1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 using namespace clang;
43 using namespace CodeGen;
44 
45 /***/
46 
47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
48   switch (CC) {
49   default: return llvm::CallingConv::C;
50   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
51   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
52   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
53   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
54   case CC_Win64: return llvm::CallingConv::Win64;
55   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
56   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
57   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
58   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
59   // TODO: Add support for __pascal to LLVM.
60   case CC_X86Pascal: return llvm::CallingConv::C;
61   // TODO: Add support for __vectorcall to LLVM.
62   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
63   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
64   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
65   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
66   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
67   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
68   case CC_Swift: return llvm::CallingConv::Swift;
69   }
70 }
71 
72 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
73 /// qualification. Either or both of RD and MD may be null. A null RD indicates
74 /// that there is no meaningful 'this' type, and a null MD can occur when
75 /// calling a method pointer.
76 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
77                                          const CXXMethodDecl *MD) {
78   QualType RecTy;
79   if (RD)
80     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
81   else
82     RecTy = Context.VoidTy;
83 
84   if (MD)
85     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
86   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
87 }
88 
89 /// Returns the canonical formal type of the given C++ method.
90 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
91   return MD->getType()->getCanonicalTypeUnqualified()
92            .getAs<FunctionProtoType>();
93 }
94 
95 /// Returns the "extra-canonicalized" return type, which discards
96 /// qualifiers on the return type.  Codegen doesn't care about them,
97 /// and it makes ABI code a little easier to be able to assume that
98 /// all parameter and return types are top-level unqualified.
99 static CanQualType GetReturnType(QualType RetTy) {
100   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
101 }
102 
103 /// Arrange the argument and result information for a value of the given
104 /// unprototyped freestanding function type.
105 const CGFunctionInfo &
106 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
107   // When translating an unprototyped function type, always use a
108   // variadic type.
109   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
110                                  /*instanceMethod=*/false,
111                                  /*chainCall=*/false, None,
112                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
113 }
114 
115 static void addExtParameterInfosForCall(
116          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
117                                         const FunctionProtoType *proto,
118                                         unsigned prefixArgs,
119                                         unsigned totalArgs) {
120   assert(proto->hasExtParameterInfos());
121   assert(paramInfos.size() <= prefixArgs);
122   assert(proto->getNumParams() + prefixArgs <= totalArgs);
123 
124   paramInfos.reserve(totalArgs);
125 
126   // Add default infos for any prefix args that don't already have infos.
127   paramInfos.resize(prefixArgs);
128 
129   // Add infos for the prototype.
130   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
131     paramInfos.push_back(ParamInfo);
132     // pass_object_size params have no parameter info.
133     if (ParamInfo.hasPassObjectSize())
134       paramInfos.emplace_back();
135   }
136 
137   assert(paramInfos.size() <= totalArgs &&
138          "Did we forget to insert pass_object_size args?");
139   // Add default infos for the variadic and/or suffix arguments.
140   paramInfos.resize(totalArgs);
141 }
142 
143 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
144 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
145 static void appendParameterTypes(const CodeGenTypes &CGT,
146                                  SmallVectorImpl<CanQualType> &prefix,
147               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
148                                  CanQual<FunctionProtoType> FPT) {
149   // Fast path: don't touch param info if we don't need to.
150   if (!FPT->hasExtParameterInfos()) {
151     assert(paramInfos.empty() &&
152            "We have paramInfos, but the prototype doesn't?");
153     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
154     return;
155   }
156 
157   unsigned PrefixSize = prefix.size();
158   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
159   // parameters; the only thing that can change this is the presence of
160   // pass_object_size. So, we preallocate for the common case.
161   prefix.reserve(prefix.size() + FPT->getNumParams());
162 
163   auto ExtInfos = FPT->getExtParameterInfos();
164   assert(ExtInfos.size() == FPT->getNumParams());
165   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
166     prefix.push_back(FPT->getParamType(I));
167     if (ExtInfos[I].hasPassObjectSize())
168       prefix.push_back(CGT.getContext().getSizeType());
169   }
170 
171   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
172                               prefix.size());
173 }
174 
175 /// Arrange the LLVM function layout for a value of the given function
176 /// type, on top of any implicit parameters already stored.
177 static const CGFunctionInfo &
178 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
179                         SmallVectorImpl<CanQualType> &prefix,
180                         CanQual<FunctionProtoType> FTP) {
181   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
182   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
183   // FIXME: Kill copy.
184   appendParameterTypes(CGT, prefix, paramInfos, FTP);
185   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
186 
187   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
188                                      /*chainCall=*/false, prefix,
189                                      FTP->getExtInfo(), paramInfos,
190                                      Required);
191 }
192 
193 /// Arrange the argument and result information for a value of the
194 /// given freestanding function type.
195 const CGFunctionInfo &
196 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
197   SmallVector<CanQualType, 16> argTypes;
198   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
199                                    FTP);
200 }
201 
202 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
203                                                bool IsWindows) {
204   // Set the appropriate calling convention for the Function.
205   if (D->hasAttr<StdCallAttr>())
206     return CC_X86StdCall;
207 
208   if (D->hasAttr<FastCallAttr>())
209     return CC_X86FastCall;
210 
211   if (D->hasAttr<RegCallAttr>())
212     return CC_X86RegCall;
213 
214   if (D->hasAttr<ThisCallAttr>())
215     return CC_X86ThisCall;
216 
217   if (D->hasAttr<VectorCallAttr>())
218     return CC_X86VectorCall;
219 
220   if (D->hasAttr<PascalAttr>())
221     return CC_X86Pascal;
222 
223   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
224     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
225 
226   if (D->hasAttr<AArch64VectorPcsAttr>())
227     return CC_AArch64VectorCall;
228 
229   if (D->hasAttr<IntelOclBiccAttr>())
230     return CC_IntelOclBicc;
231 
232   if (D->hasAttr<MSABIAttr>())
233     return IsWindows ? CC_C : CC_Win64;
234 
235   if (D->hasAttr<SysVABIAttr>())
236     return IsWindows ? CC_X86_64SysV : CC_C;
237 
238   if (D->hasAttr<PreserveMostAttr>())
239     return CC_PreserveMost;
240 
241   if (D->hasAttr<PreserveAllAttr>())
242     return CC_PreserveAll;
243 
244   return CC_C;
245 }
246 
247 /// Arrange the argument and result information for a call to an
248 /// unknown C++ non-static member function of the given abstract type.
249 /// (A null RD means we don't have any meaningful "this" argument type,
250 ///  so fall back to a generic pointer type).
251 /// The member function must be an ordinary function, i.e. not a
252 /// constructor or destructor.
253 const CGFunctionInfo &
254 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
255                                    const FunctionProtoType *FTP,
256                                    const CXXMethodDecl *MD) {
257   SmallVector<CanQualType, 16> argTypes;
258 
259   // Add the 'this' pointer.
260   argTypes.push_back(DeriveThisType(RD, MD));
261 
262   return ::arrangeLLVMFunctionInfo(
263       *this, true, argTypes,
264       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
265 }
266 
267 /// Set calling convention for CUDA/HIP kernel.
268 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
269                                            const FunctionDecl *FD) {
270   if (FD->hasAttr<CUDAGlobalAttr>()) {
271     const FunctionType *FT = FTy->getAs<FunctionType>();
272     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
273     FTy = FT->getCanonicalTypeUnqualified();
274   }
275 }
276 
277 /// Arrange the argument and result information for a declaration or
278 /// definition of the given C++ non-static member function.  The
279 /// member function must be an ordinary function, i.e. not a
280 /// constructor or destructor.
281 const CGFunctionInfo &
282 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
283   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
284   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
285 
286   CanQualType FT = GetFormalType(MD).getAs<Type>();
287   setCUDAKernelCallingConvention(FT, CGM, MD);
288   auto prototype = FT.getAs<FunctionProtoType>();
289 
290   if (MD->isInstance()) {
291     // The abstract case is perfectly fine.
292     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
293     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
294   }
295 
296   return arrangeFreeFunctionType(prototype);
297 }
298 
299 bool CodeGenTypes::inheritingCtorHasParams(
300     const InheritedConstructor &Inherited, CXXCtorType Type) {
301   // Parameters are unnecessary if we're constructing a base class subobject
302   // and the inherited constructor lives in a virtual base.
303   return Type == Ctor_Complete ||
304          !Inherited.getShadowDecl()->constructsVirtualBase() ||
305          !Target.getCXXABI().hasConstructorVariants();
306 }
307 
308 const CGFunctionInfo &
309 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
310   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
311 
312   SmallVector<CanQualType, 16> argTypes;
313   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
314   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
315 
316   bool PassParams = true;
317 
318   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
319     // A base class inheriting constructor doesn't get forwarded arguments
320     // needed to construct a virtual base (or base class thereof).
321     if (auto Inherited = CD->getInheritedConstructor())
322       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
323   }
324 
325   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
326 
327   // Add the formal parameters.
328   if (PassParams)
329     appendParameterTypes(*this, argTypes, paramInfos, FTP);
330 
331   CGCXXABI::AddedStructorArgCounts AddedArgs =
332       TheCXXABI.buildStructorSignature(GD, argTypes);
333   if (!paramInfos.empty()) {
334     // Note: prefix implies after the first param.
335     if (AddedArgs.Prefix)
336       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
337                         FunctionProtoType::ExtParameterInfo{});
338     if (AddedArgs.Suffix)
339       paramInfos.append(AddedArgs.Suffix,
340                         FunctionProtoType::ExtParameterInfo{});
341   }
342 
343   RequiredArgs required =
344       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
345                                       : RequiredArgs::All);
346 
347   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
348   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
349                                ? argTypes.front()
350                                : TheCXXABI.hasMostDerivedReturn(GD)
351                                      ? CGM.getContext().VoidPtrTy
352                                      : Context.VoidTy;
353   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
354                                  /*chainCall=*/false, argTypes, extInfo,
355                                  paramInfos, required);
356 }
357 
358 static SmallVector<CanQualType, 16>
359 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
360   SmallVector<CanQualType, 16> argTypes;
361   for (auto &arg : args)
362     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
363   return argTypes;
364 }
365 
366 static SmallVector<CanQualType, 16>
367 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
368   SmallVector<CanQualType, 16> argTypes;
369   for (auto &arg : args)
370     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
371   return argTypes;
372 }
373 
374 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
375 getExtParameterInfosForCall(const FunctionProtoType *proto,
376                             unsigned prefixArgs, unsigned totalArgs) {
377   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
378   if (proto->hasExtParameterInfos()) {
379     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
380   }
381   return result;
382 }
383 
384 /// Arrange a call to a C++ method, passing the given arguments.
385 ///
386 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
387 /// parameter.
388 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
389 /// args.
390 /// PassProtoArgs indicates whether `args` has args for the parameters in the
391 /// given CXXConstructorDecl.
392 const CGFunctionInfo &
393 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
394                                         const CXXConstructorDecl *D,
395                                         CXXCtorType CtorKind,
396                                         unsigned ExtraPrefixArgs,
397                                         unsigned ExtraSuffixArgs,
398                                         bool PassProtoArgs) {
399   // FIXME: Kill copy.
400   SmallVector<CanQualType, 16> ArgTypes;
401   for (const auto &Arg : args)
402     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
403 
404   // +1 for implicit this, which should always be args[0].
405   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
406 
407   CanQual<FunctionProtoType> FPT = GetFormalType(D);
408   RequiredArgs Required = PassProtoArgs
409                               ? RequiredArgs::forPrototypePlus(
410                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
411                               : RequiredArgs::All;
412 
413   GlobalDecl GD(D, CtorKind);
414   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
415                                ? ArgTypes.front()
416                                : TheCXXABI.hasMostDerivedReturn(GD)
417                                      ? CGM.getContext().VoidPtrTy
418                                      : Context.VoidTy;
419 
420   FunctionType::ExtInfo Info = FPT->getExtInfo();
421   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
422   // If the prototype args are elided, we should only have ABI-specific args,
423   // which never have param info.
424   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
425     // ABI-specific suffix arguments are treated the same as variadic arguments.
426     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
427                                 ArgTypes.size());
428   }
429   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
430                                  /*chainCall=*/false, ArgTypes, Info,
431                                  ParamInfos, Required);
432 }
433 
434 /// Arrange the argument and result information for the declaration or
435 /// definition of the given function.
436 const CGFunctionInfo &
437 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
438   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
439     if (MD->isInstance())
440       return arrangeCXXMethodDeclaration(MD);
441 
442   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
443 
444   assert(isa<FunctionType>(FTy));
445   setCUDAKernelCallingConvention(FTy, CGM, FD);
446 
447   // When declaring a function without a prototype, always use a
448   // non-variadic type.
449   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
450     return arrangeLLVMFunctionInfo(
451         noProto->getReturnType(), /*instanceMethod=*/false,
452         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
453   }
454 
455   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
456 }
457 
458 /// Arrange the argument and result information for the declaration or
459 /// definition of an Objective-C method.
460 const CGFunctionInfo &
461 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
462   // It happens that this is the same as a call with no optional
463   // arguments, except also using the formal 'self' type.
464   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
465 }
466 
467 /// Arrange the argument and result information for the function type
468 /// through which to perform a send to the given Objective-C method,
469 /// using the given receiver type.  The receiver type is not always
470 /// the 'self' type of the method or even an Objective-C pointer type.
471 /// This is *not* the right method for actually performing such a
472 /// message send, due to the possibility of optional arguments.
473 const CGFunctionInfo &
474 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
475                                               QualType receiverType) {
476   SmallVector<CanQualType, 16> argTys;
477   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
478   argTys.push_back(Context.getCanonicalParamType(receiverType));
479   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
480   // FIXME: Kill copy?
481   for (const auto *I : MD->parameters()) {
482     argTys.push_back(Context.getCanonicalParamType(I->getType()));
483     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
484         I->hasAttr<NoEscapeAttr>());
485     extParamInfos.push_back(extParamInfo);
486   }
487 
488   FunctionType::ExtInfo einfo;
489   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
490   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
491 
492   if (getContext().getLangOpts().ObjCAutoRefCount &&
493       MD->hasAttr<NSReturnsRetainedAttr>())
494     einfo = einfo.withProducesResult(true);
495 
496   RequiredArgs required =
497     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
498 
499   return arrangeLLVMFunctionInfo(
500       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
501       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
502 }
503 
504 const CGFunctionInfo &
505 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
506                                                  const CallArgList &args) {
507   auto argTypes = getArgTypesForCall(Context, args);
508   FunctionType::ExtInfo einfo;
509 
510   return arrangeLLVMFunctionInfo(
511       GetReturnType(returnType), /*instanceMethod=*/false,
512       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
513 }
514 
515 const CGFunctionInfo &
516 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
517   // FIXME: Do we need to handle ObjCMethodDecl?
518   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
519 
520   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
521       isa<CXXDestructorDecl>(GD.getDecl()))
522     return arrangeCXXStructorDeclaration(GD);
523 
524   return arrangeFunctionDeclaration(FD);
525 }
526 
527 /// Arrange a thunk that takes 'this' as the first parameter followed by
528 /// varargs.  Return a void pointer, regardless of the actual return type.
529 /// The body of the thunk will end in a musttail call to a function of the
530 /// correct type, and the caller will bitcast the function to the correct
531 /// prototype.
532 const CGFunctionInfo &
533 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
534   assert(MD->isVirtual() && "only methods have thunks");
535   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
536   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
537   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
538                                  /*chainCall=*/false, ArgTys,
539                                  FTP->getExtInfo(), {}, RequiredArgs(1));
540 }
541 
542 const CGFunctionInfo &
543 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
544                                    CXXCtorType CT) {
545   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
546 
547   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
548   SmallVector<CanQualType, 2> ArgTys;
549   const CXXRecordDecl *RD = CD->getParent();
550   ArgTys.push_back(DeriveThisType(RD, CD));
551   if (CT == Ctor_CopyingClosure)
552     ArgTys.push_back(*FTP->param_type_begin());
553   if (RD->getNumVBases() > 0)
554     ArgTys.push_back(Context.IntTy);
555   CallingConv CC = Context.getDefaultCallingConvention(
556       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
557   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
558                                  /*chainCall=*/false, ArgTys,
559                                  FunctionType::ExtInfo(CC), {},
560                                  RequiredArgs::All);
561 }
562 
563 /// Arrange a call as unto a free function, except possibly with an
564 /// additional number of formal parameters considered required.
565 static const CGFunctionInfo &
566 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
567                             CodeGenModule &CGM,
568                             const CallArgList &args,
569                             const FunctionType *fnType,
570                             unsigned numExtraRequiredArgs,
571                             bool chainCall) {
572   assert(args.size() >= numExtraRequiredArgs);
573 
574   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
575 
576   // In most cases, there are no optional arguments.
577   RequiredArgs required = RequiredArgs::All;
578 
579   // If we have a variadic prototype, the required arguments are the
580   // extra prefix plus the arguments in the prototype.
581   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
582     if (proto->isVariadic())
583       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
584 
585     if (proto->hasExtParameterInfos())
586       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
587                                   args.size());
588 
589   // If we don't have a prototype at all, but we're supposed to
590   // explicitly use the variadic convention for unprototyped calls,
591   // treat all of the arguments as required but preserve the nominal
592   // possibility of variadics.
593   } else if (CGM.getTargetCodeGenInfo()
594                 .isNoProtoCallVariadic(args,
595                                        cast<FunctionNoProtoType>(fnType))) {
596     required = RequiredArgs(args.size());
597   }
598 
599   // FIXME: Kill copy.
600   SmallVector<CanQualType, 16> argTypes;
601   for (const auto &arg : args)
602     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
603   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
604                                      /*instanceMethod=*/false, chainCall,
605                                      argTypes, fnType->getExtInfo(), paramInfos,
606                                      required);
607 }
608 
609 /// Figure out the rules for calling a function with the given formal
610 /// type using the given arguments.  The arguments are necessary
611 /// because the function might be unprototyped, in which case it's
612 /// target-dependent in crazy ways.
613 const CGFunctionInfo &
614 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
615                                       const FunctionType *fnType,
616                                       bool chainCall) {
617   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
618                                      chainCall ? 1 : 0, chainCall);
619 }
620 
621 /// A block function is essentially a free function with an
622 /// extra implicit argument.
623 const CGFunctionInfo &
624 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
625                                        const FunctionType *fnType) {
626   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
627                                      /*chainCall=*/false);
628 }
629 
630 const CGFunctionInfo &
631 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
632                                               const FunctionArgList &params) {
633   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
634   auto argTypes = getArgTypesForDeclaration(Context, params);
635 
636   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
637                                  /*instanceMethod*/ false, /*chainCall*/ false,
638                                  argTypes, proto->getExtInfo(), paramInfos,
639                                  RequiredArgs::forPrototypePlus(proto, 1));
640 }
641 
642 const CGFunctionInfo &
643 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
644                                          const CallArgList &args) {
645   // FIXME: Kill copy.
646   SmallVector<CanQualType, 16> argTypes;
647   for (const auto &Arg : args)
648     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
649   return arrangeLLVMFunctionInfo(
650       GetReturnType(resultType), /*instanceMethod=*/false,
651       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
652       /*paramInfos=*/ {}, RequiredArgs::All);
653 }
654 
655 const CGFunctionInfo &
656 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
657                                                 const FunctionArgList &args) {
658   auto argTypes = getArgTypesForDeclaration(Context, args);
659 
660   return arrangeLLVMFunctionInfo(
661       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
662       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
663 }
664 
665 const CGFunctionInfo &
666 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
667                                               ArrayRef<CanQualType> argTypes) {
668   return arrangeLLVMFunctionInfo(
669       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
670       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
671 }
672 
673 /// Arrange a call to a C++ method, passing the given arguments.
