1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification. Either or both of RD and MD may be null. A null RD indicates
73 /// that there is no meaningful 'this' type, and a null MD can occur when
74 /// calling a method pointer.
75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
76                                          const CXXMethodDecl *MD) {
77   QualType RecTy;
78   if (RD)
79     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
80   else
81     RecTy = Context.VoidTy;
82 
83   if (MD)
84     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
85   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
86 }
87 
88 /// Returns the canonical formal type of the given C++ method.
89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
90   return MD->getType()->getCanonicalTypeUnqualified()
91            .getAs<FunctionProtoType>();
92 }
93 
94 /// Returns the "extra-canonicalized" return type, which discards
95 /// qualifiers on the return type.  Codegen doesn't care about them,
96 /// and it makes ABI code a little easier to be able to assume that
97 /// all parameter and return types are top-level unqualified.
98 static CanQualType GetReturnType(QualType RetTy) {
99   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
100 }
101 
102 /// Arrange the argument and result information for a value of the given
103 /// unprototyped freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
106   // When translating an unprototyped function type, always use a
107   // variadic type.
108   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
109                                  /*instanceMethod=*/false,
110                                  /*chainCall=*/false, None,
111                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
112 }
113 
114 static void addExtParameterInfosForCall(
115          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
116                                         const FunctionProtoType *proto,
117                                         unsigned prefixArgs,
118                                         unsigned totalArgs) {
119   assert(proto->hasExtParameterInfos());
120   assert(paramInfos.size() <= prefixArgs);
121   assert(proto->getNumParams() + prefixArgs <= totalArgs);
122 
123   paramInfos.reserve(totalArgs);
124 
125   // Add default infos for any prefix args that don't already have infos.
126   paramInfos.resize(prefixArgs);
127 
128   // Add infos for the prototype.
129   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
130     paramInfos.push_back(ParamInfo);
131     // pass_object_size params have no parameter info.
132     if (ParamInfo.hasPassObjectSize())
133       paramInfos.emplace_back();
134   }
135 
136   assert(paramInfos.size() <= totalArgs &&
137          "Did we forget to insert pass_object_size args?");
138   // Add default infos for the variadic and/or suffix arguments.
139   paramInfos.resize(totalArgs);
140 }
141 
142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
144 static void appendParameterTypes(const CodeGenTypes &CGT,
145                                  SmallVectorImpl<CanQualType> &prefix,
146               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
147                                  CanQual<FunctionProtoType> FPT) {
148   // Fast path: don't touch param info if we don't need to.
149   if (!FPT->hasExtParameterInfos()) {
150     assert(paramInfos.empty() &&
151            "We have paramInfos, but the prototype doesn't?");
152     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
153     return;
154   }
155 
156   unsigned PrefixSize = prefix.size();
157   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
158   // parameters; the only thing that can change this is the presence of
159   // pass_object_size. So, we preallocate for the common case.
160   prefix.reserve(prefix.size() + FPT->getNumParams());
161 
162   auto ExtInfos = FPT->getExtParameterInfos();
163   assert(ExtInfos.size() == FPT->getNumParams());
164   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
165     prefix.push_back(FPT->getParamType(I));
166     if (ExtInfos[I].hasPassObjectSize())
167       prefix.push_back(CGT.getContext().getSizeType());
168   }
169 
170   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
171                               prefix.size());
172 }
173 
174 /// Arrange the LLVM function layout for a value of the given function
175 /// type, on top of any implicit parameters already stored.
176 static const CGFunctionInfo &
177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
178                         SmallVectorImpl<CanQualType> &prefix,
179                         CanQual<FunctionProtoType> FTP) {
180   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
181   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
182   // FIXME: Kill copy.
183   appendParameterTypes(CGT, prefix, paramInfos, FTP);
184   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
185 
186   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
187                                      /*chainCall=*/false, prefix,
188                                      FTP->getExtInfo(), paramInfos,
189                                      Required);
190 }
191 
192 /// Arrange the argument and result information for a value of the
193 /// given freestanding function type.
194 const CGFunctionInfo &
195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
196   SmallVector<CanQualType, 16> argTypes;
197   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
198                                    FTP);
199 }
200 
201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
202   // Set the appropriate calling convention for the Function.
203   if (D->hasAttr<StdCallAttr>())
204     return CC_X86StdCall;
205 
206   if (D->hasAttr<FastCallAttr>())
207     return CC_X86FastCall;
208 
209   if (D->hasAttr<RegCallAttr>())
210     return CC_X86RegCall;
211 
212   if (D->hasAttr<ThisCallAttr>())
213     return CC_X86ThisCall;
214 
215   if (D->hasAttr<VectorCallAttr>())
216     return CC_X86VectorCall;
217 
218   if (D->hasAttr<PascalAttr>())
219     return CC_X86Pascal;
220 
221   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
222     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
223 
224   if (D->hasAttr<AArch64VectorPcsAttr>())
225     return CC_AArch64VectorCall;
226 
227   if (D->hasAttr<IntelOclBiccAttr>())
228     return CC_IntelOclBicc;
229 
230   if (D->hasAttr<MSABIAttr>())
231     return IsWindows ? CC_C : CC_Win64;
232 
233   if (D->hasAttr<SysVABIAttr>())
234     return IsWindows ? CC_X86_64SysV : CC_C;
235 
236   if (D->hasAttr<PreserveMostAttr>())
237     return CC_PreserveMost;
238 
239   if (D->hasAttr<PreserveAllAttr>())
240     return CC_PreserveAll;
241 
242   return CC_C;
243 }
244 
245 /// Arrange the argument and result information for a call to an
246 /// unknown C++ non-static member function of the given abstract type.
247 /// (A null RD means we don't have any meaningful "this" argument type,
248 ///  so fall back to a generic pointer type).
249 /// The member function must be an ordinary function, i.e. not a
250 /// constructor or destructor.
251 const CGFunctionInfo &
252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
253                                    const FunctionProtoType *FTP,
254                                    const CXXMethodDecl *MD) {
255   SmallVector<CanQualType, 16> argTypes;
256 
257   // Add the 'this' pointer.
258   argTypes.push_back(DeriveThisType(RD, MD));
259 
260   return ::arrangeLLVMFunctionInfo(
261       *this, true, argTypes,
262       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
263 }
264 
265 /// Set calling convention for CUDA/HIP kernel.
266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
267                                            const FunctionDecl *FD) {
268   if (FD->hasAttr<CUDAGlobalAttr>()) {
269     const FunctionType *FT = FTy->getAs<FunctionType>();
270     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
271     FTy = FT->getCanonicalTypeUnqualified();
272   }
273 }
274 
275 /// Arrange the argument and result information for a declaration or
276 /// definition of the given C++ non-static member function.  The
277 /// member function must be an ordinary function, i.e. not a
278 /// constructor or destructor.
279 const CGFunctionInfo &
280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
281   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
282   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
283 
284   CanQualType FT = GetFormalType(MD).getAs<Type>();
285   setCUDAKernelCallingConvention(FT, CGM, MD);
286   auto prototype = FT.getAs<FunctionProtoType>();
287 
288   if (MD->isInstance()) {
289     // The abstract case is perfectly fine.
290     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
291     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
292   }
293 
294   return arrangeFreeFunctionType(prototype);
295 }
296 
297 bool CodeGenTypes::inheritingCtorHasParams(
298     const InheritedConstructor &Inherited, CXXCtorType Type) {
299   // Parameters are unnecessary if we're constructing a base class subobject
300   // and the inherited constructor lives in a virtual base.
301   return Type == Ctor_Complete ||
302          !Inherited.getShadowDecl()->constructsVirtualBase() ||
303          !Target.getCXXABI().hasConstructorVariants();
304 }
305 
306 const CGFunctionInfo &
307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
308   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
309 
310   SmallVector<CanQualType, 16> argTypes;
311   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
312   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
313 
314   bool PassParams = true;
315 
316   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317     // A base class inheriting constructor doesn't get forwarded arguments
318     // needed to construct a virtual base (or base class thereof).
319     if (auto Inherited = CD->getInheritedConstructor())
320       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
321   }
322 
323   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
324 
325   // Add the formal parameters.
326   if (PassParams)
327     appendParameterTypes(*this, argTypes, paramInfos, FTP);
328 
329   CGCXXABI::AddedStructorArgs AddedArgs =
330       TheCXXABI.buildStructorSignature(GD, argTypes);
331   if (!paramInfos.empty()) {
332     // Note: prefix implies after the first param.
333     if (AddedArgs.Prefix)
334       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
335                         FunctionProtoType::ExtParameterInfo{});
336     if (AddedArgs.Suffix)
337       paramInfos.append(AddedArgs.Suffix,
338                         FunctionProtoType::ExtParameterInfo{});
339   }
340 
341   RequiredArgs required =
342       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
343                                       : RequiredArgs::All);
344 
345   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
346   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
347                                ? argTypes.front()
348                                : TheCXXABI.hasMostDerivedReturn(GD)
349                                      ? CGM.getContext().VoidPtrTy
350                                      : Context.VoidTy;
351   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
352                                  /*chainCall=*/false, argTypes, extInfo,
353                                  paramInfos, required);
354 }
355 
356 static SmallVector<CanQualType, 16>
357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
358   SmallVector<CanQualType, 16> argTypes;
359   for (auto &arg : args)
360     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
361   return argTypes;
362 }
363 
364 static SmallVector<CanQualType, 16>
365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
366   SmallVector<CanQualType, 16> argTypes;
367   for (auto &arg : args)
368     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
369   return argTypes;
370 }
371 
372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
373 getExtParameterInfosForCall(const FunctionProtoType *proto,
374                             unsigned prefixArgs, unsigned totalArgs) {
375   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
376   if (proto->hasExtParameterInfos()) {
377     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
378   }
379   return result;
380 }
381 
382 /// Arrange a call to a C++ method, passing the given arguments.
383 ///
384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
385 /// parameter.
386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
387 /// args.
388 /// PassProtoArgs indicates whether `args` has args for the parameters in the
389 /// given CXXConstructorDecl.
390 const CGFunctionInfo &
391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
392                                         const CXXConstructorDecl *D,
393                                         CXXCtorType CtorKind,
394                                         unsigned ExtraPrefixArgs,
395                                         unsigned ExtraSuffixArgs,
396                                         bool PassProtoArgs) {
397   // FIXME: Kill copy.
398   SmallVector<CanQualType, 16> ArgTypes;
399   for (const auto &Arg : args)
400     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
401 
402   // +1 for implicit this, which should always be args[0].
403   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
404 
405   CanQual<FunctionProtoType> FPT = GetFormalType(D);
406   RequiredArgs Required = PassProtoArgs
407                               ? RequiredArgs::forPrototypePlus(
408                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
409                               : RequiredArgs::All;
410 
411   GlobalDecl GD(D, CtorKind);
412   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
413                                ? ArgTypes.front()
414                                : TheCXXABI.hasMostDerivedReturn(GD)
415                                      ? CGM.getContext().VoidPtrTy
416                                      : Context.VoidTy;
417 
418   FunctionType::ExtInfo Info = FPT->getExtInfo();
419   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
420   // If the prototype args are elided, we should only have ABI-specific args,
421   // which never have param info.
422   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
423     // ABI-specific suffix arguments are treated the same as variadic arguments.
424     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
425                                 ArgTypes.size());
426   }
427   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
428                                  /*chainCall=*/false, ArgTypes, Info,
429                                  ParamInfos, Required);
430 }
431 
432 /// Arrange the argument and result information for the declaration or
433 /// definition of the given function.
434 const CGFunctionInfo &
435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
436   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
437     if (MD->isInstance())
438       return arrangeCXXMethodDeclaration(MD);
439 
440   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
441 
442   assert(isa<FunctionType>(FTy));
443   setCUDAKernelCallingConvention(FTy, CGM, FD);
444 
445   // When declaring a function without a prototype, always use a
446   // non-variadic type.
447   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
448     return arrangeLLVMFunctionInfo(
449         noProto->getReturnType(), /*instanceMethod=*/false,
450         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
451   }
452 
453   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
454 }
455 
456 /// Arrange the argument and result information for the declaration or
457 /// definition of an Objective-C method.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
460   // It happens that this is the same as a call with no optional
461   // arguments, except also using the formal 'self' type.
462   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
463 }
464 
465 /// Arrange the argument and result information for the function type
466 /// through which to perform a send to the given Objective-C method,
467 /// using the given receiver type.  The receiver type is not always
468 /// the 'self' type of the method or even an Objective-C pointer type.
469 /// This is *not* the right method for actually performing such a
470 /// message send, due to the possibility of optional arguments.
471 const CGFunctionInfo &
472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
473                                               QualType receiverType) {
474   SmallVector<CanQualType, 16> argTys;
475   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
476   argTys.push_back(Context.getCanonicalParamType(receiverType));
477   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
478   // FIXME: Kill copy?
479   for (const auto *I : MD->parameters()) {
480     argTys.push_back(Context.getCanonicalParamType(I->getType()));
481     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
482         I->hasAttr<NoEscapeAttr>());
483     extParamInfos.push_back(extParamInfo);
484   }
485 
486   FunctionType::ExtInfo einfo;
487   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
488   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
489 
490   if (getContext().getLangOpts().ObjCAutoRefCount &&
491       MD->hasAttr<NSReturnsRetainedAttr>())
492     einfo = einfo.withProducesResult(true);
493 
494   RequiredArgs required =
495     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
496 
497   return arrangeLLVMFunctionInfo(
498       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
499       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
500 }
501 
502 const CGFunctionInfo &
503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
504                                                  const CallArgList &args) {
505   auto argTypes = getArgTypesForCall(Context, args);
506   FunctionType::ExtInfo einfo;
507 
508   return arrangeLLVMFunctionInfo(
509       GetReturnType(returnType), /*instanceMethod=*/false,
510       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
511 }
512 
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
515   // FIXME: Do we need to handle ObjCMethodDecl?
516   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
517 
518   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
519       isa<CXXDestructorDecl>(GD.getDecl()))
520     return arrangeCXXStructorDeclaration(GD);
521 
522   return arrangeFunctionDeclaration(FD);
523 }
524 
525 /// Arrange a thunk that takes 'this' as the first parameter followed by
526 /// varargs.  Return a void pointer, regardless of the actual return type.
527 /// The body of the thunk will end in a musttail call to a function of the
528 /// correct type, and the caller will bitcast the function to the correct
529 /// prototype.
530 const CGFunctionInfo &
531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
532   assert(MD->isVirtual() && "only methods have thunks");
533   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
534   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
535   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
536                                  /*chainCall=*/false, ArgTys,
537                                  FTP->getExtInfo(), {}, RequiredArgs(1));
538 }
539 
540 const CGFunctionInfo &
541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
542                                    CXXCtorType CT) {
543   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
544 
545   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
546   SmallVector<CanQualType, 2> ArgTys;
547   const CXXRecordDecl *RD = CD->getParent();
548   ArgTys.push_back(DeriveThisType(RD, CD));
549   if (CT == Ctor_CopyingClosure)
550     ArgTys.push_back(*FTP->param_type_begin());
551   if (RD->getNumVBases() > 0)
552     ArgTys.push_back(Context.IntTy);
553   CallingConv CC = Context.getDefaultCallingConvention(
554       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
555   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
556                                  /*chainCall=*/false, ArgTys,
557                                  FunctionType::ExtInfo(CC), {},
558                                  RequiredArgs::All);
559 }
560 
561 /// Arrange a call as unto a free function, except possibly with an
562 /// additional number of formal parameters considered required.
563 static const CGFunctionInfo &
564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
565                             CodeGenModule &CGM,
566                             const CallArgList &args,
567                             const FunctionType *fnType,
568                             unsigned numExtraRequiredArgs,
569                             bool chainCall) {
570   assert(args.size() >= numExtraRequiredArgs);
571 
572   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
573 
574   // In most cases, there are no optional arguments.
575   RequiredArgs required = RequiredArgs::All;
576 
577   // If we have a variadic prototype, the required arguments are the
578   // extra prefix plus the arguments in the prototype.
579   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
580     if (proto->isVariadic())
581       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
582 
583     if (proto->hasExtParameterInfos())
584       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
585                                   args.size());
586 
587   // If we don't have a prototype at all, but we're supposed to
588   // explicitly use the variadic convention for unprototyped calls,
589   // treat all of the arguments as required but preserve the nominal
590   // possibility of variadics.
591   } else if (CGM.getTargetCodeGenInfo()
592                 .isNoProtoCallVariadic(args,
593                                        cast<FunctionNoProtoType>(fnType))) {
594     required = RequiredArgs(args.size());
595   }
596 
597   // FIXME: Kill copy.
598   SmallVector<CanQualType, 16> argTypes;
599   for (const auto &arg : args)
600     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
601   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
602                                      /*instanceMethod=*/false, chainCall,
603                                      argTypes, fnType->getExtInfo(), paramInfos,
604                                      required);
605 }
606 
607 /// Figure out the rules for calling a function with the given formal
608 /// type using the given arguments.  The arguments are necessary
609 /// because the function might be unprototyped, in which case it's
610 /// target-dependent in crazy ways.
611 const CGFunctionInfo &
612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
613                                       const FunctionType *fnType,
614                                       bool chainCall) {
615   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
616                                      chainCall ? 1 : 0, chainCall);
617 }
618 
619 /// A block function is essentially a free function with an
620 /// extra implicit argument.
621 const CGFunctionInfo &
622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
623                                        const FunctionType *fnType) {
624   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
625                                      /*chainCall=*/false);
626 }
627 
628 const CGFunctionInfo &
629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
630                                               const FunctionArgList &params) {
631   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
632   auto argTypes = getArgTypesForDeclaration(Context, params);
633 
634   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
635                                  /*instanceMethod*/ false, /*chainCall*/ false,
636                                  argTypes, proto->getExtInfo(), paramInfos,
637                                  RequiredArgs::forPrototypePlus(proto, 1));
638 }
639 
640 const CGFunctionInfo &
641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
642                                          const CallArgList &args) {
643   // FIXME: Kill copy.
644   SmallVector<CanQualType, 16> argTypes;
645   for (const auto &Arg : args)
646     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
647   return arrangeLLVMFunctionInfo(
648       GetReturnType(resultType), /*instanceMethod=*/false,
649       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
650       /*paramInfos=*/ {}, RequiredArgs::All);
651 }
652 
653 const CGFunctionInfo &
654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
655                                                 const FunctionArgList &args) {
656   auto argTypes = getArgTypesForDeclaration(Context, args);
657 
658   return arrangeLLVMFunctionInfo(
659       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
660       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
661 }
662 
663 const CGFunctionInfo &
664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
665                                               ArrayRef<CanQualType> argTypes) {
666   return arrangeLLVMFunctionInfo(
667       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
668       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
669 }
670 
671 /// Arrange a call to a C++ method, passing the given arguments.
672 ///
673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
674 /// does not count `this`.
675 const CGFunctionInfo &
676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
677                                    const FunctionProtoType *proto,
678                                    RequiredArgs required,
679                                    unsigned numPrefixArgs) {
680   assert(numPrefixArgs + 1 <= args.size() &&
681          "Emitting a call with less args than the required prefix?");
682   // Add one to account for `this`. It's a bit awkward here, but we don't count
683   // `this` in similar places elsewhere.
684   auto paramInfos =
685     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
686 
687   // FIXME: Kill copy.
