1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "clang/CodeGen/SwiftCallingConv.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification.
73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD,
74                                const CXXMethodDecl *MD) {
75   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
76   if (MD)
77     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getType().getAddressSpace());
78   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
79 }
80 
81 /// Returns the canonical formal type of the given C++ method.
82 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
83   return MD->getType()->getCanonicalTypeUnqualified()
84            .getAs<FunctionProtoType>();
85 }
86 
87 /// Returns the "extra-canonicalized" return type, which discards
88 /// qualifiers on the return type.  Codegen doesn't care about them,
89 /// and it makes ABI code a little easier to be able to assume that
90 /// all parameter and return types are top-level unqualified.
91 static CanQualType GetReturnType(QualType RetTy) {
92   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
93 }
94 
95 /// Arrange the argument and result information for a value of the given
96 /// unprototyped freestanding function type.
97 const CGFunctionInfo &
98 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
99   // When translating an unprototyped function type, always use a
100   // variadic type.
101   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
102                                  /*instanceMethod=*/false,
103                                  /*chainCall=*/false, None,
104                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
105 }
106 
107 static void addExtParameterInfosForCall(
108          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
109                                         const FunctionProtoType *proto,
110                                         unsigned prefixArgs,
111                                         unsigned totalArgs) {
112   assert(proto->hasExtParameterInfos());
113   assert(paramInfos.size() <= prefixArgs);
114   assert(proto->getNumParams() + prefixArgs <= totalArgs);
115 
116   paramInfos.reserve(totalArgs);
117 
118   // Add default infos for any prefix args that don't already have infos.
119   paramInfos.resize(prefixArgs);
120 
121   // Add infos for the prototype.
122   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
123     paramInfos.push_back(ParamInfo);
124     // pass_object_size params have no parameter info.
125     if (ParamInfo.hasPassObjectSize())
126       paramInfos.emplace_back();
127   }
128 
129   assert(paramInfos.size() <= totalArgs &&
130          "Did we forget to insert pass_object_size args?");
131   // Add default infos for the variadic and/or suffix arguments.
132   paramInfos.resize(totalArgs);
133 }
134 
135 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
136 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
137 static void appendParameterTypes(const CodeGenTypes &CGT,
138                                  SmallVectorImpl<CanQualType> &prefix,
139               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
140                                  CanQual<FunctionProtoType> FPT) {
141   // Fast path: don't touch param info if we don't need to.
142   if (!FPT->hasExtParameterInfos()) {
143     assert(paramInfos.empty() &&
144            "We have paramInfos, but the prototype doesn't?");
145     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
146     return;
147   }
148 
149   unsigned PrefixSize = prefix.size();
150   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
151   // parameters; the only thing that can change this is the presence of
152   // pass_object_size. So, we preallocate for the common case.
153   prefix.reserve(prefix.size() + FPT->getNumParams());
154 
155   auto ExtInfos = FPT->getExtParameterInfos();
156   assert(ExtInfos.size() == FPT->getNumParams());
157   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
158     prefix.push_back(FPT->getParamType(I));
159     if (ExtInfos[I].hasPassObjectSize())
160       prefix.push_back(CGT.getContext().getSizeType());
161   }
162 
163   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
164                               prefix.size());
165 }
166 
167 /// Arrange the LLVM function layout for a value of the given function
168 /// type, on top of any implicit parameters already stored.
169 static const CGFunctionInfo &
170 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
171                         SmallVectorImpl<CanQualType> &prefix,
172                         CanQual<FunctionProtoType> FTP,
173                         const FunctionDecl *FD) {
174   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
175   RequiredArgs Required =
176       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
177   // FIXME: Kill copy.
178   appendParameterTypes(CGT, prefix, paramInfos, FTP);
179   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
180 
181   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
182                                      /*chainCall=*/false, prefix,
183                                      FTP->getExtInfo(), paramInfos,
184                                      Required);
185 }
186 
187 /// Arrange the argument and result information for a value of the
188 /// given freestanding function type.
189 const CGFunctionInfo &
190 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
191                                       const FunctionDecl *FD) {
192   SmallVector<CanQualType, 16> argTypes;
193   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
194                                    FTP, FD);
195 }
196 
197 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
198   // Set the appropriate calling convention for the Function.
199   if (D->hasAttr<StdCallAttr>())
200     return CC_X86StdCall;
201 
202   if (D->hasAttr<FastCallAttr>())
203     return CC_X86FastCall;
204 
205   if (D->hasAttr<RegCallAttr>())
206     return CC_X86RegCall;
207 
208   if (D->hasAttr<ThisCallAttr>())
209     return CC_X86ThisCall;
210 
211   if (D->hasAttr<VectorCallAttr>())
212     return CC_X86VectorCall;
213 
214   if (D->hasAttr<PascalAttr>())
215     return CC_X86Pascal;
216 
217   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
218     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
219 
220   if (D->hasAttr<AArch64VectorPcsAttr>())
221     return CC_AArch64VectorCall;
222 
223   if (D->hasAttr<IntelOclBiccAttr>())
224     return CC_IntelOclBicc;
225 
226   if (D->hasAttr<MSABIAttr>())
227     return IsWindows ? CC_C : CC_Win64;
228 
229   if (D->hasAttr<SysVABIAttr>())
230     return IsWindows ? CC_X86_64SysV : CC_C;
231 
232   if (D->hasAttr<PreserveMostAttr>())
233     return CC_PreserveMost;
234 
235   if (D->hasAttr<PreserveAllAttr>())
236     return CC_PreserveAll;
237 
238   return CC_C;
239 }
240 
241 /// Arrange the argument and result information for a call to an
242 /// unknown C++ non-static member function of the given abstract type.
243 /// (Zero value of RD means we don't have any meaningful "this" argument type,
244 ///  so fall back to a generic pointer type).
245 /// The member function must be an ordinary function, i.e. not a
246 /// constructor or destructor.
247 const CGFunctionInfo &
248 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
249                                    const FunctionProtoType *FTP,
250                                    const CXXMethodDecl *MD) {
251   SmallVector<CanQualType, 16> argTypes;
252 
253   // Add the 'this' pointer.
254   if (RD)
255     argTypes.push_back(GetThisType(Context, RD, MD));
256   else
257     argTypes.push_back(Context.VoidPtrTy);
258 
259   return ::arrangeLLVMFunctionInfo(
260       *this, true, argTypes,
261       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
262 }
263 
264 /// Set calling convention for CUDA/HIP kernel.
265 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
266                                            const FunctionDecl *FD) {
267   if (FD->hasAttr<CUDAGlobalAttr>()) {
268     const FunctionType *FT = FTy->getAs<FunctionType>();
269     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
270     FTy = FT->getCanonicalTypeUnqualified();
271   }
272 }
273 
274 /// Arrange the argument and result information for a declaration or
275 /// definition of the given C++ non-static member function.  The
276 /// member function must be an ordinary function, i.e. not a
277 /// constructor or destructor.
278 const CGFunctionInfo &
279 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
280   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
281   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
282 
283   CanQualType FT = GetFormalType(MD).getAs<Type>();
284   setCUDAKernelCallingConvention(FT, CGM, MD);
285   auto prototype = FT.getAs<FunctionProtoType>();
286 
287   if (MD->isInstance()) {
288     // The abstract case is perfectly fine.
289     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
290     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
291   }
292 
293   return arrangeFreeFunctionType(prototype, MD);
294 }
295 
296 bool CodeGenTypes::inheritingCtorHasParams(
297     const InheritedConstructor &Inherited, CXXCtorType Type) {
298   // Parameters are unnecessary if we're constructing a base class subobject
299   // and the inherited constructor lives in a virtual base.
300   return Type == Ctor_Complete ||
301          !Inherited.getShadowDecl()->constructsVirtualBase() ||
302          !Target.getCXXABI().hasConstructorVariants();
303   }
304 
305 const CGFunctionInfo &
306 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
307                                             StructorType Type) {
308 
309   SmallVector<CanQualType, 16> argTypes;
310   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
311   argTypes.push_back(GetThisType(Context, MD->getParent(), MD));
312 
313   bool PassParams = true;
314 
315   GlobalDecl GD;
316   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317     GD = GlobalDecl(CD, toCXXCtorType(Type));
318 
319     // A base class inheriting constructor doesn't get forwarded arguments
320     // needed to construct a virtual base (or base class thereof).
321     if (auto Inherited = CD->getInheritedConstructor())
322       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
323   } else {
324     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
325     GD = GlobalDecl(DD, toCXXDtorType(Type));
326   }
327 
328   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
329 
330   // Add the formal parameters.
331   if (PassParams)
332     appendParameterTypes(*this, argTypes, paramInfos, FTP);
333 
334   CGCXXABI::AddedStructorArgs AddedArgs =
335       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
336   if (!paramInfos.empty()) {
337     // Note: prefix implies after the first param.
338     if (AddedArgs.Prefix)
339       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
340                         FunctionProtoType::ExtParameterInfo{});
341     if (AddedArgs.Suffix)
342       paramInfos.append(AddedArgs.Suffix,
343                         FunctionProtoType::ExtParameterInfo{});
344   }
345 
346   RequiredArgs required =
347       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
348                                       : RequiredArgs::All);
349 
350   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
351   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
352                                ? argTypes.front()
353                                : TheCXXABI.hasMostDerivedReturn(GD)
354                                      ? CGM.getContext().VoidPtrTy
355                                      : Context.VoidTy;
356   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
357                                  /*chainCall=*/false, argTypes, extInfo,
358                                  paramInfos, required);
359 }
360 
361 static SmallVector<CanQualType, 16>
362 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
363   SmallVector<CanQualType, 16> argTypes;
364   for (auto &arg : args)
365     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
366   return argTypes;
367 }
368 
369 static SmallVector<CanQualType, 16>
370 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
371   SmallVector<CanQualType, 16> argTypes;
372   for (auto &arg : args)
373     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
374   return argTypes;
375 }
376 
377 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
378 getExtParameterInfosForCall(const FunctionProtoType *proto,
379                             unsigned prefixArgs, unsigned totalArgs) {
380   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
381   if (proto->hasExtParameterInfos()) {
382     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
383   }
384   return result;
385 }
386 
387 /// Arrange a call to a C++ method, passing the given arguments.
388 ///
389 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
390 /// parameter.
391 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
392 /// args.
393 /// PassProtoArgs indicates whether `args` has args for the parameters in the
394 /// given CXXConstructorDecl.
395 const CGFunctionInfo &
396 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
397                                         const CXXConstructorDecl *D,
398                                         CXXCtorType CtorKind,
399                                         unsigned ExtraPrefixArgs,
400                                         unsigned ExtraSuffixArgs,
401                                         bool PassProtoArgs) {
402   // FIXME: Kill copy.
403   SmallVector<CanQualType, 16> ArgTypes;
404   for (const auto &Arg : args)
405     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
406 
407   // +1 for implicit this, which should always be args[0].
408   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
409 
410   CanQual<FunctionProtoType> FPT = GetFormalType(D);
411   RequiredArgs Required =
412       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
413   GlobalDecl GD(D, CtorKind);
414   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
415                                ? ArgTypes.front()
416                                : TheCXXABI.hasMostDerivedReturn(GD)
417                                      ? CGM.getContext().VoidPtrTy
418                                      : Context.VoidTy;
419 
420   FunctionType::ExtInfo Info = FPT->getExtInfo();
421   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
422   // If the prototype args are elided, we should only have ABI-specific args,
423   // which never have param info.
424   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
425     // ABI-specific suffix arguments are treated the same as variadic arguments.
426     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
427                                 ArgTypes.size());
428   }
429   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
430                                  /*chainCall=*/false, ArgTypes, Info,
431                                  ParamInfos, Required);
432 }
433 
434 /// Arrange the argument and result information for the declaration or
435 /// definition of the given function.
436 const CGFunctionInfo &
437 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
438   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
439     if (MD->isInstance())
440       return arrangeCXXMethodDeclaration(MD);
441 
442   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
443 
444   assert(isa<FunctionType>(FTy));
445   setCUDAKernelCallingConvention(FTy, CGM, FD);
446 
447   // When declaring a function without a prototype, always use a
448   // non-variadic type.
449   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
450     return arrangeLLVMFunctionInfo(
451         noProto->getReturnType(), /*instanceMethod=*/false,
452         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
453   }
454 
455   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
456 }
457 
458 /// Arrange the argument and result information for the declaration or
459 /// definition of an Objective-C method.
460 const CGFunctionInfo &
461 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
462   // It happens that this is the same as a call with no optional
463   // arguments, except also using the formal 'self' type.
464   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
465 }
466 
467 /// Arrange the argument and result information for the function type
468 /// through which to perform a send to the given Objective-C method,
469 /// using the given receiver type.  The receiver type is not always
470 /// the 'self' type of the method or even an Objective-C pointer type.
471 /// This is *not* the right method for actually performing such a
472 /// message send, due to the possibility of optional arguments.
473 const CGFunctionInfo &
474 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
475                                               QualType receiverType) {
476   SmallVector<CanQualType, 16> argTys;
477   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
478   argTys.push_back(Context.getCanonicalParamType(receiverType));
479   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
480   // FIXME: Kill copy?
481   for (const auto *I : MD->parameters()) {
482     argTys.push_back(Context.getCanonicalParamType(I->getType()));
483     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
484         I->hasAttr<NoEscapeAttr>());
485     extParamInfos.push_back(extParamInfo);
486   }
487 
488   FunctionType::ExtInfo einfo;
489   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
490   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
491 
492   if (getContext().getLangOpts().ObjCAutoRefCount &&
493       MD->hasAttr<NSReturnsRetainedAttr>())
494     einfo = einfo.withProducesResult(true);
495 
496   RequiredArgs required =
497     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
498 
499   return arrangeLLVMFunctionInfo(
500       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
501       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
502 }
503 
504 const CGFunctionInfo &
505 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
506                                                  const CallArgList &args) {
507   auto argTypes = getArgTypesForCall(Context, args);
508   FunctionType::ExtInfo einfo;
509 
510   return arrangeLLVMFunctionInfo(
511       GetReturnType(returnType), /*instanceMethod=*/false,
512       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
513 }
514 
515 const CGFunctionInfo &
516 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
517   // FIXME: Do we need to handle ObjCMethodDecl?
518   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
519 
520   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
521     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
522 
523   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
524     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
525 
526   return arrangeFunctionDeclaration(FD);
527 }
528 
529 /// Arrange a thunk that takes 'this' as the first parameter followed by
530 /// varargs.  Return a void pointer, regardless of the actual return type.
531 /// The body of the thunk will end in a musttail call to a function of the
532 /// correct type, and the caller will bitcast the function to the correct
533 /// prototype.
534 const CGFunctionInfo &
535 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
536   assert(MD->isVirtual() && "only methods have thunks");
537   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
538   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent(), MD) };
539   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
540                                  /*chainCall=*/false, ArgTys,
541                                  FTP->getExtInfo(), {}, RequiredArgs(1));
542 }
543 
544 const CGFunctionInfo &
545 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
546                                    CXXCtorType CT) {
547   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
548 
549   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
550   SmallVector<CanQualType, 2> ArgTys;
551   const CXXRecordDecl *RD = CD->getParent();
552   ArgTys.push_back(GetThisType(Context, RD, CD));
553   if (CT == Ctor_CopyingClosure)
554     ArgTys.push_back(*FTP->param_type_begin());
555   if (RD->getNumVBases() > 0)
556     ArgTys.push_back(Context.IntTy);
557   CallingConv CC = Context.getDefaultCallingConvention(
558       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
559   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
560                                  /*chainCall=*/false, ArgTys,
561                                  FunctionType::ExtInfo(CC), {},
562                                  RequiredArgs::All);
563 }
564 
565 /// Arrange a call as unto a free function, except possibly with an
566 /// additional number of formal parameters considered required.
567 static const CGFunctionInfo &
568 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
569                             CodeGenModule &CGM,
570                             const CallArgList &args,
571                             const FunctionType *fnType,
572                             unsigned numExtraRequiredArgs,
573                             bool chainCall) {
574   assert(args.size() >= numExtraRequiredArgs);
575 
576   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
577 
578   // In most cases, there are no optional arguments.
579   RequiredArgs required = RequiredArgs::All;
580 
581   // If we have a variadic prototype, the required arguments are the
582   // extra prefix plus the arguments in the prototype.
583   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
584     if (proto->isVariadic())
585       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
586 
587     if (proto->hasExtParameterInfos())
588       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
589                                   args.size());
590 
591   // If we don't have a prototype at all, but we're supposed to
592   // explicitly use the variadic convention for unprototyped calls,
593   // treat all of the arguments as required but preserve the nominal
594   // possibility of variadics.
595   } else if (CGM.getTargetCodeGenInfo()
596                 .isNoProtoCallVariadic(args,
597                                        cast<FunctionNoProtoType>(fnType))) {
598     required = RequiredArgs(args.size());
599   }
600 
601   // FIXME: Kill copy.
602   SmallVector<CanQualType, 16> argTypes;
603   for (const auto &arg : args)
604     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
605   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
606                                      /*instanceMethod=*/false, chainCall,
607                                      argTypes, fnType->getExtInfo(), paramInfos,
608                                      required);
609 }
610 
611 /// Figure out the rules for calling a function with the given formal
612 /// type using the given arguments.  The arguments are necessary
613 /// because the function might be unprototyped, in which case it's
614 /// target-dependent in crazy ways.
615 const CGFunctionInfo &
616 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
617                                       const FunctionType *fnType,
618                                       bool chainCall) {
619   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
620                                      chainCall ? 1 : 0, chainCall);
621 }
622 
623 /// A block function is essentially a free function with an
624 /// extra implicit argument.
