1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 71 /// qualification. 72 /// FIXME: address space qualification? 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 76 } 77 78 /// Returns the canonical formal type of the given C++ method. 79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 80 return MD->getType()->getCanonicalTypeUnqualified() 81 .getAs<FunctionProtoType>(); 82 } 83 84 /// Returns the "extra-canonicalized" return type, which discards 85 /// qualifiers on the return type. Codegen doesn't care about them, 86 /// and it makes ABI code a little easier to be able to assume that 87 /// all parameter and return types are top-level unqualified. 88 static CanQualType GetReturnType(QualType RetTy) { 89 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 90 } 91 92 /// Arrange the argument and result information for a value of the given 93 /// unprototyped freestanding function type. 94 const CGFunctionInfo & 95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 96 // When translating an unprototyped function type, always use a 97 // variadic type. 98 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 99 /*instanceMethod=*/false, 100 /*chainCall=*/false, None, 101 FTNP->getExtInfo(), {}, RequiredArgs(0)); 102 } 103 104 static void addExtParameterInfosForCall( 105 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 const FunctionProtoType *proto, 107 unsigned prefixArgs, 108 unsigned totalArgs) { 109 assert(proto->hasExtParameterInfos()); 110 assert(paramInfos.size() <= prefixArgs); 111 assert(proto->getNumParams() + prefixArgs <= totalArgs); 112 113 paramInfos.reserve(totalArgs); 114 115 // Add default infos for any prefix args that don't already have infos. 116 paramInfos.resize(prefixArgs); 117 118 // Add infos for the prototype. 119 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 120 paramInfos.push_back(ParamInfo); 121 // pass_object_size params have no parameter info. 122 if (ParamInfo.hasPassObjectSize()) 123 paramInfos.emplace_back(); 124 } 125 126 assert(paramInfos.size() <= totalArgs && 127 "Did we forget to insert pass_object_size args?"); 128 // Add default infos for the variadic and/or suffix arguments. 129 paramInfos.resize(totalArgs); 130 } 131 132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 134 static void appendParameterTypes(const CodeGenTypes &CGT, 135 SmallVectorImpl<CanQualType> &prefix, 136 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 137 CanQual<FunctionProtoType> FPT) { 138 // Fast path: don't touch param info if we don't need to. 139 if (!FPT->hasExtParameterInfos()) { 140 assert(paramInfos.empty() && 141 "We have paramInfos, but the prototype doesn't?"); 142 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 143 return; 144 } 145 146 unsigned PrefixSize = prefix.size(); 147 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 148 // parameters; the only thing that can change this is the presence of 149 // pass_object_size. So, we preallocate for the common case. 150 prefix.reserve(prefix.size() + FPT->getNumParams()); 151 152 auto ExtInfos = FPT->getExtParameterInfos(); 153 assert(ExtInfos.size() == FPT->getNumParams()); 154 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 155 prefix.push_back(FPT->getParamType(I)); 156 if (ExtInfos[I].hasPassObjectSize()) 157 prefix.push_back(CGT.getContext().getSizeType()); 158 } 159 160 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 161 prefix.size()); 162 } 163 164 /// Arrange the LLVM function layout for a value of the given function 165 /// type, on top of any implicit parameters already stored. 166 static const CGFunctionInfo & 167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 168 SmallVectorImpl<CanQualType> &prefix, 169 CanQual<FunctionProtoType> FTP, 170 const FunctionDecl *FD) { 171 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 172 RequiredArgs Required = 173 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 174 // FIXME: Kill copy. 175 appendParameterTypes(CGT, prefix, paramInfos, FTP); 176 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 177 178 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 179 /*chainCall=*/false, prefix, 180 FTP->getExtInfo(), paramInfos, 181 Required); 182 } 183 184 /// Arrange the argument and result information for a value of the 185 /// given freestanding function type. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 188 const FunctionDecl *FD) { 189 SmallVector<CanQualType, 16> argTypes; 190 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 191 FTP, FD); 192 } 193 194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 195 // Set the appropriate calling convention for the Function. 196 if (D->hasAttr<StdCallAttr>()) 197 return CC_X86StdCall; 198 199 if (D->hasAttr<FastCallAttr>()) 200 return CC_X86FastCall; 201 202 if (D->hasAttr<RegCallAttr>()) 203 return CC_X86RegCall; 204 205 if (D->hasAttr<ThisCallAttr>()) 206 return CC_X86ThisCall; 207 208 if (D->hasAttr<VectorCallAttr>()) 209 return CC_X86VectorCall; 210 211 if (D->hasAttr<PascalAttr>()) 212 return CC_X86Pascal; 213 214 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 215 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 216 217 if (D->hasAttr<IntelOclBiccAttr>()) 218 return CC_IntelOclBicc; 219 220 if (D->hasAttr<MSABIAttr>()) 221 return IsWindows ? CC_C : CC_Win64; 222 223 if (D->hasAttr<SysVABIAttr>()) 224 return IsWindows ? CC_X86_64SysV : CC_C; 225 226 if (D->hasAttr<PreserveMostAttr>()) 227 return CC_PreserveMost; 228 229 if (D->hasAttr<PreserveAllAttr>()) 230 return CC_PreserveAll; 231 232 return CC_C; 233 } 234 235 /// Arrange the argument and result information for a call to an 236 /// unknown C++ non-static member function of the given abstract type. 237 /// (Zero value of RD means we don't have any meaningful "this" argument type, 238 /// so fall back to a generic pointer type). 239 /// The member function must be an ordinary function, i.e. not a 240 /// constructor or destructor. 241 const CGFunctionInfo & 242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 243 const FunctionProtoType *FTP, 244 const CXXMethodDecl *MD) { 245 SmallVector<CanQualType, 16> argTypes; 246 247 // Add the 'this' pointer. 248 if (RD) 249 argTypes.push_back(GetThisType(Context, RD)); 250 else 251 argTypes.push_back(Context.VoidPtrTy); 252 253 return ::arrangeLLVMFunctionInfo( 254 *this, true, argTypes, 255 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 256 } 257 258 /// Set calling convention for CUDA/HIP kernel. 259 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 260 const FunctionDecl *FD) { 261 if (FD->hasAttr<CUDAGlobalAttr>()) { 262 const FunctionType *FT = FTy->getAs<FunctionType>(); 263 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 264 FTy = FT->getCanonicalTypeUnqualified(); 265 } 266 } 267 268 /// Arrange the argument and result information for a declaration or 269 /// definition of the given C++ non-static member function. The 270 /// member function must be an ordinary function, i.e. not a 271 /// constructor or destructor. 272 const CGFunctionInfo & 273 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 274 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 275 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 276 277 CanQualType FT = GetFormalType(MD).getAs<Type>(); 278 setCUDAKernelCallingConvention(FT, CGM, MD); 279 auto prototype = FT.getAs<FunctionProtoType>(); 280 281 if (MD->isInstance()) { 282 // The abstract case is perfectly fine. 283 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 284 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 285 } 286 287 return arrangeFreeFunctionType(prototype, MD); 288 } 289 290 bool CodeGenTypes::inheritingCtorHasParams( 291 const InheritedConstructor &Inherited, CXXCtorType Type) { 292 // Parameters are unnecessary if we're constructing a base class subobject 293 // and the inherited constructor lives in a virtual base. 294 return Type == Ctor_Complete || 295 !Inherited.getShadowDecl()->constructsVirtualBase() || 296 !Target.getCXXABI().hasConstructorVariants(); 297 } 298 299 const CGFunctionInfo & 300 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 301 StructorType Type) { 302 303 SmallVector<CanQualType, 16> argTypes; 304 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 305 argTypes.push_back(GetThisType(Context, MD->getParent())); 306 307 bool PassParams = true; 308 309 GlobalDecl GD; 310 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 311 GD = GlobalDecl(CD, toCXXCtorType(Type)); 312 313 // A base class inheriting constructor doesn't get forwarded arguments 314 // needed to construct a virtual base (or base class thereof). 315 if (auto Inherited = CD->getInheritedConstructor()) 316 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 317 } else { 318 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 319 GD = GlobalDecl(DD, toCXXDtorType(Type)); 320 } 321 322 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 323 324 // Add the formal parameters. 325 if (PassParams) 326 appendParameterTypes(*this, argTypes, paramInfos, FTP); 327 328 CGCXXABI::AddedStructorArgs AddedArgs = 329 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 330 if (!paramInfos.empty()) { 331 // Note: prefix implies after the first param. 332 if (AddedArgs.Prefix) 333 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 334 FunctionProtoType::ExtParameterInfo{}); 335 if (AddedArgs.Suffix) 336 paramInfos.append(AddedArgs.Suffix, 337 FunctionProtoType::ExtParameterInfo{}); 338 } 339 340 RequiredArgs required = 341 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 342 : RequiredArgs::All); 343 344 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 345 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 346 ? argTypes.front() 347 : TheCXXABI.hasMostDerivedReturn(GD) 348 ? CGM.getContext().VoidPtrTy 349 : Context.VoidTy; 350 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 351 /*chainCall=*/false, argTypes, extInfo, 352 paramInfos, required); 353 } 354 355 static SmallVector<CanQualType, 16> 356 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 357 SmallVector<CanQualType, 16> argTypes; 358 for (auto &arg : args) 359 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 360 return argTypes; 361 } 362 363 static SmallVector<CanQualType, 16> 364 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 365 SmallVector<CanQualType, 16> argTypes; 366 for (auto &arg : args) 367 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 368 return argTypes; 369 } 370 371 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 372 getExtParameterInfosForCall(const FunctionProtoType *proto, 373 unsigned prefixArgs, unsigned totalArgs) { 374 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 375 if (proto->hasExtParameterInfos()) { 376 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 377 } 378 return result; 379 } 380 381 /// Arrange a call to a C++ method, passing the given arguments. 382 /// 383 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 384 /// parameter. 385 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 386 /// args. 387 /// PassProtoArgs indicates whether `args` has args for the parameters in the 388 /// given CXXConstructorDecl. 389 const CGFunctionInfo & 390 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 391 const CXXConstructorDecl *D, 392 CXXCtorType CtorKind, 393 unsigned ExtraPrefixArgs, 394 unsigned ExtraSuffixArgs, 395 bool PassProtoArgs) { 396 // FIXME: Kill copy. 397 SmallVector<CanQualType, 16> ArgTypes; 398 for (const auto &Arg : args) 399 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 400 401 // +1 for implicit this, which should always be args[0]. 402 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 403 404 CanQual<FunctionProtoType> FPT = GetFormalType(D); 405 RequiredArgs Required = 406 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 407 GlobalDecl GD(D, CtorKind); 408 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 409 ? ArgTypes.front() 410 : TheCXXABI.hasMostDerivedReturn(GD) 411 ? CGM.getContext().VoidPtrTy 412 : Context.VoidTy; 413 414 FunctionType::ExtInfo Info = FPT->getExtInfo(); 415 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 416 // If the prototype args are elided, we should only have ABI-specific args, 417 // which never have param info. 418 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 419 // ABI-specific suffix arguments are treated the same as variadic arguments. 420 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 421 ArgTypes.size()); 422 } 423 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 424 /*chainCall=*/false, ArgTypes, Info, 425 ParamInfos, Required); 426 } 427 428 /// Arrange the argument and result information for the declaration or 429 /// definition of the given function. 430 const CGFunctionInfo & 431 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 432 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 433 if (MD->isInstance()) 434 return arrangeCXXMethodDeclaration(MD); 435 436 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 437 438 assert(isa<FunctionType>(FTy)); 439 setCUDAKernelCallingConvention(FTy, CGM, FD); 440 441 // When declaring a function without a prototype, always use a 442 // non-variadic type. 443 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 444 return arrangeLLVMFunctionInfo( 445 noProto->getReturnType(), /*instanceMethod=*/false, 446 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 447 } 448 449 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 450 } 451 452 /// Arrange the argument and result information for the declaration or 453 /// definition of an Objective-C method. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 456 // It happens that this is the same as a call with no optional 457 // arguments, except also using the formal 'self' type. 458 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 459 } 460 461 /// Arrange the argument and result information for the function type 462 /// through which to perform a send to the given Objective-C method, 463 /// using the given receiver type. The receiver type is not always 464 /// the 'self' type of the method or even an Objective-C pointer type. 465 /// This is *not* the right method for actually performing such a 466 /// message send, due to the possibility of optional arguments. 467 const CGFunctionInfo & 468 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 469 QualType receiverType) { 470 SmallVector<CanQualType, 16> argTys; 471 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 472 argTys.push_back(Context.getCanonicalParamType(receiverType)); 473 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 474 // FIXME: Kill copy? 475 for (const auto *I : MD->parameters()) { 476 argTys.push_back(Context.getCanonicalParamType(I->getType())); 477 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 478 I->hasAttr<NoEscapeAttr>()); 479 extParamInfos.push_back(extParamInfo); 480 } 481 482 FunctionType::ExtInfo einfo; 483 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 484 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 485 486 if (getContext().getLangOpts().ObjCAutoRefCount && 487 MD->hasAttr<NSReturnsRetainedAttr>()) 488 einfo = einfo.withProducesResult(true); 489 490 RequiredArgs required = 491 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 492 493 return arrangeLLVMFunctionInfo( 494 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 495 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 496 } 497 498 const CGFunctionInfo & 499 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 500 const CallArgList &args) { 501 auto argTypes = getArgTypesForCall(Context, args); 502 FunctionType::ExtInfo einfo; 503 504 return arrangeLLVMFunctionInfo( 505 GetReturnType(returnType), /*instanceMethod=*/false, 506 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 507 } 508 509 const CGFunctionInfo & 510 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 511 // FIXME: Do we need to handle ObjCMethodDecl? 512 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 513 514 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 515 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 516 517 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 518 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 519 520 return arrangeFunctionDeclaration(FD); 521 } 522 523 /// Arrange a thunk that takes 'this' as the first parameter followed by 524 /// varargs. Return a void pointer, regardless of the actual return type. 525 /// The body of the thunk will end in a musttail call to a function of the 526 /// correct type, and the caller will bitcast the function to the correct 527 /// prototype. 528 const CGFunctionInfo & 529 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 530 assert(MD->isVirtual() && "only methods have thunks"); 531 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 532 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 533 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 534 /*chainCall=*/false, ArgTys, 535 FTP->getExtInfo(), {}, RequiredArgs(1)); 536 } 537 538 const CGFunctionInfo & 539 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 540 CXXCtorType CT) { 541 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 542 543 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 544 SmallVector<CanQualType, 2> ArgTys; 545 const CXXRecordDecl *RD = CD->getParent(); 546 ArgTys.push_back(GetThisType(Context, RD)); 547 if (CT == Ctor_CopyingClosure) 548 ArgTys.push_back(*FTP->param_type_begin()); 549 if (RD->getNumVBases() > 0) 550 ArgTys.push_back(Context.IntTy); 551 CallingConv CC = Context.getDefaultCallingConvention( 552 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 553 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 554 /*chainCall=*/false, ArgTys, 555 FunctionType::ExtInfo(CC), {}, 556 RequiredArgs::All); 557 } 558 559 /// Arrange a call as unto a free function, except possibly with an 560 /// additional number of formal parameters considered required. 561 static const CGFunctionInfo & 562 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 563 CodeGenModule &CGM, 564 const CallArgList &args, 565 const FunctionType *fnType, 566 unsigned numExtraRequiredArgs, 567 bool chainCall) { 568 assert(args.size() >= numExtraRequiredArgs); 569 570 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 571 572 // In most cases, there are no optional arguments. 573 RequiredArgs required = RequiredArgs::All; 574 575 // If we have a variadic prototype, the required arguments are the 576 // extra prefix plus the arguments in the prototype. 577 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 578 if (proto->isVariadic()) 579 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 580 581 if (proto->hasExtParameterInfos()) 582 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 583 args.size()); 584 585 // If we don't have a prototype at all, but we're supposed to 586 // explicitly use the variadic convention for unprototyped calls, 587 // treat all of the arguments as required but preserve the nominal 588 // possibility of variadics. 589 } else if (CGM.getTargetCodeGenInfo() 590 .isNoProtoCallVariadic(args, 591 cast<FunctionNoProtoType>(fnType))) { 592 required = RequiredArgs(args.size()); 593 } 594 595 // FIXME: Kill copy. 596 SmallVector<CanQualType, 16> argTypes; 597 for (const auto &arg : args) 598 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 599 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 600 /*instanceMethod=*/false, chainCall, 601 argTypes, fnType->getExtInfo(), paramInfos, 602 required); 603 } 604 605 /// Figure out the rules for calling a function with the given formal 606 /// type using the given arguments. The arguments are necessary 607 /// because the function might be unprototyped, in which case it's 608 /// target-dependent in crazy ways. 609 const CGFunctionInfo & 610 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 611 const FunctionType *fnType, 612 bool chainCall) { 613 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 614 chainCall ? 1 : 0, chainCall); 615 } 616 617 /// A block function is essentially a free function with an 618 /// extra implicit argument. 