674 ///
675 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
676 /// does not count `this`.
677 const CGFunctionInfo &
678 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
679                                    const FunctionProtoType *proto,
680                                    RequiredArgs required,
681                                    unsigned numPrefixArgs) {
682   assert(numPrefixArgs + 1 <= args.size() &&
683          "Emitting a call with less args than the required prefix?");
684   // Add one to account for `this`. It's a bit awkward here, but we don't count
685   // `this` in similar places elsewhere.
686   auto paramInfos =
687     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
688 
689   // FIXME: Kill copy.
690   auto argTypes = getArgTypesForCall(Context, args);
691 
692   FunctionType::ExtInfo info = proto->getExtInfo();
693   return arrangeLLVMFunctionInfo(
694       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
695       /*chainCall=*/false, argTypes, info, paramInfos, required);
696 }
697 
698 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
699   return arrangeLLVMFunctionInfo(
700       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
701       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
702 }
703 
704 const CGFunctionInfo &
705 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
706                           const CallArgList &args) {
707   assert(signature.arg_size() <= args.size());
708   if (signature.arg_size() == args.size())
709     return signature;
710 
711   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
712   auto sigParamInfos = signature.getExtParameterInfos();
713   if (!sigParamInfos.empty()) {
714     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
715     paramInfos.resize(args.size());
716   }
717 
718   auto argTypes = getArgTypesForCall(Context, args);
719 
720   assert(signature.getRequiredArgs().allowsOptionalArgs());
721   return arrangeLLVMFunctionInfo(signature.getReturnType(),
722                                  signature.isInstanceMethod(),
723                                  signature.isChainCall(),
724                                  argTypes,
725                                  signature.getExtInfo(),
726                                  paramInfos,
727                                  signature.getRequiredArgs());
728 }
729 
730 namespace clang {
731 namespace CodeGen {
732 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
733 }
734 }
735 
736 /// Arrange the argument and result information for an abstract value
737 /// of a given function type.  This is the method which all of the
738 /// above functions ultimately defer to.
739 const CGFunctionInfo &
740 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
741                                       bool instanceMethod,
742                                       bool chainCall,
743                                       ArrayRef<CanQualType> argTypes,
744                                       FunctionType::ExtInfo info,
745                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
746                                       RequiredArgs required) {
747   assert(llvm::all_of(argTypes,
748                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
749 
750   // Lookup or create unique function info.
751   llvm::FoldingSetNodeID ID;
752   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
753                           required, resultType, argTypes);
754 
755   void *insertPos = nullptr;
756   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
757   if (FI)
758     return *FI;
759 
760   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
761 
762   // Construct the function info.  We co-allocate the ArgInfos.
763   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
764                               paramInfos, resultType, argTypes, required);
765   FunctionInfos.InsertNode(FI, insertPos);
766 
767   bool inserted = FunctionsBeingProcessed.insert(FI).second;
768   (void)inserted;
769   assert(inserted && "Recursively being processed?");
770 
771   // Compute ABI information.
772   if (CC == llvm::CallingConv::SPIR_KERNEL) {
773     // Force target independent argument handling for the host visible
774     // kernel functions.
775     computeSPIRKernelABIInfo(CGM, *FI);
776   } else if (info.getCC() == CC_Swift) {
777     swiftcall::computeABIInfo(CGM, *FI);
778   } else {
779     getABIInfo().computeInfo(*FI);
780   }
781 
782   // Loop over all of the computed argument and return value info.  If any of
783   // them are direct or extend without a specified coerce type, specify the
784   // default now.
785   ABIArgInfo &retInfo = FI->getReturnInfo();
786   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
787     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
788 
789   for (auto &I : FI->arguments())
790     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
791       I.info.setCoerceToType(ConvertType(I.type));
792 
793   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
794   assert(erased && "Not in set?");
795 
796   return *FI;
797 }
798 
799 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
800                                        bool instanceMethod,
801                                        bool chainCall,
802                                        const FunctionType::ExtInfo &info,
803                                        ArrayRef<ExtParameterInfo> paramInfos,
804                                        CanQualType resultType,
805                                        ArrayRef<CanQualType> argTypes,
806                                        RequiredArgs required) {
807   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
808   assert(!required.allowsOptionalArgs() ||
809          required.getNumRequiredArgs() <= argTypes.size());
810 
811   void *buffer =
812     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
813                                   argTypes.size() + 1, paramInfos.size()));
814 
815   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
816   FI->CallingConvention = llvmCC;
817   FI->EffectiveCallingConvention = llvmCC;
818   FI->ASTCallingConvention = info.getCC();
819   FI->InstanceMethod = instanceMethod;
820   FI->ChainCall = chainCall;
821   FI->CmseNSCall = info.getCmseNSCall();
822   FI->NoReturn = info.getNoReturn();
823   FI->ReturnsRetained = info.getProducesResult();
824   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
825   FI->NoCfCheck = info.getNoCfCheck();
826   FI->Required = required;
827   FI->HasRegParm = info.getHasRegParm();
828   FI->RegParm = info.getRegParm();
829   FI->ArgStruct = nullptr;
830   FI->ArgStructAlign = 0;
831   FI->NumArgs = argTypes.size();
832   FI->HasExtParameterInfos = !paramInfos.empty();
833   FI->getArgsBuffer()[0].type = resultType;
834   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
835     FI->getArgsBuffer()[i + 1].type = argTypes[i];
836   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
837     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
838   return FI;
839 }
840 
841 /***/
842 
843 namespace {
844 // ABIArgInfo::Expand implementation.
845 
846 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
847 struct TypeExpansion {
848   enum TypeExpansionKind {
849     // Elements of constant arrays are expanded recursively.
850     TEK_ConstantArray,
851     // Record fields are expanded recursively (but if record is a union, only
852     // the field with the largest size is expanded).
853     TEK_Record,
854     // For complex types, real and imaginary parts are expanded recursively.
855     TEK_Complex,
856     // All other types are not expandable.
857     TEK_None
858   };
859 
860   const TypeExpansionKind Kind;
861 
862   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
863   virtual ~TypeExpansion() {}
864 };
865 
866 struct ConstantArrayExpansion : TypeExpansion {
867   QualType EltTy;
868   uint64_t NumElts;
869 
870   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
871       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
872   static bool classof(const TypeExpansion *TE) {
873     return TE->Kind == TEK_ConstantArray;
874   }
875 };
876 
877 struct RecordExpansion : TypeExpansion {
878   SmallVector<const CXXBaseSpecifier *, 1> Bases;
879 
880   SmallVector<const FieldDecl *, 1> Fields;
881 
882   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
883                   SmallVector<const FieldDecl *, 1> &&Fields)
884       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
885         Fields(std::move(Fields)) {}
886   static bool classof(const TypeExpansion *TE) {
887     return TE->Kind == TEK_Record;
888   }
889 };
890 
891 struct ComplexExpansion : TypeExpansion {
892   QualType EltTy;
893 
894   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
895   static bool classof(const TypeExpansion *TE) {
896     return TE->Kind == TEK_Complex;
897   }
898 };
899 
900 struct NoExpansion : TypeExpansion {
901   NoExpansion() : TypeExpansion(TEK_None) {}
902   static bool classof(const TypeExpansion *TE) {
903     return TE->Kind == TEK_None;
904   }
905 };
906 }  // namespace
907 
908 static std::unique_ptr<TypeExpansion>
909 getTypeExpansion(QualType Ty, const ASTContext &Context) {
910   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
911     return std::make_unique<ConstantArrayExpansion>(
912         AT->getElementType(), AT->getSize().getZExtValue());
913   }
914   if (const RecordType *RT = Ty->getAs<RecordType>()) {
915     SmallVector<const CXXBaseSpecifier *, 1> Bases;
916     SmallVector<const FieldDecl *, 1> Fields;
917     const RecordDecl *RD = RT->getDecl();
918     assert(!RD->hasFlexibleArrayMember() &&
919            "Cannot expand structure with flexible array.");
920     if (RD->isUnion()) {
921       // Unions can be here only in degenerative cases - all the fields are same
922       // after flattening. Thus we have to use the "largest" field.
923       const FieldDecl *LargestFD = nullptr;
924       CharUnits UnionSize = CharUnits::Zero();
925 
926       for (const auto *FD : RD->fields()) {
927         if (FD->isZeroLengthBitField(Context))
928           continue;
929         assert(!FD->isBitField() &&
930                "Cannot expand structure with bit-field members.");
931         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
932         if (UnionSize < FieldSize) {
933           UnionSize = FieldSize;
934           LargestFD = FD;
935         }
936       }
937       if (LargestFD)
938         Fields.push_back(LargestFD);
939     } else {
940       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
941         assert(!CXXRD->isDynamicClass() &&
942                "cannot expand vtable pointers in dynamic classes");
943         for (const CXXBaseSpecifier &BS : CXXRD->bases())
944           Bases.push_back(&BS);
945       }
946 
947       for (const auto *FD : RD->fields()) {
948         if (FD->isZeroLengthBitField(Context))
949           continue;
950         assert(!FD->isBitField() &&
951                "Cannot expand structure with bit-field members.");
952         Fields.push_back(FD);
953       }
954     }
955     return std::make_unique<RecordExpansion>(std::move(Bases),
956                                               std::move(Fields));
957   }
958   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
959     return std::make_unique<ComplexExpansion>(CT->getElementType());
960   }
961   return std::make_unique<NoExpansion>();
962 }
963 
964 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
965   auto Exp = getTypeExpansion(Ty, Context);
966   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
967     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
968   }
969   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
970     int Res = 0;
971     for (auto BS : RExp->Bases)
972       Res += getExpansionSize(BS->getType(), Context);
973     for (auto FD : RExp->Fields)
974       Res += getExpansionSize(FD->getType(), Context);
975     return Res;
976   }
977   if (isa<ComplexExpansion>(Exp.get()))
978     return 2;
979   assert(isa<NoExpansion>(Exp.get()));
980   return 1;
981 }
982 
983 void
984 CodeGenTypes::getExpandedTypes(QualType Ty,
985                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
986   auto Exp = getTypeExpansion(Ty, Context);
987   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
988     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
989       getExpandedTypes(CAExp->EltTy, TI);
990     }
991   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
992     for (auto BS : RExp->Bases)
993       getExpandedTypes(BS->getType(), TI);
994     for (auto FD : RExp->Fields)
995       getExpandedTypes(FD->getType(), TI);
996   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
997     llvm::Type *EltTy = ConvertType(CExp->EltTy);
998     *TI++ = EltTy;
999     *TI++ = EltTy;
1000   } else {
1001     assert(isa<NoExpansion>(Exp.get()));
1002     *TI++ = ConvertType(Ty);
1003   }
1004 }
1005 
1006 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1007                                       ConstantArrayExpansion *CAE,
1008                                       Address BaseAddr,
1009                                       llvm::function_ref<void(Address)> Fn) {
1010   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1011   CharUnits EltAlign =
1012     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1013 
1014   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1015     llvm::Value *EltAddr =
1016       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1017     Fn(Address(EltAddr, EltAlign));
1018   }
1019 }
1020 
1021 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1022                                          llvm::Function::arg_iterator &AI) {
1023   assert(LV.isSimple() &&
1024          "Unexpected non-simple lvalue during struct expansion.");
1025 
1026   auto Exp = getTypeExpansion(Ty, getContext());
1027   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1028     forConstantArrayExpansion(
1029         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1030           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1031           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1032         });
1033   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1034     Address This = LV.getAddress(*this);
1035     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1036       // Perform a single step derived-to-base conversion.
1037       Address Base =
1038           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1039                                 /*NullCheckValue=*/false, SourceLocation());
1040       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1041 
1042       // Recurse onto bases.
1043       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1044     }
1045     for (auto FD : RExp->Fields) {
1046       // FIXME: What are the right qualifiers here?
1047       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1048       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1049     }
1050   } else if (isa<ComplexExpansion>(Exp.get())) {
1051     auto realValue = &*AI++;
1052     auto imagValue = &*AI++;
1053     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1054   } else {
1055     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1056     // primitive store.
1057     assert(isa<NoExpansion>(Exp.get()));
1058     if (LV.isBitField())
1059       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1060     else
1061       EmitStoreOfScalar(&*AI++, LV);
1062   }
1063 }
1064 
1065 void CodeGenFunction::ExpandTypeToArgs(
1066     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1067     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1068   auto Exp = getTypeExpansion(Ty, getContext());
1069   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1070     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1071                                    : Arg.getKnownRValue().getAggregateAddress();
1072     forConstantArrayExpansion(
1073         *this, CAExp, Addr, [&](Address EltAddr) {
1074           CallArg EltArg = CallArg(
1075               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1076               CAExp->EltTy);
1077           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1078                            IRCallArgPos);
1079         });
1080   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1081     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1082                                    : Arg.getKnownRValue().getAggregateAddress();
1083     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1084       // Perform a single step derived-to-base conversion.
1085       Address Base =
1086           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1087                                 /*NullCheckValue=*/false, SourceLocation());
1088       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1089 
1090       // Recurse onto bases.
1091       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1092                        IRCallArgPos);
1093     }
1094 
1095     LValue LV = MakeAddrLValue(This, Ty);
1096     for (auto FD : RExp->Fields) {
1097       CallArg FldArg =
1098           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1099       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1100                        IRCallArgPos);
1101     }
1102   } else if (isa<ComplexExpansion>(Exp.get())) {
1103     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1104     IRCallArgs[IRCallArgPos++] = CV.first;
1105     IRCallArgs[IRCallArgPos++] = CV.second;
1106   } else {
1107     assert(isa<NoExpansion>(Exp.get()));
1108     auto RV = Arg.getKnownRValue();
1109     assert(RV.isScalar() &&
1110            "Unexpected non-scalar rvalue during struct expansion.");
1111 
1112     // Insert a bitcast as needed.
1113     llvm::Value *V = RV.getScalarVal();
1114     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1115         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1116       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1117 
1118     IRCallArgs[IRCallArgPos++] = V;
1119   }
1120 }
1121 
1122 /// Create a temporary allocation for the purposes of coercion.
1123 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1124                                            CharUnits MinAlign,
1125                                            const Twine &Name = "tmp") {
1126   // Don't use an alignment that's worse than what LLVM would prefer.
1127   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1128   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1129 
1130   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1131 }
1132 
1133 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1134 /// accessing some number of bytes out of it, try to gep into the struct to get
1135 /// at its inner goodness.  Dive as deep as possible without entering an element
1136 /// with an in-memory size smaller than DstSize.
1137 static Address
1138 EnterStructPointerForCoercedAccess(Address SrcPtr,
1139                                    llvm::StructType *SrcSTy,
1140                                    uint64_t DstSize, CodeGenFunction &CGF) {
1141   // We can't dive into a zero-element struct.
1142   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1143 
1144   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1145 
1146   // If the first elt is at least as large as what we're looking for, or if the
1147   // first element is the same size as the whole struct, we can enter it. The
1148   // comparison must be made on the store size and not the alloca size. Using
1149   // the alloca size may overstate the size of the load.
1150   uint64_t FirstEltSize =
1151     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1152   if (FirstEltSize < DstSize &&
1153       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1154     return SrcPtr;
1155 
1156   // GEP into the first element.
1157   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1158 
1159   // If the first element is a struct, recurse.
1160   llvm::Type *SrcTy = SrcPtr.getElementType();
1161   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1162     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1163 
1164   return SrcPtr;
1165 }
1166 
1167 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1168 /// are either integers or pointers.  This does a truncation of the value if it
1169 /// is too large or a zero extension if it is too small.
1170 ///
1171 /// This behaves as if the value were coerced through memory, so on big-endian
1172 /// targets the high bits are preserved in a truncation, while little-endian
1173 /// targets preserve the low bits.
1174 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1175                                              llvm::Type *Ty,
1176                                              CodeGenFunction &CGF) {
1177   if (Val->getType() == Ty)
1178     return Val;
1179 
1180   if (isa<llvm::PointerType>(Val->getType())) {
1181     // If this is Pointer->Pointer avoid conversion to and from int.
1182     if (isa<llvm::PointerType>(Ty))
1183       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1184 
1185     // Convert the pointer to an integer so we can play with its width.
1186     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1187   }
1188 
1189   llvm::Type *DestIntTy = Ty;
1190   if (isa<llvm::PointerType>(DestIntTy))
1191     DestIntTy = CGF.IntPtrTy;
1192 
1193   if (Val->getType() != DestIntTy) {
1194     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1195     if (DL.isBigEndian()) {
1196       // Preserve the high bits on big-endian targets.
1197       // That is what memory coercion does.
1198       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1199       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1200 
1201       if (SrcSize > DstSize) {
1202         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1203         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1204       } else {
1205         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1206         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1207       }
1208     } else {
1209       // Little-endian targets preserve the low bits. No shifts required.
1210       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1211     }
1212   }
1213 
1214   if (isa<llvm::PointerType>(Ty))
1215     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1216   return Val;
1217 }
1218 
1219 
1220 
1221 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1222 /// a pointer to an object of type \arg Ty, known to be aligned to
1223 /// \arg SrcAlign bytes.
1224 ///
1225 /// This safely handles the case when the src type is smaller than the
1226 /// destination type; in this situation the values of bits which not
1227 /// present in the src are undefined.
1228 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1229                                       CodeGenFunction &CGF) {
1230   llvm::Type *SrcTy = Src.getElementType();
1231 
1232   // If SrcTy and Ty are the same, just do a load.
1233   if (SrcTy == Ty)
1234     return CGF.Builder.CreateLoad(Src);
1235 
1236   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1237 
1238   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1239     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1240                                              DstSize.getFixedSize(), CGF);
1241     SrcTy = Src.getElementType();
1242   }
1243 
1244   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1245 
1246   // If the source and destination are integer or pointer types, just do an
1247   // extension or truncation to the desired type.
1248   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1249       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1250     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1251     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1252   }
1253 
1254   // If load is legal, just bitcast the src pointer.
1255   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1256       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1257     // Generally SrcSize is never greater than DstSize, since this means we are
1258     // losing bits. However, this can happen in cases where the structure has
1259     // additional padding, for example due to a user specified alignment.
1260     //
1261     // FIXME: Assert that we aren't truncating non-padding bits when have access
1262     // to that information.
1263     Src = CGF.Builder.CreateBitCast(Src,
1264                                     Ty->getPointerTo(Src.getAddressSpace()));
1265     return CGF.Builder.CreateLoad(Src);
1266   }
1267 
1268   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1269   // the types match, use the llvm.experimental.vector.insert intrinsic to
1270   // perform the conversion.
1271   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1272     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1273       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1274         auto *Load = CGF.Builder.CreateLoad(Src);
1275         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1276         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1277         return CGF.Builder.CreateInsertVector(ScalableDst, UndefVec, Load, Zero,
1278                                               "castScalableSve");
1279       }
1280     }
1281   }
1282 
1283   // Otherwise do coercion through memory. This is stupid, but simple.