625 const CGFunctionInfo &
626 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
627                                        const FunctionType *fnType) {
628   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
629                                      /*chainCall=*/false);
630 }
631 
632 const CGFunctionInfo &
633 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
634                                               const FunctionArgList &params) {
635   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
636   auto argTypes = getArgTypesForDeclaration(Context, params);
637 
638   return arrangeLLVMFunctionInfo(
639       GetReturnType(proto->getReturnType()),
640       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
641       proto->getExtInfo(), paramInfos,
642       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
643 }
644 
645 const CGFunctionInfo &
646 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
647                                          const CallArgList &args) {
648   // FIXME: Kill copy.
649   SmallVector<CanQualType, 16> argTypes;
650   for (const auto &Arg : args)
651     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
652   return arrangeLLVMFunctionInfo(
653       GetReturnType(resultType), /*instanceMethod=*/false,
654       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
655       /*paramInfos=*/ {}, RequiredArgs::All);
656 }
657 
658 const CGFunctionInfo &
659 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
660                                                 const FunctionArgList &args) {
661   auto argTypes = getArgTypesForDeclaration(Context, args);
662 
663   return arrangeLLVMFunctionInfo(
664       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
665       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
666 }
667 
668 const CGFunctionInfo &
669 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
670                                               ArrayRef<CanQualType> argTypes) {
671   return arrangeLLVMFunctionInfo(
672       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
673       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
674 }
675 
676 /// Arrange a call to a C++ method, passing the given arguments.
677 ///
678 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
679 /// does not count `this`.
680 const CGFunctionInfo &
681 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
682                                    const FunctionProtoType *proto,
683                                    RequiredArgs required,
684                                    unsigned numPrefixArgs) {
685   assert(numPrefixArgs + 1 <= args.size() &&
686          "Emitting a call with less args than the required prefix?");
687   // Add one to account for `this`. It's a bit awkward here, but we don't count
688   // `this` in similar places elsewhere.
689   auto paramInfos =
690     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
691 
692   // FIXME: Kill copy.
693   auto argTypes = getArgTypesForCall(Context, args);
694 
695   FunctionType::ExtInfo info = proto->getExtInfo();
696   return arrangeLLVMFunctionInfo(
697       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
698       /*chainCall=*/false, argTypes, info, paramInfos, required);
699 }
700 
701 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
702   return arrangeLLVMFunctionInfo(
703       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
704       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
705 }
706 
707 const CGFunctionInfo &
708 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
709                           const CallArgList &args) {
710   assert(signature.arg_size() <= args.size());
711   if (signature.arg_size() == args.size())
712     return signature;
713 
714   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
715   auto sigParamInfos = signature.getExtParameterInfos();
716   if (!sigParamInfos.empty()) {
717     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
718     paramInfos.resize(args.size());
719   }
720 
721   auto argTypes = getArgTypesForCall(Context, args);
722 
723   assert(signature.getRequiredArgs().allowsOptionalArgs());
724   return arrangeLLVMFunctionInfo(signature.getReturnType(),
725                                  signature.isInstanceMethod(),
726                                  signature.isChainCall(),
727                                  argTypes,
728                                  signature.getExtInfo(),
729                                  paramInfos,
730                                  signature.getRequiredArgs());
731 }
732 
733 namespace clang {
734 namespace CodeGen {
735 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
736 }
737 }
738 
739 /// Arrange the argument and result information for an abstract value
740 /// of a given function type.  This is the method which all of the
741 /// above functions ultimately defer to.
742 const CGFunctionInfo &
743 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
744                                       bool instanceMethod,
745                                       bool chainCall,
746                                       ArrayRef<CanQualType> argTypes,
747                                       FunctionType::ExtInfo info,
748                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
749                                       RequiredArgs required) {
750   assert(llvm::all_of(argTypes,
751                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
752 
753   // Lookup or create unique function info.
754   llvm::FoldingSetNodeID ID;
755   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
756                           required, resultType, argTypes);
757 
758   void *insertPos = nullptr;
759   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
760   if (FI)
761     return *FI;
762 
763   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
764 
765   // Construct the function info.  We co-allocate the ArgInfos.
766   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
767                               paramInfos, resultType, argTypes, required);
768   FunctionInfos.InsertNode(FI, insertPos);
769 
770   bool inserted = FunctionsBeingProcessed.insert(FI).second;
771   (void)inserted;
772   assert(inserted && "Recursively being processed?");
773 
774   // Compute ABI information.
775   if (CC == llvm::CallingConv::SPIR_KERNEL) {
776     // Force target independent argument handling for the host visible
777     // kernel functions.
778     computeSPIRKernelABIInfo(CGM, *FI);
779   } else if (info.getCC() == CC_Swift) {
780     swiftcall::computeABIInfo(CGM, *FI);
781   } else {
782     getABIInfo().computeInfo(*FI);
783   }
784 
785   // Loop over all of the computed argument and return value info.  If any of
786   // them are direct or extend without a specified coerce type, specify the
787   // default now.
788   ABIArgInfo &retInfo = FI->getReturnInfo();
789   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
790     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
791 
792   for (auto &I : FI->arguments())
793     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
794       I.info.setCoerceToType(ConvertType(I.type));
795 
796   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
797   assert(erased && "Not in set?");
798 
799   return *FI;
800 }
801 
802 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
803                                        bool instanceMethod,
804                                        bool chainCall,
805                                        const FunctionType::ExtInfo &info,
806                                        ArrayRef<ExtParameterInfo> paramInfos,
807                                        CanQualType resultType,
808                                        ArrayRef<CanQualType> argTypes,
809                                        RequiredArgs required) {
810   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
811 
812   void *buffer =
813     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
814                                   argTypes.size() + 1, paramInfos.size()));
815 
816   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
817   FI->CallingConvention = llvmCC;
818   FI->EffectiveCallingConvention = llvmCC;
819   FI->ASTCallingConvention = info.getCC();
820   FI->InstanceMethod = instanceMethod;
821   FI->ChainCall = chainCall;
822   FI->NoReturn = info.getNoReturn();
823   FI->ReturnsRetained = info.getProducesResult();
824   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
825   FI->NoCfCheck = info.getNoCfCheck();
826   FI->Required = required;
827   FI->HasRegParm = info.getHasRegParm();
828   FI->RegParm = info.getRegParm();
829   FI->ArgStruct = nullptr;
830   FI->ArgStructAlign = 0;
831   FI->NumArgs = argTypes.size();
832   FI->HasExtParameterInfos = !paramInfos.empty();
833   FI->getArgsBuffer()[0].type = resultType;
834   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
835     FI->getArgsBuffer()[i + 1].type = argTypes[i];
836   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
837     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
838   return FI;
839 }
840 
841 /***/
842 
843 namespace {
844 // ABIArgInfo::Expand implementation.
845 
846 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
847 struct TypeExpansion {
848   enum TypeExpansionKind {
849     // Elements of constant arrays are expanded recursively.
850     TEK_ConstantArray,
851     // Record fields are expanded recursively (but if record is a union, only
852     // the field with the largest size is expanded).
853     TEK_Record,
854     // For complex types, real and imaginary parts are expanded recursively.
855     TEK_Complex,
856     // All other types are not expandable.
857     TEK_None
858   };
859 
860   const TypeExpansionKind Kind;
861 
862   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
863   virtual ~TypeExpansion() {}
864 };
865 
866 struct ConstantArrayExpansion : TypeExpansion {
867   QualType EltTy;
868   uint64_t NumElts;
869 
870   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
871       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
872   static bool classof(const TypeExpansion *TE) {
873     return TE->Kind == TEK_ConstantArray;
874   }
875 };
876 
877 struct RecordExpansion : TypeExpansion {
878   SmallVector<const CXXBaseSpecifier *, 1> Bases;
879 
880   SmallVector<const FieldDecl *, 1> Fields;
881 
882   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
883                   SmallVector<const FieldDecl *, 1> &&Fields)
884       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
885         Fields(std::move(Fields)) {}
886   static bool classof(const TypeExpansion *TE) {
887     return TE->Kind == TEK_Record;
888   }
889 };
890 
891 struct ComplexExpansion : TypeExpansion {
892   QualType EltTy;
893 
894   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
895   static bool classof(const TypeExpansion *TE) {
896     return TE->Kind == TEK_Complex;
897   }
898 };
899 
900 struct NoExpansion : TypeExpansion {
901   NoExpansion() : TypeExpansion(TEK_None) {}
902   static bool classof(const TypeExpansion *TE) {
903     return TE->Kind == TEK_None;
904   }
905 };
906 }  // namespace
907 
908 static std::unique_ptr<TypeExpansion>
909 getTypeExpansion(QualType Ty, const ASTContext &Context) {
910   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
911     return llvm::make_unique<ConstantArrayExpansion>(
912         AT->getElementType(), AT->getSize().getZExtValue());
913   }
914   if (const RecordType *RT = Ty->getAs<RecordType>()) {
915     SmallVector<const CXXBaseSpecifier *, 1> Bases;
916     SmallVector<const FieldDecl *, 1> Fields;
917     const RecordDecl *RD = RT->getDecl();
918     assert(!RD->hasFlexibleArrayMember() &&
919            "Cannot expand structure with flexible array.");
920     if (RD->isUnion()) {
921       // Unions can be here only in degenerative cases - all the fields are same
922       // after flattening. Thus we have to use the "largest" field.
923       const FieldDecl *LargestFD = nullptr;
924       CharUnits UnionSize = CharUnits::Zero();
925 
926       for (const auto *FD : RD->fields()) {
927         if (FD->isZeroLengthBitField(Context))
928           continue;
929         assert(!FD->isBitField() &&
930                "Cannot expand structure with bit-field members.");
931         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
932         if (UnionSize < FieldSize) {
933           UnionSize = FieldSize;
934           LargestFD = FD;
935         }
936       }
937       if (LargestFD)
938         Fields.push_back(LargestFD);
939     } else {
940       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
941         assert(!CXXRD->isDynamicClass() &&
942                "cannot expand vtable pointers in dynamic classes");
943         for (const CXXBaseSpecifier &BS : CXXRD->bases())
944           Bases.push_back(&BS);
945       }
946 
947       for (const auto *FD : RD->fields()) {
948         if (FD->isZeroLengthBitField(Context))
949           continue;
950         assert(!FD->isBitField() &&
951                "Cannot expand structure with bit-field members.");
952         Fields.push_back(FD);
953       }
954     }
955     return llvm::make_unique<RecordExpansion>(std::move(Bases),
956                                               std::move(Fields));
957   }
958   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
959     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
960   }
961   return llvm::make_unique<NoExpansion>();
962 }
963 
964 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
965   auto Exp = getTypeExpansion(Ty, Context);
966   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
967     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
968   }
969   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
970     int Res = 0;
971     for (auto BS : RExp->Bases)
972       Res += getExpansionSize(BS->getType(), Context);
973     for (auto FD : RExp->Fields)
974       Res += getExpansionSize(FD->getType(), Context);
975     return Res;
976   }
977   if (isa<ComplexExpansion>(Exp.get()))
978     return 2;
979   assert(isa<NoExpansion>(Exp.get()));
980   return 1;
981 }
982 
983 void
984 CodeGenTypes::getExpandedTypes(QualType Ty,
985                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
986   auto Exp = getTypeExpansion(Ty, Context);
987   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
988     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
989       getExpandedTypes(CAExp->EltTy, TI);
990     }
991   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
992     for (auto BS : RExp->Bases)
993       getExpandedTypes(BS->getType(), TI);
994     for (auto FD : RExp->Fields)
995       getExpandedTypes(FD->getType(), TI);
996   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
997     llvm::Type *EltTy = ConvertType(CExp->EltTy);
998     *TI++ = EltTy;
999     *TI++ = EltTy;
1000   } else {
1001     assert(isa<NoExpansion>(Exp.get()));
1002     *TI++ = ConvertType(Ty);
1003   }
1004 }
1005 
1006 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1007                                       ConstantArrayExpansion *CAE,
1008                                       Address BaseAddr,
1009                                       llvm::function_ref<void(Address)> Fn) {
1010   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1011   CharUnits EltAlign =
1012     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1013 
1014   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1015     llvm::Value *EltAddr =
1016       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1017     Fn(Address(EltAddr, EltAlign));
1018   }
1019 }
1020 
1021 void CodeGenFunction::ExpandTypeFromArgs(
1022     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1023   assert(LV.isSimple() &&
1024          "Unexpected non-simple lvalue during struct expansion.");
1025 
1026   auto Exp = getTypeExpansion(Ty, getContext());
1027   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1028     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1029                               [&](Address EltAddr) {
1030       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1031       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1032     });
1033   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1034     Address This = LV.getAddress();
1035     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1036       // Perform a single step derived-to-base conversion.
1037       Address Base =
1038           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1039                                 /*NullCheckValue=*/false, SourceLocation());
1040       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1041 
1042       // Recurse onto bases.
1043       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1044     }
1045     for (auto FD : RExp->Fields) {
1046       // FIXME: What are the right qualifiers here?
1047       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1048       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1049     }
1050   } else if (isa<ComplexExpansion>(Exp.get())) {
1051     auto realValue = *AI++;
1052     auto imagValue = *AI++;
1053     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1054   } else {
1055     assert(isa<NoExpansion>(Exp.get()));
1056     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1057   }
1058 }
1059 
1060 void CodeGenFunction::ExpandTypeToArgs(
1061     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1062     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1063   auto Exp = getTypeExpansion(Ty, getContext());
1064   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1065     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1066                                    : Arg.getKnownRValue().getAggregateAddress();
1067     forConstantArrayExpansion(
1068         *this, CAExp, Addr, [&](Address EltAddr) {
1069           CallArg EltArg = CallArg(
1070               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1071               CAExp->EltTy);
1072           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1073                            IRCallArgPos);
1074         });
1075   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1076     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1077                                    : Arg.getKnownRValue().getAggregateAddress();
1078     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1079       // Perform a single step derived-to-base conversion.
1080       Address Base =
1081           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1082                                 /*NullCheckValue=*/false, SourceLocation());
1083       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1084 
1085       // Recurse onto bases.
1086       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1087                        IRCallArgPos);
1088     }
1089 
1090     LValue LV = MakeAddrLValue(This, Ty);
1091     for (auto FD : RExp->Fields) {
1092       CallArg FldArg =
1093           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1094       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1095                        IRCallArgPos);
1096     }
1097   } else if (isa<ComplexExpansion>(Exp.get())) {
1098     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1099     IRCallArgs[IRCallArgPos++] = CV.first;
1100     IRCallArgs[IRCallArgPos++] = CV.second;
1101   } else {
1102     assert(isa<NoExpansion>(Exp.get()));
1103     auto RV = Arg.getKnownRValue();
1104     assert(RV.isScalar() &&
1105            "Unexpected non-scalar rvalue during struct expansion.");
1106 
1107     // Insert a bitcast as needed.
1108     llvm::Value *V = RV.getScalarVal();
1109     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1110         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1111       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1112 
1113     IRCallArgs[IRCallArgPos++] = V;
1114   }
1115 }
1116 
1117 /// Create a temporary allocation for the purposes of coercion.
1118 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1119                                            CharUnits MinAlign) {
1120   // Don't use an alignment that's worse than what LLVM would prefer.
1121   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1122   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1123 
1124   return CGF.CreateTempAlloca(Ty, Align);
1125 }
1126 
1127 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1128 /// accessing some number of bytes out of it, try to gep into the struct to get
1129 /// at its inner goodness.  Dive as deep as possible without entering an element
1130 /// with an in-memory size smaller than DstSize.
1131 static Address
1132 EnterStructPointerForCoercedAccess(Address SrcPtr,
1133                                    llvm::StructType *SrcSTy,
1134                                    uint64_t DstSize, CodeGenFunction &CGF) {
1135   // We can't dive into a zero-element struct.
1136   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1137 
1138   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1139 
1140   // If the first elt is at least as large as what we're looking for, or if the
1141   // first element is the same size as the whole struct, we can enter it. The
1142   // comparison must be made on the store size and not the alloca size. Using
1143   // the alloca size may overstate the size of the load.
1144   uint64_t FirstEltSize =
1145     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1146   if (FirstEltSize < DstSize &&
1147       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1148     return SrcPtr;
1149 
1150   // GEP into the first element.
1151   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1152 
1153   // If the first element is a struct, recurse.
1154   llvm::Type *SrcTy = SrcPtr.getElementType();
1155   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1156     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1157 
1158   return SrcPtr;
1159 }
1160 
1161 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1162 /// are either integers or pointers.  This does a truncation of the value if it
1163 /// is too large or a zero extension if it is too small.
1164 ///
1165 /// This behaves as if the value were coerced through memory, so on big-endian
1166 /// targets the high bits are preserved in a truncation, while little-endian
1167 /// targets preserve the low bits.
1168 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1169                                              llvm::Type *Ty,
1170                                              CodeGenFunction &CGF) {
1171   if (Val->getType() == Ty)
1172     return Val;
1173 
1174   if (isa<llvm::PointerType>(Val->getType())) {
1175     // If this is Pointer->Pointer avoid conversion to and from int.
1176     if (isa<llvm::PointerType>(Ty))
1177       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1178 
1179     // Convert the pointer to an integer so we can play with its width.
1180     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1181   }
1182 
1183   llvm::Type *DestIntTy = Ty;
1184   if (isa<llvm::PointerType>(DestIntTy))
1185     DestIntTy = CGF.IntPtrTy;
1186 
1187   if (Val->getType() != DestIntTy) {
1188     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1189     if (DL.isBigEndian()) {
1190       // Preserve the high bits on big-endian targets.