619 const CGFunctionInfo & 620 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 621 const FunctionType *fnType) { 622 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 623 /*chainCall=*/false); 624 } 625 626 const CGFunctionInfo & 627 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 628 const FunctionArgList ¶ms) { 629 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 630 auto argTypes = getArgTypesForDeclaration(Context, params); 631 632 return arrangeLLVMFunctionInfo( 633 GetReturnType(proto->getReturnType()), 634 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 635 proto->getExtInfo(), paramInfos, 636 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 637 } 638 639 const CGFunctionInfo & 640 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 641 const CallArgList &args) { 642 // FIXME: Kill copy. 643 SmallVector<CanQualType, 16> argTypes; 644 for (const auto &Arg : args) 645 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 646 return arrangeLLVMFunctionInfo( 647 GetReturnType(resultType), /*instanceMethod=*/false, 648 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 649 /*paramInfos=*/ {}, RequiredArgs::All); 650 } 651 652 const CGFunctionInfo & 653 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 654 const FunctionArgList &args) { 655 auto argTypes = getArgTypesForDeclaration(Context, args); 656 657 return arrangeLLVMFunctionInfo( 658 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 659 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 660 } 661 662 const CGFunctionInfo & 663 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 664 ArrayRef<CanQualType> argTypes) { 665 return arrangeLLVMFunctionInfo( 666 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 667 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 668 } 669 670 /// Arrange a call to a C++ method, passing the given arguments. 671 /// 672 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 673 /// does not count `this`. 674 const CGFunctionInfo & 675 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 676 const FunctionProtoType *proto, 677 RequiredArgs required, 678 unsigned numPrefixArgs) { 679 assert(numPrefixArgs + 1 <= args.size() && 680 "Emitting a call with less args than the required prefix?"); 681 // Add one to account for `this`. It's a bit awkward here, but we don't count 682 // `this` in similar places elsewhere. 683 auto paramInfos = 684 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 685 686 // FIXME: Kill copy. 687 auto argTypes = getArgTypesForCall(Context, args); 688 689 FunctionType::ExtInfo info = proto->getExtInfo(); 690 return arrangeLLVMFunctionInfo( 691 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 692 /*chainCall=*/false, argTypes, info, paramInfos, required); 693 } 694 695 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 696 return arrangeLLVMFunctionInfo( 697 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 698 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 699 } 700 701 const CGFunctionInfo & 702 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 703 const CallArgList &args) { 704 assert(signature.arg_size() <= args.size()); 705 if (signature.arg_size() == args.size()) 706 return signature; 707 708 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 709 auto sigParamInfos = signature.getExtParameterInfos(); 710 if (!sigParamInfos.empty()) { 711 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 712 paramInfos.resize(args.size()); 713 } 714 715 auto argTypes = getArgTypesForCall(Context, args); 716 717 assert(signature.getRequiredArgs().allowsOptionalArgs()); 718 return arrangeLLVMFunctionInfo(signature.getReturnType(), 719 signature.isInstanceMethod(), 720 signature.isChainCall(), 721 argTypes, 722 signature.getExtInfo(), 723 paramInfos, 724 signature.getRequiredArgs()); 725 } 726 727 namespace clang { 728 namespace CodeGen { 729 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 730 } 731 } 732 733 /// Arrange the argument and result information for an abstract value 734 /// of a given function type. This is the method which all of the 735 /// above functions ultimately defer to. 736 const CGFunctionInfo & 737 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 738 bool instanceMethod, 739 bool chainCall, 740 ArrayRef<CanQualType> argTypes, 741 FunctionType::ExtInfo info, 742 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 743 RequiredArgs required) { 744 assert(std::all_of(argTypes.begin(), argTypes.end(), 745 [](CanQualType T) { return T.isCanonicalAsParam(); })); 746 747 // Lookup or create unique function info. 748 llvm::FoldingSetNodeID ID; 749 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 750 required, resultType, argTypes); 751 752 void *insertPos = nullptr; 753 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 754 if (FI) 755 return *FI; 756 757 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 758 759 // Construct the function info. We co-allocate the ArgInfos. 760 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 761 paramInfos, resultType, argTypes, required); 762 FunctionInfos.InsertNode(FI, insertPos); 763 764 bool inserted = FunctionsBeingProcessed.insert(FI).second; 765 (void)inserted; 766 assert(inserted && "Recursively being processed?"); 767 768 // Compute ABI information. 769 if (CC == llvm::CallingConv::SPIR_KERNEL) { 770 // Force target independent argument handling for the host visible 771 // kernel functions. 772 computeSPIRKernelABIInfo(CGM, *FI); 773 } else if (info.getCC() == CC_Swift) { 774 swiftcall::computeABIInfo(CGM, *FI); 775 } else { 776 getABIInfo().computeInfo(*FI); 777 } 778 779 // Loop over all of the computed argument and return value info. If any of 780 // them are direct or extend without a specified coerce type, specify the 781 // default now. 782 ABIArgInfo &retInfo = FI->getReturnInfo(); 783 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 784 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 785 786 for (auto &I : FI->arguments()) 787 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 788 I.info.setCoerceToType(ConvertType(I.type)); 789 790 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 791 assert(erased && "Not in set?"); 792 793 return *FI; 794 } 795 796 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 797 bool instanceMethod, 798 bool chainCall, 799 const FunctionType::ExtInfo &info, 800 ArrayRef<ExtParameterInfo> paramInfos, 801 CanQualType resultType, 802 ArrayRef<CanQualType> argTypes, 803 RequiredArgs required) { 804 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 805 806 void *buffer = 807 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 808 argTypes.size() + 1, paramInfos.size())); 809 810 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 811 FI->CallingConvention = llvmCC; 812 FI->EffectiveCallingConvention = llvmCC; 813 FI->ASTCallingConvention = info.getCC(); 814 FI->InstanceMethod = instanceMethod; 815 FI->ChainCall = chainCall; 816 FI->NoReturn = info.getNoReturn(); 817 FI->ReturnsRetained = info.getProducesResult(); 818 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 819 FI->NoCfCheck = info.getNoCfCheck(); 820 FI->Required = required; 821 FI->HasRegParm = info.getHasRegParm(); 822 FI->RegParm = info.getRegParm(); 823 FI->ArgStruct = nullptr; 824 FI->ArgStructAlign = 0; 825 FI->NumArgs = argTypes.size(); 826 FI->HasExtParameterInfos = !paramInfos.empty(); 827 FI->getArgsBuffer()[0].type = resultType; 828 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 829 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 830 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 831 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 832 return FI; 833 } 834 835 /***/ 836 837 namespace { 838 // ABIArgInfo::Expand implementation. 839 840 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 841 struct TypeExpansion { 842 enum TypeExpansionKind { 843 // Elements of constant arrays are expanded recursively. 844 TEK_ConstantArray, 845 // Record fields are expanded recursively (but if record is a union, only 846 // the field with the largest size is expanded). 847 TEK_Record, 848 // For complex types, real and imaginary parts are expanded recursively. 849 TEK_Complex, 850 // All other types are not expandable. 851 TEK_None 852 }; 853 854 const TypeExpansionKind Kind; 855 856 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 857 virtual ~TypeExpansion() {} 858 }; 859 860 struct ConstantArrayExpansion : TypeExpansion { 861 QualType EltTy; 862 uint64_t NumElts; 863 864 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 865 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 866 static bool classof(const TypeExpansion *TE) { 867 return TE->Kind == TEK_ConstantArray; 868 } 869 }; 870 871 struct RecordExpansion : TypeExpansion { 872 SmallVector<const CXXBaseSpecifier *, 1> Bases; 873 874 SmallVector<const FieldDecl *, 1> Fields; 875 876 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 877 SmallVector<const FieldDecl *, 1> &&Fields) 878 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 879 Fields(std::move(Fields)) {} 880 static bool classof(const TypeExpansion *TE) { 881 return TE->Kind == TEK_Record; 882 } 883 }; 884 885 struct ComplexExpansion : TypeExpansion { 886 QualType EltTy; 887 888 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 889 static bool classof(const TypeExpansion *TE) { 890 return TE->Kind == TEK_Complex; 891 } 892 }; 893 894 struct NoExpansion : TypeExpansion { 895 NoExpansion() : TypeExpansion(TEK_None) {} 896 static bool classof(const TypeExpansion *TE) { 897 return TE->Kind == TEK_None; 898 } 899 }; 900 } // namespace 901 902 static std::unique_ptr<TypeExpansion> 903 getTypeExpansion(QualType Ty, const ASTContext &Context) { 904 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 905 return llvm::make_unique<ConstantArrayExpansion>( 906 AT->getElementType(), AT->getSize().getZExtValue()); 907 } 908 if (const RecordType *RT = Ty->getAs<RecordType>()) { 909 SmallVector<const CXXBaseSpecifier *, 1> Bases; 910 SmallVector<const FieldDecl *, 1> Fields; 911 const RecordDecl *RD = RT->getDecl(); 912 assert(!RD->hasFlexibleArrayMember() && 913 "Cannot expand structure with flexible array."); 914 if (RD->isUnion()) { 915 // Unions can be here only in degenerative cases - all the fields are same 916 // after flattening. Thus we have to use the "largest" field. 917 const FieldDecl *LargestFD = nullptr; 918 CharUnits UnionSize = CharUnits::Zero(); 919 920 for (const auto *FD : RD->fields()) { 921 if (FD->isZeroLengthBitField(Context)) 922 continue; 923 assert(!FD->isBitField() && 924 "Cannot expand structure with bit-field members."); 925 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 926 if (UnionSize < FieldSize) { 927 UnionSize = FieldSize; 928 LargestFD = FD; 929 } 930 } 931 if (LargestFD) 932 Fields.push_back(LargestFD); 933 } else { 934 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 935 assert(!CXXRD->isDynamicClass() && 936 "cannot expand vtable pointers in dynamic classes"); 937 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 938 Bases.push_back(&BS); 939 } 940 941 for (const auto *FD : RD->fields()) { 942 if (FD->isZeroLengthBitField(Context)) 943 continue; 944 assert(!FD->isBitField() && 945 "Cannot expand structure with bit-field members."); 946 Fields.push_back(FD); 947 } 948 } 949 return llvm::make_unique<RecordExpansion>(std::move(Bases), 950 std::move(Fields)); 951 } 952 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 953 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 954 } 955 return llvm::make_unique<NoExpansion>(); 956 } 957 958 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 959 auto Exp = getTypeExpansion(Ty, Context); 960 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 961 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 962 } 963 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 964 int Res = 0; 965 for (auto BS : RExp->Bases) 966 Res += getExpansionSize(BS->getType(), Context); 967 for (auto FD : RExp->Fields) 968 Res += getExpansionSize(FD->getType(), Context); 969 return Res; 970 } 971 if (isa<ComplexExpansion>(Exp.get())) 972 return 2; 973 assert(isa<NoExpansion>(Exp.get())); 974 return 1; 975 } 976 977 void 978 CodeGenTypes::getExpandedTypes(QualType Ty, 979 SmallVectorImpl<llvm::Type *>::iterator &TI) { 980 auto Exp = getTypeExpansion(Ty, Context); 981 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 982 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 983 getExpandedTypes(CAExp->EltTy, TI); 984 } 985 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 986 for (auto BS : RExp->Bases) 987 getExpandedTypes(BS->getType(), TI); 988 for (auto FD : RExp->Fields) 989 getExpandedTypes(FD->getType(), TI); 990 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 991 llvm::Type *EltTy = ConvertType(CExp->EltTy); 992 *TI++ = EltTy; 993 *TI++ = EltTy; 994 } else { 995 assert(isa<NoExpansion>(Exp.get())); 996 *TI++ = ConvertType(Ty); 997 } 998 } 999 1000 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1001 ConstantArrayExpansion *CAE, 1002 Address BaseAddr, 1003 llvm::function_ref<void(Address)> Fn) { 1004 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1005 CharUnits EltAlign = 1006 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1007 1008 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1009 llvm::Value *EltAddr = 1010 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1011 Fn(Address(EltAddr, EltAlign)); 1012 } 1013 } 1014 1015 void CodeGenFunction::ExpandTypeFromArgs( 1016 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1017 assert(LV.isSimple() && 1018 "Unexpected non-simple lvalue during struct expansion."); 1019 1020 auto Exp = getTypeExpansion(Ty, getContext()); 1021 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1022 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1023 [&](Address EltAddr) { 1024 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1025 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1026 }); 1027 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1028 Address This = LV.getAddress(); 1029 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1030 // Perform a single step derived-to-base conversion. 1031 Address Base = 1032 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1033 /*NullCheckValue=*/false, SourceLocation()); 1034 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1035 1036 // Recurse onto bases. 1037 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1038 } 1039 for (auto FD : RExp->Fields) { 1040 // FIXME: What are the right qualifiers here? 1041 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1042 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1043 } 1044 } else if (isa<ComplexExpansion>(Exp.get())) { 1045 auto realValue = *AI++; 1046 auto imagValue = *AI++; 1047 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1048 } else { 1049 assert(isa<NoExpansion>(Exp.get())); 1050 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1051 } 1052 } 1053 1054 void CodeGenFunction::ExpandTypeToArgs( 1055 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1056 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1057 auto Exp = getTypeExpansion(Ty, getContext()); 1058 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1059 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1060 : Arg.getKnownRValue().getAggregateAddress(); 1061 forConstantArrayExpansion( 1062 *this, CAExp, Addr, [&](Address EltAddr) { 1063 CallArg EltArg = CallArg( 1064 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1065 CAExp->EltTy); 1066 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1067 IRCallArgPos); 1068 }); 1069 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1070 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1071 : Arg.getKnownRValue().getAggregateAddress(); 1072 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1073 // Perform a single step derived-to-base conversion. 1074 Address Base = 1075 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1076 /*NullCheckValue=*/false, SourceLocation()); 1077 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1078 1079 // Recurse onto bases. 1080 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1081 IRCallArgPos); 1082 } 1083 1084 LValue LV = MakeAddrLValue(This, Ty); 1085 for (auto FD : RExp->Fields) { 1086 CallArg FldArg = 1087 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1088 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1089 IRCallArgPos); 1090 } 1091 } else if (isa<ComplexExpansion>(Exp.get())) { 1092 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1093 IRCallArgs[IRCallArgPos++] = CV.first; 1094 IRCallArgs[IRCallArgPos++] = CV.second; 1095 } else { 1096 assert(isa<NoExpansion>(Exp.get())); 1097 auto RV = Arg.getKnownRValue(); 1098 assert(RV.isScalar() && 1099 "Unexpected non-scalar rvalue during struct expansion."); 1100 1101 // Insert a bitcast as needed. 1102 llvm::Value *V = RV.getScalarVal(); 1103 if (IRCallArgPos < IRFuncTy->getNumParams() && 1104 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1105 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1106 1107 IRCallArgs[IRCallArgPos++] = V; 1108 } 1109 } 1110 1111 /// Create a temporary allocation for the purposes of coercion. 1112 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1113 CharUnits MinAlign) { 1114 // Don't use an alignment that's worse than what LLVM would prefer. 1115 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1116 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1117 1118 return CGF.CreateTempAlloca(Ty, Align); 1119 } 1120 1121 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1122 /// accessing some number of bytes out of it, try to gep into the struct to get 1123 /// at its inner goodness. Dive as deep as possible without entering an element 1124 /// with an in-memory size smaller than DstSize. 1125 static Address 1126 EnterStructPointerForCoercedAccess(Address SrcPtr, 1127 llvm::StructType *SrcSTy, 1128 uint64_t DstSize, CodeGenFunction &CGF) { 1129 // We can't dive into a zero-element struct. 1130 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1131 1132 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1133 1134 // If the first elt is at least as large as what we're looking for, or if the 1135 // first element is the same size as the whole struct, we can enter it. The 1136 // comparison must be made on the store size and not the alloca size. Using 1137 // the alloca size may overstate the size of the load. 1138 uint64_t FirstEltSize = 1139 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1140 if (FirstEltSize < DstSize && 1141 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1142 return SrcPtr; 1143 1144 // GEP into the first element. 1145 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1146 1147 // If the first element is a struct, recurse. 1148 llvm::Type *SrcTy = SrcPtr.getElementType(); 1149 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1150 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1151 1152 return SrcPtr; 1153 } 1154 1155 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1156 /// are either integers or pointers. This does a truncation of the value if it 1157 /// is too large or a zero extension if it is too small. 1158 /// 1159 /// This behaves as if the value were coerced through memory, so on big-endian 1160 /// targets the high bits are preserved in a truncation, while little-endian 1161 /// targets preserve the low bits. 1162 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1163 llvm::Type *Ty, 1164 CodeGenFunction &CGF) { 1165 if (Val->getType() == Ty) 1166 return Val; 1167 1168 if (isa<llvm::PointerType>(Val->getType())) { 1169 // If this is Pointer->Pointer avoid conversion to and from int. 1170 if (isa<llvm::PointerType>(Ty)) 1171 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1172 1173 // Convert the pointer to an integer so we can play with its width. 1174 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1175 } 1176 1177 llvm::Type *DestIntTy = Ty; 1178 if (isa<llvm::PointerType>(DestIntTy)) 1179 DestIntTy = CGF.IntPtrTy; 1180 1181 if (Val->getType() != DestIntTy) { 1182 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1183 if (DL.isBigEndian()) { 1184 // Preserve the high bits on big-endian targets. 