688   auto argTypes = getArgTypesForCall(Context, args);
689 
690   FunctionType::ExtInfo info = proto->getExtInfo();
691   return arrangeLLVMFunctionInfo(
692       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
693       /*chainCall=*/false, argTypes, info, paramInfos, required);
694 }
695 
696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
697   return arrangeLLVMFunctionInfo(
698       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
699       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
700 }
701 
702 const CGFunctionInfo &
703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
704                           const CallArgList &args) {
705   assert(signature.arg_size() <= args.size());
706   if (signature.arg_size() == args.size())
707     return signature;
708 
709   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
710   auto sigParamInfos = signature.getExtParameterInfos();
711   if (!sigParamInfos.empty()) {
712     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
713     paramInfos.resize(args.size());
714   }
715 
716   auto argTypes = getArgTypesForCall(Context, args);
717 
718   assert(signature.getRequiredArgs().allowsOptionalArgs());
719   return arrangeLLVMFunctionInfo(signature.getReturnType(),
720                                  signature.isInstanceMethod(),
721                                  signature.isChainCall(),
722                                  argTypes,
723                                  signature.getExtInfo(),
724                                  paramInfos,
725                                  signature.getRequiredArgs());
726 }
727 
728 namespace clang {
729 namespace CodeGen {
730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
731 }
732 }
733 
734 /// Arrange the argument and result information for an abstract value
735 /// of a given function type.  This is the method which all of the
736 /// above functions ultimately defer to.
737 const CGFunctionInfo &
738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
739                                       bool instanceMethod,
740                                       bool chainCall,
741                                       ArrayRef<CanQualType> argTypes,
742                                       FunctionType::ExtInfo info,
743                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
744                                       RequiredArgs required) {
745   assert(llvm::all_of(argTypes,
746                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
747 
748   // Lookup or create unique function info.
749   llvm::FoldingSetNodeID ID;
750   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
751                           required, resultType, argTypes);
752 
753   void *insertPos = nullptr;
754   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
755   if (FI)
756     return *FI;
757 
758   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
759 
760   // Construct the function info.  We co-allocate the ArgInfos.
761   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
762                               paramInfos, resultType, argTypes, required);
763   FunctionInfos.InsertNode(FI, insertPos);
764 
765   bool inserted = FunctionsBeingProcessed.insert(FI).second;
766   (void)inserted;
767   assert(inserted && "Recursively being processed?");
768 
769   // Compute ABI information.
770   if (CC == llvm::CallingConv::SPIR_KERNEL) {
771     // Force target independent argument handling for the host visible
772     // kernel functions.
773     computeSPIRKernelABIInfo(CGM, *FI);
774   } else if (info.getCC() == CC_Swift) {
775     swiftcall::computeABIInfo(CGM, *FI);
776   } else {
777     getABIInfo().computeInfo(*FI);
778   }
779 
780   // Loop over all of the computed argument and return value info.  If any of
781   // them are direct or extend without a specified coerce type, specify the
782   // default now.
783   ABIArgInfo &retInfo = FI->getReturnInfo();
784   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
785     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
786 
787   for (auto &I : FI->arguments())
788     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
789       I.info.setCoerceToType(ConvertType(I.type));
790 
791   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
792   assert(erased && "Not in set?");
793 
794   return *FI;
795 }
796 
797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
798                                        bool instanceMethod,
799                                        bool chainCall,
800                                        const FunctionType::ExtInfo &info,
801                                        ArrayRef<ExtParameterInfo> paramInfos,
802                                        CanQualType resultType,
803                                        ArrayRef<CanQualType> argTypes,
804                                        RequiredArgs required) {
805   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
806   assert(!required.allowsOptionalArgs() ||
807          required.getNumRequiredArgs() <= argTypes.size());
808 
809   void *buffer =
810     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
811                                   argTypes.size() + 1, paramInfos.size()));
812 
813   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
814   FI->CallingConvention = llvmCC;
815   FI->EffectiveCallingConvention = llvmCC;
816   FI->ASTCallingConvention = info.getCC();
817   FI->InstanceMethod = instanceMethod;
818   FI->ChainCall = chainCall;
819   FI->CmseNSCall = info.getCmseNSCall();
820   FI->NoReturn = info.getNoReturn();
821   FI->ReturnsRetained = info.getProducesResult();
822   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
823   FI->NoCfCheck = info.getNoCfCheck();
824   FI->Required = required;
825   FI->HasRegParm = info.getHasRegParm();
826   FI->RegParm = info.getRegParm();
827   FI->ArgStruct = nullptr;
828   FI->ArgStructAlign = 0;
829   FI->NumArgs = argTypes.size();
830   FI->HasExtParameterInfos = !paramInfos.empty();
831   FI->getArgsBuffer()[0].type = resultType;
832   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
833     FI->getArgsBuffer()[i + 1].type = argTypes[i];
834   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
835     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
836   return FI;
837 }
838 
839 /***/
840 
841 namespace {
842 // ABIArgInfo::Expand implementation.
843 
844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
845 struct TypeExpansion {
846   enum TypeExpansionKind {
847     // Elements of constant arrays are expanded recursively.
848     TEK_ConstantArray,
849     // Record fields are expanded recursively (but if record is a union, only
850     // the field with the largest size is expanded).
851     TEK_Record,
852     // For complex types, real and imaginary parts are expanded recursively.
853     TEK_Complex,
854     // All other types are not expandable.
855     TEK_None
856   };
857 
858   const TypeExpansionKind Kind;
859 
860   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
861   virtual ~TypeExpansion() {}
862 };
863 
864 struct ConstantArrayExpansion : TypeExpansion {
865   QualType EltTy;
866   uint64_t NumElts;
867 
868   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
869       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
870   static bool classof(const TypeExpansion *TE) {
871     return TE->Kind == TEK_ConstantArray;
872   }
873 };
874 
875 struct RecordExpansion : TypeExpansion {
876   SmallVector<const CXXBaseSpecifier *, 1> Bases;
877 
878   SmallVector<const FieldDecl *, 1> Fields;
879 
880   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
881                   SmallVector<const FieldDecl *, 1> &&Fields)
882       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
883         Fields(std::move(Fields)) {}
884   static bool classof(const TypeExpansion *TE) {
885     return TE->Kind == TEK_Record;
886   }
887 };
888 
889 struct ComplexExpansion : TypeExpansion {
890   QualType EltTy;
891 
892   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_Complex;
895   }
896 };
897 
898 struct NoExpansion : TypeExpansion {
899   NoExpansion() : TypeExpansion(TEK_None) {}
900   static bool classof(const TypeExpansion *TE) {
901     return TE->Kind == TEK_None;
902   }
903 };
904 }  // namespace
905 
906 static std::unique_ptr<TypeExpansion>
907 getTypeExpansion(QualType Ty, const ASTContext &Context) {
908   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
909     return std::make_unique<ConstantArrayExpansion>(
910         AT->getElementType(), AT->getSize().getZExtValue());
911   }
912   if (const RecordType *RT = Ty->getAs<RecordType>()) {
913     SmallVector<const CXXBaseSpecifier *, 1> Bases;
914     SmallVector<const FieldDecl *, 1> Fields;
915     const RecordDecl *RD = RT->getDecl();
916     assert(!RD->hasFlexibleArrayMember() &&
917            "Cannot expand structure with flexible array.");
918     if (RD->isUnion()) {
919       // Unions can be here only in degenerative cases - all the fields are same
920       // after flattening. Thus we have to use the "largest" field.
921       const FieldDecl *LargestFD = nullptr;
922       CharUnits UnionSize = CharUnits::Zero();
923 
924       for (const auto *FD : RD->fields()) {
925         if (FD->isZeroLengthBitField(Context))
926           continue;
927         assert(!FD->isBitField() &&
928                "Cannot expand structure with bit-field members.");
929         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
930         if (UnionSize < FieldSize) {
931           UnionSize = FieldSize;
932           LargestFD = FD;
933         }
934       }
935       if (LargestFD)
936         Fields.push_back(LargestFD);
937     } else {
938       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
939         assert(!CXXRD->isDynamicClass() &&
940                "cannot expand vtable pointers in dynamic classes");
941         for (const CXXBaseSpecifier &BS : CXXRD->bases())
942           Bases.push_back(&BS);
943       }
944 
945       for (const auto *FD : RD->fields()) {
946         if (FD->isZeroLengthBitField(Context))
947           continue;
948         assert(!FD->isBitField() &&
949                "Cannot expand structure with bit-field members.");
950         Fields.push_back(FD);
951       }
952     }
953     return std::make_unique<RecordExpansion>(std::move(Bases),
954                                               std::move(Fields));
955   }
956   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
957     return std::make_unique<ComplexExpansion>(CT->getElementType());
958   }
959   return std::make_unique<NoExpansion>();
960 }
961 
962 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
963   auto Exp = getTypeExpansion(Ty, Context);
964   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
965     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
966   }
967   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
968     int Res = 0;
969     for (auto BS : RExp->Bases)
970       Res += getExpansionSize(BS->getType(), Context);
971     for (auto FD : RExp->Fields)
972       Res += getExpansionSize(FD->getType(), Context);
973     return Res;
974   }
975   if (isa<ComplexExpansion>(Exp.get()))
976     return 2;
977   assert(isa<NoExpansion>(Exp.get()));
978   return 1;
979 }
980 
981 void
982 CodeGenTypes::getExpandedTypes(QualType Ty,
983                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
984   auto Exp = getTypeExpansion(Ty, Context);
985   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
986     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
987       getExpandedTypes(CAExp->EltTy, TI);
988     }
989   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     for (auto BS : RExp->Bases)
991       getExpandedTypes(BS->getType(), TI);
992     for (auto FD : RExp->Fields)
993       getExpandedTypes(FD->getType(), TI);
994   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
995     llvm::Type *EltTy = ConvertType(CExp->EltTy);
996     *TI++ = EltTy;
997     *TI++ = EltTy;
998   } else {
999     assert(isa<NoExpansion>(Exp.get()));
1000     *TI++ = ConvertType(Ty);
1001   }
1002 }
1003 
1004 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1005                                       ConstantArrayExpansion *CAE,
1006                                       Address BaseAddr,
1007                                       llvm::function_ref<void(Address)> Fn) {
1008   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1009   CharUnits EltAlign =
1010     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1011 
1012   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1013     llvm::Value *EltAddr =
1014       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1015     Fn(Address(EltAddr, EltAlign));
1016   }
1017 }
1018 
1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1020                                          llvm::Function::arg_iterator &AI) {
1021   assert(LV.isSimple() &&
1022          "Unexpected non-simple lvalue during struct expansion.");
1023 
1024   auto Exp = getTypeExpansion(Ty, getContext());
1025   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1026     forConstantArrayExpansion(
1027         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1028           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1029           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1030         });
1031   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1032     Address This = LV.getAddress(*this);
1033     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1034       // Perform a single step derived-to-base conversion.
1035       Address Base =
1036           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1037                                 /*NullCheckValue=*/false, SourceLocation());
1038       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1039 
1040       // Recurse onto bases.
1041       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1042     }
1043     for (auto FD : RExp->Fields) {
1044       // FIXME: What are the right qualifiers here?
1045       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1046       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1047     }
1048   } else if (isa<ComplexExpansion>(Exp.get())) {
1049     auto realValue = &*AI++;
1050     auto imagValue = &*AI++;
1051     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1052   } else {
1053     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1054     // primitive store.
1055     assert(isa<NoExpansion>(Exp.get()));
1056     if (LV.isBitField())
1057       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1058     else
1059       EmitStoreOfScalar(&*AI++, LV);
1060   }
1061 }
1062 
1063 void CodeGenFunction::ExpandTypeToArgs(
1064     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1065     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1066   auto Exp = getTypeExpansion(Ty, getContext());
1067   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1068     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1069                                    : Arg.getKnownRValue().getAggregateAddress();
1070     forConstantArrayExpansion(
1071         *this, CAExp, Addr, [&](Address EltAddr) {
1072           CallArg EltArg = CallArg(
1073               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1074               CAExp->EltTy);
1075           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1076                            IRCallArgPos);
1077         });
1078   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1079     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1080                                    : Arg.getKnownRValue().getAggregateAddress();
1081     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1082       // Perform a single step derived-to-base conversion.
1083       Address Base =
1084           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1085                                 /*NullCheckValue=*/false, SourceLocation());
1086       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1087 
1088       // Recurse onto bases.
1089       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1090                        IRCallArgPos);
1091     }
1092 
1093     LValue LV = MakeAddrLValue(This, Ty);
1094     for (auto FD : RExp->Fields) {
1095       CallArg FldArg =
1096           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1097       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1098                        IRCallArgPos);
1099     }
1100   } else if (isa<ComplexExpansion>(Exp.get())) {
1101     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1102     IRCallArgs[IRCallArgPos++] = CV.first;
1103     IRCallArgs[IRCallArgPos++] = CV.second;
1104   } else {
1105     assert(isa<NoExpansion>(Exp.get()));
1106     auto RV = Arg.getKnownRValue();
1107     assert(RV.isScalar() &&
1108            "Unexpected non-scalar rvalue during struct expansion.");
1109 
1110     // Insert a bitcast as needed.
1111     llvm::Value *V = RV.getScalarVal();
1112     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1113         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1114       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1115 
1116     IRCallArgs[IRCallArgPos++] = V;
1117   }
1118 }
1119 
1120 /// Create a temporary allocation for the purposes of coercion.
1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1122                                            CharUnits MinAlign) {
1123   // Don't use an alignment that's worse than what LLVM would prefer.
1124   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1125   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1126 
1127   return CGF.CreateTempAlloca(Ty, Align);
1128 }
1129 
1130 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1131 /// accessing some number of bytes out of it, try to gep into the struct to get
1132 /// at its inner goodness.  Dive as deep as possible without entering an element
1133 /// with an in-memory size smaller than DstSize.
1134 static Address
1135 EnterStructPointerForCoercedAccess(Address SrcPtr,
1136                                    llvm::StructType *SrcSTy,
1137                                    uint64_t DstSize, CodeGenFunction &CGF) {
1138   // We can't dive into a zero-element struct.
1139   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1140 
1141   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1142 
1143   // If the first elt is at least as large as what we're looking for, or if the
1144   // first element is the same size as the whole struct, we can enter it. The
1145   // comparison must be made on the store size and not the alloca size. Using
1146   // the alloca size may overstate the size of the load.
1147   uint64_t FirstEltSize =
1148     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1149   if (FirstEltSize < DstSize &&
1150       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1151     return SrcPtr;
1152 
1153   // GEP into the first element.
1154   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1155 
1156   // If the first element is a struct, recurse.
1157   llvm::Type *SrcTy = SrcPtr.getElementType();
1158   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1159     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1160 
1161   return SrcPtr;
1162 }
1163 
1164 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1165 /// are either integers or pointers.  This does a truncation of the value if it
1166 /// is too large or a zero extension if it is too small.
1167 ///
1168 /// This behaves as if the value were coerced through memory, so on big-endian
1169 /// targets the high bits are preserved in a truncation, while little-endian
1170 /// targets preserve the low bits.
1171 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1172                                              llvm::Type *Ty,
1173                                              CodeGenFunction &CGF) {
1174   if (Val->getType() == Ty)
1175     return Val;
1176 
1177   if (isa<llvm::PointerType>(Val->getType())) {
1178     // If this is Pointer->Pointer avoid conversion to and from int.
1179     if (isa<llvm::PointerType>(Ty))
1180       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1181 
1182     // Convert the pointer to an integer so we can play with its width.
1183     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1184   }
1185 
1186   llvm::Type *DestIntTy = Ty;
1187   if (isa<llvm::PointerType>(DestIntTy))
1188     DestIntTy = CGF.IntPtrTy;
1189 
1190   if (Val->getType() != DestIntTy) {
1191     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1192     if (DL.isBigEndian()) {
1193       // Preserve the high bits on big-endian targets.
1194       // That is what memory coercion does.
1195       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1196       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1197 
1198       if (SrcSize > DstSize) {
1199         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1200         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1201       } else {
1202         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1203         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1204       }
1205     } else {
1206       // Little-endian targets preserve the low bits. No shifts required.
1207       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1208     }
1209   }
1210 
1211   if (isa<llvm::PointerType>(Ty))
1212     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1213   return Val;
1214 }
1215 
1216 
1217 
1218 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1219 /// a pointer to an object of type \arg Ty, known to be aligned to
1220 /// \arg SrcAlign bytes.
1221 ///
1222 /// This safely handles the case when the src type is smaller than the
1223 /// destination type; in this situation the values of bits which not
1224 /// present in the src are undefined.
1225 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1226                                       CodeGenFunction &CGF) {
1227   llvm::Type *SrcTy = Src.getElementType();
1228 
1229   // If SrcTy and Ty are the same, just do a load.
1230   if (SrcTy == Ty)
1231     return CGF.Builder.CreateLoad(Src);
1232 
1233   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1234 
1235   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1236     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1237     SrcTy = Src.getElementType();
1238   }
1239 
1240   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1241 
1242   // If the source and destination are integer or pointer types, just do an
1243   // extension or truncation to the desired type.
1244   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1245       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1246     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1247     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1248   }
1249 
1250   // If load is legal, just bitcast the src pointer.
1251   if (SrcSize >= DstSize) {
1252     // Generally SrcSize is never greater than DstSize, since this means we are
1253     // losing bits. However, this can happen in cases where the structure has
1254     // additional padding, for example due to a user specified alignment.
1255     //
1256     // FIXME: Assert that we aren't truncating non-padding bits when have access
1257     // to that information.
1258     Src = CGF.Builder.CreateBitCast(Src,
1259                                     Ty->getPointerTo(Src.getAddressSpace()));
1260     return CGF.Builder.CreateLoad(Src);
1261   }
1262 
1263   // Otherwise do coercion through memory. This is stupid, but simple.
1264   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1265   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1266   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1267   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1268       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1269       false);
1270   return CGF.Builder.CreateLoad(Tmp);
1271 }
1272 
1273 // Function to store a first-class aggregate into memory.  We prefer to
1274 // store the elements rather than the aggregate to be more friendly to
1275 // fast-isel.
1276 // FIXME: Do we need to recurse here?
1277 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1278                           Address Dest, bool DestIsVolatile) {
1279   // Prefer scalar stores to first-class aggregate stores.
1280   if (llvm::StructType *STy =
1281         dyn_cast<llvm::StructType>(Val->getType())) {
1282     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1283       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
1284       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1285       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1286     }
1287   } else {
1288     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1289   }
1290 }
1291 
1292 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1293 /// where the source and destination may have different types.  The
1294 /// destination is known to be aligned to \arg DstAlign bytes.
1295 ///
1296 /// This safely handles the case when the src type is larger than the
1297 /// destination type; the upper bits of the src will be lost.
1298 static void CreateCoercedStore(llvm::Value *Src,
1299                                Address Dst,
1300                                bool DstIsVolatile,
1301                                CodeGenFunction &CGF) {
1302   llvm::Type *SrcTy = Src->getType();
1303   llvm::Type *DstTy = Dst.getElementType();
1304   if (SrcTy == DstTy) {
1305     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1306     return;
1307   }
1308 
1309   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1310 
1311   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1312     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1313     DstTy = Dst.getElementType();
1314   }
1315 
1316   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1317   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1318   if (SrcPtrTy && DstPtrTy &&
1319       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1320     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1321     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1322     return;
1323   }
1324 
1325   // If the source and destination are integer or pointer types, just do an
1326   // extension or truncation to the desired type.
1327   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1328       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1329     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1330     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1331     return;
1332   }
1333 
1334   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1335 
1336   // If store is legal, just bitcast the src pointer.
1337   if (SrcSize <= DstSize) {
1338     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1339     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1340   } else {
1341     // Otherwise do coercion through memory. This is stupid, but
1342     // simple.
1343 
1344     // Generally SrcSize is never greater than DstSize, since this means we are
1345     // losing bits. However, this can happen in cases where the structure has
1346     // additional padding, for example due to a user specified alignment.
1347     //
1348     // FIXME: Assert that we aren't truncating non-padding bits when have access
1349     // to that information.