1191       // That is what memory coercion does.
1192       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1193       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1194 
1195       if (SrcSize > DstSize) {
1196         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1197         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1198       } else {
1199         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1200         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1201       }
1202     } else {
1203       // Little-endian targets preserve the low bits. No shifts required.
1204       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1205     }
1206   }
1207 
1208   if (isa<llvm::PointerType>(Ty))
1209     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1210   return Val;
1211 }
1212 
1213 
1214 
1215 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1216 /// a pointer to an object of type \arg Ty, known to be aligned to
1217 /// \arg SrcAlign bytes.
1218 ///
1219 /// This safely handles the case when the src type is smaller than the
1220 /// destination type; in this situation the values of bits which not
1221 /// present in the src are undefined.
1222 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1223                                       CodeGenFunction &CGF) {
1224   llvm::Type *SrcTy = Src.getElementType();
1225 
1226   // If SrcTy and Ty are the same, just do a load.
1227   if (SrcTy == Ty)
1228     return CGF.Builder.CreateLoad(Src);
1229 
1230   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1231 
1232   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1233     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1234     SrcTy = Src.getType()->getElementType();
1235   }
1236 
1237   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1238 
1239   // If the source and destination are integer or pointer types, just do an
1240   // extension or truncation to the desired type.
1241   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1242       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1243     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1244     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1245   }
1246 
1247   // If load is legal, just bitcast the src pointer.
1248   if (SrcSize >= DstSize) {
1249     // Generally SrcSize is never greater than DstSize, since this means we are
1250     // losing bits. However, this can happen in cases where the structure has
1251     // additional padding, for example due to a user specified alignment.
1252     //
1253     // FIXME: Assert that we aren't truncating non-padding bits when have access
1254     // to that information.
1255     Src = CGF.Builder.CreateBitCast(Src,
1256                                     Ty->getPointerTo(Src.getAddressSpace()));
1257     return CGF.Builder.CreateLoad(Src);
1258   }
1259 
1260   // Otherwise do coercion through memory. This is stupid, but simple.
1261   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1262   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1263   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1264   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1265       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1266       false);
1267   return CGF.Builder.CreateLoad(Tmp);
1268 }
1269 
1270 // Function to store a first-class aggregate into memory.  We prefer to
1271 // store the elements rather than the aggregate to be more friendly to
1272 // fast-isel.
1273 // FIXME: Do we need to recurse here?
1274 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1275                           Address Dest, bool DestIsVolatile) {
1276   // Prefer scalar stores to first-class aggregate stores.
1277   if (llvm::StructType *STy =
1278         dyn_cast<llvm::StructType>(Val->getType())) {
1279     const llvm::StructLayout *Layout =
1280       CGF.CGM.getDataLayout().getStructLayout(STy);
1281 
1282     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1283       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1284       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1285       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1286       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1287     }
1288   } else {
1289     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1290   }
1291 }
1292 
1293 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1294 /// where the source and destination may have different types.  The
1295 /// destination is known to be aligned to \arg DstAlign bytes.
1296 ///
1297 /// This safely handles the case when the src type is larger than the
1298 /// destination type; the upper bits of the src will be lost.
1299 static void CreateCoercedStore(llvm::Value *Src,
1300                                Address Dst,
1301                                bool DstIsVolatile,
1302                                CodeGenFunction &CGF) {
1303   llvm::Type *SrcTy = Src->getType();
1304   llvm::Type *DstTy = Dst.getType()->getElementType();
1305   if (SrcTy == DstTy) {
1306     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1307     return;
1308   }
1309 
1310   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1311 
1312   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1313     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1314     DstTy = Dst.getType()->getElementType();
1315   }
1316 
1317   // If the source and destination are integer or pointer types, just do an
1318   // extension or truncation to the desired type.
1319   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1320       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1321     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1322     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1323     return;
1324   }
1325 
1326   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1327 
1328   // If store is legal, just bitcast the src pointer.
1329   if (SrcSize <= DstSize) {
1330     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1331     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1332   } else {
1333     // Otherwise do coercion through memory. This is stupid, but
1334     // simple.
1335 
1336     // Generally SrcSize is never greater than DstSize, since this means we are
1337     // losing bits. However, this can happen in cases where the structure has
1338     // additional padding, for example due to a user specified alignment.
1339     //
1340     // FIXME: Assert that we aren't truncating non-padding bits when have access
1341     // to that information.
1342     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1343     CGF.Builder.CreateStore(Src, Tmp);
1344     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1345     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1346     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1347         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1348         false);
1349   }
1350 }
1351 
1352 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1353                                    const ABIArgInfo &info) {
1354   if (unsigned offset = info.getDirectOffset()) {
1355     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1356     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1357                                              CharUnits::fromQuantity(offset));
1358     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1359   }
1360   return addr;
1361 }
1362 
1363 namespace {
1364 
1365 /// Encapsulates information about the way function arguments from
1366 /// CGFunctionInfo should be passed to actual LLVM IR function.
1367 class ClangToLLVMArgMapping {
1368   static const unsigned InvalidIndex = ~0U;
1369   unsigned InallocaArgNo;
1370   unsigned SRetArgNo;
1371   unsigned TotalIRArgs;
1372 
1373   /// Arguments of LLVM IR function corresponding to single Clang argument.
1374   struct IRArgs {
1375     unsigned PaddingArgIndex;
1376     // Argument is expanded to IR arguments at positions
1377     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1378     unsigned FirstArgIndex;
1379     unsigned NumberOfArgs;
1380 
1381     IRArgs()
1382         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1383           NumberOfArgs(0) {}
1384   };
1385 
1386   SmallVector<IRArgs, 8> ArgInfo;
1387 
1388 public:
1389   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1390                         bool OnlyRequiredArgs = false)
1391       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1392         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1393     construct(Context, FI, OnlyRequiredArgs);
1394   }
1395 
1396   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1397   unsigned getInallocaArgNo() const {
1398     assert(hasInallocaArg());
1399     return InallocaArgNo;
1400   }
1401 
1402   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1403   unsigned getSRetArgNo() const {
1404     assert(hasSRetArg());
1405     return SRetArgNo;
1406   }
1407 
1408   unsigned totalIRArgs() const { return TotalIRArgs; }
1409 
1410   bool hasPaddingArg(unsigned ArgNo) const {
1411     assert(ArgNo < ArgInfo.size());
1412     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1413   }
1414   unsigned getPaddingArgNo(unsigned ArgNo) const {
1415     assert(hasPaddingArg(ArgNo));
1416     return ArgInfo[ArgNo].PaddingArgIndex;
1417   }
1418 
1419   /// Returns index of first IR argument corresponding to ArgNo, and their
1420   /// quantity.
1421   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1422     assert(ArgNo < ArgInfo.size());
1423     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1424                           ArgInfo[ArgNo].NumberOfArgs);
1425   }
1426 
1427 private:
1428   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1429                  bool OnlyRequiredArgs);
1430 };
1431 
1432 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1433                                       const CGFunctionInfo &FI,
1434                                       bool OnlyRequiredArgs) {
1435   unsigned IRArgNo = 0;
1436   bool SwapThisWithSRet = false;
1437   const ABIArgInfo &RetAI = FI.getReturnInfo();
1438 
1439   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1440     SwapThisWithSRet = RetAI.isSRetAfterThis();
1441     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1442   }
1443 
1444   unsigned ArgNo = 0;
1445   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1446   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1447        ++I, ++ArgNo) {
1448     assert(I != FI.arg_end());
1449     QualType ArgType = I->type;
1450     const ABIArgInfo &AI = I->info;
1451     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1452     auto &IRArgs = ArgInfo[ArgNo];
1453 
1454     if (AI.getPaddingType())
1455       IRArgs.PaddingArgIndex = IRArgNo++;
1456 
1457     switch (AI.getKind()) {
1458     case ABIArgInfo::Extend:
1459     case ABIArgInfo::Direct: {
1460       // FIXME: handle sseregparm someday...
1461       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1462       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1463         IRArgs.NumberOfArgs = STy->getNumElements();
1464       } else {
1465         IRArgs.NumberOfArgs = 1;
1466       }
1467       break;
1468     }
1469     case ABIArgInfo::Indirect:
1470       IRArgs.NumberOfArgs = 1;
1471       break;
1472     case ABIArgInfo::Ignore:
1473     case ABIArgInfo::InAlloca:
1474       // ignore and inalloca doesn't have matching LLVM parameters.
1475       IRArgs.NumberOfArgs = 0;
1476       break;
1477     case ABIArgInfo::CoerceAndExpand:
1478       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1479       break;
1480     case ABIArgInfo::Expand:
1481       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1482       break;
1483     }
1484 
1485     if (IRArgs.NumberOfArgs > 0) {
1486       IRArgs.FirstArgIndex = IRArgNo;
1487       IRArgNo += IRArgs.NumberOfArgs;
1488     }
1489 
1490     // Skip over the sret parameter when it comes second.  We already handled it
1491     // above.
1492     if (IRArgNo == 1 && SwapThisWithSRet)
1493       IRArgNo++;
1494   }
1495   assert(ArgNo == ArgInfo.size());
1496 
1497   if (FI.usesInAlloca())
1498     InallocaArgNo = IRArgNo++;
1499 
1500   TotalIRArgs = IRArgNo;
1501 }
1502 }  // namespace
1503 
1504 /***/
1505 
1506 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1507   const auto &RI = FI.getReturnInfo();
1508   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1509 }
1510 
1511 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1512   return ReturnTypeUsesSRet(FI) &&
1513          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1514 }
1515 
1516 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1517   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1518     switch (BT->getKind()) {
1519     default:
1520       return false;
1521     case BuiltinType::Float:
1522       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1523     case BuiltinType::Double:
1524       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1525     case BuiltinType::LongDouble:
1526       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1527     }
1528   }
1529 
1530   return false;
1531 }
1532 
1533 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1534   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1535     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1536       if (BT->getKind() == BuiltinType::LongDouble)
1537         return getTarget().useObjCFP2RetForComplexLongDouble();
1538     }
1539   }
1540 
1541   return false;
1542 }
1543 
1544 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1545   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1546   return GetFunctionType(FI);
1547 }
1548 
1549 llvm::FunctionType *
1550 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1551 
1552   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1553   (void)Inserted;
1554   assert(Inserted && "Recursively being processed?");
1555 
1556   llvm::Type *resultType = nullptr;
1557   const ABIArgInfo &retAI = FI.getReturnInfo();
1558   switch (retAI.getKind()) {
1559   case ABIArgInfo::Expand:
1560     llvm_unreachable("Invalid ABI kind for return argument");
1561 
1562   case ABIArgInfo::Extend:
1563   case ABIArgInfo::Direct:
1564     resultType = retAI.getCoerceToType();
1565     break;
1566 
1567   case ABIArgInfo::InAlloca:
1568     if (retAI.getInAllocaSRet()) {
1569       // sret things on win32 aren't void, they return the sret pointer.
1570       QualType ret = FI.getReturnType();
1571       llvm::Type *ty = ConvertType(ret);
1572       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1573       resultType = llvm::PointerType::get(ty, addressSpace);
1574     } else {
1575       resultType = llvm::Type::getVoidTy(getLLVMContext());
1576     }
1577     break;
1578 
1579   case ABIArgInfo::Indirect:
1580   case ABIArgInfo::Ignore:
1581     resultType = llvm::Type::getVoidTy(getLLVMContext());
1582     break;
1583 
1584   case ABIArgInfo::CoerceAndExpand:
1585     resultType = retAI.getUnpaddedCoerceAndExpandType();
1586     break;
1587   }
1588 
1589   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1590   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1591 
1592   // Add type for sret argument.
1593   if (IRFunctionArgs.hasSRetArg()) {
1594     QualType Ret = FI.getReturnType();
1595     llvm::Type *Ty = ConvertType(Ret);
1596     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1597     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1598         llvm::PointerType::get(Ty, AddressSpace);
1599   }
1600 
1601   // Add type for inalloca argument.
1602   if (IRFunctionArgs.hasInallocaArg()) {
1603     auto ArgStruct = FI.getArgStruct();
1604     assert(ArgStruct);
1605     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1606   }
1607 
1608   // Add in all of the required arguments.
1609   unsigned ArgNo = 0;
1610   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1611                                      ie = it + FI.getNumRequiredArgs();
1612   for (; it != ie; ++it, ++ArgNo) {
1613     const ABIArgInfo &ArgInfo = it->info;
1614 
1615     // Insert a padding type to ensure proper alignment.
1616     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1617       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1618           ArgInfo.getPaddingType();
1619 
1620     unsigned FirstIRArg, NumIRArgs;
1621     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1622 
1623     switch (ArgInfo.getKind()) {
1624     case ABIArgInfo::Ignore:
1625     case ABIArgInfo::InAlloca:
1626       assert(NumIRArgs == 0);
1627       break;
1628 
1629     case ABIArgInfo::Indirect: {
1630       assert(NumIRArgs == 1);
1631       // indirect arguments are always on the stack, which is alloca addr space.
1632       llvm::Type *LTy = ConvertTypeForMem(it->type);
1633       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1634           CGM.getDataLayout().getAllocaAddrSpace());
1635       break;
1636     }
1637 
1638     case ABIArgInfo::Extend:
1639     case ABIArgInfo::Direct: {
1640       // Fast-isel and the optimizer generally like scalar values better than
1641       // FCAs, so we flatten them if this is safe to do for this argument.
1642       llvm::Type *argType = ArgInfo.getCoerceToType();
1643       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1644       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1645         assert(NumIRArgs == st->getNumElements());
1646         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1647           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1648       } else {
1649         assert(NumIRArgs == 1);
1650         ArgTypes[FirstIRArg] = argType;
1651       }
1652       break;
1653     }
1654 
1655     case ABIArgInfo::CoerceAndExpand: {
1656       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1657       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1658         *ArgTypesIter++ = EltTy;
1659       }
1660       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1661       break;
1662     }
1663 
1664     case ABIArgInfo::Expand:
1665       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1666       getExpandedTypes(it->type, ArgTypesIter);
1667       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1668       break;
1669     }
1670   }
1671 
1672   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1673   assert(Erased && "Not in set?");
1674 
1675   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1676 }
1677 
1678 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1679   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1680   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1681 
1682   if (!isFuncTypeConvertible(FPT))
1683     return llvm::StructType::get(getLLVMContext());
1684 
1685   const CGFunctionInfo *Info;
1686   if (isa<CXXDestructorDecl>(MD))
1687     Info =
1688         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1689   else
1690     Info = &arrangeCXXMethodDeclaration(MD);
1691   return GetFunctionType(*Info);
1692 }
1693 
1694 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1695                                                llvm::AttrBuilder &FuncAttrs,
1696                                                const FunctionProtoType *FPT) {
1697   if (!FPT)
1698     return;
1699 
1700   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1701       FPT->isNothrow())
1702     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1703 }
1704 
1705 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1706                                                bool AttrOnCallSite,
1707                                                llvm::AttrBuilder &FuncAttrs) {
1708   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1709   if (!HasOptnone) {
1710     if (CodeGenOpts.OptimizeSize)
1711       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1712     if (CodeGenOpts.OptimizeSize == 2)
1713       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1714   }
1715 
1716   if (CodeGenOpts.DisableRedZone)
1717     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1718   if (CodeGenOpts.IndirectTlsSegRefs)
1719     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1720   if (CodeGenOpts.NoImplicitFloat)
1721     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1722 
1723   if (AttrOnCallSite) {
1724     // Attributes that should go on the call site only.
1725     if (!CodeGenOpts.SimplifyLibCalls ||
1726         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1727       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1728     if (!CodeGenOpts.TrapFuncName.empty())
1729       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1730   } else {
1731     // Attributes that should go on the function, but not the call site.
1732     if (!CodeGenOpts.DisableFPElim) {
1733       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1734     } else if (CodeGenOpts.OmitLeafFramePointer) {
1735       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1736       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1737     } else {
1738       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1739       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1740     }
1741 
1742     FuncAttrs.addAttribute("less-precise-fpmad",
1743                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1744 
1745     if (CodeGenOpts.NullPointerIsValid)
1746       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1747     if (!CodeGenOpts.FPDenormalMode.empty())
1748       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1749 
1750     FuncAttrs.addAttribute("no-trapping-math",
1751                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1752 
1753     // Strict (compliant) code is the default, so only add this attribute to
1754     // indicate that we are trying to workaround a problem case.
1755     if (!CodeGenOpts.StrictFloatCastOverflow)
1756       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1757 
1758     // TODO: Are these all needed?
1759     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1760     FuncAttrs.addAttribute("no-infs-fp-math",
1761                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1762     FuncAttrs.addAttribute("no-nans-fp-math",
1763                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1764     FuncAttrs.addAttribute("unsafe-fp-math",
1765                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1766     FuncAttrs.addAttribute("use-soft-float",
1767                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1768     FuncAttrs.addAttribute("stack-protector-buffer-size",
1769                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1770     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1771                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1772     FuncAttrs.addAttribute(
1773         "correctly-rounded-divide-sqrt-fp-math",
1774         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1775 
1776     if (getLangOpts().OpenCL)
1777       FuncAttrs.addAttribute("denorms-are-zero",
1778                              llvm::toStringRef(CodeGenOpts.FlushDenorm));
1779 
1780     // TODO: Reciprocal estimate codegen options should apply to instructions?