1185 // That is what memory coercion does. 1186 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1187 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1188 1189 if (SrcSize > DstSize) { 1190 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1191 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1192 } else { 1193 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1194 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1195 } 1196 } else { 1197 // Little-endian targets preserve the low bits. No shifts required. 1198 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1199 } 1200 } 1201 1202 if (isa<llvm::PointerType>(Ty)) 1203 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1204 return Val; 1205 } 1206 1207 1208 1209 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1210 /// a pointer to an object of type \arg Ty, known to be aligned to 1211 /// \arg SrcAlign bytes. 1212 /// 1213 /// This safely handles the case when the src type is smaller than the 1214 /// destination type; in this situation the values of bits which not 1215 /// present in the src are undefined. 1216 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1217 CodeGenFunction &CGF) { 1218 llvm::Type *SrcTy = Src.getElementType(); 1219 1220 // If SrcTy and Ty are the same, just do a load. 1221 if (SrcTy == Ty) 1222 return CGF.Builder.CreateLoad(Src); 1223 1224 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1225 1226 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1227 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1228 SrcTy = Src.getType()->getElementType(); 1229 } 1230 1231 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1232 1233 // If the source and destination are integer or pointer types, just do an 1234 // extension or truncation to the desired type. 1235 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1236 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1237 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1238 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1239 } 1240 1241 // If load is legal, just bitcast the src pointer. 1242 if (SrcSize >= DstSize) { 1243 // Generally SrcSize is never greater than DstSize, since this means we are 1244 // losing bits. However, this can happen in cases where the structure has 1245 // additional padding, for example due to a user specified alignment. 1246 // 1247 // FIXME: Assert that we aren't truncating non-padding bits when have access 1248 // to that information. 1249 Src = CGF.Builder.CreateBitCast(Src, 1250 Ty->getPointerTo(Src.getAddressSpace())); 1251 return CGF.Builder.CreateLoad(Src); 1252 } 1253 1254 // Otherwise do coercion through memory. This is stupid, but simple. 1255 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1256 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1257 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.AllocaInt8PtrTy); 1258 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1259 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1260 false); 1261 return CGF.Builder.CreateLoad(Tmp); 1262 } 1263 1264 // Function to store a first-class aggregate into memory. We prefer to 1265 // store the elements rather than the aggregate to be more friendly to 1266 // fast-isel. 1267 // FIXME: Do we need to recurse here? 1268 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1269 Address Dest, bool DestIsVolatile) { 1270 // Prefer scalar stores to first-class aggregate stores. 1271 if (llvm::StructType *STy = 1272 dyn_cast<llvm::StructType>(Val->getType())) { 1273 const llvm::StructLayout *Layout = 1274 CGF.CGM.getDataLayout().getStructLayout(STy); 1275 1276 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1277 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1278 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1279 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1280 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1281 } 1282 } else { 1283 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1284 } 1285 } 1286 1287 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1288 /// where the source and destination may have different types. The 1289 /// destination is known to be aligned to \arg DstAlign bytes. 1290 /// 1291 /// This safely handles the case when the src type is larger than the 1292 /// destination type; the upper bits of the src will be lost. 1293 static void CreateCoercedStore(llvm::Value *Src, 1294 Address Dst, 1295 bool DstIsVolatile, 1296 CodeGenFunction &CGF) { 1297 llvm::Type *SrcTy = Src->getType(); 1298 llvm::Type *DstTy = Dst.getType()->getElementType(); 1299 if (SrcTy == DstTy) { 1300 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1301 return; 1302 } 1303 1304 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1305 1306 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1307 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1308 DstTy = Dst.getType()->getElementType(); 1309 } 1310 1311 // If the source and destination are integer or pointer types, just do an 1312 // extension or truncation to the desired type. 1313 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1314 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1315 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1316 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1317 return; 1318 } 1319 1320 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1321 1322 // If store is legal, just bitcast the src pointer. 1323 if (SrcSize <= DstSize) { 1324 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1325 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1326 } else { 1327 // Otherwise do coercion through memory. This is stupid, but 1328 // simple. 1329 1330 // Generally SrcSize is never greater than DstSize, since this means we are 1331 // losing bits. However, this can happen in cases where the structure has 1332 // additional padding, for example due to a user specified alignment. 1333 // 1334 // FIXME: Assert that we aren't truncating non-padding bits when have access 1335 // to that information. 1336 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1337 CGF.Builder.CreateStore(Src, Tmp); 1338 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1339 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.AllocaInt8PtrTy); 1340 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1341 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1342 false); 1343 } 1344 } 1345 1346 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1347 const ABIArgInfo &info) { 1348 if (unsigned offset = info.getDirectOffset()) { 1349 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1350 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1351 CharUnits::fromQuantity(offset)); 1352 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1353 } 1354 return addr; 1355 } 1356 1357 namespace { 1358 1359 /// Encapsulates information about the way function arguments from 1360 /// CGFunctionInfo should be passed to actual LLVM IR function. 1361 class ClangToLLVMArgMapping { 1362 static const unsigned InvalidIndex = ~0U; 1363 unsigned InallocaArgNo; 1364 unsigned SRetArgNo; 1365 unsigned TotalIRArgs; 1366 1367 /// Arguments of LLVM IR function corresponding to single Clang argument. 1368 struct IRArgs { 1369 unsigned PaddingArgIndex; 1370 // Argument is expanded to IR arguments at positions 1371 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1372 unsigned FirstArgIndex; 1373 unsigned NumberOfArgs; 1374 1375 IRArgs() 1376 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1377 NumberOfArgs(0) {} 1378 }; 1379 1380 SmallVector<IRArgs, 8> ArgInfo; 1381 1382 public: 1383 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1384 bool OnlyRequiredArgs = false) 1385 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1386 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1387 construct(Context, FI, OnlyRequiredArgs); 1388 } 1389 1390 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1391 unsigned getInallocaArgNo() const { 1392 assert(hasInallocaArg()); 1393 return InallocaArgNo; 1394 } 1395 1396 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1397 unsigned getSRetArgNo() const { 1398 assert(hasSRetArg()); 1399 return SRetArgNo; 1400 } 1401 1402 unsigned totalIRArgs() const { return TotalIRArgs; } 1403 1404 bool hasPaddingArg(unsigned ArgNo) const { 1405 assert(ArgNo < ArgInfo.size()); 1406 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1407 } 1408 unsigned getPaddingArgNo(unsigned ArgNo) const { 1409 assert(hasPaddingArg(ArgNo)); 1410 return ArgInfo[ArgNo].PaddingArgIndex; 1411 } 1412 1413 /// Returns index of first IR argument corresponding to ArgNo, and their 1414 /// quantity. 1415 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1416 assert(ArgNo < ArgInfo.size()); 1417 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1418 ArgInfo[ArgNo].NumberOfArgs); 1419 } 1420 1421 private: 1422 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1423 bool OnlyRequiredArgs); 1424 }; 1425 1426 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1427 const CGFunctionInfo &FI, 1428 bool OnlyRequiredArgs) { 1429 unsigned IRArgNo = 0; 1430 bool SwapThisWithSRet = false; 1431 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1432 1433 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1434 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1435 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1436 } 1437 1438 unsigned ArgNo = 0; 1439 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1440 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1441 ++I, ++ArgNo) { 1442 assert(I != FI.arg_end()); 1443 QualType ArgType = I->type; 1444 const ABIArgInfo &AI = I->info; 1445 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1446 auto &IRArgs = ArgInfo[ArgNo]; 1447 1448 if (AI.getPaddingType()) 1449 IRArgs.PaddingArgIndex = IRArgNo++; 1450 1451 switch (AI.getKind()) { 1452 case ABIArgInfo::Extend: 1453 case ABIArgInfo::Direct: { 1454 // FIXME: handle sseregparm someday... 1455 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1456 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1457 IRArgs.NumberOfArgs = STy->getNumElements(); 1458 } else { 1459 IRArgs.NumberOfArgs = 1; 1460 } 1461 break; 1462 } 1463 case ABIArgInfo::Indirect: 1464 IRArgs.NumberOfArgs = 1; 1465 break; 1466 case ABIArgInfo::Ignore: 1467 case ABIArgInfo::InAlloca: 1468 // ignore and inalloca doesn't have matching LLVM parameters. 1469 IRArgs.NumberOfArgs = 0; 1470 break; 1471 case ABIArgInfo::CoerceAndExpand: 1472 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1473 break; 1474 case ABIArgInfo::Expand: 1475 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1476 break; 1477 } 1478 1479 if (IRArgs.NumberOfArgs > 0) { 1480 IRArgs.FirstArgIndex = IRArgNo; 1481 IRArgNo += IRArgs.NumberOfArgs; 1482 } 1483 1484 // Skip over the sret parameter when it comes second. We already handled it 1485 // above. 1486 if (IRArgNo == 1 && SwapThisWithSRet) 1487 IRArgNo++; 1488 } 1489 assert(ArgNo == ArgInfo.size()); 1490 1491 if (FI.usesInAlloca()) 1492 InallocaArgNo = IRArgNo++; 1493 1494 TotalIRArgs = IRArgNo; 1495 } 1496 } // namespace 1497 1498 /***/ 1499 1500 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1501 const auto &RI = FI.getReturnInfo(); 1502 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1503 } 1504 1505 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1506 return ReturnTypeUsesSRet(FI) && 1507 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1508 } 1509 1510 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1511 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1512 switch (BT->getKind()) { 1513 default: 1514 return false; 1515 case BuiltinType::Float: 1516 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1517 case BuiltinType::Double: 1518 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1519 case BuiltinType::LongDouble: 1520 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1521 } 1522 } 1523 1524 return false; 1525 } 1526 1527 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1528 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1529 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1530 if (BT->getKind() == BuiltinType::LongDouble) 1531 return getTarget().useObjCFP2RetForComplexLongDouble(); 1532 } 1533 } 1534 1535 return false; 1536 } 1537 1538 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1539 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1540 return GetFunctionType(FI); 1541 } 1542 1543 llvm::FunctionType * 1544 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1545 1546 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1547 (void)Inserted; 1548 assert(Inserted && "Recursively being processed?"); 1549 1550 llvm::Type *resultType = nullptr; 1551 const ABIArgInfo &retAI = FI.getReturnInfo(); 1552 switch (retAI.getKind()) { 1553 case ABIArgInfo::Expand: 1554 llvm_unreachable("Invalid ABI kind for return argument"); 1555 1556 case ABIArgInfo::Extend: 1557 case ABIArgInfo::Direct: 1558 resultType = retAI.getCoerceToType(); 1559 break; 1560 1561 case ABIArgInfo::InAlloca: 1562 if (retAI.getInAllocaSRet()) { 1563 // sret things on win32 aren't void, they return the sret pointer. 1564 QualType ret = FI.getReturnType(); 1565 llvm::Type *ty = ConvertType(ret); 1566 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1567 resultType = llvm::PointerType::get(ty, addressSpace); 1568 } else { 1569 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1570 } 1571 break; 1572 1573 case ABIArgInfo::Indirect: 1574 case ABIArgInfo::Ignore: 1575 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1576 break; 1577 1578 case ABIArgInfo::CoerceAndExpand: 1579 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1580 break; 1581 } 1582 1583 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1584 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1585 1586 // Add type for sret argument. 1587 if (IRFunctionArgs.hasSRetArg()) { 1588 QualType Ret = FI.getReturnType(); 1589 llvm::Type *Ty = ConvertType(Ret); 1590 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1591 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1592 llvm::PointerType::get(Ty, AddressSpace); 1593 } 1594 1595 // Add type for inalloca argument. 1596 if (IRFunctionArgs.hasInallocaArg()) { 1597 auto ArgStruct = FI.getArgStruct(); 1598 assert(ArgStruct); 1599 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1600 } 1601 1602 // Add in all of the required arguments. 1603 unsigned ArgNo = 0; 1604 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1605 ie = it + FI.getNumRequiredArgs(); 1606 for (; it != ie; ++it, ++ArgNo) { 1607 const ABIArgInfo &ArgInfo = it->info; 1608 1609 // Insert a padding type to ensure proper alignment. 1610 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1611 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1612 ArgInfo.getPaddingType(); 1613 1614 unsigned FirstIRArg, NumIRArgs; 1615 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1616 1617 switch (ArgInfo.getKind()) { 1618 case ABIArgInfo::Ignore: 1619 case ABIArgInfo::InAlloca: 1620 assert(NumIRArgs == 0); 1621 break; 1622 1623 case ABIArgInfo::Indirect: { 1624 assert(NumIRArgs == 1); 1625 // indirect arguments are always on the stack, which is alloca addr space. 1626 llvm::Type *LTy = ConvertTypeForMem(it->type); 1627 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1628 CGM.getDataLayout().getAllocaAddrSpace()); 1629 break; 1630 } 1631 1632 case ABIArgInfo::Extend: 1633 case ABIArgInfo::Direct: { 1634 // Fast-isel and the optimizer generally like scalar values better than 1635 // FCAs, so we flatten them if this is safe to do for this argument. 1636 llvm::Type *argType = ArgInfo.getCoerceToType(); 1637 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1638 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1639 assert(NumIRArgs == st->getNumElements()); 1640 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1641 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1642 } else { 1643 assert(NumIRArgs == 1); 1644 ArgTypes[FirstIRArg] = argType; 1645 } 1646 break; 1647 } 1648 1649 case ABIArgInfo::CoerceAndExpand: { 1650 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1651 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1652 *ArgTypesIter++ = EltTy; 1653 } 1654 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1655 break; 1656 } 1657 1658 case ABIArgInfo::Expand: 1659 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1660 getExpandedTypes(it->type, ArgTypesIter); 1661 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1662 break; 1663 } 1664 } 1665 1666 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1667 assert(Erased && "Not in set?"); 1668 1669 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1670 } 1671 1672 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1673 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1674 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1675 1676 if (!isFuncTypeConvertible(FPT)) 1677 return llvm::StructType::get(getLLVMContext()); 1678 1679 const CGFunctionInfo *Info; 1680 if (isa<CXXDestructorDecl>(MD)) 1681 Info = 1682 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1683 else 1684 Info = &arrangeCXXMethodDeclaration(MD); 1685 return GetFunctionType(*Info); 1686 } 1687 1688 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1689 llvm::AttrBuilder &FuncAttrs, 1690 const FunctionProtoType *FPT) { 1691 if (!FPT) 1692 return; 1693 1694 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1695 FPT->isNothrow()) 1696 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1697 } 1698 1699 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1700 bool AttrOnCallSite, 1701 llvm::AttrBuilder &FuncAttrs) { 1702 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1703 if (!HasOptnone) { 1704 if (CodeGenOpts.OptimizeSize) 1705 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1706 if (CodeGenOpts.OptimizeSize == 2) 1707 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1708 } 1709 1710 if (CodeGenOpts.DisableRedZone) 1711 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1712 if (CodeGenOpts.NoImplicitFloat) 1713 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1714 1715 if (AttrOnCallSite) { 1716 // Attributes that should go on the call site only. 1717 if (!CodeGenOpts.SimplifyLibCalls || 1718 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1719 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1720 if (!CodeGenOpts.TrapFuncName.empty()) 1721 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1722 } else { 1723 // Attributes that should go on the function, but not the call site. 1724 if (!CodeGenOpts.DisableFPElim) { 1725 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1726 } else if (CodeGenOpts.OmitLeafFramePointer) { 1727 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1728 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1729 } else { 1730 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1731 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1732 } 1733 1734 FuncAttrs.addAttribute("less-precise-fpmad", 1735 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1736 1737 if (CodeGenOpts.NullPointerIsValid) 1738 FuncAttrs.addAttribute("null-pointer-is-valid", "true"); 1739 if (!CodeGenOpts.FPDenormalMode.empty()) 1740 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1741 1742 FuncAttrs.addAttribute("no-trapping-math", 1743 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1744 1745 // Strict (compliant) code is the default, so only add this attribute to 1746 // indicate that we are trying to workaround a problem case. 1747 if (!CodeGenOpts.StrictFloatCastOverflow) 1748 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1749 1750 // TODO: Are these all needed? 1751 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1752 FuncAttrs.addAttribute("no-infs-fp-math", 1753 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1754 FuncAttrs.addAttribute("no-nans-fp-math", 1755 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1756 FuncAttrs.addAttribute("unsafe-fp-math", 1757 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1758 FuncAttrs.addAttribute("use-soft-float", 1759 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1760 FuncAttrs.addAttribute("stack-protector-buffer-size", 1761 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1762 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1763 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1764 FuncAttrs.addAttribute( 1765 "correctly-rounded-divide-sqrt-fp-math", 1766 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1767 1768 if (getLangOpts().OpenCL) 1769 FuncAttrs.addAttribute("denorms-are-zero", 1770 llvm::toStringRef(CodeGenOpts.FlushDenorm)); 1771 1772 // TODO: Reciprocal estimate codegen options should apply to instructions? 