                      CalleeInfo.getCalleeFunctionProtoType());
1885 
1886   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1887 
1888   bool HasOptnone = false;
1889   // The NoBuiltinAttr attached to a TargetDecl (only allowed on FunctionDecls).
1890   const NoBuiltinAttr *NBA = nullptr;
1891   // FIXME: handle sseregparm someday...
1892   if (TargetDecl) {
1893     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1894       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1895     if (TargetDecl->hasAttr<NoThrowAttr>())
1896       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1897     if (TargetDecl->hasAttr<NoReturnAttr>())
1898       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1899     if (TargetDecl->hasAttr<ColdAttr>())
1900       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1901     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1902       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1903     if (TargetDecl->hasAttr<ConvergentAttr>())
1904       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1905 
1906     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1907       AddAttributesFromFunctionProtoType(
1908           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1909       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1910         // A sane operator new returns a non-aliasing pointer.
1911         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1912         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1913             (Kind == OO_New || Kind == OO_Array_New))
1914           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1915       }
1916       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1917       const bool IsVirtualCall = MD && MD->isVirtual();
1918       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1919       // virtual function. These attributes are not inherited by overloads.
1920       if (!(AttrOnCallSite && IsVirtualCall)) {
1921         if (Fn->isNoReturn())
1922           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1923         NBA = Fn->getAttr<NoBuiltinAttr>();
1924       }
1925     }
1926 
1927     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1928     if (TargetDecl->hasAttr<ConstAttr>()) {
1929       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1930       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1931     } else if (TargetDecl->hasAttr<PureAttr>()) {
1932       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1933       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1934     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1935       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1936       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1937     }
1938     if (TargetDecl->hasAttr<RestrictAttr>())
1939       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1940     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1941         !CodeGenOpts.NullPointerIsValid)
1942       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1943     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1944       FuncAttrs.addAttribute("no_caller_saved_registers");
1945     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1946       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1947 
1948     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1949     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1950       Optional<unsigned> NumElemsParam;
1951       if (AllocSize->getNumElemsParam().isValid())
1952         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1953       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1954                                  NumElemsParam);
1955     }
1956   }
1957 
1958   // Attach "no-builtins" attributes to:
1959   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
1960   // * definitions: "no-builtins" or "no-builtin-<name>" only.
1961   // The attributes can come from:
1962   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
1963   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
1964   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
1965 
1966   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1967 
1968   // This must run after constructing the default function attribute list
1969   // to ensure that the speculative load hardening attribute is removed
1970   // in the case where the -mspeculative-load-hardening flag was passed.
1971   if (TargetDecl) {
1972     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1973       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1974     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1975       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1976   }
1977 
1978   if (CodeGenOpts.EnableSegmentedStacks &&
1979       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1980     FuncAttrs.addAttribute("split-stack");
1981 
1982   // Add NonLazyBind attribute to function declarations when -fno-plt
1983   // is used.
1984   if (TargetDecl && CodeGenOpts.NoPLT) {
1985     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1986       if (!Fn->isDefined() && !AttrOnCallSite) {
1987         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1988       }
1989     }
1990   }
1991 
1992   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1993     if (getLangOpts().OpenCLVersion <= 120) {
1994       // OpenCL v1.2 Work groups are always uniform
1995       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1996     } else {
1997       // OpenCL v2.0 Work groups may be whether uniform or not.
1998       // '-cl-uniform-work-group-size' compile option gets a hint
1999       // to the compiler that the global work-size be a multiple of
2000       // the work-group size specified to clEnqueueNDRangeKernel
2001       // (i.e. work groups are uniform).
2002       FuncAttrs.addAttribute("uniform-work-group-size",
2003                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
2004     }
2005   }
2006 
2007   if (!AttrOnCallSite) {
2008     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2009       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2010 
2011     bool DisableTailCalls = false;
2012 
2013     if (CodeGenOpts.DisableTailCalls)
2014       DisableTailCalls = true;
2015     else if (TargetDecl) {
2016       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2017           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2018         DisableTailCalls = true;
2019       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
2020         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2021           if (!BD->doesNotEscape())
2022             DisableTailCalls = true;
2023       }
2024     }
2025 
2026     FuncAttrs.addAttribute("disable-tail-calls",
2027                            llvm::toStringRef(DisableTailCalls));
2028     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2029   }
2030 
2031   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2032 
2033   QualType RetTy = FI.getReturnType();
2034   const ABIArgInfo &RetAI = FI.getReturnInfo();
2035   switch (RetAI.getKind()) {
2036   case ABIArgInfo::Extend:
2037     if (RetAI.isSignExt())
2038       RetAttrs.addAttribute(llvm::Attribute::SExt);
2039     else
2040       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2041     LLVM_FALLTHROUGH;
2042   case ABIArgInfo::Direct:
2043     if (RetAI.getInReg())
2044       RetAttrs.addAttribute(llvm::Attribute::InReg);
2045     break;
2046   case ABIArgInfo::Ignore:
2047     break;
2048 
2049   case ABIArgInfo::InAlloca:
2050   case ABIArgInfo::Indirect: {
2051     // inalloca and sret disable readnone and readonly
2052     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2053       .removeAttribute(llvm::Attribute::ReadNone);
2054     break;
2055   }
2056 
2057   case ABIArgInfo::CoerceAndExpand:
2058     break;
2059 
2060   case ABIArgInfo::Expand:
2061     llvm_unreachable("Invalid ABI kind for return argument");
2062   }
2063 
2064   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2065     QualType PTy = RefTy->getPointeeType();
2066     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2067       RetAttrs.addDereferenceableAttr(
2068           getMinimumObjectSize(PTy).getQuantity());
2069     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2070              !CodeGenOpts.NullPointerIsValid)
2071       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2072   }
2073 
2074   bool hasUsedSRet = false;
2075   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2076 
2077   // Attach attributes to sret.
2078   if (IRFunctionArgs.hasSRetArg()) {
2079     llvm::AttrBuilder SRETAttrs;
2080     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2081     hasUsedSRet = true;
2082     if (RetAI.getInReg())
2083       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2084     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2085     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2086         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2087   }
2088 
2089   // Attach attributes to inalloca argument.
2090   if (IRFunctionArgs.hasInallocaArg()) {
2091     llvm::AttrBuilder Attrs;
2092     Attrs.addAttribute(llvm::Attribute::InAlloca);
2093     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2094         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2095   }
2096 
2097   unsigned ArgNo = 0;
2098   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2099                                           E = FI.arg_end();
2100        I != E; ++I, ++ArgNo) {
2101     QualType ParamType = I->type;
2102     const ABIArgInfo &AI = I->info;
2103     llvm::AttrBuilder Attrs;
2104 
2105     // Add attribute for padding argument, if necessary.
2106     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2107       if (AI.getPaddingInReg()) {
2108         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2109             llvm::AttributeSet::get(
2110                 getLLVMContext(),
2111                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2112       }
2113     }
2114 
2115     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2116     // have the corresponding parameter variable.  It doesn't make
2117     // sense to do it here because parameters are so messed up.
2118     switch (AI.getKind()) {
2119     case ABIArgInfo::Extend:
2120       if (AI.isSignExt())
2121         Attrs.addAttribute(llvm::Attribute::SExt);
2122       else
2123         Attrs.addAttribute(llvm::Attribute::ZExt);
2124       LLVM_FALLTHROUGH;
2125     case ABIArgInfo::Direct:
2126       if (ArgNo == 0 && FI.isChainCall())
2127         Attrs.addAttribute(llvm::Attribute::Nest);
2128       else if (AI.getInReg())
2129         Attrs.addAttribute(llvm::Attribute::InReg);
2130       break;
2131 
2132     case ABIArgInfo::Indirect: {
2133       if (AI.getInReg())
2134         Attrs.addAttribute(llvm::Attribute::InReg);
2135 
2136       if (AI.getIndirectByVal())
2137         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2138 
2139       CharUnits Align = AI.getIndirectAlign();
2140 
2141       // In a byval argument, it is important that the required
2142       // alignment of the type is honored, as LLVM might be creating a
2143       // *new* stack object, and needs to know what alignment to give
2144       // it. (Sometimes it can deduce a sensible alignment on its own,
2145       // but not if clang decides it must emit a packed struct, or the
2146       // user specifies increased alignment requirements.)
2147       //
2148       // This is different from indirect *not* byval, where the object
2149       // exists already, and the align attribute is purely
2150       // informative.
2151       assert(!Align.isZero());
2152 
2153       // For now, only add this when we have a byval argument.
2154       // TODO: be less lazy about updating test cases.
2155       if (AI.getIndirectByVal())
2156         Attrs.addAlignmentAttr(Align.getQuantity());
2157 
2158       // byval disables readnone and readonly.
2159       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2160         .removeAttribute(llvm::Attribute::ReadNone);
2161       break;
2162     }
2163     case ABIArgInfo::Ignore:
2164     case ABIArgInfo::Expand:
2165     case ABIArgInfo::CoerceAndExpand:
2166       break;
2167 
2168     case ABIArgInfo::InAlloca:
2169       // inalloca disables readnone and readonly.
2170       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2171           .removeAttribute(llvm::Attribute::ReadNone);
2172       continue;
2173     }
2174 
2175     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2176       QualType PTy = RefTy->getPointeeType();
2177       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2178         Attrs.addDereferenceableAttr(
2179             getMinimumObjectSize(PTy).getQuantity());
2180       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2181                !CodeGenOpts.NullPointerIsValid)
2182         Attrs.addAttribute(llvm::Attribute::NonNull);
2183     }
2184 
2185     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2186     case ParameterABI::Ordinary:
2187       break;
2188 
2189     case ParameterABI::SwiftIndirectResult: {
2190       // Add 'sret' if we haven't already used it for something, but
2191       // only if the result is void.
2192       if (!hasUsedSRet && RetTy->isVoidType()) {
2193         Attrs.addAttribute(llvm::Attribute::StructRet);
2194         hasUsedSRet = true;
2195       }
2196 
2197       // Add 'noalias' in either case.
2198       Attrs.addAttribute(llvm::Attribute::NoAlias);
2199 
2200       // Add 'dereferenceable' and 'alignment'.
2201       auto PTy = ParamType->getPointeeType();
2202       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2203         auto info = getContext().getTypeInfoInChars(PTy);
2204         Attrs.addDereferenceableAttr(info.first.getQuantity());
2205         Attrs.addAttribute(llvm::Attribute::getWithAlignment(
2206             getLLVMContext(), info.second.getAsAlign()));
2207       }
2208       break;
2209     }
2210 
2211     case ParameterABI::SwiftErrorResult:
2212       Attrs.addAttribute(llvm::Attribute::SwiftError);
2213       break;
2214 
2215     case ParameterABI::SwiftContext:
2216       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2217       break;
2218     }
2219 
2220     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2221       Attrs.addAttribute(llvm::Attribute::NoCapture);
2222 
2223     if (Attrs.hasAttributes()) {
2224       unsigned FirstIRArg, NumIRArgs;
2225       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2226       for (unsigned i = 0; i < NumIRArgs; i++)
2227         ArgAttrs[FirstIRArg + i] =
2228             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2229     }
2230   }
2231   assert(ArgNo == FI.arg_size());
2232 
2233   AttrList = llvm::AttributeList::get(
2234       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2235       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2236 }
2237 
2238 /// An argument came in as a promoted argument; demote it back to its
2239 /// declared type.
2240 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2241                                          const VarDecl *var,
2242                                          llvm::Value *value) {
2243   llvm::Type *varType = CGF.ConvertType(var->getType());
2244 
2245   // This can happen with promotions that actually don't change the
2246   // underlying type, like the enum promotions.
2247   if (value->getType() == varType) return value;
2248 
2249   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2250          && "unexpected promotion type");
2251 
2252   if (isa<llvm::IntegerType>(varType))
2253     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2254 
2255   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2256 }
2257 
2258 /// Returns the attribute (either parameter attribute, or function
2259 /// attribute), which declares argument ArgNo to be non-null.
2260 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2261                                          QualType ArgType, unsigned ArgNo) {
2262   // FIXME: __attribute__((nonnull)) can also be applied to:
2263   //   - references to pointers, where the pointee is known to be
2264   //     nonnull (apparently a Clang extension)
2265   //   - transparent unions containing pointers
2266   // In the former case, LLVM IR cannot represent the constraint. In
2267   // the latter case, we have no guarantee that the transparent union
2268   // is in fact passed as a pointer.
2269   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2270     return nullptr;
2271   // First, check attribute on parameter itself.
2272   if (PVD) {
2273     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2274       return ParmNNAttr;
2275   }
2276   // Check function attributes.
2277   if (!FD)
2278     return nullptr;
2279   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2280     if (NNAttr->isNonNull(ArgNo))
2281       return NNAttr;
2282   }
2283   return nullptr;
2284 }
2285 
2286 namespace {
2287   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2288     Address Temp;
2289     Address Arg;
2290     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2291     void Emit(CodeGenFunction &CGF, Flags flags) override {
2292       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2293       CGF.Builder.CreateStore(errorValue, Arg);
2294     }
2295   };
2296 }
2297 
2298 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2299                                          llvm::Function *Fn,
2300                                          const FunctionArgList &Args) {
2301   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2302     // Naked functions don't have prologues.