1284   Address Tmp =
1285       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1286   CGF.Builder.CreateMemCpy(
1287       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1288       Src.getAlignment().getAsAlign(),
1289       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1290   return CGF.Builder.CreateLoad(Tmp);
1291 }
1292 
1293 // Function to store a first-class aggregate into memory.  We prefer to
1294 // store the elements rather than the aggregate to be more friendly to
1295 // fast-isel.
1296 // FIXME: Do we need to recurse here?
1297 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1298                                          bool DestIsVolatile) {
1299   // Prefer scalar stores to first-class aggregate stores.
1300   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1301     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1302       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1303       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1304       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1305     }
1306   } else {
1307     Builder.CreateStore(Val, Dest, DestIsVolatile);
1308   }
1309 }
1310 
1311 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1312 /// where the source and destination may have different types.  The
1313 /// destination is known to be aligned to \arg DstAlign bytes.
1314 ///
1315 /// This safely handles the case when the src type is larger than the
1316 /// destination type; the upper bits of the src will be lost.
1317 static void CreateCoercedStore(llvm::Value *Src,
1318                                Address Dst,
1319                                bool DstIsVolatile,
1320                                CodeGenFunction &CGF) {
1321   llvm::Type *SrcTy = Src->getType();
1322   llvm::Type *DstTy = Dst.getElementType();
1323   if (SrcTy == DstTy) {
1324     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1325     return;
1326   }
1327 
1328   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1329 
1330   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1331     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1332                                              SrcSize.getFixedSize(), CGF);
1333     DstTy = Dst.getElementType();
1334   }
1335 
1336   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1337   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1338   if (SrcPtrTy && DstPtrTy &&
1339       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1340     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1341     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1342     return;
1343   }
1344 
1345   // If the source and destination are integer or pointer types, just do an
1346   // extension or truncation to the desired type.
1347   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1348       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1349     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1350     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1351     return;
1352   }
1353 
1354   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1355 
1356   // If store is legal, just bitcast the src pointer.
1357   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1358       isa<llvm::ScalableVectorType>(DstTy) ||
1359       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1360     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1361     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1362   } else {
1363     // Otherwise do coercion through memory. This is stupid, but
1364     // simple.
1365 
1366     // Generally SrcSize is never greater than DstSize, since this means we are
1367     // losing bits. However, this can happen in cases where the structure has
1368     // additional padding, for example due to a user specified alignment.
1369     //
1370     // FIXME: Assert that we aren't truncating non-padding bits when have access
1371     // to that information.
1372     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1373     CGF.Builder.CreateStore(Src, Tmp);
1374     CGF.Builder.CreateMemCpy(
1375         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1376         Tmp.getAlignment().getAsAlign(),
1377         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1378   }
1379 }
1380 
1381 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1382                                    const ABIArgInfo &info) {
1383   if (unsigned offset = info.getDirectOffset()) {
1384     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1385     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1386                                              CharUnits::fromQuantity(offset));
1387     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1388   }
1389   return addr;
1390 }
1391 
1392 namespace {
1393 
1394 /// Encapsulates information about the way function arguments from
1395 /// CGFunctionInfo should be passed to actual LLVM IR function.
1396 class ClangToLLVMArgMapping {
1397   static const unsigned InvalidIndex = ~0U;
1398   unsigned InallocaArgNo;
1399   unsigned SRetArgNo;
1400   unsigned TotalIRArgs;
1401 
1402   /// Arguments of LLVM IR function corresponding to single Clang argument.
1403   struct IRArgs {
1404     unsigned PaddingArgIndex;
1405     // Argument is expanded to IR arguments at positions
1406     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1407     unsigned FirstArgIndex;
1408     unsigned NumberOfArgs;
1409 
1410     IRArgs()
1411         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1412           NumberOfArgs(0) {}
1413   };
1414 
1415   SmallVector<IRArgs, 8> ArgInfo;
1416 
1417 public:
1418   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1419                         bool OnlyRequiredArgs = false)
1420       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1421         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1422     construct(Context, FI, OnlyRequiredArgs);
1423   }
1424 
1425   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1426   unsigned getInallocaArgNo() const {
1427     assert(hasInallocaArg());
1428     return InallocaArgNo;
1429   }
1430 
1431   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1432   unsigned getSRetArgNo() const {
1433     assert(hasSRetArg());
1434     return SRetArgNo;
1435   }
1436 
1437   unsigned totalIRArgs() const { return TotalIRArgs; }
1438 
1439   bool hasPaddingArg(unsigned ArgNo) const {
1440     assert(ArgNo < ArgInfo.size());
1441     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1442   }
1443   unsigned getPaddingArgNo(unsigned ArgNo) const {
1444     assert(hasPaddingArg(ArgNo));
1445     return ArgInfo[ArgNo].PaddingArgIndex;
1446   }
1447 
1448   /// Returns index of first IR argument corresponding to ArgNo, and their
1449   /// quantity.
1450   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1451     assert(ArgNo < ArgInfo.size());
1452     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1453                           ArgInfo[ArgNo].NumberOfArgs);
1454   }
1455 
1456 private:
1457   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1458                  bool OnlyRequiredArgs);
1459 };
1460 
1461 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1462                                       const CGFunctionInfo &FI,
1463                                       bool OnlyRequiredArgs) {
1464   unsigned IRArgNo = 0;
1465   bool SwapThisWithSRet = false;
1466   const ABIArgInfo &RetAI = FI.getReturnInfo();
1467 
1468   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1469     SwapThisWithSRet = RetAI.isSRetAfterThis();
1470     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1471   }
1472 
1473   unsigned ArgNo = 0;
1474   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1475   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1476        ++I, ++ArgNo) {
1477     assert(I != FI.arg_end());
1478     QualType ArgType = I->type;
1479     const ABIArgInfo &AI = I->info;
1480     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1481     auto &IRArgs = ArgInfo[ArgNo];
1482 
1483     if (AI.getPaddingType())
1484       IRArgs.PaddingArgIndex = IRArgNo++;
1485 
1486     switch (AI.getKind()) {
1487     case ABIArgInfo::Extend:
1488     case ABIArgInfo::Direct: {
1489       // FIXME: handle sseregparm someday...
1490       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1491       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1492         IRArgs.NumberOfArgs = STy->getNumElements();
1493       } else {
1494         IRArgs.NumberOfArgs = 1;
1495       }
1496       break;
1497     }
1498     case ABIArgInfo::Indirect:
1499     case ABIArgInfo::IndirectAliased:
1500       IRArgs.NumberOfArgs = 1;
1501       break;
1502     case ABIArgInfo::Ignore:
1503     case ABIArgInfo::InAlloca:
1504       // ignore and inalloca doesn't have matching LLVM parameters.
1505       IRArgs.NumberOfArgs = 0;
1506       break;
1507     case ABIArgInfo::CoerceAndExpand:
1508       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1509       break;
1510     case ABIArgInfo::Expand:
1511       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1512       break;
1513     }
1514 
1515     if (IRArgs.NumberOfArgs > 0) {
1516       IRArgs.FirstArgIndex = IRArgNo;
1517       IRArgNo += IRArgs.NumberOfArgs;
1518     }
1519 
1520     // Skip over the sret parameter when it comes second.  We already handled it
1521     // above.
1522     if (IRArgNo == 1 && SwapThisWithSRet)
1523       IRArgNo++;
1524   }
1525   assert(ArgNo == ArgInfo.size());
1526 
1527   if (FI.usesInAlloca())
1528     InallocaArgNo = IRArgNo++;
1529 
1530   TotalIRArgs = IRArgNo;
1531 }
1532 }  // namespace
1533 
1534 /***/
1535 
1536 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1537   const auto &RI = FI.getReturnInfo();
1538   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1539 }
1540 
1541 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1542   return ReturnTypeUsesSRet(FI) &&
1543          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1544 }
1545 
1546 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1547   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1548     switch (BT->getKind()) {
1549     default:
1550       return false;
1551     case BuiltinType::Float:
1552       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1553     case BuiltinType::Double:
1554       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1555     case BuiltinType::LongDouble:
1556       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1557     }
1558   }
1559 
1560   return false;
1561 }
1562 
1563 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1564   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1565     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1566       if (BT->getKind() == BuiltinType::LongDouble)
1567         return getTarget().useObjCFP2RetForComplexLongDouble();
1568     }
1569   }
1570 
1571   return false;
1572 }
1573 
1574 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1575   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1576   return GetFunctionType(FI);
1577 }
1578 
1579 llvm::FunctionType *
1580 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1581 
1582   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1583   (void)Inserted;
1584   assert(Inserted && "Recursively being processed?");
1585 
1586   llvm::Type *resultType = nullptr;
1587   const ABIArgInfo &retAI = FI.getReturnInfo();
1588   switch (retAI.getKind()) {
1589   case ABIArgInfo::Expand:
1590   case ABIArgInfo::IndirectAliased:
1591     llvm_unreachable("Invalid ABI kind for return argument");
1592 
1593   case ABIArgInfo::Extend:
1594   case ABIArgInfo::Direct:
1595     resultType = retAI.getCoerceToType();
1596     break;
1597 
1598   case ABIArgInfo::InAlloca:
1599     if (retAI.getInAllocaSRet()) {
1600       // sret things on win32 aren't void, they return the sret pointer.
1601       QualType ret = FI.getReturnType();
1602       llvm::Type *ty = ConvertType(ret);
1603       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1604       resultType = llvm::PointerType::get(ty, addressSpace);
1605     } else {
1606       resultType = llvm::Type::getVoidTy(getLLVMContext());
1607     }
1608     break;
1609 
1610   case ABIArgInfo::Indirect:
1611   case ABIArgInfo::Ignore:
1612     resultType = llvm::Type::getVoidTy(getLLVMContext());
1613     break;
1614 
1615   case ABIArgInfo::CoerceAndExpand:
1616     resultType = retAI.getUnpaddedCoerceAndExpandType();
1617     break;
1618   }
1619 
1620   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1621   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1622 
1623   // Add type for sret argument.
1624   if (IRFunctionArgs.hasSRetArg()) {
1625     QualType Ret = FI.getReturnType();
1626     llvm::Type *Ty = ConvertType(Ret);
1627     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1628     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1629         llvm::PointerType::get(Ty, AddressSpace);
1630   }
1631 
1632   // Add type for inalloca argument.
1633   if (IRFunctionArgs.hasInallocaArg()) {
1634     auto ArgStruct = FI.getArgStruct();
1635     assert(ArgStruct);
1636     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1637   }
1638 
1639   // Add in all of the required arguments.
1640   unsigned ArgNo = 0;
1641   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1642                                      ie = it + FI.getNumRequiredArgs();
1643   for (; it != ie; ++it, ++ArgNo) {
1644     const ABIArgInfo &ArgInfo = it->info;
1645 
1646     // Insert a padding type to ensure proper alignment.
1647     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1648       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1649           ArgInfo.getPaddingType();
1650 
1651     unsigned FirstIRArg, NumIRArgs;
1652     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1653 
1654     switch (ArgInfo.getKind()) {
1655     case ABIArgInfo::Ignore:
1656     case ABIArgInfo::InAlloca:
1657       assert(NumIRArgs == 0);
1658       break;
1659 
1660     case ABIArgInfo::Indirect: {
1661       assert(NumIRArgs == 1);
1662       // indirect arguments are always on the stack, which is alloca addr space.
1663       llvm::Type *LTy = ConvertTypeForMem(it->type);
1664       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1665           CGM.getDataLayout().getAllocaAddrSpace());
1666       break;
1667     }
1668     case ABIArgInfo::IndirectAliased: {
1669       assert(NumIRArgs == 1);
1670       llvm::Type *LTy = ConvertTypeForMem(it->type);
1671       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1672       break;
1673     }
1674     case ABIArgInfo::Extend:
1675     case ABIArgInfo::Direct: {
1676       // Fast-isel and the optimizer generally like scalar values better than
1677       // FCAs, so we flatten them if this is safe to do for this argument.
1678       llvm::Type *argType = ArgInfo.getCoerceToType();
1679       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1680       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1681         assert(NumIRArgs == st->getNumElements());
1682         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1683           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1684       } else {
1685         assert(NumIRArgs == 1);
1686         ArgTypes[FirstIRArg] = argType;
1687       }
1688       break;
1689     }
1690 
1691     case ABIArgInfo::CoerceAndExpand: {
1692       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1693       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1694         *ArgTypesIter++ = EltTy;
1695       }
1696       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1697       break;
1698     }
1699 
1700     case ABIArgInfo::Expand:
1701       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1702       getExpandedTypes(it->type, ArgTypesIter);
1703       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1704       break;
1705     }
1706   }
1707 
1708   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1709   assert(Erased && "Not in set?");
1710 
1711   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1712 }
1713 
1714 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1715   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1716   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1717 
1718   if (!isFuncTypeConvertible(FPT))
1719     return llvm::StructType::get(getLLVMContext());
1720 
1721   return GetFunctionType(GD);
1722 }
1723 
1724 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1725                                                llvm::AttrBuilder &FuncAttrs,
1726                                                const FunctionProtoType *FPT) {
1727   if (!FPT)
1728     return;
1729 
1730   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1731       FPT->isNothrow())
1732     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1733 }
1734 
1735 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1736                                           QualType ReturnType) {
1737   // We can't just discard the return value for a record type with a
1738   // complex destructor or a non-trivially copyable type.
1739   if (const RecordType *RT =
1740           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1741     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1742       return ClassDecl->hasTrivialDestructor();
1743   }
1744   return ReturnType.isTriviallyCopyableType(Context);
1745 }
1746 
1747 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1748                                                  bool HasOptnone,
1749                                                  bool AttrOnCallSite,
1750                                                llvm::AttrBuilder &FuncAttrs) {
1751   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1752   if (!HasOptnone) {
1753     if (CodeGenOpts.OptimizeSize)
1754       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1755     if (CodeGenOpts.OptimizeSize == 2)
1756       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1757   }
1758 
1759   if (CodeGenOpts.DisableRedZone)
1760     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1761   if (CodeGenOpts.IndirectTlsSegRefs)
1762     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1763   if (CodeGenOpts.NoImplicitFloat)
1764     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1765 
1766   if (AttrOnCallSite) {
1767     // Attributes that should go on the call site only.
1768     if (!CodeGenOpts.SimplifyLibCalls ||
1769         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1770       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1771     if (!CodeGenOpts.TrapFuncName.empty())
1772       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1773   } else {
1774     StringRef FpKind;
1775     switch (CodeGenOpts.getFramePointer()) {
1776     case CodeGenOptions::FramePointerKind::None:
1777       FpKind = "none";
1778       break;
1779     case CodeGenOptions::FramePointerKind::NonLeaf:
1780       FpKind = "non-leaf";
1781       break;
1782     case CodeGenOptions::FramePointerKind::All:
1783       FpKind = "all";
1784       break;
1785     }
1786     FuncAttrs.addAttribute("frame-pointer", FpKind);
1787 
1788     if (CodeGenOpts.LessPreciseFPMAD)
1789       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1790 
1791     if (CodeGenOpts.NullPointerIsValid)
1792       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1793 
1794     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1795       FuncAttrs.addAttribute("denormal-fp-math",
1796                              CodeGenOpts.FPDenormalMode.str());
1797     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1798       FuncAttrs.addAttribute(
1799           "denormal-fp-math-f32",
1800           CodeGenOpts.FP32DenormalMode.str());
1801     }
1802 
1803     if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1804       FuncAttrs.addAttribute("no-trapping-math", "true");
1805 
1806     // Strict (compliant) code is the default, so only add this attribute to
1807     // indicate that we are trying to workaround a problem case.
1808     if (!CodeGenOpts.StrictFloatCastOverflow)
1809       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1810 
1811     // TODO: Are these all needed?
1812     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1813     if (LangOpts.NoHonorInfs)
1814       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1815     if (LangOpts.NoHonorNaNs)
1816       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1817     if (LangOpts.UnsafeFPMath)
1818       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1819     if (CodeGenOpts.SoftFloat)
1820       FuncAttrs.addAttribute("use-soft-float", "true");
1821     FuncAttrs.addAttribute("stack-protector-buffer-size",
1822                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1823     if (LangOpts.NoSignedZero)
1824       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1825 
1826     // TODO: Reciprocal estimate codegen options should apply to instructions?
1827     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1828     if (!Recips.empty())
1829       FuncAttrs.addAttribute("reciprocal-estimates",
1830                              llvm::join(Recips, ","));
1831 
1832     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1833         CodeGenOpts.PreferVectorWidth != "none")
1834       FuncAttrs.addAttribute("prefer-vector-width",
1835                              CodeGenOpts.PreferVectorWidth);
1836 
1837     if (CodeGenOpts.StackRealignment)
1838       FuncAttrs.addAttribute("stackrealign");
1839     if (CodeGenOpts.Backchain)
1840       FuncAttrs.addAttribute("backchain");
1841     if (CodeGenOpts.EnableSegmentedStacks)
1842       FuncAttrs.addAttribute("split-stack");
1843 
1844     if (CodeGenOpts.SpeculativeLoadHardening)
1845       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1846   }
1847 
1848   if (getLangOpts().assumeFunctionsAreConvergent()) {
1849     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1850     // convergent (meaning, they may call an intrinsically convergent op, such
1851     // as __syncthreads() / barrier(), and so can't have certain optimizations
1852     // applied around them).  LLVM will remove this attribute where it safely
1853     // can.
1854     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1855   }
1856 
1857   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1858     // Exceptions aren't supported in CUDA device code.
1859     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1860   }
1861 
1862   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1863     StringRef Var, Value;
1864     std::tie(Var, Value) = Attr.split('=');
1865     FuncAttrs.addAttribute(Var, Value);
1866   }
1867 }
1868 
1869 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1870   llvm::AttrBuilder FuncAttrs;
1871   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1872                                /* AttrOnCallSite = */ false, FuncAttrs);
1873   // TODO: call GetCPUAndFeaturesAttributes?
1874   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1875 }
1876 
1877 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1878                                                    llvm::AttrBuilder &attrs) {
1879   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1880                                /*for call*/ false, attrs);
1881   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1882 }
1883 
1884 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1885                                    const LangOptions &LangOpts,
1886                                    const NoBuiltinAttr *NBA = nullptr) {
1887   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1888     SmallString<32> AttributeName;
1889     AttributeName += "no-builtin-";
1890     AttributeName += BuiltinName;
1891     FuncAttrs.addAttribute(AttributeName);
1892   };
1893 
1894   // First, handle the language options passed through -fno-builtin.
1895   if (LangOpts.NoBuiltin) {
1896     // -fno-builtin disables them all.
1897     FuncAttrs.addAttribute("no-builtins");
1898     return;
1899   }
1900 
1901   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1902   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1903 
1904   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1905   // the source.
1906   if (!NBA)
1907     return;
1908 
1909   // If there is a wildcard in the builtin names specified through the
1910   // attribute, disable them all.
1911   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1912     FuncAttrs.addAttribute("no-builtins");
1913     return;
1914   }
1915 
1916   // And last, add the rest of the builtin names.
1917   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1918 }
1919 
1920 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
1921                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
1922                              bool CheckCoerce = true) {
1923   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
1924   if (AI.getKind() == ABIArgInfo::Indirect)
1925     return true;
1926   if (AI.getKind() == ABIArgInfo::Extend)
1927     return true;
1928   if (!DL.typeSizeEqualsStoreSize(Ty))
1929     // TODO: This will result in a modest amount of values not marked noundef
1930     // when they could be. We care about values that *invisibly* contain undef
1931     // bits from the perspective of LLVM IR.