1773 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1774 if (!Recips.empty()) 1775 FuncAttrs.addAttribute("reciprocal-estimates", 1776 llvm::join(Recips, ",")); 1777 1778 if (!CodeGenOpts.PreferVectorWidth.empty() && 1779 CodeGenOpts.PreferVectorWidth != "none") 1780 FuncAttrs.addAttribute("prefer-vector-width", 1781 CodeGenOpts.PreferVectorWidth); 1782 1783 if (CodeGenOpts.StackRealignment) 1784 FuncAttrs.addAttribute("stackrealign"); 1785 if (CodeGenOpts.Backchain) 1786 FuncAttrs.addAttribute("backchain"); 1787 } 1788 1789 if (getLangOpts().assumeFunctionsAreConvergent()) { 1790 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1791 // convergent (meaning, they may call an intrinsically convergent op, such 1792 // as __syncthreads() / barrier(), and so can't have certain optimizations 1793 // applied around them). LLVM will remove this attribute where it safely 1794 // can. 1795 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1796 } 1797 1798 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1799 // Exceptions aren't supported in CUDA device code. 1800 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1801 1802 // Respect -fcuda-flush-denormals-to-zero. 1803 if (CodeGenOpts.FlushDenorm) 1804 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1805 } 1806 } 1807 1808 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1809 llvm::AttrBuilder FuncAttrs; 1810 ConstructDefaultFnAttrList(F.getName(), 1811 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1812 /* AttrOnCallsite = */ false, FuncAttrs); 1813 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1814 } 1815 1816 void CodeGenModule::ConstructAttributeList( 1817 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1818 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1819 llvm::AttrBuilder FuncAttrs; 1820 llvm::AttrBuilder RetAttrs; 1821 1822 CallingConv = FI.getEffectiveCallingConvention(); 1823 if (FI.isNoReturn()) 1824 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1825 1826 // If we have information about the function prototype, we can learn 1827 // attributes from there. 1828 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1829 CalleeInfo.getCalleeFunctionProtoType()); 1830 1831 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1832 1833 bool HasOptnone = false; 1834 // FIXME: handle sseregparm someday... 1835 if (TargetDecl) { 1836 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1837 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1838 if (TargetDecl->hasAttr<NoThrowAttr>()) 1839 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1840 if (TargetDecl->hasAttr<NoReturnAttr>()) 1841 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1842 if (TargetDecl->hasAttr<ColdAttr>()) 1843 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1844 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1845 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1846 if (TargetDecl->hasAttr<ConvergentAttr>()) 1847 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1848 1849 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1850 AddAttributesFromFunctionProtoType( 1851 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1852 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1853 // These attributes are not inherited by overloads. 1854 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1855 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1856 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1857 } 1858 1859 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1860 if (TargetDecl->hasAttr<ConstAttr>()) { 1861 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1862 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1863 } else if (TargetDecl->hasAttr<PureAttr>()) { 1864 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1865 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1866 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1867 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1868 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1869 } 1870 if (TargetDecl->hasAttr<RestrictAttr>()) 1871 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1872 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1873 !CodeGenOpts.NullPointerIsValid) 1874 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1875 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1876 FuncAttrs.addAttribute("no_caller_saved_registers"); 1877 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1878 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1879 1880 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1881 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1882 Optional<unsigned> NumElemsParam; 1883 if (AllocSize->getNumElemsParam().isValid()) 1884 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1885 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1886 NumElemsParam); 1887 } 1888 } 1889 1890 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1891 1892 if (CodeGenOpts.EnableSegmentedStacks && 1893 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1894 FuncAttrs.addAttribute("split-stack"); 1895 1896 // Add NonLazyBind attribute to function declarations when -fno-plt 1897 // is used. 1898 if (TargetDecl && CodeGenOpts.NoPLT) { 1899 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1900 if (!Fn->isDefined() && !AttrOnCallSite) { 1901 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1902 } 1903 } 1904 } 1905 1906 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1907 if (getLangOpts().OpenCLVersion <= 120) { 1908 // OpenCL v1.2 Work groups are always uniform 1909 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1910 } else { 1911 // OpenCL v2.0 Work groups may be whether uniform or not. 1912 // '-cl-uniform-work-group-size' compile option gets a hint 1913 // to the compiler that the global work-size be a multiple of 1914 // the work-group size specified to clEnqueueNDRangeKernel 1915 // (i.e. work groups are uniform). 1916 FuncAttrs.addAttribute("uniform-work-group-size", 1917 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1918 } 1919 } 1920 1921 if (!AttrOnCallSite) { 1922 bool DisableTailCalls = false; 1923 1924 if (CodeGenOpts.DisableTailCalls) 1925 DisableTailCalls = true; 1926 else if (TargetDecl) { 1927 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1928 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1929 DisableTailCalls = true; 1930 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1931 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1932 if (!BD->doesNotEscape()) 1933 DisableTailCalls = true; 1934 } 1935 } 1936 1937 FuncAttrs.addAttribute("disable-tail-calls", 1938 llvm::toStringRef(DisableTailCalls)); 1939 GetCPUAndFeaturesAttributes(TargetDecl, FuncAttrs); 1940 } 1941 1942 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1943 1944 QualType RetTy = FI.getReturnType(); 1945 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1946 switch (RetAI.getKind()) { 1947 case ABIArgInfo::Extend: 1948 if (RetAI.isSignExt()) 1949 RetAttrs.addAttribute(llvm::Attribute::SExt); 1950 else 1951 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1952 LLVM_FALLTHROUGH; 1953 case ABIArgInfo::Direct: 1954 if (RetAI.getInReg()) 1955 RetAttrs.addAttribute(llvm::Attribute::InReg); 1956 break; 1957 case ABIArgInfo::Ignore: 1958 break; 1959 1960 case ABIArgInfo::InAlloca: 1961 case ABIArgInfo::Indirect: { 1962 // inalloca and sret disable readnone and readonly 1963 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1964 .removeAttribute(llvm::Attribute::ReadNone); 1965 break; 1966 } 1967 1968 case ABIArgInfo::CoerceAndExpand: 1969 break; 1970 1971 case ABIArgInfo::Expand: 1972 llvm_unreachable("Invalid ABI kind for return argument"); 1973 } 1974 1975 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1976 QualType PTy = RefTy->getPointeeType(); 1977 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1978 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1979 .getQuantity()); 1980 else if (getContext().getTargetAddressSpace(PTy) == 0 && 1981 !CodeGenOpts.NullPointerIsValid) 1982 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1983 } 1984 1985 bool hasUsedSRet = false; 1986 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 1987 1988 // Attach attributes to sret. 1989 if (IRFunctionArgs.hasSRetArg()) { 1990 llvm::AttrBuilder SRETAttrs; 1991 if (!RetAI.getSuppressSRet()) 1992 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1993 hasUsedSRet = true; 1994 if (RetAI.getInReg()) 1995 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1996 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 1997 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 1998 } 1999 2000 // Attach attributes to inalloca argument. 2001 if (IRFunctionArgs.hasInallocaArg()) { 2002 llvm::AttrBuilder Attrs; 2003 Attrs.addAttribute(llvm::Attribute::InAlloca); 2004 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2005 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2006 } 2007 2008 unsigned ArgNo = 0; 2009 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2010 E = FI.arg_end(); 2011 I != E; ++I, ++ArgNo) { 2012 QualType ParamType = I->type; 2013 const ABIArgInfo &AI = I->info; 2014 llvm::AttrBuilder Attrs; 2015 2016 // Add attribute for padding argument, if necessary. 2017 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2018 if (AI.getPaddingInReg()) { 2019 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2020 llvm::AttributeSet::get( 2021 getLLVMContext(), 2022 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2023 } 2024 } 2025 2026 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2027 // have the corresponding parameter variable. It doesn't make 2028 // sense to do it here because parameters are so messed up. 2029 switch (AI.getKind()) { 2030 case ABIArgInfo::Extend: 2031 if (AI.isSignExt()) 2032 Attrs.addAttribute(llvm::Attribute::SExt); 2033 else 2034 Attrs.addAttribute(llvm::Attribute::ZExt); 2035 LLVM_FALLTHROUGH; 2036 case ABIArgInfo::Direct: 2037 if (ArgNo == 0 && FI.isChainCall()) 2038 Attrs.addAttribute(llvm::Attribute::Nest); 2039 else if (AI.getInReg()) 2040 Attrs.addAttribute(llvm::Attribute::InReg); 2041 break; 2042 2043 case ABIArgInfo::Indirect: { 2044 if (AI.getInReg()) 2045 Attrs.addAttribute(llvm::Attribute::InReg); 2046 2047 if (AI.getIndirectByVal()) 2048 Attrs.addAttribute(llvm::Attribute::ByVal); 2049 2050 CharUnits Align = AI.getIndirectAlign(); 2051 2052 // In a byval argument, it is important that the required 2053 // alignment of the type is honored, as LLVM might be creating a 2054 // *new* stack object, and needs to know what alignment to give 2055 // it. (Sometimes it can deduce a sensible alignment on its own, 2056 // but not if clang decides it must emit a packed struct, or the 2057 // user specifies increased alignment requirements.) 2058 // 2059 // This is different from indirect *not* byval, where the object 2060 // exists already, and the align attribute is purely 2061 // informative. 2062 assert(!Align.isZero()); 2063 2064 // For now, only add this when we have a byval argument. 2065 // TODO: be less lazy about updating test cases. 2066 if (AI.getIndirectByVal()) 2067 Attrs.addAlignmentAttr(Align.getQuantity()); 2068 2069 // byval disables readnone and readonly. 2070 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2071 .removeAttribute(llvm::Attribute::ReadNone); 2072 break; 2073 } 2074 case ABIArgInfo::Ignore: 2075 case ABIArgInfo::Expand: 2076 case ABIArgInfo::CoerceAndExpand: 2077 break; 2078 2079 case ABIArgInfo::InAlloca: 2080 // inalloca disables readnone and readonly. 2081 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2082 .removeAttribute(llvm::Attribute::ReadNone); 2083 continue; 2084 } 2085 2086 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2087 QualType PTy = RefTy->getPointeeType(); 2088 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2089 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2090 .getQuantity()); 2091 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2092 !CodeGenOpts.NullPointerIsValid) 2093 Attrs.addAttribute(llvm::Attribute::NonNull); 2094 } 2095 2096 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2097 case ParameterABI::Ordinary: 2098 break; 2099 2100 case ParameterABI::SwiftIndirectResult: { 2101 // Add 'sret' if we haven't already used it for something, but 2102 // only if the result is void. 2103 if (!hasUsedSRet && RetTy->isVoidType()) { 2104 Attrs.addAttribute(llvm::Attribute::StructRet); 2105 hasUsedSRet = true; 2106 } 2107 2108 // Add 'noalias' in either case. 2109 Attrs.addAttribute(llvm::Attribute::NoAlias); 2110 2111 // Add 'dereferenceable' and 'alignment'. 2112 auto PTy = ParamType->getPointeeType(); 2113 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2114 auto info = getContext().getTypeInfoInChars(PTy); 2115 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2116 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2117 info.second.getQuantity())); 2118 } 2119 break; 2120 } 2121 2122 case ParameterABI::SwiftErrorResult: 2123 Attrs.addAttribute(llvm::Attribute::SwiftError); 2124 break; 2125 2126 case ParameterABI::SwiftContext: 2127 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2128 break; 2129 } 2130 2131 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2132 Attrs.addAttribute(llvm::Attribute::NoCapture); 2133 2134 if (Attrs.hasAttributes()) { 2135 unsigned FirstIRArg, NumIRArgs; 2136 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2137 for (unsigned i = 0; i < NumIRArgs; i++) 2138 ArgAttrs[FirstIRArg + i] = 2139 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2140 } 2141 } 2142 assert(ArgNo == FI.arg_size()); 2143 2144 AttrList = llvm::AttributeList::get( 2145 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2146 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2147 } 2148 2149 /// An argument came in as a promoted argument; demote it back to its 2150 /// declared type. 2151 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2152 const VarDecl *var, 2153 llvm::Value *value) { 2154 llvm::Type *varType = CGF.ConvertType(var->getType()); 2155 2156 // This can happen with promotions that actually don't change the 2157 // underlying type, like the enum promotions. 2158 if (value->getType() == varType) return value; 2159 2160 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2161 && "unexpected promotion type"); 2162 2163 if (isa<llvm::IntegerType>(varType)) 2164 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2165 2166 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2167 } 2168 2169 /// Returns the attribute (either parameter attribute, or function 2170 /// attribute), which declares argument ArgNo to be non-null. 2171 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2172 QualType ArgType, unsigned ArgNo) { 2173 // FIXME: __attribute__((nonnull)) can also be applied to: 2174 // - references to pointers, where the pointee is known to be 2175 // nonnull (apparently a Clang extension) 2176 // - transparent unions containing pointers 2177 // In the former case, LLVM IR cannot represent the constraint. In 2178 // the latter case, we have no guarantee that the transparent union 2179 // is in fact passed as a pointer. 2180 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2181 return nullptr; 2182 // First, check attribute on parameter itself. 2183 if (PVD) { 2184 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2185 return ParmNNAttr; 2186 } 2187 // Check function attributes. 2188 if (!FD) 2189 return nullptr; 2190 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2191 if (NNAttr->isNonNull(ArgNo)) 2192 return NNAttr; 2193 } 2194 return nullptr; 2195 } 2196 2197 namespace { 2198 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2199 Address Temp; 2200 Address Arg; 2201 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2202 void Emit(CodeGenFunction &CGF, Flags flags) override { 2203 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2204 CGF.Builder.CreateStore(errorValue, Arg); 2205 } 2206 }; 2207 } 2208 2209 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2210 llvm::Function *Fn, 2211 const FunctionArgList &Args) { 2212 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2213 // Naked functions don't have prologues. 2214 return; 2215 2216 // If this is an implicit-return-zero function, go ahead and 2217 // initialize the return value. TODO: it might be nice to have 2218 // a more general mechanism for this that didn't require synthesized 2219 // return statements. 2220 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2221 if (FD->hasImplicitReturnZero()) { 2222 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2223 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2224 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2225 Builder.CreateStore(Zero, ReturnValue); 2226 } 2227 } 2228 2229 // FIXME: We no longer need the types from FunctionArgList; lift up and 2230 // simplify. 2231 2232 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2233 // Flattened function arguments. 2234 SmallVector<llvm::Value *, 16> FnArgs; 2235 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2236 for (auto &Arg : Fn->args()) { 2237 FnArgs.push_back(&Arg); 2238 } 2239 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2240 2241 // If we're using inalloca, all the memory arguments are GEPs off of the last 2242 // parameter, which is a pointer to the complete memory area. 2243 Address ArgStruct = Address::invalid(); 2244 const llvm::StructLayout *ArgStructLayout = nullptr; 2245 if (IRFunctionArgs.hasInallocaArg()) { 2246 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2247 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2248 FI.getArgStructAlignment()); 2249 2250 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2251 } 2252 2253 // Name the struct return parameter. 2254 if (IRFunctionArgs.hasSRetArg()) { 2255 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2256 AI->setName("agg.result"); 2257 AI->addAttr(llvm::Attribute::NoAlias); 2258 } 2259 2260 // Track if we received the parameter as a pointer (indirect, byval, or 2261 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2262 // into a local alloca for us. 2263 SmallVector<ParamValue, 16> ArgVals; 2264 ArgVals.reserve(Args.size()); 2265 2266 // Create a pointer value for every parameter declaration. This usually 2267 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2268 // any cleanups or do anything that might unwind. We do that separately, so 2269 // we can push the cleanups in the correct order for the ABI. 2270 assert(FI.arg_size() == Args.size() && 2271 "Mismatch between function signature & arguments."); 2272 unsigned ArgNo = 0; 2273 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2274 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2275 i != e; ++i, ++info_it, ++ArgNo) { 2276 const VarDecl *Arg = *i; 2277 const ABIArgInfo &ArgI = info_it->info; 2278 2279 bool isPromoted = 2280 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2281 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2282 // the parameter is promoted. In this case we convert to 2283 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2284 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2285 assert(hasScalarEvaluationKind(Ty) == 2286 hasScalarEvaluationKind(Arg->getType())); 2287 2288 unsigned FirstIRArg, NumIRArgs; 2289 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2290 2291 switch (ArgI.getKind()) { 2292 case ABIArgInfo::InAlloca: { 2293 assert(NumIRArgs == 0); 2294 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2295 CharUnits FieldOffset = 2296 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2297 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2298 Arg->getName()); 2299 ArgVals.push_back(ParamValue::forIndirect(V)); 2300 break; 2301 } 2302 2303 case ABIArgInfo::Indirect: { 2304 assert(NumIRArgs == 1); 2305 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2306 2307 if (!hasScalarEvaluationKind(Ty)) { 2308 // Aggregates and complex variables are accessed by reference. All we 2309 // need to do is realign the value, if requested. 