2303     return;
2304 
2305   // If this is an implicit-return-zero function, go ahead and
2306   // initialize the return value.  TODO: it might be nice to have
2307   // a more general mechanism for this that didn't require synthesized
2308   // return statements.
2309   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2310     if (FD->hasImplicitReturnZero()) {
2311       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2312       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2313       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2314       Builder.CreateStore(Zero, ReturnValue);
2315     }
2316   }
2317 
2318   // FIXME: We no longer need the types from FunctionArgList; lift up and
2319   // simplify.
2320 
2321   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2322   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2323 
2324   // If we're using inalloca, all the memory arguments are GEPs off of the last
2325   // parameter, which is a pointer to the complete memory area.
2326   Address ArgStruct = Address::invalid();
2327   if (IRFunctionArgs.hasInallocaArg()) {
2328     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2329                         FI.getArgStructAlignment());
2330 
2331     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2332   }
2333 
2334   // Name the struct return parameter.
2335   if (IRFunctionArgs.hasSRetArg()) {
2336     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2337     AI->setName("agg.result");
2338     AI->addAttr(llvm::Attribute::NoAlias);
2339   }
2340 
2341   // Track if we received the parameter as a pointer (indirect, byval, or
2342   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2343   // into a local alloca for us.
2344   SmallVector<ParamValue, 16> ArgVals;
2345   ArgVals.reserve(Args.size());
2346 
2347   // Create a pointer value for every parameter declaration.  This usually
2348   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2349   // any cleanups or do anything that might unwind.  We do that separately, so
2350   // we can push the cleanups in the correct order for the ABI.
2351   assert(FI.arg_size() == Args.size() &&
2352          "Mismatch between function signature & arguments.");
2353   unsigned ArgNo = 0;
2354   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2355   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2356        i != e; ++i, ++info_it, ++ArgNo) {
2357     const VarDecl *Arg = *i;
2358     const ABIArgInfo &ArgI = info_it->info;
2359 
2360     bool isPromoted =
2361       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2362     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2363     // the parameter is promoted. In this case we convert to
2364     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2365     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2366     assert(hasScalarEvaluationKind(Ty) ==
2367            hasScalarEvaluationKind(Arg->getType()));
2368 
2369     unsigned FirstIRArg, NumIRArgs;
2370     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2371 
2372     switch (ArgI.getKind()) {
2373     case ABIArgInfo::InAlloca: {
2374       assert(NumIRArgs == 0);
2375       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2376       Address V =
2377           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2378       if (ArgI.getInAllocaIndirect())
2379         V = Address(Builder.CreateLoad(V),
2380                     getContext().getTypeAlignInChars(Ty));
2381       ArgVals.push_back(ParamValue::forIndirect(V));
2382       break;
2383     }
2384 
2385     case ABIArgInfo::Indirect: {
2386       assert(NumIRArgs == 1);
2387       Address ParamAddr =
2388           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2389 
2390       if (!hasScalarEvaluationKind(Ty)) {
2391         // Aggregates and complex variables are accessed by reference.  All we
2392         // need to do is realign the value, if requested.
2393         Address V = ParamAddr;
2394         if (ArgI.getIndirectRealign()) {
2395           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2396 
2397           // Copy from the incoming argument pointer to the temporary with the
2398           // appropriate alignment.
2399           //
2400           // FIXME: We should have a common utility for generating an aggregate
2401           // copy.
2402           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2403           Builder.CreateMemCpy(
2404               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2405               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2406               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2407           V = AlignedTemp;
2408         }
2409         ArgVals.push_back(ParamValue::forIndirect(V));
2410       } else {
2411         // Load scalar value from indirect argument.
2412         llvm::Value *V =
2413             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2414 
2415         if (isPromoted)
2416           V = emitArgumentDemotion(*this, Arg, V);
2417         ArgVals.push_back(ParamValue::forDirect(V));
2418       }
2419       break;
2420     }
2421 
2422     case ABIArgInfo::Extend:
2423     case ABIArgInfo::Direct: {
2424       auto AI = Fn->getArg(FirstIRArg);
2425       llvm::Type *LTy = ConvertType(Arg->getType());
2426 
2427       // Prepare parameter attributes. So far, only attributes for pointer
2428       // parameters are prepared. See
2429       // http://llvm.org/docs/LangRef.html#paramattrs.
2430       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2431           ArgI.getCoerceToType()->isPointerTy()) {
2432         assert(NumIRArgs == 1);
2433 
2434         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2435           // Set `nonnull` attribute if any.
2436           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2437                              PVD->getFunctionScopeIndex()) &&
2438               !CGM.getCodeGenOpts().NullPointerIsValid)
2439             AI->addAttr(llvm::Attribute::NonNull);
2440 
2441           QualType OTy = PVD->getOriginalType();
2442           if (const auto *ArrTy =
2443               getContext().getAsConstantArrayType(OTy)) {
2444             // A C99 array parameter declaration with the static keyword also
2445             // indicates dereferenceability, and if the size is constant we can
2446             // use the dereferenceable attribute (which requires the size in
2447             // bytes).
2448             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2449               QualType ETy = ArrTy->getElementType();
2450               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2451               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2452                   ArrSize) {
2453                 llvm::AttrBuilder Attrs;
2454                 Attrs.addDereferenceableAttr(
2455                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2456                 AI->addAttrs(Attrs);
2457               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2458                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2459                 AI->addAttr(llvm::Attribute::NonNull);
2460               }
2461             }
2462           } else if (const auto *ArrTy =
2463                      getContext().getAsVariableArrayType(OTy)) {
2464             // For C99 VLAs with the static keyword, we don't know the size so
2465             // we can't use the dereferenceable attribute, but in addrspace(0)
2466             // we know that it must be nonnull.
2467             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2468                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2469                 !CGM.getCodeGenOpts().NullPointerIsValid)
2470               AI->addAttr(llvm::Attribute::NonNull);
2471           }
2472 
2473           // Set `align` attribute if any.
2474           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2475           if (!AVAttr)
2476             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2477               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2478           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2479             // If alignment-assumption sanitizer is enabled, we do *not* add
2480             // alignment attribute here, but emit normal alignment assumption,
2481             // so the UBSAN check could function.
2482             llvm::Value *AlignmentValue =
2483               EmitScalarExpr(AVAttr->getAlignment());
2484             llvm::ConstantInt *AlignmentCI =
2485               cast<llvm::ConstantInt>(AlignmentValue);
2486             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(llvm::MaybeAlign(
2487                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))));
2488           }
2489         }
2490 
2491         // Set 'noalias' if an argument type has the `restrict` qualifier.
2492         if (Arg->getType().isRestrictQualified())
2493           AI->addAttr(llvm::Attribute::NoAlias);
2494       }
2495 
2496       // Prepare the argument value. If we have the trivial case, handle it
2497       // with no muss and fuss.
2498       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2499           ArgI.getCoerceToType() == ConvertType(Ty) &&
2500           ArgI.getDirectOffset() == 0) {
2501         assert(NumIRArgs == 1);
2502 
2503         // LLVM expects swifterror parameters to be used in very restricted
2504         // ways.  Copy the value into a less-restricted temporary.
2505         llvm::Value *V = AI;
2506         if (FI.getExtParameterInfo(ArgNo).getABI()
2507               == ParameterABI::SwiftErrorResult) {
2508           QualType pointeeTy = Ty->getPointeeType();
2509           assert(pointeeTy->isPointerType());
2510           Address temp =
2511             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2512           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2513           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2514           Builder.CreateStore(incomingErrorValue, temp);
2515           V = temp.getPointer();
2516 
2517           // Push a cleanup to copy the value back at the end of the function.
2518           // The convention does not guarantee that the value will be written
2519           // back if the function exits with an unwind exception.
2520           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2521         }
2522 
2523         // Ensure the argument is the correct type.
2524         if (V->getType() != ArgI.getCoerceToType())
2525           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2526 
2527         if (isPromoted)
2528           V = emitArgumentDemotion(*this, Arg, V);
2529 
2530         // Because of merging of function types from multiple decls it is
2531         // possible for the type of an argument to not match the corresponding
2532         // type in the function type. Since we are codegening the callee
2533         // in here, add a cast to the argument type.
2534         llvm::Type *LTy = ConvertType(Arg->getType());
2535         if (V->getType() != LTy)
2536           V = Builder.CreateBitCast(V, LTy);
2537 
2538         ArgVals.push_back(ParamValue::forDirect(V));
2539         break;
2540       }
2541 
2542       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2543                                      Arg->getName());
2544 
2545       // Pointer to store into.
2546       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2547 
2548       // Fast-isel and the optimizer generally like scalar values better than
2549       // FCAs, so we flatten them if this is safe to do for this argument.
2550       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2551       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2552           STy->getNumElements() > 1) {
2553         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2554         llvm::Type *DstTy = Ptr.getElementType();
2555         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2556 
2557         Address AddrToStoreInto = Address::invalid();
2558         if (SrcSize <= DstSize) {
2559           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2560         } else {
2561           AddrToStoreInto =
2562             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2563         }
2564 
2565         assert(STy->getNumElements() == NumIRArgs);
2566         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2567           auto AI = Fn->getArg(FirstIRArg + i);
2568           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2569           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2570           Builder.CreateStore(AI, EltPtr);
2571         }
2572 
2573         if (SrcSize > DstSize) {
2574           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2575         }
2576 
2577       } else {
2578         // Simple case, just do a coerced store of the argument into the alloca.
2579         assert(NumIRArgs == 1);
2580         auto AI = Fn->getArg(FirstIRArg);
2581         AI->setName(Arg->getName() + ".coerce");
2582         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2583       }
2584 
2585       // Match to what EmitParmDecl is expecting for this type.
2586       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2587         llvm::Value *V =
2588             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2589         if (isPromoted)
2590           V = emitArgumentDemotion(*this, Arg, V);
2591         ArgVals.push_back(ParamValue::forDirect(V));
2592       } else {
2593         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2594       }
2595       break;
2596     }
2597 
2598     case ABIArgInfo::CoerceAndExpand: {
2599       // Reconstruct into a temporary.
2600       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2601       ArgVals.push_back(ParamValue::forIndirect(alloca));
2602 
2603       auto coercionType = ArgI.getCoerceAndExpandType();
2604       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2605 
2606       unsigned argIndex = FirstIRArg;
2607       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2608         llvm::Type *eltType = coercionType->getElementType(i);
2609         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2610           continue;
2611 
2612         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2613         auto elt = Fn->getArg(argIndex++);
2614         Builder.CreateStore(elt, eltAddr);
2615       }
2616       assert(argIndex == FirstIRArg + NumIRArgs);
2617       break;
2618     }
2619 
2620     case ABIArgInfo::Expand: {
2621       // If this structure was expanded into multiple arguments then
2622       // we need to create a temporary and reconstruct it from the
2623       // arguments.
2624       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2625       LValue LV = MakeAddrLValue(Alloca, Ty);
2626       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2627 
2628       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2629       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2630       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2631       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2632         auto AI = Fn->getArg(FirstIRArg + i);
2633         AI->setName(Arg->getName() + "." + Twine(i));
2634       }
2635       break;
2636     }
2637 
2638     case ABIArgInfo::Ignore:
2639       assert(NumIRArgs == 0);
2640       // Initialize the local variable appropriately.
2641       if (!hasScalarEvaluationKind(Ty)) {
2642         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2643       } else {
2644         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2645         ArgVals.push_back(ParamValue::forDirect(U));
2646       }
2647       break;
2648     }
2649   }
2650 
2651   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2652     for (int I = Args.size() - 1; I >= 0; --I)
2653       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2654   } else {
2655     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2656       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2657   }
2658 }
2659 
2660 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2661   while (insn->use_empty()) {
2662     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2663     if (!bitcast) return;
2664 
2665     // This is "safe" because we would have used a ConstantExpr otherwise.
2666     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2667     bitcast->eraseFromParent();
2668   }
2669 }
2670 
2671 /// Try to emit a fused autorelease of a return result.
2672 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2673                                                     llvm::Value *result) {
2674   // We must be immediately followed the cast.
2675   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2676   if (BB->empty()) return nullptr;
2677   if (&BB->back() != result) return nullptr;
2678 
2679   llvm::Type *resultType = result->getType();
2680 
2681   // result is in a BasicBlock and is therefore an Instruction.
2682   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2683 
2684   SmallVector<llvm::Instruction *, 4> InstsToKill;
2685 
2686   // Look for:
2687   //  %generator = bitcast %type1* %generator2 to %type2*
2688   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2689     // We would have emitted this as a constant if the operand weren't
2690     // an Instruction.
2691     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2692 
2693     // Require the generator to be immediately followed by the cast.