1932     return false;
1933   if (CheckCoerce && AI.canHaveCoerceToType()) {
1934     llvm::Type *CoerceTy = AI.getCoerceToType();
1935     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
1936                                   DL.getTypeSizeInBits(Ty)))
1937       // If we're coercing to a type with a greater size than the canonical one,
1938       // we're introducing new undef bits.
1939       // Coercing to a type of smaller or equal size is ok, as we know that
1940       // there's no internal padding (typeSizeEqualsStoreSize).
1941       return false;
1942   }
1943   if (QTy->isExtIntType())
1944     return true;
1945   if (QTy->isReferenceType())
1946     return true;
1947   if (QTy->isNullPtrType())
1948     return false;
1949   if (QTy->isMemberPointerType())
1950     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
1951     // now, never mark them.
1952     return false;
1953   if (QTy->isScalarType()) {
1954     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
1955       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
1956     return true;
1957   }
1958   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
1959     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
1960   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
1961     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
1962   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
1963     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
1964 
1965   // TODO: Some structs may be `noundef`, in specific situations.
1966   return false;
1967 }
1968 
1969 /// Construct the IR attribute list of a function or call.
1970 ///
1971 /// When adding an attribute, please consider where it should be handled:
1972 ///
1973 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1974 ///     part of the global target configuration (but perhaps can be
1975 ///     overridden on a per-function basis).  Adding attributes there
1976 ///     will cause them to also be set in frontends that build on Clang's
1977 ///     target-configuration logic, as well as for code defined in library
1978 ///     modules such as CUDA's libdevice.
1979 ///
1980 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1981 ///     and adds declaration-specific, convention-specific, and
1982 ///     frontend-specific logic.  The last is of particular importance:
1983 ///     attributes that restrict how the frontend generates code must be
1984 ///     added here rather than getDefaultFunctionAttributes.
1985 ///
1986 void CodeGenModule::ConstructAttributeList(
1987     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1988     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1989   llvm::AttrBuilder FuncAttrs;
1990   llvm::AttrBuilder RetAttrs;
1991 
1992   // Collect function IR attributes from the CC lowering.
1993   // We'll collect the paramete and result attributes later.
1994   CallingConv = FI.getEffectiveCallingConvention();
1995   if (FI.isNoReturn())
1996     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1997   if (FI.isCmseNSCall())
1998     FuncAttrs.addAttribute("cmse_nonsecure_call");
1999 
2000   // Collect function IR attributes from the callee prototype if we have one.
2001   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2002                                      CalleeInfo.getCalleeFunctionProtoType());
2003 
2004   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2005 
2006   bool HasOptnone = false;
2007   // The NoBuiltinAttr attached to the target FunctionDecl.
2008   const NoBuiltinAttr *NBA = nullptr;
2009 
2010   // Collect function IR attributes based on declaration-specific
2011   // information.
2012   // FIXME: handle sseregparm someday...
2013   if (TargetDecl) {
2014     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2015       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2016     if (TargetDecl->hasAttr<NoThrowAttr>())
2017       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2018     if (TargetDecl->hasAttr<NoReturnAttr>())
2019       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2020     if (TargetDecl->hasAttr<ColdAttr>())
2021       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2022     if (TargetDecl->hasAttr<HotAttr>())
2023       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2024     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2025       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2026     if (TargetDecl->hasAttr<ConvergentAttr>())
2027       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2028 
2029     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2030       AddAttributesFromFunctionProtoType(
2031           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2032       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2033         // A sane operator new returns a non-aliasing pointer.
2034         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2035         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2036             (Kind == OO_New || Kind == OO_Array_New))
2037           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2038       }
2039       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2040       const bool IsVirtualCall = MD && MD->isVirtual();
2041       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2042       // virtual function. These attributes are not inherited by overloads.
2043       if (!(AttrOnCallSite && IsVirtualCall)) {
2044         if (Fn->isNoReturn())
2045           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2046         NBA = Fn->getAttr<NoBuiltinAttr>();
2047       }
2048       // Only place nomerge attribute on call sites, never functions. This
2049       // allows it to work on indirect virtual function calls.
2050       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2051         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2052     }
2053 
2054     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2055     if (TargetDecl->hasAttr<ConstAttr>()) {
2056       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2057       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2058       // gcc specifies that 'const' functions have greater restrictions than
2059       // 'pure' functions, so they also cannot have infinite loops.
2060       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2061     } else if (TargetDecl->hasAttr<PureAttr>()) {
2062       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2063       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2064       // gcc specifies that 'pure' functions cannot have infinite loops.
2065       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2066     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2067       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2068       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2069     }
2070     if (TargetDecl->hasAttr<RestrictAttr>())
2071       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2072     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2073         !CodeGenOpts.NullPointerIsValid)
2074       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2075     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2076       FuncAttrs.addAttribute("no_caller_saved_registers");
2077     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2078       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2079     if (TargetDecl->hasAttr<LeafAttr>())
2080       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2081 
2082     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2083     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2084       Optional<unsigned> NumElemsParam;
2085       if (AllocSize->getNumElemsParam().isValid())
2086         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2087       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2088                                  NumElemsParam);
2089     }
2090 
2091     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2092       if (getLangOpts().OpenCLVersion <= 120) {
2093         // OpenCL v1.2 Work groups are always uniform
2094         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2095       } else {
2096         // OpenCL v2.0 Work groups may be whether uniform or not.
2097         // '-cl-uniform-work-group-size' compile option gets a hint
2098         // to the compiler that the global work-size be a multiple of
2099         // the work-group size specified to clEnqueueNDRangeKernel
2100         // (i.e. work groups are uniform).
2101         FuncAttrs.addAttribute("uniform-work-group-size",
2102                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2103       }
2104     }
2105 
2106     std::string AssumptionValueStr;
2107     for (AssumptionAttr *AssumptionA :
2108          TargetDecl->specific_attrs<AssumptionAttr>()) {
2109       std::string AS = AssumptionA->getAssumption().str();
2110       if (!AS.empty() && !AssumptionValueStr.empty())
2111         AssumptionValueStr += ",";
2112       AssumptionValueStr += AS;
2113     }
2114 
2115     if (!AssumptionValueStr.empty())
2116       FuncAttrs.addAttribute(llvm::AssumptionAttrKey, AssumptionValueStr);
2117   }
2118 
2119   // Attach "no-builtins" attributes to:
2120   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2121   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2122   // The attributes can come from:
2123   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2124   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2125   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2126 
2127   // Collect function IR attributes based on global settiings.
2128   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2129 
2130   // Override some default IR attributes based on declaration-specific
2131   // information.
2132   if (TargetDecl) {
2133     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2134       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2135     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2136       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2137     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2138       FuncAttrs.removeAttribute("split-stack");
2139 
2140     // Add NonLazyBind attribute to function declarations when -fno-plt
2141     // is used.
2142     // FIXME: what if we just haven't processed the function definition
2143     // yet, or if it's an external definition like C99 inline?
2144     if (CodeGenOpts.NoPLT) {
2145       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2146         if (!Fn->isDefined() && !AttrOnCallSite) {
2147           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2148         }
2149       }
2150     }
2151   }
2152 
2153   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2154   // functions with -funique-internal-linkage-names.
2155   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2156     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2157       if (this->getFunctionLinkage(Fn) == llvm::GlobalValue::InternalLinkage)
2158         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2159                                "selected");
2160     }
2161   }
2162 
2163   // Collect non-call-site function IR attributes from declaration-specific
2164   // information.
2165   if (!AttrOnCallSite) {
2166     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2167       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2168 
2169     // Whether tail calls are enabled.
2170     auto shouldDisableTailCalls = [&] {
2171       // Should this be honored in getDefaultFunctionAttributes?
2172       if (CodeGenOpts.DisableTailCalls)
2173         return true;
2174 
2175       if (!TargetDecl)
2176         return false;
2177 
2178       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2179           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2180         return true;
2181 
2182       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2183         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2184           if (!BD->doesNotEscape())
2185             return true;
2186       }
2187 
2188       return false;
2189     };
2190     if (shouldDisableTailCalls())
2191       FuncAttrs.addAttribute("disable-tail-calls", "true");
2192 
2193     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2194     // handles these separately to set them based on the global defaults.
2195     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2196   }
2197 
2198   // Collect attributes from arguments and return values.
2199   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2200 
2201   QualType RetTy = FI.getReturnType();
2202   const ABIArgInfo &RetAI = FI.getReturnInfo();
2203   const llvm::DataLayout &DL = getDataLayout();
2204 
2205   // C++ explicitly makes returning undefined values UB. C's rule only applies
2206   // to used values, so we never mark them noundef for now.
2207   bool HasStrictReturn = getLangOpts().CPlusPlus;
2208   if (TargetDecl) {
2209     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2210       HasStrictReturn &= !FDecl->isExternC();
2211     else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2212       // Function pointer
2213       HasStrictReturn &= !VDecl->isExternC();
2214   }
2215 
2216   // We don't want to be too aggressive with the return checking, unless
2217   // it's explicit in the code opts or we're using an appropriate sanitizer.
2218   // Try to respect what the programmer intended.
2219   HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2220                      !MayDropFunctionReturn(getContext(), RetTy) ||
2221                      getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2222                      getLangOpts().Sanitize.has(SanitizerKind::Return);
2223 
2224   // Determine if the return type could be partially undef
2225   if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2226     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2227         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2228       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2229   }
2230 
2231   switch (RetAI.getKind()) {
2232   case ABIArgInfo::Extend:
2233     if (RetAI.isSignExt())
2234       RetAttrs.addAttribute(llvm::Attribute::SExt);
2235     else
2236       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2237     LLVM_FALLTHROUGH;
2238   case ABIArgInfo::Direct:
2239     if (RetAI.getInReg())
2240       RetAttrs.addAttribute(llvm::Attribute::InReg);
2241     break;
2242   case ABIArgInfo::Ignore:
2243     break;
2244 
2245   case ABIArgInfo::InAlloca:
2246   case ABIArgInfo::Indirect: {
2247     // inalloca and sret disable readnone and readonly
2248     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2249       .removeAttribute(llvm::Attribute::ReadNone);
2250     break;
2251   }
2252 
2253   case ABIArgInfo::CoerceAndExpand:
2254     break;
2255 
2256   case ABIArgInfo::Expand:
2257   case ABIArgInfo::IndirectAliased:
2258     llvm_unreachable("Invalid ABI kind for return argument");
2259   }
2260 
2261   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2262     QualType PTy = RefTy->getPointeeType();
2263     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2264       RetAttrs.addDereferenceableAttr(
2265           getMinimumObjectSize(PTy).getQuantity());
2266     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2267         !CodeGenOpts.NullPointerIsValid)
2268       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2269     if (PTy->isObjectType()) {
2270       llvm::Align Alignment =
2271           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2272       RetAttrs.addAlignmentAttr(Alignment);
2273     }
2274   }
2275 
2276   bool hasUsedSRet = false;
2277   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2278 
2279   // Attach attributes to sret.
2280   if (IRFunctionArgs.hasSRetArg()) {
2281     llvm::AttrBuilder SRETAttrs;
2282     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2283     hasUsedSRet = true;
2284     if (RetAI.getInReg())
2285       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2286     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2287     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2288         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2289   }
2290 
2291   // Attach attributes to inalloca argument.
2292   if (IRFunctionArgs.hasInallocaArg()) {
2293     llvm::AttrBuilder Attrs;
2294     Attrs.addAttribute(llvm::Attribute::InAlloca);
2295     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2296         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2297   }
2298 
2299   // Apply `nonnull` and `dereferencable(N)` to the `this` argument.
2300   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2301       !FI.arg_begin()->type->isVoidPointerType()) {
2302     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2303 
2304     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2305 
2306     llvm::AttrBuilder Attrs;
2307 
2308     if (!CodeGenOpts.NullPointerIsValid &&
2309         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2310       Attrs.addAttribute(llvm::Attribute::NonNull);
2311       Attrs.addDereferenceableAttr(
2312           getMinimumObjectSize(
2313               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2314               .getQuantity());
2315     } else {
2316       // FIXME dereferenceable should be correct here, regardless of
2317       // NullPointerIsValid. However, dereferenceable currently does not always
2318       // respect NullPointerIsValid and may imply nonnull and break the program.
2319       // See https://reviews.llvm.org/D66618 for discussions.
2320       Attrs.addDereferenceableOrNullAttr(
2321           getMinimumObjectSize(
2322               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2323               .getQuantity());
2324     }
2325 
2326     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2327   }
2328 
2329   unsigned ArgNo = 0;
2330   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2331                                           E = FI.arg_end();
2332        I != E; ++I, ++ArgNo) {
2333     QualType ParamType = I->type;
2334     const ABIArgInfo &AI = I->info;
2335     llvm::AttrBuilder Attrs;
2336 
2337     // Add attribute for padding argument, if necessary.
2338     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2339       if (AI.getPaddingInReg()) {
2340         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2341             llvm::AttributeSet::get(
2342                 getLLVMContext(),
2343                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2344       }
2345     }
2346 
2347     // Decide whether the argument we're handling could be partially undef
2348     bool ArgNoUndef = DetermineNoUndef(ParamType, getTypes(), DL, AI);
2349     if (CodeGenOpts.EnableNoundefAttrs && ArgNoUndef)
2350       Attrs.addAttribute(llvm::Attribute::NoUndef);
2351 
2352     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2353     // have the corresponding parameter variable.  It doesn't make
2354     // sense to do it here because parameters are so messed up.
2355     switch (AI.getKind()) {
2356     case ABIArgInfo::Extend:
2357       if (AI.isSignExt())
2358         Attrs.addAttribute(llvm::Attribute::SExt);
2359       else
2360         Attrs.addAttribute(llvm::Attribute::ZExt);
2361       LLVM_FALLTHROUGH;
2362     case ABIArgInfo::Direct:
2363       if (ArgNo == 0 && FI.isChainCall())
2364         Attrs.addAttribute(llvm::Attribute::Nest);
2365       else if (AI.getInReg())
2366         Attrs.addAttribute(llvm::Attribute::InReg);
2367       break;
2368 
2369     case ABIArgInfo::Indirect: {
2370       if (AI.getInReg())
2371         Attrs.addAttribute(llvm::Attribute::InReg);
2372 
2373       if (AI.getIndirectByVal())
2374         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2375 
2376       auto *Decl = ParamType->getAsRecordDecl();
2377       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2378           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2379         // When calling the function, the pointer passed in will be the only
2380         // reference to the underlying object. Mark it accordingly.
2381         Attrs.addAttribute(llvm::Attribute::NoAlias);
2382 
2383       // TODO: We could add the byref attribute if not byval, but it would
2384       // require updating many testcases.
2385 
2386       CharUnits Align = AI.getIndirectAlign();
2387 
2388       // In a byval argument, it is important that the required
2389       // alignment of the type is honored, as LLVM might be creating a
2390       // *new* stack object, and needs to know what alignment to give
2391       // it. (Sometimes it can deduce a sensible alignment on its own,
2392       // but not if clang decides it must emit a packed struct, or the
2393       // user specifies increased alignment requirements.)
2394       //
2395       // This is different from indirect *not* byval, where the object
2396       // exists already, and the align attribute is purely
2397       // informative.
2398       assert(!Align.isZero());
2399 
2400       // For now, only add this when we have a byval argument.
2401       // TODO: be less lazy about updating test cases.
2402       if (AI.getIndirectByVal())
2403         Attrs.addAlignmentAttr(Align.getQuantity());
2404 
2405       // byval disables readnone and readonly.
2406       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2407         .removeAttribute(llvm::Attribute::ReadNone);
2408 
2409       break;
2410     }
2411     case ABIArgInfo::IndirectAliased: {
2412       CharUnits Align = AI.getIndirectAlign();
2413       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2414       Attrs.addAlignmentAttr(Align.getQuantity());
2415       break;
2416     }
2417     case ABIArgInfo::Ignore:
2418     case ABIArgInfo::Expand:
2419     case ABIArgInfo::CoerceAndExpand:
2420       break;
2421 
2422     case ABIArgInfo::InAlloca:
2423       // inalloca disables readnone and readonly.
2424       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2425           .removeAttribute(llvm::Attribute::ReadNone);
2426       continue;
2427     }
2428 
2429     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2430       QualType PTy = RefTy->getPointeeType();
2431       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2432         Attrs.addDereferenceableAttr(
2433             getMinimumObjectSize(PTy).getQuantity());
2434       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2435           !CodeGenOpts.NullPointerIsValid)
2436         Attrs.addAttribute(llvm::Attribute::NonNull);
2437       if (PTy->isObjectType()) {
2438         llvm::Align Alignment =
2439             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2440         Attrs.addAlignmentAttr(Alignment);
2441       }
2442     }
2443 
2444     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2445     case ParameterABI::Ordinary:
2446       break;
2447 
2448     case ParameterABI::SwiftIndirectResult: {
2449       // Add 'sret' if we haven't already used it for something, but
2450       // only if the result is void.
2451       if (!hasUsedSRet && RetTy->isVoidType()) {
2452         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2453         hasUsedSRet = true;
2454       }
2455 
2456       // Add 'noalias' in either case.
2457       Attrs.addAttribute(llvm::Attribute::NoAlias);
2458 
2459       // Add 'dereferenceable' and 'alignment'.
2460       auto PTy = ParamType->getPointeeType();
2461       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2462         auto info = getContext().getTypeInfoInChars(PTy);
2463         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2464         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2465       }
2466       break;
2467     }
2468 
2469     case ParameterABI::SwiftErrorResult:
2470       Attrs.addAttribute(llvm::Attribute::SwiftError);
2471       break;
2472 
2473     case ParameterABI::SwiftContext:
2474       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2475       break;
2476     }
2477 
2478     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2479       Attrs.addAttribute(llvm::Attribute::NoCapture);
2480 
2481     if (Attrs.hasAttributes()) {
2482       unsigned FirstIRArg, NumIRArgs;
2483       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2484       for (unsigned i = 0; i < NumIRArgs; i++)
2485         ArgAttrs[FirstIRArg + i] =
2486             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2487     }
2488   }
2489   assert(ArgNo == FI.arg_size());
2490 
2491   AttrList = llvm::AttributeList::get(
2492       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2493       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2494 }
2495 
2496 /// An argument came in as a promoted argument; demote it back to its
2497 /// declared type.
2498 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2499                                          const VarDecl *var,
2500                                          llvm::Value *value) {
2501   llvm::Type *varType = CGF.ConvertType(var->getType());
2502 
2503   // This can happen with promotions that actually don't change the
2504   // underlying type, like the enum promotions.
2505   if (value->getType() == varType) return value;
2506 
2507   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2508          && "unexpected promotion type");
2509 
2510   if (isa<llvm::IntegerType>(varType))
2511     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2512 
2513   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2514 }
2515 
2516 /// Returns the attribute (either parameter attribute, or function
2517 /// attribute), which declares argument ArgNo to be non-null.
2518 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2519                                          QualType ArgType, unsigned ArgNo) {
2520   // FIXME: __attribute__((nonnull)) can also be applied to:
2521   //   - references to pointers, where the pointee is known to be
2522   //     nonnull (apparently a Clang extension)
2523   //   - transparent unions containing pointers
2524   // In the former case, LLVM IR cannot represent the constraint. In
2525   // the latter case, we have no guarantee that the transparent union
2526   // is in fact passed as a pointer.