1781     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1782     if (!Recips.empty())
1783       FuncAttrs.addAttribute("reciprocal-estimates",
1784                              llvm::join(Recips, ","));
1785 
1786     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1787         CodeGenOpts.PreferVectorWidth != "none")
1788       FuncAttrs.addAttribute("prefer-vector-width",
1789                              CodeGenOpts.PreferVectorWidth);
1790 
1791     if (CodeGenOpts.StackRealignment)
1792       FuncAttrs.addAttribute("stackrealign");
1793     if (CodeGenOpts.Backchain)
1794       FuncAttrs.addAttribute("backchain");
1795 
1796     // FIXME: The interaction of this attribute with the SLH command line flag
1797     // has not been determined.
1798     if (CodeGenOpts.SpeculativeLoadHardening)
1799       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1800   }
1801 
1802   if (getLangOpts().assumeFunctionsAreConvergent()) {
1803     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1804     // convergent (meaning, they may call an intrinsically convergent op, such
1805     // as __syncthreads() / barrier(), and so can't have certain optimizations
1806     // applied around them).  LLVM will remove this attribute where it safely
1807     // can.
1808     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1809   }
1810 
1811   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1812     // Exceptions aren't supported in CUDA device code.
1813     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1814 
1815     // Respect -fcuda-flush-denormals-to-zero.
1816     if (CodeGenOpts.FlushDenorm)
1817       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1818   }
1819 }
1820 
1821 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1822   llvm::AttrBuilder FuncAttrs;
1823   ConstructDefaultFnAttrList(F.getName(),
1824                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1825                              /* AttrOnCallsite = */ false, FuncAttrs);
1826   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1827 }
1828 
1829 void CodeGenModule::ConstructAttributeList(
1830     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1831     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1832   llvm::AttrBuilder FuncAttrs;
1833   llvm::AttrBuilder RetAttrs;
1834 
1835   CallingConv = FI.getEffectiveCallingConvention();
1836   if (FI.isNoReturn())
1837     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1838 
1839   // If we have information about the function prototype, we can learn
1840   // attributes from there.
1841   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1842                                      CalleeInfo.getCalleeFunctionProtoType());
1843 
1844   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1845 
1846   bool HasOptnone = false;
1847   // FIXME: handle sseregparm someday...
1848   if (TargetDecl) {
1849     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1850       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1851     if (TargetDecl->hasAttr<NoThrowAttr>())
1852       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1853     if (TargetDecl->hasAttr<NoReturnAttr>())
1854       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1855     if (TargetDecl->hasAttr<ColdAttr>())
1856       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1857     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1858       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1859     if (TargetDecl->hasAttr<ConvergentAttr>())
1860       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1861     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1862       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1863 
1864     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1865       AddAttributesFromFunctionProtoType(
1866           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1867       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1868       // These attributes are not inherited by overloads.
1869       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1870       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1871         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1872     }
1873 
1874     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1875     if (TargetDecl->hasAttr<ConstAttr>()) {
1876       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1877       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1878     } else if (TargetDecl->hasAttr<PureAttr>()) {
1879       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1880       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1881     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1882       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1883       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1884     }
1885     if (TargetDecl->hasAttr<RestrictAttr>())
1886       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1887     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1888         !CodeGenOpts.NullPointerIsValid)
1889       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1890     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1891       FuncAttrs.addAttribute("no_caller_saved_registers");
1892     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1893       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1894 
1895     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1896     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1897       Optional<unsigned> NumElemsParam;
1898       if (AllocSize->getNumElemsParam().isValid())
1899         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1900       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1901                                  NumElemsParam);
1902     }
1903   }
1904 
1905   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1906 
1907   if (CodeGenOpts.EnableSegmentedStacks &&
1908       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1909     FuncAttrs.addAttribute("split-stack");
1910 
1911   // Add NonLazyBind attribute to function declarations when -fno-plt
1912   // is used.
1913   if (TargetDecl && CodeGenOpts.NoPLT) {
1914     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1915       if (!Fn->isDefined() && !AttrOnCallSite) {
1916         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1917       }
1918     }
1919   }
1920 
1921   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1922     if (getLangOpts().OpenCLVersion <= 120) {
1923       // OpenCL v1.2 Work groups are always uniform
1924       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1925     } else {
1926       // OpenCL v2.0 Work groups may be whether uniform or not.
1927       // '-cl-uniform-work-group-size' compile option gets a hint
1928       // to the compiler that the global work-size be a multiple of
1929       // the work-group size specified to clEnqueueNDRangeKernel
1930       // (i.e. work groups are uniform).
1931       FuncAttrs.addAttribute("uniform-work-group-size",
1932                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1933     }
1934   }
1935 
1936   if (!AttrOnCallSite) {
1937     bool DisableTailCalls = false;
1938 
1939     if (CodeGenOpts.DisableTailCalls)
1940       DisableTailCalls = true;
1941     else if (TargetDecl) {
1942       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1943           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1944         DisableTailCalls = true;
1945       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1946         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1947           if (!BD->doesNotEscape())
1948             DisableTailCalls = true;
1949       }
1950     }
1951 
1952     FuncAttrs.addAttribute("disable-tail-calls",
1953                            llvm::toStringRef(DisableTailCalls));
1954     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1955   }
1956 
1957   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1958 
1959   QualType RetTy = FI.getReturnType();
1960   const ABIArgInfo &RetAI = FI.getReturnInfo();
1961   switch (RetAI.getKind()) {
1962   case ABIArgInfo::Extend:
1963     if (RetAI.isSignExt())
1964       RetAttrs.addAttribute(llvm::Attribute::SExt);
1965     else
1966       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1967     LLVM_FALLTHROUGH;
1968   case ABIArgInfo::Direct:
1969     if (RetAI.getInReg())
1970       RetAttrs.addAttribute(llvm::Attribute::InReg);
1971     break;
1972   case ABIArgInfo::Ignore:
1973     break;
1974 
1975   case ABIArgInfo::InAlloca:
1976   case ABIArgInfo::Indirect: {
1977     // inalloca and sret disable readnone and readonly
1978     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1979       .removeAttribute(llvm::Attribute::ReadNone);
1980     break;
1981   }
1982 
1983   case ABIArgInfo::CoerceAndExpand:
1984     break;
1985 
1986   case ABIArgInfo::Expand:
1987     llvm_unreachable("Invalid ABI kind for return argument");
1988   }
1989 
1990   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1991     QualType PTy = RefTy->getPointeeType();
1992     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1993       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1994                                         .getQuantity());
1995     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
1996              !CodeGenOpts.NullPointerIsValid)
1997       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1998   }
1999 
2000   bool hasUsedSRet = false;
2001   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2002 
2003   // Attach attributes to sret.
2004   if (IRFunctionArgs.hasSRetArg()) {
2005     llvm::AttrBuilder SRETAttrs;
2006     if (!RetAI.getSuppressSRet())
2007       SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2008     hasUsedSRet = true;
2009     if (RetAI.getInReg())
2010       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2011     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2012         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2013   }
2014 
2015   // Attach attributes to inalloca argument.
2016   if (IRFunctionArgs.hasInallocaArg()) {
2017     llvm::AttrBuilder Attrs;
2018     Attrs.addAttribute(llvm::Attribute::InAlloca);
2019     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2020         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2021   }
2022 
2023   unsigned ArgNo = 0;
2024   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2025                                           E = FI.arg_end();
2026        I != E; ++I, ++ArgNo) {
2027     QualType ParamType = I->type;
2028     const ABIArgInfo &AI = I->info;
2029     llvm::AttrBuilder Attrs;
2030 
2031     // Add attribute for padding argument, if necessary.
2032     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2033       if (AI.getPaddingInReg()) {
2034         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2035             llvm::AttributeSet::get(
2036                 getLLVMContext(),
2037                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2038       }
2039     }
2040 
2041     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2042     // have the corresponding parameter variable.  It doesn't make
2043     // sense to do it here because parameters are so messed up.
2044     switch (AI.getKind()) {
2045     case ABIArgInfo::Extend:
2046       if (AI.isSignExt())
2047         Attrs.addAttribute(llvm::Attribute::SExt);
2048       else
2049         Attrs.addAttribute(llvm::Attribute::ZExt);
2050       LLVM_FALLTHROUGH;
2051     case ABIArgInfo::Direct:
2052       if (ArgNo == 0 && FI.isChainCall())
2053         Attrs.addAttribute(llvm::Attribute::Nest);
2054       else if (AI.getInReg())
2055         Attrs.addAttribute(llvm::Attribute::InReg);
2056       break;
2057 
2058     case ABIArgInfo::Indirect: {
2059       if (AI.getInReg())
2060         Attrs.addAttribute(llvm::Attribute::InReg);
2061 
2062       if (AI.getIndirectByVal())
2063         Attrs.addAttribute(llvm::Attribute::ByVal);
2064 
2065       CharUnits Align = AI.getIndirectAlign();
2066 
2067       // In a byval argument, it is important that the required
2068       // alignment of the type is honored, as LLVM might be creating a
2069       // *new* stack object, and needs to know what alignment to give
2070       // it. (Sometimes it can deduce a sensible alignment on its own,
2071       // but not if clang decides it must emit a packed struct, or the
2072       // user specifies increased alignment requirements.)
2073       //
2074       // This is different from indirect *not* byval, where the object
2075       // exists already, and the align attribute is purely
2076       // informative.
2077       assert(!Align.isZero());
2078 
2079       // For now, only add this when we have a byval argument.
2080       // TODO: be less lazy about updating test cases.
2081       if (AI.getIndirectByVal())
2082         Attrs.addAlignmentAttr(Align.getQuantity());
2083 
2084       // byval disables readnone and readonly.
2085       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2086         .removeAttribute(llvm::Attribute::ReadNone);
2087       break;
2088     }
2089     case ABIArgInfo::Ignore:
2090     case ABIArgInfo::Expand:
2091     case ABIArgInfo::CoerceAndExpand:
2092       break;
2093 
2094     case ABIArgInfo::InAlloca:
2095       // inalloca disables readnone and readonly.
2096       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2097           .removeAttribute(llvm::Attribute::ReadNone);
2098       continue;
2099     }
2100 
2101     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2102       QualType PTy = RefTy->getPointeeType();
2103       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2104         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2105                                        .getQuantity());
2106       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2107                !CodeGenOpts.NullPointerIsValid)
2108         Attrs.addAttribute(llvm::Attribute::NonNull);
2109     }
2110 
2111     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2112     case ParameterABI::Ordinary:
2113       break;
2114 
2115     case ParameterABI::SwiftIndirectResult: {
2116       // Add 'sret' if we haven't already used it for something, but
2117       // only if the result is void.
2118       if (!hasUsedSRet && RetTy->isVoidType()) {
2119         Attrs.addAttribute(llvm::Attribute::StructRet);
2120         hasUsedSRet = true;
2121       }
2122 
2123       // Add 'noalias' in either case.
2124       Attrs.addAttribute(llvm::Attribute::NoAlias);
2125 
2126       // Add 'dereferenceable' and 'alignment'.
2127       auto PTy = ParamType->getPointeeType();
2128       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2129         auto info = getContext().getTypeInfoInChars(PTy);
2130         Attrs.addDereferenceableAttr(info.first.getQuantity());
2131         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2132                                                  info.second.getQuantity()));
2133       }
2134       break;
2135     }
2136 
2137     case ParameterABI::SwiftErrorResult:
2138       Attrs.addAttribute(llvm::Attribute::SwiftError);
2139       break;
2140 
2141     case ParameterABI::SwiftContext:
2142       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2143       break;
2144     }
2145 
2146     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2147       Attrs.addAttribute(llvm::Attribute::NoCapture);
2148 
2149     if (Attrs.hasAttributes()) {
2150       unsigned FirstIRArg, NumIRArgs;
2151       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2152       for (unsigned i = 0; i < NumIRArgs; i++)
2153         ArgAttrs[FirstIRArg + i] =
2154             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2155     }
2156   }
2157   assert(ArgNo == FI.arg_size());
2158 
2159   AttrList = llvm::AttributeList::get(
2160       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2161       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2162 }
2163 
2164 /// An argument came in as a promoted argument; demote it back to its
2165 /// declared type.
2166 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2167                                          const VarDecl *var,
2168                                          llvm::Value *value) {
2169   llvm::Type *varType = CGF.ConvertType(var->getType());
2170 
2171   // This can happen with promotions that actually don't change the
2172   // underlying type, like the enum promotions.
2173   if (value->getType() == varType) return value;
2174 
2175   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2176          && "unexpected promotion type");
2177 
2178   if (isa<llvm::IntegerType>(varType))
2179     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2180 
2181   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2182 }
2183 
2184 /// Returns the attribute (either parameter attribute, or function
2185 /// attribute), which declares argument ArgNo to be non-null.
2186 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2187                                          QualType ArgType, unsigned ArgNo) {
2188   // FIXME: __attribute__((nonnull)) can also be applied to:
2189   //   - references to pointers, where the pointee is known to be
2190   //     nonnull (apparently a Clang extension)
2191   //   - transparent unions containing pointers
2192   // In the former case, LLVM IR cannot represent the constraint. In
2193   // the latter case, we have no guarantee that the transparent union
2194   // is in fact passed as a pointer.
2195   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2196     return nullptr;
2197   // First, check attribute on parameter itself.
2198   if (PVD) {
2199     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2200       return ParmNNAttr;
2201   }
2202   // Check function attributes.
2203   if (!FD)
2204     return nullptr;
2205   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2206     if (NNAttr->isNonNull(ArgNo))
2207       return NNAttr;
2208   }
2209   return nullptr;
2210 }
2211 
2212 namespace {
2213   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2214     Address Temp;
2215     Address Arg;
2216     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2217     void Emit(CodeGenFunction &CGF, Flags flags) override {
2218       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2219       CGF.Builder.CreateStore(errorValue, Arg);
2220     }
2221   };
2222 }
2223 
2224 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2225                                          llvm::Function *Fn,
2226                                          const FunctionArgList &Args) {
2227   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2228     // Naked functions don't have prologues.
2229     return;
2230 
2231   // If this is an implicit-return-zero function, go ahead and
2232   // initialize the return value.  TODO: it might be nice to have
2233   // a more general mechanism for this that didn't require synthesized
2234   // return statements.
2235   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2236     if (FD->hasImplicitReturnZero()) {
2237       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2238       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2239       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2240       Builder.CreateStore(Zero, ReturnValue);
2241     }
2242   }
2243 
2244   // FIXME: We no longer need the types from FunctionArgList; lift up and
2245   // simplify.
2246 
2247   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2248   // Flattened function arguments.
2249   SmallVector<llvm::Value *, 16> FnArgs;
2250   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2251   for (auto &Arg : Fn->args()) {
2252     FnArgs.push_back(&Arg);
2253   }
2254   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2255 
2256   // If we're using inalloca, all the memory arguments are GEPs off of the last
2257   // parameter, which is a pointer to the complete memory area.
2258   Address ArgStruct = Address::invalid();
2259   const llvm::StructLayout *ArgStructLayout = nullptr;
2260   if (IRFunctionArgs.hasInallocaArg()) {
2261     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2262     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2263                         FI.getArgStructAlignment());
2264 
2265     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2266   }
2267 
2268   // Name the struct return parameter.
2269   if (IRFunctionArgs.hasSRetArg()) {
2270     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2271     AI->setName("agg.result");
2272     AI->addAttr(llvm::Attribute::NoAlias);
2273   }
2274 
2275   // Track if we received the parameter as a pointer (indirect, byval, or
2276   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2277   // into a local alloca for us.
2278   SmallVector<ParamValue, 16> ArgVals;
2279   ArgVals.reserve(Args.size());
2280 
2281   // Create a pointer value for every parameter declaration.  This usually
2282   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2283   // any cleanups or do anything that might unwind.  We do that separately, so
2284   // we can push the cleanups in the correct order for the ABI.
2285   assert(FI.arg_size() == Args.size() &&
2286          "Mismatch between function signature & arguments.");
2287   unsigned ArgNo = 0;
2288   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2289   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2290        i != e; ++i, ++info_it, ++ArgNo) {
2291     const VarDecl *Arg = *i;
2292     const ABIArgInfo &ArgI = info_it->info;
2293 
2294     bool isPromoted =
2295       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2296     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2297     // the parameter is promoted. In this case we convert to
2298     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2299     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2300     assert(hasScalarEvaluationKind(Ty) ==
2301            hasScalarEvaluationKind(Arg->getType()));
2302 
2303     unsigned FirstIRArg, NumIRArgs;
2304     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2305 
2306     switch (ArgI.getKind()) {
2307     case ABIArgInfo::InAlloca: {
2308       assert(NumIRArgs == 0);
2309       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2310       CharUnits FieldOffset =
2311         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2312       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2313                                           Arg->getName());
2314       ArgVals.push_back(ParamValue::forIndirect(V));
2315       break;
2316     }
2317 
2318     case ABIArgInfo::Indirect: {
2319       assert(NumIRArgs == 1);
2320       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2321 
2322       if (!hasScalarEvaluationKind(Ty)) {
2323         // Aggregates and complex variables are accessed by reference.  All we
2324         // need to do is realign the value, if requested.
2325         Address V = ParamAddr;
2326         if (ArgI.getIndirectRealign()) {
2327           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2328 
2329           // Copy from the incoming argument pointer to the temporary with the
2330           // appropriate alignment.
2331           //
2332           // FIXME: We should have a common utility for generating an aggregate
2333           // copy.
2334           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2335           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2336           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2337           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2338           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2339           V = AlignedTemp;
2340         }
2341         ArgVals.push_back(ParamValue::forIndirect(V));
2342       } else {
2343         // Load scalar value from indirect argument.
2344         llvm::Value *V =
2345             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2346 
2347         if (isPromoted)
2348           V = emitArgumentDemotion(*this, Arg, V);
2349         ArgVals.push_back(ParamValue::forDirect(V));
2350       }
2351       break;
2352     }
2353 
2354     case ABIArgInfo::Extend:
2355     case ABIArgInfo::Direct: {
2356 
2357       // If we have the trivial case, handle it with no muss and fuss.