2694     if (generator->getNextNode() != bitcast)
2695       return nullptr;
2696 
2697     InstsToKill.push_back(bitcast);
2698   }
2699 
2700   // Look for:
2701   //   %generator = call i8* @objc_retain(i8* %originalResult)
2702   // or
2703   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2704   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2705   if (!call) return nullptr;
2706 
2707   bool doRetainAutorelease;
2708 
2709   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2710     doRetainAutorelease = true;
2711   } else if (call->getCalledOperand() ==
2712              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
2713     doRetainAutorelease = false;
2714 
2715     // If we emitted an assembly marker for this call (and the
2716     // ARCEntrypoints field should have been set if so), go looking
2717     // for that call.  If we can't find it, we can't do this
2718     // optimization.  But it should always be the immediately previous
2719     // instruction, unless we needed bitcasts around the call.
2720     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2721       llvm::Instruction *prev = call->getPrevNode();
2722       assert(prev);
2723       if (isa<llvm::BitCastInst>(prev)) {
2724         prev = prev->getPrevNode();
2725         assert(prev);
2726       }
2727       assert(isa<llvm::CallInst>(prev));
2728       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
2729              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2730       InstsToKill.push_back(prev);
2731     }
2732   } else {
2733     return nullptr;
2734   }
2735 
2736   result = call->getArgOperand(0);
2737   InstsToKill.push_back(call);
2738 
2739   // Keep killing bitcasts, for sanity.  Note that we no longer care
2740   // about precise ordering as long as there's exactly one use.
2741   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2742     if (!bitcast->hasOneUse()) break;
2743     InstsToKill.push_back(bitcast);
2744     result = bitcast->getOperand(0);
2745   }
2746 
2747   // Delete all the unnecessary instructions, from latest to earliest.
2748   for (auto *I : InstsToKill)
2749     I->eraseFromParent();
2750 
2751   // Do the fused retain/autorelease if we were asked to.
2752   if (doRetainAutorelease)
2753     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2754 
2755   // Cast back to the result type.
2756   return CGF.Builder.CreateBitCast(result, resultType);
2757 }
2758 
2759 /// If this is a +1 of the value of an immutable 'self', remove it.
2760 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2761                                           llvm::Value *result) {
2762   // This is only applicable to a method with an immutable 'self'.
2763   const ObjCMethodDecl *method =
2764     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2765   if (!method) return nullptr;
2766   const VarDecl *self = method->getSelfDecl();
2767   if (!self->getType().isConstQualified()) return nullptr;
2768 
2769   // Look for a retain call.
2770   llvm::CallInst *retainCall =
2771     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2772   if (!retainCall || retainCall->getCalledOperand() !=
2773                          CGF.CGM.getObjCEntrypoints().objc_retain)
2774     return nullptr;
2775 
2776   // Look for an ordinary load of 'self'.
2777   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2778   llvm::LoadInst *load =
2779     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2780   if (!load || load->isAtomic() || load->isVolatile() ||
2781       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2782     return nullptr;
2783 
2784   // Okay!  Burn it all down.  This relies for correctness on the
2785   // assumption that the retain is emitted as part of the return and
2786   // that thereafter everything is used "linearly".
2787   llvm::Type *resultType = result->getType();
2788   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2789   assert(retainCall->use_empty());
2790   retainCall->eraseFromParent();
2791   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2792 
2793   return CGF.Builder.CreateBitCast(load, resultType);
2794 }
2795 
2796 /// Emit an ARC autorelease of the result of a function.
2797 ///
2798 /// \return the value to actually return from the function
2799 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2800                                             llvm::Value *result) {
2801   // If we're returning 'self', kill the initial retain.  This is a
2802   // heuristic attempt to "encourage correctness" in the really unfortunate
2803   // case where we have a return of self during a dealloc and we desperately
2804   // need to avoid the possible autorelease.
2805   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2806     return self;
2807 
2808   // At -O0, try to emit a fused retain/autorelease.
2809   if (CGF.shouldUseFusedARCCalls())
2810     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2811       return fused;
2812 
2813   return CGF.EmitARCAutoreleaseReturnValue(result);
2814 }
2815 
2816 /// Heuristically search for a dominating store to the return-value slot.
2817 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2818   // Check if a User is a store which pointerOperand is the ReturnValue.
2819   // We are looking for stores to the ReturnValue, not for stores of the
2820   // ReturnValue to some other location.
2821   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2822     auto *SI = dyn_cast<llvm::StoreInst>(U);
2823     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2824       return nullptr;
2825     // These aren't actually possible for non-coerced returns, and we
2826     // only care about non-coerced returns on this code path.
2827     assert(!SI->isAtomic() && !SI->isVolatile());
2828     return SI;
2829   };
2830   // If there are multiple uses of the return-value slot, just check
2831   // for something immediately preceding the IP.  Sometimes this can
2832   // happen with how we generate implicit-returns; it can also happen
2833   // with noreturn cleanups.
2834   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2835     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2836     if (IP->empty()) return nullptr;
2837     llvm::Instruction *I = &IP->back();
2838 
2839     // Skip lifetime markers
2840     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2841                                             IE = IP->rend();
2842          II != IE; ++II) {
2843       if (llvm::IntrinsicInst *Intrinsic =
2844               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2845         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2846           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2847           ++II;
2848           if (II == IE)
2849             break;
2850           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2851             continue;
2852         }
2853       }
2854       I = &*II;
2855       break;
2856     }
2857 
2858     return GetStoreIfValid(I);
2859   }
2860 
2861   llvm::StoreInst *store =
2862       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2863   if (!store) return nullptr;
2864 
2865   // Now do a first-and-dirty dominance check: just walk up the
2866   // single-predecessors chain from the current insertion point.
2867   llvm::BasicBlock *StoreBB = store->getParent();
2868   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2869   while (IP != StoreBB) {
2870     if (!(IP = IP->getSinglePredecessor()))
2871       return nullptr;
2872   }
2873 
2874   // Okay, the store's basic block dominates the insertion point; we
2875   // can do our thing.
2876   return store;
2877 }
2878 
2879 // Helper functions for EmitCMSEClearRecord
2880 
2881 // Set the bits corresponding to a field having width `BitWidth` and located at
2882 // offset `BitOffset` (from the least significant bit) within a storage unit of
2883 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
2884 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
2885 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
2886                         int BitWidth, int CharWidth) {
2887   assert(CharWidth <= 64);
2888   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
2889 
2890   int Pos = 0;
2891   if (BitOffset >= CharWidth) {
2892     Pos += BitOffset / CharWidth;
2893     BitOffset = BitOffset % CharWidth;
2894   }
2895 
2896   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
2897   if (BitOffset + BitWidth >= CharWidth) {
2898     Bits[Pos++] |= (Used << BitOffset) & Used;
2899     BitWidth -= CharWidth - BitOffset;
2900     BitOffset = 0;
2901   }
2902 
2903   while (BitWidth >= CharWidth) {
2904     Bits[Pos++] = Used;
2905     BitWidth -= CharWidth;
2906   }
2907 
2908   if (BitWidth > 0)
2909     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
2910 }
2911 
2912 // Set the bits corresponding to a field having width `BitWidth` and located at
2913 // offset `BitOffset` (from the least significant bit) within a storage unit of
2914 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
2915 // `Bits` corresponds to one target byte. Use target endian layout.
2916 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
2917                         int StorageSize, int BitOffset, int BitWidth,
2918                         int CharWidth, bool BigEndian) {
2919 
2920   SmallVector<uint64_t, 8> TmpBits(StorageSize);
2921   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
2922 
2923   if (BigEndian)
2924     std::reverse(TmpBits.begin(), TmpBits.end());
2925 
2926   for (uint64_t V : TmpBits)
2927     Bits[StorageOffset++] |= V;
2928 }
2929 
2930 static void setUsedBits(CodeGenModule &, QualType, int,
2931                         SmallVectorImpl<uint64_t> &);
2932 
2933 // Set the bits in `Bits`, which correspond to the value representations of
2934 // the actual members of the record type `RTy`. Note that this function does
2935 // not handle base classes, virtual tables, etc, since they cannot happen in
2936 // CMSE function arguments or return. The bit mask corresponds to the target
2937 // memory layout, i.e. it's endian dependent.
2938 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
2939                         SmallVectorImpl<uint64_t> &Bits) {
2940   ASTContext &Context = CGM.getContext();
2941   int CharWidth = Context.getCharWidth();
2942   const RecordDecl *RD = RTy->getDecl()->getDefinition();
2943   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
2944   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
2945 
2946   int Idx = 0;
2947   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
2948     const FieldDecl *F = *I;
2949 
2950     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
2951         F->getType()->isIncompleteArrayType())
2952       continue;
2953 
2954     if (F->isBitField()) {
2955       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
2956       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
2957                   BFI.StorageSize / CharWidth, BFI.Offset,
2958                   BFI.Size, CharWidth,
2959                   CGM.getDataLayout().isBigEndian());
2960       continue;
2961     }
2962 
2963     setUsedBits(CGM, F->getType(),
2964                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
2965   }
2966 }
2967 
2968 // Set the bits in `Bits`, which correspond to the value representations of
2969 // the elements of an array type `ATy`.
2970 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
2971                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
2972   const ASTContext &Context = CGM.getContext();
2973 
2974   QualType ETy = Context.getBaseElementType(ATy);
2975   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
2976   SmallVector<uint64_t, 4> TmpBits(Size);
2977   setUsedBits(CGM, ETy, 0, TmpBits);
2978 
2979   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
2980     auto Src = TmpBits.begin();
2981     auto Dst = Bits.begin() + Offset + I * Size;
2982     for (int J = 0; J < Size; ++J)
2983       *Dst++ |= *Src++;
2984   }
2985 }
2986 
2987 // Set the bits in `Bits`, which correspond to the value representations of
2988 // the type `QTy`.
2989 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
2990                         SmallVectorImpl<uint64_t> &Bits) {
2991   if (const auto *RTy = QTy->getAs<RecordType>())
2992     return setUsedBits(CGM, RTy, Offset, Bits);
2993 
2994   ASTContext &Context = CGM.getContext();
2995   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
2996     return setUsedBits(CGM, ATy, Offset, Bits);
2997 
2998   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
2999   if (Size <= 0)
3000     return;
3001 
3002   std::fill_n(Bits.begin() + Offset, Size,
3003               (uint64_t(1) << Context.getCharWidth()) - 1);
3004 }
3005 
3006 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3007                                    int Pos, int Size, int CharWidth,
3008                                    bool BigEndian) {
3009   assert(Size > 0);
3010   uint64_t Mask = 0;
3011   if (BigEndian) {
3012     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3013          ++P)
3014       Mask = (Mask << CharWidth) | *P;
3015   } else {
3016     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3017     do
3018       Mask = (Mask << CharWidth) | *--P;
3019     while (P != End);
3020   }
3021   return Mask;
3022 }
3023 
3024 // Emit code to clear the bits in a record, which aren't a part of any user
3025 // declared member, when the record is a function return.
3026 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3027                                                   llvm::IntegerType *ITy,
3028                                                   QualType QTy) {
3029   assert(Src->getType() == ITy);
3030   assert(ITy->getScalarSizeInBits() <= 64);
3031 
3032   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3033   int Size = DataLayout.getTypeStoreSize(ITy);
3034   SmallVector<uint64_t, 4> Bits(Size);
3035   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3036 
3037   int CharWidth = CGM.getContext().getCharWidth();
3038   uint64_t Mask =
3039       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3040 
3041   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3042 }
3043 
3044 // Emit code to clear the bits in a record, which aren't a part of any user
3045 // declared member, when the record is a function argument.
3046 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3047                                                   llvm::ArrayType *ATy,
3048                                                   QualType QTy) {
3049   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3050   int Size = DataLayout.getTypeStoreSize(ATy);
3051   SmallVector<uint64_t, 16> Bits(Size);
3052   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3053 
3054   // Clear each element of the LLVM array.
3055   int CharWidth = CGM.getContext().getCharWidth();
3056   int CharsPerElt =
3057       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3058   int MaskIndex = 0;
3059   llvm::Value *R = llvm::UndefValue::get(ATy);
3060   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3061     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3062                                        DataLayout.isBigEndian());
3063     MaskIndex += CharsPerElt;
3064     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3065     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3066     R = Builder.CreateInsertValue(R, T1, I);
3067   }
3068 
3069   return R;
3070 }
3071 
3072 // Emit code to clear the padding bits when returning or passing as an argument
3073 // a 16-bit floating-point value.
3074 llvm::Value *CodeGenFunction::EmitCMSEClearFP16(llvm::Value *Src) {
3075   llvm::Type *RetTy = Src->getType();
3076   assert(RetTy->isFloatTy() ||
3077          (RetTy->isIntegerTy() && RetTy->getIntegerBitWidth() == 32));
3078   if (RetTy->isFloatTy()) {
3079     llvm::Value *T0 = Builder.CreateBitCast(Src, Builder.getIntNTy(32));
3080     llvm::Value *T1 = Builder.CreateAnd(T0, 0xffff, "cmse.clear");
3081     return Builder.CreateBitCast(T1, RetTy);
3082   }
3083   return Builder.CreateAnd(Src, 0xffff, "cmse.clear");
3084 }
3085 
3086 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3087                                          bool EmitRetDbgLoc,
3088                                          SourceLocation EndLoc) {
3089   if (FI.isNoReturn()) {
3090     // Noreturn functions don't return.