1350     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1351     CGF.Builder.CreateStore(Src, Tmp);
1352     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1353     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1354     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1355         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1356         false);
1357   }
1358 }
1359 
1360 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1361                                    const ABIArgInfo &info) {
1362   if (unsigned offset = info.getDirectOffset()) {
1363     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1364     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1365                                              CharUnits::fromQuantity(offset));
1366     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1367   }
1368   return addr;
1369 }
1370 
1371 namespace {
1372 
1373 /// Encapsulates information about the way function arguments from
1374 /// CGFunctionInfo should be passed to actual LLVM IR function.
1375 class ClangToLLVMArgMapping {
1376   static const unsigned InvalidIndex = ~0U;
1377   unsigned InallocaArgNo;
1378   unsigned SRetArgNo;
1379   unsigned TotalIRArgs;
1380 
1381   /// Arguments of LLVM IR function corresponding to single Clang argument.
1382   struct IRArgs {
1383     unsigned PaddingArgIndex;
1384     // Argument is expanded to IR arguments at positions
1385     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1386     unsigned FirstArgIndex;
1387     unsigned NumberOfArgs;
1388 
1389     IRArgs()
1390         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1391           NumberOfArgs(0) {}
1392   };
1393 
1394   SmallVector<IRArgs, 8> ArgInfo;
1395 
1396 public:
1397   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1398                         bool OnlyRequiredArgs = false)
1399       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1400         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1401     construct(Context, FI, OnlyRequiredArgs);
1402   }
1403 
1404   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1405   unsigned getInallocaArgNo() const {
1406     assert(hasInallocaArg());
1407     return InallocaArgNo;
1408   }
1409 
1410   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1411   unsigned getSRetArgNo() const {
1412     assert(hasSRetArg());
1413     return SRetArgNo;
1414   }
1415 
1416   unsigned totalIRArgs() const { return TotalIRArgs; }
1417 
1418   bool hasPaddingArg(unsigned ArgNo) const {
1419     assert(ArgNo < ArgInfo.size());
1420     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1421   }
1422   unsigned getPaddingArgNo(unsigned ArgNo) const {
1423     assert(hasPaddingArg(ArgNo));
1424     return ArgInfo[ArgNo].PaddingArgIndex;
1425   }
1426 
1427   /// Returns index of first IR argument corresponding to ArgNo, and their
1428   /// quantity.
1429   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1430     assert(ArgNo < ArgInfo.size());
1431     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1432                           ArgInfo[ArgNo].NumberOfArgs);
1433   }
1434 
1435 private:
1436   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1437                  bool OnlyRequiredArgs);
1438 };
1439 
1440 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1441                                       const CGFunctionInfo &FI,
1442                                       bool OnlyRequiredArgs) {
1443   unsigned IRArgNo = 0;
1444   bool SwapThisWithSRet = false;
1445   const ABIArgInfo &RetAI = FI.getReturnInfo();
1446 
1447   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1448     SwapThisWithSRet = RetAI.isSRetAfterThis();
1449     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1450   }
1451 
1452   unsigned ArgNo = 0;
1453   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1454   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1455        ++I, ++ArgNo) {
1456     assert(I != FI.arg_end());
1457     QualType ArgType = I->type;
1458     const ABIArgInfo &AI = I->info;
1459     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1460     auto &IRArgs = ArgInfo[ArgNo];
1461 
1462     if (AI.getPaddingType())
1463       IRArgs.PaddingArgIndex = IRArgNo++;
1464 
1465     switch (AI.getKind()) {
1466     case ABIArgInfo::Extend:
1467     case ABIArgInfo::Direct: {
1468       // FIXME: handle sseregparm someday...
1469       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1470       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1471         IRArgs.NumberOfArgs = STy->getNumElements();
1472       } else {
1473         IRArgs.NumberOfArgs = 1;
1474       }
1475       break;
1476     }
1477     case ABIArgInfo::Indirect:
1478       IRArgs.NumberOfArgs = 1;
1479       break;
1480     case ABIArgInfo::Ignore:
1481     case ABIArgInfo::InAlloca:
1482       // ignore and inalloca doesn't have matching LLVM parameters.
1483       IRArgs.NumberOfArgs = 0;
1484       break;
1485     case ABIArgInfo::CoerceAndExpand:
1486       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1487       break;
1488     case ABIArgInfo::Expand:
1489       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1490       break;
1491     }
1492 
1493     if (IRArgs.NumberOfArgs > 0) {
1494       IRArgs.FirstArgIndex = IRArgNo;
1495       IRArgNo += IRArgs.NumberOfArgs;
1496     }
1497 
1498     // Skip over the sret parameter when it comes second.  We already handled it
1499     // above.
1500     if (IRArgNo == 1 && SwapThisWithSRet)
1501       IRArgNo++;
1502   }
1503   assert(ArgNo == ArgInfo.size());
1504 
1505   if (FI.usesInAlloca())
1506     InallocaArgNo = IRArgNo++;
1507 
1508   TotalIRArgs = IRArgNo;
1509 }
1510 }  // namespace
1511 
1512 /***/
1513 
1514 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1515   const auto &RI = FI.getReturnInfo();
1516   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1517 }
1518 
1519 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1520   return ReturnTypeUsesSRet(FI) &&
1521          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1522 }
1523 
1524 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1525   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1526     switch (BT->getKind()) {
1527     default:
1528       return false;
1529     case BuiltinType::Float:
1530       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1531     case BuiltinType::Double:
1532       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1533     case BuiltinType::LongDouble:
1534       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1535     }
1536   }
1537 
1538   return false;
1539 }
1540 
1541 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1542   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1543     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1544       if (BT->getKind() == BuiltinType::LongDouble)
1545         return getTarget().useObjCFP2RetForComplexLongDouble();
1546     }
1547   }
1548 
1549   return false;
1550 }
1551 
1552 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1553   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1554   return GetFunctionType(FI);
1555 }
1556 
1557 llvm::FunctionType *
1558 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1559 
1560   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1561   (void)Inserted;
1562   assert(Inserted && "Recursively being processed?");
1563 
1564   llvm::Type *resultType = nullptr;
1565   const ABIArgInfo &retAI = FI.getReturnInfo();
1566   switch (retAI.getKind()) {
1567   case ABIArgInfo::Expand:
1568     llvm_unreachable("Invalid ABI kind for return argument");
1569 
1570   case ABIArgInfo::Extend:
1571   case ABIArgInfo::Direct:
1572     resultType = retAI.getCoerceToType();
1573     break;
1574 
1575   case ABIArgInfo::InAlloca:
1576     if (retAI.getInAllocaSRet()) {
1577       // sret things on win32 aren't void, they return the sret pointer.
1578       QualType ret = FI.getReturnType();
1579       llvm::Type *ty = ConvertType(ret);
1580       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1581       resultType = llvm::PointerType::get(ty, addressSpace);
1582     } else {
1583       resultType = llvm::Type::getVoidTy(getLLVMContext());
1584     }
1585     break;
1586 
1587   case ABIArgInfo::Indirect:
1588   case ABIArgInfo::Ignore:
1589     resultType = llvm::Type::getVoidTy(getLLVMContext());
1590     break;
1591 
1592   case ABIArgInfo::CoerceAndExpand:
1593     resultType = retAI.getUnpaddedCoerceAndExpandType();
1594     break;
1595   }
1596 
1597   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1598   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1599 
1600   // Add type for sret argument.
1601   if (IRFunctionArgs.hasSRetArg()) {
1602     QualType Ret = FI.getReturnType();
1603     llvm::Type *Ty = ConvertType(Ret);
1604     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1605     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1606         llvm::PointerType::get(Ty, AddressSpace);
1607   }
1608 
1609   // Add type for inalloca argument.
1610   if (IRFunctionArgs.hasInallocaArg()) {
1611     auto ArgStruct = FI.getArgStruct();
1612     assert(ArgStruct);
1613     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1614   }
1615 
1616   // Add in all of the required arguments.
1617   unsigned ArgNo = 0;
1618   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1619                                      ie = it + FI.getNumRequiredArgs();
1620   for (; it != ie; ++it, ++ArgNo) {
1621     const ABIArgInfo &ArgInfo = it->info;
1622 
1623     // Insert a padding type to ensure proper alignment.
1624     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1625       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1626           ArgInfo.getPaddingType();
1627 
1628     unsigned FirstIRArg, NumIRArgs;
1629     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1630 
1631     switch (ArgInfo.getKind()) {
1632     case ABIArgInfo::Ignore:
1633     case ABIArgInfo::InAlloca:
1634       assert(NumIRArgs == 0);
1635       break;
1636 
1637     case ABIArgInfo::Indirect: {
1638       assert(NumIRArgs == 1);
1639       // indirect arguments are always on the stack, which is alloca addr space.
1640       llvm::Type *LTy = ConvertTypeForMem(it->type);
1641       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1642           CGM.getDataLayout().getAllocaAddrSpace());
1643       break;
1644     }
1645 
1646     case ABIArgInfo::Extend:
1647     case ABIArgInfo::Direct: {
1648       // Fast-isel and the optimizer generally like scalar values better than
1649       // FCAs, so we flatten them if this is safe to do for this argument.
1650       llvm::Type *argType = ArgInfo.getCoerceToType();
1651       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1652       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1653         assert(NumIRArgs == st->getNumElements());
1654         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1655           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1656       } else {
1657         assert(NumIRArgs == 1);
1658         ArgTypes[FirstIRArg] = argType;
1659       }
1660       break;
1661     }
1662 
1663     case ABIArgInfo::CoerceAndExpand: {
1664       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1665       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1666         *ArgTypesIter++ = EltTy;
1667       }
1668       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1669       break;
1670     }
1671 
1672     case ABIArgInfo::Expand:
1673       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1674       getExpandedTypes(it->type, ArgTypesIter);
1675       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1676       break;
1677     }
1678   }
1679 
1680   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1681   assert(Erased && "Not in set?");
1682 
1683   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1684 }
1685 
1686 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1687   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1688   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1689 
1690   if (!isFuncTypeConvertible(FPT))
1691     return llvm::StructType::get(getLLVMContext());
1692 
1693   return GetFunctionType(GD);
1694 }
1695 
1696 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1697                                                llvm::AttrBuilder &FuncAttrs,
1698                                                const FunctionProtoType *FPT) {
1699   if (!FPT)
1700     return;
1701 
1702   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1703       FPT->isNothrow())
1704     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1705 }
1706 
1707 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1708                                                bool AttrOnCallSite,
1709                                                llvm::AttrBuilder &FuncAttrs) {
1710   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1711   if (!HasOptnone) {
1712     if (CodeGenOpts.OptimizeSize)
1713       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1714     if (CodeGenOpts.OptimizeSize == 2)
1715       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1716   }
1717 
1718   if (CodeGenOpts.DisableRedZone)
1719     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1720   if (CodeGenOpts.IndirectTlsSegRefs)
1721     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1722   if (CodeGenOpts.NoImplicitFloat)
1723     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1724 
1725   if (AttrOnCallSite) {
1726     // Attributes that should go on the call site only.
1727     if (!CodeGenOpts.SimplifyLibCalls ||
1728         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1729       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1730     if (!CodeGenOpts.TrapFuncName.empty())
1731       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1732   } else {
1733     StringRef FpKind;
1734     switch (CodeGenOpts.getFramePointer()) {
1735     case CodeGenOptions::FramePointerKind::None:
1736       FpKind = "none";
1737       break;
1738     case CodeGenOptions::FramePointerKind::NonLeaf:
1739       FpKind = "non-leaf";
1740       break;
1741     case CodeGenOptions::FramePointerKind::All:
1742       FpKind = "all";
1743       break;
1744     }
1745     FuncAttrs.addAttribute("frame-pointer", FpKind);
1746 
1747     FuncAttrs.addAttribute("less-precise-fpmad",
1748                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1749 
1750     if (CodeGenOpts.NullPointerIsValid)
1751       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1752 
1753     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1754       FuncAttrs.addAttribute("denormal-fp-math",
1755                              CodeGenOpts.FPDenormalMode.str());
1756     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1757       FuncAttrs.addAttribute(
1758           "denormal-fp-math-f32",
1759           CodeGenOpts.FP32DenormalMode.str());
1760     }
1761 
1762     FuncAttrs.addAttribute("no-trapping-math",
1763                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1764 
1765     // Strict (compliant) code is the default, so only add this attribute to
1766     // indicate that we are trying to workaround a problem case.
1767     if (!CodeGenOpts.StrictFloatCastOverflow)
1768       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1769 
1770     // TODO: Are these all needed?
1771     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1772     FuncAttrs.addAttribute("no-infs-fp-math",
1773                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1774     FuncAttrs.addAttribute("no-nans-fp-math",
1775                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1776     FuncAttrs.addAttribute("unsafe-fp-math",
1777                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1778     FuncAttrs.addAttribute("use-soft-float",
1779                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1780     FuncAttrs.addAttribute("stack-protector-buffer-size",
1781                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1782     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1783                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1784     FuncAttrs.addAttribute(
1785         "correctly-rounded-divide-sqrt-fp-math",
1786         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1787 
1788     // TODO: Reciprocal estimate codegen options should apply to instructions?
1789     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1790     if (!Recips.empty())
1791       FuncAttrs.addAttribute("reciprocal-estimates",
1792                              llvm::join(Recips, ","));
1793 
1794     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1795         CodeGenOpts.PreferVectorWidth != "none")
1796       FuncAttrs.addAttribute("prefer-vector-width",
1797                              CodeGenOpts.PreferVectorWidth);
1798 
1799     if (CodeGenOpts.StackRealignment)
1800       FuncAttrs.addAttribute("stackrealign");
1801     if (CodeGenOpts.Backchain)
1802       FuncAttrs.addAttribute("backchain");
1803 
1804     if (CodeGenOpts.SpeculativeLoadHardening)
1805       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1806   }
1807 
1808   if (getLangOpts().assumeFunctionsAreConvergent()) {
1809     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1810     // convergent (meaning, they may call an intrinsically convergent op, such
1811     // as __syncthreads() / barrier(), and so can't have certain optimizations
1812     // applied around them).  LLVM will remove this attribute where it safely
1813     // can.
1814     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1815   }
1816 
1817   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1818     // Exceptions aren't supported in CUDA device code.
1819     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1820   }
1821 
1822   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1823     StringRef Var, Value;
1824     std::tie(Var, Value) = Attr.split('=');
1825     FuncAttrs.addAttribute(Var, Value);
1826   }
1827 }
1828 
1829 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1830   llvm::AttrBuilder FuncAttrs;
1831   ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(),
1832                              /* AttrOnCallSite = */ false, FuncAttrs);
1833   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1834 }
1835 
1836 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1837                                    const LangOptions &LangOpts,
1838                                    const NoBuiltinAttr *NBA = nullptr) {
1839   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1840     SmallString<32> AttributeName;
1841     AttributeName += "no-builtin-";
1842     AttributeName += BuiltinName;
1843     FuncAttrs.addAttribute(AttributeName);
1844   };
1845 
1846   // First, handle the language options passed through -fno-builtin.
1847   if (LangOpts.NoBuiltin) {
1848     // -fno-builtin disables them all.
1849     FuncAttrs.addAttribute("no-builtins");
1850     return;
1851   }
1852 
1853   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1854   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1855 
1856   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1857   // the source.
1858   if (!NBA)
1859     return;
1860 
1861   // If there is a wildcard in the builtin names specified through the
1862   // attribute, disable them all.
1863   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1864     FuncAttrs.addAttribute("no-builtins");
1865     return;
1866   }
1867 
1868   // And last, add the rest of the builtin names.
1869   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1870 }
1871 
1872 void CodeGenModule::ConstructAttributeList(
1873     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1874     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1875   llvm::AttrBuilder FuncAttrs;
1876   llvm::AttrBuilder RetAttrs;
1877 
1878   CallingConv = FI.getEffectiveCallingConvention();
1879   if (FI.isNoReturn())
1880     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1881 
1882   if (FI.isCmseNSCall())
1883     FuncAttrs.addAttribute("cmse_nonsecure_call");
1884 
1885   // If we have information about the function prototype, we can learn
1886   // attributes from there.
1887   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1888                                      CalleeInfo.getCalleeFunctionProtoType());
1889 
1890   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1891 
1892   bool HasOptnone = false;
1893   // The NoBuiltinAttr attached to a TargetDecl (only allowed on FunctionDecls).
1894   const NoBuiltinAttr *NBA = nullptr;
1895   // FIXME: handle sseregparm someday...
1896   if (TargetDecl) {
1897     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1898       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1899     if (TargetDecl->hasAttr<NoThrowAttr>())
1900       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1901     if (TargetDecl->hasAttr<NoReturnAttr>())
1902       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1903     if (TargetDecl->hasAttr<ColdAttr>())
1904       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1905     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1906       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1907     if (TargetDecl->hasAttr<ConvergentAttr>())
1908       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1909 
1910     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1911       AddAttributesFromFunctionProtoType(
1912           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1913       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1914         // A sane operator new returns a non-aliasing pointer.
1915         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1916         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1917             (Kind == OO_New || Kind == OO_Array_New))
1918           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1919       }
1920       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1921       const bool IsVirtualCall = MD && MD->isVirtual();
1922       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1923       // virtual function. These attributes are not inherited by overloads.
1924       if (!(AttrOnCallSite && IsVirtualCall)) {
1925         if (Fn->isNoReturn())
1926           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1927         NBA = Fn->getAttr<NoBuiltinAttr>();
1928       }
1929     }
1930 
1931     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1932     if (TargetDecl->hasAttr<ConstAttr>()) {
1933       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1934       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1935     } else if (TargetDecl->hasAttr<PureAttr>()) {
1936       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1937       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1938     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1939       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1940       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1941     }
1942     if (TargetDecl->hasAttr<RestrictAttr>())
1943       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1944     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1945         !CodeGenOpts.NullPointerIsValid)
1946       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1947     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1948       FuncAttrs.addAttribute("no_caller_saved_registers");
1949     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1950       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1951 
1952     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1953     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1954       Optional<unsigned> NumElemsParam;
1955       if (AllocSize->getNumElemsParam().isValid())
1956         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1957       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1958                                  NumElemsParam);
1959     }
1960   }
1961 
1962   // Attach "no-builtins" attributes to:
1963   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
1964   // * definitions: "no-builtins" or "no-builtin-<name>" only.
1965   // The attributes can come from:
1966   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
1967   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
1968   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
1969 
1970   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1971 
1972   // This must run after constructing the default function attribute list
1973   // to ensure that the speculative load hardening attribute is removed
1974   // in the case where the -mspeculative-load-hardening flag was passed.
1975   if (TargetDecl) {
1976     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1977       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1978     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1979       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1980   }
1981 
1982   if (CodeGenOpts.EnableSegmentedStacks &&
1983       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1984     FuncAttrs.addAttribute("split-stack");
1985 
1986   // Add NonLazyBind attribute to function declarations when -fno-plt
1987   // is used.
1988   if (TargetDecl && CodeGenOpts.NoPLT) {
1989     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1990       if (!Fn->isDefined() && !AttrOnCallSite) {
1991         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1992       }
1993     }
1994   }
1995 
1996   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1997     if (getLangOpts().OpenCLVersion <= 120) {
1998       // OpenCL v1.2 Work groups are always uniform
1999       FuncAttrs.addAttribute("uniform-work-group-size", "true");
2000     } else {
2001       // OpenCL v2.0 Work groups may be whether uniform or not.
2002       // '-cl-uniform-work-group-size' compile option gets a hint
2003       // to the compiler that the global work-size be a multiple of
2004       // the work-group size specified to clEnqueueNDRangeKernel
2005       // (i.e. work groups are uniform).