2527   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2528     return nullptr;
2529   // First, check attribute on parameter itself.
2530   if (PVD) {
2531     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2532       return ParmNNAttr;
2533   }
2534   // Check function attributes.
2535   if (!FD)
2536     return nullptr;
2537   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2538     if (NNAttr->isNonNull(ArgNo))
2539       return NNAttr;
2540   }
2541   return nullptr;
2542 }
2543 
2544 namespace {
2545   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2546     Address Temp;
2547     Address Arg;
2548     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2549     void Emit(CodeGenFunction &CGF, Flags flags) override {
2550       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2551       CGF.Builder.CreateStore(errorValue, Arg);
2552     }
2553   };
2554 }
2555 
2556 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2557                                          llvm::Function *Fn,
2558                                          const FunctionArgList &Args) {
2559   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2560     // Naked functions don't have prologues.
2561     return;
2562 
2563   // If this is an implicit-return-zero function, go ahead and
2564   // initialize the return value.  TODO: it might be nice to have
2565   // a more general mechanism for this that didn't require synthesized
2566   // return statements.
2567   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2568     if (FD->hasImplicitReturnZero()) {
2569       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2570       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2571       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2572       Builder.CreateStore(Zero, ReturnValue);
2573     }
2574   }
2575 
2576   // FIXME: We no longer need the types from FunctionArgList; lift up and
2577   // simplify.
2578 
2579   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2580   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2581 
2582   // If we're using inalloca, all the memory arguments are GEPs off of the last
2583   // parameter, which is a pointer to the complete memory area.
2584   Address ArgStruct = Address::invalid();
2585   if (IRFunctionArgs.hasInallocaArg()) {
2586     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2587                         FI.getArgStructAlignment());
2588 
2589     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2590   }
2591 
2592   // Name the struct return parameter.
2593   if (IRFunctionArgs.hasSRetArg()) {
2594     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2595     AI->setName("agg.result");
2596     AI->addAttr(llvm::Attribute::NoAlias);
2597   }
2598 
2599   // Track if we received the parameter as a pointer (indirect, byval, or
2600   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2601   // into a local alloca for us.
2602   SmallVector<ParamValue, 16> ArgVals;
2603   ArgVals.reserve(Args.size());
2604 
2605   // Create a pointer value for every parameter declaration.  This usually
2606   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2607   // any cleanups or do anything that might unwind.  We do that separately, so
2608   // we can push the cleanups in the correct order for the ABI.
2609   assert(FI.arg_size() == Args.size() &&
2610          "Mismatch between function signature & arguments.");
2611   unsigned ArgNo = 0;
2612   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2613   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2614        i != e; ++i, ++info_it, ++ArgNo) {
2615     const VarDecl *Arg = *i;
2616     const ABIArgInfo &ArgI = info_it->info;
2617 
2618     bool isPromoted =
2619       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2620     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2621     // the parameter is promoted. In this case we convert to
2622     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2623     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2624     assert(hasScalarEvaluationKind(Ty) ==
2625            hasScalarEvaluationKind(Arg->getType()));
2626 
2627     unsigned FirstIRArg, NumIRArgs;
2628     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2629 
2630     switch (ArgI.getKind()) {
2631     case ABIArgInfo::InAlloca: {
2632       assert(NumIRArgs == 0);
2633       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2634       Address V =
2635           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2636       if (ArgI.getInAllocaIndirect())
2637         V = Address(Builder.CreateLoad(V),
2638                     getContext().getTypeAlignInChars(Ty));
2639       ArgVals.push_back(ParamValue::forIndirect(V));
2640       break;
2641     }
2642 
2643     case ABIArgInfo::Indirect:
2644     case ABIArgInfo::IndirectAliased: {
2645       assert(NumIRArgs == 1);
2646       Address ParamAddr =
2647           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2648 
2649       if (!hasScalarEvaluationKind(Ty)) {
2650         // Aggregates and complex variables are accessed by reference. All we
2651         // need to do is realign the value, if requested. Also, if the address
2652         // may be aliased, copy it to ensure that the parameter variable is
2653         // mutable and has a unique adress, as C requires.
2654         Address V = ParamAddr;
2655         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2656           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2657 
2658           // Copy from the incoming argument pointer to the temporary with the
2659           // appropriate alignment.
2660           //
2661           // FIXME: We should have a common utility for generating an aggregate
2662           // copy.
2663           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2664           Builder.CreateMemCpy(
2665               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2666               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2667               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2668           V = AlignedTemp;
2669         }
2670         ArgVals.push_back(ParamValue::forIndirect(V));
2671       } else {
2672         // Load scalar value from indirect argument.
2673         llvm::Value *V =
2674             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2675 
2676         if (isPromoted)
2677           V = emitArgumentDemotion(*this, Arg, V);
2678         ArgVals.push_back(ParamValue::forDirect(V));
2679       }
2680       break;
2681     }
2682 
2683     case ABIArgInfo::Extend:
2684     case ABIArgInfo::Direct: {
2685       auto AI = Fn->getArg(FirstIRArg);
2686       llvm::Type *LTy = ConvertType(Arg->getType());
2687 
2688       // Prepare parameter attributes. So far, only attributes for pointer
2689       // parameters are prepared. See
2690       // http://llvm.org/docs/LangRef.html#paramattrs.
2691       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2692           ArgI.getCoerceToType()->isPointerTy()) {
2693         assert(NumIRArgs == 1);
2694 
2695         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2696           // Set `nonnull` attribute if any.
2697           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2698                              PVD->getFunctionScopeIndex()) &&
2699               !CGM.getCodeGenOpts().NullPointerIsValid)
2700             AI->addAttr(llvm::Attribute::NonNull);
2701 
2702           QualType OTy = PVD->getOriginalType();
2703           if (const auto *ArrTy =
2704               getContext().getAsConstantArrayType(OTy)) {
2705             // A C99 array parameter declaration with the static keyword also
2706             // indicates dereferenceability, and if the size is constant we can
2707             // use the dereferenceable attribute (which requires the size in
2708             // bytes).
2709             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2710               QualType ETy = ArrTy->getElementType();
2711               llvm::Align Alignment =
2712                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2713               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2714               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2715               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2716                   ArrSize) {
2717                 llvm::AttrBuilder Attrs;
2718                 Attrs.addDereferenceableAttr(
2719                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2720                     ArrSize);
2721                 AI->addAttrs(Attrs);
2722               } else if (getContext().getTargetInfo().getNullPointerValue(
2723                              ETy.getAddressSpace()) == 0 &&
2724                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2725                 AI->addAttr(llvm::Attribute::NonNull);
2726               }
2727             }
2728           } else if (const auto *ArrTy =
2729                      getContext().getAsVariableArrayType(OTy)) {
2730             // For C99 VLAs with the static keyword, we don't know the size so
2731             // we can't use the dereferenceable attribute, but in addrspace(0)
2732             // we know that it must be nonnull.
2733             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2734               QualType ETy = ArrTy->getElementType();
2735               llvm::Align Alignment =
2736                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2737               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2738               if (!getContext().getTargetAddressSpace(ETy) &&
2739                   !CGM.getCodeGenOpts().NullPointerIsValid)
2740                 AI->addAttr(llvm::Attribute::NonNull);
2741             }
2742           }
2743 
2744           // Set `align` attribute if any.
2745           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2746           if (!AVAttr)
2747             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2748               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2749           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2750             // If alignment-assumption sanitizer is enabled, we do *not* add
2751             // alignment attribute here, but emit normal alignment assumption,
2752             // so the UBSAN check could function.
2753             llvm::ConstantInt *AlignmentCI =
2754                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2755             unsigned AlignmentInt =
2756                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2757             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2758               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2759               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2760                   llvm::Align(AlignmentInt)));
2761             }
2762           }
2763         }
2764 
2765         // Set 'noalias' if an argument type has the `restrict` qualifier.
2766         if (Arg->getType().isRestrictQualified())
2767           AI->addAttr(llvm::Attribute::NoAlias);
2768       }
2769 
2770       // Prepare the argument value. If we have the trivial case, handle it
2771       // with no muss and fuss.
2772       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2773           ArgI.getCoerceToType() == ConvertType(Ty) &&
2774           ArgI.getDirectOffset() == 0) {
2775         assert(NumIRArgs == 1);
2776 
2777         // LLVM expects swifterror parameters to be used in very restricted
2778         // ways.  Copy the value into a less-restricted temporary.
2779         llvm::Value *V = AI;
2780         if (FI.getExtParameterInfo(ArgNo).getABI()
2781               == ParameterABI::SwiftErrorResult) {
2782           QualType pointeeTy = Ty->getPointeeType();
2783           assert(pointeeTy->isPointerType());
2784           Address temp =
2785             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2786           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2787           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2788           Builder.CreateStore(incomingErrorValue, temp);
2789           V = temp.getPointer();
2790 
2791           // Push a cleanup to copy the value back at the end of the function.
2792           // The convention does not guarantee that the value will be written
2793           // back if the function exits with an unwind exception.
2794           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2795         }
2796 
2797         // Ensure the argument is the correct type.
2798         if (V->getType() != ArgI.getCoerceToType())
2799           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2800 
2801         if (isPromoted)
2802           V = emitArgumentDemotion(*this, Arg, V);
2803 
2804         // Because of merging of function types from multiple decls it is
2805         // possible for the type of an argument to not match the corresponding
2806         // type in the function type. Since we are codegening the callee
2807         // in here, add a cast to the argument type.
2808         llvm::Type *LTy = ConvertType(Arg->getType());
2809         if (V->getType() != LTy)
2810           V = Builder.CreateBitCast(V, LTy);
2811 
2812         ArgVals.push_back(ParamValue::forDirect(V));
2813         break;
2814       }
2815 
2816       // VLST arguments are coerced to VLATs at the function boundary for
2817       // ABI consistency. If this is a VLST that was coerced to
2818       // a VLAT at the function boundary and the types match up, use
2819       // llvm.experimental.vector.extract to convert back to the original
2820       // VLST.
2821       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2822         auto *Coerced = Fn->getArg(FirstIRArg);
2823         if (auto *VecTyFrom =
2824                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2825           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2826             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2827 
2828             assert(NumIRArgs == 1);
2829             Coerced->setName(Arg->getName() + ".coerce");
2830             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2831                 VecTyTo, Coerced, Zero, "castFixedSve")));
2832             break;
2833           }
2834         }
2835       }
2836 
2837       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2838                                      Arg->getName());
2839 
2840       // Pointer to store into.
2841       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2842 
2843       // Fast-isel and the optimizer generally like scalar values better than
2844       // FCAs, so we flatten them if this is safe to do for this argument.
2845       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2846       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2847           STy->getNumElements() > 1) {
2848         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2849         llvm::Type *DstTy = Ptr.getElementType();
2850         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2851 
2852         Address AddrToStoreInto = Address::invalid();
2853         if (SrcSize <= DstSize) {
2854           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2855         } else {
2856           AddrToStoreInto =
2857             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2858         }
2859 
2860         assert(STy->getNumElements() == NumIRArgs);
2861         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2862           auto AI = Fn->getArg(FirstIRArg + i);
2863           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2864           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2865           Builder.CreateStore(AI, EltPtr);
2866         }
2867 
2868         if (SrcSize > DstSize) {
2869           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2870         }
2871 
2872       } else {
2873         // Simple case, just do a coerced store of the argument into the alloca.
2874         assert(NumIRArgs == 1);
2875         auto AI = Fn->getArg(FirstIRArg);
2876         AI->setName(Arg->getName() + ".coerce");
2877         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2878       }
2879 
2880       // Match to what EmitParmDecl is expecting for this type.
2881       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2882         llvm::Value *V =
2883             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2884         if (isPromoted)
2885           V = emitArgumentDemotion(*this, Arg, V);
2886         ArgVals.push_back(ParamValue::forDirect(V));
2887       } else {
2888         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2889       }
2890       break;
2891     }
2892 
2893     case ABIArgInfo::CoerceAndExpand: {
2894       // Reconstruct into a temporary.
2895       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2896       ArgVals.push_back(ParamValue::forIndirect(alloca));
2897 
2898       auto coercionType = ArgI.getCoerceAndExpandType();
2899       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2900 
2901       unsigned argIndex = FirstIRArg;
2902       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2903         llvm::Type *eltType = coercionType->getElementType(i);
2904         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2905           continue;
2906 
2907         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2908         auto elt = Fn->getArg(argIndex++);
2909         Builder.CreateStore(elt, eltAddr);
2910       }
2911       assert(argIndex == FirstIRArg + NumIRArgs);
2912       break;
2913     }
2914 
2915     case ABIArgInfo::Expand: {
2916       // If this structure was expanded into multiple arguments then
2917       // we need to create a temporary and reconstruct it from the
2918       // arguments.
2919       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2920       LValue LV = MakeAddrLValue(Alloca, Ty);
2921       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2922 
2923       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2924       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2925       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2926       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2927         auto AI = Fn->getArg(FirstIRArg + i);
2928         AI->setName(Arg->getName() + "." + Twine(i));
2929       }
2930       break;
2931     }
2932 
2933     case ABIArgInfo::Ignore:
2934       assert(NumIRArgs == 0);
2935       // Initialize the local variable appropriately.
2936       if (!hasScalarEvaluationKind(Ty)) {
2937         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2938       } else {
2939         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2940         ArgVals.push_back(ParamValue::forDirect(U));
2941       }
2942       break;
2943     }
2944   }
2945 
2946   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2947     for (int I = Args.size() - 1; I >= 0; --I)
2948       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2949   } else {
2950     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2951       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2952   }
2953 }
2954 
2955 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2956   while (insn->use_empty()) {
2957     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2958     if (!bitcast) return;
2959 
2960     // This is "safe" because we would have used a ConstantExpr otherwise.
2961     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2962     bitcast->eraseFromParent();
2963   }
2964 }
2965 
2966 /// Try to emit a fused autorelease of a return result.
2967 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2968                                                     llvm::Value *result) {
2969   // We must be immediately followed the cast.
2970   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2971   if (BB->empty()) return nullptr;
2972   if (&BB->back() != result) return nullptr;
2973 
2974   llvm::Type *resultType = result->getType();
2975 
2976   // result is in a BasicBlock and is therefore an Instruction.
2977   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2978 
2979   SmallVector<llvm::Instruction *, 4> InstsToKill;
2980 
2981   // Look for:
2982   //  %generator = bitcast %type1* %generator2 to %type2*
2983   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2984     // We would have emitted this as a constant if the operand weren't
2985     // an Instruction.
2986     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2987 
2988     // Require the generator to be immediately followed by the cast.
2989     if (generator->getNextNode() != bitcast)
2990       return nullptr;
2991 
2992     InstsToKill.push_back(bitcast);
2993   }
2994 
2995   // Look for:
2996   //   %generator = call i8* @objc_retain(i8* %originalResult)
2997   // or
2998   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2999   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3000   if (!call) return nullptr;
3001 
3002   bool doRetainAutorelease;
3003 
3004   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3005     doRetainAutorelease = true;
3006   } else if (call->getCalledOperand() ==
3007              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3008     doRetainAutorelease = false;
3009 
3010     // If we emitted an assembly marker for this call (and the
3011     // ARCEntrypoints field should have been set if so), go looking
3012     // for that call.  If we can't find it, we can't do this
3013     // optimization.  But it should always be the immediately previous
3014     // instruction, unless we needed bitcasts around the call.
3015     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3016       llvm::Instruction *prev = call->getPrevNode();
3017       assert(prev);
3018       if (isa<llvm::BitCastInst>(prev)) {
3019         prev = prev->getPrevNode();
3020         assert(prev);
3021       }
3022       assert(isa<llvm::CallInst>(prev));
3023       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3024              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3025       InstsToKill.push_back(prev);
3026     }
3027   } else {
3028     return nullptr;
3029   }
3030 
3031   result = call->getArgOperand(0);
3032   InstsToKill.push_back(call);
3033 
3034   // Keep killing bitcasts, for sanity.  Note that we no longer care
3035   // about precise ordering as long as there's exactly one use.
3036   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3037     if (!bitcast->hasOneUse()) break;
3038     InstsToKill.push_back(bitcast);
3039     result = bitcast->getOperand(0);
3040   }
3041 
3042   // Delete all the unnecessary instructions, from latest to earliest.
3043   for (auto *I : InstsToKill)
3044     I->eraseFromParent();
3045 
3046   // Do the fused retain/autorelease if we were asked to.
3047   if (doRetainAutorelease)
3048     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3049 
3050   // Cast back to the result type.
3051   return CGF.Builder.CreateBitCast(result, resultType);
3052 }
3053 
3054 /// If this is a +1 of the value of an immutable 'self', remove it.
3055 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3056                                           llvm::Value *result) {
3057   // This is only applicable to a method with an immutable 'self'.
3058   const ObjCMethodDecl *method =
3059     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3060   if (!method) return nullptr;
3061   const VarDecl *self = method->getSelfDecl();
3062   if (!self->getType().isConstQualified()) return nullptr;
3063 
3064   // Look for a retain call.
3065   llvm::CallInst *retainCall =
3066     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3067   if (!retainCall || retainCall->getCalledOperand() !=
3068                          CGF.CGM.getObjCEntrypoints().objc_retain)
3069     return nullptr;
3070 
3071   // Look for an ordinary load of 'self'.
3072   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3073   llvm::LoadInst *load =
3074     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3075   if (!load || load->isAtomic() || load->isVolatile() ||
3076       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3077     return nullptr;
3078 
3079   // Okay!  Burn it all down.  This relies for correctness on the
3080   // assumption that the retain is emitted as part of the return and
3081   // that thereafter everything is used "linearly".
3082   llvm::Type *resultType = result->getType();
3083   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3084   assert(retainCall->use_empty());
3085   retainCall->eraseFromParent();
3086   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3087 
3088   return CGF.Builder.CreateBitCast(load, resultType);
3089 }
3090 
3091 /// Emit an ARC autorelease of the result of a function.
3092 ///
3093 /// \return the value to actually return from the function
3094 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3095                                             llvm::Value *result) {
3096   // If we're returning 'self', kill the initial retain.  This is a
3097   // heuristic attempt to "encourage correctness" in the really unfortunate
3098   // case where we have a return of self during a dealloc and we desperately
3099   // need to avoid the possible autorelease.
3100   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3101     return self;
3102 
3103   // At -O0, try to emit a fused retain/autorelease.
3104   if (CGF.shouldUseFusedARCCalls())
3105     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3106       return fused;
3107 
3108   return CGF.EmitARCAutoreleaseReturnValue(result);
3109 }
3110 
3111 /// Heuristically search for a dominating store to the return-value slot.
3112 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3113   // Check if a User is a store which pointerOperand is the ReturnValue.
3114   // We are looking for stores to the ReturnValue, not for stores of the
3115   // ReturnValue to some other location.
3116   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3117     auto *SI = dyn_cast<llvm::StoreInst>(U);
3118     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
3119       return nullptr;
3120     // These aren't actually possible for non-coerced returns, and we
3121     // only care about non-coerced returns on this code path.