3091     EmitUnreachable(EndLoc);
3092     return;
3093   }
3094 
3095   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3096     // Naked functions don't have epilogues.
3097     Builder.CreateUnreachable();
3098     return;
3099   }
3100 
3101   // Functions with no result always return void.
3102   if (!ReturnValue.isValid()) {
3103     Builder.CreateRetVoid();
3104     return;
3105   }
3106 
3107   llvm::DebugLoc RetDbgLoc;
3108   llvm::Value *RV = nullptr;
3109   QualType RetTy = FI.getReturnType();
3110   const ABIArgInfo &RetAI = FI.getReturnInfo();
3111 
3112   switch (RetAI.getKind()) {
3113   case ABIArgInfo::InAlloca:
3114     // Aggregrates get evaluated directly into the destination.  Sometimes we
3115     // need to return the sret value in a register, though.
3116     assert(hasAggregateEvaluationKind(RetTy));
3117     if (RetAI.getInAllocaSRet()) {
3118       llvm::Function::arg_iterator EI = CurFn->arg_end();
3119       --EI;
3120       llvm::Value *ArgStruct = &*EI;
3121       llvm::Value *SRet = Builder.CreateStructGEP(
3122           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3123       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3124     }
3125     break;
3126 
3127   case ABIArgInfo::Indirect: {
3128     auto AI = CurFn->arg_begin();
3129     if (RetAI.isSRetAfterThis())
3130       ++AI;
3131     switch (getEvaluationKind(RetTy)) {
3132     case TEK_Complex: {
3133       ComplexPairTy RT =
3134         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3135       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3136                          /*isInit*/ true);
3137       break;
3138     }
3139     case TEK_Aggregate:
3140       // Do nothing; aggregrates get evaluated directly into the destination.
3141       break;
3142     case TEK_Scalar:
3143       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3144                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3145                         /*isInit*/ true);
3146       break;
3147     }
3148     break;
3149   }
3150 
3151   case ABIArgInfo::Extend:
3152   case ABIArgInfo::Direct:
3153     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3154         RetAI.getDirectOffset() == 0) {
3155       // The internal return value temp always will have pointer-to-return-type
3156       // type, just do a load.
3157 
3158       // If there is a dominating store to ReturnValue, we can elide
3159       // the load, zap the store, and usually zap the alloca.
3160       if (llvm::StoreInst *SI =
3161               findDominatingStoreToReturnValue(*this)) {
3162         // Reuse the debug location from the store unless there is
3163         // cleanup code to be emitted between the store and return
3164         // instruction.
3165         if (EmitRetDbgLoc && !AutoreleaseResult)
3166           RetDbgLoc = SI->getDebugLoc();
3167         // Get the stored value and nuke the now-dead store.
3168         RV = SI->getValueOperand();
3169         SI->eraseFromParent();
3170 
3171       // Otherwise, we have to do a simple load.
3172       } else {
3173         RV = Builder.CreateLoad(ReturnValue);
3174       }
3175     } else {
3176       // If the value is offset in memory, apply the offset now.
3177       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3178 
3179       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3180     }
3181 
3182     // In ARC, end functions that return a retainable type with a call
3183     // to objc_autoreleaseReturnValue.
3184     if (AutoreleaseResult) {
3185 #ifndef NDEBUG
3186       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3187       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3188       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3189       // CurCodeDecl or BlockInfo.
3190       QualType RT;
3191 
3192       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3193         RT = FD->getReturnType();
3194       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3195         RT = MD->getReturnType();
3196       else if (isa<BlockDecl>(CurCodeDecl))
3197         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3198       else
3199         llvm_unreachable("Unexpected function/method type");
3200 
3201       assert(getLangOpts().ObjCAutoRefCount &&
3202              !FI.isReturnsRetained() &&
3203              RT->isObjCRetainableType());
3204 #endif
3205       RV = emitAutoreleaseOfResult(*this, RV);
3206     }
3207 
3208     break;
3209 
3210   case ABIArgInfo::Ignore:
3211     break;
3212 
3213   case ABIArgInfo::CoerceAndExpand: {
3214     auto coercionType = RetAI.getCoerceAndExpandType();
3215 
3216     // Load all of the coerced elements out into results.
3217     llvm::SmallVector<llvm::Value*, 4> results;
3218     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3219     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3220       auto coercedEltType = coercionType->getElementType(i);
3221       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3222         continue;
3223 
3224       auto eltAddr = Builder.CreateStructGEP(addr, i);
3225       auto elt = Builder.CreateLoad(eltAddr);
3226       results.push_back(elt);
3227     }
3228 
3229     // If we have one result, it's the single direct result type.
3230     if (results.size() == 1) {
3231       RV = results[0];
3232 
3233     // Otherwise, we need to make a first-class aggregate.
3234     } else {
3235       // Construct a return type that lacks padding elements.
3236       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3237 
3238       RV = llvm::UndefValue::get(returnType);
3239       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3240         RV = Builder.CreateInsertValue(RV, results[i], i);
3241       }
3242     }
3243     break;
3244   }
3245 
3246   case ABIArgInfo::Expand:
3247     llvm_unreachable("Invalid ABI kind for return argument");
3248   }
3249 
3250   llvm::Instruction *Ret;
3251   if (RV) {
3252     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3253       // For certain return types, clear padding bits, as they may reveal
3254       // sensitive information.
3255       const Type *RTy = RetTy.getCanonicalType().getTypePtr();
3256       if (RTy->isFloat16Type() || RTy->isHalfType()) {
3257         // 16-bit floating-point types are passed in a 32-bit integer or float,
3258         // with unspecified upper bits.
3259         RV = EmitCMSEClearFP16(RV);
3260       } else {
3261         // Small struct/union types are passed as integers.
3262         auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3263         if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3264           RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3265       }
3266     }
3267     EmitReturnValueCheck(RV);
3268     Ret = Builder.CreateRet(RV);
3269   } else {
3270     Ret = Builder.CreateRetVoid();
3271   }
3272 
3273   if (RetDbgLoc)
3274     Ret->setDebugLoc(std::move(RetDbgLoc));
3275 }
3276 
3277 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3278   // A current decl may not be available when emitting vtable thunks.
3279   if (!CurCodeDecl)
3280     return;
3281 
3282   // If the return block isn't reachable, neither is this check, so don't emit
3283   // it.
3284   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3285     return;
3286 
3287   ReturnsNonNullAttr *RetNNAttr = nullptr;
3288   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3289     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3290 
3291   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3292     return;
3293 
3294   // Prefer the returns_nonnull attribute if it's present.
3295   SourceLocation AttrLoc;
3296   SanitizerMask CheckKind;
3297   SanitizerHandler Handler;
3298   if (RetNNAttr) {
3299     assert(!requiresReturnValueNullabilityCheck() &&
3300            "Cannot check nullability and the nonnull attribute");
3301     AttrLoc = RetNNAttr->getLocation();
3302     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3303     Handler = SanitizerHandler::NonnullReturn;
3304   } else {
3305     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3306       if (auto *TSI = DD->getTypeSourceInfo())
3307         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3308           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3309     CheckKind = SanitizerKind::NullabilityReturn;
3310     Handler = SanitizerHandler::NullabilityReturn;
3311   }
3312 
3313   SanitizerScope SanScope(this);
3314 
3315   // Make sure the "return" source location is valid. If we're checking a
3316   // nullability annotation, make sure the preconditions for the check are met.
3317   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3318   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3319   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3320   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3321   if (requiresReturnValueNullabilityCheck())
3322     CanNullCheck =
3323         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3324   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3325   EmitBlock(Check);
3326 
3327   // Now do the null check.
3328   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3329   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3330   llvm::Value *DynamicData[] = {SLocPtr};
3331   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3332 
3333   EmitBlock(NoCheck);
3334 
3335 #ifndef NDEBUG
3336   // The return location should not be used after the check has been emitted.
3337   ReturnLocation = Address::invalid();
3338 #endif
3339 }
3340 
3341 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3342   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3343   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3344 }
3345 
3346 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3347                                           QualType Ty) {
3348   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3349   // placeholders.
3350   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3351   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3352   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3353 
3354   // FIXME: When we generate this IR in one pass, we shouldn't need
3355   // this win32-specific alignment hack.
3356   CharUnits Align = CharUnits::fromQuantity(4);
3357   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3358 
3359   return AggValueSlot::forAddr(Address(Placeholder, Align),
3360                                Ty.getQualifiers(),
3361                                AggValueSlot::IsNotDestructed,
3362                                AggValueSlot::DoesNotNeedGCBarriers,
3363                                AggValueSlot::IsNotAliased,
3364                                AggValueSlot::DoesNotOverlap);
3365 }
3366 
3367 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3368                                           const VarDecl *param,
3369                                           SourceLocation loc) {
3370   // StartFunction converted the ABI-lowered parameter(s) into a
3371   // local alloca.  We need to turn that into an r-value suitable
3372   // for EmitCall.
3373   Address local = GetAddrOfLocalVar(param);
3374 
3375   QualType type = param->getType();
3376 
3377   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3378     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3379   }
3380 
3381   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3382   // but the argument needs to be the original pointer.
3383   if (type->isReferenceType()) {
3384     args.add(RValue::get(Builder.CreateLoad(local)), type);
3385 
3386   // In ARC, move out of consumed arguments so that the release cleanup
3387   // entered by StartFunction doesn't cause an over-release.  This isn't
3388   // optimal -O0 code generation, but it should get cleaned up when
3389   // optimization is enabled.  This also assumes that delegate calls are
3390   // performed exactly once for a set of arguments, but that should be safe.
3391   } else if (getLangOpts().ObjCAutoRefCount &&
3392              param->hasAttr<NSConsumedAttr>() &&
3393              type->isObjCRetainableType()) {
3394     llvm::Value *ptr = Builder.CreateLoad(local);
3395     auto null =
3396       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3397     Builder.CreateStore(null, local);
3398     args.add(RValue::get(ptr), type);
3399 
3400   // For the most part, we just need to load the alloca, except that
3401   // aggregate r-values are actually pointers to temporaries.
3402   } else {
3403     args.add(convertTempToRValue(local, type, loc), type);
3404   }
3405 
3406   // Deactivate the cleanup for the callee-destructed param that was pushed.
3407   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3408       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3409       param->needsDestruction(getContext())) {
3410     EHScopeStack::stable_iterator cleanup =
3411         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3412     assert(cleanup.isValid() &&
3413            "cleanup for callee-destructed param not recorded");
3414     // This unreachable is a temporary marker which will be removed later.
3415     llvm::Instruction *isActive = Builder.CreateUnreachable();
3416     args.addArgCleanupDeactivation(cleanup, isActive);
3417   }
3418 }
3419 
3420 static bool isProvablyNull(llvm::Value *addr) {
3421   return isa<llvm::ConstantPointerNull>(addr);
3422 }
3423 
3424 /// Emit the actual writing-back of a writeback.
3425 static void emitWriteback(CodeGenFunction &CGF,
3426                           const CallArgList::Writeback &writeback) {
3427   const LValue &srcLV = writeback.Source;
3428   Address srcAddr = srcLV.getAddress(CGF);
3429   assert(!isProvablyNull(srcAddr.getPointer()) &&
3430          "shouldn't have writeback for provably null argument");
3431 
3432   llvm::BasicBlock *contBB = nullptr;
3433 
3434   // If the argument wasn't provably non-null, we need to null check
3435   // before doing the store.
3436   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3437                                               CGF.CGM.getDataLayout());
3438   if (!provablyNonNull) {
3439     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3440     contBB = CGF.createBasicBlock("icr.done");
3441 
3442     llvm::Value *isNull =
3443       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3444     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3445     CGF.EmitBlock(writebackBB);
3446   }
3447 
3448   // Load the value to writeback.
3449   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3450 
3451   // Cast it back, in case we're writing an id to a Foo* or something.
3452   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3453                                     "icr.writeback-cast");
3454 
3455   // Perform the writeback.
3456 
3457   // If we have a "to use" value, it's something we need to emit a use
3458   // of.  This has to be carefully threaded in: if it's done after the
3459   // release it's potentially undefined behavior (and the optimizer
3460   // will ignore it), and if it happens before the retain then the
3461   // optimizer could move the release there.
3462   if (writeback.ToUse) {
3463     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3464 
3465     // Retain the new value.  No need to block-copy here:  the block's
3466     // being passed up the stack.
3467     value = CGF.EmitARCRetainNonBlock(value);
3468 
3469     // Emit the intrinsic use here.
3470     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3471 
3472     // Load the old value (primitively).
3473     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3474 
3475     // Put the new value in place (primitively).