2006       FuncAttrs.addAttribute("uniform-work-group-size",
2007                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
2008     }
2009   }
2010 
2011   if (!AttrOnCallSite) {
2012     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2013       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2014 
2015     bool DisableTailCalls = false;
2016 
2017     if (CodeGenOpts.DisableTailCalls)
2018       DisableTailCalls = true;
2019     else if (TargetDecl) {
2020       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2021           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2022         DisableTailCalls = true;
2023       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
2024         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2025           if (!BD->doesNotEscape())
2026             DisableTailCalls = true;
2027       }
2028     }
2029 
2030     FuncAttrs.addAttribute("disable-tail-calls",
2031                            llvm::toStringRef(DisableTailCalls));
2032     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2033   }
2034 
2035   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2036 
2037   QualType RetTy = FI.getReturnType();
2038   const ABIArgInfo &RetAI = FI.getReturnInfo();
2039   switch (RetAI.getKind()) {
2040   case ABIArgInfo::Extend:
2041     if (RetAI.isSignExt())
2042       RetAttrs.addAttribute(llvm::Attribute::SExt);
2043     else
2044       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2045     LLVM_FALLTHROUGH;
2046   case ABIArgInfo::Direct:
2047     if (RetAI.getInReg())
2048       RetAttrs.addAttribute(llvm::Attribute::InReg);
2049     break;
2050   case ABIArgInfo::Ignore:
2051     break;
2052 
2053   case ABIArgInfo::InAlloca:
2054   case ABIArgInfo::Indirect: {
2055     // inalloca and sret disable readnone and readonly
2056     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2057       .removeAttribute(llvm::Attribute::ReadNone);
2058     break;
2059   }
2060 
2061   case ABIArgInfo::CoerceAndExpand:
2062     break;
2063 
2064   case ABIArgInfo::Expand:
2065     llvm_unreachable("Invalid ABI kind for return argument");
2066   }
2067 
2068   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2069     QualType PTy = RefTy->getPointeeType();
2070     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2071       RetAttrs.addDereferenceableAttr(
2072           getMinimumObjectSize(PTy).getQuantity());
2073     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2074              !CodeGenOpts.NullPointerIsValid)
2075       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2076   }
2077 
2078   bool hasUsedSRet = false;
2079   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2080 
2081   // Attach attributes to sret.
2082   if (IRFunctionArgs.hasSRetArg()) {
2083     llvm::AttrBuilder SRETAttrs;
2084     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2085     hasUsedSRet = true;
2086     if (RetAI.getInReg())
2087       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2088     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2089     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2090         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2091   }
2092 
2093   // Attach attributes to inalloca argument.
2094   if (IRFunctionArgs.hasInallocaArg()) {
2095     llvm::AttrBuilder Attrs;
2096     Attrs.addAttribute(llvm::Attribute::InAlloca);
2097     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2098         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2099   }
2100 
2101   unsigned ArgNo = 0;
2102   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2103                                           E = FI.arg_end();
2104        I != E; ++I, ++ArgNo) {
2105     QualType ParamType = I->type;
2106     const ABIArgInfo &AI = I->info;
2107     llvm::AttrBuilder Attrs;
2108 
2109     // Add attribute for padding argument, if necessary.
2110     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2111       if (AI.getPaddingInReg()) {
2112         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2113             llvm::AttributeSet::get(
2114                 getLLVMContext(),
2115                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2116       }
2117     }
2118 
2119     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2120     // have the corresponding parameter variable.  It doesn't make
2121     // sense to do it here because parameters are so messed up.
2122     switch (AI.getKind()) {
2123     case ABIArgInfo::Extend:
2124       if (AI.isSignExt())
2125         Attrs.addAttribute(llvm::Attribute::SExt);
2126       else
2127         Attrs.addAttribute(llvm::Attribute::ZExt);
2128       LLVM_FALLTHROUGH;
2129     case ABIArgInfo::Direct:
2130       if (ArgNo == 0 && FI.isChainCall())
2131         Attrs.addAttribute(llvm::Attribute::Nest);
2132       else if (AI.getInReg())
2133         Attrs.addAttribute(llvm::Attribute::InReg);
2134       break;
2135 
2136     case ABIArgInfo::Indirect: {
2137       if (AI.getInReg())
2138         Attrs.addAttribute(llvm::Attribute::InReg);
2139 
2140       if (AI.getIndirectByVal())
2141         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2142 
2143       CharUnits Align = AI.getIndirectAlign();
2144 
2145       // In a byval argument, it is important that the required
2146       // alignment of the type is honored, as LLVM might be creating a
2147       // *new* stack object, and needs to know what alignment to give
2148       // it. (Sometimes it can deduce a sensible alignment on its own,
2149       // but not if clang decides it must emit a packed struct, or the
2150       // user specifies increased alignment requirements.)
2151       //
2152       // This is different from indirect *not* byval, where the object
2153       // exists already, and the align attribute is purely
2154       // informative.
2155       assert(!Align.isZero());
2156 
2157       // For now, only add this when we have a byval argument.
2158       // TODO: be less lazy about updating test cases.
2159       if (AI.getIndirectByVal())
2160         Attrs.addAlignmentAttr(Align.getQuantity());
2161 
2162       // byval disables readnone and readonly.
2163       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2164         .removeAttribute(llvm::Attribute::ReadNone);
2165       break;
2166     }
2167     case ABIArgInfo::Ignore:
2168     case ABIArgInfo::Expand:
2169     case ABIArgInfo::CoerceAndExpand:
2170       break;
2171 
2172     case ABIArgInfo::InAlloca:
2173       // inalloca disables readnone and readonly.
2174       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2175           .removeAttribute(llvm::Attribute::ReadNone);
2176       continue;
2177     }
2178 
2179     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2180       QualType PTy = RefTy->getPointeeType();
2181       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2182         Attrs.addDereferenceableAttr(
2183             getMinimumObjectSize(PTy).getQuantity());
2184       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2185                !CodeGenOpts.NullPointerIsValid)
2186         Attrs.addAttribute(llvm::Attribute::NonNull);
2187     }
2188 
2189     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2190     case ParameterABI::Ordinary:
2191       break;
2192 
2193     case ParameterABI::SwiftIndirectResult: {
2194       // Add 'sret' if we haven't already used it for something, but
2195       // only if the result is void.
2196       if (!hasUsedSRet && RetTy->isVoidType()) {
2197         Attrs.addAttribute(llvm::Attribute::StructRet);
2198         hasUsedSRet = true;
2199       }
2200 
2201       // Add 'noalias' in either case.
2202       Attrs.addAttribute(llvm::Attribute::NoAlias);
2203 
2204       // Add 'dereferenceable' and 'alignment'.
2205       auto PTy = ParamType->getPointeeType();
2206       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2207         auto info = getContext().getTypeInfoInChars(PTy);
2208         Attrs.addDereferenceableAttr(info.first.getQuantity());
2209         Attrs.addAttribute(llvm::Attribute::getWithAlignment(
2210             getLLVMContext(), info.second.getAsAlign()));
2211       }
2212       break;
2213     }
2214 
2215     case ParameterABI::SwiftErrorResult:
2216       Attrs.addAttribute(llvm::Attribute::SwiftError);
2217       break;
2218 
2219     case ParameterABI::SwiftContext:
2220       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2221       break;
2222     }
2223 
2224     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2225       Attrs.addAttribute(llvm::Attribute::NoCapture);
2226 
2227     if (Attrs.hasAttributes()) {
2228       unsigned FirstIRArg, NumIRArgs;
2229       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2230       for (unsigned i = 0; i < NumIRArgs; i++)
2231         ArgAttrs[FirstIRArg + i] =
2232             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2233     }
2234   }
2235   assert(ArgNo == FI.arg_size());
2236 
2237   AttrList = llvm::AttributeList::get(
2238       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2239       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2240 }
2241 
2242 /// An argument came in as a promoted argument; demote it back to its
2243 /// declared type.
2244 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2245                                          const VarDecl *var,
2246                                          llvm::Value *value) {
2247   llvm::Type *varType = CGF.ConvertType(var->getType());
2248 
2249   // This can happen with promotions that actually don't change the
2250   // underlying type, like the enum promotions.
2251   if (value->getType() == varType) return value;
2252 
2253   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2254          && "unexpected promotion type");
2255 
2256   if (isa<llvm::IntegerType>(varType))
2257     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2258 
2259   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2260 }
2261 
2262 /// Returns the attribute (either parameter attribute, or function
2263 /// attribute), which declares argument ArgNo to be non-null.
2264 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2265                                          QualType ArgType, unsigned ArgNo) {
2266   // FIXME: __attribute__((nonnull)) can also be applied to:
2267   //   - references to pointers, where the pointee is known to be
2268   //     nonnull (apparently a Clang extension)
2269   //   - transparent unions containing pointers
2270   // In the former case, LLVM IR cannot represent the constraint. In
2271   // the latter case, we have no guarantee that the transparent union
2272   // is in fact passed as a pointer.
2273   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2274     return nullptr;
2275   // First, check attribute on parameter itself.
2276   if (PVD) {
2277     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2278       return ParmNNAttr;
2279   }
2280   // Check function attributes.
2281   if (!FD)
2282     return nullptr;
2283   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2284     if (NNAttr->isNonNull(ArgNo))
2285       return NNAttr;
2286   }
2287   return nullptr;
2288 }
2289 
2290 namespace {
2291   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2292     Address Temp;
2293     Address Arg;
2294     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2295     void Emit(CodeGenFunction &CGF, Flags flags) override {
2296       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2297       CGF.Builder.CreateStore(errorValue, Arg);
2298     }
2299   };
2300 }
2301 
2302 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2303                                          llvm::Function *Fn,
2304                                          const FunctionArgList &Args) {
2305   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2306     // Naked functions don't have prologues.
2307     return;
2308 
2309   // If this is an implicit-return-zero function, go ahead and
2310   // initialize the return value.  TODO: it might be nice to have
2311   // a more general mechanism for this that didn't require synthesized
2312   // return statements.
2313   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2314     if (FD->hasImplicitReturnZero()) {
2315       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2316       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2317       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2318       Builder.CreateStore(Zero, ReturnValue);
2319     }
2320   }
2321 
2322   // FIXME: We no longer need the types from FunctionArgList; lift up and
2323   // simplify.
2324 
2325   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2326   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2327 
2328   // If we're using inalloca, all the memory arguments are GEPs off of the last
2329   // parameter, which is a pointer to the complete memory area.
2330   Address ArgStruct = Address::invalid();
2331   if (IRFunctionArgs.hasInallocaArg()) {
2332     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2333                         FI.getArgStructAlignment());
2334 
2335     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2336   }
2337 
2338   // Name the struct return parameter.
2339   if (IRFunctionArgs.hasSRetArg()) {
2340     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2341     AI->setName("agg.result");
2342     AI->addAttr(llvm::Attribute::NoAlias);
2343   }
2344 
2345   // Track if we received the parameter as a pointer (indirect, byval, or
2346   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2347   // into a local alloca for us.
2348   SmallVector<ParamValue, 16> ArgVals;
2349   ArgVals.reserve(Args.size());
2350 
2351   // Create a pointer value for every parameter declaration.  This usually
2352   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2353   // any cleanups or do anything that might unwind.  We do that separately, so
2354   // we can push the cleanups in the correct order for the ABI.
2355   assert(FI.arg_size() == Args.size() &&
2356          "Mismatch between function signature & arguments.");
2357   unsigned ArgNo = 0;
2358   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2359   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2360        i != e; ++i, ++info_it, ++ArgNo) {
2361     const VarDecl *Arg = *i;
2362     const ABIArgInfo &ArgI = info_it->info;
2363 
2364     bool isPromoted =
2365       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2366     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2367     // the parameter is promoted. In this case we convert to
2368     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2369     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2370     assert(hasScalarEvaluationKind(Ty) ==
2371            hasScalarEvaluationKind(Arg->getType()));
2372 
2373     unsigned FirstIRArg, NumIRArgs;
2374     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2375 
2376     switch (ArgI.getKind()) {
2377     case ABIArgInfo::InAlloca: {
2378       assert(NumIRArgs == 0);
2379       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2380       Address V =
2381           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2382       if (ArgI.getInAllocaIndirect())
2383         V = Address(Builder.CreateLoad(V),
2384                     getContext().getTypeAlignInChars(Ty));
2385       ArgVals.push_back(ParamValue::forIndirect(V));
2386       break;
2387     }
2388 
2389     case ABIArgInfo::Indirect: {
2390       assert(NumIRArgs == 1);
2391       Address ParamAddr =
2392           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2393 
2394       if (!hasScalarEvaluationKind(Ty)) {
2395         // Aggregates and complex variables are accessed by reference.  All we
2396         // need to do is realign the value, if requested.
2397         Address V = ParamAddr;
2398         if (ArgI.getIndirectRealign()) {
2399           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2400 
2401           // Copy from the incoming argument pointer to the temporary with the
2402           // appropriate alignment.
2403           //
2404           // FIXME: We should have a common utility for generating an aggregate
2405           // copy.
2406           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2407           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2408           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2409           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2410           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2411           V = AlignedTemp;
2412         }
2413         ArgVals.push_back(ParamValue::forIndirect(V));
2414       } else {
2415         // Load scalar value from indirect argument.
2416         llvm::Value *V =
2417             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2418 
2419         if (isPromoted)
2420           V = emitArgumentDemotion(*this, Arg, V);
2421         ArgVals.push_back(ParamValue::forDirect(V));
2422       }
2423       break;
2424     }
2425 
2426     case ABIArgInfo::Extend:
2427     case ABIArgInfo::Direct: {
2428       auto AI = Fn->getArg(FirstIRArg);
2429       llvm::Type *LTy = ConvertType(Arg->getType());
2430 
2431       // Prepare parameter attributes. So far, only attributes for pointer
2432       // parameters are prepared. See
2433       // http://llvm.org/docs/LangRef.html#paramattrs.
2434       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2435           ArgI.getCoerceToType()->isPointerTy()) {
2436         assert(NumIRArgs == 1);
2437 
2438         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2439           // Set `nonnull` attribute if any.
2440           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2441                              PVD->getFunctionScopeIndex()) &&
2442               !CGM.getCodeGenOpts().NullPointerIsValid)
2443             AI->addAttr(llvm::Attribute::NonNull);
2444 
2445           QualType OTy = PVD->getOriginalType();
2446           if (const auto *ArrTy =
2447               getContext().getAsConstantArrayType(OTy)) {
2448             // A C99 array parameter declaration with the static keyword also
2449             // indicates dereferenceability, and if the size is constant we can
2450             // use the dereferenceable attribute (which requires the size in
2451             // bytes).
2452             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2453               QualType ETy = ArrTy->getElementType();
2454               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2455               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2456                   ArrSize) {
2457                 llvm::AttrBuilder Attrs;
2458                 Attrs.addDereferenceableAttr(
2459                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2460                 AI->addAttrs(Attrs);
2461               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2462                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2463                 AI->addAttr(llvm::Attribute::NonNull);
2464               }
2465             }
2466           } else if (const auto *ArrTy =
2467                      getContext().getAsVariableArrayType(OTy)) {
2468             // For C99 VLAs with the static keyword, we don't know the size so
2469             // we can't use the dereferenceable attribute, but in addrspace(0)
2470             // we know that it must be nonnull.
2471             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2472                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2473                 !CGM.getCodeGenOpts().NullPointerIsValid)
2474               AI->addAttr(llvm::Attribute::NonNull);
2475           }
2476 
2477           // Set `align` attribute if any.
2478           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2479           if (!AVAttr)
2480             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2481               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2482           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2483             // If alignment-assumption sanitizer is enabled, we do *not* add
2484             // alignment attribute here, but emit normal alignment assumption,
2485             // so the UBSAN check could function.
2486             llvm::Value *AlignmentValue =
2487               EmitScalarExpr(AVAttr->getAlignment());
2488             llvm::ConstantInt *AlignmentCI =
2489               cast<llvm::ConstantInt>(AlignmentValue);
2490             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(llvm::MaybeAlign(
2491                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))));
2492           }
2493         }
2494 
2495         // Set 'noalias' if an argument type has the `restrict` qualifier.
2496         if (Arg->getType().isRestrictQualified())
2497           AI->addAttr(llvm::Attribute::NoAlias);
2498       }
2499 
2500       // Prepare the argument value. If we have the trivial case, handle it
2501       // with no muss and fuss.
2502       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2503           ArgI.getCoerceToType() == ConvertType(Ty) &&
2504           ArgI.getDirectOffset() == 0) {
2505         assert(NumIRArgs == 1);
2506 
2507         // LLVM expects swifterror parameters to be used in very restricted
2508         // ways.  Copy the value into a less-restricted temporary.
2509         llvm::Value *V = AI;
2510         if (FI.getExtParameterInfo(ArgNo).getABI()
2511               == ParameterABI::SwiftErrorResult) {
2512           QualType pointeeTy = Ty->getPointeeType();
2513           assert(pointeeTy->isPointerType());
2514           Address temp =
2515             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2516           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2517           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2518           Builder.CreateStore(incomingErrorValue, temp);
2519           V = temp.getPointer();
2520 
2521           // Push a cleanup to copy the value back at the end of the function.
2522           // The convention does not guarantee that the value will be written
2523           // back if the function exits with an unwind exception.
2524           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2525         }
2526 
2527         // Ensure the argument is the correct type.
2528         if (V->getType() != ArgI.getCoerceToType())
2529           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2530 
2531         if (isPromoted)
2532           V = emitArgumentDemotion(*this, Arg, V);
2533 
2534         // Because of merging of function types from multiple decls it is
2535         // possible for the type of an argument to not match the corresponding
2536         // type in the function type. Since we are codegening the callee
2537         // in here, add a cast to the argument type.
2538         llvm::Type *LTy = ConvertType(Arg->getType());
2539         if (V->getType() != LTy)
2540           V = Builder.CreateBitCast(V, LTy);
2541 
2542         ArgVals.push_back(ParamValue::forDirect(V));
2543         break;
2544       }
2545 
2546       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2547                                      Arg->getName());
2548 
2549       // Pointer to store into.
2550       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2551 
2552       // Fast-isel and the optimizer generally like scalar values better than
2553       // FCAs, so we flatten them if this is safe to do for this argument.
2554       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2555       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2556           STy->getNumElements() > 1) {
2557         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2558         llvm::Type *DstTy = Ptr.getElementType();
2559         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2560 
2561         Address AddrToStoreInto = Address::invalid();
2562         if (SrcSize <= DstSize) {
2563           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2564         } else {
2565           AddrToStoreInto =
2566             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2567         }
2568 
2569         assert(STy->getNumElements() == NumIRArgs);
2570         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2571           auto AI = Fn->getArg(FirstIRArg + i);
2572           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2573           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2574           Builder.CreateStore(AI, EltPtr);
2575         }
2576 
2577         if (SrcSize > DstSize) {
2578           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2579         }
2580 
2581       } else {
2582         // Simple case, just do a coerced store of the argument into the alloca.
2583         assert(NumIRArgs == 1);
2584         auto AI = Fn->getArg(FirstIRArg);
2585         AI->setName(Arg->getName() + ".coerce");
2586         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2587       }
2588 
2589       // Match to what EmitParmDecl is expecting for this type.
2590       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2591         llvm::Value *V =
2592             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2593         if (isPromoted)
2594           V = emitArgumentDemotion(*this, Arg, V);
2595         ArgVals.push_back(ParamValue::forDirect(V));
2596       } else {
2597         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2598       }
2599       break;
2600     }
2601 
2602     case ABIArgInfo::CoerceAndExpand: {
2603       // Reconstruct into a temporary.
2604       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2605       ArgVals.push_back(ParamValue::forIndirect(alloca));
2606 
2607       auto coercionType = ArgI.getCoerceAndExpandType();
2608       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2609 
2610       unsigned argIndex = FirstIRArg;
2611       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2612         llvm::Type *eltType = coercionType->getElementType(i);
2613         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2614           continue;
2615 
2616         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2617         auto elt = Fn->getArg(argIndex++);
2618         Builder.CreateStore(elt, eltAddr);
2619       }
2620       assert(argIndex == FirstIRArg + NumIRArgs);
2621       break;
2622     }
2623 
2624     case ABIArgInfo::Expand: {
2625       // If this structure was expanded into multiple arguments then
2626       // we need to create a temporary and reconstruct it from the
2627       // arguments.