3122     assert(!SI->isAtomic() && !SI->isVolatile());
3123     return SI;
3124   };
3125   // If there are multiple uses of the return-value slot, just check
3126   // for something immediately preceding the IP.  Sometimes this can
3127   // happen with how we generate implicit-returns; it can also happen
3128   // with noreturn cleanups.
3129   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3130     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3131     if (IP->empty()) return nullptr;
3132     llvm::Instruction *I = &IP->back();
3133 
3134     // Skip lifetime markers
3135     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
3136                                             IE = IP->rend();
3137          II != IE; ++II) {
3138       if (llvm::IntrinsicInst *Intrinsic =
3139               dyn_cast<llvm::IntrinsicInst>(&*II)) {
3140         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
3141           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
3142           ++II;
3143           if (II == IE)
3144             break;
3145           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
3146             continue;
3147         }
3148       }
3149       I = &*II;
3150       break;
3151     }
3152 
3153     return GetStoreIfValid(I);
3154   }
3155 
3156   llvm::StoreInst *store =
3157       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3158   if (!store) return nullptr;
3159 
3160   // Now do a first-and-dirty dominance check: just walk up the
3161   // single-predecessors chain from the current insertion point.
3162   llvm::BasicBlock *StoreBB = store->getParent();
3163   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3164   while (IP != StoreBB) {
3165     if (!(IP = IP->getSinglePredecessor()))
3166       return nullptr;
3167   }
3168 
3169   // Okay, the store's basic block dominates the insertion point; we
3170   // can do our thing.
3171   return store;
3172 }
3173 
3174 // Helper functions for EmitCMSEClearRecord
3175 
3176 // Set the bits corresponding to a field having width `BitWidth` and located at
3177 // offset `BitOffset` (from the least significant bit) within a storage unit of
3178 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3179 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3180 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3181                         int BitWidth, int CharWidth) {
3182   assert(CharWidth <= 64);
3183   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3184 
3185   int Pos = 0;
3186   if (BitOffset >= CharWidth) {
3187     Pos += BitOffset / CharWidth;
3188     BitOffset = BitOffset % CharWidth;
3189   }
3190 
3191   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3192   if (BitOffset + BitWidth >= CharWidth) {
3193     Bits[Pos++] |= (Used << BitOffset) & Used;
3194     BitWidth -= CharWidth - BitOffset;
3195     BitOffset = 0;
3196   }
3197 
3198   while (BitWidth >= CharWidth) {
3199     Bits[Pos++] = Used;
3200     BitWidth -= CharWidth;
3201   }
3202 
3203   if (BitWidth > 0)
3204     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3205 }
3206 
3207 // Set the bits corresponding to a field having width `BitWidth` and located at
3208 // offset `BitOffset` (from the least significant bit) within a storage unit of
3209 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3210 // `Bits` corresponds to one target byte. Use target endian layout.
3211 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3212                         int StorageSize, int BitOffset, int BitWidth,
3213                         int CharWidth, bool BigEndian) {
3214 
3215   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3216   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3217 
3218   if (BigEndian)
3219     std::reverse(TmpBits.begin(), TmpBits.end());
3220 
3221   for (uint64_t V : TmpBits)
3222     Bits[StorageOffset++] |= V;
3223 }
3224 
3225 static void setUsedBits(CodeGenModule &, QualType, int,
3226                         SmallVectorImpl<uint64_t> &);
3227 
3228 // Set the bits in `Bits`, which correspond to the value representations of
3229 // the actual members of the record type `RTy`. Note that this function does
3230 // not handle base classes, virtual tables, etc, since they cannot happen in
3231 // CMSE function arguments or return. The bit mask corresponds to the target
3232 // memory layout, i.e. it's endian dependent.
3233 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3234                         SmallVectorImpl<uint64_t> &Bits) {
3235   ASTContext &Context = CGM.getContext();
3236   int CharWidth = Context.getCharWidth();
3237   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3238   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3239   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3240 
3241   int Idx = 0;
3242   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3243     const FieldDecl *F = *I;
3244 
3245     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3246         F->getType()->isIncompleteArrayType())
3247       continue;
3248 
3249     if (F->isBitField()) {
3250       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3251       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3252                   BFI.StorageSize / CharWidth, BFI.Offset,
3253                   BFI.Size, CharWidth,
3254                   CGM.getDataLayout().isBigEndian());
3255       continue;
3256     }
3257 
3258     setUsedBits(CGM, F->getType(),
3259                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3260   }
3261 }
3262 
3263 // Set the bits in `Bits`, which correspond to the value representations of
3264 // the elements of an array type `ATy`.
3265 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3266                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3267   const ASTContext &Context = CGM.getContext();
3268 
3269   QualType ETy = Context.getBaseElementType(ATy);
3270   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3271   SmallVector<uint64_t, 4> TmpBits(Size);
3272   setUsedBits(CGM, ETy, 0, TmpBits);
3273 
3274   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3275     auto Src = TmpBits.begin();
3276     auto Dst = Bits.begin() + Offset + I * Size;
3277     for (int J = 0; J < Size; ++J)
3278       *Dst++ |= *Src++;
3279   }
3280 }
3281 
3282 // Set the bits in `Bits`, which correspond to the value representations of
3283 // the type `QTy`.
3284 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3285                         SmallVectorImpl<uint64_t> &Bits) {
3286   if (const auto *RTy = QTy->getAs<RecordType>())
3287     return setUsedBits(CGM, RTy, Offset, Bits);
3288 
3289   ASTContext &Context = CGM.getContext();
3290   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3291     return setUsedBits(CGM, ATy, Offset, Bits);
3292 
3293   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3294   if (Size <= 0)
3295     return;
3296 
3297   std::fill_n(Bits.begin() + Offset, Size,
3298               (uint64_t(1) << Context.getCharWidth()) - 1);
3299 }
3300 
3301 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3302                                    int Pos, int Size, int CharWidth,
3303                                    bool BigEndian) {
3304   assert(Size > 0);
3305   uint64_t Mask = 0;
3306   if (BigEndian) {
3307     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3308          ++P)
3309       Mask = (Mask << CharWidth) | *P;
3310   } else {
3311     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3312     do
3313       Mask = (Mask << CharWidth) | *--P;
3314     while (P != End);
3315   }
3316   return Mask;
3317 }
3318 
3319 // Emit code to clear the bits in a record, which aren't a part of any user
3320 // declared member, when the record is a function return.
3321 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3322                                                   llvm::IntegerType *ITy,
3323                                                   QualType QTy) {
3324   assert(Src->getType() == ITy);
3325   assert(ITy->getScalarSizeInBits() <= 64);
3326 
3327   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3328   int Size = DataLayout.getTypeStoreSize(ITy);
3329   SmallVector<uint64_t, 4> Bits(Size);
3330   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3331 
3332   int CharWidth = CGM.getContext().getCharWidth();
3333   uint64_t Mask =
3334       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3335 
3336   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3337 }
3338 
3339 // Emit code to clear the bits in a record, which aren't a part of any user
3340 // declared member, when the record is a function argument.
3341 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3342                                                   llvm::ArrayType *ATy,
3343                                                   QualType QTy) {
3344   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3345   int Size = DataLayout.getTypeStoreSize(ATy);
3346   SmallVector<uint64_t, 16> Bits(Size);
3347   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3348 
3349   // Clear each element of the LLVM array.
3350   int CharWidth = CGM.getContext().getCharWidth();
3351   int CharsPerElt =
3352       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3353   int MaskIndex = 0;
3354   llvm::Value *R = llvm::UndefValue::get(ATy);
3355   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3356     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3357                                        DataLayout.isBigEndian());
3358     MaskIndex += CharsPerElt;
3359     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3360     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3361     R = Builder.CreateInsertValue(R, T1, I);
3362   }
3363 
3364   return R;
3365 }
3366 
3367 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3368                                          bool EmitRetDbgLoc,
3369                                          SourceLocation EndLoc) {
3370   if (FI.isNoReturn()) {
3371     // Noreturn functions don't return.
3372     EmitUnreachable(EndLoc);
3373     return;
3374   }
3375 
3376   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3377     // Naked functions don't have epilogues.
3378     Builder.CreateUnreachable();
3379     return;
3380   }
3381 
3382   // Functions with no result always return void.
3383   if (!ReturnValue.isValid()) {
3384     Builder.CreateRetVoid();
3385     return;
3386   }
3387 
3388   llvm::DebugLoc RetDbgLoc;
3389   llvm::Value *RV = nullptr;
3390   QualType RetTy = FI.getReturnType();
3391   const ABIArgInfo &RetAI = FI.getReturnInfo();
3392 
3393   switch (RetAI.getKind()) {
3394   case ABIArgInfo::InAlloca:
3395     // Aggregrates get evaluated directly into the destination.  Sometimes we
3396     // need to return the sret value in a register, though.
3397     assert(hasAggregateEvaluationKind(RetTy));
3398     if (RetAI.getInAllocaSRet()) {
3399       llvm::Function::arg_iterator EI = CurFn->arg_end();
3400       --EI;
3401       llvm::Value *ArgStruct = &*EI;
3402       llvm::Value *SRet = Builder.CreateStructGEP(
3403           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3404       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3405     }
3406     break;
3407 
3408   case ABIArgInfo::Indirect: {
3409     auto AI = CurFn->arg_begin();
3410     if (RetAI.isSRetAfterThis())
3411       ++AI;
3412     switch (getEvaluationKind(RetTy)) {
3413     case TEK_Complex: {
3414       ComplexPairTy RT =
3415         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3416       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3417                          /*isInit*/ true);
3418       break;
3419     }
3420     case TEK_Aggregate:
3421       // Do nothing; aggregrates get evaluated directly into the destination.
3422       break;
3423     case TEK_Scalar:
3424       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3425                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3426                         /*isInit*/ true);
3427       break;
3428     }
3429     break;
3430   }
3431 
3432   case ABIArgInfo::Extend:
3433   case ABIArgInfo::Direct:
3434     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3435         RetAI.getDirectOffset() == 0) {
3436       // The internal return value temp always will have pointer-to-return-type
3437       // type, just do a load.
3438 
3439       // If there is a dominating store to ReturnValue, we can elide
3440       // the load, zap the store, and usually zap the alloca.
3441       if (llvm::StoreInst *SI =
3442               findDominatingStoreToReturnValue(*this)) {
3443         // Reuse the debug location from the store unless there is
3444         // cleanup code to be emitted between the store and return
3445         // instruction.
3446         if (EmitRetDbgLoc && !AutoreleaseResult)
3447           RetDbgLoc = SI->getDebugLoc();
3448         // Get the stored value and nuke the now-dead store.
3449         RV = SI->getValueOperand();
3450         SI->eraseFromParent();
3451 
3452       // Otherwise, we have to do a simple load.
3453       } else {
3454         RV = Builder.CreateLoad(ReturnValue);
3455       }
3456     } else {
3457       // If the value is offset in memory, apply the offset now.
3458       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3459 
3460       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3461     }
3462 
3463     // In ARC, end functions that return a retainable type with a call
3464     // to objc_autoreleaseReturnValue.
3465     if (AutoreleaseResult) {
3466 #ifndef NDEBUG
3467       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3468       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3469       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3470       // CurCodeDecl or BlockInfo.
3471       QualType RT;
3472 
3473       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3474         RT = FD->getReturnType();
3475       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3476         RT = MD->getReturnType();
3477       else if (isa<BlockDecl>(CurCodeDecl))
3478         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3479       else
3480         llvm_unreachable("Unexpected function/method type");
3481 
3482       assert(getLangOpts().ObjCAutoRefCount &&
3483              !FI.isReturnsRetained() &&
3484              RT->isObjCRetainableType());
3485 #endif
3486       RV = emitAutoreleaseOfResult(*this, RV);
3487     }
3488 
3489     break;
3490 
3491   case ABIArgInfo::Ignore:
3492     break;
3493 
3494   case ABIArgInfo::CoerceAndExpand: {
3495     auto coercionType = RetAI.getCoerceAndExpandType();
3496 
3497     // Load all of the coerced elements out into results.
3498     llvm::SmallVector<llvm::Value*, 4> results;
3499     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3500     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3501       auto coercedEltType = coercionType->getElementType(i);
3502       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3503         continue;
3504 
3505       auto eltAddr = Builder.CreateStructGEP(addr, i);
3506       auto elt = Builder.CreateLoad(eltAddr);
3507       results.push_back(elt);
3508     }
3509 
3510     // If we have one result, it's the single direct result type.
3511     if (results.size() == 1) {
3512       RV = results[0];
3513 
3514     // Otherwise, we need to make a first-class aggregate.
3515     } else {
3516       // Construct a return type that lacks padding elements.
3517       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3518 
3519       RV = llvm::UndefValue::get(returnType);
3520       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3521         RV = Builder.CreateInsertValue(RV, results[i], i);
3522       }
3523     }
3524     break;
3525   }
3526   case ABIArgInfo::Expand:
3527   case ABIArgInfo::IndirectAliased:
3528     llvm_unreachable("Invalid ABI kind for return argument");
3529   }
3530 
3531   llvm::Instruction *Ret;
3532   if (RV) {
3533     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3534       // For certain return types, clear padding bits, as they may reveal
3535       // sensitive information.
3536       // Small struct/union types are passed as integers.
3537       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3538       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3539         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3540     }
3541     EmitReturnValueCheck(RV);
3542     Ret = Builder.CreateRet(RV);
3543   } else {
3544     Ret = Builder.CreateRetVoid();
3545   }
3546 
3547   if (RetDbgLoc)
3548     Ret->setDebugLoc(std::move(RetDbgLoc));
3549 }
3550 
3551 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3552   // A current decl may not be available when emitting vtable thunks.
3553   if (!CurCodeDecl)
3554     return;
3555 
3556   // If the return block isn't reachable, neither is this check, so don't emit
3557   // it.
3558   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3559     return;
3560 
3561   ReturnsNonNullAttr *RetNNAttr = nullptr;
3562   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3563     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3564 
3565   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3566     return;
3567 
3568   // Prefer the returns_nonnull attribute if it's present.
3569   SourceLocation AttrLoc;
3570   SanitizerMask CheckKind;
3571   SanitizerHandler Handler;
3572   if (RetNNAttr) {
3573     assert(!requiresReturnValueNullabilityCheck() &&
3574            "Cannot check nullability and the nonnull attribute");
3575     AttrLoc = RetNNAttr->getLocation();
3576     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3577     Handler = SanitizerHandler::NonnullReturn;
3578   } else {
3579     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3580       if (auto *TSI = DD->getTypeSourceInfo())
3581         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3582           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3583     CheckKind = SanitizerKind::NullabilityReturn;
3584     Handler = SanitizerHandler::NullabilityReturn;
3585   }
3586 
3587   SanitizerScope SanScope(this);
3588 
3589   // Make sure the "return" source location is valid. If we're checking a
3590   // nullability annotation, make sure the preconditions for the check are met.
3591   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3592   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3593   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3594   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3595   if (requiresReturnValueNullabilityCheck())
3596     CanNullCheck =
3597         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3598   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3599   EmitBlock(Check);
3600 
3601   // Now do the null check.
3602   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3603   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3604   llvm::Value *DynamicData[] = {SLocPtr};
3605   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3606 
3607   EmitBlock(NoCheck);
3608 
3609 #ifndef NDEBUG
3610   // The return location should not be used after the check has been emitted.
3611   ReturnLocation = Address::invalid();
3612 #endif
3613 }
3614 
3615 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3616   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3617   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3618 }
3619 
3620 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3621                                           QualType Ty) {
3622   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3623   // placeholders.
3624   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3625   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3626   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3627 
3628   // FIXME: When we generate this IR in one pass, we shouldn't need
3629   // this win32-specific alignment hack.
3630   CharUnits Align = CharUnits::fromQuantity(4);
3631   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3632 
3633   return AggValueSlot::forAddr(Address(Placeholder, Align),
3634                                Ty.getQualifiers(),
3635                                AggValueSlot::IsNotDestructed,
3636                                AggValueSlot::DoesNotNeedGCBarriers,
3637                                AggValueSlot::IsNotAliased,
3638                                AggValueSlot::DoesNotOverlap);
3639 }
3640 
3641 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3642                                           const VarDecl *param,
3643                                           SourceLocation loc) {
3644   // StartFunction converted the ABI-lowered parameter(s) into a
3645   // local alloca.  We need to turn that into an r-value suitable
3646   // for EmitCall.
3647   Address local = GetAddrOfLocalVar(param);
3648 
3649   QualType type = param->getType();
3650 
3651   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3652     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3653   }
3654 
3655   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3656   // but the argument needs to be the original pointer.
3657   if (type->isReferenceType()) {
3658     args.add(RValue::get(Builder.CreateLoad(local)), type);
3659 
3660   // In ARC, move out of consumed arguments so that the release cleanup
3661   // entered by StartFunction doesn't cause an over-release.  This isn't
3662   // optimal -O0 code generation, but it should get cleaned up when
3663   // optimization is enabled.  This also assumes that delegate calls are
3664   // performed exactly once for a set of arguments, but that should be safe.
3665   } else if (getLangOpts().ObjCAutoRefCount &&
3666              param->hasAttr<NSConsumedAttr>() &&
3667              type->isObjCRetainableType()) {
3668     llvm::Value *ptr = Builder.CreateLoad(local);
3669     auto null =
3670       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3671     Builder.CreateStore(null, local);
3672     args.add(RValue::get(ptr), type);
3673 
3674   // For the most part, we just need to load the alloca, except that
3675   // aggregate r-values are actually pointers to temporaries.
3676   } else {
3677     args.add(convertTempToRValue(local, type, loc), type);
3678   }
3679 
3680   // Deactivate the cleanup for the callee-destructed param that was pushed.
3681   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3682       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3683       param->needsDestruction(getContext())) {
3684     EHScopeStack::stable_iterator cleanup =
3685         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3686     assert(cleanup.isValid() &&
3687            "cleanup for callee-destructed param not recorded");
3688     // This unreachable is a temporary marker which will be removed later.
3689     llvm::Instruction *isActive = Builder.CreateUnreachable();
3690     args.addArgCleanupDeactivation(cleanup, isActive);
3691   }
3692 }
3693 
3694 static bool isProvablyNull(llvm::Value *addr) {
3695   return isa<llvm::ConstantPointerNull>(addr);
3696 }
3697 
3698 /// Emit the actual writing-back of a writeback.
3699 static void emitWriteback(CodeGenFunction &CGF,
3700                           const CallArgList::Writeback &writeback) {
3701   const LValue &srcLV = writeback.Source;
3702   Address srcAddr = srcLV.getAddress(CGF);
3703   assert(!isProvablyNull(srcAddr.getPointer()) &&
3704          "shouldn't have writeback for provably null argument");
3705 
3706   llvm::BasicBlock *contBB = nullptr;
3707 
3708   // If the argument wasn't provably non-null, we need to null check
3709   // before doing the store.
3710   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3711                                               CGF.CGM.getDataLayout());
3712   if (!provablyNonNull) {
3713     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3714     contBB = CGF.createBasicBlock("icr.done");
3715 
3716     llvm::Value *isNull =
3717       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3718     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3719     CGF.EmitBlock(writebackBB);
3720   }
3721 
3722   // Load the value to writeback.
3723   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3724 
3725   // Cast it back, in case we're writing an id to a Foo* or something.
3726   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3727                                     "icr.writeback-cast");
3728 
3729   // Perform the writeback.