3476     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3477 
3478     // Release the old value.
3479     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3480 
3481   // Otherwise, we can just do a normal lvalue store.
3482   } else {
3483     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3484   }
3485 
3486   // Jump to the continuation block.
3487   if (!provablyNonNull)
3488     CGF.EmitBlock(contBB);
3489 }
3490 
3491 static void emitWritebacks(CodeGenFunction &CGF,
3492                            const CallArgList &args) {
3493   for (const auto &I : args.writebacks())
3494     emitWriteback(CGF, I);
3495 }
3496 
3497 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3498                                             const CallArgList &CallArgs) {
3499   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3500     CallArgs.getCleanupsToDeactivate();
3501   // Iterate in reverse to increase the likelihood of popping the cleanup.
3502   for (const auto &I : llvm::reverse(Cleanups)) {
3503     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3504     I.IsActiveIP->eraseFromParent();
3505   }
3506 }
3507 
3508 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3509   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3510     if (uop->getOpcode() == UO_AddrOf)
3511       return uop->getSubExpr();
3512   return nullptr;
3513 }
3514 
3515 /// Emit an argument that's being passed call-by-writeback.  That is,
3516 /// we are passing the address of an __autoreleased temporary; it
3517 /// might be copy-initialized with the current value of the given
3518 /// address, but it will definitely be copied out of after the call.
3519 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3520                              const ObjCIndirectCopyRestoreExpr *CRE) {
3521   LValue srcLV;
3522 
3523   // Make an optimistic effort to emit the address as an l-value.
3524   // This can fail if the argument expression is more complicated.
3525   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3526     srcLV = CGF.EmitLValue(lvExpr);
3527 
3528   // Otherwise, just emit it as a scalar.
3529   } else {
3530     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3531 
3532     QualType srcAddrType =
3533       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3534     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3535   }
3536   Address srcAddr = srcLV.getAddress(CGF);
3537 
3538   // The dest and src types don't necessarily match in LLVM terms
3539   // because of the crazy ObjC compatibility rules.
3540 
3541   llvm::PointerType *destType =
3542     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3543 
3544   // If the address is a constant null, just pass the appropriate null.
3545   if (isProvablyNull(srcAddr.getPointer())) {
3546     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3547              CRE->getType());
3548     return;
3549   }
3550 
3551   // Create the temporary.
3552   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3553                                       CGF.getPointerAlign(),
3554                                       "icr.temp");
3555   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3556   // and that cleanup will be conditional if we can't prove that the l-value
3557   // isn't null, so we need to register a dominating point so that the cleanups
3558   // system will make valid IR.
3559   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3560 
3561   // Zero-initialize it if we're not doing a copy-initialization.
3562   bool shouldCopy = CRE->shouldCopy();
3563   if (!shouldCopy) {
3564     llvm::Value *null =
3565       llvm::ConstantPointerNull::get(
3566         cast<llvm::PointerType>(destType->getElementType()));
3567     CGF.Builder.CreateStore(null, temp);
3568   }
3569 
3570   llvm::BasicBlock *contBB = nullptr;
3571   llvm::BasicBlock *originBB = nullptr;
3572 
3573   // If the address is *not* known to be non-null, we need to switch.
3574   llvm::Value *finalArgument;
3575 
3576   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3577                                               CGF.CGM.getDataLayout());
3578   if (provablyNonNull) {
3579     finalArgument = temp.getPointer();
3580   } else {
3581     llvm::Value *isNull =
3582       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3583 
3584     finalArgument = CGF.Builder.CreateSelect(isNull,
3585                                    llvm::ConstantPointerNull::get(destType),
3586                                              temp.getPointer(), "icr.argument");
3587 
3588     // If we need to copy, then the load has to be conditional, which
3589     // means we need control flow.
3590     if (shouldCopy) {
3591       originBB = CGF.Builder.GetInsertBlock();
3592       contBB = CGF.createBasicBlock("icr.cont");
3593       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3594       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3595       CGF.EmitBlock(copyBB);
3596       condEval.begin(CGF);
3597     }
3598   }
3599 
3600   llvm::Value *valueToUse = nullptr;
3601 
3602   // Perform a copy if necessary.
3603   if (shouldCopy) {
3604     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3605     assert(srcRV.isScalar());
3606 
3607     llvm::Value *src = srcRV.getScalarVal();
3608     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3609                                     "icr.cast");
3610 
3611     // Use an ordinary store, not a store-to-lvalue.
3612     CGF.Builder.CreateStore(src, temp);
3613 
3614     // If optimization is enabled, and the value was held in a
3615     // __strong variable, we need to tell the optimizer that this
3616     // value has to stay alive until we're doing the store back.
3617     // This is because the temporary is effectively unretained,
3618     // and so otherwise we can violate the high-level semantics.
3619     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3620         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3621       valueToUse = src;
3622     }
3623   }
3624 
3625   // Finish the control flow if we needed it.
3626   if (shouldCopy && !provablyNonNull) {
3627     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3628     CGF.EmitBlock(contBB);
3629 
3630     // Make a phi for the value to intrinsically use.
3631     if (valueToUse) {
3632       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3633                                                       "icr.to-use");
3634       phiToUse->addIncoming(valueToUse, copyBB);
3635       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3636                             originBB);
3637       valueToUse = phiToUse;
3638     }
3639 
3640     condEval.end(CGF);
3641   }
3642 
3643   args.addWriteback(srcLV, temp, valueToUse);
3644   args.add(RValue::get(finalArgument), CRE->getType());
3645 }
3646 
3647 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3648   assert(!StackBase);
3649 
3650   // Save the stack.
3651   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3652   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3653 }
3654 
3655 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3656   if (StackBase) {
3657     // Restore the stack after the call.
3658     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3659     CGF.Builder.CreateCall(F, StackBase);
3660   }
3661 }
3662 
3663 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3664                                           SourceLocation ArgLoc,
3665                                           AbstractCallee AC,
3666                                           unsigned ParmNum) {
3667   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3668                          SanOpts.has(SanitizerKind::NullabilityArg)))
3669     return;
3670 
3671   // The param decl may be missing in a variadic function.
3672   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3673   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3674 
3675   // Prefer the nonnull attribute if it's present.
3676   const NonNullAttr *NNAttr = nullptr;
3677   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3678     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3679 
3680   bool CanCheckNullability = false;
3681   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3682     auto Nullability = PVD->getType()->getNullability(getContext());
3683     CanCheckNullability = Nullability &&
3684                           *Nullability == NullabilityKind::NonNull &&
3685                           PVD->getTypeSourceInfo();
3686   }
3687 
3688   if (!NNAttr && !CanCheckNullability)
3689     return;
3690 
3691   SourceLocation AttrLoc;
3692   SanitizerMask CheckKind;
3693   SanitizerHandler Handler;
3694   if (NNAttr) {
3695     AttrLoc = NNAttr->getLocation();
3696     CheckKind = SanitizerKind::NonnullAttribute;
3697     Handler = SanitizerHandler::NonnullArg;
3698   } else {
3699     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3700     CheckKind = SanitizerKind::NullabilityArg;
3701     Handler = SanitizerHandler::NullabilityArg;
3702   }
3703 
3704   SanitizerScope SanScope(this);
3705   assert(RV.isScalar());
3706   llvm::Value *V = RV.getScalarVal();
3707   llvm::Value *Cond =
3708       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3709   llvm::Constant *StaticData[] = {
3710       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3711       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3712   };
3713   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3714 }
3715 
3716 void CodeGenFunction::EmitCallArgs(
3717     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3718     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3719     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3720   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3721 
3722   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3723   // because arguments are destroyed left to right in the callee. As a special
3724   // case, there are certain language constructs that require left-to-right
3725   // evaluation, and in those cases we consider the evaluation order requirement
3726   // to trump the "destruction order is reverse construction order" guarantee.
3727   bool LeftToRight =
3728       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3729           ? Order == EvaluationOrder::ForceLeftToRight
3730           : Order != EvaluationOrder::ForceRightToLeft;
3731 
3732   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3733                                          RValue EmittedArg) {
3734     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3735       return;
3736     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3737     if (PS == nullptr)
3738       return;
3739 
3740     const auto &Context = getContext();
3741     auto SizeTy = Context.getSizeType();
3742     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3743     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3744     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3745                                                      EmittedArg.getScalarVal(),
3746                                                      PS->isDynamic());
3747     Args.add(RValue::get(V), SizeTy);
3748     // If we're emitting args in reverse, be sure to do so with
3749     // pass_object_size, as well.
3750     if (!LeftToRight)
3751       std::swap(Args.back(), *(&Args.back() - 1));
3752   };
3753 
3754   // Insert a stack save if we're going to need any inalloca args.
3755   bool HasInAllocaArgs = false;
3756   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3757     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3758          I != E && !HasInAllocaArgs; ++I)
3759       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3760     if (HasInAllocaArgs) {
3761       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3762       Args.allocateArgumentMemory(*this);
3763     }
3764   }
3765 
3766   // Evaluate each argument in the appropriate order.
3767   size_t CallArgsStart = Args.size();
3768   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3769     unsigned Idx = LeftToRight ? I : E - I - 1;
3770     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3771     unsigned InitialArgSize = Args.size();
3772     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3773     // the argument and parameter match or the objc method is parameterized.
3774     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3775             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3776                                                 ArgTypes[Idx]) ||
3777             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3778              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3779            "Argument and parameter types don't match");
3780     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3781     // In particular, we depend on it being the last arg in Args, and the
3782     // objectsize bits depend on there only being one arg if !LeftToRight.
3783     assert(InitialArgSize + 1 == Args.size() &&
3784            "The code below depends on only adding one arg per EmitCallArg");
3785     (void)InitialArgSize;
3786     // Since pointer argument are never emitted as LValue, it is safe to emit
3787     // non-null argument check for r-value only.
3788     if (!Args.back().hasLValue()) {
3789       RValue RVArg = Args.back().getKnownRValue();
3790       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3791                           ParamsToSkip + Idx);
3792       // @llvm.objectsize should never have side-effects and shouldn't need
3793       // destruction/cleanups, so we can safely "emit" it after its arg,
3794       // regardless of right-to-leftness
3795       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3796     }
3797   }
3798 
3799   if (!LeftToRight) {
3800     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3801     // IR function.
3802     std::reverse(Args.begin() + CallArgsStart, Args.end());
3803   }
3804 }
3805 
3806 namespace {
3807 
3808 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3809   DestroyUnpassedArg(Address Addr, QualType Ty)
3810       : Addr(Addr), Ty(Ty) {}
3811 
3812   Address Addr;
3813   QualType Ty;
3814 
3815   void Emit(CodeGenFunction &CGF, Flags flags) override {
3816     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3817     if (DtorKind == QualType::DK_cxx_destructor) {
3818       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3819       assert(!Dtor->isTrivial());
3820       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3821                                 /*Delegating=*/false, Addr, Ty);
3822     } else {
3823       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3824     }
3825   }
3826 };
3827 
3828 struct DisableDebugLocationUpdates {
3829   CodeGenFunction &CGF;
3830   bool disabledDebugInfo;
3831   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3832     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3833       CGF.disableDebugInfo();
3834   }
3835   ~DisableDebugLocationUpdates() {
3836     if (disabledDebugInfo)
3837       CGF.enableDebugInfo();
3838   }
3839 };
3840 
3841 } // end anonymous namespace
3842 
3843 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3844   if (!HasLV)
3845     return RV;
3846   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3847   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3848                         LV.isVolatile());
3849   IsUsed = true;
3850   return RValue::getAggregate(Copy.getAddress(CGF));
3851 }
3852 
3853 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3854   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3855   if (!HasLV && RV.isScalar())
3856     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3857   else if (!HasLV && RV.isComplex())
3858     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3859   else {
3860     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3861     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3862     // We assume that call args are never copied into subobjects.
3863     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3864                           HasLV ? LV.isVolatileQualified()
3865                                 : RV.isVolatileQualified());
3866   }
3867   IsUsed = true;
3868 }
3869 
3870 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3871                                   QualType type) {
3872   DisableDebugLocationUpdates Dis(*this, E);
3873   if (const ObjCIndirectCopyRestoreExpr *CRE
3874         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3875     assert(getLangOpts().ObjCAutoRefCount);
3876     return emitWritebackArg(*this, args, CRE);
3877   }
3878 
3879   assert(type->isReferenceType() == E->isGLValue() &&
3880          "reference binding to unmaterialized r-value!");
3881 
3882   if (E->isGLValue()) {
3883     assert(E->getObjectKind() == OK_Ordinary);
3884     return args.add(EmitReferenceBindingToExpr(E), type);
3885   }
3886 
3887   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3888 
3889   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3890   // However, we still have to push an EH-only cleanup in case we unwind before
3891   // we make it to the call.
3892   if (HasAggregateEvalKind &&
3893       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3894     // If we're using inalloca, use the argument memory.  Otherwise, use a
3895     // temporary.