2628       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2629       LValue LV = MakeAddrLValue(Alloca, Ty);
2630       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2631 
2632       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2633       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2634       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2635       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2636         auto AI = Fn->getArg(FirstIRArg + i);
2637         AI->setName(Arg->getName() + "." + Twine(i));
2638       }
2639       break;
2640     }
2641 
2642     case ABIArgInfo::Ignore:
2643       assert(NumIRArgs == 0);
2644       // Initialize the local variable appropriately.
2645       if (!hasScalarEvaluationKind(Ty)) {
2646         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2647       } else {
2648         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2649         ArgVals.push_back(ParamValue::forDirect(U));
2650       }
2651       break;
2652     }
2653   }
2654 
2655   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2656     for (int I = Args.size() - 1; I >= 0; --I)
2657       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2658   } else {
2659     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2660       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2661   }
2662 }
2663 
2664 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2665   while (insn->use_empty()) {
2666     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2667     if (!bitcast) return;
2668 
2669     // This is "safe" because we would have used a ConstantExpr otherwise.
2670     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2671     bitcast->eraseFromParent();
2672   }
2673 }
2674 
2675 /// Try to emit a fused autorelease of a return result.
2676 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2677                                                     llvm::Value *result) {
2678   // We must be immediately followed the cast.
2679   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2680   if (BB->empty()) return nullptr;
2681   if (&BB->back() != result) return nullptr;
2682 
2683   llvm::Type *resultType = result->getType();
2684 
2685   // result is in a BasicBlock and is therefore an Instruction.
2686   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2687 
2688   SmallVector<llvm::Instruction *, 4> InstsToKill;
2689 
2690   // Look for:
2691   //  %generator = bitcast %type1* %generator2 to %type2*
2692   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2693     // We would have emitted this as a constant if the operand weren't
2694     // an Instruction.
2695     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2696 
2697     // Require the generator to be immediately followed by the cast.
2698     if (generator->getNextNode() != bitcast)
2699       return nullptr;
2700 
2701     InstsToKill.push_back(bitcast);
2702   }
2703 
2704   // Look for:
2705   //   %generator = call i8* @objc_retain(i8* %originalResult)
2706   // or
2707   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2708   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2709   if (!call) return nullptr;
2710 
2711   bool doRetainAutorelease;
2712 
2713   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2714     doRetainAutorelease = true;
2715   } else if (call->getCalledOperand() ==
2716              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
2717     doRetainAutorelease = false;
2718 
2719     // If we emitted an assembly marker for this call (and the
2720     // ARCEntrypoints field should have been set if so), go looking
2721     // for that call.  If we can't find it, we can't do this
2722     // optimization.  But it should always be the immediately previous
2723     // instruction, unless we needed bitcasts around the call.
2724     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2725       llvm::Instruction *prev = call->getPrevNode();
2726       assert(prev);
2727       if (isa<llvm::BitCastInst>(prev)) {
2728         prev = prev->getPrevNode();
2729         assert(prev);
2730       }
2731       assert(isa<llvm::CallInst>(prev));
2732       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
2733              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2734       InstsToKill.push_back(prev);
2735     }
2736   } else {
2737     return nullptr;
2738   }
2739 
2740   result = call->getArgOperand(0);
2741   InstsToKill.push_back(call);
2742 
2743   // Keep killing bitcasts, for sanity.  Note that we no longer care
2744   // about precise ordering as long as there's exactly one use.
2745   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2746     if (!bitcast->hasOneUse()) break;
2747     InstsToKill.push_back(bitcast);
2748     result = bitcast->getOperand(0);
2749   }
2750 
2751   // Delete all the unnecessary instructions, from latest to earliest.
2752   for (auto *I : InstsToKill)
2753     I->eraseFromParent();
2754 
2755   // Do the fused retain/autorelease if we were asked to.
2756   if (doRetainAutorelease)
2757     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2758 
2759   // Cast back to the result type.
2760   return CGF.Builder.CreateBitCast(result, resultType);
2761 }
2762 
2763 /// If this is a +1 of the value of an immutable 'self', remove it.
2764 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2765                                           llvm::Value *result) {
2766   // This is only applicable to a method with an immutable 'self'.
2767   const ObjCMethodDecl *method =
2768     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2769   if (!method) return nullptr;
2770   const VarDecl *self = method->getSelfDecl();
2771   if (!self->getType().isConstQualified()) return nullptr;
2772 
2773   // Look for a retain call.
2774   llvm::CallInst *retainCall =
2775     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2776   if (!retainCall || retainCall->getCalledOperand() !=
2777                          CGF.CGM.getObjCEntrypoints().objc_retain)
2778     return nullptr;
2779 
2780   // Look for an ordinary load of 'self'.
2781   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2782   llvm::LoadInst *load =
2783     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2784   if (!load || load->isAtomic() || load->isVolatile() ||
2785       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2786     return nullptr;
2787 
2788   // Okay!  Burn it all down.  This relies for correctness on the
2789   // assumption that the retain is emitted as part of the return and
2790   // that thereafter everything is used "linearly".
2791   llvm::Type *resultType = result->getType();
2792   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2793   assert(retainCall->use_empty());
2794   retainCall->eraseFromParent();
2795   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2796 
2797   return CGF.Builder.CreateBitCast(load, resultType);
2798 }
2799 
2800 /// Emit an ARC autorelease of the result of a function.
2801 ///
2802 /// \return the value to actually return from the function
2803 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2804                                             llvm::Value *result) {
2805   // If we're returning 'self', kill the initial retain.  This is a
2806   // heuristic attempt to "encourage correctness" in the really unfortunate
2807   // case where we have a return of self during a dealloc and we desperately
2808   // need to avoid the possible autorelease.
2809   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2810     return self;
2811 
2812   // At -O0, try to emit a fused retain/autorelease.
2813   if (CGF.shouldUseFusedARCCalls())
2814     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2815       return fused;
2816 
2817   return CGF.EmitARCAutoreleaseReturnValue(result);
2818 }
2819 
2820 /// Heuristically search for a dominating store to the return-value slot.
2821 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2822   // Check if a User is a store which pointerOperand is the ReturnValue.
2823   // We are looking for stores to the ReturnValue, not for stores of the
2824   // ReturnValue to some other location.
2825   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2826     auto *SI = dyn_cast<llvm::StoreInst>(U);
2827     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2828       return nullptr;
2829     // These aren't actually possible for non-coerced returns, and we
2830     // only care about non-coerced returns on this code path.
2831     assert(!SI->isAtomic() && !SI->isVolatile());
2832     return SI;
2833   };
2834   // If there are multiple uses of the return-value slot, just check
2835   // for something immediately preceding the IP.  Sometimes this can
2836   // happen with how we generate implicit-returns; it can also happen
2837   // with noreturn cleanups.
2838   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2839     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2840     if (IP->empty()) return nullptr;
2841     llvm::Instruction *I = &IP->back();
2842 
2843     // Skip lifetime markers
2844     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2845                                             IE = IP->rend();
2846          II != IE; ++II) {
2847       if (llvm::IntrinsicInst *Intrinsic =
2848               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2849         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2850           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2851           ++II;
2852           if (II == IE)
2853             break;
2854           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2855             continue;
2856         }
2857       }
2858       I = &*II;
2859       break;
2860     }
2861 
2862     return GetStoreIfValid(I);
2863   }
2864 
2865   llvm::StoreInst *store =
2866       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2867   if (!store) return nullptr;
2868 
2869   // Now do a first-and-dirty dominance check: just walk up the
2870   // single-predecessors chain from the current insertion point.
2871   llvm::BasicBlock *StoreBB = store->getParent();
2872   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2873   while (IP != StoreBB) {
2874     if (!(IP = IP->getSinglePredecessor()))
2875       return nullptr;
2876   }
2877 
2878   // Okay, the store's basic block dominates the insertion point; we
2879   // can do our thing.
2880   return store;
2881 }
2882 
2883 // Helper functions for EmitCMSEClearRecord
2884 
2885 // Set the bits corresponding to a field having width `BitWidth` and located at
2886 // offset `BitOffset` (from the least significant bit) within a storage unit of
2887 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
2888 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
2889 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
2890                         int BitWidth, int CharWidth) {
2891   assert(CharWidth <= 64);
2892   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
2893 
2894   int Pos = 0;
2895   if (BitOffset >= CharWidth) {
2896     Pos += BitOffset / CharWidth;
2897     BitOffset = BitOffset % CharWidth;
2898   }
2899 
2900   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
2901   if (BitOffset + BitWidth >= CharWidth) {
2902     Bits[Pos++] |= (Used << BitOffset) & Used;
2903     BitWidth -= CharWidth - BitOffset;
2904     BitOffset = 0;
2905   }
2906 
2907   while (BitWidth >= CharWidth) {
2908     Bits[Pos++] = Used;
2909     BitWidth -= CharWidth;
2910   }
2911 
2912   if (BitWidth > 0)
2913     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
2914 }
2915 
2916 // Set the bits corresponding to a field having width `BitWidth` and located at
2917 // offset `BitOffset` (from the least significant bit) within a storage unit of
2918 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
2919 // `Bits` corresponds to one target byte. Use target endian layout.
2920 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
2921                         int StorageSize, int BitOffset, int BitWidth,
2922                         int CharWidth, bool BigEndian) {
2923 
2924   SmallVector<uint64_t, 8> TmpBits(StorageSize);
2925   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
2926 
2927   if (BigEndian)
2928     std::reverse(TmpBits.begin(), TmpBits.end());
2929 
2930   for (uint64_t V : TmpBits)
2931     Bits[StorageOffset++] |= V;
2932 }
2933 
2934 static void setUsedBits(CodeGenModule &, QualType, int,
2935                         SmallVectorImpl<uint64_t> &);
2936 
2937 // Set the bits in `Bits`, which correspond to the value representations of
2938 // the actual members of the record type `RTy`. Note that this function does
2939 // not handle base classes, virtual tables, etc, since they cannot happen in
2940 // CMSE function arguments or return. The bit mask corresponds to the target
2941 // memory layout, i.e. it's endian dependent.
2942 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
2943                         SmallVectorImpl<uint64_t> &Bits) {
2944   ASTContext &Context = CGM.getContext();
2945   int CharWidth = Context.getCharWidth();
2946   const RecordDecl *RD = RTy->getDecl()->getDefinition();
2947   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
2948   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
2949 
2950   int Idx = 0;
2951   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
2952     const FieldDecl *F = *I;
2953 
2954     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
2955         F->getType()->isIncompleteArrayType())
2956       continue;
2957 
2958     if (F->isBitField()) {
2959       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
2960       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
2961                   BFI.StorageSize / CharWidth, BFI.Offset,
2962                   BFI.Size, CharWidth,
2963                   CGM.getDataLayout().isBigEndian());
2964       continue;
2965     }
2966 
2967     setUsedBits(CGM, F->getType(),
2968                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
2969   }
2970 }
2971 
2972 // Set the bits in `Bits`, which correspond to the value representations of
2973 // the elements of an array type `ATy`.
2974 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
2975                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
2976   const ASTContext &Context = CGM.getContext();
2977 
2978   QualType ETy = Context.getBaseElementType(ATy);
2979   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
2980   SmallVector<uint64_t, 4> TmpBits(Size);
2981   setUsedBits(CGM, ETy, 0, TmpBits);
2982 
2983   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
2984     auto Src = TmpBits.begin();
2985     auto Dst = Bits.begin() + Offset + I * Size;
2986     for (int J = 0; J < Size; ++J)
2987       *Dst++ |= *Src++;
2988   }
2989 }
2990 
2991 // Set the bits in `Bits`, which correspond to the value representations of
2992 // the type `QTy`.
2993 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
2994                         SmallVectorImpl<uint64_t> &Bits) {
2995   if (const auto *RTy = QTy->getAs<RecordType>())
2996     return setUsedBits(CGM, RTy, Offset, Bits);
2997 
2998   ASTContext &Context = CGM.getContext();
2999   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3000     return setUsedBits(CGM, ATy, Offset, Bits);
3001 
3002   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3003   if (Size <= 0)
3004     return;
3005 
3006   std::fill_n(Bits.begin() + Offset, Size,
3007               (uint64_t(1) << Context.getCharWidth()) - 1);
3008 }
3009 
3010 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3011                                    int Pos, int Size, int CharWidth,
3012                                    bool BigEndian) {
3013   assert(Size > 0);
3014   uint64_t Mask = 0;
3015   if (BigEndian) {
3016     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3017          ++P)
3018       Mask = (Mask << CharWidth) | *P;
3019   } else {
3020     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3021     do
3022       Mask = (Mask << CharWidth) | *--P;
3023     while (P != End);
3024   }
3025   return Mask;
3026 }
3027 
3028 // Emit code to clear the bits in a record, which aren't a part of any user
3029 // declared member, when the record is a function return.
3030 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3031                                                   llvm::IntegerType *ITy,
3032                                                   QualType QTy) {
3033   assert(Src->getType() == ITy);
3034   assert(ITy->getScalarSizeInBits() <= 64);
3035 
3036   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3037   int Size = DataLayout.getTypeStoreSize(ITy);
3038   SmallVector<uint64_t, 4> Bits(Size);
3039   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3040 
3041   int CharWidth = CGM.getContext().getCharWidth();
3042   uint64_t Mask =
3043       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3044 
3045   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3046 }
3047 
3048 // Emit code to clear the bits in a record, which aren't a part of any user
3049 // declared member, when the record is a function argument.
3050 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3051                                                   llvm::ArrayType *ATy,
3052                                                   QualType QTy) {
3053   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3054   int Size = DataLayout.getTypeStoreSize(ATy);
3055   SmallVector<uint64_t, 16> Bits(Size);
3056   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3057 
3058   // Clear each element of the LLVM array.
3059   int CharWidth = CGM.getContext().getCharWidth();
3060   int CharsPerElt =
3061       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3062   int MaskIndex = 0;
3063   llvm::Value *R = llvm::UndefValue::get(ATy);
3064   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3065     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3066                                        DataLayout.isBigEndian());
3067     MaskIndex += CharsPerElt;
3068     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3069     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3070     R = Builder.CreateInsertValue(R, T1, I);
3071   }
3072 
3073   return R;
3074 }
3075 
3076 // Emit code to clear the padding bits when returning or passing as an argument
3077 // a 16-bit floating-point value.
3078 llvm::Value *CodeGenFunction::EmitCMSEClearFP16(llvm::Value *Src) {
3079   llvm::Type *RetTy = Src->getType();
3080   assert(RetTy->isFloatTy() ||
3081          (RetTy->isIntegerTy() && RetTy->getIntegerBitWidth() == 32));
3082   if (RetTy->isFloatTy()) {
3083     llvm::Value *T0 = Builder.CreateBitCast(Src, Builder.getIntNTy(32));
3084     llvm::Value *T1 = Builder.CreateAnd(T0, 0xffff, "cmse.clear");
3085     return Builder.CreateBitCast(T1, RetTy);
3086   }
3087   return Builder.CreateAnd(Src, 0xffff, "cmse.clear");
3088 }
3089 
3090 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3091                                          bool EmitRetDbgLoc,
3092                                          SourceLocation EndLoc) {
3093   if (FI.isNoReturn()) {
3094     // Noreturn functions don't return.
3095     EmitUnreachable(EndLoc);
3096     return;
3097   }
3098 
3099   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3100     // Naked functions don't have epilogues.
3101     Builder.CreateUnreachable();
3102     return;
3103   }
3104 
3105   // Functions with no result always return void.
3106   if (!ReturnValue.isValid()) {
3107     Builder.CreateRetVoid();
3108     return;
3109   }
3110 
3111   llvm::DebugLoc RetDbgLoc;
3112   llvm::Value *RV = nullptr;
3113   QualType RetTy = FI.getReturnType();
3114   const ABIArgInfo &RetAI = FI.getReturnInfo();
3115 
3116   switch (RetAI.getKind()) {
3117   case ABIArgInfo::InAlloca:
3118     // Aggregrates get evaluated directly into the destination.  Sometimes we
3119     // need to return the sret value in a register, though.
3120     assert(hasAggregateEvaluationKind(RetTy));
3121     if (RetAI.getInAllocaSRet()) {
3122       llvm::Function::arg_iterator EI = CurFn->arg_end();
3123       --EI;
3124       llvm::Value *ArgStruct = &*EI;
3125       llvm::Value *SRet = Builder.CreateStructGEP(
3126           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3127       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3128     }
3129     break;
3130 
3131   case ABIArgInfo::Indirect: {
3132     auto AI = CurFn->arg_begin();
3133     if (RetAI.isSRetAfterThis())
3134       ++AI;
3135     switch (getEvaluationKind(RetTy)) {
3136     case TEK_Complex: {
3137       ComplexPairTy RT =
3138         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3139       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3140                          /*isInit*/ true);
3141       break;
3142     }
3143     case TEK_Aggregate:
3144       // Do nothing; aggregrates get evaluated directly into the destination.
3145       break;
3146     case TEK_Scalar:
3147       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3148                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3149                         /*isInit*/ true);
3150       break;
3151     }
3152     break;
3153   }
3154 
3155   case ABIArgInfo::Extend:
3156   case ABIArgInfo::Direct:
3157     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3158         RetAI.getDirectOffset() == 0) {
3159       // The internal return value temp always will have pointer-to-return-type
3160       // type, just do a load.
3161 
3162       // If there is a dominating store to ReturnValue, we can elide
3163       // the load, zap the store, and usually zap the alloca.
3164       if (llvm::StoreInst *SI =
3165               findDominatingStoreToReturnValue(*this)) {
3166         // Reuse the debug location from the store unless there is
3167         // cleanup code to be emitted between the store and return
3168         // instruction.
3169         if (EmitRetDbgLoc && !AutoreleaseResult)
3170           RetDbgLoc = SI->getDebugLoc();
3171         // Get the stored value and nuke the now-dead store.
3172         RV = SI->getValueOperand();
3173         SI->eraseFromParent();
3174 
3175       // Otherwise, we have to do a simple load.
3176       } else {
3177         RV = Builder.CreateLoad(ReturnValue);
3178       }
3179     } else {
3180       // If the value is offset in memory, apply the offset now.
3181       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3182 
3183       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3184     }
3185 
3186     // In ARC, end functions that return a retainable type with a call
3187     // to objc_autoreleaseReturnValue.
3188     if (AutoreleaseResult) {
3189 #ifndef NDEBUG
3190       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3191       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3192       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3193       // CurCodeDecl or BlockInfo.
3194       QualType RT;
3195 
3196       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3197         RT = FD->getReturnType();
3198       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3199         RT = MD->getReturnType();
3200       else if (isa<BlockDecl>(CurCodeDecl))
3201         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3202       else
3203         llvm_unreachable("Unexpected function/method type");
3204 
3205       assert(getLangOpts().ObjCAutoRefCount &&
3206              !FI.isReturnsRetained() &&
3207              RT->isObjCRetainableType());
3208 #endif
3209       RV = emitAutoreleaseOfResult(*this, RV);
3210     }
3211 
3212     break;
3213 
3214   case ABIArgInfo::Ignore:
3215     break;
3216 
3217   case ABIArgInfo::CoerceAndExpand: {
3218     auto coercionType = RetAI.getCoerceAndExpandType();
3219 
3220     // Load all of the coerced elements out into results.
3221     llvm::SmallVector<llvm::Value*, 4> results;
3222     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3223     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3224       auto coercedEltType = coercionType->getElementType(i);
3225       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3226         continue;
3227 
3228       auto eltAddr = Builder.CreateStructGEP(addr, i);
3229       auto elt = Builder.CreateLoad(eltAddr);
3230       results.push_back(elt);
3231     }
3232 
3233     // If we have one result, it's the single direct result type.