2358       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2359           ArgI.getCoerceToType() == ConvertType(Ty) &&
2360           ArgI.getDirectOffset() == 0) {
2361         assert(NumIRArgs == 1);
2362         llvm::Value *V = FnArgs[FirstIRArg];
2363         auto AI = cast<llvm::Argument>(V);
2364 
2365         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2366           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2367                              PVD->getFunctionScopeIndex()) &&
2368               !CGM.getCodeGenOpts().NullPointerIsValid)
2369             AI->addAttr(llvm::Attribute::NonNull);
2370 
2371           QualType OTy = PVD->getOriginalType();
2372           if (const auto *ArrTy =
2373               getContext().getAsConstantArrayType(OTy)) {
2374             // A C99 array parameter declaration with the static keyword also
2375             // indicates dereferenceability, and if the size is constant we can
2376             // use the dereferenceable attribute (which requires the size in
2377             // bytes).
2378             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2379               QualType ETy = ArrTy->getElementType();
2380               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2381               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2382                   ArrSize) {
2383                 llvm::AttrBuilder Attrs;
2384                 Attrs.addDereferenceableAttr(
2385                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2386                 AI->addAttrs(Attrs);
2387               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2388                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2389                 AI->addAttr(llvm::Attribute::NonNull);
2390               }
2391             }
2392           } else if (const auto *ArrTy =
2393                      getContext().getAsVariableArrayType(OTy)) {
2394             // For C99 VLAs with the static keyword, we don't know the size so
2395             // we can't use the dereferenceable attribute, but in addrspace(0)
2396             // we know that it must be nonnull.
2397             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2398                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2399                 !CGM.getCodeGenOpts().NullPointerIsValid)
2400               AI->addAttr(llvm::Attribute::NonNull);
2401           }
2402 
2403           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2404           if (!AVAttr)
2405             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2406               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2407           if (AVAttr) {
2408             llvm::Value *AlignmentValue =
2409               EmitScalarExpr(AVAttr->getAlignment());
2410             llvm::ConstantInt *AlignmentCI =
2411               cast<llvm::ConstantInt>(AlignmentValue);
2412             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2413                                           +llvm::Value::MaximumAlignment);
2414             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2415           }
2416         }
2417 
2418         if (Arg->getType().isRestrictQualified())
2419           AI->addAttr(llvm::Attribute::NoAlias);
2420 
2421         // LLVM expects swifterror parameters to be used in very restricted
2422         // ways.  Copy the value into a less-restricted temporary.
2423         if (FI.getExtParameterInfo(ArgNo).getABI()
2424               == ParameterABI::SwiftErrorResult) {
2425           QualType pointeeTy = Ty->getPointeeType();
2426           assert(pointeeTy->isPointerType());
2427           Address temp =
2428             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2429           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2430           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2431           Builder.CreateStore(incomingErrorValue, temp);
2432           V = temp.getPointer();
2433 
2434           // Push a cleanup to copy the value back at the end of the function.
2435           // The convention does not guarantee that the value will be written
2436           // back if the function exits with an unwind exception.
2437           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2438         }
2439 
2440         // Ensure the argument is the correct type.
2441         if (V->getType() != ArgI.getCoerceToType())
2442           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2443 
2444         if (isPromoted)
2445           V = emitArgumentDemotion(*this, Arg, V);
2446 
2447         // Because of merging of function types from multiple decls it is
2448         // possible for the type of an argument to not match the corresponding
2449         // type in the function type. Since we are codegening the callee
2450         // in here, add a cast to the argument type.
2451         llvm::Type *LTy = ConvertType(Arg->getType());
2452         if (V->getType() != LTy)
2453           V = Builder.CreateBitCast(V, LTy);
2454 
2455         ArgVals.push_back(ParamValue::forDirect(V));
2456         break;
2457       }
2458 
2459       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2460                                      Arg->getName());
2461 
2462       // Pointer to store into.
2463       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2464 
2465       // Fast-isel and the optimizer generally like scalar values better than
2466       // FCAs, so we flatten them if this is safe to do for this argument.
2467       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2468       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2469           STy->getNumElements() > 1) {
2470         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2471         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2472         llvm::Type *DstTy = Ptr.getElementType();
2473         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2474 
2475         Address AddrToStoreInto = Address::invalid();
2476         if (SrcSize <= DstSize) {
2477           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2478         } else {
2479           AddrToStoreInto =
2480             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2481         }
2482 
2483         assert(STy->getNumElements() == NumIRArgs);
2484         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2485           auto AI = FnArgs[FirstIRArg + i];
2486           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2487           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2488           Address EltPtr =
2489             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2490           Builder.CreateStore(AI, EltPtr);
2491         }
2492 
2493         if (SrcSize > DstSize) {
2494           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2495         }
2496 
2497       } else {
2498         // Simple case, just do a coerced store of the argument into the alloca.
2499         assert(NumIRArgs == 1);
2500         auto AI = FnArgs[FirstIRArg];
2501         AI->setName(Arg->getName() + ".coerce");
2502         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2503       }
2504 
2505       // Match to what EmitParmDecl is expecting for this type.
2506       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2507         llvm::Value *V =
2508             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2509         if (isPromoted)
2510           V = emitArgumentDemotion(*this, Arg, V);
2511         ArgVals.push_back(ParamValue::forDirect(V));
2512       } else {
2513         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2514       }
2515       break;
2516     }
2517 
2518     case ABIArgInfo::CoerceAndExpand: {
2519       // Reconstruct into a temporary.
2520       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2521       ArgVals.push_back(ParamValue::forIndirect(alloca));
2522 
2523       auto coercionType = ArgI.getCoerceAndExpandType();
2524       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2525       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2526 
2527       unsigned argIndex = FirstIRArg;
2528       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2529         llvm::Type *eltType = coercionType->getElementType(i);
2530         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2531           continue;
2532 
2533         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2534         auto elt = FnArgs[argIndex++];
2535         Builder.CreateStore(elt, eltAddr);
2536       }
2537       assert(argIndex == FirstIRArg + NumIRArgs);
2538       break;
2539     }
2540 
2541     case ABIArgInfo::Expand: {
2542       // If this structure was expanded into multiple arguments then
2543       // we need to create a temporary and reconstruct it from the
2544       // arguments.
2545       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2546       LValue LV = MakeAddrLValue(Alloca, Ty);
2547       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2548 
2549       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2550       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2551       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2552       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2553         auto AI = FnArgs[FirstIRArg + i];
2554         AI->setName(Arg->getName() + "." + Twine(i));
2555       }
2556       break;
2557     }
2558 
2559     case ABIArgInfo::Ignore:
2560       assert(NumIRArgs == 0);
2561       // Initialize the local variable appropriately.
2562       if (!hasScalarEvaluationKind(Ty)) {
2563         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2564       } else {
2565         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2566         ArgVals.push_back(ParamValue::forDirect(U));
2567       }
2568       break;
2569     }
2570   }
2571 
2572   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2573     for (int I = Args.size() - 1; I >= 0; --I)
2574       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2575   } else {
2576     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2577       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2578   }
2579 }
2580 
2581 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2582   while (insn->use_empty()) {
2583     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2584     if (!bitcast) return;
2585 
2586     // This is "safe" because we would have used a ConstantExpr otherwise.
2587     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2588     bitcast->eraseFromParent();
2589   }
2590 }
2591 
2592 /// Try to emit a fused autorelease of a return result.
2593 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2594                                                     llvm::Value *result) {
2595   // We must be immediately followed the cast.
2596   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2597   if (BB->empty()) return nullptr;
2598   if (&BB->back() != result) return nullptr;
2599 
2600   llvm::Type *resultType = result->getType();
2601 
2602   // result is in a BasicBlock and is therefore an Instruction.
2603   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2604 
2605   SmallVector<llvm::Instruction *, 4> InstsToKill;
2606 
2607   // Look for:
2608   //  %generator = bitcast %type1* %generator2 to %type2*
2609   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2610     // We would have emitted this as a constant if the operand weren't
2611     // an Instruction.
2612     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2613 
2614     // Require the generator to be immediately followed by the cast.
2615     if (generator->getNextNode() != bitcast)
2616       return nullptr;
2617 
2618     InstsToKill.push_back(bitcast);
2619   }
2620 
2621   // Look for:
2622   //   %generator = call i8* @objc_retain(i8* %originalResult)
2623   // or
2624   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2625   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2626   if (!call) return nullptr;
2627 
2628   bool doRetainAutorelease;
2629 
2630   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2631     doRetainAutorelease = true;
2632   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2633                                           .objc_retainAutoreleasedReturnValue) {
2634     doRetainAutorelease = false;
2635 
2636     // If we emitted an assembly marker for this call (and the
2637     // ARCEntrypoints field should have been set if so), go looking
2638     // for that call.  If we can't find it, we can't do this
2639     // optimization.  But it should always be the immediately previous
2640     // instruction, unless we needed bitcasts around the call.
2641     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2642       llvm::Instruction *prev = call->getPrevNode();
2643       assert(prev);
2644       if (isa<llvm::BitCastInst>(prev)) {
2645         prev = prev->getPrevNode();
2646         assert(prev);
2647       }
2648       assert(isa<llvm::CallInst>(prev));
2649       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2650                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2651       InstsToKill.push_back(prev);
2652     }
2653   } else {
2654     return nullptr;
2655   }
2656 
2657   result = call->getArgOperand(0);
2658   InstsToKill.push_back(call);
2659 
2660   // Keep killing bitcasts, for sanity.  Note that we no longer care
2661   // about precise ordering as long as there's exactly one use.
2662   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2663     if (!bitcast->hasOneUse()) break;
2664     InstsToKill.push_back(bitcast);
2665     result = bitcast->getOperand(0);
2666   }
2667 
2668   // Delete all the unnecessary instructions, from latest to earliest.
2669   for (auto *I : InstsToKill)
2670     I->eraseFromParent();
2671 
2672   // Do the fused retain/autorelease if we were asked to.
2673   if (doRetainAutorelease)
2674     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2675 
2676   // Cast back to the result type.
2677   return CGF.Builder.CreateBitCast(result, resultType);
2678 }
2679 
2680 /// If this is a +1 of the value of an immutable 'self', remove it.
2681 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2682                                           llvm::Value *result) {
2683   // This is only applicable to a method with an immutable 'self'.
2684   const ObjCMethodDecl *method =
2685     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2686   if (!method) return nullptr;
2687   const VarDecl *self = method->getSelfDecl();
2688   if (!self->getType().isConstQualified()) return nullptr;
2689 
2690   // Look for a retain call.
2691   llvm::CallInst *retainCall =
2692     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2693   if (!retainCall ||
2694       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2695     return nullptr;
2696 
2697   // Look for an ordinary load of 'self'.
2698   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2699   llvm::LoadInst *load =
2700     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2701   if (!load || load->isAtomic() || load->isVolatile() ||
2702       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2703     return nullptr;
2704 
2705   // Okay!  Burn it all down.  This relies for correctness on the
2706   // assumption that the retain is emitted as part of the return and
2707   // that thereafter everything is used "linearly".
2708   llvm::Type *resultType = result->getType();
2709   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2710   assert(retainCall->use_empty());
2711   retainCall->eraseFromParent();
2712   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2713 
2714   return CGF.Builder.CreateBitCast(load, resultType);
2715 }
2716 
2717 /// Emit an ARC autorelease of the result of a function.
2718 ///
2719 /// \return the value to actually return from the function
2720 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2721                                             llvm::Value *result) {
2722   // If we're returning 'self', kill the initial retain.  This is a
2723   // heuristic attempt to "encourage correctness" in the really unfortunate
2724   // case where we have a return of self during a dealloc and we desperately
2725   // need to avoid the possible autorelease.
2726   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2727     return self;
2728 
2729   // At -O0, try to emit a fused retain/autorelease.
2730   if (CGF.shouldUseFusedARCCalls())
2731     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2732       return fused;
2733 
2734   return CGF.EmitARCAutoreleaseReturnValue(result);
2735 }
2736 
2737 /// Heuristically search for a dominating store to the return-value slot.
2738 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2739   // Check if a User is a store which pointerOperand is the ReturnValue.
2740   // We are looking for stores to the ReturnValue, not for stores of the
2741   // ReturnValue to some other location.
2742   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2743     auto *SI = dyn_cast<llvm::StoreInst>(U);
2744     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2745       return nullptr;
2746     // These aren't actually possible for non-coerced returns, and we
2747     // only care about non-coerced returns on this code path.
2748     assert(!SI->isAtomic() && !SI->isVolatile());
2749     return SI;
2750   };
2751   // If there are multiple uses of the return-value slot, just check
2752   // for something immediately preceding the IP.  Sometimes this can
2753   // happen with how we generate implicit-returns; it can also happen
2754   // with noreturn cleanups.
2755   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2756     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2757     if (IP->empty()) return nullptr;
2758     llvm::Instruction *I = &IP->back();
2759 
2760     // Skip lifetime markers
2761     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2762                                             IE = IP->rend();
2763          II != IE; ++II) {
2764       if (llvm::IntrinsicInst *Intrinsic =
2765               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2766         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2767           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2768           ++II;
2769           if (II == IE)
2770             break;
2771           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2772             continue;
2773         }
2774       }
2775       I = &*II;
2776       break;
2777     }
2778 
2779     return GetStoreIfValid(I);
2780   }
2781 
2782   llvm::StoreInst *store =
2783       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2784   if (!store) return nullptr;
2785 
2786   // Now do a first-and-dirty dominance check: just walk up the
2787   // single-predecessors chain from the current insertion point.
2788   llvm::BasicBlock *StoreBB = store->getParent();
2789   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2790   while (IP != StoreBB) {
2791     if (!(IP = IP->getSinglePredecessor()))
2792       return nullptr;
2793   }
2794 
2795   // Okay, the store's basic block dominates the insertion point; we
2796   // can do our thing.
2797   return store;
2798 }
2799 
2800 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2801                                          bool EmitRetDbgLoc,
2802                                          SourceLocation EndLoc) {
2803   if (FI.isNoReturn()) {
2804     // Noreturn functions don't return.
2805     EmitUnreachable(EndLoc);
2806     return;
2807   }
2808 
2809   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2810     // Naked functions don't have epilogues.
2811     Builder.CreateUnreachable();
2812     return;
2813   }
2814 
2815   // Functions with no result always return void.
2816   if (!ReturnValue.isValid()) {
2817     Builder.CreateRetVoid();
2818     return;
2819   }
2820 
2821   llvm::DebugLoc RetDbgLoc;
2822   llvm::Value *RV = nullptr;
2823   QualType RetTy = FI.getReturnType();
2824   const ABIArgInfo &RetAI = FI.getReturnInfo();
2825 
2826   switch (RetAI.getKind()) {
2827   case ABIArgInfo::InAlloca:
2828     // Aggregrates get evaluated directly into the destination.  Sometimes we
2829     // need to return the sret value in a register, though.
2830     assert(hasAggregateEvaluationKind(RetTy));
2831     if (RetAI.getInAllocaSRet()) {
2832       llvm::Function::arg_iterator EI = CurFn->arg_end();
2833       --EI;
2834       llvm::Value *ArgStruct = &*EI;
2835       llvm::Value *SRet = Builder.CreateStructGEP(
2836           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2837       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2838     }
2839     break;
2840 
2841   case ABIArgInfo::Indirect: {
2842     auto AI = CurFn->arg_begin();
2843     if (RetAI.isSRetAfterThis())
2844       ++AI;
2845     switch (getEvaluationKind(RetTy)) {
2846     case TEK_Complex: {
2847       ComplexPairTy RT =
2848         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2849       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2850                          /*isInit*/ true);
2851       break;
2852     }
2853     case TEK_Aggregate:
2854       // Do nothing; aggregrates get evaluated directly into the destination.
2855       break;
2856     case TEK_Scalar:
2857       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2858                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2859                         /*isInit*/ true);
2860       break;
2861     }
2862     break;
2863   }
2864 
2865   case ABIArgInfo::Extend:
2866   case ABIArgInfo::Direct:
2867     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2868         RetAI.getDirectOffset() == 0) {
2869       // The internal return value temp always will have pointer-to-return-type
2870       // type, just do a load.
2871 
2872       // If there is a dominating store to ReturnValue, we can elide
2873       // the load, zap the store, and usually zap the alloca.
2874       if (llvm::StoreInst *SI =
2875               findDominatingStoreToReturnValue(*this)) {
2876         // Reuse the debug location from the store unless there is
2877         // cleanup code to be emitted between the store and return
2878         // instruction.
2879         if (EmitRetDbgLoc && !AutoreleaseResult)
2880           RetDbgLoc = SI->getDebugLoc();
2881         // Get the stored value and nuke the now-dead store.
2882         RV = SI->getValueOperand();
2883         SI->eraseFromParent();
2884 
2885         // If that was the only use of the return value, nuke it as well now.
2886         auto returnValueInst = ReturnValue.getPointer();
2887         if (returnValueInst->use_empty()) {
2888           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2889             alloca->eraseFromParent();
2890             ReturnValue = Address::invalid();
2891           }
2892         }
2893 
2894       // Otherwise, we have to do a simple load.
2895       } else {
2896         RV = Builder.CreateLoad(ReturnValue);
2897       }
2898     } else {
2899       // If the value is offset in memory, apply the offset now.
2900       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2901 
2902       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2903     }
2904 
2905     // In ARC, end functions that return a retainable type with a call
2906     // to objc_autoreleaseReturnValue.