3896     AggValueSlot Slot;
3897     if (args.isUsingInAlloca())
3898       Slot = createPlaceholderSlot(*this, type);
3899     else
3900       Slot = CreateAggTemp(type, "agg.tmp");
3901 
3902     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3903     if (const auto *RD = type->getAsCXXRecordDecl())
3904       DestroyedInCallee = RD->hasNonTrivialDestructor();
3905     else
3906       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3907 
3908     if (DestroyedInCallee)
3909       Slot.setExternallyDestructed();
3910 
3911     EmitAggExpr(E, Slot);
3912     RValue RV = Slot.asRValue();
3913     args.add(RV, type);
3914 
3915     if (DestroyedInCallee && NeedsEHCleanup) {
3916       // Create a no-op GEP between the placeholder and the cleanup so we can
3917       // RAUW it successfully.  It also serves as a marker of the first
3918       // instruction where the cleanup is active.
3919       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3920                                               type);
3921       // This unreachable is a temporary marker which will be removed later.
3922       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3923       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3924     }
3925     return;
3926   }
3927 
3928   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3929       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3930     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3931     assert(L.isSimple());
3932     args.addUncopiedAggregate(L, type);
3933     return;
3934   }
3935 
3936   args.add(EmitAnyExprToTemp(E), type);
3937 }
3938 
3939 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3940   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3941   // implicitly widens null pointer constants that are arguments to varargs
3942   // functions to pointer-sized ints.
3943   if (!getTarget().getTriple().isOSWindows())
3944     return Arg->getType();
3945 
3946   if (Arg->getType()->isIntegerType() &&
3947       getContext().getTypeSize(Arg->getType()) <
3948           getContext().getTargetInfo().getPointerWidth(0) &&
3949       Arg->isNullPointerConstant(getContext(),
3950                                  Expr::NPC_ValueDependentIsNotNull)) {
3951     return getContext().getIntPtrType();
3952   }
3953 
3954   return Arg->getType();
3955 }
3956 
3957 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3958 // optimizer it can aggressively ignore unwind edges.
3959 void
3960 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3961   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3962       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3963     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3964                       CGM.getNoObjCARCExceptionsMetadata());
3965 }
3966 
3967 /// Emits a call to the given no-arguments nounwind runtime function.
3968 llvm::CallInst *
3969 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3970                                          const llvm::Twine &name) {
3971   return EmitNounwindRuntimeCall(callee, None, name);
3972 }
3973 
3974 /// Emits a call to the given nounwind runtime function.
3975 llvm::CallInst *
3976 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3977                                          ArrayRef<llvm::Value *> args,
3978                                          const llvm::Twine &name) {
3979   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3980   call->setDoesNotThrow();
3981   return call;
3982 }
3983 
3984 /// Emits a simple call (never an invoke) to the given no-arguments
3985 /// runtime function.
3986 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3987                                                  const llvm::Twine &name) {
3988   return EmitRuntimeCall(callee, None, name);
3989 }
3990 
3991 // Calls which may throw must have operand bundles indicating which funclet
3992 // they are nested within.
3993 SmallVector<llvm::OperandBundleDef, 1>
3994 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3995   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3996   // There is no need for a funclet operand bundle if we aren't inside a
3997   // funclet.
3998   if (!CurrentFuncletPad)
3999     return BundleList;
4000 
4001   // Skip intrinsics which cannot throw.
4002   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4003   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4004     return BundleList;
4005 
4006   BundleList.emplace_back("funclet", CurrentFuncletPad);
4007   return BundleList;
4008 }
4009 
4010 /// Emits a simple call (never an invoke) to the given runtime function.
4011 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4012                                                  ArrayRef<llvm::Value *> args,
4013                                                  const llvm::Twine &name) {
4014   llvm::CallInst *call = Builder.CreateCall(
4015       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4016   call->setCallingConv(getRuntimeCC());
4017   return call;
4018 }
4019 
4020 /// Emits a call or invoke to the given noreturn runtime function.
4021 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4022     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4023   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4024       getBundlesForFunclet(callee.getCallee());
4025 
4026   if (getInvokeDest()) {
4027     llvm::InvokeInst *invoke =
4028       Builder.CreateInvoke(callee,
4029                            getUnreachableBlock(),
4030                            getInvokeDest(),
4031                            args,
4032                            BundleList);
4033     invoke->setDoesNotReturn();
4034     invoke->setCallingConv(getRuntimeCC());
4035   } else {
4036     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4037     call->setDoesNotReturn();
4038     call->setCallingConv(getRuntimeCC());
4039     Builder.CreateUnreachable();
4040   }
4041 }
4042 
4043 /// Emits a call or invoke instruction to the given nullary runtime function.
4044 llvm::CallBase *
4045 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4046                                          const Twine &name) {
4047   return EmitRuntimeCallOrInvoke(callee, None, name);
4048 }
4049 
4050 /// Emits a call or invoke instruction to the given runtime function.
4051 llvm::CallBase *
4052 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4053                                          ArrayRef<llvm::Value *> args,
4054                                          const Twine &name) {
4055   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4056   call->setCallingConv(getRuntimeCC());
4057   return call;
4058 }
4059 
4060 /// Emits a call or invoke instruction to the given function, depending
4061 /// on the current state of the EH stack.
4062 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4063                                                   ArrayRef<llvm::Value *> Args,
4064                                                   const Twine &Name) {
4065   llvm::BasicBlock *InvokeDest = getInvokeDest();
4066   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4067       getBundlesForFunclet(Callee.getCallee());
4068 
4069   llvm::CallBase *Inst;
4070   if (!InvokeDest)
4071     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4072   else {
4073     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4074     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4075                                 Name);
4076     EmitBlock(ContBB);
4077   }
4078 
4079   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4080   // optimizer it can aggressively ignore unwind edges.
4081   if (CGM.getLangOpts().ObjCAutoRefCount)
4082     AddObjCARCExceptionMetadata(Inst);
4083 
4084   return Inst;
4085 }
4086 
4087 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4088                                                   llvm::Value *New) {
4089   DeferredReplacements.push_back(std::make_pair(Old, New));
4090 }
4091 
4092 namespace {
4093 
4094 /// Specify given \p NewAlign as the alignment of return value attribute. If
4095 /// such attribute already exists, re-set it to the maximal one of two options.
4096 LLVM_NODISCARD llvm::AttributeList
4097 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4098                                 const llvm::AttributeList &Attrs,
4099                                 llvm::Align NewAlign) {
4100   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4101   if (CurAlign >= NewAlign)
4102     return Attrs;
4103   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4104   return Attrs
4105       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4106                        llvm::Attribute::AttrKind::Alignment)
4107       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4108 }
4109 
4110 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4111 protected:
4112   CodeGenFunction &CGF;
4113 
4114   /// We do nothing if this is, or becomes, nullptr.
4115   const AlignedAttrTy *AA = nullptr;
4116 
4117   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4118   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4119 
4120   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4121       : CGF(CGF_) {
4122     if (!FuncDecl)
4123       return;
4124     AA = FuncDecl->getAttr<AlignedAttrTy>();
4125   }
4126 
4127 public:
4128   /// If we can, materialize the alignment as an attribute on return value.
4129   LLVM_NODISCARD llvm::AttributeList
4130   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4131     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4132       return Attrs;
4133     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4134     if (!AlignmentCI)
4135       return Attrs;
4136     // We may legitimately have non-power-of-2 alignment here.
4137     // If so, this is UB land, emit it via `@llvm.assume` instead.
4138     if (!AlignmentCI->getValue().isPowerOf2())
4139       return Attrs;
4140     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4141         CGF.getLLVMContext(), Attrs,
4142         llvm::Align(
4143             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4144     AA = nullptr; // We're done. Disallow doing anything else.
4145     return NewAttrs;
4146   }
4147 
4148   /// Emit alignment assumption.
4149   /// This is a general fallback that we take if either there is an offset,
4150   /// or the alignment is variable or we are sanitizing for alignment.
4151   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4152     if (!AA)
4153       return;
4154     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4155                                 AA->getLocation(), Alignment, OffsetCI);
4156     AA = nullptr; // We're done. Disallow doing anything else.
4157   }
4158 };
4159 
4160 /// Helper data structure to emit `AssumeAlignedAttr`.
4161 class AssumeAlignedAttrEmitter final
4162     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4163 public:
4164   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4165       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4166     if (!AA)
4167       return;
4168     // It is guaranteed that the alignment/offset are constants.
4169     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4170     if (Expr *Offset = AA->getOffset()) {
4171       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4172       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4173         OffsetCI = nullptr;
4174     }
4175   }
4176 };
4177 
4178 /// Helper data structure to emit `AllocAlignAttr`.
4179 class AllocAlignAttrEmitter final
4180     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4181 public:
4182   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4183                         const CallArgList &CallArgs)
4184       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4185     if (!AA)
4186       return;
4187     // Alignment may or may not be a constant, and that is okay.
4188     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4189                     .getRValue(CGF)
4190                     .getScalarVal();
4191   }
4192 };
4193 
4194 } // namespace
4195 
4196 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4197                                  const CGCallee &Callee,
4198                                  ReturnValueSlot ReturnValue,
4199                                  const CallArgList &CallArgs,
4200                                  llvm::CallBase **callOrInvoke,
4201                                  SourceLocation Loc) {
4202   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4203 
4204   assert(Callee.isOrdinary() || Callee.isVirtual());
4205 
4206   // Handle struct-return functions by passing a pointer to the
4207   // location that we would like to return into.
4208   QualType RetTy = CallInfo.getReturnType();
4209   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4210 
4211   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4212 
4213   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4214   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4215     // We can only guarantee that a function is called from the correct
4216     // context/function based on the appropriate target attributes,
4217     // so only check in the case where we have both always_inline and target
4218     // since otherwise we could be making a conditional call after a check for
4219     // the proper cpu features (and it won't cause code generation issues due to
4220     // function based code generation).
4221     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4222         TargetDecl->hasAttr<TargetAttr>())
4223       checkTargetFeatures(Loc, FD);
4224 
4225 #ifndef NDEBUG
4226   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4227     // For an inalloca varargs function, we don't expect CallInfo to match the
4228     // function pointer's type, because the inalloca struct a will have extra
4229     // fields in it for the varargs parameters.  Code later in this function
4230     // bitcasts the function pointer to the type derived from CallInfo.
4231     //
4232     // In other cases, we assert that the types match up (until pointers stop
4233     // having pointee types).
4234     llvm::Type *TypeFromVal;
4235     if (Callee.isVirtual())
4236       TypeFromVal = Callee.getVirtualFunctionType();
4237     else
4238       TypeFromVal =
4239           Callee.getFunctionPointer()->getType()->getPointerElementType();
4240     assert(IRFuncTy == TypeFromVal);
4241   }
4242 #endif
4243 
4244   // 1. Set up the arguments.
4245 
4246   // If we're using inalloca, insert the allocation after the stack save.
4247   // FIXME: Do this earlier rather than hacking it in here!
4248   Address ArgMemory = Address::invalid();
4249   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4250     const llvm::DataLayout &DL = CGM.getDataLayout();
4251     llvm::Instruction *IP = CallArgs.getStackBase();
4252     llvm::AllocaInst *AI;
4253     if (IP) {
4254       IP = IP->getNextNode();
4255       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4256                                 "argmem", IP);
4257     } else {
4258       AI = CreateTempAlloca(ArgStruct, "argmem");
4259     }
4260     auto Align = CallInfo.getArgStructAlignment();
4261     AI->setAlignment(Align.getAsAlign());
4262     AI->setUsedWithInAlloca(true);
4263     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4264     ArgMemory = Address(AI, Align);
4265   }
4266 
4267   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4268   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4269 
4270   // If the call returns a temporary with struct return, create a temporary
4271   // alloca to hold the result, unless one is given to us.
4272   Address SRetPtr = Address::invalid();
4273   Address SRetAlloca = Address::invalid();
4274   llvm::Value *UnusedReturnSizePtr = nullptr;
4275   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4276     if (!ReturnValue.isNull()) {
4277       SRetPtr = ReturnValue.getValue();
4278     } else {
4279       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4280       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4281         uint64_t size =
4282             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4283         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4284       }
4285     }
4286     if (IRFunctionArgs.hasSRetArg()) {
4287       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4288     } else if (RetAI.isInAlloca()) {
4289       Address Addr =
4290           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4291       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4292     }
4293   }
4294 
4295   Address swiftErrorTemp = Address::invalid();
4296   Address swiftErrorArg = Address::invalid();
4297 
4298   // When passing arguments using temporary allocas, we need to add the
4299   // appropriate lifetime markers. This vector keeps track of all the lifetime
4300   // markers that need to be ended right after the call.
4301   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4302 
4303   // Translate all of the arguments as necessary to match the IR lowering.
4304   assert(CallInfo.arg_size() == CallArgs.size() &&
4305          "Mismatch between function signature & arguments.");
4306   unsigned ArgNo = 0;
4307   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4308   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4309        I != E; ++I, ++info_it, ++ArgNo) {
4310     const ABIArgInfo &ArgInfo = info_it->info;
4311 
4312     // Insert a padding argument to ensure proper alignment.