2310 Address V = ParamAddr; 2311 if (ArgI.getIndirectRealign()) { 2312 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2313 2314 // Copy from the incoming argument pointer to the temporary with the 2315 // appropriate alignment. 2316 // 2317 // FIXME: We should have a common utility for generating an aggregate 2318 // copy. 2319 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2320 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2321 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2322 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2323 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2324 V = AlignedTemp; 2325 } 2326 ArgVals.push_back(ParamValue::forIndirect(V)); 2327 } else { 2328 // Load scalar value from indirect argument. 2329 llvm::Value *V = 2330 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2331 2332 if (isPromoted) 2333 V = emitArgumentDemotion(*this, Arg, V); 2334 ArgVals.push_back(ParamValue::forDirect(V)); 2335 } 2336 break; 2337 } 2338 2339 case ABIArgInfo::Extend: 2340 case ABIArgInfo::Direct: { 2341 2342 // If we have the trivial case, handle it with no muss and fuss. 2343 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2344 ArgI.getCoerceToType() == ConvertType(Ty) && 2345 ArgI.getDirectOffset() == 0) { 2346 assert(NumIRArgs == 1); 2347 llvm::Value *V = FnArgs[FirstIRArg]; 2348 auto AI = cast<llvm::Argument>(V); 2349 2350 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2351 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2352 PVD->getFunctionScopeIndex()) && 2353 !CGM.getCodeGenOpts().NullPointerIsValid) 2354 AI->addAttr(llvm::Attribute::NonNull); 2355 2356 QualType OTy = PVD->getOriginalType(); 2357 if (const auto *ArrTy = 2358 getContext().getAsConstantArrayType(OTy)) { 2359 // A C99 array parameter declaration with the static keyword also 2360 // indicates dereferenceability, and if the size is constant we can 2361 // use the dereferenceable attribute (which requires the size in 2362 // bytes). 2363 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2364 QualType ETy = ArrTy->getElementType(); 2365 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2366 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2367 ArrSize) { 2368 llvm::AttrBuilder Attrs; 2369 Attrs.addDereferenceableAttr( 2370 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2371 AI->addAttrs(Attrs); 2372 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2373 !CGM.getCodeGenOpts().NullPointerIsValid) { 2374 AI->addAttr(llvm::Attribute::NonNull); 2375 } 2376 } 2377 } else if (const auto *ArrTy = 2378 getContext().getAsVariableArrayType(OTy)) { 2379 // For C99 VLAs with the static keyword, we don't know the size so 2380 // we can't use the dereferenceable attribute, but in addrspace(0) 2381 // we know that it must be nonnull. 2382 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2383 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2384 !CGM.getCodeGenOpts().NullPointerIsValid) 2385 AI->addAttr(llvm::Attribute::NonNull); 2386 } 2387 2388 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2389 if (!AVAttr) 2390 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2391 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2392 if (AVAttr) { 2393 llvm::Value *AlignmentValue = 2394 EmitScalarExpr(AVAttr->getAlignment()); 2395 llvm::ConstantInt *AlignmentCI = 2396 cast<llvm::ConstantInt>(AlignmentValue); 2397 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2398 +llvm::Value::MaximumAlignment); 2399 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2400 } 2401 } 2402 2403 if (Arg->getType().isRestrictQualified()) 2404 AI->addAttr(llvm::Attribute::NoAlias); 2405 2406 // LLVM expects swifterror parameters to be used in very restricted 2407 // ways. Copy the value into a less-restricted temporary. 2408 if (FI.getExtParameterInfo(ArgNo).getABI() 2409 == ParameterABI::SwiftErrorResult) { 2410 QualType pointeeTy = Ty->getPointeeType(); 2411 assert(pointeeTy->isPointerType()); 2412 Address temp = 2413 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2414 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2415 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2416 Builder.CreateStore(incomingErrorValue, temp); 2417 V = temp.getPointer(); 2418 2419 // Push a cleanup to copy the value back at the end of the function. 2420 // The convention does not guarantee that the value will be written 2421 // back if the function exits with an unwind exception. 2422 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2423 } 2424 2425 // Ensure the argument is the correct type. 2426 if (V->getType() != ArgI.getCoerceToType()) 2427 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2428 2429 if (isPromoted) 2430 V = emitArgumentDemotion(*this, Arg, V); 2431 2432 // Because of merging of function types from multiple decls it is 2433 // possible for the type of an argument to not match the corresponding 2434 // type in the function type. Since we are codegening the callee 2435 // in here, add a cast to the argument type. 2436 llvm::Type *LTy = ConvertType(Arg->getType()); 2437 if (V->getType() != LTy) 2438 V = Builder.CreateBitCast(V, LTy); 2439 2440 ArgVals.push_back(ParamValue::forDirect(V)); 2441 break; 2442 } 2443 2444 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2445 Arg->getName()); 2446 2447 // Pointer to store into. 2448 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2449 2450 // Fast-isel and the optimizer generally like scalar values better than 2451 // FCAs, so we flatten them if this is safe to do for this argument. 2452 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2453 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2454 STy->getNumElements() > 1) { 2455 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2456 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2457 llvm::Type *DstTy = Ptr.getElementType(); 2458 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2459 2460 Address AddrToStoreInto = Address::invalid(); 2461 if (SrcSize <= DstSize) { 2462 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2463 } else { 2464 AddrToStoreInto = 2465 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2466 } 2467 2468 assert(STy->getNumElements() == NumIRArgs); 2469 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2470 auto AI = FnArgs[FirstIRArg + i]; 2471 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2472 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2473 Address EltPtr = 2474 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2475 Builder.CreateStore(AI, EltPtr); 2476 } 2477 2478 if (SrcSize > DstSize) { 2479 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2480 } 2481 2482 } else { 2483 // Simple case, just do a coerced store of the argument into the alloca. 2484 assert(NumIRArgs == 1); 2485 auto AI = FnArgs[FirstIRArg]; 2486 AI->setName(Arg->getName() + ".coerce"); 2487 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2488 } 2489 2490 // Match to what EmitParmDecl is expecting for this type. 2491 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2492 llvm::Value *V = 2493 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2494 if (isPromoted) 2495 V = emitArgumentDemotion(*this, Arg, V); 2496 ArgVals.push_back(ParamValue::forDirect(V)); 2497 } else { 2498 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2499 } 2500 break; 2501 } 2502 2503 case ABIArgInfo::CoerceAndExpand: { 2504 // Reconstruct into a temporary. 2505 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2506 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2507 2508 auto coercionType = ArgI.getCoerceAndExpandType(); 2509 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2510 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2511 2512 unsigned argIndex = FirstIRArg; 2513 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2514 llvm::Type *eltType = coercionType->getElementType(i); 2515 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2516 continue; 2517 2518 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2519 auto elt = FnArgs[argIndex++]; 2520 Builder.CreateStore(elt, eltAddr); 2521 } 2522 assert(argIndex == FirstIRArg + NumIRArgs); 2523 break; 2524 } 2525 2526 case ABIArgInfo::Expand: { 2527 // If this structure was expanded into multiple arguments then 2528 // we need to create a temporary and reconstruct it from the 2529 // arguments. 2530 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2531 LValue LV = MakeAddrLValue(Alloca, Ty); 2532 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2533 2534 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2535 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2536 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2537 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2538 auto AI = FnArgs[FirstIRArg + i]; 2539 AI->setName(Arg->getName() + "." + Twine(i)); 2540 } 2541 break; 2542 } 2543 2544 case ABIArgInfo::Ignore: 2545 assert(NumIRArgs == 0); 2546 // Initialize the local variable appropriately. 2547 if (!hasScalarEvaluationKind(Ty)) { 2548 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2549 } else { 2550 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2551 ArgVals.push_back(ParamValue::forDirect(U)); 2552 } 2553 break; 2554 } 2555 } 2556 2557 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2558 for (int I = Args.size() - 1; I >= 0; --I) 2559 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2560 } else { 2561 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2562 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2563 } 2564 } 2565 2566 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2567 while (insn->use_empty()) { 2568 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2569 if (!bitcast) return; 2570 2571 // This is "safe" because we would have used a ConstantExpr otherwise. 2572 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2573 bitcast->eraseFromParent(); 2574 } 2575 } 2576 2577 /// Try to emit a fused autorelease of a return result. 2578 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2579 llvm::Value *result) { 2580 // We must be immediately followed the cast. 2581 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2582 if (BB->empty()) return nullptr; 2583 if (&BB->back() != result) return nullptr; 2584 2585 llvm::Type *resultType = result->getType(); 2586 2587 // result is in a BasicBlock and is therefore an Instruction. 2588 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2589 2590 SmallVector<llvm::Instruction *, 4> InstsToKill; 2591 2592 // Look for: 2593 // %generator = bitcast %type1* %generator2 to %type2* 2594 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2595 // We would have emitted this as a constant if the operand weren't 2596 // an Instruction. 2597 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2598 2599 // Require the generator to be immediately followed by the cast. 2600 if (generator->getNextNode() != bitcast) 2601 return nullptr; 2602 2603 InstsToKill.push_back(bitcast); 2604 } 2605 2606 // Look for: 2607 // %generator = call i8* @objc_retain(i8* %originalResult) 2608 // or 2609 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2610 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2611 if (!call) return nullptr; 2612 2613 bool doRetainAutorelease; 2614 2615 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2616 doRetainAutorelease = true; 2617 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2618 .objc_retainAutoreleasedReturnValue) { 2619 doRetainAutorelease = false; 2620 2621 // If we emitted an assembly marker for this call (and the 2622 // ARCEntrypoints field should have been set if so), go looking 2623 // for that call. If we can't find it, we can't do this 2624 // optimization. But it should always be the immediately previous 2625 // instruction, unless we needed bitcasts around the call. 2626 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2627 llvm::Instruction *prev = call->getPrevNode(); 2628 assert(prev); 2629 if (isa<llvm::BitCastInst>(prev)) { 2630 prev = prev->getPrevNode(); 2631 assert(prev); 2632 } 2633 assert(isa<llvm::CallInst>(prev)); 2634 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2635 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2636 InstsToKill.push_back(prev); 2637 } 2638 } else { 2639 return nullptr; 2640 } 2641 2642 result = call->getArgOperand(0); 2643 InstsToKill.push_back(call); 2644 2645 // Keep killing bitcasts, for sanity. Note that we no longer care 2646 // about precise ordering as long as there's exactly one use. 2647 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2648 if (!bitcast->hasOneUse()) break; 2649 InstsToKill.push_back(bitcast); 2650 result = bitcast->getOperand(0); 2651 } 2652 2653 // Delete all the unnecessary instructions, from latest to earliest. 2654 for (auto *I : InstsToKill) 2655 I->eraseFromParent(); 2656 2657 // Do the fused retain/autorelease if we were asked to. 2658 if (doRetainAutorelease) 2659 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2660 2661 // Cast back to the result type. 2662 return CGF.Builder.CreateBitCast(result, resultType); 2663 } 2664 2665 /// If this is a +1 of the value of an immutable 'self', remove it. 2666 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2667 llvm::Value *result) { 2668 // This is only applicable to a method with an immutable 'self'. 2669 const ObjCMethodDecl *method = 2670 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2671 if (!method) return nullptr; 2672 const VarDecl *self = method->getSelfDecl(); 2673 if (!self->getType().isConstQualified()) return nullptr; 2674 2675 // Look for a retain call. 2676 llvm::CallInst *retainCall = 2677 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2678 if (!retainCall || 2679 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2680 return nullptr; 2681 2682 // Look for an ordinary load of 'self'. 2683 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2684 llvm::LoadInst *load = 2685 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2686 if (!load || load->isAtomic() || load->isVolatile() || 2687 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2688 return nullptr; 2689 2690 // Okay! Burn it all down. This relies for correctness on the 2691 // assumption that the retain is emitted as part of the return and 2692 // that thereafter everything is used "linearly". 2693 llvm::Type *resultType = result->getType(); 2694 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2695 assert(retainCall->use_empty()); 2696 retainCall->eraseFromParent(); 2697 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2698 2699 return CGF.Builder.CreateBitCast(load, resultType); 2700 } 2701 2702 /// Emit an ARC autorelease of the result of a function. 2703 /// 2704 /// \return the value to actually return from the function 2705 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2706 llvm::Value *result) { 2707 // If we're returning 'self', kill the initial retain. This is a 2708 // heuristic attempt to "encourage correctness" in the really unfortunate 2709 // case where we have a return of self during a dealloc and we desperately 2710 // need to avoid the possible autorelease. 2711 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2712 return self; 2713 2714 // At -O0, try to emit a fused retain/autorelease. 2715 if (CGF.shouldUseFusedARCCalls()) 2716 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2717 return fused; 2718 2719 return CGF.EmitARCAutoreleaseReturnValue(result); 2720 } 2721 2722 /// Heuristically search for a dominating store to the return-value slot. 2723 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2724 // Check if a User is a store which pointerOperand is the ReturnValue. 2725 // We are looking for stores to the ReturnValue, not for stores of the 2726 // ReturnValue to some other location. 2727 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2728 auto *SI = dyn_cast<llvm::StoreInst>(U); 2729 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2730 return nullptr; 2731 // These aren't actually possible for non-coerced returns, and we 2732 // only care about non-coerced returns on this code path. 2733 assert(!SI->isAtomic() && !SI->isVolatile()); 2734 return SI; 2735 }; 2736 // If there are multiple uses of the return-value slot, just check 2737 // for something immediately preceding the IP. Sometimes this can 2738 // happen with how we generate implicit-returns; it can also happen 2739 // with noreturn cleanups. 2740 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2741 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2742 if (IP->empty()) return nullptr; 2743 llvm::Instruction *I = &IP->back(); 2744 2745 // Skip lifetime markers 2746 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2747 IE = IP->rend(); 2748 II != IE; ++II) { 2749 if (llvm::IntrinsicInst *Intrinsic = 2750 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2751 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2752 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2753 ++II; 2754 if (II == IE) 2755 break; 2756 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2757 continue; 2758 } 2759 } 2760 I = &*II; 2761 break; 2762 } 2763 2764 return GetStoreIfValid(I); 2765 } 2766 2767 llvm::StoreInst *store = 2768 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2769 if (!store) return nullptr; 2770 2771 // Now do a first-and-dirty dominance check: just walk up the 2772 // single-predecessors chain from the current insertion point. 2773 llvm::BasicBlock *StoreBB = store->getParent(); 2774 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2775 while (IP != StoreBB) { 2776 if (!(IP = IP->getSinglePredecessor())) 2777 return nullptr; 2778 } 2779 2780 // Okay, the store's basic block dominates the insertion point; we 2781 // can do our thing. 2782 return store; 2783 } 2784 2785 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2786 bool EmitRetDbgLoc, 2787 SourceLocation EndLoc) { 2788 if (FI.isNoReturn()) { 2789 // Noreturn functions don't return. 2790 EmitUnreachable(EndLoc); 2791 return; 2792 } 2793 2794 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2795 // Naked functions don't have epilogues. 2796 Builder.CreateUnreachable(); 2797 return; 2798 } 2799 2800 // Functions with no result always return void. 2801 if (!ReturnValue.isValid()) { 2802 Builder.CreateRetVoid(); 2803 return; 2804 } 2805 2806 llvm::DebugLoc RetDbgLoc; 2807 llvm::Value *RV = nullptr; 2808 QualType RetTy = FI.getReturnType(); 2809 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2810 2811 switch (RetAI.getKind()) { 2812 case ABIArgInfo::InAlloca: 2813 // Aggregrates get evaluated directly into the destination. Sometimes we 2814 // need to return the sret value in a register, though. 2815 assert(hasAggregateEvaluationKind(RetTy)); 2816 if (RetAI.getInAllocaSRet()) { 2817 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2818 --EI; 2819 llvm::Value *ArgStruct = &*EI; 2820 llvm::Value *SRet = Builder.CreateStructGEP( 2821 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2822 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2823 } 2824 break; 2825 2826 case ABIArgInfo::Indirect: { 2827 auto AI = CurFn->arg_begin(); 2828 if (RetAI.isSRetAfterThis()) 2829 ++AI; 2830 switch (getEvaluationKind(RetTy)) { 2831 case TEK_Complex: { 2832 ComplexPairTy RT = 2833 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2834 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2835 /*isInit*/ true); 2836 break; 2837 } 2838 case TEK_Aggregate: 2839 // Do nothing; aggregrates get evaluated directly into the destination. 2840 break; 2841 case TEK_Scalar: 2842 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2843 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2844 /*isInit*/ true); 2845 break; 2846 } 2847 break; 2848 } 2849 2850 case ABIArgInfo::Extend: 2851 case ABIArgInfo::Direct: 2852 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2853 RetAI.getDirectOffset() == 0) { 2854 // The internal return value temp always will have pointer-to-return-type 2855 // type, just do a load. 2856 2857 // If there is a dominating store to ReturnValue, we can elide 2858 // the load, zap the store, and usually zap the alloca. 