3234     if (results.size() == 1) {
3235       RV = results[0];
3236 
3237     // Otherwise, we need to make a first-class aggregate.
3238     } else {
3239       // Construct a return type that lacks padding elements.
3240       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3241 
3242       RV = llvm::UndefValue::get(returnType);
3243       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3244         RV = Builder.CreateInsertValue(RV, results[i], i);
3245       }
3246     }
3247     break;
3248   }
3249 
3250   case ABIArgInfo::Expand:
3251     llvm_unreachable("Invalid ABI kind for return argument");
3252   }
3253 
3254   llvm::Instruction *Ret;
3255   if (RV) {
3256     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3257       // For certain return types, clear padding bits, as they may reveal
3258       // sensitive information.
3259       const Type *RTy = RetTy.getCanonicalType().getTypePtr();
3260       if (RTy->isFloat16Type() || RTy->isHalfType()) {
3261         // 16-bit floating-point types are passed in a 32-bit integer or float,
3262         // with unspecified upper bits.
3263         RV = EmitCMSEClearFP16(RV);
3264       } else {
3265         // Small struct/union types are passed as integers.
3266         auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3267         if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3268           RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3269       }
3270     }
3271     EmitReturnValueCheck(RV);
3272     Ret = Builder.CreateRet(RV);
3273   } else {
3274     Ret = Builder.CreateRetVoid();
3275   }
3276 
3277   if (RetDbgLoc)
3278     Ret->setDebugLoc(std::move(RetDbgLoc));
3279 }
3280 
3281 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3282   // A current decl may not be available when emitting vtable thunks.
3283   if (!CurCodeDecl)
3284     return;
3285 
3286   // If the return block isn't reachable, neither is this check, so don't emit
3287   // it.
3288   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3289     return;
3290 
3291   ReturnsNonNullAttr *RetNNAttr = nullptr;
3292   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3293     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3294 
3295   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3296     return;
3297 
3298   // Prefer the returns_nonnull attribute if it's present.
3299   SourceLocation AttrLoc;
3300   SanitizerMask CheckKind;
3301   SanitizerHandler Handler;
3302   if (RetNNAttr) {
3303     assert(!requiresReturnValueNullabilityCheck() &&
3304            "Cannot check nullability and the nonnull attribute");
3305     AttrLoc = RetNNAttr->getLocation();
3306     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3307     Handler = SanitizerHandler::NonnullReturn;
3308   } else {
3309     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3310       if (auto *TSI = DD->getTypeSourceInfo())
3311         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3312           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3313     CheckKind = SanitizerKind::NullabilityReturn;
3314     Handler = SanitizerHandler::NullabilityReturn;
3315   }
3316 
3317   SanitizerScope SanScope(this);
3318 
3319   // Make sure the "return" source location is valid. If we're checking a
3320   // nullability annotation, make sure the preconditions for the check are met.
3321   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3322   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3323   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3324   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3325   if (requiresReturnValueNullabilityCheck())
3326     CanNullCheck =
3327         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3328   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3329   EmitBlock(Check);
3330 
3331   // Now do the null check.
3332   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3333   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3334   llvm::Value *DynamicData[] = {SLocPtr};
3335   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3336 
3337   EmitBlock(NoCheck);
3338 
3339 #ifndef NDEBUG
3340   // The return location should not be used after the check has been emitted.
3341   ReturnLocation = Address::invalid();
3342 #endif
3343 }
3344 
3345 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3346   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3347   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3348 }
3349 
3350 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3351                                           QualType Ty) {
3352   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3353   // placeholders.
3354   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3355   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3356   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3357 
3358   // FIXME: When we generate this IR in one pass, we shouldn't need
3359   // this win32-specific alignment hack.
3360   CharUnits Align = CharUnits::fromQuantity(4);
3361   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3362 
3363   return AggValueSlot::forAddr(Address(Placeholder, Align),
3364                                Ty.getQualifiers(),
3365                                AggValueSlot::IsNotDestructed,
3366                                AggValueSlot::DoesNotNeedGCBarriers,
3367                                AggValueSlot::IsNotAliased,
3368                                AggValueSlot::DoesNotOverlap);
3369 }
3370 
3371 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3372                                           const VarDecl *param,
3373                                           SourceLocation loc) {
3374   // StartFunction converted the ABI-lowered parameter(s) into a
3375   // local alloca.  We need to turn that into an r-value suitable
3376   // for EmitCall.
3377   Address local = GetAddrOfLocalVar(param);
3378 
3379   QualType type = param->getType();
3380 
3381   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3382     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3383   }
3384 
3385   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3386   // but the argument needs to be the original pointer.
3387   if (type->isReferenceType()) {
3388     args.add(RValue::get(Builder.CreateLoad(local)), type);
3389 
3390   // In ARC, move out of consumed arguments so that the release cleanup
3391   // entered by StartFunction doesn't cause an over-release.  This isn't
3392   // optimal -O0 code generation, but it should get cleaned up when
3393   // optimization is enabled.  This also assumes that delegate calls are
3394   // performed exactly once for a set of arguments, but that should be safe.
3395   } else if (getLangOpts().ObjCAutoRefCount &&
3396              param->hasAttr<NSConsumedAttr>() &&
3397              type->isObjCRetainableType()) {
3398     llvm::Value *ptr = Builder.CreateLoad(local);
3399     auto null =
3400       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3401     Builder.CreateStore(null, local);
3402     args.add(RValue::get(ptr), type);
3403 
3404   // For the most part, we just need to load the alloca, except that
3405   // aggregate r-values are actually pointers to temporaries.
3406   } else {
3407     args.add(convertTempToRValue(local, type, loc), type);
3408   }
3409 
3410   // Deactivate the cleanup for the callee-destructed param that was pushed.
3411   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3412       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3413       param->needsDestruction(getContext())) {
3414     EHScopeStack::stable_iterator cleanup =
3415         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3416     assert(cleanup.isValid() &&
3417            "cleanup for callee-destructed param not recorded");
3418     // This unreachable is a temporary marker which will be removed later.
3419     llvm::Instruction *isActive = Builder.CreateUnreachable();
3420     args.addArgCleanupDeactivation(cleanup, isActive);
3421   }
3422 }
3423 
3424 static bool isProvablyNull(llvm::Value *addr) {
3425   return isa<llvm::ConstantPointerNull>(addr);
3426 }
3427 
3428 /// Emit the actual writing-back of a writeback.
3429 static void emitWriteback(CodeGenFunction &CGF,
3430                           const CallArgList::Writeback &writeback) {
3431   const LValue &srcLV = writeback.Source;
3432   Address srcAddr = srcLV.getAddress(CGF);
3433   assert(!isProvablyNull(srcAddr.getPointer()) &&
3434          "shouldn't have writeback for provably null argument");
3435 
3436   llvm::BasicBlock *contBB = nullptr;
3437 
3438   // If the argument wasn't provably non-null, we need to null check
3439   // before doing the store.
3440   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3441                                               CGF.CGM.getDataLayout());
3442   if (!provablyNonNull) {
3443     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3444     contBB = CGF.createBasicBlock("icr.done");
3445 
3446     llvm::Value *isNull =
3447       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3448     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3449     CGF.EmitBlock(writebackBB);
3450   }
3451 
3452   // Load the value to writeback.
3453   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3454 
3455   // Cast it back, in case we're writing an id to a Foo* or something.
3456   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3457                                     "icr.writeback-cast");
3458 
3459   // Perform the writeback.
3460 
3461   // If we have a "to use" value, it's something we need to emit a use
3462   // of.  This has to be carefully threaded in: if it's done after the
3463   // release it's potentially undefined behavior (and the optimizer
3464   // will ignore it), and if it happens before the retain then the
3465   // optimizer could move the release there.
3466   if (writeback.ToUse) {
3467     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3468 
3469     // Retain the new value.  No need to block-copy here:  the block's
3470     // being passed up the stack.
3471     value = CGF.EmitARCRetainNonBlock(value);
3472 
3473     // Emit the intrinsic use here.
3474     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3475 
3476     // Load the old value (primitively).
3477     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3478 
3479     // Put the new value in place (primitively).
3480     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3481 
3482     // Release the old value.
3483     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3484 
3485   // Otherwise, we can just do a normal lvalue store.
3486   } else {
3487     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3488   }
3489 
3490   // Jump to the continuation block.
3491   if (!provablyNonNull)
3492     CGF.EmitBlock(contBB);
3493 }
3494 
3495 static void emitWritebacks(CodeGenFunction &CGF,
3496                            const CallArgList &args) {
3497   for (const auto &I : args.writebacks())
3498     emitWriteback(CGF, I);
3499 }
3500 
3501 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3502                                             const CallArgList &CallArgs) {
3503   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3504     CallArgs.getCleanupsToDeactivate();
3505   // Iterate in reverse to increase the likelihood of popping the cleanup.
3506   for (const auto &I : llvm::reverse(Cleanups)) {
3507     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3508     I.IsActiveIP->eraseFromParent();
3509   }
3510 }
3511 
3512 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3513   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3514     if (uop->getOpcode() == UO_AddrOf)
3515       return uop->getSubExpr();
3516   return nullptr;
3517 }
3518 
3519 /// Emit an argument that's being passed call-by-writeback.  That is,
3520 /// we are passing the address of an __autoreleased temporary; it
3521 /// might be copy-initialized with the current value of the given
3522 /// address, but it will definitely be copied out of after the call.
3523 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3524                              const ObjCIndirectCopyRestoreExpr *CRE) {
3525   LValue srcLV;
3526 
3527   // Make an optimistic effort to emit the address as an l-value.
3528   // This can fail if the argument expression is more complicated.
3529   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3530     srcLV = CGF.EmitLValue(lvExpr);
3531 
3532   // Otherwise, just emit it as a scalar.
3533   } else {
3534     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3535 
3536     QualType srcAddrType =
3537       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3538     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3539   }
3540   Address srcAddr = srcLV.getAddress(CGF);
3541 
3542   // The dest and src types don't necessarily match in LLVM terms
3543   // because of the crazy ObjC compatibility rules.
3544 
3545   llvm::PointerType *destType =
3546     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3547 
3548   // If the address is a constant null, just pass the appropriate null.
3549   if (isProvablyNull(srcAddr.getPointer())) {
3550     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3551              CRE->getType());
3552     return;
3553   }
3554 
3555   // Create the temporary.
3556   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3557                                       CGF.getPointerAlign(),
3558                                       "icr.temp");
3559   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3560   // and that cleanup will be conditional if we can't prove that the l-value
3561   // isn't null, so we need to register a dominating point so that the cleanups
3562   // system will make valid IR.
3563   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3564 
3565   // Zero-initialize it if we're not doing a copy-initialization.
3566   bool shouldCopy = CRE->shouldCopy();
3567   if (!shouldCopy) {
3568     llvm::Value *null =
3569       llvm::ConstantPointerNull::get(
3570         cast<llvm::PointerType>(destType->getElementType()));
3571     CGF.Builder.CreateStore(null, temp);
3572   }
3573 
3574   llvm::BasicBlock *contBB = nullptr;
3575   llvm::BasicBlock *originBB = nullptr;
3576 
3577   // If the address is *not* known to be non-null, we need to switch.
3578   llvm::Value *finalArgument;
3579 
3580   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3581                                               CGF.CGM.getDataLayout());
3582   if (provablyNonNull) {
3583     finalArgument = temp.getPointer();
3584   } else {
3585     llvm::Value *isNull =
3586       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3587 
3588     finalArgument = CGF.Builder.CreateSelect(isNull,
3589                                    llvm::ConstantPointerNull::get(destType),
3590                                              temp.getPointer(), "icr.argument");
3591 
3592     // If we need to copy, then the load has to be conditional, which
3593     // means we need control flow.
3594     if (shouldCopy) {
3595       originBB = CGF.Builder.GetInsertBlock();
3596       contBB = CGF.createBasicBlock("icr.cont");
3597       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3598       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3599       CGF.EmitBlock(copyBB);
3600       condEval.begin(CGF);
3601     }
3602   }
3603 
3604   llvm::Value *valueToUse = nullptr;
3605 
3606   // Perform a copy if necessary.
3607   if (shouldCopy) {
3608     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3609     assert(srcRV.isScalar());
3610 
3611     llvm::Value *src = srcRV.getScalarVal();
3612     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3613                                     "icr.cast");
3614 
3615     // Use an ordinary store, not a store-to-lvalue.
3616     CGF.Builder.CreateStore(src, temp);
3617 
3618     // If optimization is enabled, and the value was held in a
3619     // __strong variable, we need to tell the optimizer that this
3620     // value has to stay alive until we're doing the store back.
3621     // This is because the temporary is effectively unretained,
3622     // and so otherwise we can violate the high-level semantics.
3623     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3624         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3625       valueToUse = src;
3626     }
3627   }
3628 
3629   // Finish the control flow if we needed it.
3630   if (shouldCopy && !provablyNonNull) {
3631     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3632     CGF.EmitBlock(contBB);
3633 
3634     // Make a phi for the value to intrinsically use.
3635     if (valueToUse) {
3636       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3637                                                       "icr.to-use");
3638       phiToUse->addIncoming(valueToUse, copyBB);
3639       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3640                             originBB);
3641       valueToUse = phiToUse;
3642     }
3643 
3644     condEval.end(CGF);
3645   }
3646 
3647   args.addWriteback(srcLV, temp, valueToUse);
3648   args.add(RValue::get(finalArgument), CRE->getType());
3649 }
3650 
3651 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3652   assert(!StackBase);
3653 
3654   // Save the stack.
3655   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3656   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3657 }
3658 
3659 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3660   if (StackBase) {
3661     // Restore the stack after the call.
3662     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3663     CGF.Builder.CreateCall(F, StackBase);
3664   }
3665 }
3666 
3667 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3668                                           SourceLocation ArgLoc,
3669                                           AbstractCallee AC,
3670                                           unsigned ParmNum) {
3671   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3672                          SanOpts.has(SanitizerKind::NullabilityArg)))
3673     return;
3674 
3675   // The param decl may be missing in a variadic function.
3676   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3677   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3678 
3679   // Prefer the nonnull attribute if it's present.
3680   const NonNullAttr *NNAttr = nullptr;
3681   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3682     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3683 
3684   bool CanCheckNullability = false;
3685   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3686     auto Nullability = PVD->getType()->getNullability(getContext());
3687     CanCheckNullability = Nullability &&
3688                           *Nullability == NullabilityKind::NonNull &&
3689                           PVD->getTypeSourceInfo();
3690   }
3691 
3692   if (!NNAttr && !CanCheckNullability)
3693     return;
3694 
3695   SourceLocation AttrLoc;
3696   SanitizerMask CheckKind;
3697   SanitizerHandler Handler;
3698   if (NNAttr) {
3699     AttrLoc = NNAttr->getLocation();
3700     CheckKind = SanitizerKind::NonnullAttribute;
3701     Handler = SanitizerHandler::NonnullArg;
3702   } else {
3703     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3704     CheckKind = SanitizerKind::NullabilityArg;
3705     Handler = SanitizerHandler::NullabilityArg;
3706   }
3707 
3708   SanitizerScope SanScope(this);
3709   assert(RV.isScalar());
3710   llvm::Value *V = RV.getScalarVal();
3711   llvm::Value *Cond =
3712       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3713   llvm::Constant *StaticData[] = {
3714       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3715       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3716   };
3717   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3718 }
3719 
3720 void CodeGenFunction::EmitCallArgs(
3721     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3722     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3723     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3724   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3725 
3726   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3727   // because arguments are destroyed left to right in the callee. As a special
3728   // case, there are certain language constructs that require left-to-right
3729   // evaluation, and in those cases we consider the evaluation order requirement
3730   // to trump the "destruction order is reverse construction order" guarantee.
3731   bool LeftToRight =
3732       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3733           ? Order == EvaluationOrder::ForceLeftToRight
3734           : Order != EvaluationOrder::ForceRightToLeft;
3735 
3736   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3737                                          RValue EmittedArg) {
3738     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3739       return;
3740     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3741     if (PS == nullptr)
3742       return;
3743 
3744     const auto &Context = getContext();
3745     auto SizeTy = Context.getSizeType();
3746     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3747     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3748     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3749                                                      EmittedArg.getScalarVal(),
3750                                                      PS->isDynamic());
3751     Args.add(RValue::get(V), SizeTy);
3752     // If we're emitting args in reverse, be sure to do so with
3753     // pass_object_size, as well.
3754     if (!LeftToRight)
3755       std::swap(Args.back(), *(&Args.back() - 1));
3756   };
3757 
3758   // Insert a stack save if we're going to need any inalloca args.
3759   bool HasInAllocaArgs = false;
3760   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3761     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3762          I != E && !HasInAllocaArgs; ++I)
3763       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3764     if (HasInAllocaArgs) {
3765       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3766       Args.allocateArgumentMemory(*this);
3767     }
3768   }
3769 
3770   // Evaluate each argument in the appropriate order.
3771   size_t CallArgsStart = Args.size();
3772   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3773     unsigned Idx = LeftToRight ? I : E - I - 1;
3774     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3775     unsigned InitialArgSize = Args.size();
3776     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3777     // the argument and parameter match or the objc method is parameterized.
3778     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3779             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3780                                                 ArgTypes[Idx]) ||
3781             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3782              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3783            "Argument and parameter types don't match");
3784     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3785     // In particular, we depend on it being the last arg in Args, and the
3786     // objectsize bits depend on there only being one arg if !LeftToRight.
3787     assert(InitialArgSize + 1 == Args.size() &&
3788            "The code below depends on only adding one arg per EmitCallArg");
3789     (void)InitialArgSize;
3790     // Since pointer argument are never emitted as LValue, it is safe to emit
3791     // non-null argument check for r-value only.
3792     if (!Args.back().hasLValue()) {
3793       RValue RVArg = Args.back().getKnownRValue();
3794       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3795                           ParamsToSkip + Idx);
3796       // @llvm.objectsize should never have side-effects and shouldn't need
3797       // destruction/cleanups, so we can safely "emit" it after its arg,
3798       // regardless of right-to-leftness
3799       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3800     }
3801   }
3802 
3803   if (!LeftToRight) {
3804     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3805     // IR function.
3806     std::reverse(Args.begin() + CallArgsStart, Args.end());
3807   }
3808 }
3809 
3810 namespace {
3811 
3812 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3813   DestroyUnpassedArg(Address Addr, QualType Ty)
3814       : Addr(Addr), Ty(Ty) {}
3815 
3816   Address Addr;
3817   QualType Ty;
3818 
3819   void Emit(CodeGenFunction &CGF, Flags flags) override {
3820     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3821     if (DtorKind == QualType::DK_cxx_destructor) {
3822       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3823       assert(!Dtor->isTrivial());
3824       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3825                                 /*Delegating=*/false, Addr, Ty);
3826     } else {
3827       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3828     }
3829   }
3830 };
3831 
3832 struct DisableDebugLocationUpdates {
3833   CodeGenFunction &CGF;
3834   bool disabledDebugInfo;
3835   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3836     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3837       CGF.disableDebugInfo();
3838   }
3839   ~DisableDebugLocationUpdates() {
3840     if (disabledDebugInfo)
3841       CGF.enableDebugInfo();
3842   }
3843 };
3844 
3845 } // end anonymous namespace
3846 
3847 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3848   if (!HasLV)
3849     return RV;
3850   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3851   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3852                         LV.isVolatile());
3853   IsUsed = true;
3854   return RValue::getAggregate(Copy.getAddress(CGF));
3855 }
3856 
3857 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3858   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3859   if (!HasLV && RV.isScalar())
3860     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3861   else if (!HasLV && RV.isComplex())
3862     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3863   else {
3864     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3865     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3866     // We assume that call args are never copied into subobjects.