2907     if (AutoreleaseResult) {
2908 #ifndef NDEBUG
2909       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2910       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2911       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2912       // CurCodeDecl or BlockInfo.
2913       QualType RT;
2914 
2915       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2916         RT = FD->getReturnType();
2917       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2918         RT = MD->getReturnType();
2919       else if (isa<BlockDecl>(CurCodeDecl))
2920         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2921       else
2922         llvm_unreachable("Unexpected function/method type");
2923 
2924       assert(getLangOpts().ObjCAutoRefCount &&
2925              !FI.isReturnsRetained() &&
2926              RT->isObjCRetainableType());
2927 #endif
2928       RV = emitAutoreleaseOfResult(*this, RV);
2929     }
2930 
2931     break;
2932 
2933   case ABIArgInfo::Ignore:
2934     break;
2935 
2936   case ABIArgInfo::CoerceAndExpand: {
2937     auto coercionType = RetAI.getCoerceAndExpandType();
2938     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2939 
2940     // Load all of the coerced elements out into results.
2941     llvm::SmallVector<llvm::Value*, 4> results;
2942     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2943     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2944       auto coercedEltType = coercionType->getElementType(i);
2945       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2946         continue;
2947 
2948       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2949       auto elt = Builder.CreateLoad(eltAddr);
2950       results.push_back(elt);
2951     }
2952 
2953     // If we have one result, it's the single direct result type.
2954     if (results.size() == 1) {
2955       RV = results[0];
2956 
2957     // Otherwise, we need to make a first-class aggregate.
2958     } else {
2959       // Construct a return type that lacks padding elements.
2960       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2961 
2962       RV = llvm::UndefValue::get(returnType);
2963       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2964         RV = Builder.CreateInsertValue(RV, results[i], i);
2965       }
2966     }
2967     break;
2968   }
2969 
2970   case ABIArgInfo::Expand:
2971     llvm_unreachable("Invalid ABI kind for return argument");
2972   }
2973 
2974   llvm::Instruction *Ret;
2975   if (RV) {
2976     EmitReturnValueCheck(RV);
2977     Ret = Builder.CreateRet(RV);
2978   } else {
2979     Ret = Builder.CreateRetVoid();
2980   }
2981 
2982   if (RetDbgLoc)
2983     Ret->setDebugLoc(std::move(RetDbgLoc));
2984 }
2985 
2986 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2987   // A current decl may not be available when emitting vtable thunks.
2988   if (!CurCodeDecl)
2989     return;
2990 
2991   ReturnsNonNullAttr *RetNNAttr = nullptr;
2992   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2993     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
2994 
2995   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
2996     return;
2997 
2998   // Prefer the returns_nonnull attribute if it's present.
2999   SourceLocation AttrLoc;
3000   SanitizerMask CheckKind;
3001   SanitizerHandler Handler;
3002   if (RetNNAttr) {
3003     assert(!requiresReturnValueNullabilityCheck() &&
3004            "Cannot check nullability and the nonnull attribute");
3005     AttrLoc = RetNNAttr->getLocation();
3006     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3007     Handler = SanitizerHandler::NonnullReturn;
3008   } else {
3009     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3010       if (auto *TSI = DD->getTypeSourceInfo())
3011         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3012           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3013     CheckKind = SanitizerKind::NullabilityReturn;
3014     Handler = SanitizerHandler::NullabilityReturn;
3015   }
3016 
3017   SanitizerScope SanScope(this);
3018 
3019   // Make sure the "return" source location is valid. If we're checking a
3020   // nullability annotation, make sure the preconditions for the check are met.
3021   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3022   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3023   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3024   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3025   if (requiresReturnValueNullabilityCheck())
3026     CanNullCheck =
3027         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3028   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3029   EmitBlock(Check);
3030 
3031   // Now do the null check.
3032   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3033   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3034   llvm::Value *DynamicData[] = {SLocPtr};
3035   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3036 
3037   EmitBlock(NoCheck);
3038 
3039 #ifndef NDEBUG
3040   // The return location should not be used after the check has been emitted.
3041   ReturnLocation = Address::invalid();
3042 #endif
3043 }
3044 
3045 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3046   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3047   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3048 }
3049 
3050 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3051                                           QualType Ty) {
3052   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3053   // placeholders.
3054   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3055   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3056   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3057 
3058   // FIXME: When we generate this IR in one pass, we shouldn't need
3059   // this win32-specific alignment hack.
3060   CharUnits Align = CharUnits::fromQuantity(4);
3061   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3062 
3063   return AggValueSlot::forAddr(Address(Placeholder, Align),
3064                                Ty.getQualifiers(),
3065                                AggValueSlot::IsNotDestructed,
3066                                AggValueSlot::DoesNotNeedGCBarriers,
3067                                AggValueSlot::IsNotAliased,
3068                                AggValueSlot::DoesNotOverlap);
3069 }
3070 
3071 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3072                                           const VarDecl *param,
3073                                           SourceLocation loc) {
3074   // StartFunction converted the ABI-lowered parameter(s) into a
3075   // local alloca.  We need to turn that into an r-value suitable
3076   // for EmitCall.
3077   Address local = GetAddrOfLocalVar(param);
3078 
3079   QualType type = param->getType();
3080 
3081   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3082     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3083   }
3084 
3085   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3086   // but the argument needs to be the original pointer.
3087   if (type->isReferenceType()) {
3088     args.add(RValue::get(Builder.CreateLoad(local)), type);
3089 
3090   // In ARC, move out of consumed arguments so that the release cleanup
3091   // entered by StartFunction doesn't cause an over-release.  This isn't
3092   // optimal -O0 code generation, but it should get cleaned up when
3093   // optimization is enabled.  This also assumes that delegate calls are
3094   // performed exactly once for a set of arguments, but that should be safe.
3095   } else if (getLangOpts().ObjCAutoRefCount &&
3096              param->hasAttr<NSConsumedAttr>() &&
3097              type->isObjCRetainableType()) {
3098     llvm::Value *ptr = Builder.CreateLoad(local);
3099     auto null =
3100       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3101     Builder.CreateStore(null, local);
3102     args.add(RValue::get(ptr), type);
3103 
3104   // For the most part, we just need to load the alloca, except that
3105   // aggregate r-values are actually pointers to temporaries.
3106   } else {
3107     args.add(convertTempToRValue(local, type, loc), type);
3108   }
3109 
3110   // Deactivate the cleanup for the callee-destructed param that was pushed.
3111   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3112       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3113       type.isDestructedType()) {
3114     EHScopeStack::stable_iterator cleanup =
3115         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3116     assert(cleanup.isValid() &&
3117            "cleanup for callee-destructed param not recorded");
3118     // This unreachable is a temporary marker which will be removed later.
3119     llvm::Instruction *isActive = Builder.CreateUnreachable();
3120     args.addArgCleanupDeactivation(cleanup, isActive);
3121   }
3122 }
3123 
3124 static bool isProvablyNull(llvm::Value *addr) {
3125   return isa<llvm::ConstantPointerNull>(addr);
3126 }
3127 
3128 /// Emit the actual writing-back of a writeback.
3129 static void emitWriteback(CodeGenFunction &CGF,
3130                           const CallArgList::Writeback &writeback) {
3131   const LValue &srcLV = writeback.Source;
3132   Address srcAddr = srcLV.getAddress();
3133   assert(!isProvablyNull(srcAddr.getPointer()) &&
3134          "shouldn't have writeback for provably null argument");
3135 
3136   llvm::BasicBlock *contBB = nullptr;
3137 
3138   // If the argument wasn't provably non-null, we need to null check
3139   // before doing the store.
3140   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3141                                               CGF.CGM.getDataLayout());
3142   if (!provablyNonNull) {
3143     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3144     contBB = CGF.createBasicBlock("icr.done");
3145 
3146     llvm::Value *isNull =
3147       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3148     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3149     CGF.EmitBlock(writebackBB);
3150   }
3151 
3152   // Load the value to writeback.
3153   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3154 
3155   // Cast it back, in case we're writing an id to a Foo* or something.
3156   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3157                                     "icr.writeback-cast");
3158 
3159   // Perform the writeback.
3160 
3161   // If we have a "to use" value, it's something we need to emit a use
3162   // of.  This has to be carefully threaded in: if it's done after the
3163   // release it's potentially undefined behavior (and the optimizer
3164   // will ignore it), and if it happens before the retain then the
3165   // optimizer could move the release there.
3166   if (writeback.ToUse) {
3167     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3168 
3169     // Retain the new value.  No need to block-copy here:  the block's
3170     // being passed up the stack.
3171     value = CGF.EmitARCRetainNonBlock(value);
3172 
3173     // Emit the intrinsic use here.
3174     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3175 
3176     // Load the old value (primitively).
3177     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3178 
3179     // Put the new value in place (primitively).
3180     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3181 
3182     // Release the old value.
3183     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3184 
3185   // Otherwise, we can just do a normal lvalue store.
3186   } else {
3187     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3188   }
3189 
3190   // Jump to the continuation block.
3191   if (!provablyNonNull)
3192     CGF.EmitBlock(contBB);
3193 }
3194 
3195 static void emitWritebacks(CodeGenFunction &CGF,
3196                            const CallArgList &args) {
3197   for (const auto &I : args.writebacks())
3198     emitWriteback(CGF, I);
3199 }
3200 
3201 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3202                                             const CallArgList &CallArgs) {
3203   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3204     CallArgs.getCleanupsToDeactivate();
3205   // Iterate in reverse to increase the likelihood of popping the cleanup.
3206   for (const auto &I : llvm::reverse(Cleanups)) {
3207     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3208     I.IsActiveIP->eraseFromParent();
3209   }
3210 }
3211 
3212 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3213   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3214     if (uop->getOpcode() == UO_AddrOf)
3215       return uop->getSubExpr();
3216   return nullptr;
3217 }
3218 
3219 /// Emit an argument that's being passed call-by-writeback.  That is,
3220 /// we are passing the address of an __autoreleased temporary; it
3221 /// might be copy-initialized with the current value of the given
3222 /// address, but it will definitely be copied out of after the call.
3223 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3224                              const ObjCIndirectCopyRestoreExpr *CRE) {
3225   LValue srcLV;
3226 
3227   // Make an optimistic effort to emit the address as an l-value.
3228   // This can fail if the argument expression is more complicated.
3229   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3230     srcLV = CGF.EmitLValue(lvExpr);
3231 
3232   // Otherwise, just emit it as a scalar.
3233   } else {
3234     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3235 
3236     QualType srcAddrType =
3237       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3238     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3239   }
3240   Address srcAddr = srcLV.getAddress();
3241 
3242   // The dest and src types don't necessarily match in LLVM terms
3243   // because of the crazy ObjC compatibility rules.
3244 
3245   llvm::PointerType *destType =
3246     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3247 
3248   // If the address is a constant null, just pass the appropriate null.
3249   if (isProvablyNull(srcAddr.getPointer())) {
3250     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3251              CRE->getType());
3252     return;
3253   }
3254 
3255   // Create the temporary.
3256   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3257                                       CGF.getPointerAlign(),
3258                                       "icr.temp");
3259   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3260   // and that cleanup will be conditional if we can't prove that the l-value
3261   // isn't null, so we need to register a dominating point so that the cleanups
3262   // system will make valid IR.
3263   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3264 
3265   // Zero-initialize it if we're not doing a copy-initialization.
3266   bool shouldCopy = CRE->shouldCopy();
3267   if (!shouldCopy) {
3268     llvm::Value *null =
3269       llvm::ConstantPointerNull::get(
3270         cast<llvm::PointerType>(destType->getElementType()));
3271     CGF.Builder.CreateStore(null, temp);
3272   }
3273 
3274   llvm::BasicBlock *contBB = nullptr;
3275   llvm::BasicBlock *originBB = nullptr;
3276 
3277   // If the address is *not* known to be non-null, we need to switch.
3278   llvm::Value *finalArgument;
3279 
3280   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3281                                               CGF.CGM.getDataLayout());
3282   if (provablyNonNull) {
3283     finalArgument = temp.getPointer();
3284   } else {
3285     llvm::Value *isNull =
3286       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3287 
3288     finalArgument = CGF.Builder.CreateSelect(isNull,
3289                                    llvm::ConstantPointerNull::get(destType),
3290                                              temp.getPointer(), "icr.argument");
3291 
3292     // If we need to copy, then the load has to be conditional, which
3293     // means we need control flow.
3294     if (shouldCopy) {
3295       originBB = CGF.Builder.GetInsertBlock();
3296       contBB = CGF.createBasicBlock("icr.cont");
3297       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3298       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3299       CGF.EmitBlock(copyBB);
3300       condEval.begin(CGF);
3301     }
3302   }
3303 
3304   llvm::Value *valueToUse = nullptr;
3305 
3306   // Perform a copy if necessary.
3307   if (shouldCopy) {
3308     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3309     assert(srcRV.isScalar());
3310 
3311     llvm::Value *src = srcRV.getScalarVal();
3312     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3313                                     "icr.cast");
3314 
3315     // Use an ordinary store, not a store-to-lvalue.
3316     CGF.Builder.CreateStore(src, temp);
3317 
3318     // If optimization is enabled, and the value was held in a
3319     // __strong variable, we need to tell the optimizer that this
3320     // value has to stay alive until we're doing the store back.
3321     // This is because the temporary is effectively unretained,
3322     // and so otherwise we can violate the high-level semantics.
3323     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3324         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3325       valueToUse = src;
3326     }
3327   }
3328 
3329   // Finish the control flow if we needed it.
3330   if (shouldCopy && !provablyNonNull) {
3331     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3332     CGF.EmitBlock(contBB);
3333 
3334     // Make a phi for the value to intrinsically use.
3335     if (valueToUse) {
3336       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3337                                                       "icr.to-use");
3338       phiToUse->addIncoming(valueToUse, copyBB);
3339       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3340                             originBB);
3341       valueToUse = phiToUse;
3342     }
3343 
3344     condEval.end(CGF);
3345   }
3346 
3347   args.addWriteback(srcLV, temp, valueToUse);
3348   args.add(RValue::get(finalArgument), CRE->getType());
3349 }
3350 
3351 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3352   assert(!StackBase);
3353 
3354   // Save the stack.
3355   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3356   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3357 }
3358 
3359 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3360   if (StackBase) {
3361     // Restore the stack after the call.
3362     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3363     CGF.Builder.CreateCall(F, StackBase);
3364   }
3365 }
3366 
3367 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3368                                           SourceLocation ArgLoc,
3369                                           AbstractCallee AC,
3370                                           unsigned ParmNum) {
3371   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3372                          SanOpts.has(SanitizerKind::NullabilityArg)))
3373     return;
3374 
3375   // The param decl may be missing in a variadic function.
3376   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3377   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3378 
3379   // Prefer the nonnull attribute if it's present.
3380   const NonNullAttr *NNAttr = nullptr;
3381   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3382     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3383 
3384   bool CanCheckNullability = false;
3385   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3386     auto Nullability = PVD->getType()->getNullability(getContext());
3387     CanCheckNullability = Nullability &&
3388                           *Nullability == NullabilityKind::NonNull &&
3389                           PVD->getTypeSourceInfo();
3390   }
3391 
3392   if (!NNAttr && !CanCheckNullability)
3393     return;
3394 
3395   SourceLocation AttrLoc;
3396   SanitizerMask CheckKind;
3397   SanitizerHandler Handler;
3398   if (NNAttr) {
3399     AttrLoc = NNAttr->getLocation();
3400     CheckKind = SanitizerKind::NonnullAttribute;
3401     Handler = SanitizerHandler::NonnullArg;
3402   } else {
3403     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3404     CheckKind = SanitizerKind::NullabilityArg;
3405     Handler = SanitizerHandler::NullabilityArg;
3406   }
3407 
3408   SanitizerScope SanScope(this);
3409   assert(RV.isScalar());
3410   llvm::Value *V = RV.getScalarVal();
3411   llvm::Value *Cond =
3412       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3413   llvm::Constant *StaticData[] = {
3414       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3415       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3416   };
3417   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3418 }
3419 
3420 void CodeGenFunction::EmitCallArgs(
3421     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3422     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3423     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3424   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3425 
3426   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3427   // because arguments are destroyed left to right in the callee. As a special
3428   // case, there are certain language constructs that require left-to-right
3429   // evaluation, and in those cases we consider the evaluation order requirement
3430   // to trump the "destruction order is reverse construction order" guarantee.
3431   bool LeftToRight =
3432       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3433           ? Order == EvaluationOrder::ForceLeftToRight
3434           : Order != EvaluationOrder::ForceRightToLeft;
3435 
3436   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3437                                          RValue EmittedArg) {
3438     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3439       return;
3440     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3441     if (PS == nullptr)
3442       return;
3443 
3444     const auto &Context = getContext();
3445     auto SizeTy = Context.getSizeType();
3446     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3447     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3448     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3449                                                      EmittedArg.getScalarVal());
3450     Args.add(RValue::get(V), SizeTy);
3451     // If we're emitting args in reverse, be sure to do so with
3452     // pass_object_size, as well.
3453     if (!LeftToRight)
3454       std::swap(Args.back(), *(&Args.back() - 1));
3455   };
3456 
3457   // Insert a stack save if we're going to need any inalloca args.
3458   bool HasInAllocaArgs = false;
3459   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3460     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3461          I != E && !HasInAllocaArgs; ++I)
3462       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3463     if (HasInAllocaArgs) {
3464       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3465       Args.allocateArgumentMemory(*this);
3466     }
3467   }
3468 
3469   // Evaluate each argument in the appropriate order.
3470   size_t CallArgsStart = Args.size();
3471   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3472     unsigned Idx = LeftToRight ? I : E - I - 1;
3473     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3474     unsigned InitialArgSize = Args.size();
3475     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3476     // the argument and parameter match or the objc method is parameterized.