2859 if (llvm::StoreInst *SI = 2860 findDominatingStoreToReturnValue(*this)) { 2861 // Reuse the debug location from the store unless there is 2862 // cleanup code to be emitted between the store and return 2863 // instruction. 2864 if (EmitRetDbgLoc && !AutoreleaseResult) 2865 RetDbgLoc = SI->getDebugLoc(); 2866 // Get the stored value and nuke the now-dead store. 2867 RV = SI->getValueOperand(); 2868 SI->eraseFromParent(); 2869 2870 // If that was the only use of the return value, nuke it as well now. 2871 auto returnValueInst = ReturnValue.getPointer(); 2872 if (returnValueInst->use_empty()) { 2873 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2874 alloca->eraseFromParent(); 2875 ReturnValue = Address::invalid(); 2876 } 2877 } 2878 2879 // Otherwise, we have to do a simple load. 2880 } else { 2881 RV = Builder.CreateLoad(ReturnValue); 2882 } 2883 } else { 2884 // If the value is offset in memory, apply the offset now. 2885 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2886 2887 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2888 } 2889 2890 // In ARC, end functions that return a retainable type with a call 2891 // to objc_autoreleaseReturnValue. 2892 if (AutoreleaseResult) { 2893 #ifndef NDEBUG 2894 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2895 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2896 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2897 // CurCodeDecl or BlockInfo. 2898 QualType RT; 2899 2900 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2901 RT = FD->getReturnType(); 2902 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2903 RT = MD->getReturnType(); 2904 else if (isa<BlockDecl>(CurCodeDecl)) 2905 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2906 else 2907 llvm_unreachable("Unexpected function/method type"); 2908 2909 assert(getLangOpts().ObjCAutoRefCount && 2910 !FI.isReturnsRetained() && 2911 RT->isObjCRetainableType()); 2912 #endif 2913 RV = emitAutoreleaseOfResult(*this, RV); 2914 } 2915 2916 break; 2917 2918 case ABIArgInfo::Ignore: 2919 break; 2920 2921 case ABIArgInfo::CoerceAndExpand: { 2922 auto coercionType = RetAI.getCoerceAndExpandType(); 2923 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2924 2925 // Load all of the coerced elements out into results. 2926 llvm::SmallVector<llvm::Value*, 4> results; 2927 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2928 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2929 auto coercedEltType = coercionType->getElementType(i); 2930 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2931 continue; 2932 2933 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2934 auto elt = Builder.CreateLoad(eltAddr); 2935 results.push_back(elt); 2936 } 2937 2938 // If we have one result, it's the single direct result type. 2939 if (results.size() == 1) { 2940 RV = results[0]; 2941 2942 // Otherwise, we need to make a first-class aggregate. 2943 } else { 2944 // Construct a return type that lacks padding elements. 2945 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2946 2947 RV = llvm::UndefValue::get(returnType); 2948 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2949 RV = Builder.CreateInsertValue(RV, results[i], i); 2950 } 2951 } 2952 break; 2953 } 2954 2955 case ABIArgInfo::Expand: 2956 llvm_unreachable("Invalid ABI kind for return argument"); 2957 } 2958 2959 llvm::Instruction *Ret; 2960 if (RV) { 2961 EmitReturnValueCheck(RV); 2962 Ret = Builder.CreateRet(RV); 2963 } else { 2964 Ret = Builder.CreateRetVoid(); 2965 } 2966 2967 if (RetDbgLoc) 2968 Ret->setDebugLoc(std::move(RetDbgLoc)); 2969 } 2970 2971 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2972 // A current decl may not be available when emitting vtable thunks. 2973 if (!CurCodeDecl) 2974 return; 2975 2976 ReturnsNonNullAttr *RetNNAttr = nullptr; 2977 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2978 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2979 2980 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2981 return; 2982 2983 // Prefer the returns_nonnull attribute if it's present. 2984 SourceLocation AttrLoc; 2985 SanitizerMask CheckKind; 2986 SanitizerHandler Handler; 2987 if (RetNNAttr) { 2988 assert(!requiresReturnValueNullabilityCheck() && 2989 "Cannot check nullability and the nonnull attribute"); 2990 AttrLoc = RetNNAttr->getLocation(); 2991 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 2992 Handler = SanitizerHandler::NonnullReturn; 2993 } else { 2994 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 2995 if (auto *TSI = DD->getTypeSourceInfo()) 2996 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 2997 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 2998 CheckKind = SanitizerKind::NullabilityReturn; 2999 Handler = SanitizerHandler::NullabilityReturn; 3000 } 3001 3002 SanitizerScope SanScope(this); 3003 3004 // Make sure the "return" source location is valid. If we're checking a 3005 // nullability annotation, make sure the preconditions for the check are met. 3006 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3007 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3008 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3009 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3010 if (requiresReturnValueNullabilityCheck()) 3011 CanNullCheck = 3012 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3013 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3014 EmitBlock(Check); 3015 3016 // Now do the null check. 3017 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3018 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3019 llvm::Value *DynamicData[] = {SLocPtr}; 3020 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3021 3022 EmitBlock(NoCheck); 3023 3024 #ifndef NDEBUG 3025 // The return location should not be used after the check has been emitted. 3026 ReturnLocation = Address::invalid(); 3027 #endif 3028 } 3029 3030 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3031 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3032 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3033 } 3034 3035 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3036 QualType Ty) { 3037 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3038 // placeholders. 3039 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3040 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3041 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3042 3043 // FIXME: When we generate this IR in one pass, we shouldn't need 3044 // this win32-specific alignment hack. 3045 CharUnits Align = CharUnits::fromQuantity(4); 3046 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3047 3048 return AggValueSlot::forAddr(Address(Placeholder, Align), 3049 Ty.getQualifiers(), 3050 AggValueSlot::IsNotDestructed, 3051 AggValueSlot::DoesNotNeedGCBarriers, 3052 AggValueSlot::IsNotAliased, 3053 AggValueSlot::DoesNotOverlap); 3054 } 3055 3056 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3057 const VarDecl *param, 3058 SourceLocation loc) { 3059 // StartFunction converted the ABI-lowered parameter(s) into a 3060 // local alloca. We need to turn that into an r-value suitable 3061 // for EmitCall. 3062 Address local = GetAddrOfLocalVar(param); 3063 3064 QualType type = param->getType(); 3065 3066 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 3067 "cannot emit delegate call arguments for inalloca arguments!"); 3068 3069 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3070 // but the argument needs to be the original pointer. 3071 if (type->isReferenceType()) { 3072 args.add(RValue::get(Builder.CreateLoad(local)), type); 3073 3074 // In ARC, move out of consumed arguments so that the release cleanup 3075 // entered by StartFunction doesn't cause an over-release. This isn't 3076 // optimal -O0 code generation, but it should get cleaned up when 3077 // optimization is enabled. This also assumes that delegate calls are 3078 // performed exactly once for a set of arguments, but that should be safe. 3079 } else if (getLangOpts().ObjCAutoRefCount && 3080 param->hasAttr<NSConsumedAttr>() && 3081 type->isObjCRetainableType()) { 3082 llvm::Value *ptr = Builder.CreateLoad(local); 3083 auto null = 3084 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3085 Builder.CreateStore(null, local); 3086 args.add(RValue::get(ptr), type); 3087 3088 // For the most part, we just need to load the alloca, except that 3089 // aggregate r-values are actually pointers to temporaries. 3090 } else { 3091 args.add(convertTempToRValue(local, type, loc), type); 3092 } 3093 3094 // Deactivate the cleanup for the callee-destructed param that was pushed. 3095 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3096 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3097 type.isDestructedType()) { 3098 EHScopeStack::stable_iterator cleanup = 3099 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3100 assert(cleanup.isValid() && 3101 "cleanup for callee-destructed param not recorded"); 3102 // This unreachable is a temporary marker which will be removed later. 3103 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3104 args.addArgCleanupDeactivation(cleanup, isActive); 3105 } 3106 } 3107 3108 static bool isProvablyNull(llvm::Value *addr) { 3109 return isa<llvm::ConstantPointerNull>(addr); 3110 } 3111 3112 /// Emit the actual writing-back of a writeback. 3113 static void emitWriteback(CodeGenFunction &CGF, 3114 const CallArgList::Writeback &writeback) { 3115 const LValue &srcLV = writeback.Source; 3116 Address srcAddr = srcLV.getAddress(); 3117 assert(!isProvablyNull(srcAddr.getPointer()) && 3118 "shouldn't have writeback for provably null argument"); 3119 3120 llvm::BasicBlock *contBB = nullptr; 3121 3122 // If the argument wasn't provably non-null, we need to null check 3123 // before doing the store. 3124 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3125 CGF.CGM.getDataLayout()); 3126 if (!provablyNonNull) { 3127 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3128 contBB = CGF.createBasicBlock("icr.done"); 3129 3130 llvm::Value *isNull = 3131 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3132 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3133 CGF.EmitBlock(writebackBB); 3134 } 3135 3136 // Load the value to writeback. 3137 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3138 3139 // Cast it back, in case we're writing an id to a Foo* or something. 3140 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3141 "icr.writeback-cast"); 3142 3143 // Perform the writeback. 3144 3145 // If we have a "to use" value, it's something we need to emit a use 3146 // of. This has to be carefully threaded in: if it's done after the 3147 // release it's potentially undefined behavior (and the optimizer 3148 // will ignore it), and if it happens before the retain then the 3149 // optimizer could move the release there. 3150 if (writeback.ToUse) { 3151 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3152 3153 // Retain the new value. No need to block-copy here: the block's 3154 // being passed up the stack. 3155 value = CGF.EmitARCRetainNonBlock(value); 3156 3157 // Emit the intrinsic use here. 3158 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3159 3160 // Load the old value (primitively). 3161 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3162 3163 // Put the new value in place (primitively). 3164 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3165 3166 // Release the old value. 3167 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3168 3169 // Otherwise, we can just do a normal lvalue store. 3170 } else { 3171 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3172 } 3173 3174 // Jump to the continuation block. 3175 if (!provablyNonNull) 3176 CGF.EmitBlock(contBB); 3177 } 3178 3179 static void emitWritebacks(CodeGenFunction &CGF, 3180 const CallArgList &args) { 3181 for (const auto &I : args.writebacks()) 3182 emitWriteback(CGF, I); 3183 } 3184 3185 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3186 const CallArgList &CallArgs) { 3187 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3188 CallArgs.getCleanupsToDeactivate(); 3189 // Iterate in reverse to increase the likelihood of popping the cleanup. 3190 for (const auto &I : llvm::reverse(Cleanups)) { 3191 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3192 I.IsActiveIP->eraseFromParent(); 3193 } 3194 } 3195 3196 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3197 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3198 if (uop->getOpcode() == UO_AddrOf) 3199 return uop->getSubExpr(); 3200 return nullptr; 3201 } 3202 3203 /// Emit an argument that's being passed call-by-writeback. That is, 3204 /// we are passing the address of an __autoreleased temporary; it 3205 /// might be copy-initialized with the current value of the given 3206 /// address, but it will definitely be copied out of after the call. 3207 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3208 const ObjCIndirectCopyRestoreExpr *CRE) { 3209 LValue srcLV; 3210 3211 // Make an optimistic effort to emit the address as an l-value. 3212 // This can fail if the argument expression is more complicated. 3213 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3214 srcLV = CGF.EmitLValue(lvExpr); 3215 3216 // Otherwise, just emit it as a scalar. 3217 } else { 3218 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3219 3220 QualType srcAddrType = 3221 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3222 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3223 } 3224 Address srcAddr = srcLV.getAddress(); 3225 3226 // The dest and src types don't necessarily match in LLVM terms 3227 // because of the crazy ObjC compatibility rules. 3228 3229 llvm::PointerType *destType = 3230 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3231 3232 // If the address is a constant null, just pass the appropriate null. 3233 if (isProvablyNull(srcAddr.getPointer())) { 3234 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3235 CRE->getType()); 3236 return; 3237 } 3238 3239 // Create the temporary. 3240 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3241 CGF.getPointerAlign(), 3242 "icr.temp"); 3243 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3244 // and that cleanup will be conditional if we can't prove that the l-value 3245 // isn't null, so we need to register a dominating point so that the cleanups 3246 // system will make valid IR. 3247 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3248 3249 // Zero-initialize it if we're not doing a copy-initialization. 3250 bool shouldCopy = CRE->shouldCopy(); 3251 if (!shouldCopy) { 3252 llvm::Value *null = 3253 llvm::ConstantPointerNull::get( 3254 cast<llvm::PointerType>(destType->getElementType())); 3255 CGF.Builder.CreateStore(null, temp); 3256 } 3257 3258 llvm::BasicBlock *contBB = nullptr; 3259 llvm::BasicBlock *originBB = nullptr; 3260 3261 // If the address is *not* known to be non-null, we need to switch. 3262 llvm::Value *finalArgument; 3263 3264 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3265 CGF.CGM.getDataLayout()); 3266 if (provablyNonNull) { 3267 finalArgument = temp.getPointer(); 3268 } else { 3269 llvm::Value *isNull = 3270 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3271 3272 finalArgument = CGF.Builder.CreateSelect(isNull, 3273 llvm::ConstantPointerNull::get(destType), 3274 temp.getPointer(), "icr.argument"); 3275 3276 // If we need to copy, then the load has to be conditional, which 3277 // means we need control flow. 3278 if (shouldCopy) { 3279 originBB = CGF.Builder.GetInsertBlock(); 3280 contBB = CGF.createBasicBlock("icr.cont"); 3281 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3282 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3283 CGF.EmitBlock(copyBB); 3284 condEval.begin(CGF); 3285 } 3286 } 3287 3288 llvm::Value *valueToUse = nullptr; 3289 3290 // Perform a copy if necessary. 3291 if (shouldCopy) { 3292 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3293 assert(srcRV.isScalar()); 3294 3295 llvm::Value *src = srcRV.getScalarVal(); 3296 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3297 "icr.cast"); 3298 3299 // Use an ordinary store, not a store-to-lvalue. 3300 CGF.Builder.CreateStore(src, temp); 3301 3302 // If optimization is enabled, and the value was held in a 3303 // __strong variable, we need to tell the optimizer that this 3304 // value has to stay alive until we're doing the store back. 3305 // This is because the temporary is effectively unretained, 3306 // and so otherwise we can violate the high-level semantics. 3307 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3308 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3309 valueToUse = src; 3310 } 3311 } 3312 3313 // Finish the control flow if we needed it. 3314 if (shouldCopy && !provablyNonNull) { 3315 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3316 CGF.EmitBlock(contBB); 3317 3318 // Make a phi for the value to intrinsically use. 3319 if (valueToUse) { 3320 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3321 "icr.to-use"); 3322 phiToUse->addIncoming(valueToUse, copyBB); 3323 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3324 originBB); 3325 valueToUse = phiToUse; 3326 } 3327 3328 condEval.end(CGF); 3329 } 3330 3331 args.addWriteback(srcLV, temp, valueToUse); 3332 args.add(RValue::get(finalArgument), CRE->getType()); 3333 } 3334 3335 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3336 assert(!StackBase); 3337 3338 // Save the stack. 3339 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3340 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3341 } 3342 3343 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3344 if (StackBase) { 3345 // Restore the stack after the call. 3346 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3347 CGF.Builder.CreateCall(F, StackBase); 3348 } 3349 } 3350 3351 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3352 SourceLocation ArgLoc, 3353 AbstractCallee AC, 3354 unsigned ParmNum) { 3355 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3356 SanOpts.has(SanitizerKind::NullabilityArg))) 3357 return; 3358 3359 // The param decl may be missing in a variadic function. 3360 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3361 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3362 3363 // Prefer the nonnull attribute if it's present. 3364 const NonNullAttr *NNAttr = nullptr; 3365 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3366 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3367 3368 bool CanCheckNullability = false; 3369 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3370 auto Nullability = PVD->getType()->getNullability(getContext()); 3371 CanCheckNullability = Nullability && 3372 *Nullability == NullabilityKind::NonNull && 3373 PVD->getTypeSourceInfo(); 3374 } 3375 3376 if (!NNAttr && !CanCheckNullability) 3377 return; 3378 3379 SourceLocation AttrLoc; 3380 SanitizerMask CheckKind; 3381 SanitizerHandler Handler; 3382 if (NNAttr) { 3383 AttrLoc = NNAttr->getLocation(); 3384 CheckKind = SanitizerKind::NonnullAttribute; 3385 Handler = SanitizerHandler::NonnullArg; 3386 } else { 3387 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3388 CheckKind = SanitizerKind::NullabilityArg; 3389 Handler = SanitizerHandler::NullabilityArg; 3390 } 3391 3392 SanitizerScope SanScope(this); 3393 assert(RV.isScalar()); 3394 llvm::Value *V = RV.getScalarVal(); 3395 llvm::Value *Cond = 3396 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3397 llvm::Constant *StaticData[] = { 3398 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3399 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3400 }; 3401 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3402 } 3403 3404 void CodeGenFunction::EmitCallArgs( 3405 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3406 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3407 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3408 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3409 3410 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3411 // because arguments are destroyed left to right in the callee. As a special 3412 // case, there are certain language constructs that require left-to-right 3413 // evaluation, and in those cases we consider the evaluation order requirement 3414 // to trump the "destruction order is reverse construction order" guarantee. 