3730 
3731   // If we have a "to use" value, it's something we need to emit a use
3732   // of.  This has to be carefully threaded in: if it's done after the
3733   // release it's potentially undefined behavior (and the optimizer
3734   // will ignore it), and if it happens before the retain then the
3735   // optimizer could move the release there.
3736   if (writeback.ToUse) {
3737     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3738 
3739     // Retain the new value.  No need to block-copy here:  the block's
3740     // being passed up the stack.
3741     value = CGF.EmitARCRetainNonBlock(value);
3742 
3743     // Emit the intrinsic use here.
3744     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3745 
3746     // Load the old value (primitively).
3747     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3748 
3749     // Put the new value in place (primitively).
3750     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3751 
3752     // Release the old value.
3753     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3754 
3755   // Otherwise, we can just do a normal lvalue store.
3756   } else {
3757     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3758   }
3759 
3760   // Jump to the continuation block.
3761   if (!provablyNonNull)
3762     CGF.EmitBlock(contBB);
3763 }
3764 
3765 static void emitWritebacks(CodeGenFunction &CGF,
3766                            const CallArgList &args) {
3767   for (const auto &I : args.writebacks())
3768     emitWriteback(CGF, I);
3769 }
3770 
3771 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3772                                             const CallArgList &CallArgs) {
3773   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3774     CallArgs.getCleanupsToDeactivate();
3775   // Iterate in reverse to increase the likelihood of popping the cleanup.
3776   for (const auto &I : llvm::reverse(Cleanups)) {
3777     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3778     I.IsActiveIP->eraseFromParent();
3779   }
3780 }
3781 
3782 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3783   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3784     if (uop->getOpcode() == UO_AddrOf)
3785       return uop->getSubExpr();
3786   return nullptr;
3787 }
3788 
3789 /// Emit an argument that's being passed call-by-writeback.  That is,
3790 /// we are passing the address of an __autoreleased temporary; it
3791 /// might be copy-initialized with the current value of the given
3792 /// address, but it will definitely be copied out of after the call.
3793 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3794                              const ObjCIndirectCopyRestoreExpr *CRE) {
3795   LValue srcLV;
3796 
3797   // Make an optimistic effort to emit the address as an l-value.
3798   // This can fail if the argument expression is more complicated.
3799   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3800     srcLV = CGF.EmitLValue(lvExpr);
3801 
3802   // Otherwise, just emit it as a scalar.
3803   } else {
3804     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3805 
3806     QualType srcAddrType =
3807       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3808     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3809   }
3810   Address srcAddr = srcLV.getAddress(CGF);
3811 
3812   // The dest and src types don't necessarily match in LLVM terms
3813   // because of the crazy ObjC compatibility rules.
3814 
3815   llvm::PointerType *destType =
3816     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3817 
3818   // If the address is a constant null, just pass the appropriate null.
3819   if (isProvablyNull(srcAddr.getPointer())) {
3820     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3821              CRE->getType());
3822     return;
3823   }
3824 
3825   // Create the temporary.
3826   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3827                                       CGF.getPointerAlign(),
3828                                       "icr.temp");
3829   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3830   // and that cleanup will be conditional if we can't prove that the l-value
3831   // isn't null, so we need to register a dominating point so that the cleanups
3832   // system will make valid IR.
3833   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3834 
3835   // Zero-initialize it if we're not doing a copy-initialization.
3836   bool shouldCopy = CRE->shouldCopy();
3837   if (!shouldCopy) {
3838     llvm::Value *null =
3839       llvm::ConstantPointerNull::get(
3840         cast<llvm::PointerType>(destType->getElementType()));
3841     CGF.Builder.CreateStore(null, temp);
3842   }
3843 
3844   llvm::BasicBlock *contBB = nullptr;
3845   llvm::BasicBlock *originBB = nullptr;
3846 
3847   // If the address is *not* known to be non-null, we need to switch.
3848   llvm::Value *finalArgument;
3849 
3850   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3851                                               CGF.CGM.getDataLayout());
3852   if (provablyNonNull) {
3853     finalArgument = temp.getPointer();
3854   } else {
3855     llvm::Value *isNull =
3856       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3857 
3858     finalArgument = CGF.Builder.CreateSelect(isNull,
3859                                    llvm::ConstantPointerNull::get(destType),
3860                                              temp.getPointer(), "icr.argument");
3861 
3862     // If we need to copy, then the load has to be conditional, which
3863     // means we need control flow.
3864     if (shouldCopy) {
3865       originBB = CGF.Builder.GetInsertBlock();
3866       contBB = CGF.createBasicBlock("icr.cont");
3867       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3868       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3869       CGF.EmitBlock(copyBB);
3870       condEval.begin(CGF);
3871     }
3872   }
3873 
3874   llvm::Value *valueToUse = nullptr;
3875 
3876   // Perform a copy if necessary.
3877   if (shouldCopy) {
3878     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3879     assert(srcRV.isScalar());
3880 
3881     llvm::Value *src = srcRV.getScalarVal();
3882     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3883                                     "icr.cast");
3884 
3885     // Use an ordinary store, not a store-to-lvalue.
3886     CGF.Builder.CreateStore(src, temp);
3887 
3888     // If optimization is enabled, and the value was held in a
3889     // __strong variable, we need to tell the optimizer that this
3890     // value has to stay alive until we're doing the store back.
3891     // This is because the temporary is effectively unretained,
3892     // and so otherwise we can violate the high-level semantics.
3893     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3894         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3895       valueToUse = src;
3896     }
3897   }
3898 
3899   // Finish the control flow if we needed it.
3900   if (shouldCopy && !provablyNonNull) {
3901     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3902     CGF.EmitBlock(contBB);
3903 
3904     // Make a phi for the value to intrinsically use.
3905     if (valueToUse) {
3906       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3907                                                       "icr.to-use");
3908       phiToUse->addIncoming(valueToUse, copyBB);
3909       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3910                             originBB);
3911       valueToUse = phiToUse;
3912     }
3913 
3914     condEval.end(CGF);
3915   }
3916 
3917   args.addWriteback(srcLV, temp, valueToUse);
3918   args.add(RValue::get(finalArgument), CRE->getType());
3919 }
3920 
3921 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3922   assert(!StackBase);
3923 
3924   // Save the stack.
3925   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3926   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3927 }
3928 
3929 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3930   if (StackBase) {
3931     // Restore the stack after the call.
3932     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3933     CGF.Builder.CreateCall(F, StackBase);
3934   }
3935 }
3936 
3937 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3938                                           SourceLocation ArgLoc,
3939                                           AbstractCallee AC,
3940                                           unsigned ParmNum) {
3941   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3942                          SanOpts.has(SanitizerKind::NullabilityArg)))
3943     return;
3944 
3945   // The param decl may be missing in a variadic function.
3946   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3947   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3948 
3949   // Prefer the nonnull attribute if it's present.
3950   const NonNullAttr *NNAttr = nullptr;
3951   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3952     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3953 
3954   bool CanCheckNullability = false;
3955   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3956     auto Nullability = PVD->getType()->getNullability(getContext());
3957     CanCheckNullability = Nullability &&
3958                           *Nullability == NullabilityKind::NonNull &&
3959                           PVD->getTypeSourceInfo();
3960   }
3961 
3962   if (!NNAttr && !CanCheckNullability)
3963     return;
3964 
3965   SourceLocation AttrLoc;
3966   SanitizerMask CheckKind;
3967   SanitizerHandler Handler;
3968   if (NNAttr) {
3969     AttrLoc = NNAttr->getLocation();
3970     CheckKind = SanitizerKind::NonnullAttribute;
3971     Handler = SanitizerHandler::NonnullArg;
3972   } else {
3973     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3974     CheckKind = SanitizerKind::NullabilityArg;
3975     Handler = SanitizerHandler::NullabilityArg;
3976   }
3977 
3978   SanitizerScope SanScope(this);
3979   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
3980   llvm::Constant *StaticData[] = {
3981       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3982       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3983   };
3984   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3985 }
3986 
3987 // Check if the call is going to use the inalloca convention. This needs to
3988 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
3989 // later, so we can't check it directly.
3990 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
3991                             ArrayRef<QualType> ArgTypes) {
3992   // The Swift calling convention doesn't go through the target-specific
3993   // argument classification, so it never uses inalloca.
3994   // TODO: Consider limiting inalloca use to only calling conventions supported
3995   // by MSVC.
3996   if (ExplicitCC == CC_Swift)
3997     return false;
3998   if (!CGM.getTarget().getCXXABI().isMicrosoft())
3999     return false;
4000   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4001     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4002   });
4003 }
4004 
4005 #ifndef NDEBUG
4006 // Determine whether the given argument is an Objective-C method
4007 // that may have type parameters in its signature.
4008 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4009   const DeclContext *dc = method->getDeclContext();
4010   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4011     return classDecl->getTypeParamListAsWritten();
4012   }
4013 
4014   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4015     return catDecl->getTypeParamList();
4016   }
4017 
4018   return false;
4019 }
4020 #endif
4021 
4022 /// EmitCallArgs - Emit call arguments for a function.
4023 void CodeGenFunction::EmitCallArgs(
4024     CallArgList &Args, PrototypeWrapper Prototype,
4025     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4026     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4027   SmallVector<QualType, 16> ArgTypes;
4028 
4029   assert((ParamsToSkip == 0 || Prototype.P) &&
4030          "Can't skip parameters if type info is not provided");
4031 
4032   // This variable only captures *explicitly* written conventions, not those
4033   // applied by default via command line flags or target defaults, such as
4034   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4035   // require knowing if this is a C++ instance method or being able to see
4036   // unprototyped FunctionTypes.
4037   CallingConv ExplicitCC = CC_C;
4038 
4039   // First, if a prototype was provided, use those argument types.
4040   bool IsVariadic = false;
4041   if (Prototype.P) {
4042     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4043     if (MD) {
4044       IsVariadic = MD->isVariadic();
4045       ExplicitCC = getCallingConventionForDecl(
4046           MD, CGM.getTarget().getTriple().isOSWindows());
4047       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4048                       MD->param_type_end());
4049     } else {
4050       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4051       IsVariadic = FPT->isVariadic();
4052       ExplicitCC = FPT->getExtInfo().getCC();
4053       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4054                       FPT->param_type_end());
4055     }
4056 
4057 #ifndef NDEBUG
4058     // Check that the prototyped types match the argument expression types.
4059     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4060     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4061     for (QualType Ty : ArgTypes) {
4062       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4063       assert(
4064           (isGenericMethod || Ty->isVariablyModifiedType() ||
4065            Ty.getNonReferenceType()->isObjCRetainableType() ||
4066            getContext()
4067                    .getCanonicalType(Ty.getNonReferenceType())
4068                    .getTypePtr() ==
4069                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4070           "type mismatch in call argument!");
4071       ++Arg;
4072     }
4073 
4074     // Either we've emitted all the call args, or we have a call to variadic
4075     // function.
4076     assert((Arg == ArgRange.end() || IsVariadic) &&
4077            "Extra arguments in non-variadic function!");
4078 #endif
4079   }
4080 
4081   // If we still have any arguments, emit them using the type of the argument.
4082   for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()),
4083                                   ArgRange.end()))
4084     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4085   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4086 
4087   // We must evaluate arguments from right to left in the MS C++ ABI,
4088   // because arguments are destroyed left to right in the callee. As a special
4089   // case, there are certain language constructs that require left-to-right
4090   // evaluation, and in those cases we consider the evaluation order requirement
4091   // to trump the "destruction order is reverse construction order" guarantee.
4092   bool LeftToRight =
4093       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4094           ? Order == EvaluationOrder::ForceLeftToRight
4095           : Order != EvaluationOrder::ForceRightToLeft;
4096 
4097   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4098                                          RValue EmittedArg) {
4099     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4100       return;
4101     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4102     if (PS == nullptr)
4103       return;
4104 
4105     const auto &Context = getContext();
4106     auto SizeTy = Context.getSizeType();
4107     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4108     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4109     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4110                                                      EmittedArg.getScalarVal(),
4111                                                      PS->isDynamic());
4112     Args.add(RValue::get(V), SizeTy);
4113     // If we're emitting args in reverse, be sure to do so with
4114     // pass_object_size, as well.
4115     if (!LeftToRight)
4116       std::swap(Args.back(), *(&Args.back() - 1));
4117   };
4118 
4119   // Insert a stack save if we're going to need any inalloca args.
4120   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4121     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4122            "inalloca only supported on x86");
4123     Args.allocateArgumentMemory(*this);
4124   }
4125 
4126   // Evaluate each argument in the appropriate order.
4127   size_t CallArgsStart = Args.size();
4128   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4129     unsigned Idx = LeftToRight ? I : E - I - 1;
4130     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4131     unsigned InitialArgSize = Args.size();
4132     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4133     // the argument and parameter match or the objc method is parameterized.
4134     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4135             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4136                                                 ArgTypes[Idx]) ||
4137             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4138              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4139            "Argument and parameter types don't match");
4140     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4141     // In particular, we depend on it being the last arg in Args, and the
4142     // objectsize bits depend on there only being one arg if !LeftToRight.
4143     assert(InitialArgSize + 1 == Args.size() &&
4144            "The code below depends on only adding one arg per EmitCallArg");
4145     (void)InitialArgSize;
4146     // Since pointer argument are never emitted as LValue, it is safe to emit
4147     // non-null argument check for r-value only.
4148     if (!Args.back().hasLValue()) {
4149       RValue RVArg = Args.back().getKnownRValue();
4150       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4151                           ParamsToSkip + Idx);
4152       // @llvm.objectsize should never have side-effects and shouldn't need
4153       // destruction/cleanups, so we can safely "emit" it after its arg,
4154       // regardless of right-to-leftness
4155       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4156     }
4157   }
4158 
4159   if (!LeftToRight) {
4160     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4161     // IR function.
4162     std::reverse(Args.begin() + CallArgsStart, Args.end());
4163   }
4164 }
4165 
4166 namespace {
4167 
4168 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4169   DestroyUnpassedArg(Address Addr, QualType Ty)
4170       : Addr(Addr), Ty(Ty) {}
4171 
4172   Address Addr;
4173   QualType Ty;
4174 
4175   void Emit(CodeGenFunction &CGF, Flags flags) override {
4176     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4177     if (DtorKind == QualType::DK_cxx_destructor) {
4178       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4179       assert(!Dtor->isTrivial());
4180       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4181                                 /*Delegating=*/false, Addr, Ty);
4182     } else {
4183       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4184     }
4185   }
4186 };
4187 
4188 struct DisableDebugLocationUpdates {
4189   CodeGenFunction &CGF;
4190   bool disabledDebugInfo;
4191   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4192     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4193       CGF.disableDebugInfo();
4194   }
4195   ~DisableDebugLocationUpdates() {
4196     if (disabledDebugInfo)
4197       CGF.enableDebugInfo();
4198   }
4199 };
4200 
4201 } // end anonymous namespace
4202 
4203 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4204   if (!HasLV)
4205     return RV;
4206   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4207   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4208                         LV.isVolatile());
4209   IsUsed = true;
4210   return RValue::getAggregate(Copy.getAddress(CGF));
4211 }
4212 
4213 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4214   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4215   if (!HasLV && RV.isScalar())
4216     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4217   else if (!HasLV && RV.isComplex())
4218     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4219   else {
4220     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4221     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4222     // We assume that call args are never copied into subobjects.
4223     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4224                           HasLV ? LV.isVolatileQualified()
4225                                 : RV.isVolatileQualified());
4226   }
4227   IsUsed = true;
4228 }
4229 
4230 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4231                                   QualType type) {
4232   DisableDebugLocationUpdates Dis(*this, E);
4233   if (const ObjCIndirectCopyRestoreExpr *CRE
4234         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4235     assert(getLangOpts().ObjCAutoRefCount);
4236     return emitWritebackArg(*this, args, CRE);
4237   }
4238 
4239   assert(type->isReferenceType() == E->isGLValue() &&
4240          "reference binding to unmaterialized r-value!");
4241 
4242   if (E->isGLValue()) {
4243     assert(E->getObjectKind() == OK_Ordinary);
4244     return args.add(EmitReferenceBindingToExpr(E), type);
4245   }
4246 
4247   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4248 
4249   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4250   // However, we still have to push an EH-only cleanup in case we unwind before
4251   // we make it to the call.
4252   if (HasAggregateEvalKind &&
4253       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4254     // If we're using inalloca, use the argument memory.  Otherwise, use a
4255     // temporary.
4256     AggValueSlot Slot;
4257     if (args.isUsingInAlloca())
4258       Slot = createPlaceholderSlot(*this, type);
4259     else
4260       Slot = CreateAggTemp(type, "agg.tmp");
4261 
4262     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4263     if (const auto *RD = type->getAsCXXRecordDecl())
4264       DestroyedInCallee = RD->hasNonTrivialDestructor();
4265     else
4266       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4267 
4268     if (DestroyedInCallee)
4269       Slot.setExternallyDestructed();
4270 
4271     EmitAggExpr(E, Slot);
4272     RValue RV = Slot.asRValue();
4273     args.add(RV, type);
4274 
4275     if (DestroyedInCallee && NeedsEHCleanup) {
4276       // Create a no-op GEP between the placeholder and the cleanup so we can
4277       // RAUW it successfully.  It also serves as a marker of the first
4278       // instruction where the cleanup is active.
4279       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4280                                               type);
4281       // This unreachable is a temporary marker which will be removed later.
4282       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4283       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4284     }
4285     return;
4286   }
4287 
4288   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4289       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4290     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4291     assert(L.isSimple());
4292     args.addUncopiedAggregate(L, type);
4293     return;
4294   }
4295 
4296   args.add(EmitAnyExprToTemp(E), type);
4297 }
4298 
4299 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4300   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4301   // implicitly widens null pointer constants that are arguments to varargs
4302   // functions to pointer-sized ints.
4303   if (!getTarget().getTriple().isOSWindows())
4304     return Arg->getType();
4305 
4306   if (Arg->getType()->isIntegerType() &&
4307       getContext().getTypeSize(Arg->getType()) <
4308           getContext().getTargetInfo().getPointerWidth(0) &&
4309       Arg->isNullPointerConstant(getContext(),
4310                                  Expr::NPC_ValueDependentIsNotNull)) {
4311     return getContext().getIntPtrType();
4312   }
4313 
4314   return Arg->getType();
4315 }
4316 
4317 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4318 // optimizer it can aggressively ignore unwind edges.
4319 void
4320 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4321   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4322       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4323     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4324                       CGM.getNoObjCARCExceptionsMetadata());
4325 }
4326 
4327 /// Emits a call to the given no-arguments nounwind runtime function.
4328 llvm::CallInst *
4329 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4330                                          const llvm::Twine &name) {
4331   return EmitNounwindRuntimeCall(callee, None, name);
4332 }
4333 
4334 /// Emits a call to the given nounwind runtime function.
4335 llvm::CallInst *
4336 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4337                                          ArrayRef<llvm::Value *> args,
4338                                          const llvm::Twine &name) {
4339   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4340   call->setDoesNotThrow();
4341   return call;
4342 }
4343 
4344 /// Emits a simple call (never an invoke) to the given no-arguments
4345 /// runtime function.
4346 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4347                                                  const llvm::Twine &name) {
4348   return EmitRuntimeCall(callee, None, name);
4349 }
4350 
4351 // Calls which may throw must have operand bundles indicating which funclet
4352 // they are nested within.