4313     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4314       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4315           llvm::UndefValue::get(ArgInfo.getPaddingType());
4316 
4317     unsigned FirstIRArg, NumIRArgs;
4318     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4319 
4320     switch (ArgInfo.getKind()) {
4321     case ABIArgInfo::InAlloca: {
4322       assert(NumIRArgs == 0);
4323       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4324       if (I->isAggregate()) {
4325         Address Addr = I->hasLValue()
4326                            ? I->getKnownLValue().getAddress(*this)
4327                            : I->getKnownRValue().getAggregateAddress();
4328         llvm::Instruction *Placeholder =
4329             cast<llvm::Instruction>(Addr.getPointer());
4330 
4331         if (!ArgInfo.getInAllocaIndirect()) {
4332           // Replace the placeholder with the appropriate argument slot GEP.
4333           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4334           Builder.SetInsertPoint(Placeholder);
4335           Addr = Builder.CreateStructGEP(ArgMemory,
4336                                          ArgInfo.getInAllocaFieldIndex());
4337           Builder.restoreIP(IP);
4338         } else {
4339           // For indirect things such as overaligned structs, replace the
4340           // placeholder with a regular aggregate temporary alloca. Store the
4341           // address of this alloca into the struct.
4342           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4343           Address ArgSlot = Builder.CreateStructGEP(
4344               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4345           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4346         }
4347         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4348       } else if (ArgInfo.getInAllocaIndirect()) {
4349         // Make a temporary alloca and store the address of it into the argument
4350         // struct.
4351         Address Addr = CreateMemTempWithoutCast(
4352             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4353             "indirect-arg-temp");
4354         I->copyInto(*this, Addr);
4355         Address ArgSlot =
4356             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4357         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4358       } else {
4359         // Store the RValue into the argument struct.
4360         Address Addr =
4361             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4362         unsigned AS = Addr.getType()->getPointerAddressSpace();
4363         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4364         // There are some cases where a trivial bitcast is not avoidable.  The
4365         // definition of a type later in a translation unit may change it's type
4366         // from {}* to (%struct.foo*)*.
4367         if (Addr.getType() != MemType)
4368           Addr = Builder.CreateBitCast(Addr, MemType);
4369         I->copyInto(*this, Addr);
4370       }
4371       break;
4372     }
4373 
4374     case ABIArgInfo::Indirect: {
4375       assert(NumIRArgs == 1);
4376       if (!I->isAggregate()) {
4377         // Make a temporary alloca to pass the argument.
4378         Address Addr = CreateMemTempWithoutCast(
4379             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4380         IRCallArgs[FirstIRArg] = Addr.getPointer();
4381 
4382         I->copyInto(*this, Addr);
4383       } else {
4384         // We want to avoid creating an unnecessary temporary+copy here;
4385         // however, we need one in three cases:
4386         // 1. If the argument is not byval, and we are required to copy the
4387         //    source.  (This case doesn't occur on any common architecture.)
4388         // 2. If the argument is byval, RV is not sufficiently aligned, and
4389         //    we cannot force it to be sufficiently aligned.
4390         // 3. If the argument is byval, but RV is not located in default
4391         //    or alloca address space.
4392         Address Addr = I->hasLValue()
4393                            ? I->getKnownLValue().getAddress(*this)
4394                            : I->getKnownRValue().getAggregateAddress();
4395         llvm::Value *V = Addr.getPointer();
4396         CharUnits Align = ArgInfo.getIndirectAlign();
4397         const llvm::DataLayout *TD = &CGM.getDataLayout();
4398 
4399         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4400                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4401                     TD->getAllocaAddrSpace()) &&
4402                "indirect argument must be in alloca address space");
4403 
4404         bool NeedCopy = false;
4405 
4406         if (Addr.getAlignment() < Align &&
4407             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4408                 Align.getAsAlign()) {
4409           NeedCopy = true;
4410         } else if (I->hasLValue()) {
4411           auto LV = I->getKnownLValue();
4412           auto AS = LV.getAddressSpace();
4413 
4414           if (!ArgInfo.getIndirectByVal() ||
4415               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4416             NeedCopy = true;
4417           }
4418           if (!getLangOpts().OpenCL) {
4419             if ((ArgInfo.getIndirectByVal() &&
4420                 (AS != LangAS::Default &&
4421                  AS != CGM.getASTAllocaAddressSpace()))) {
4422               NeedCopy = true;
4423             }
4424           }
4425           // For OpenCL even if RV is located in default or alloca address space
4426           // we don't want to perform address space cast for it.
4427           else if ((ArgInfo.getIndirectByVal() &&
4428                     Addr.getType()->getAddressSpace() != IRFuncTy->
4429                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4430             NeedCopy = true;
4431           }
4432         }
4433 
4434         if (NeedCopy) {
4435           // Create an aligned temporary, and copy to it.
4436           Address AI = CreateMemTempWithoutCast(
4437               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4438           IRCallArgs[FirstIRArg] = AI.getPointer();
4439 
4440           // Emit lifetime markers for the temporary alloca.
4441           uint64_t ByvalTempElementSize =
4442               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4443           llvm::Value *LifetimeSize =
4444               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4445 
4446           // Add cleanup code to emit the end lifetime marker after the call.
4447           if (LifetimeSize) // In case we disabled lifetime markers.
4448             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4449 
4450           // Generate the copy.
4451           I->copyInto(*this, AI);
4452         } else {
4453           // Skip the extra memcpy call.
4454           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4455               CGM.getDataLayout().getAllocaAddrSpace());
4456           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4457               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4458               true);
4459         }
4460       }
4461       break;
4462     }
4463 
4464     case ABIArgInfo::Ignore:
4465       assert(NumIRArgs == 0);
4466       break;
4467 
4468     case ABIArgInfo::Extend:
4469     case ABIArgInfo::Direct: {
4470       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4471           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4472           ArgInfo.getDirectOffset() == 0) {
4473         assert(NumIRArgs == 1);
4474         llvm::Value *V;
4475         if (!I->isAggregate())
4476           V = I->getKnownRValue().getScalarVal();
4477         else
4478           V = Builder.CreateLoad(
4479               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4480                              : I->getKnownRValue().getAggregateAddress());
4481 
4482         // Implement swifterror by copying into a new swifterror argument.
4483         // We'll write back in the normal path out of the call.
4484         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4485               == ParameterABI::SwiftErrorResult) {
4486           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4487 
4488           QualType pointeeTy = I->Ty->getPointeeType();
4489           swiftErrorArg =
4490             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4491 
4492           swiftErrorTemp =
4493             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4494           V = swiftErrorTemp.getPointer();
4495           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4496 
4497           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4498           Builder.CreateStore(errorValue, swiftErrorTemp);
4499         }
4500 
4501         // We might have to widen integers, but we should never truncate.
4502         if (ArgInfo.getCoerceToType() != V->getType() &&
4503             V->getType()->isIntegerTy())
4504           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4505 
4506         // If the argument doesn't match, perform a bitcast to coerce it.  This
4507         // can happen due to trivial type mismatches.
4508         if (FirstIRArg < IRFuncTy->getNumParams() &&
4509             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4510           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4511 
4512         IRCallArgs[FirstIRArg] = V;
4513         break;
4514       }
4515 
4516       // FIXME: Avoid the conversion through memory if possible.
4517       Address Src = Address::invalid();
4518       if (!I->isAggregate()) {
4519         Src = CreateMemTemp(I->Ty, "coerce");
4520         I->copyInto(*this, Src);
4521       } else {
4522         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4523                              : I->getKnownRValue().getAggregateAddress();
4524       }
4525 
4526       // If the value is offset in memory, apply the offset now.
4527       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4528 
4529       // Fast-isel and the optimizer generally like scalar values better than
4530       // FCAs, so we flatten them if this is safe to do for this argument.
4531       llvm::StructType *STy =
4532             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4533       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4534         llvm::Type *SrcTy = Src.getElementType();
4535         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4536         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4537 
4538         // If the source type is smaller than the destination type of the
4539         // coerce-to logic, copy the source value into a temp alloca the size
4540         // of the destination type to allow loading all of it. The bits past
4541         // the source value are left undef.
4542         if (SrcSize < DstSize) {
4543           Address TempAlloca
4544             = CreateTempAlloca(STy, Src.getAlignment(),
4545                                Src.getName() + ".coerce");
4546           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4547           Src = TempAlloca;
4548         } else {
4549           Src = Builder.CreateBitCast(Src,
4550                                       STy->getPointerTo(Src.getAddressSpace()));
4551         }
4552 
4553         assert(NumIRArgs == STy->getNumElements());
4554         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4555           Address EltPtr = Builder.CreateStructGEP(Src, i);
4556           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4557           IRCallArgs[FirstIRArg + i] = LI;
4558         }
4559       } else {
4560         // In the simple case, just pass the coerced loaded value.
4561         assert(NumIRArgs == 1);
4562         llvm::Value *Load =
4563             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4564 
4565         if (CallInfo.isCmseNSCall()) {
4566           // For certain parameter types, clear padding bits, as they may reveal
4567           // sensitive information.
4568           const Type *PTy = I->Ty.getCanonicalType().getTypePtr();
4569           // 16-bit floating-point types are passed in a 32-bit integer or
4570           // float, with unspecified upper bits.
4571           if (PTy->isFloat16Type() || PTy->isHalfType()) {
4572             Load = EmitCMSEClearFP16(Load);
4573           } else {
4574             // Small struct/union types are passed as integer arrays.
4575             auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4576             if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4577               Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4578           }
4579         }
4580         IRCallArgs[FirstIRArg] = Load;
4581       }
4582 
4583       break;
4584     }
4585 
4586     case ABIArgInfo::CoerceAndExpand: {
4587       auto coercionType = ArgInfo.getCoerceAndExpandType();
4588       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4589 
4590       llvm::Value *tempSize = nullptr;
4591       Address addr = Address::invalid();
4592       Address AllocaAddr = Address::invalid();
4593       if (I->isAggregate()) {
4594         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4595                               : I->getKnownRValue().getAggregateAddress();
4596 
4597       } else {
4598         RValue RV = I->getKnownRValue();
4599         assert(RV.isScalar()); // complex should always just be direct
4600 
4601         llvm::Type *scalarType = RV.getScalarVal()->getType();
4602         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4603         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4604 
4605         // Materialize to a temporary.
4606         addr = CreateTempAlloca(
4607             RV.getScalarVal()->getType(),
4608             CharUnits::fromQuantity(std::max(
4609                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4610             "tmp",
4611             /*ArraySize=*/nullptr, &AllocaAddr);
4612         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4613 
4614         Builder.CreateStore(RV.getScalarVal(), addr);
4615       }
4616 
4617       addr = Builder.CreateElementBitCast(addr, coercionType);
4618 
4619       unsigned IRArgPos = FirstIRArg;
4620       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4621         llvm::Type *eltType = coercionType->getElementType(i);
4622         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4623         Address eltAddr = Builder.CreateStructGEP(addr, i);
4624         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4625         IRCallArgs[IRArgPos++] = elt;
4626       }
4627       assert(IRArgPos == FirstIRArg + NumIRArgs);
4628 
4629       if (tempSize) {
4630         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4631       }
4632 
4633       break;
4634     }
4635 
4636     case ABIArgInfo::Expand:
4637       unsigned IRArgPos = FirstIRArg;
4638       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4639       assert(IRArgPos == FirstIRArg + NumIRArgs);
4640       break;
4641     }
4642   }
4643 
4644   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4645   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4646 
4647   // If we're using inalloca, set up that argument.
4648   if (ArgMemory.isValid()) {
4649     llvm::Value *Arg = ArgMemory.getPointer();
4650     if (CallInfo.isVariadic()) {
4651       // When passing non-POD arguments by value to variadic functions, we will
4652       // end up with a variadic prototype and an inalloca call site.  In such
4653       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4654       // the callee.
4655       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4656       CalleePtr =
4657           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4658     } else {
4659       llvm::Type *LastParamTy =
4660           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4661       if (Arg->getType() != LastParamTy) {
4662 #ifndef NDEBUG
4663         // Assert that these structs have equivalent element types.
4664         llvm::StructType *FullTy = CallInfo.getArgStruct();
4665         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4666             cast<llvm::PointerType>(LastParamTy)->getElementType());
4667         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4668         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4669                                                 DE = DeclaredTy->element_end(),
4670                                                 FI = FullTy->element_begin();
4671              DI != DE; ++DI, ++FI)
4672           assert(*DI == *FI);
4673 #endif
4674         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4675       }
4676     }
4677     assert(IRFunctionArgs.hasInallocaArg());
4678     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4679   }
4680 
4681   // 2. Prepare the function pointer.
4682 
4683   // If the callee is a bitcast of a non-variadic function to have a
4684   // variadic function pointer type, check to see if we can remove the
4685   // bitcast.  This comes up with unprototyped functions.