3867     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3868                           HasLV ? LV.isVolatileQualified()
3869                                 : RV.isVolatileQualified());
3870   }
3871   IsUsed = true;
3872 }
3873 
3874 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3875                                   QualType type) {
3876   DisableDebugLocationUpdates Dis(*this, E);
3877   if (const ObjCIndirectCopyRestoreExpr *CRE
3878         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3879     assert(getLangOpts().ObjCAutoRefCount);
3880     return emitWritebackArg(*this, args, CRE);
3881   }
3882 
3883   assert(type->isReferenceType() == E->isGLValue() &&
3884          "reference binding to unmaterialized r-value!");
3885 
3886   if (E->isGLValue()) {
3887     assert(E->getObjectKind() == OK_Ordinary);
3888     return args.add(EmitReferenceBindingToExpr(E), type);
3889   }
3890 
3891   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3892 
3893   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3894   // However, we still have to push an EH-only cleanup in case we unwind before
3895   // we make it to the call.
3896   if (HasAggregateEvalKind &&
3897       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3898     // If we're using inalloca, use the argument memory.  Otherwise, use a
3899     // temporary.
3900     AggValueSlot Slot;
3901     if (args.isUsingInAlloca())
3902       Slot = createPlaceholderSlot(*this, type);
3903     else
3904       Slot = CreateAggTemp(type, "agg.tmp");
3905 
3906     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3907     if (const auto *RD = type->getAsCXXRecordDecl())
3908       DestroyedInCallee = RD->hasNonTrivialDestructor();
3909     else
3910       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3911 
3912     if (DestroyedInCallee)
3913       Slot.setExternallyDestructed();
3914 
3915     EmitAggExpr(E, Slot);
3916     RValue RV = Slot.asRValue();
3917     args.add(RV, type);
3918 
3919     if (DestroyedInCallee && NeedsEHCleanup) {
3920       // Create a no-op GEP between the placeholder and the cleanup so we can
3921       // RAUW it successfully.  It also serves as a marker of the first
3922       // instruction where the cleanup is active.
3923       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3924                                               type);
3925       // This unreachable is a temporary marker which will be removed later.
3926       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3927       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3928     }
3929     return;
3930   }
3931 
3932   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3933       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3934     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3935     assert(L.isSimple());
3936     args.addUncopiedAggregate(L, type);
3937     return;
3938   }
3939 
3940   args.add(EmitAnyExprToTemp(E), type);
3941 }
3942 
3943 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3944   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3945   // implicitly widens null pointer constants that are arguments to varargs
3946   // functions to pointer-sized ints.
3947   if (!getTarget().getTriple().isOSWindows())
3948     return Arg->getType();
3949 
3950   if (Arg->getType()->isIntegerType() &&
3951       getContext().getTypeSize(Arg->getType()) <
3952           getContext().getTargetInfo().getPointerWidth(0) &&
3953       Arg->isNullPointerConstant(getContext(),
3954                                  Expr::NPC_ValueDependentIsNotNull)) {
3955     return getContext().getIntPtrType();
3956   }
3957 
3958   return Arg->getType();
3959 }
3960 
3961 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3962 // optimizer it can aggressively ignore unwind edges.
3963 void
3964 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3965   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3966       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3967     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3968                       CGM.getNoObjCARCExceptionsMetadata());
3969 }
3970 
3971 /// Emits a call to the given no-arguments nounwind runtime function.
3972 llvm::CallInst *
3973 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3974                                          const llvm::Twine &name) {
3975   return EmitNounwindRuntimeCall(callee, None, name);
3976 }
3977 
3978 /// Emits a call to the given nounwind runtime function.
3979 llvm::CallInst *
3980 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3981                                          ArrayRef<llvm::Value *> args,
3982                                          const llvm::Twine &name) {
3983   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3984   call->setDoesNotThrow();
3985   return call;
3986 }
3987 
3988 /// Emits a simple call (never an invoke) to the given no-arguments
3989 /// runtime function.
3990 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3991                                                  const llvm::Twine &name) {
3992   return EmitRuntimeCall(callee, None, name);
3993 }
3994 
3995 // Calls which may throw must have operand bundles indicating which funclet
3996 // they are nested within.
3997 SmallVector<llvm::OperandBundleDef, 1>
3998 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3999   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4000   // There is no need for a funclet operand bundle if we aren't inside a
4001   // funclet.
4002   if (!CurrentFuncletPad)
4003     return BundleList;
4004 
4005   // Skip intrinsics which cannot throw.
4006   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4007   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4008     return BundleList;
4009 
4010   BundleList.emplace_back("funclet", CurrentFuncletPad);
4011   return BundleList;
4012 }
4013 
4014 /// Emits a simple call (never an invoke) to the given runtime function.
4015 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4016                                                  ArrayRef<llvm::Value *> args,
4017                                                  const llvm::Twine &name) {
4018   llvm::CallInst *call = Builder.CreateCall(
4019       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4020   call->setCallingConv(getRuntimeCC());
4021   return call;
4022 }
4023 
4024 /// Emits a call or invoke to the given noreturn runtime function.
4025 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4026     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4027   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4028       getBundlesForFunclet(callee.getCallee());
4029 
4030   if (getInvokeDest()) {
4031     llvm::InvokeInst *invoke =
4032       Builder.CreateInvoke(callee,
4033                            getUnreachableBlock(),
4034                            getInvokeDest(),
4035                            args,
4036                            BundleList);
4037     invoke->setDoesNotReturn();
4038     invoke->setCallingConv(getRuntimeCC());
4039   } else {
4040     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4041     call->setDoesNotReturn();
4042     call->setCallingConv(getRuntimeCC());
4043     Builder.CreateUnreachable();
4044   }
4045 }
4046 
4047 /// Emits a call or invoke instruction to the given nullary runtime function.
4048 llvm::CallBase *
4049 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4050                                          const Twine &name) {
4051   return EmitRuntimeCallOrInvoke(callee, None, name);
4052 }
4053 
4054 /// Emits a call or invoke instruction to the given runtime function.
4055 llvm::CallBase *
4056 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4057                                          ArrayRef<llvm::Value *> args,
4058                                          const Twine &name) {
4059   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4060   call->setCallingConv(getRuntimeCC());
4061   return call;
4062 }
4063 
4064 /// Emits a call or invoke instruction to the given function, depending
4065 /// on the current state of the EH stack.
4066 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4067                                                   ArrayRef<llvm::Value *> Args,
4068                                                   const Twine &Name) {
4069   llvm::BasicBlock *InvokeDest = getInvokeDest();
4070   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4071       getBundlesForFunclet(Callee.getCallee());
4072 
4073   llvm::CallBase *Inst;
4074   if (!InvokeDest)
4075     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4076   else {
4077     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4078     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4079                                 Name);
4080     EmitBlock(ContBB);
4081   }
4082 
4083   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4084   // optimizer it can aggressively ignore unwind edges.
4085   if (CGM.getLangOpts().ObjCAutoRefCount)
4086     AddObjCARCExceptionMetadata(Inst);
4087 
4088   return Inst;
4089 }
4090 
4091 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4092                                                   llvm::Value *New) {
4093   DeferredReplacements.push_back(std::make_pair(Old, New));
4094 }
4095 
4096 namespace {
4097 
4098 /// Specify given \p NewAlign as the alignment of return value attribute. If
4099 /// such attribute already exists, re-set it to the maximal one of two options.
4100 LLVM_NODISCARD llvm::AttributeList
4101 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4102                                 const llvm::AttributeList &Attrs,
4103                                 llvm::Align NewAlign) {
4104   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4105   if (CurAlign >= NewAlign)
4106     return Attrs;
4107   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4108   return Attrs
4109       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4110                        llvm::Attribute::AttrKind::Alignment)
4111       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4112 }
4113 
4114 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4115 protected:
4116   CodeGenFunction &CGF;
4117 
4118   /// We do nothing if this is, or becomes, nullptr.
4119   const AlignedAttrTy *AA = nullptr;
4120 
4121   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4122   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4123 
4124   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4125       : CGF(CGF_) {
4126     if (!FuncDecl)
4127       return;
4128     AA = FuncDecl->getAttr<AlignedAttrTy>();
4129   }
4130 
4131 public:
4132   /// If we can, materialize the alignment as an attribute on return value.
4133   LLVM_NODISCARD llvm::AttributeList
4134   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4135     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4136       return Attrs;
4137     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4138     if (!AlignmentCI)
4139       return Attrs;
4140     // We may legitimately have non-power-of-2 alignment here.
4141     // If so, this is UB land, emit it via `@llvm.assume` instead.
4142     if (!AlignmentCI->getValue().isPowerOf2())
4143       return Attrs;
4144     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4145         CGF.getLLVMContext(), Attrs,
4146         llvm::Align(
4147             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4148     AA = nullptr; // We're done. Disallow doing anything else.
4149     return NewAttrs;
4150   }
4151 
4152   /// Emit alignment assumption.
4153   /// This is a general fallback that we take if either there is an offset,
4154   /// or the alignment is variable or we are sanitizing for alignment.
4155   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4156     if (!AA)
4157       return;
4158     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4159                                 AA->getLocation(), Alignment, OffsetCI);
4160     AA = nullptr; // We're done. Disallow doing anything else.
4161   }
4162 };
4163 
4164 /// Helper data structure to emit `AssumeAlignedAttr`.
4165 class AssumeAlignedAttrEmitter final
4166     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4167 public:
4168   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4169       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4170     if (!AA)
4171       return;
4172     // It is guaranteed that the alignment/offset are constants.
4173     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4174     if (Expr *Offset = AA->getOffset()) {
4175       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4176       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4177         OffsetCI = nullptr;
4178     }
4179   }
4180 };
4181 
4182 /// Helper data structure to emit `AllocAlignAttr`.
4183 class AllocAlignAttrEmitter final
4184     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4185 public:
4186   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4187                         const CallArgList &CallArgs)
4188       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4189     if (!AA)
4190       return;
4191     // Alignment may or may not be a constant, and that is okay.
4192     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4193                     .getRValue(CGF)
4194                     .getScalarVal();
4195   }
4196 };
4197 
4198 } // namespace
4199 
4200 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4201                                  const CGCallee &Callee,
4202                                  ReturnValueSlot ReturnValue,
4203                                  const CallArgList &CallArgs,
4204                                  llvm::CallBase **callOrInvoke,
4205                                  SourceLocation Loc) {
4206   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4207 
4208   assert(Callee.isOrdinary() || Callee.isVirtual());
4209 
4210   // Handle struct-return functions by passing a pointer to the
4211   // location that we would like to return into.
4212   QualType RetTy = CallInfo.getReturnType();
4213   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4214 
4215   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4216 
4217   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4218   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4219     // We can only guarantee that a function is called from the correct
4220     // context/function based on the appropriate target attributes,
4221     // so only check in the case where we have both always_inline and target
4222     // since otherwise we could be making a conditional call after a check for
4223     // the proper cpu features (and it won't cause code generation issues due to
4224     // function based code generation).
4225     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4226         TargetDecl->hasAttr<TargetAttr>())
4227       checkTargetFeatures(Loc, FD);
4228 
4229 #ifndef NDEBUG
4230   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4231     // For an inalloca varargs function, we don't expect CallInfo to match the
4232     // function pointer's type, because the inalloca struct a will have extra
4233     // fields in it for the varargs parameters.  Code later in this function
4234     // bitcasts the function pointer to the type derived from CallInfo.
4235     //
4236     // In other cases, we assert that the types match up (until pointers stop
4237     // having pointee types).
4238     llvm::Type *TypeFromVal;
4239     if (Callee.isVirtual())
4240       TypeFromVal = Callee.getVirtualFunctionType();
4241     else
4242       TypeFromVal =
4243           Callee.getFunctionPointer()->getType()->getPointerElementType();
4244     assert(IRFuncTy == TypeFromVal);
4245   }
4246 #endif
4247 
4248   // 1. Set up the arguments.
4249 
4250   // If we're using inalloca, insert the allocation after the stack save.
4251   // FIXME: Do this earlier rather than hacking it in here!
4252   Address ArgMemory = Address::invalid();
4253   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4254     const llvm::DataLayout &DL = CGM.getDataLayout();
4255     llvm::Instruction *IP = CallArgs.getStackBase();
4256     llvm::AllocaInst *AI;
4257     if (IP) {
4258       IP = IP->getNextNode();
4259       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4260                                 "argmem", IP);
4261     } else {
4262       AI = CreateTempAlloca(ArgStruct, "argmem");
4263     }
4264     auto Align = CallInfo.getArgStructAlignment();
4265     AI->setAlignment(Align.getAsAlign());
4266     AI->setUsedWithInAlloca(true);
4267     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4268     ArgMemory = Address(AI, Align);
4269   }
4270 
4271   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4272   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4273 
4274   // If the call returns a temporary with struct return, create a temporary
4275   // alloca to hold the result, unless one is given to us.
4276   Address SRetPtr = Address::invalid();
4277   Address SRetAlloca = Address::invalid();
4278   llvm::Value *UnusedReturnSizePtr = nullptr;
4279   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4280     if (!ReturnValue.isNull()) {
4281       SRetPtr = ReturnValue.getValue();
4282     } else {
4283       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4284       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4285         uint64_t size =
4286             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4287         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4288       }
4289     }
4290     if (IRFunctionArgs.hasSRetArg()) {
4291       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4292     } else if (RetAI.isInAlloca()) {
4293       Address Addr =
4294           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4295       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4296     }
4297   }
4298 
4299   Address swiftErrorTemp = Address::invalid();
4300   Address swiftErrorArg = Address::invalid();
4301 
4302   // When passing arguments using temporary allocas, we need to add the
4303   // appropriate lifetime markers. This vector keeps track of all the lifetime
4304   // markers that need to be ended right after the call.
4305   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4306 
4307   // Translate all of the arguments as necessary to match the IR lowering.
4308   assert(CallInfo.arg_size() == CallArgs.size() &&
4309          "Mismatch between function signature & arguments.");
4310   unsigned ArgNo = 0;
4311   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4312   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4313        I != E; ++I, ++info_it, ++ArgNo) {
4314     const ABIArgInfo &ArgInfo = info_it->info;
4315 
4316     // Insert a padding argument to ensure proper alignment.
4317     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4318       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4319           llvm::UndefValue::get(ArgInfo.getPaddingType());
4320 
4321     unsigned FirstIRArg, NumIRArgs;
4322     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4323 
4324     switch (ArgInfo.getKind()) {
4325     case ABIArgInfo::InAlloca: {
4326       assert(NumIRArgs == 0);
4327       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4328       if (I->isAggregate()) {
4329         Address Addr = I->hasLValue()
4330                            ? I->getKnownLValue().getAddress(*this)
4331                            : I->getKnownRValue().getAggregateAddress();
4332         llvm::Instruction *Placeholder =
4333             cast<llvm::Instruction>(Addr.getPointer());
4334 
4335         if (!ArgInfo.getInAllocaIndirect()) {
4336           // Replace the placeholder with the appropriate argument slot GEP.
4337           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4338           Builder.SetInsertPoint(Placeholder);
4339           Addr = Builder.CreateStructGEP(ArgMemory,
4340                                          ArgInfo.getInAllocaFieldIndex());
4341           Builder.restoreIP(IP);
4342         } else {
4343           // For indirect things such as overaligned structs, replace the
4344           // placeholder with a regular aggregate temporary alloca. Store the
4345           // address of this alloca into the struct.
4346           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4347           Address ArgSlot = Builder.CreateStructGEP(
4348               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4349           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4350         }
4351         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4352       } else if (ArgInfo.getInAllocaIndirect()) {
4353         // Make a temporary alloca and store the address of it into the argument
4354         // struct.
4355         Address Addr = CreateMemTempWithoutCast(
4356             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4357             "indirect-arg-temp");
4358         I->copyInto(*this, Addr);
4359         Address ArgSlot =
4360             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4361         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4362       } else {
4363         // Store the RValue into the argument struct.
4364         Address Addr =
4365             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4366         unsigned AS = Addr.getType()->getPointerAddressSpace();
4367         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4368         // There are some cases where a trivial bitcast is not avoidable.  The
4369         // definition of a type later in a translation unit may change it's type
4370         // from {}* to (%struct.foo*)*.
4371         if (Addr.getType() != MemType)
4372           Addr = Builder.CreateBitCast(Addr, MemType);
4373         I->copyInto(*this, Addr);
4374       }
4375       break;
4376     }
4377 
4378     case ABIArgInfo::Indirect: {
4379       assert(NumIRArgs == 1);
4380       if (!I->isAggregate()) {
4381         // Make a temporary alloca to pass the argument.
4382         Address Addr = CreateMemTempWithoutCast(
4383             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4384         IRCallArgs[FirstIRArg] = Addr.getPointer();
4385 
4386         I->copyInto(*this, Addr);
4387       } else {
4388         // We want to avoid creating an unnecessary temporary+copy here;
4389         // however, we need one in three cases:
4390         // 1. If the argument is not byval, and we are required to copy the
4391         //    source.  (This case doesn't occur on any common architecture.)
4392         // 2. If the argument is byval, RV is not sufficiently aligned, and
4393         //    we cannot force it to be sufficiently aligned.
4394         // 3. If the argument is byval, but RV is not located in default
4395         //    or alloca address space.
4396         Address Addr = I->hasLValue()
4397                            ? I->getKnownLValue().getAddress(*this)
4398                            : I->getKnownRValue().getAggregateAddress();
4399         llvm::Value *V = Addr.getPointer();
4400         CharUnits Align = ArgInfo.getIndirectAlign();
4401         const llvm::DataLayout *TD = &CGM.getDataLayout();
4402 
4403         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4404                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4405                     TD->getAllocaAddrSpace()) &&
4406                "indirect argument must be in alloca address space");
4407 
4408         bool NeedCopy = false;
4409 
4410         if (Addr.getAlignment() < Align &&
4411             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4412                 Align.getAsAlign()) {
4413           NeedCopy = true;
4414         } else if (I->hasLValue()) {
4415           auto LV = I->getKnownLValue();
4416           auto AS = LV.getAddressSpace();
4417 
4418           if (!ArgInfo.getIndirectByVal() ||
4419               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4420             NeedCopy = true;
4421           }
4422           if (!getLangOpts().OpenCL) {
4423             if ((ArgInfo.getIndirectByVal() &&
4424                 (AS != LangAS::Default &&
4425                  AS != CGM.getASTAllocaAddressSpace()))) {
4426               NeedCopy = true;
4427             }
4428           }
4429           // For OpenCL even if RV is located in default or alloca address space
4430           // we don't want to perform address space cast for it.
4431           else if ((ArgInfo.getIndirectByVal() &&
4432                     Addr.getType()->getAddressSpace() != IRFuncTy->
4433                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4434             NeedCopy = true;
4435           }
4436         }
4437 
4438         if (NeedCopy) {
4439           // Create an aligned temporary, and copy to it.
4440           Address AI = CreateMemTempWithoutCast(
4441               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4442           IRCallArgs[FirstIRArg] = AI.getPointer();
4443 
4444           // Emit lifetime markers for the temporary alloca.
4445           uint64_t ByvalTempElementSize =
4446               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4447           llvm::Value *LifetimeSize =
4448               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4449 
4450           // Add cleanup code to emit the end lifetime marker after the call.
4451           if (LifetimeSize) // In case we disabled lifetime markers.
4452             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4453 
4454           // Generate the copy.
4455           I->copyInto(*this, AI);
4456         } else {
4457           // Skip the extra memcpy call.
4458           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4459               CGM.getDataLayout().getAllocaAddrSpace());
4460           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4461               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4462               true);
4463         }
4464       }
4465       break;
4466     }
4467 
4468     case ABIArgInfo::Ignore:
4469       assert(NumIRArgs == 0);
4470       break;
4471 
4472     case ABIArgInfo::Extend:
4473     case ABIArgInfo::Direct: {
4474       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4475           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4476           ArgInfo.getDirectOffset() == 0) {
4477         assert(NumIRArgs == 1);
4478         llvm::Value *V;
4479         if (!I->isAggregate())
4480           V = I->getKnownRValue().getScalarVal();
4481         else
4482           V = Builder.CreateLoad(
4483               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4484                              : I->getKnownRValue().getAggregateAddress());
4485 
4486         // Implement swifterror by copying into a new swifterror argument.