3415 bool LeftToRight = 3416 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3417 ? Order == EvaluationOrder::ForceLeftToRight 3418 : Order != EvaluationOrder::ForceRightToLeft; 3419 3420 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3421 RValue EmittedArg) { 3422 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3423 return; 3424 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3425 if (PS == nullptr) 3426 return; 3427 3428 const auto &Context = getContext(); 3429 auto SizeTy = Context.getSizeType(); 3430 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3431 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3432 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3433 EmittedArg.getScalarVal()); 3434 Args.add(RValue::get(V), SizeTy); 3435 // If we're emitting args in reverse, be sure to do so with 3436 // pass_object_size, as well. 3437 if (!LeftToRight) 3438 std::swap(Args.back(), *(&Args.back() - 1)); 3439 }; 3440 3441 // Insert a stack save if we're going to need any inalloca args. 3442 bool HasInAllocaArgs = false; 3443 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3444 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3445 I != E && !HasInAllocaArgs; ++I) 3446 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3447 if (HasInAllocaArgs) { 3448 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3449 Args.allocateArgumentMemory(*this); 3450 } 3451 } 3452 3453 // Evaluate each argument in the appropriate order. 3454 size_t CallArgsStart = Args.size(); 3455 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3456 unsigned Idx = LeftToRight ? I : E - I - 1; 3457 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3458 unsigned InitialArgSize = Args.size(); 3459 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3460 // the argument and parameter match or the objc method is parameterized. 3461 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3462 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3463 ArgTypes[Idx]) || 3464 (isa<ObjCMethodDecl>(AC.getDecl()) && 3465 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3466 "Argument and parameter types don't match"); 3467 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3468 // In particular, we depend on it being the last arg in Args, and the 3469 // objectsize bits depend on there only being one arg if !LeftToRight. 3470 assert(InitialArgSize + 1 == Args.size() && 3471 "The code below depends on only adding one arg per EmitCallArg"); 3472 (void)InitialArgSize; 3473 // Since pointer argument are never emitted as LValue, it is safe to emit 3474 // non-null argument check for r-value only. 3475 if (!Args.back().hasLValue()) { 3476 RValue RVArg = Args.back().getKnownRValue(); 3477 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3478 ParamsToSkip + Idx); 3479 // @llvm.objectsize should never have side-effects and shouldn't need 3480 // destruction/cleanups, so we can safely "emit" it after its arg, 3481 // regardless of right-to-leftness 3482 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3483 } 3484 } 3485 3486 if (!LeftToRight) { 3487 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3488 // IR function. 3489 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3490 } 3491 } 3492 3493 namespace { 3494 3495 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3496 DestroyUnpassedArg(Address Addr, QualType Ty) 3497 : Addr(Addr), Ty(Ty) {} 3498 3499 Address Addr; 3500 QualType Ty; 3501 3502 void Emit(CodeGenFunction &CGF, Flags flags) override { 3503 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3504 if (DtorKind == QualType::DK_cxx_destructor) { 3505 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3506 assert(!Dtor->isTrivial()); 3507 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3508 /*Delegating=*/false, Addr); 3509 } else { 3510 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3511 } 3512 } 3513 }; 3514 3515 struct DisableDebugLocationUpdates { 3516 CodeGenFunction &CGF; 3517 bool disabledDebugInfo; 3518 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3519 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3520 CGF.disableDebugInfo(); 3521 } 3522 ~DisableDebugLocationUpdates() { 3523 if (disabledDebugInfo) 3524 CGF.enableDebugInfo(); 3525 } 3526 }; 3527 3528 } // end anonymous namespace 3529 3530 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3531 if (!HasLV) 3532 return RV; 3533 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3534 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3535 LV.isVolatile()); 3536 IsUsed = true; 3537 return RValue::getAggregate(Copy.getAddress()); 3538 } 3539 3540 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3541 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3542 if (!HasLV && RV.isScalar()) 3543 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); 3544 else if (!HasLV && RV.isComplex()) 3545 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3546 else { 3547 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3548 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3549 // We assume that call args are never copied into subobjects. 3550 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3551 HasLV ? LV.isVolatileQualified() 3552 : RV.isVolatileQualified()); 3553 } 3554 IsUsed = true; 3555 } 3556 3557 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3558 QualType type) { 3559 DisableDebugLocationUpdates Dis(*this, E); 3560 if (const ObjCIndirectCopyRestoreExpr *CRE 3561 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3562 assert(getLangOpts().ObjCAutoRefCount); 3563 return emitWritebackArg(*this, args, CRE); 3564 } 3565 3566 assert(type->isReferenceType() == E->isGLValue() && 3567 "reference binding to unmaterialized r-value!"); 3568 3569 if (E->isGLValue()) { 3570 assert(E->getObjectKind() == OK_Ordinary); 3571 return args.add(EmitReferenceBindingToExpr(E), type); 3572 } 3573 3574 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3575 3576 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3577 // However, we still have to push an EH-only cleanup in case we unwind before 3578 // we make it to the call. 3579 if (HasAggregateEvalKind && 3580 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3581 // If we're using inalloca, use the argument memory. Otherwise, use a 3582 // temporary. 3583 AggValueSlot Slot; 3584 if (args.isUsingInAlloca()) 3585 Slot = createPlaceholderSlot(*this, type); 3586 else 3587 Slot = CreateAggTemp(type, "agg.tmp"); 3588 3589 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3590 if (const auto *RD = type->getAsCXXRecordDecl()) 3591 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3592 else 3593 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3594 3595 if (DestroyedInCallee) 3596 Slot.setExternallyDestructed(); 3597 3598 EmitAggExpr(E, Slot); 3599 RValue RV = Slot.asRValue(); 3600 args.add(RV, type); 3601 3602 if (DestroyedInCallee && NeedsEHCleanup) { 3603 // Create a no-op GEP between the placeholder and the cleanup so we can 3604 // RAUW it successfully. It also serves as a marker of the first 3605 // instruction where the cleanup is active. 3606 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3607 type); 3608 // This unreachable is a temporary marker which will be removed later. 3609 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3610 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3611 } 3612 return; 3613 } 3614 3615 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3616 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3617 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3618 assert(L.isSimple()); 3619 args.addUncopiedAggregate(L, type); 3620 return; 3621 } 3622 3623 args.add(EmitAnyExprToTemp(E), type); 3624 } 3625 3626 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3627 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3628 // implicitly widens null pointer constants that are arguments to varargs 3629 // functions to pointer-sized ints. 3630 if (!getTarget().getTriple().isOSWindows()) 3631 return Arg->getType(); 3632 3633 if (Arg->getType()->isIntegerType() && 3634 getContext().getTypeSize(Arg->getType()) < 3635 getContext().getTargetInfo().getPointerWidth(0) && 3636 Arg->isNullPointerConstant(getContext(), 3637 Expr::NPC_ValueDependentIsNotNull)) { 3638 return getContext().getIntPtrType(); 3639 } 3640 3641 return Arg->getType(); 3642 } 3643 3644 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3645 // optimizer it can aggressively ignore unwind edges. 3646 void 3647 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3648 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3649 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3650 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3651 CGM.getNoObjCARCExceptionsMetadata()); 3652 } 3653 3654 /// Emits a call to the given no-arguments nounwind runtime function. 3655 llvm::CallInst * 3656 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3657 const llvm::Twine &name) { 3658 return EmitNounwindRuntimeCall(callee, None, name); 3659 } 3660 3661 /// Emits a call to the given nounwind runtime function. 3662 llvm::CallInst * 3663 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3664 ArrayRef<llvm::Value*> args, 3665 const llvm::Twine &name) { 3666 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3667 call->setDoesNotThrow(); 3668 return call; 3669 } 3670 3671 /// Emits a simple call (never an invoke) to the given no-arguments 3672 /// runtime function. 3673 llvm::CallInst * 3674 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3675 const llvm::Twine &name) { 3676 return EmitRuntimeCall(callee, None, name); 3677 } 3678 3679 // Calls which may throw must have operand bundles indicating which funclet 3680 // they are nested within. 3681 SmallVector<llvm::OperandBundleDef, 1> 3682 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3683 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3684 // There is no need for a funclet operand bundle if we aren't inside a 3685 // funclet. 3686 if (!CurrentFuncletPad) 3687 return BundleList; 3688 3689 // Skip intrinsics which cannot throw. 3690 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3691 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3692 return BundleList; 3693 3694 BundleList.emplace_back("funclet", CurrentFuncletPad); 3695 return BundleList; 3696 } 3697 3698 /// Emits a simple call (never an invoke) to the given runtime function. 3699 llvm::CallInst * 3700 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3701 ArrayRef<llvm::Value*> args, 3702 const llvm::Twine &name) { 3703 llvm::CallInst *call = 3704 Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); 3705 call->setCallingConv(getRuntimeCC()); 3706 return call; 3707 } 3708 3709 /// Emits a call or invoke to the given noreturn runtime function. 3710 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3711 ArrayRef<llvm::Value*> args) { 3712 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3713 getBundlesForFunclet(callee); 3714 3715 if (getInvokeDest()) { 3716 llvm::InvokeInst *invoke = 3717 Builder.CreateInvoke(callee, 3718 getUnreachableBlock(), 3719 getInvokeDest(), 3720 args, 3721 BundleList); 3722 invoke->setDoesNotReturn(); 3723 invoke->setCallingConv(getRuntimeCC()); 3724 } else { 3725 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3726 call->setDoesNotReturn(); 3727 call->setCallingConv(getRuntimeCC()); 3728 Builder.CreateUnreachable(); 3729 } 3730 } 3731 3732 /// Emits a call or invoke instruction to the given nullary runtime function. 3733 llvm::CallSite 3734 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3735 const Twine &name) { 3736 return EmitRuntimeCallOrInvoke(callee, None, name); 3737 } 3738 3739 /// Emits a call or invoke instruction to the given runtime function. 3740 llvm::CallSite 3741 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3742 ArrayRef<llvm::Value*> args, 3743 const Twine &name) { 3744 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3745 callSite.setCallingConv(getRuntimeCC()); 3746 return callSite; 3747 } 3748 3749 /// Emits a call or invoke instruction to the given function, depending 3750 /// on the current state of the EH stack. 3751 llvm::CallSite 3752 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3753 ArrayRef<llvm::Value *> Args, 3754 const Twine &Name) { 3755 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3756 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3757 getBundlesForFunclet(Callee); 3758 3759 llvm::Instruction *Inst; 3760 if (!InvokeDest) 3761 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3762 else { 3763 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3764 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3765 Name); 3766 EmitBlock(ContBB); 3767 } 3768 3769 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3770 // optimizer it can aggressively ignore unwind edges. 3771 if (CGM.getLangOpts().ObjCAutoRefCount) 3772 AddObjCARCExceptionMetadata(Inst); 3773 3774 return llvm::CallSite(Inst); 3775 } 3776 3777 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3778 llvm::Value *New) { 3779 DeferredReplacements.push_back(std::make_pair(Old, New)); 3780 } 3781 3782 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3783 const CGCallee &Callee, 3784 ReturnValueSlot ReturnValue, 3785 const CallArgList &CallArgs, 3786 llvm::Instruction **callOrInvoke, 3787 SourceLocation Loc) { 3788 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3789 3790 assert(Callee.isOrdinary() || Callee.isVirtual()); 3791 3792 // Handle struct-return functions by passing a pointer to the 3793 // location that we would like to return into. 3794 QualType RetTy = CallInfo.getReturnType(); 3795 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3796 3797 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3798 3799 // 1. Set up the arguments. 3800 3801 // If we're using inalloca, insert the allocation after the stack save. 3802 // FIXME: Do this earlier rather than hacking it in here! 3803 Address ArgMemory = Address::invalid(); 3804 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3805 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3806 const llvm::DataLayout &DL = CGM.getDataLayout(); 3807 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3808 llvm::Instruction *IP = CallArgs.getStackBase(); 3809 llvm::AllocaInst *AI; 3810 if (IP) { 3811 IP = IP->getNextNode(); 3812 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3813 "argmem", IP); 3814 } else { 3815 AI = CreateTempAlloca(ArgStruct, "argmem"); 3816 } 3817 auto Align = CallInfo.getArgStructAlignment(); 3818 AI->setAlignment(Align.getQuantity()); 3819 AI->setUsedWithInAlloca(true); 3820 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3821 ArgMemory = Address(AI, Align); 3822 } 3823 3824 // Helper function to drill into the inalloca allocation. 3825 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3826 auto FieldOffset = 3827 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3828 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3829 }; 3830 3831 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3832 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3833 3834 // If the call returns a temporary with struct return, create a temporary 3835 // alloca to hold the result, unless one is given to us. 3836 Address SRetPtr = Address::invalid(); 3837 Address SRetAlloca = Address::invalid(); 3838 llvm::Value *UnusedReturnSizePtr = nullptr; 3839 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3840 if (!ReturnValue.isNull()) { 3841 SRetPtr = ReturnValue.getValue(); 3842 } else { 3843 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 3844 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3845 uint64_t size = 3846 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3847 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 3848 } 3849 } 3850 if (IRFunctionArgs.hasSRetArg()) { 3851 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3852 } else if (RetAI.isInAlloca()) { 3853 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3854 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3855 } 3856 } 3857 3858 Address swiftErrorTemp = Address::invalid(); 3859 Address swiftErrorArg = Address::invalid(); 3860 3861 // Translate all of the arguments as necessary to match the IR lowering. 3862 assert(CallInfo.arg_size() == CallArgs.size() && 3863 "Mismatch between function signature & arguments."); 3864 unsigned ArgNo = 0; 3865 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3866 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3867 I != E; ++I, ++info_it, ++ArgNo) { 3868 const ABIArgInfo &ArgInfo = info_it->info; 3869 3870 // Insert a padding argument to ensure proper alignment. 3871 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3872 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3873 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3874 3875 unsigned FirstIRArg, NumIRArgs; 3876 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3877 3878 switch (ArgInfo.getKind()) { 3879 case ABIArgInfo::InAlloca: { 3880 assert(NumIRArgs == 0); 3881 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3882 if (I->isAggregate()) { 3883 // Replace the placeholder with the appropriate argument slot GEP. 3884 Address Addr = I->hasLValue() 3885 ? I->getKnownLValue().getAddress() 3886 : I->getKnownRValue().getAggregateAddress(); 3887 llvm::Instruction *Placeholder = 3888 cast<llvm::Instruction>(Addr.getPointer()); 3889 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3890 Builder.SetInsertPoint(Placeholder); 3891 Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3892 Builder.restoreIP(IP); 3893 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3894 } else { 3895 // Store the RValue into the argument struct. 3896 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3897 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3898 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3899 // There are some cases where a trivial bitcast is not avoidable. The 3900 // definition of a type later in a translation unit may change it's type 3901 // from {}* to (%struct.foo*)*. 3902 if (Addr.getType() != MemType) 3903 Addr = Builder.CreateBitCast(Addr, MemType); 3904 I->copyInto(*this, Addr); 3905 } 3906 break; 3907 } 3908 3909 case ABIArgInfo::Indirect: { 3910 assert(NumIRArgs == 1); 3911 if (!I->isAggregate()) { 3912 // Make a temporary alloca to pass the argument. 3913 Address Addr = CreateMemTempWithoutCast( 3914 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 3915 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3916 3917 I->copyInto(*this, Addr); 3918 } else { 3919 // We want to avoid creating an unnecessary temporary+copy here; 3920 // however, we need one in three cases: 3921 // 1. If the argument is not byval, and we are required to copy the 3922 // source. (This case doesn't occur on any common architecture.) 3923 // 2. If the argument is byval, RV is not sufficiently aligned, and 3924 // we cannot force it to be sufficiently aligned. 3925 // 3. If the argument is byval, but RV is not located in default 3926 // or alloca address space. 3927 Address Addr = I->hasLValue() 3928 ? I->getKnownLValue().getAddress() 3929 : I->getKnownRValue().getAggregateAddress(); 3930 llvm::Value *V = Addr.getPointer(); 3931 CharUnits Align = ArgInfo.getIndirectAlign(); 3932 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3933 3934 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3935 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3936 TD->getAllocaAddrSpace()) && 3937 "indirect argument must be in alloca address space"); 3938 3939 bool NeedCopy = false; 3940 3941 if (Addr.getAlignment() < Align && 3942 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3943 Align.getQuantity()) { 3944 NeedCopy = true; 3945 } else if (I->hasLValue()) { 3946 auto LV = I->getKnownLValue(); 3947 auto AS = LV.getAddressSpace(); 3948 if ((!ArgInfo.getIndirectByVal() && 3949 (LV.getAlignment() >= 3950 getContext().getTypeAlignInChars(I->Ty))) || 3951 (ArgInfo.getIndirectByVal() && 3952 ((AS != LangAS::Default && AS != LangAS::opencl_private && 3953 AS != CGM.getASTAllocaAddressSpace())))) { 3954 NeedCopy = true; 3955 } 3956 } 3957 if (NeedCopy) { 3958 // Create an aligned temporary, and copy to it. 3959 Address AI = CreateMemTempWithoutCast( 3960 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 3961 IRCallArgs[FirstIRArg] = AI.getPointer(); 3962 I->copyInto(*this, AI); 3963 } else { 3964 // Skip the extra memcpy call. 3965 auto *T = V->getType()->getPointerElementType()->getPointerTo( 3966 CGM.getDataLayout().getAllocaAddrSpace()); 3967 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 3968 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 3969 true); 3970 } 3971 } 3972 break; 3973 } 3974 3975 case ABIArgInfo::Ignore: 3976 assert(NumIRArgs == 0); 3977 break; 3978 3979 case ABIArgInfo::Extend: 3980 case ABIArgInfo::Direct: { 3981 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3982 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3983 ArgInfo.getDirectOffset() == 0) { 3984 assert(NumIRArgs == 1); 3985 llvm::Value *V; 3986 if (!I->isAggregate()) 3987 V = I->getKnownRValue().getScalarVal(); 3988 else 3989 V = Builder.CreateLoad( 3990 I->hasLValue() ? I->getKnownLValue().getAddress() 3991 : I->getKnownRValue().getAggregateAddress()); 3992 3993 // Implement swifterror by copying into a new swifterror argument. 