4686   //
4687   // This makes the IR nicer, but more importantly it ensures that we
4688   // can inline the function at -O0 if it is marked always_inline.
4689   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4690                                    llvm::Value *Ptr) -> llvm::Function * {
4691     if (!CalleeFT->isVarArg())
4692       return nullptr;
4693 
4694     // Get underlying value if it's a bitcast
4695     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4696       if (CE->getOpcode() == llvm::Instruction::BitCast)
4697         Ptr = CE->getOperand(0);
4698     }
4699 
4700     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4701     if (!OrigFn)
4702       return nullptr;
4703 
4704     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4705 
4706     // If the original type is variadic, or if any of the component types
4707     // disagree, we cannot remove the cast.
4708     if (OrigFT->isVarArg() ||
4709         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4710         OrigFT->getReturnType() != CalleeFT->getReturnType())
4711       return nullptr;
4712 
4713     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4714       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4715         return nullptr;
4716 
4717     return OrigFn;
4718   };
4719 
4720   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4721     CalleePtr = OrigFn;
4722     IRFuncTy = OrigFn->getFunctionType();
4723   }
4724 
4725   // 3. Perform the actual call.
4726 
4727   // Deactivate any cleanups that we're supposed to do immediately before
4728   // the call.
4729   if (!CallArgs.getCleanupsToDeactivate().empty())
4730     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4731 
4732   // Assert that the arguments we computed match up.  The IR verifier
4733   // will catch this, but this is a common enough source of problems
4734   // during IRGen changes that it's way better for debugging to catch
4735   // it ourselves here.
4736 #ifndef NDEBUG
4737   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4738   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4739     // Inalloca argument can have different type.
4740     if (IRFunctionArgs.hasInallocaArg() &&
4741         i == IRFunctionArgs.getInallocaArgNo())
4742       continue;
4743     if (i < IRFuncTy->getNumParams())
4744       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4745   }
4746 #endif
4747 
4748   // Update the largest vector width if any arguments have vector types.
4749   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4750     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4751       LargestVectorWidth =
4752           std::max((uint64_t)LargestVectorWidth,
4753                    VT->getPrimitiveSizeInBits().getKnownMinSize());
4754   }
4755 
4756   // Compute the calling convention and attributes.
4757   unsigned CallingConv;
4758   llvm::AttributeList Attrs;
4759   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4760                              Callee.getAbstractInfo(), Attrs, CallingConv,
4761                              /*AttrOnCallSite=*/true);
4762 
4763   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4764     if (FD->usesFPIntrin())
4765       // All calls within a strictfp function are marked strictfp
4766       Attrs =
4767         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4768                            llvm::Attribute::StrictFP);
4769 
4770   // Apply some call-site-specific attributes.
4771   // TODO: work this into building the attribute set.
4772 
4773   // Apply always_inline to all calls within flatten functions.
4774   // FIXME: should this really take priority over __try, below?
4775   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4776       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4777     Attrs =
4778         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4779                            llvm::Attribute::AlwaysInline);
4780   }
4781 
4782   // Disable inlining inside SEH __try blocks.
4783   if (isSEHTryScope()) {
4784     Attrs =
4785         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4786                            llvm::Attribute::NoInline);
4787   }
4788 
4789   // Decide whether to use a call or an invoke.
4790   bool CannotThrow;
4791   if (currentFunctionUsesSEHTry()) {
4792     // SEH cares about asynchronous exceptions, so everything can "throw."
4793     CannotThrow = false;
4794   } else if (isCleanupPadScope() &&
4795              EHPersonality::get(*this).isMSVCXXPersonality()) {
4796     // The MSVC++ personality will implicitly terminate the program if an
4797     // exception is thrown during a cleanup outside of a try/catch.
4798     // We don't need to model anything in IR to get this behavior.
4799     CannotThrow = true;
4800   } else {
4801     // Otherwise, nounwind call sites will never throw.
4802     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4803                                      llvm::Attribute::NoUnwind);
4804   }
4805 
4806   // If we made a temporary, be sure to clean up after ourselves. Note that we
4807   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4808   // pop this cleanup later on. Being eager about this is OK, since this
4809   // temporary is 'invisible' outside of the callee.
4810   if (UnusedReturnSizePtr)
4811     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4812                                          UnusedReturnSizePtr);
4813 
4814   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4815 
4816   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4817       getBundlesForFunclet(CalleePtr);
4818 
4819   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4820     if (FD->usesFPIntrin())
4821       // All calls within a strictfp function are marked strictfp
4822       Attrs =
4823         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4824                            llvm::Attribute::StrictFP);
4825 
4826   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
4827   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4828 
4829   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
4830   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4831 
4832   // Emit the actual call/invoke instruction.
4833   llvm::CallBase *CI;
4834   if (!InvokeDest) {
4835     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4836   } else {
4837     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4838     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4839                               BundleList);
4840     EmitBlock(Cont);
4841   }
4842   if (callOrInvoke)
4843     *callOrInvoke = CI;
4844 
4845   // If this is within a function that has the guard(nocf) attribute and is an
4846   // indirect call, add the "guard_nocf" attribute to this call to indicate that
4847   // Control Flow Guard checks should not be added, even if the call is inlined.
4848   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4849     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4850       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4851         Attrs = Attrs.addAttribute(
4852             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4853     }
4854   }
4855 
4856   // Apply the attributes and calling convention.
4857   CI->setAttributes(Attrs);
4858   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4859 
4860   // Apply various metadata.
4861 
4862   if (!CI->getType()->isVoidTy())
4863     CI->setName("call");
4864 
4865   // Update largest vector width from the return type.
4866   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4867     LargestVectorWidth =
4868         std::max((uint64_t)LargestVectorWidth,
4869                  VT->getPrimitiveSizeInBits().getKnownMinSize());
4870 
4871   // Insert instrumentation or attach profile metadata at indirect call sites.
4872   // For more details, see the comment before the definition of
4873   // IPVK_IndirectCallTarget in InstrProfData.inc.
4874   if (!CI->getCalledFunction())
4875     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4876                      CI, CalleePtr);
4877 
4878   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4879   // optimizer it can aggressively ignore unwind edges.
4880   if (CGM.getLangOpts().ObjCAutoRefCount)
4881     AddObjCARCExceptionMetadata(CI);
4882 
4883   // Suppress tail calls if requested.
4884   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4885     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4886       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4887   }
4888 
4889   // Add metadata for calls to MSAllocator functions
4890   if (getDebugInfo() && TargetDecl &&
4891       TargetDecl->hasAttr<MSAllocatorAttr>())
4892     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc);
4893 
4894   // 4. Finish the call.
4895 
4896   // If the call doesn't return, finish the basic block and clear the
4897   // insertion point; this allows the rest of IRGen to discard
4898   // unreachable code.
4899   if (CI->doesNotReturn()) {
4900     if (UnusedReturnSizePtr)
4901       PopCleanupBlock();
4902 
4903     // Strip away the noreturn attribute to better diagnose unreachable UB.
4904     if (SanOpts.has(SanitizerKind::Unreachable)) {
4905       // Also remove from function since CallBase::hasFnAttr additionally checks
4906       // attributes of the called function.
4907       if (auto *F = CI->getCalledFunction())
4908         F->removeFnAttr(llvm::Attribute::NoReturn);
4909       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4910                           llvm::Attribute::NoReturn);
4911 
4912       // Avoid incompatibility with ASan which relies on the `noreturn`
4913       // attribute to insert handler calls.
4914       if (SanOpts.hasOneOf(SanitizerKind::Address |
4915                            SanitizerKind::KernelAddress)) {
4916         SanitizerScope SanScope(this);
4917         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4918         Builder.SetInsertPoint(CI);
4919         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4920         llvm::FunctionCallee Fn =
4921             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4922         EmitNounwindRuntimeCall(Fn);
4923       }
4924     }
4925 
4926     EmitUnreachable(Loc);
4927     Builder.ClearInsertionPoint();
4928 
4929     // FIXME: For now, emit a dummy basic block because expr emitters in
4930     // generally are not ready to handle emitting expressions at unreachable
4931     // points.
4932     EnsureInsertPoint();
4933 
4934     // Return a reasonable RValue.
4935     return GetUndefRValue(RetTy);
4936   }
4937 
4938   // Perform the swifterror writeback.
4939   if (swiftErrorTemp.isValid()) {
4940     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4941     Builder.CreateStore(errorResult, swiftErrorArg);
4942   }
4943 
4944   // Emit any call-associated writebacks immediately.  Arguably this
4945   // should happen after any return-value munging.
4946   if (CallArgs.hasWritebacks())
4947     emitWritebacks(*this, CallArgs);
4948 
4949   // The stack cleanup for inalloca arguments has to run out of the normal
4950   // lexical order, so deactivate it and run it manually here.
4951   CallArgs.freeArgumentMemory(*this);
4952 
4953   // Extract the return value.
4954   RValue Ret = [&] {
4955     switch (RetAI.getKind()) {
4956     case ABIArgInfo::CoerceAndExpand: {
4957       auto coercionType = RetAI.getCoerceAndExpandType();
4958 
4959       Address addr = SRetPtr;
4960       addr = Builder.CreateElementBitCast(addr, coercionType);
4961 
4962       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4963       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4964 
4965       unsigned unpaddedIndex = 0;
4966       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4967         llvm::Type *eltType = coercionType->getElementType(i);
4968         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4969         Address eltAddr = Builder.CreateStructGEP(addr, i);
4970         llvm::Value *elt = CI;
4971         if (requiresExtract)
4972           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4973         else
4974           assert(unpaddedIndex == 0);
4975         Builder.CreateStore(elt, eltAddr);
4976       }
4977       // FALLTHROUGH
4978       LLVM_FALLTHROUGH;
4979     }
4980 
4981     case ABIArgInfo::InAlloca:
4982     case ABIArgInfo::Indirect: {
4983       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4984       if (UnusedReturnSizePtr)
4985         PopCleanupBlock();
4986       return ret;
4987     }
4988 
4989     case ABIArgInfo::Ignore:
4990       // If we are ignoring an argument that had a result, make sure to
4991       // construct the appropriate return value for our caller.
4992       return GetUndefRValue(RetTy);
4993 
4994     case ABIArgInfo::Extend:
4995     case ABIArgInfo::Direct: {
4996       llvm::Type *RetIRTy = ConvertType(RetTy);
4997       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4998         switch (getEvaluationKind(RetTy)) {
4999         case TEK_Complex: {
5000           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5001           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5002           return RValue::getComplex(std::make_pair(Real, Imag));
5003         }
5004         case TEK_Aggregate: {
5005           Address DestPtr = ReturnValue.getValue();
5006           bool DestIsVolatile = ReturnValue.isVolatile();
5007 
5008           if (!DestPtr.isValid()) {
5009             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5010             DestIsVolatile = false;
5011           }
5012           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
5013           return RValue::getAggregate(DestPtr);
5014         }
5015         case TEK_Scalar: {
5016           // If the argument doesn't match, perform a bitcast to coerce it.  This
5017           // can happen due to trivial type mismatches.
5018           llvm::Value *V = CI;
5019           if (V->getType() != RetIRTy)
5020             V = Builder.CreateBitCast(V, RetIRTy);
5021           return RValue::get(V);
5022         }
5023         }
5024         llvm_unreachable("bad evaluation kind");
5025       }
5026 
5027       Address DestPtr = ReturnValue.getValue();
5028       bool DestIsVolatile = ReturnValue.isVolatile();
5029 
5030       if (!DestPtr.isValid()) {
5031         DestPtr = CreateMemTemp(RetTy, "coerce");
5032         DestIsVolatile = false;
5033       }
5034 
5035       // If the value is offset in memory, apply the offset now.
5036       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5037       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5038 
5039       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5040     }
5041 
5042     case ABIArgInfo::Expand:
5043       llvm_unreachable("Invalid ABI kind for return argument");
5044     }
5045 
5046     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5047   } ();
5048 
5049   // Emit the assume_aligned check on the return value.
5050   if (Ret.isScalar() && TargetDecl) {
5051     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5052     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5053   }
5054 
5055   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5056   // we can't use the full cleanup mechanism.
5057   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5058     LifetimeEnd.Emit(*this, /*Flags=*/{});
5059 
5060   if (!ReturnValue.isExternallyDestructed() &&
5061       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5062     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5063                 RetTy);
5064 
5065   return Ret;
5066 }
5067 
5068 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5069   if (isVirtual()) {
5070     const CallExpr *CE = getVirtualCallExpr();
5071     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5072         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5073         CE ? CE->getBeginLoc() : SourceLocation());
5074   }
5075 
5076   return *this;
5077 }
5078 
5079 /* VarArg handling */
5080 
5081 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5082   VAListAddr = VE->isMicrosoftABI()
5083                  ? EmitMSVAListRef(VE->getSubExpr())
5084                  : EmitVAListRef(VE->getSubExpr());
5085   QualType Ty = VE->getType();
5086   if (VE->isMicrosoftABI())
5087     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5088   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5089 }
5090