4487         // We'll write back in the normal path out of the call.
4488         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4489               == ParameterABI::SwiftErrorResult) {
4490           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4491 
4492           QualType pointeeTy = I->Ty->getPointeeType();
4493           swiftErrorArg =
4494             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4495 
4496           swiftErrorTemp =
4497             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4498           V = swiftErrorTemp.getPointer();
4499           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4500 
4501           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4502           Builder.CreateStore(errorValue, swiftErrorTemp);
4503         }
4504 
4505         // We might have to widen integers, but we should never truncate.
4506         if (ArgInfo.getCoerceToType() != V->getType() &&
4507             V->getType()->isIntegerTy())
4508           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4509 
4510         // If the argument doesn't match, perform a bitcast to coerce it.  This
4511         // can happen due to trivial type mismatches.
4512         if (FirstIRArg < IRFuncTy->getNumParams() &&
4513             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4514           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4515 
4516         IRCallArgs[FirstIRArg] = V;
4517         break;
4518       }
4519 
4520       // FIXME: Avoid the conversion through memory if possible.
4521       Address Src = Address::invalid();
4522       if (!I->isAggregate()) {
4523         Src = CreateMemTemp(I->Ty, "coerce");
4524         I->copyInto(*this, Src);
4525       } else {
4526         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4527                              : I->getKnownRValue().getAggregateAddress();
4528       }
4529 
4530       // If the value is offset in memory, apply the offset now.
4531       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4532 
4533       // Fast-isel and the optimizer generally like scalar values better than
4534       // FCAs, so we flatten them if this is safe to do for this argument.
4535       llvm::StructType *STy =
4536             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4537       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4538         llvm::Type *SrcTy = Src.getElementType();
4539         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4540         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4541 
4542         // If the source type is smaller than the destination type of the
4543         // coerce-to logic, copy the source value into a temp alloca the size
4544         // of the destination type to allow loading all of it. The bits past
4545         // the source value are left undef.
4546         if (SrcSize < DstSize) {
4547           Address TempAlloca
4548             = CreateTempAlloca(STy, Src.getAlignment(),
4549                                Src.getName() + ".coerce");
4550           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4551           Src = TempAlloca;
4552         } else {
4553           Src = Builder.CreateBitCast(Src,
4554                                       STy->getPointerTo(Src.getAddressSpace()));
4555         }
4556 
4557         assert(NumIRArgs == STy->getNumElements());
4558         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4559           Address EltPtr = Builder.CreateStructGEP(Src, i);
4560           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4561           IRCallArgs[FirstIRArg + i] = LI;
4562         }
4563       } else {
4564         // In the simple case, just pass the coerced loaded value.
4565         assert(NumIRArgs == 1);
4566         llvm::Value *Load =
4567             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4568 
4569         if (CallInfo.isCmseNSCall()) {
4570           // For certain parameter types, clear padding bits, as they may reveal
4571           // sensitive information.
4572           const Type *PTy = I->Ty.getCanonicalType().getTypePtr();
4573           // 16-bit floating-point types are passed in a 32-bit integer or
4574           // float, with unspecified upper bits.
4575           if (PTy->isFloat16Type() || PTy->isHalfType()) {
4576             Load = EmitCMSEClearFP16(Load);
4577           } else {
4578             // Small struct/union types are passed as integer arrays.
4579             auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4580             if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4581               Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4582           }
4583         }
4584         IRCallArgs[FirstIRArg] = Load;
4585       }
4586 
4587       break;
4588     }
4589 
4590     case ABIArgInfo::CoerceAndExpand: {
4591       auto coercionType = ArgInfo.getCoerceAndExpandType();
4592       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4593 
4594       llvm::Value *tempSize = nullptr;
4595       Address addr = Address::invalid();
4596       Address AllocaAddr = Address::invalid();
4597       if (I->isAggregate()) {
4598         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4599                               : I->getKnownRValue().getAggregateAddress();
4600 
4601       } else {
4602         RValue RV = I->getKnownRValue();
4603         assert(RV.isScalar()); // complex should always just be direct
4604 
4605         llvm::Type *scalarType = RV.getScalarVal()->getType();
4606         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4607         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4608 
4609         // Materialize to a temporary.
4610         addr = CreateTempAlloca(
4611             RV.getScalarVal()->getType(),
4612             CharUnits::fromQuantity(std::max(
4613                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4614             "tmp",
4615             /*ArraySize=*/nullptr, &AllocaAddr);
4616         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4617 
4618         Builder.CreateStore(RV.getScalarVal(), addr);
4619       }
4620 
4621       addr = Builder.CreateElementBitCast(addr, coercionType);
4622 
4623       unsigned IRArgPos = FirstIRArg;
4624       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4625         llvm::Type *eltType = coercionType->getElementType(i);
4626         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4627         Address eltAddr = Builder.CreateStructGEP(addr, i);
4628         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4629         IRCallArgs[IRArgPos++] = elt;
4630       }
4631       assert(IRArgPos == FirstIRArg + NumIRArgs);
4632 
4633       if (tempSize) {
4634         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4635       }
4636 
4637       break;
4638     }
4639 
4640     case ABIArgInfo::Expand:
4641       unsigned IRArgPos = FirstIRArg;
4642       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4643       assert(IRArgPos == FirstIRArg + NumIRArgs);
4644       break;
4645     }
4646   }
4647 
4648   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4649   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4650 
4651   // If we're using inalloca, set up that argument.
4652   if (ArgMemory.isValid()) {
4653     llvm::Value *Arg = ArgMemory.getPointer();
4654     if (CallInfo.isVariadic()) {
4655       // When passing non-POD arguments by value to variadic functions, we will
4656       // end up with a variadic prototype and an inalloca call site.  In such
4657       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4658       // the callee.
4659       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4660       CalleePtr =
4661           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4662     } else {
4663       llvm::Type *LastParamTy =
4664           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4665       if (Arg->getType() != LastParamTy) {
4666 #ifndef NDEBUG
4667         // Assert that these structs have equivalent element types.
4668         llvm::StructType *FullTy = CallInfo.getArgStruct();
4669         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4670             cast<llvm::PointerType>(LastParamTy)->getElementType());
4671         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4672         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4673                                                 DE = DeclaredTy->element_end(),
4674                                                 FI = FullTy->element_begin();
4675              DI != DE; ++DI, ++FI)
4676           assert(*DI == *FI);
4677 #endif
4678         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4679       }
4680     }
4681     assert(IRFunctionArgs.hasInallocaArg());
4682     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4683   }
4684 
4685   // 2. Prepare the function pointer.
4686 
4687   // If the callee is a bitcast of a non-variadic function to have a
4688   // variadic function pointer type, check to see if we can remove the
4689   // bitcast.  This comes up with unprototyped functions.
4690   //
4691   // This makes the IR nicer, but more importantly it ensures that we
4692   // can inline the function at -O0 if it is marked always_inline.
4693   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4694                                    llvm::Value *Ptr) -> llvm::Function * {
4695     if (!CalleeFT->isVarArg())
4696       return nullptr;
4697 
4698     // Get underlying value if it's a bitcast
4699     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4700       if (CE->getOpcode() == llvm::Instruction::BitCast)
4701         Ptr = CE->getOperand(0);
4702     }
4703 
4704     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4705     if (!OrigFn)
4706       return nullptr;
4707 
4708     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4709 
4710     // If the original type is variadic, or if any of the component types
4711     // disagree, we cannot remove the cast.
4712     if (OrigFT->isVarArg() ||
4713         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4714         OrigFT->getReturnType() != CalleeFT->getReturnType())
4715       return nullptr;
4716 
4717     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4718       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4719         return nullptr;
4720 
4721     return OrigFn;
4722   };
4723 
4724   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4725     CalleePtr = OrigFn;
4726     IRFuncTy = OrigFn->getFunctionType();
4727   }
4728 
4729   // 3. Perform the actual call.
4730 
4731   // Deactivate any cleanups that we're supposed to do immediately before
4732   // the call.
4733   if (!CallArgs.getCleanupsToDeactivate().empty())
4734     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4735 
4736   // Assert that the arguments we computed match up.  The IR verifier
4737   // will catch this, but this is a common enough source of problems
4738   // during IRGen changes that it's way better for debugging to catch
4739   // it ourselves here.
4740 #ifndef NDEBUG
4741   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4742   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4743     // Inalloca argument can have different type.
4744     if (IRFunctionArgs.hasInallocaArg() &&
4745         i == IRFunctionArgs.getInallocaArgNo())
4746       continue;
4747     if (i < IRFuncTy->getNumParams())
4748       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4749   }
4750 #endif
4751 
4752   // Update the largest vector width if any arguments have vector types.
4753   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4754     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4755       LargestVectorWidth =
4756           std::max((uint64_t)LargestVectorWidth,
4757                    VT->getPrimitiveSizeInBits().getKnownMinSize());
4758   }
4759 
4760   // Compute the calling convention and attributes.
4761   unsigned CallingConv;
4762   llvm::AttributeList Attrs;
4763   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4764                              Callee.getAbstractInfo(), Attrs, CallingConv,
4765                              /*AttrOnCallSite=*/true);
4766 
4767   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4768     if (FD->usesFPIntrin())
4769       // All calls within a strictfp function are marked strictfp
4770       Attrs =
4771         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4772                            llvm::Attribute::StrictFP);
4773 
4774   // Apply some call-site-specific attributes.
4775   // TODO: work this into building the attribute set.
4776 
4777   // Apply always_inline to all calls within flatten functions.
4778   // FIXME: should this really take priority over __try, below?
4779   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4780       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4781     Attrs =
4782         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4783                            llvm::Attribute::AlwaysInline);
4784   }
4785 
4786   // Disable inlining inside SEH __try blocks.
4787   if (isSEHTryScope()) {
4788     Attrs =
4789         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4790                            llvm::Attribute::NoInline);
4791   }
4792 
4793   // Decide whether to use a call or an invoke.
4794   bool CannotThrow;
4795   if (currentFunctionUsesSEHTry()) {
4796     // SEH cares about asynchronous exceptions, so everything can "throw."
4797     CannotThrow = false;
4798   } else if (isCleanupPadScope() &&
4799              EHPersonality::get(*this).isMSVCXXPersonality()) {
4800     // The MSVC++ personality will implicitly terminate the program if an
4801     // exception is thrown during a cleanup outside of a try/catch.
4802     // We don't need to model anything in IR to get this behavior.
4803     CannotThrow = true;
4804   } else {
4805     // Otherwise, nounwind call sites will never throw.
4806     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4807                                      llvm::Attribute::NoUnwind);
4808   }
4809 
4810   // If we made a temporary, be sure to clean up after ourselves. Note that we
4811   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4812   // pop this cleanup later on. Being eager about this is OK, since this
4813   // temporary is 'invisible' outside of the callee.
4814   if (UnusedReturnSizePtr)
4815     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4816                                          UnusedReturnSizePtr);
4817 
4818   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4819 
4820   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4821       getBundlesForFunclet(CalleePtr);
4822 
4823   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4824     if (FD->usesFPIntrin())
4825       // All calls within a strictfp function are marked strictfp
4826       Attrs =
4827         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4828                            llvm::Attribute::StrictFP);
4829 
4830   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
4831   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4832 
4833   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
4834   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4835 
4836   // Emit the actual call/invoke instruction.
4837   llvm::CallBase *CI;
4838   if (!InvokeDest) {
4839     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4840   } else {
4841     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4842     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4843                               BundleList);
4844     EmitBlock(Cont);
4845   }
4846   if (callOrInvoke)
4847     *callOrInvoke = CI;
4848 
4849   // If this is within a function that has the guard(nocf) attribute and is an
4850   // indirect call, add the "guard_nocf" attribute to this call to indicate that
4851   // Control Flow Guard checks should not be added, even if the call is inlined.
4852   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4853     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4854       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4855         Attrs = Attrs.addAttribute(
4856             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4857     }
4858   }
4859 
4860   // Apply the attributes and calling convention.
4861   CI->setAttributes(Attrs);
4862   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4863 
4864   // Apply various metadata.
4865 
4866   if (!CI->getType()->isVoidTy())
4867     CI->setName("call");
4868 
4869   // Update largest vector width from the return type.
4870   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4871     LargestVectorWidth =
4872         std::max((uint64_t)LargestVectorWidth,
4873                  VT->getPrimitiveSizeInBits().getKnownMinSize());
4874 
4875   // Insert instrumentation or attach profile metadata at indirect call sites.
4876   // For more details, see the comment before the definition of
4877   // IPVK_IndirectCallTarget in InstrProfData.inc.
4878   if (!CI->getCalledFunction())
4879     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4880                      CI, CalleePtr);
4881 
4882   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4883   // optimizer it can aggressively ignore unwind edges.
4884   if (CGM.getLangOpts().ObjCAutoRefCount)
4885     AddObjCARCExceptionMetadata(CI);
4886 
4887   // Suppress tail calls if requested.
4888   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4889     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4890       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4891   }
4892 
4893   // Add metadata for calls to MSAllocator functions
4894   if (getDebugInfo() && TargetDecl &&
4895       TargetDecl->hasAttr<MSAllocatorAttr>())
4896     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc);
4897 
4898   // 4. Finish the call.
4899 
4900   // If the call doesn't return, finish the basic block and clear the
4901   // insertion point; this allows the rest of IRGen to discard
4902   // unreachable code.
4903   if (CI->doesNotReturn()) {
4904     if (UnusedReturnSizePtr)
4905       PopCleanupBlock();
4906 
4907     // Strip away the noreturn attribute to better diagnose unreachable UB.
4908     if (SanOpts.has(SanitizerKind::Unreachable)) {
4909       // Also remove from function since CallBase::hasFnAttr additionally checks
4910       // attributes of the called function.
4911       if (auto *F = CI->getCalledFunction())
4912         F->removeFnAttr(llvm::Attribute::NoReturn);
4913       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4914                           llvm::Attribute::NoReturn);
4915 
4916       // Avoid incompatibility with ASan which relies on the `noreturn`
4917       // attribute to insert handler calls.
4918       if (SanOpts.hasOneOf(SanitizerKind::Address |
4919                            SanitizerKind::KernelAddress)) {
4920         SanitizerScope SanScope(this);
4921         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4922         Builder.SetInsertPoint(CI);
4923         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4924         llvm::FunctionCallee Fn =
4925             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4926         EmitNounwindRuntimeCall(Fn);
4927       }
4928     }
4929 
4930     EmitUnreachable(Loc);
4931     Builder.ClearInsertionPoint();
4932 
4933     // FIXME: For now, emit a dummy basic block because expr emitters in
4934     // generally are not ready to handle emitting expressions at unreachable
4935     // points.
4936     EnsureInsertPoint();
4937 
4938     // Return a reasonable RValue.
4939     return GetUndefRValue(RetTy);
4940   }
4941 
4942   // Perform the swifterror writeback.
4943   if (swiftErrorTemp.isValid()) {
4944     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4945     Builder.CreateStore(errorResult, swiftErrorArg);
4946   }
4947 
4948   // Emit any call-associated writebacks immediately.  Arguably this
4949   // should happen after any return-value munging.
4950   if (CallArgs.hasWritebacks())
4951     emitWritebacks(*this, CallArgs);
4952 
4953   // The stack cleanup for inalloca arguments has to run out of the normal
4954   // lexical order, so deactivate it and run it manually here.
4955   CallArgs.freeArgumentMemory(*this);
4956 
4957   // Extract the return value.
4958   RValue Ret = [&] {
4959     switch (RetAI.getKind()) {
4960     case ABIArgInfo::CoerceAndExpand: {
4961       auto coercionType = RetAI.getCoerceAndExpandType();
4962 
4963       Address addr = SRetPtr;
4964       addr = Builder.CreateElementBitCast(addr, coercionType);
4965 
4966       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4967       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4968 
4969       unsigned unpaddedIndex = 0;
4970       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4971         llvm::Type *eltType = coercionType->getElementType(i);
4972         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4973         Address eltAddr = Builder.CreateStructGEP(addr, i);
4974         llvm::Value *elt = CI;
4975         if (requiresExtract)
4976           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4977         else
4978           assert(unpaddedIndex == 0);
4979         Builder.CreateStore(elt, eltAddr);
4980       }
4981       // FALLTHROUGH
4982       LLVM_FALLTHROUGH;
4983     }
4984 
4985     case ABIArgInfo::InAlloca:
4986     case ABIArgInfo::Indirect: {
4987       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4988       if (UnusedReturnSizePtr)
4989         PopCleanupBlock();
4990       return ret;
4991     }
4992 
4993     case ABIArgInfo::Ignore:
4994       // If we are ignoring an argument that had a result, make sure to
4995       // construct the appropriate return value for our caller.
4996       return GetUndefRValue(RetTy);
4997 
4998     case ABIArgInfo::Extend:
4999     case ABIArgInfo::Direct: {
5000       llvm::Type *RetIRTy = ConvertType(RetTy);
5001       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5002         switch (getEvaluationKind(RetTy)) {
5003         case TEK_Complex: {
5004           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5005           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5006           return RValue::getComplex(std::make_pair(Real, Imag));
5007         }
5008         case TEK_Aggregate: {
5009           Address DestPtr = ReturnValue.getValue();
5010           bool DestIsVolatile = ReturnValue.isVolatile();
5011 
5012           if (!DestPtr.isValid()) {
5013             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5014             DestIsVolatile = false;
5015           }
5016           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
5017           return RValue::getAggregate(DestPtr);
5018         }
5019         case TEK_Scalar: {
5020           // If the argument doesn't match, perform a bitcast to coerce it.  This
5021           // can happen due to trivial type mismatches.
5022           llvm::Value *V = CI;
5023           if (V->getType() != RetIRTy)
5024             V = Builder.CreateBitCast(V, RetIRTy);
5025           return RValue::get(V);
5026         }
5027         }
5028         llvm_unreachable("bad evaluation kind");
5029       }
5030 
5031       Address DestPtr = ReturnValue.getValue();
5032       bool DestIsVolatile = ReturnValue.isVolatile();
5033 
5034       if (!DestPtr.isValid()) {
5035         DestPtr = CreateMemTemp(RetTy, "coerce");
5036         DestIsVolatile = false;
5037       }
5038 
5039       // If the value is offset in memory, apply the offset now.
5040       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5041       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5042 
5043       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5044     }
5045 
5046     case ABIArgInfo::Expand:
5047       llvm_unreachable("Invalid ABI kind for return argument");
5048     }
5049 
5050     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5051   } ();
5052 
5053   // Emit the assume_aligned check on the return value.
5054   if (Ret.isScalar() && TargetDecl) {
5055     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5056     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5057   }
5058 
5059   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5060   // we can't use the full cleanup mechanism.
5061   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5062     LifetimeEnd.Emit(*this, /*Flags=*/{});
5063 
5064   if (!ReturnValue.isExternallyDestructed() &&
5065       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5066     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5067                 RetTy);
5068 
5069   return Ret;
5070 }
5071 
5072 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5073   if (isVirtual()) {
5074     const CallExpr *CE = getVirtualCallExpr();
5075     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5076         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5077         CE ? CE->getBeginLoc() : SourceLocation());
5078   }
5079 
5080   return *this;
5081 }
5082 
5083 /* VarArg handling */
5084 
5085 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5086   VAListAddr = VE->isMicrosoftABI()
5087                  ? EmitMSVAListRef(VE->getSubExpr())
5088                  : EmitVAListRef(VE->getSubExpr());
5089   QualType Ty = VE->getType();
5090   if (VE->isMicrosoftABI())
5091     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5092   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5093 }
5094