3994 // We'll write back in the normal path out of the call. 3995 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3996 == ParameterABI::SwiftErrorResult) { 3997 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3998 3999 QualType pointeeTy = I->Ty->getPointeeType(); 4000 swiftErrorArg = 4001 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4002 4003 swiftErrorTemp = 4004 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4005 V = swiftErrorTemp.getPointer(); 4006 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4007 4008 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4009 Builder.CreateStore(errorValue, swiftErrorTemp); 4010 } 4011 4012 // We might have to widen integers, but we should never truncate. 4013 if (ArgInfo.getCoerceToType() != V->getType() && 4014 V->getType()->isIntegerTy()) 4015 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4016 4017 // If the argument doesn't match, perform a bitcast to coerce it. This 4018 // can happen due to trivial type mismatches. 4019 if (FirstIRArg < IRFuncTy->getNumParams() && 4020 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4021 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4022 4023 IRCallArgs[FirstIRArg] = V; 4024 break; 4025 } 4026 4027 // FIXME: Avoid the conversion through memory if possible. 4028 Address Src = Address::invalid(); 4029 if (!I->isAggregate()) { 4030 Src = CreateMemTemp(I->Ty, "coerce"); 4031 I->copyInto(*this, Src); 4032 } else { 4033 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 4034 : I->getKnownRValue().getAggregateAddress(); 4035 } 4036 4037 // If the value is offset in memory, apply the offset now. 4038 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4039 4040 // Fast-isel and the optimizer generally like scalar values better than 4041 // FCAs, so we flatten them if this is safe to do for this argument. 4042 llvm::StructType *STy = 4043 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4044 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4045 llvm::Type *SrcTy = Src.getType()->getElementType(); 4046 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4047 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4048 4049 // If the source type is smaller than the destination type of the 4050 // coerce-to logic, copy the source value into a temp alloca the size 4051 // of the destination type to allow loading all of it. The bits past 4052 // the source value are left undef. 4053 if (SrcSize < DstSize) { 4054 Address TempAlloca 4055 = CreateTempAlloca(STy, Src.getAlignment(), 4056 Src.getName() + ".coerce"); 4057 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4058 Src = TempAlloca; 4059 } else { 4060 Src = Builder.CreateBitCast(Src, 4061 STy->getPointerTo(Src.getAddressSpace())); 4062 } 4063 4064 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 4065 assert(NumIRArgs == STy->getNumElements()); 4066 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4067 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 4068 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 4069 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4070 IRCallArgs[FirstIRArg + i] = LI; 4071 } 4072 } else { 4073 // In the simple case, just pass the coerced loaded value. 4074 assert(NumIRArgs == 1); 4075 IRCallArgs[FirstIRArg] = 4076 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4077 } 4078 4079 break; 4080 } 4081 4082 case ABIArgInfo::CoerceAndExpand: { 4083 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4084 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4085 4086 llvm::Value *tempSize = nullptr; 4087 Address addr = Address::invalid(); 4088 Address AllocaAddr = Address::invalid(); 4089 if (I->isAggregate()) { 4090 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4091 : I->getKnownRValue().getAggregateAddress(); 4092 4093 } else { 4094 RValue RV = I->getKnownRValue(); 4095 assert(RV.isScalar()); // complex should always just be direct 4096 4097 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4098 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4099 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4100 4101 // Materialize to a temporary. 4102 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 4103 CharUnits::fromQuantity(std::max( 4104 layout->getAlignment(), scalarAlign)), 4105 "tmp", 4106 /*ArraySize=*/nullptr, &AllocaAddr); 4107 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4108 4109 Builder.CreateStore(RV.getScalarVal(), addr); 4110 } 4111 4112 addr = Builder.CreateElementBitCast(addr, coercionType); 4113 4114 unsigned IRArgPos = FirstIRArg; 4115 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4116 llvm::Type *eltType = coercionType->getElementType(i); 4117 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4118 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4119 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4120 IRCallArgs[IRArgPos++] = elt; 4121 } 4122 assert(IRArgPos == FirstIRArg + NumIRArgs); 4123 4124 if (tempSize) { 4125 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4126 } 4127 4128 break; 4129 } 4130 4131 case ABIArgInfo::Expand: 4132 unsigned IRArgPos = FirstIRArg; 4133 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4134 assert(IRArgPos == FirstIRArg + NumIRArgs); 4135 break; 4136 } 4137 } 4138 4139 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4140 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4141 4142 // If we're using inalloca, set up that argument. 4143 if (ArgMemory.isValid()) { 4144 llvm::Value *Arg = ArgMemory.getPointer(); 4145 if (CallInfo.isVariadic()) { 4146 // When passing non-POD arguments by value to variadic functions, we will 4147 // end up with a variadic prototype and an inalloca call site. In such 4148 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4149 // the callee. 4150 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4151 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4152 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4153 } else { 4154 llvm::Type *LastParamTy = 4155 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4156 if (Arg->getType() != LastParamTy) { 4157 #ifndef NDEBUG 4158 // Assert that these structs have equivalent element types. 4159 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4160 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4161 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4162 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4163 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4164 DE = DeclaredTy->element_end(), 4165 FI = FullTy->element_begin(); 4166 DI != DE; ++DI, ++FI) 4167 assert(*DI == *FI); 4168 #endif 4169 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4170 } 4171 } 4172 assert(IRFunctionArgs.hasInallocaArg()); 4173 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4174 } 4175 4176 // 2. Prepare the function pointer. 4177 4178 // If the callee is a bitcast of a non-variadic function to have a 4179 // variadic function pointer type, check to see if we can remove the 4180 // bitcast. This comes up with unprototyped functions. 4181 // 4182 // This makes the IR nicer, but more importantly it ensures that we 4183 // can inline the function at -O0 if it is marked always_inline. 4184 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4185 llvm::FunctionType *CalleeFT = 4186 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4187 if (!CalleeFT->isVarArg()) 4188 return Ptr; 4189 4190 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4191 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4192 return Ptr; 4193 4194 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4195 if (!OrigFn) 4196 return Ptr; 4197 4198 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4199 4200 // If the original type is variadic, or if any of the component types 4201 // disagree, we cannot remove the cast. 4202 if (OrigFT->isVarArg() || 4203 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4204 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4205 return Ptr; 4206 4207 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4208 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4209 return Ptr; 4210 4211 return OrigFn; 4212 }; 4213 CalleePtr = simplifyVariadicCallee(CalleePtr); 4214 4215 // 3. Perform the actual call. 4216 4217 // Deactivate any cleanups that we're supposed to do immediately before 4218 // the call. 4219 if (!CallArgs.getCleanupsToDeactivate().empty()) 4220 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4221 4222 // Assert that the arguments we computed match up. The IR verifier 4223 // will catch this, but this is a common enough source of problems 4224 // during IRGen changes that it's way better for debugging to catch 4225 // it ourselves here. 4226 #ifndef NDEBUG 4227 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4228 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4229 // Inalloca argument can have different type. 4230 if (IRFunctionArgs.hasInallocaArg() && 4231 i == IRFunctionArgs.getInallocaArgNo()) 4232 continue; 4233 if (i < IRFuncTy->getNumParams()) 4234 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4235 } 4236 #endif 4237 4238 // Compute the calling convention and attributes. 4239 unsigned CallingConv; 4240 llvm::AttributeList Attrs; 4241 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4242 Callee.getAbstractInfo(), Attrs, CallingConv, 4243 /*AttrOnCallSite=*/true); 4244 4245 // Apply some call-site-specific attributes. 4246 // TODO: work this into building the attribute set. 4247 4248 // Apply always_inline to all calls within flatten functions. 4249 // FIXME: should this really take priority over __try, below? 4250 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4251 !(Callee.getAbstractInfo().getCalleeDecl() && 4252 Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { 4253 Attrs = 4254 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4255 llvm::Attribute::AlwaysInline); 4256 } 4257 4258 // Disable inlining inside SEH __try blocks. 4259 if (isSEHTryScope()) { 4260 Attrs = 4261 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4262 llvm::Attribute::NoInline); 4263 } 4264 4265 // Decide whether to use a call or an invoke. 4266 bool CannotThrow; 4267 if (currentFunctionUsesSEHTry()) { 4268 // SEH cares about asynchronous exceptions, so everything can "throw." 4269 CannotThrow = false; 4270 } else if (isCleanupPadScope() && 4271 EHPersonality::get(*this).isMSVCXXPersonality()) { 4272 // The MSVC++ personality will implicitly terminate the program if an 4273 // exception is thrown during a cleanup outside of a try/catch. 4274 // We don't need to model anything in IR to get this behavior. 4275 CannotThrow = true; 4276 } else { 4277 // Otherwise, nounwind call sites will never throw. 4278 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4279 llvm::Attribute::NoUnwind); 4280 } 4281 4282 // If we made a temporary, be sure to clean up after ourselves. Note that we 4283 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4284 // pop this cleanup later on. Being eager about this is OK, since this 4285 // temporary is 'invisible' outside of the callee. 4286 if (UnusedReturnSizePtr) 4287 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4288 UnusedReturnSizePtr); 4289 4290 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4291 4292 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4293 getBundlesForFunclet(CalleePtr); 4294 4295 // Emit the actual call/invoke instruction. 4296 llvm::CallSite CS; 4297 if (!InvokeDest) { 4298 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4299 } else { 4300 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4301 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4302 BundleList); 4303 EmitBlock(Cont); 4304 } 4305 llvm::Instruction *CI = CS.getInstruction(); 4306 if (callOrInvoke) 4307 *callOrInvoke = CI; 4308 4309 // Apply the attributes and calling convention. 4310 CS.setAttributes(Attrs); 4311 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4312 4313 // Apply various metadata. 4314 4315 if (!CI->getType()->isVoidTy()) 4316 CI->setName("call"); 4317 4318 // Insert instrumentation or attach profile metadata at indirect call sites. 4319 // For more details, see the comment before the definition of 4320 // IPVK_IndirectCallTarget in InstrProfData.inc. 4321 if (!CS.getCalledFunction()) 4322 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4323 CI, CalleePtr); 4324 4325 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4326 // optimizer it can aggressively ignore unwind edges. 4327 if (CGM.getLangOpts().ObjCAutoRefCount) 4328 AddObjCARCExceptionMetadata(CI); 4329 4330 // Suppress tail calls if requested. 4331 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4332 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4333 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4334 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4335 } 4336 4337 // 4. Finish the call. 4338 4339 // If the call doesn't return, finish the basic block and clear the 4340 // insertion point; this allows the rest of IRGen to discard 4341 // unreachable code. 4342 if (CS.doesNotReturn()) { 4343 if (UnusedReturnSizePtr) 4344 PopCleanupBlock(); 4345 4346 // Strip away the noreturn attribute to better diagnose unreachable UB. 4347 if (SanOpts.has(SanitizerKind::Unreachable)) { 4348 if (auto *F = CS.getCalledFunction()) 4349 F->removeFnAttr(llvm::Attribute::NoReturn); 4350 CS.removeAttribute(llvm::AttributeList::FunctionIndex, 4351 llvm::Attribute::NoReturn); 4352 } 4353 4354 EmitUnreachable(Loc); 4355 Builder.ClearInsertionPoint(); 4356 4357 // FIXME: For now, emit a dummy basic block because expr emitters in 4358 // generally are not ready to handle emitting expressions at unreachable 4359 // points. 4360 EnsureInsertPoint(); 4361 4362 // Return a reasonable RValue. 4363 return GetUndefRValue(RetTy); 4364 } 4365 4366 // Perform the swifterror writeback. 4367 if (swiftErrorTemp.isValid()) { 4368 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4369 Builder.CreateStore(errorResult, swiftErrorArg); 4370 } 4371 4372 // Emit any call-associated writebacks immediately. Arguably this 4373 // should happen after any return-value munging. 4374 if (CallArgs.hasWritebacks()) 4375 emitWritebacks(*this, CallArgs); 4376 4377 // The stack cleanup for inalloca arguments has to run out of the normal 4378 // lexical order, so deactivate it and run it manually here. 4379 CallArgs.freeArgumentMemory(*this); 4380 4381 // Extract the return value. 4382 RValue Ret = [&] { 4383 switch (RetAI.getKind()) { 4384 case ABIArgInfo::CoerceAndExpand: { 4385 auto coercionType = RetAI.getCoerceAndExpandType(); 4386 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4387 4388 Address addr = SRetPtr; 4389 addr = Builder.CreateElementBitCast(addr, coercionType); 4390 4391 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4392 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4393 4394 unsigned unpaddedIndex = 0; 4395 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4396 llvm::Type *eltType = coercionType->getElementType(i); 4397 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4398 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4399 llvm::Value *elt = CI; 4400 if (requiresExtract) 4401 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4402 else 4403 assert(unpaddedIndex == 0); 4404 Builder.CreateStore(elt, eltAddr); 4405 } 4406 // FALLTHROUGH 4407 LLVM_FALLTHROUGH; 4408 } 4409 4410 case ABIArgInfo::InAlloca: 4411 case ABIArgInfo::Indirect: { 4412 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4413 if (UnusedReturnSizePtr) 4414 PopCleanupBlock(); 4415 return ret; 4416 } 4417 4418 case ABIArgInfo::Ignore: 4419 // If we are ignoring an argument that had a result, make sure to 4420 // construct the appropriate return value for our caller. 4421 return GetUndefRValue(RetTy); 4422 4423 case ABIArgInfo::Extend: 4424 case ABIArgInfo::Direct: { 4425 llvm::Type *RetIRTy = ConvertType(RetTy); 4426 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4427 switch (getEvaluationKind(RetTy)) { 4428 case TEK_Complex: { 4429 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4430 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4431 return RValue::getComplex(std::make_pair(Real, Imag)); 4432 } 4433 case TEK_Aggregate: { 4434 Address DestPtr = ReturnValue.getValue(); 4435 bool DestIsVolatile = ReturnValue.isVolatile(); 4436 4437 if (!DestPtr.isValid()) { 4438 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4439 DestIsVolatile = false; 4440 } 4441 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4442 return RValue::getAggregate(DestPtr); 4443 } 4444 case TEK_Scalar: { 4445 // If the argument doesn't match, perform a bitcast to coerce it. This 4446 // can happen due to trivial type mismatches. 4447 llvm::Value *V = CI; 4448 if (V->getType() != RetIRTy) 4449 V = Builder.CreateBitCast(V, RetIRTy); 4450 return RValue::get(V); 4451 } 4452 } 4453 llvm_unreachable("bad evaluation kind"); 4454 } 4455 4456 Address DestPtr = ReturnValue.getValue(); 4457 bool DestIsVolatile = ReturnValue.isVolatile(); 4458 4459 if (!DestPtr.isValid()) { 4460 DestPtr = CreateMemTemp(RetTy, "coerce"); 4461 DestIsVolatile = false; 4462 } 4463 4464 // If the value is offset in memory, apply the offset now. 4465 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4466 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4467 4468 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4469 } 4470 4471 case ABIArgInfo::Expand: 4472 llvm_unreachable("Invalid ABI kind for return argument"); 4473 } 4474 4475 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4476 } (); 4477 4478 // Emit the assume_aligned check on the return value. 4479 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4480 if (Ret.isScalar() && TargetDecl) { 4481 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4482 llvm::Value *OffsetValue = nullptr; 4483 if (const auto *Offset = AA->getOffset()) 4484 OffsetValue = EmitScalarExpr(Offset); 4485 4486 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4487 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4488 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4489 OffsetValue); 4490 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4491 llvm::Value *ParamVal = 4492 CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue( 4493 *this).getScalarVal(); 4494 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4495 } 4496 } 4497 4498 return Ret; 4499 } 4500 4501 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4502 if (isVirtual()) { 4503 const CallExpr *CE = getVirtualCallExpr(); 4504 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4505 CGF, getVirtualMethodDecl(), getThisAddress(), 4506 getFunctionType(), CE ? CE->getLocStart() : SourceLocation()); 4507 } 4508 4509 return *this; 4510 } 4511 4512 /* VarArg handling */ 4513 4514 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4515 VAListAddr = VE->isMicrosoftABI() 4516 ? EmitMSVAListRef(VE->getSubExpr()) 4517 : EmitVAListRef(VE->getSubExpr()); 4518 QualType Ty = VE->getType(); 4519 if (VE->isMicrosoftABI()) 4520 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4521 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4522 } 4523