3477     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3478             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3479                                                 ArgTypes[Idx]) ||
3480             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3481              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3482            "Argument and parameter types don't match");
3483     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3484     // In particular, we depend on it being the last arg in Args, and the
3485     // objectsize bits depend on there only being one arg if !LeftToRight.
3486     assert(InitialArgSize + 1 == Args.size() &&
3487            "The code below depends on only adding one arg per EmitCallArg");
3488     (void)InitialArgSize;
3489     // Since pointer argument are never emitted as LValue, it is safe to emit
3490     // non-null argument check for r-value only.
3491     if (!Args.back().hasLValue()) {
3492       RValue RVArg = Args.back().getKnownRValue();
3493       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3494                           ParamsToSkip + Idx);
3495       // @llvm.objectsize should never have side-effects and shouldn't need
3496       // destruction/cleanups, so we can safely "emit" it after its arg,
3497       // regardless of right-to-leftness
3498       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3499     }
3500   }
3501 
3502   if (!LeftToRight) {
3503     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3504     // IR function.
3505     std::reverse(Args.begin() + CallArgsStart, Args.end());
3506   }
3507 }
3508 
3509 namespace {
3510 
3511 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3512   DestroyUnpassedArg(Address Addr, QualType Ty)
3513       : Addr(Addr), Ty(Ty) {}
3514 
3515   Address Addr;
3516   QualType Ty;
3517 
3518   void Emit(CodeGenFunction &CGF, Flags flags) override {
3519     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3520     if (DtorKind == QualType::DK_cxx_destructor) {
3521       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3522       assert(!Dtor->isTrivial());
3523       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3524                                 /*Delegating=*/false, Addr);
3525     } else {
3526       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3527     }
3528   }
3529 };
3530 
3531 struct DisableDebugLocationUpdates {
3532   CodeGenFunction &CGF;
3533   bool disabledDebugInfo;
3534   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3535     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3536       CGF.disableDebugInfo();
3537   }
3538   ~DisableDebugLocationUpdates() {
3539     if (disabledDebugInfo)
3540       CGF.enableDebugInfo();
3541   }
3542 };
3543 
3544 } // end anonymous namespace
3545 
3546 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3547   if (!HasLV)
3548     return RV;
3549   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3550   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3551                         LV.isVolatile());
3552   IsUsed = true;
3553   return RValue::getAggregate(Copy.getAddress());
3554 }
3555 
3556 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3557   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3558   if (!HasLV && RV.isScalar())
3559     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true);
3560   else if (!HasLV && RV.isComplex())
3561     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3562   else {
3563     auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3564     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3565     // We assume that call args are never copied into subobjects.
3566     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3567                           HasLV ? LV.isVolatileQualified()
3568                                 : RV.isVolatileQualified());
3569   }
3570   IsUsed = true;
3571 }
3572 
3573 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3574                                   QualType type) {
3575   DisableDebugLocationUpdates Dis(*this, E);
3576   if (const ObjCIndirectCopyRestoreExpr *CRE
3577         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3578     assert(getLangOpts().ObjCAutoRefCount);
3579     return emitWritebackArg(*this, args, CRE);
3580   }
3581 
3582   assert(type->isReferenceType() == E->isGLValue() &&
3583          "reference binding to unmaterialized r-value!");
3584 
3585   if (E->isGLValue()) {
3586     assert(E->getObjectKind() == OK_Ordinary);
3587     return args.add(EmitReferenceBindingToExpr(E), type);
3588   }
3589 
3590   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3591 
3592   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3593   // However, we still have to push an EH-only cleanup in case we unwind before
3594   // we make it to the call.
3595   if (HasAggregateEvalKind &&
3596       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3597     // If we're using inalloca, use the argument memory.  Otherwise, use a
3598     // temporary.
3599     AggValueSlot Slot;
3600     if (args.isUsingInAlloca())
3601       Slot = createPlaceholderSlot(*this, type);
3602     else
3603       Slot = CreateAggTemp(type, "agg.tmp");
3604 
3605     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3606     if (const auto *RD = type->getAsCXXRecordDecl())
3607       DestroyedInCallee = RD->hasNonTrivialDestructor();
3608     else
3609       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3610 
3611     if (DestroyedInCallee)
3612       Slot.setExternallyDestructed();
3613 
3614     EmitAggExpr(E, Slot);
3615     RValue RV = Slot.asRValue();
3616     args.add(RV, type);
3617 
3618     if (DestroyedInCallee && NeedsEHCleanup) {
3619       // Create a no-op GEP between the placeholder and the cleanup so we can
3620       // RAUW it successfully.  It also serves as a marker of the first
3621       // instruction where the cleanup is active.
3622       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3623                                               type);
3624       // This unreachable is a temporary marker which will be removed later.
3625       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3626       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3627     }
3628     return;
3629   }
3630 
3631   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3632       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3633     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3634     assert(L.isSimple());
3635     args.addUncopiedAggregate(L, type);
3636     return;
3637   }
3638 
3639   args.add(EmitAnyExprToTemp(E), type);
3640 }
3641 
3642 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3643   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3644   // implicitly widens null pointer constants that are arguments to varargs
3645   // functions to pointer-sized ints.
3646   if (!getTarget().getTriple().isOSWindows())
3647     return Arg->getType();
3648 
3649   if (Arg->getType()->isIntegerType() &&
3650       getContext().getTypeSize(Arg->getType()) <
3651           getContext().getTargetInfo().getPointerWidth(0) &&
3652       Arg->isNullPointerConstant(getContext(),
3653                                  Expr::NPC_ValueDependentIsNotNull)) {
3654     return getContext().getIntPtrType();
3655   }
3656 
3657   return Arg->getType();
3658 }
3659 
3660 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3661 // optimizer it can aggressively ignore unwind edges.
3662 void
3663 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3664   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3665       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3666     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3667                       CGM.getNoObjCARCExceptionsMetadata());
3668 }
3669 
3670 /// Emits a call to the given no-arguments nounwind runtime function.
3671 llvm::CallInst *
3672 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3673                                          const llvm::Twine &name) {
3674   return EmitNounwindRuntimeCall(callee, None, name);
3675 }
3676 
3677 /// Emits a call to the given nounwind runtime function.
3678 llvm::CallInst *
3679 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3680                                          ArrayRef<llvm::Value*> args,
3681                                          const llvm::Twine &name) {
3682   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3683   call->setDoesNotThrow();
3684   return call;
3685 }
3686 
3687 /// Emits a simple call (never an invoke) to the given no-arguments
3688 /// runtime function.
3689 llvm::CallInst *
3690 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3691                                  const llvm::Twine &name) {
3692   return EmitRuntimeCall(callee, None, name);
3693 }
3694 
3695 // Calls which may throw must have operand bundles indicating which funclet
3696 // they are nested within.
3697 SmallVector<llvm::OperandBundleDef, 1>
3698 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3699   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3700   // There is no need for a funclet operand bundle if we aren't inside a
3701   // funclet.
3702   if (!CurrentFuncletPad)
3703     return BundleList;
3704 
3705   // Skip intrinsics which cannot throw.
3706   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3707   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3708     return BundleList;
3709 
3710   BundleList.emplace_back("funclet", CurrentFuncletPad);
3711   return BundleList;
3712 }
3713 
3714 /// Emits a simple call (never an invoke) to the given runtime function.
3715 llvm::CallInst *
3716 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3717                                  ArrayRef<llvm::Value*> args,
3718                                  const llvm::Twine &name) {
3719   llvm::CallInst *call =
3720       Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name);
3721   call->setCallingConv(getRuntimeCC());
3722   return call;
3723 }
3724 
3725 /// Emits a call or invoke to the given noreturn runtime function.
3726 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3727                                                ArrayRef<llvm::Value*> args) {
3728   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3729       getBundlesForFunclet(callee);
3730 
3731   if (getInvokeDest()) {
3732     llvm::InvokeInst *invoke =
3733       Builder.CreateInvoke(callee,
3734                            getUnreachableBlock(),
3735                            getInvokeDest(),
3736                            args,
3737                            BundleList);
3738     invoke->setDoesNotReturn();
3739     invoke->setCallingConv(getRuntimeCC());
3740   } else {
3741     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3742     call->setDoesNotReturn();
3743     call->setCallingConv(getRuntimeCC());
3744     Builder.CreateUnreachable();
3745   }
3746 }
3747 
3748 /// Emits a call or invoke instruction to the given nullary runtime function.
3749 llvm::CallSite
3750 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3751                                          const Twine &name) {
3752   return EmitRuntimeCallOrInvoke(callee, None, name);
3753 }
3754 
3755 /// Emits a call or invoke instruction to the given runtime function.
3756 llvm::CallSite
3757 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3758                                          ArrayRef<llvm::Value*> args,
3759                                          const Twine &name) {
3760   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3761   callSite.setCallingConv(getRuntimeCC());
3762   return callSite;
3763 }
3764 
3765 /// Emits a call or invoke instruction to the given function, depending
3766 /// on the current state of the EH stack.
3767 llvm::CallSite
3768 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3769                                   ArrayRef<llvm::Value *> Args,
3770                                   const Twine &Name) {
3771   llvm::BasicBlock *InvokeDest = getInvokeDest();
3772   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3773       getBundlesForFunclet(Callee);
3774 
3775   llvm::Instruction *Inst;
3776   if (!InvokeDest)
3777     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3778   else {
3779     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3780     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3781                                 Name);
3782     EmitBlock(ContBB);
3783   }
3784 
3785   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3786   // optimizer it can aggressively ignore unwind edges.
3787   if (CGM.getLangOpts().ObjCAutoRefCount)
3788     AddObjCARCExceptionMetadata(Inst);
3789 
3790   return llvm::CallSite(Inst);
3791 }
3792 
3793 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3794                                                   llvm::Value *New) {
3795   DeferredReplacements.push_back(std::make_pair(Old, New));
3796 }
3797 
3798 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3799                                  const CGCallee &Callee,
3800                                  ReturnValueSlot ReturnValue,
3801                                  const CallArgList &CallArgs,
3802                                  llvm::Instruction **callOrInvoke,
3803                                  SourceLocation Loc) {
3804   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3805 
3806   assert(Callee.isOrdinary() || Callee.isVirtual());
3807 
3808   // Handle struct-return functions by passing a pointer to the
3809   // location that we would like to return into.
3810   QualType RetTy = CallInfo.getReturnType();
3811   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3812 
3813   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3814 
3815   // 1. Set up the arguments.
3816 
3817   // If we're using inalloca, insert the allocation after the stack save.
3818   // FIXME: Do this earlier rather than hacking it in here!
3819   Address ArgMemory = Address::invalid();
3820   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3821   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3822     const llvm::DataLayout &DL = CGM.getDataLayout();
3823     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3824     llvm::Instruction *IP = CallArgs.getStackBase();
3825     llvm::AllocaInst *AI;
3826     if (IP) {
3827       IP = IP->getNextNode();
3828       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3829                                 "argmem", IP);
3830     } else {
3831       AI = CreateTempAlloca(ArgStruct, "argmem");
3832     }
3833     auto Align = CallInfo.getArgStructAlignment();
3834     AI->setAlignment(Align.getQuantity());
3835     AI->setUsedWithInAlloca(true);
3836     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3837     ArgMemory = Address(AI, Align);
3838   }
3839 
3840   // Helper function to drill into the inalloca allocation.
3841   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3842     auto FieldOffset =
3843       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3844     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3845   };
3846 
3847   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3848   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3849 
3850   // If the call returns a temporary with struct return, create a temporary
3851   // alloca to hold the result, unless one is given to us.
3852   Address SRetPtr = Address::invalid();
3853   Address SRetAlloca = Address::invalid();
3854   llvm::Value *UnusedReturnSizePtr = nullptr;
3855   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3856     if (!ReturnValue.isNull()) {
3857       SRetPtr = ReturnValue.getValue();
3858     } else {
3859       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3860       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3861         uint64_t size =
3862             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3863         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3864       }
3865     }
3866     if (IRFunctionArgs.hasSRetArg()) {
3867       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3868     } else if (RetAI.isInAlloca()) {
3869       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3870       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3871     }
3872   }
3873 
3874   Address swiftErrorTemp = Address::invalid();
3875   Address swiftErrorArg = Address::invalid();
3876 
3877   // Translate all of the arguments as necessary to match the IR lowering.
3878   assert(CallInfo.arg_size() == CallArgs.size() &&
3879          "Mismatch between function signature & arguments.");
3880   unsigned ArgNo = 0;
3881   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3882   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3883        I != E; ++I, ++info_it, ++ArgNo) {
3884     const ABIArgInfo &ArgInfo = info_it->info;
3885 
3886     // Insert a padding argument to ensure proper alignment.
3887     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3888       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3889           llvm::UndefValue::get(ArgInfo.getPaddingType());
3890 
3891     unsigned FirstIRArg, NumIRArgs;
3892     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3893 
3894     switch (ArgInfo.getKind()) {
3895     case ABIArgInfo::InAlloca: {
3896       assert(NumIRArgs == 0);
3897       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3898       if (I->isAggregate()) {
3899         // Replace the placeholder with the appropriate argument slot GEP.
3900         Address Addr = I->hasLValue()
3901                            ? I->getKnownLValue().getAddress()
3902                            : I->getKnownRValue().getAggregateAddress();
3903         llvm::Instruction *Placeholder =
3904             cast<llvm::Instruction>(Addr.getPointer());
3905         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3906         Builder.SetInsertPoint(Placeholder);
3907         Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3908         Builder.restoreIP(IP);
3909         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3910       } else {
3911         // Store the RValue into the argument struct.
3912         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3913         unsigned AS = Addr.getType()->getPointerAddressSpace();
3914         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3915         // There are some cases where a trivial bitcast is not avoidable.  The
3916         // definition of a type later in a translation unit may change it's type
3917         // from {}* to (%struct.foo*)*.
3918         if (Addr.getType() != MemType)
3919           Addr = Builder.CreateBitCast(Addr, MemType);
3920         I->copyInto(*this, Addr);
3921       }
3922       break;
3923     }
3924 
3925     case ABIArgInfo::Indirect: {
3926       assert(NumIRArgs == 1);
3927       if (!I->isAggregate()) {
3928         // Make a temporary alloca to pass the argument.
3929         Address Addr = CreateMemTempWithoutCast(
3930             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3931         IRCallArgs[FirstIRArg] = Addr.getPointer();
3932 
3933         I->copyInto(*this, Addr);
3934       } else {
3935         // We want to avoid creating an unnecessary temporary+copy here;
3936         // however, we need one in three cases:
3937         // 1. If the argument is not byval, and we are required to copy the
3938         //    source.  (This case doesn't occur on any common architecture.)
3939         // 2. If the argument is byval, RV is not sufficiently aligned, and
3940         //    we cannot force it to be sufficiently aligned.
3941         // 3. If the argument is byval, but RV is not located in default
3942         //    or alloca address space.
3943         Address Addr = I->hasLValue()
3944                            ? I->getKnownLValue().getAddress()
3945                            : I->getKnownRValue().getAggregateAddress();
3946         llvm::Value *V = Addr.getPointer();
3947         CharUnits Align = ArgInfo.getIndirectAlign();
3948         const llvm::DataLayout *TD = &CGM.getDataLayout();
3949 
3950         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3951                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3952                     TD->getAllocaAddrSpace()) &&
3953                "indirect argument must be in alloca address space");
3954 
3955         bool NeedCopy = false;
3956 
3957         if (Addr.getAlignment() < Align &&
3958             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3959                 Align.getQuantity()) {
3960           NeedCopy = true;
3961         } else if (I->hasLValue()) {
3962           auto LV = I->getKnownLValue();
3963           auto AS = LV.getAddressSpace();
3964 
3965           if ((!ArgInfo.getIndirectByVal() &&
3966                (LV.getAlignment() >=
3967                 getContext().getTypeAlignInChars(I->Ty)))) {
3968             NeedCopy = true;
3969           }
3970           if (!getLangOpts().OpenCL) {
3971             if ((ArgInfo.getIndirectByVal() &&
3972                 (AS != LangAS::Default &&
3973                  AS != CGM.getASTAllocaAddressSpace()))) {
3974               NeedCopy = true;
3975             }
3976           }
3977           // For OpenCL even if RV is located in default or alloca address space
3978           // we don't want to perform address space cast for it.
3979           else if ((ArgInfo.getIndirectByVal() &&
3980                     Addr.getType()->getAddressSpace() != IRFuncTy->
3981                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
3982             NeedCopy = true;
3983           }
3984         }
3985 
3986         if (NeedCopy) {
3987           // Create an aligned temporary, and copy to it.
3988           Address AI = CreateMemTempWithoutCast(
3989               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
3990           IRCallArgs[FirstIRArg] = AI.getPointer();
3991           I->copyInto(*this, AI);
3992         } else {
3993           // Skip the extra memcpy call.
3994           auto *T = V->getType()->getPointerElementType()->getPointerTo(
3995               CGM.getDataLayout().getAllocaAddrSpace());
3996           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
3997               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
3998               true);
3999         }
4000       }
4001       break;
4002     }
4003 
4004     case ABIArgInfo::Ignore:
4005       assert(NumIRArgs == 0);
4006       break;
4007 
4008     case ABIArgInfo::Extend:
4009     case ABIArgInfo::Direct: {
4010       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4011           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4012           ArgInfo.getDirectOffset() == 0) {
4013         assert(NumIRArgs == 1);
4014         llvm::Value *V;
4015         if (!I->isAggregate())
4016           V = I->getKnownRValue().getScalarVal();
4017         else
4018           V = Builder.CreateLoad(
4019               I->hasLValue() ? I->getKnownLValue().getAddress()
4020                              : I->getKnownRValue().getAggregateAddress());
4021 
4022         // Implement swifterror by copying into a new swifterror argument.
4023         // We'll write back in the normal path out of the call.
4024         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4025               == ParameterABI::SwiftErrorResult) {
4026           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4027 
4028           QualType pointeeTy = I->Ty->getPointeeType();
4029           swiftErrorArg =
4030             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4031 
4032           swiftErrorTemp =
4033             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4034           V = swiftErrorTemp.getPointer();
4035           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4036 
4037           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4038           Builder.CreateStore(errorValue, swiftErrorTemp);
4039         }
4040 
4041         // We might have to widen integers, but we should never truncate.
4042         if (ArgInfo.getCoerceToType() != V->getType() &&
4043             V->getType()->isIntegerTy())
4044           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4045 
4046         // If the argument doesn't match, perform a bitcast to coerce it.  This
4047         // can happen due to trivial type mismatches.
4048         if (FirstIRArg < IRFuncTy->getNumParams() &&
4049             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4050           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4051 
4052         IRCallArgs[FirstIRArg] = V;
4053         break;
4054       }
4055 
4056       // FIXME: Avoid the conversion through memory if possible.
4057       Address Src = Address::invalid();
4058       if (!I->isAggregate()) {
4059         Src = CreateMemTemp(I->Ty, "coerce");
4060         I->copyInto(*this, Src);
4061       } else {
4062         Src = I->hasLValue() ? I->getKnownLValue().getAddress()
4063                              : I->getKnownRValue().getAggregateAddress();
4064       }
4065 
4066       // If the value is offset in memory, apply the offset now.
4067       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4068 
4069       // Fast-isel and the optimizer generally like scalar values better than
4070       // FCAs, so we flatten them if this is safe to do for this argument.
4071       llvm::StructType *STy =
4072             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4073       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4074         llvm::Type *SrcTy = Src.getType()->getElementType();
4075         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4076         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4077 
4078         // If the source type is smaller than the destination type of the
4079         // coerce-to logic, copy the source value into a temp alloca the size
4080         // of the destination type to allow loading all of it. The bits past
4081         // the source value are left undef.
4082         if (SrcSize < DstSize) {
4083           Address TempAlloca
4084             = CreateTempAlloca(STy, Src.getAlignment(),
4085                                Src.getName() + ".coerce");
4086           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4087           Src = TempAlloca;
4088         } else {
4089           Src = Builder.CreateBitCast(Src,
4090                                       STy->getPointerTo(Src.getAddressSpace()));
4091         }
4092 
4093         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
4094         assert(NumIRArgs == STy->getNumElements());
4095         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4096           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
4097           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
4098           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4099           IRCallArgs[FirstIRArg + i] = LI;
4100         }
4101       } else {
4102         // In the simple case, just pass the coerced loaded value.
4103         assert(NumIRArgs == 1);
4104         IRCallArgs[FirstIRArg] =
4105           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4106       }
4107 
4108       break;
4109     }
4110 
4111     case ABIArgInfo::CoerceAndExpand: {
4112       auto coercionType = ArgInfo.getCoerceAndExpandType();
4113       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4114 
4115       llvm::Value *tempSize = nullptr;
4116       Address addr = Address::invalid();
4117       Address AllocaAddr = Address::invalid();
4118       if (I->isAggregate()) {
4119         addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4120                               : I->getKnownRValue().getAggregateAddress();
4121 
4122       } else {
4123         RValue RV = I->getKnownRValue();
4124         assert(RV.isScalar()); // complex should always just be direct
4125 
4126         llvm::Type *scalarType = RV.getScalarVal()->getType();
4127         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4128         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4129 
4130         // Materialize to a temporary.
4131         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4132                                 CharUnits::fromQuantity(std::max(
4133                                     layout->getAlignment(), scalarAlign)),
4134                                 "tmp",
4135                                 /*ArraySize=*/nullptr, &AllocaAddr);
4136         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4137 
4138         Builder.CreateStore(RV.getScalarVal(), addr);
4139       }
4140 
4141       addr = Builder.CreateElementBitCast(addr, coercionType);
4142 
4143       unsigned IRArgPos = FirstIRArg;
4144       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4145         llvm::Type *eltType = coercionType->getElementType(i);
4146         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4147         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4148         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4149         IRCallArgs[IRArgPos++] = elt;
4150       }
4151       assert(IRArgPos == FirstIRArg + NumIRArgs);
4152 
4153       if (tempSize) {
4154         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4155       }
4156 
4157       break;
4158     }
4159 
4160     case ABIArgInfo::Expand:
4161       unsigned IRArgPos = FirstIRArg;
4162       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4163       assert(IRArgPos == FirstIRArg + NumIRArgs);
4164       break;
4165     }
4166   }
4167 
4168   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4169   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4170 
4171   // If we're using inalloca, set up that argument.
4172   if (ArgMemory.isValid()) {
4173     llvm::Value *Arg = ArgMemory.getPointer();
4174     if (CallInfo.isVariadic()) {
4175       // When passing non-POD arguments by value to variadic functions, we will
4176       // end up with a variadic prototype and an inalloca call site.  In such
4177       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4178       // the callee.
4179       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4180       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4181       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4182     } else {
4183       llvm::Type *LastParamTy =
4184           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4185       if (Arg->getType() != LastParamTy) {
4186 #ifndef NDEBUG
4187         // Assert that these structs have equivalent element types.
4188         llvm::StructType *FullTy = CallInfo.getArgStruct();
4189         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4190             cast<llvm::PointerType>(LastParamTy)->getElementType());
4191         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4192         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4193                                                 DE = DeclaredTy->element_end(),
4194                                                 FI = FullTy->element_begin();
4195              DI != DE; ++DI, ++FI)
4196           assert(*DI == *FI);
4197 #endif
4198         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4199       }
4200     }
4201     assert(IRFunctionArgs.hasInallocaArg());
4202     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4203   }
4204 
4205   // 2. Prepare the function pointer.
4206 
4207   // If the callee is a bitcast of a non-variadic function to have a
4208   // variadic function pointer type, check to see if we can remove the
4209   // bitcast.  This comes up with unprototyped functions.
4210   //
4211   // This makes the IR nicer, but more importantly it ensures that we
4212   // can inline the function at -O0 if it is marked always_inline.
4213   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4214     llvm::FunctionType *CalleeFT =
4215       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4216     if (!CalleeFT->isVarArg())
4217       return Ptr;
4218 
4219     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4220     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4221       return Ptr;
4222 
4223     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4224     if (!OrigFn)
4225       return Ptr;
4226 
4227     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4228 
4229     // If the original type is variadic, or if any of the component types
4230     // disagree, we cannot remove the cast.
4231     if (OrigFT->isVarArg() ||
4232         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4233         OrigFT->getReturnType() != CalleeFT->getReturnType())
4234       return Ptr;
4235 
4236     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4237       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4238         return Ptr;
4239 
4240     return OrigFn;
4241   };
4242   CalleePtr = simplifyVariadicCallee(CalleePtr);
4243 
4244   // 3. Perform the actual call.
4245 
4246   // Deactivate any cleanups that we're supposed to do immediately before
4247   // the call.
4248   if (!CallArgs.getCleanupsToDeactivate().empty())
4249     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4250 
4251   // Assert that the arguments we computed match up.  The IR verifier
4252   // will catch this, but this is a common enough source of problems
4253   // during IRGen changes that it's way better for debugging to catch
4254   // it ourselves here.
4255 #ifndef NDEBUG
4256   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4257   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4258     // Inalloca argument can have different type.
4259     if (IRFunctionArgs.hasInallocaArg() &&
4260         i == IRFunctionArgs.getInallocaArgNo())
4261       continue;
4262     if (i < IRFuncTy->getNumParams())
4263       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4264   }
4265 #endif
4266 
4267   // Update the largest vector width if any arguments have vector types.
4268   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4269     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4270       LargestVectorWidth = std::max(LargestVectorWidth,
4271                                     VT->getPrimitiveSizeInBits());
4272   }
4273 
4274   // Compute the calling convention and attributes.
4275   unsigned CallingConv;
4276   llvm::AttributeList Attrs;
4277   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4278                              Callee.getAbstractInfo(), Attrs, CallingConv,
4279                              /*AttrOnCallSite=*/true);
4280 
4281   // Apply some call-site-specific attributes.
4282   // TODO: work this into building the attribute set.
4283 
4284   // Apply always_inline to all calls within flatten functions.
4285   // FIXME: should this really take priority over __try, below?
4286   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4287       !(Callee.getAbstractInfo().getCalleeDecl().getDecl() &&
4288         Callee.getAbstractInfo()
4289             .getCalleeDecl()
4290             .getDecl()
4291             ->hasAttr<NoInlineAttr>())) {
4292     Attrs =
4293         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4294                            llvm::Attribute::AlwaysInline);
4295   }
4296 
4297   // Disable inlining inside SEH __try blocks.
4298   if (isSEHTryScope()) {
4299     Attrs =
4300         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4301                            llvm::Attribute::NoInline);
4302   }
4303 
4304   // Decide whether to use a call or an invoke.
4305   bool CannotThrow;
4306   if (currentFunctionUsesSEHTry()) {
4307     // SEH cares about asynchronous exceptions, so everything can "throw."
4308     CannotThrow = false;
4309   } else if (isCleanupPadScope() &&
4310              EHPersonality::get(*this).isMSVCXXPersonality()) {
4311     // The MSVC++ personality will implicitly terminate the program if an
4312     // exception is thrown during a cleanup outside of a try/catch.
4313     // We don't need to model anything in IR to get this behavior.
4314     CannotThrow = true;
4315   } else {
4316     // Otherwise, nounwind call sites will never throw.
4317     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4318                                      llvm::Attribute::NoUnwind);
4319   }
4320 
4321   // If we made a temporary, be sure to clean up after ourselves. Note that we
4322   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4323   // pop this cleanup later on. Being eager about this is OK, since this
4324   // temporary is 'invisible' outside of the callee.
4325   if (UnusedReturnSizePtr)
4326     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4327                                          UnusedReturnSizePtr);
4328 
4329   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4330 
4331   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4332       getBundlesForFunclet(CalleePtr);
4333 
4334   // Emit the actual call/invoke instruction.
4335   llvm::CallSite CS;
4336   if (!InvokeDest) {
4337     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4338   } else {
4339     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4340     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4341                               BundleList);
4342     EmitBlock(Cont);
4343   }
4344   llvm::Instruction *CI = CS.getInstruction();
4345   if (callOrInvoke)
4346     *callOrInvoke = CI;
4347 
4348   // Apply the attributes and calling convention.
4349   CS.setAttributes(Attrs);
4350   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4351 
4352   // Apply various metadata.
4353 
4354   if (!CI->getType()->isVoidTy())
4355     CI->setName("call");
4356 
4357   // Update largest vector width from the return type.
4358   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4359     LargestVectorWidth = std::max(LargestVectorWidth,
4360                                   VT->getPrimitiveSizeInBits());
4361 
4362   // Insert instrumentation or attach profile metadata at indirect call sites.
4363   // For more details, see the comment before the definition of
4364   // IPVK_IndirectCallTarget in InstrProfData.inc.
4365   if (!CS.getCalledFunction())
4366     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4367                      CI, CalleePtr);
4368 
4369   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4370   // optimizer it can aggressively ignore unwind edges.
4371   if (CGM.getLangOpts().ObjCAutoRefCount)
4372     AddObjCARCExceptionMetadata(CI);
4373 
4374   // Suppress tail calls if requested.
4375   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4376     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4377     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4378       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4379   }
4380 
4381   // 4. Finish the call.
4382 
4383   // If the call doesn't return, finish the basic block and clear the
4384   // insertion point; this allows the rest of IRGen to discard
4385   // unreachable code.
4386   if (CS.doesNotReturn()) {
4387     if (UnusedReturnSizePtr)
4388       PopCleanupBlock();
4389 
4390     // Strip away the noreturn attribute to better diagnose unreachable UB.
4391     if (SanOpts.has(SanitizerKind::Unreachable)) {
4392       if (auto *F = CS.getCalledFunction())
4393         F->removeFnAttr(llvm::Attribute::NoReturn);
4394       CS.removeAttribute(llvm::AttributeList::FunctionIndex,
4395                          llvm::Attribute::NoReturn);
4396     }
4397 
4398     EmitUnreachable(Loc);
4399     Builder.ClearInsertionPoint();
4400 
4401     // FIXME: For now, emit a dummy basic block because expr emitters in
4402     // generally are not ready to handle emitting expressions at unreachable
4403     // points.
4404     EnsureInsertPoint();
4405 
4406     // Return a reasonable RValue.
4407     return GetUndefRValue(RetTy);
4408   }
4409 
4410   // Perform the swifterror writeback.
4411   if (swiftErrorTemp.isValid()) {
4412     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4413     Builder.CreateStore(errorResult, swiftErrorArg);
4414   }
4415 
4416   // Emit any call-associated writebacks immediately.  Arguably this
4417   // should happen after any return-value munging.
4418   if (CallArgs.hasWritebacks())
4419     emitWritebacks(*this, CallArgs);
4420 
4421   // The stack cleanup for inalloca arguments has to run out of the normal
4422   // lexical order, so deactivate it and run it manually here.
4423   CallArgs.freeArgumentMemory(*this);
4424 
4425   // Extract the return value.
4426   RValue Ret = [&] {
4427     switch (RetAI.getKind()) {
4428     case ABIArgInfo::CoerceAndExpand: {
4429       auto coercionType = RetAI.getCoerceAndExpandType();
4430       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4431 
4432       Address addr = SRetPtr;
4433       addr = Builder.CreateElementBitCast(addr, coercionType);
4434 
4435       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4436       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4437 
4438       unsigned unpaddedIndex = 0;
4439       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4440         llvm::Type *eltType = coercionType->getElementType(i);
4441         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4442         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4443         llvm::Value *elt = CI;
4444         if (requiresExtract)
4445           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4446         else
4447           assert(unpaddedIndex == 0);
4448         Builder.CreateStore(elt, eltAddr);
4449       }
4450       // FALLTHROUGH
4451       LLVM_FALLTHROUGH;
4452     }
4453 
4454     case ABIArgInfo::InAlloca:
4455     case ABIArgInfo::Indirect: {
4456       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4457       if (UnusedReturnSizePtr)
4458         PopCleanupBlock();
4459       return ret;
4460     }
4461 
4462     case ABIArgInfo::Ignore:
4463       // If we are ignoring an argument that had a result, make sure to
4464       // construct the appropriate return value for our caller.
4465       return GetUndefRValue(RetTy);
4466 
4467     case ABIArgInfo::Extend:
4468     case ABIArgInfo::Direct: {
4469       llvm::Type *RetIRTy = ConvertType(RetTy);
4470       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4471         switch (getEvaluationKind(RetTy)) {
4472         case TEK_Complex: {
4473           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4474           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4475           return RValue::getComplex(std::make_pair(Real, Imag));
4476         }
4477         case TEK_Aggregate: {
4478           Address DestPtr = ReturnValue.getValue();
4479           bool DestIsVolatile = ReturnValue.isVolatile();
4480 
4481           if (!DestPtr.isValid()) {
4482             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4483             DestIsVolatile = false;
4484           }
4485           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4486           return RValue::getAggregate(DestPtr);
4487         }
4488         case TEK_Scalar: {
4489           // If the argument doesn't match, perform a bitcast to coerce it.  This
4490           // can happen due to trivial type mismatches.
4491           llvm::Value *V = CI;
4492           if (V->getType() != RetIRTy)
4493             V = Builder.CreateBitCast(V, RetIRTy);
4494           return RValue::get(V);
4495         }
4496         }
4497         llvm_unreachable("bad evaluation kind");
4498       }
4499 
4500       Address DestPtr = ReturnValue.getValue();
4501       bool DestIsVolatile = ReturnValue.isVolatile();
4502 
4503       if (!DestPtr.isValid()) {
4504         DestPtr = CreateMemTemp(RetTy, "coerce");
4505         DestIsVolatile = false;
4506       }
4507 
4508       // If the value is offset in memory, apply the offset now.
4509       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4510       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4511 
4512       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4513     }
4514 
4515     case ABIArgInfo::Expand:
4516       llvm_unreachable("Invalid ABI kind for return argument");
4517     }
4518 
4519     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4520   } ();
4521 
4522   // Emit the assume_aligned check on the return value.
4523   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4524   if (Ret.isScalar() && TargetDecl) {
4525     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4526       llvm::Value *OffsetValue = nullptr;
4527       if (const auto *Offset = AA->getOffset())
4528         OffsetValue = EmitScalarExpr(Offset);
4529 
4530       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4531       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4532       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4533                               OffsetValue);
4534     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4535       llvm::Value *ParamVal =
4536           CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue(
4537               *this).getScalarVal();
4538       EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal);
4539     }
4540   }
4541 
4542   return Ret;
4543 }
4544 
4545 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4546   if (isVirtual()) {
4547     const CallExpr *CE = getVirtualCallExpr();
4548     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4549         CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(),
4550         CE ? CE->getBeginLoc() : SourceLocation());
4551   }
4552 
4553   return *this;
4554 }
4555 
4556 /* VarArg handling */
4557 
4558 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4559   VAListAddr = VE->isMicrosoftABI()
4560                  ? EmitMSVAListRef(VE->getSubExpr())
4561                  : EmitVAListRef(VE->getSubExpr());
4562   QualType Ty = VE->getType();
4563   if (VE->isMicrosoftABI())
4564     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4565   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4566 }
4567