4353 SmallVector<llvm::OperandBundleDef, 1>
4354 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4355   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4356   // There is no need for a funclet operand bundle if we aren't inside a
4357   // funclet.
4358   if (!CurrentFuncletPad)
4359     return BundleList;
4360 
4361   // Skip intrinsics which cannot throw.
4362   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4363   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4364     return BundleList;
4365 
4366   BundleList.emplace_back("funclet", CurrentFuncletPad);
4367   return BundleList;
4368 }
4369 
4370 /// Emits a simple call (never an invoke) to the given runtime function.
4371 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4372                                                  ArrayRef<llvm::Value *> args,
4373                                                  const llvm::Twine &name) {
4374   llvm::CallInst *call = Builder.CreateCall(
4375       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4376   call->setCallingConv(getRuntimeCC());
4377   return call;
4378 }
4379 
4380 /// Emits a call or invoke to the given noreturn runtime function.
4381 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4382     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4383   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4384       getBundlesForFunclet(callee.getCallee());
4385 
4386   if (getInvokeDest()) {
4387     llvm::InvokeInst *invoke =
4388       Builder.CreateInvoke(callee,
4389                            getUnreachableBlock(),
4390                            getInvokeDest(),
4391                            args,
4392                            BundleList);
4393     invoke->setDoesNotReturn();
4394     invoke->setCallingConv(getRuntimeCC());
4395   } else {
4396     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4397     call->setDoesNotReturn();
4398     call->setCallingConv(getRuntimeCC());
4399     Builder.CreateUnreachable();
4400   }
4401 }
4402 
4403 /// Emits a call or invoke instruction to the given nullary runtime function.
4404 llvm::CallBase *
4405 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4406                                          const Twine &name) {
4407   return EmitRuntimeCallOrInvoke(callee, None, name);
4408 }
4409 
4410 /// Emits a call or invoke instruction to the given runtime function.
4411 llvm::CallBase *
4412 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4413                                          ArrayRef<llvm::Value *> args,
4414                                          const Twine &name) {
4415   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4416   call->setCallingConv(getRuntimeCC());
4417   return call;
4418 }
4419 
4420 /// Emits a call or invoke instruction to the given function, depending
4421 /// on the current state of the EH stack.
4422 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4423                                                   ArrayRef<llvm::Value *> Args,
4424                                                   const Twine &Name) {
4425   llvm::BasicBlock *InvokeDest = getInvokeDest();
4426   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4427       getBundlesForFunclet(Callee.getCallee());
4428 
4429   llvm::CallBase *Inst;
4430   if (!InvokeDest)
4431     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4432   else {
4433     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4434     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4435                                 Name);
4436     EmitBlock(ContBB);
4437   }
4438 
4439   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4440   // optimizer it can aggressively ignore unwind edges.
4441   if (CGM.getLangOpts().ObjCAutoRefCount)
4442     AddObjCARCExceptionMetadata(Inst);
4443 
4444   return Inst;
4445 }
4446 
4447 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4448                                                   llvm::Value *New) {
4449   DeferredReplacements.push_back(
4450       std::make_pair(llvm::WeakTrackingVH(Old), New));
4451 }
4452 
4453 namespace {
4454 
4455 /// Specify given \p NewAlign as the alignment of return value attribute. If
4456 /// such attribute already exists, re-set it to the maximal one of two options.
4457 LLVM_NODISCARD llvm::AttributeList
4458 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4459                                 const llvm::AttributeList &Attrs,
4460                                 llvm::Align NewAlign) {
4461   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4462   if (CurAlign >= NewAlign)
4463     return Attrs;
4464   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4465   return Attrs
4466       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4467                        llvm::Attribute::AttrKind::Alignment)
4468       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4469 }
4470 
4471 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4472 protected:
4473   CodeGenFunction &CGF;
4474 
4475   /// We do nothing if this is, or becomes, nullptr.
4476   const AlignedAttrTy *AA = nullptr;
4477 
4478   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4479   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4480 
4481   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4482       : CGF(CGF_) {
4483     if (!FuncDecl)
4484       return;
4485     AA = FuncDecl->getAttr<AlignedAttrTy>();
4486   }
4487 
4488 public:
4489   /// If we can, materialize the alignment as an attribute on return value.
4490   LLVM_NODISCARD llvm::AttributeList
4491   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4492     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4493       return Attrs;
4494     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4495     if (!AlignmentCI)
4496       return Attrs;
4497     // We may legitimately have non-power-of-2 alignment here.
4498     // If so, this is UB land, emit it via `@llvm.assume` instead.
4499     if (!AlignmentCI->getValue().isPowerOf2())
4500       return Attrs;
4501     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4502         CGF.getLLVMContext(), Attrs,
4503         llvm::Align(
4504             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4505     AA = nullptr; // We're done. Disallow doing anything else.
4506     return NewAttrs;
4507   }
4508 
4509   /// Emit alignment assumption.
4510   /// This is a general fallback that we take if either there is an offset,
4511   /// or the alignment is variable or we are sanitizing for alignment.
4512   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4513     if (!AA)
4514       return;
4515     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4516                                 AA->getLocation(), Alignment, OffsetCI);
4517     AA = nullptr; // We're done. Disallow doing anything else.
4518   }
4519 };
4520 
4521 /// Helper data structure to emit `AssumeAlignedAttr`.
4522 class AssumeAlignedAttrEmitter final
4523     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4524 public:
4525   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4526       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4527     if (!AA)
4528       return;
4529     // It is guaranteed that the alignment/offset are constants.
4530     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4531     if (Expr *Offset = AA->getOffset()) {
4532       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4533       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4534         OffsetCI = nullptr;
4535     }
4536   }
4537 };
4538 
4539 /// Helper data structure to emit `AllocAlignAttr`.
4540 class AllocAlignAttrEmitter final
4541     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4542 public:
4543   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4544                         const CallArgList &CallArgs)
4545       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4546     if (!AA)
4547       return;
4548     // Alignment may or may not be a constant, and that is okay.
4549     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4550                     .getRValue(CGF)
4551                     .getScalarVal();
4552   }
4553 };
4554 
4555 } // namespace
4556 
4557 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4558                                  const CGCallee &Callee,
4559                                  ReturnValueSlot ReturnValue,
4560                                  const CallArgList &CallArgs,
4561                                  llvm::CallBase **callOrInvoke,
4562                                  SourceLocation Loc) {
4563   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4564 
4565   assert(Callee.isOrdinary() || Callee.isVirtual());
4566 
4567   // Handle struct-return functions by passing a pointer to the
4568   // location that we would like to return into.
4569   QualType RetTy = CallInfo.getReturnType();
4570   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4571 
4572   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4573 
4574   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4575   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4576     // We can only guarantee that a function is called from the correct
4577     // context/function based on the appropriate target attributes,
4578     // so only check in the case where we have both always_inline and target
4579     // since otherwise we could be making a conditional call after a check for
4580     // the proper cpu features (and it won't cause code generation issues due to
4581     // function based code generation).
4582     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4583         TargetDecl->hasAttr<TargetAttr>())
4584       checkTargetFeatures(Loc, FD);
4585 
4586     // Some architectures (such as x86-64) have the ABI changed based on
4587     // attribute-target/features. Give them a chance to diagnose.
4588     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4589         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4590   }
4591 
4592 #ifndef NDEBUG
4593   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4594     // For an inalloca varargs function, we don't expect CallInfo to match the
4595     // function pointer's type, because the inalloca struct a will have extra
4596     // fields in it for the varargs parameters.  Code later in this function
4597     // bitcasts the function pointer to the type derived from CallInfo.
4598     //
4599     // In other cases, we assert that the types match up (until pointers stop
4600     // having pointee types).
4601     llvm::Type *TypeFromVal;
4602     if (Callee.isVirtual())
4603       TypeFromVal = Callee.getVirtualFunctionType();
4604     else
4605       TypeFromVal =
4606           Callee.getFunctionPointer()->getType()->getPointerElementType();
4607     assert(IRFuncTy == TypeFromVal);
4608   }
4609 #endif
4610 
4611   // 1. Set up the arguments.
4612 
4613   // If we're using inalloca, insert the allocation after the stack save.
4614   // FIXME: Do this earlier rather than hacking it in here!
4615   Address ArgMemory = Address::invalid();
4616   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4617     const llvm::DataLayout &DL = CGM.getDataLayout();
4618     llvm::Instruction *IP = CallArgs.getStackBase();
4619     llvm::AllocaInst *AI;
4620     if (IP) {
4621       IP = IP->getNextNode();
4622       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4623                                 "argmem", IP);
4624     } else {
4625       AI = CreateTempAlloca(ArgStruct, "argmem");
4626     }
4627     auto Align = CallInfo.getArgStructAlignment();
4628     AI->setAlignment(Align.getAsAlign());
4629     AI->setUsedWithInAlloca(true);
4630     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4631     ArgMemory = Address(AI, Align);
4632   }
4633 
4634   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4635   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4636 
4637   // If the call returns a temporary with struct return, create a temporary
4638   // alloca to hold the result, unless one is given to us.
4639   Address SRetPtr = Address::invalid();
4640   Address SRetAlloca = Address::invalid();
4641   llvm::Value *UnusedReturnSizePtr = nullptr;
4642   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4643     if (!ReturnValue.isNull()) {
4644       SRetPtr = ReturnValue.getValue();
4645     } else {
4646       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4647       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4648         uint64_t size =
4649             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4650         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4651       }
4652     }
4653     if (IRFunctionArgs.hasSRetArg()) {
4654       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4655     } else if (RetAI.isInAlloca()) {
4656       Address Addr =
4657           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4658       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4659     }
4660   }
4661 
4662   Address swiftErrorTemp = Address::invalid();
4663   Address swiftErrorArg = Address::invalid();
4664 
4665   // When passing arguments using temporary allocas, we need to add the
4666   // appropriate lifetime markers. This vector keeps track of all the lifetime
4667   // markers that need to be ended right after the call.
4668   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4669 
4670   // Translate all of the arguments as necessary to match the IR lowering.
4671   assert(CallInfo.arg_size() == CallArgs.size() &&
4672          "Mismatch between function signature & arguments.");
4673   unsigned ArgNo = 0;
4674   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4675   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4676        I != E; ++I, ++info_it, ++ArgNo) {
4677     const ABIArgInfo &ArgInfo = info_it->info;
4678 
4679     // Insert a padding argument to ensure proper alignment.
4680     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4681       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4682           llvm::UndefValue::get(ArgInfo.getPaddingType());
4683 
4684     unsigned FirstIRArg, NumIRArgs;
4685     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4686 
4687     switch (ArgInfo.getKind()) {
4688     case ABIArgInfo::InAlloca: {
4689       assert(NumIRArgs == 0);
4690       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4691       if (I->isAggregate()) {
4692         Address Addr = I->hasLValue()
4693                            ? I->getKnownLValue().getAddress(*this)
4694                            : I->getKnownRValue().getAggregateAddress();
4695         llvm::Instruction *Placeholder =
4696             cast<llvm::Instruction>(Addr.getPointer());
4697 
4698         if (!ArgInfo.getInAllocaIndirect()) {
4699           // Replace the placeholder with the appropriate argument slot GEP.
4700           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4701           Builder.SetInsertPoint(Placeholder);
4702           Addr = Builder.CreateStructGEP(ArgMemory,
4703                                          ArgInfo.getInAllocaFieldIndex());
4704           Builder.restoreIP(IP);
4705         } else {
4706           // For indirect things such as overaligned structs, replace the
4707           // placeholder with a regular aggregate temporary alloca. Store the
4708           // address of this alloca into the struct.
4709           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4710           Address ArgSlot = Builder.CreateStructGEP(
4711               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4712           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4713         }
4714         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4715       } else if (ArgInfo.getInAllocaIndirect()) {
4716         // Make a temporary alloca and store the address of it into the argument
4717         // struct.
4718         Address Addr = CreateMemTempWithoutCast(
4719             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4720             "indirect-arg-temp");
4721         I->copyInto(*this, Addr);
4722         Address ArgSlot =
4723             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4724         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4725       } else {
4726         // Store the RValue into the argument struct.
4727         Address Addr =
4728             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4729         unsigned AS = Addr.getType()->getPointerAddressSpace();
4730         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4731         // There are some cases where a trivial bitcast is not avoidable.  The
4732         // definition of a type later in a translation unit may change it's type
4733         // from {}* to (%struct.foo*)*.
4734         if (Addr.getType() != MemType)
4735           Addr = Builder.CreateBitCast(Addr, MemType);
4736         I->copyInto(*this, Addr);
4737       }
4738       break;
4739     }
4740 
4741     case ABIArgInfo::Indirect:
4742     case ABIArgInfo::IndirectAliased: {
4743       assert(NumIRArgs == 1);
4744       if (!I->isAggregate()) {
4745         // Make a temporary alloca to pass the argument.
4746         Address Addr = CreateMemTempWithoutCast(
4747             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4748         IRCallArgs[FirstIRArg] = Addr.getPointer();
4749 
4750         I->copyInto(*this, Addr);
4751       } else {
4752         // We want to avoid creating an unnecessary temporary+copy here;
4753         // however, we need one in three cases:
4754         // 1. If the argument is not byval, and we are required to copy the
4755         //    source.  (This case doesn't occur on any common architecture.)
4756         // 2. If the argument is byval, RV is not sufficiently aligned, and
4757         //    we cannot force it to be sufficiently aligned.
4758         // 3. If the argument is byval, but RV is not located in default
4759         //    or alloca address space.
4760         Address Addr = I->hasLValue()
4761                            ? I->getKnownLValue().getAddress(*this)
4762                            : I->getKnownRValue().getAggregateAddress();
4763         llvm::Value *V = Addr.getPointer();
4764         CharUnits Align = ArgInfo.getIndirectAlign();
4765         const llvm::DataLayout *TD = &CGM.getDataLayout();
4766 
4767         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4768                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4769                     TD->getAllocaAddrSpace()) &&
4770                "indirect argument must be in alloca address space");
4771 
4772         bool NeedCopy = false;
4773 
4774         if (Addr.getAlignment() < Align &&
4775             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4776                 Align.getAsAlign()) {
4777           NeedCopy = true;
4778         } else if (I->hasLValue()) {
4779           auto LV = I->getKnownLValue();
4780           auto AS = LV.getAddressSpace();
4781 
4782           if (!ArgInfo.getIndirectByVal() ||
4783               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4784             NeedCopy = true;
4785           }
4786           if (!getLangOpts().OpenCL) {
4787             if ((ArgInfo.getIndirectByVal() &&
4788                 (AS != LangAS::Default &&
4789                  AS != CGM.getASTAllocaAddressSpace()))) {
4790               NeedCopy = true;
4791             }
4792           }
4793           // For OpenCL even if RV is located in default or alloca address space
4794           // we don't want to perform address space cast for it.
4795           else if ((ArgInfo.getIndirectByVal() &&
4796                     Addr.getType()->getAddressSpace() != IRFuncTy->
4797                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4798             NeedCopy = true;
4799           }
4800         }
4801 
4802         if (NeedCopy) {
4803           // Create an aligned temporary, and copy to it.
4804           Address AI = CreateMemTempWithoutCast(
4805               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4806           IRCallArgs[FirstIRArg] = AI.getPointer();
4807 
4808           // Emit lifetime markers for the temporary alloca.
4809           uint64_t ByvalTempElementSize =
4810               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4811           llvm::Value *LifetimeSize =
4812               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4813 
4814           // Add cleanup code to emit the end lifetime marker after the call.
4815           if (LifetimeSize) // In case we disabled lifetime markers.
4816             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4817 
4818           // Generate the copy.
4819           I->copyInto(*this, AI);
4820         } else {
4821           // Skip the extra memcpy call.
4822           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4823               CGM.getDataLayout().getAllocaAddrSpace());
4824           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4825               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4826               true);
4827         }
4828       }
4829       break;
4830     }
4831 
4832     case ABIArgInfo::Ignore:
4833       assert(NumIRArgs == 0);
4834       break;
4835 
4836     case ABIArgInfo::Extend:
4837     case ABIArgInfo::Direct: {
4838       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4839           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4840           ArgInfo.getDirectOffset() == 0) {
4841         assert(NumIRArgs == 1);
4842         llvm::Value *V;
4843         if (!I->isAggregate())
4844           V = I->getKnownRValue().getScalarVal();
4845         else
4846           V = Builder.CreateLoad(
4847               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4848                              : I->getKnownRValue().getAggregateAddress());
4849 
4850         // Implement swifterror by copying into a new swifterror argument.
4851         // We'll write back in the normal path out of the call.
4852         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4853               == ParameterABI::SwiftErrorResult) {
4854           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4855 
4856           QualType pointeeTy = I->Ty->getPointeeType();
4857           swiftErrorArg =
4858             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4859 
4860           swiftErrorTemp =
4861             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4862           V = swiftErrorTemp.getPointer();
4863           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4864 
4865           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4866           Builder.CreateStore(errorValue, swiftErrorTemp);
4867         }
4868 
4869         // We might have to widen integers, but we should never truncate.
4870         if (ArgInfo.getCoerceToType() != V->getType() &&
4871             V->getType()->isIntegerTy())
4872           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4873 
4874         // If the argument doesn't match, perform a bitcast to coerce it.  This
4875         // can happen due to trivial type mismatches.
4876         if (FirstIRArg < IRFuncTy->getNumParams() &&
4877             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4878           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4879 
4880         IRCallArgs[FirstIRArg] = V;
4881         break;
4882       }
4883 
4884       // FIXME: Avoid the conversion through memory if possible.
4885       Address Src = Address::invalid();
4886       if (!I->isAggregate()) {
4887         Src = CreateMemTemp(I->Ty, "coerce");
4888         I->copyInto(*this, Src);
4889       } else {
4890         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4891                              : I->getKnownRValue().getAggregateAddress();
4892       }
4893 
4894       // If the value is offset in memory, apply the offset now.
4895       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4896 
4897       // Fast-isel and the optimizer generally like scalar values better than
4898       // FCAs, so we flatten them if this is safe to do for this argument.
4899       llvm::StructType *STy =
4900             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4901       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4902         llvm::Type *SrcTy = Src.getElementType();
4903         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4904         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4905 
4906         // If the source type is smaller than the destination type of the
4907         // coerce-to logic, copy the source value into a temp alloca the size
4908         // of the destination type to allow loading all of it. The bits past
4909         // the source value are left undef.
4910         if (SrcSize < DstSize) {
4911           Address TempAlloca
4912             = CreateTempAlloca(STy, Src.getAlignment(),
4913                                Src.getName() + ".coerce");
4914           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4915           Src = TempAlloca;
4916         } else {
4917           Src = Builder.CreateBitCast(Src,
4918                                       STy->getPointerTo(Src.getAddressSpace()));
4919         }
4920 
4921         assert(NumIRArgs == STy->getNumElements());
4922         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4923           Address EltPtr = Builder.CreateStructGEP(Src, i);
4924           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4925           IRCallArgs[FirstIRArg + i] = LI;
4926         }
4927       } else {
4928         // In the simple case, just pass the coerced loaded value.
4929         assert(NumIRArgs == 1);
4930         llvm::Value *Load =
4931             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4932 
4933         if (CallInfo.isCmseNSCall()) {
4934           // For certain parameter types, clear padding bits, as they may reveal
4935           // sensitive information.
4936           // Small struct/union types are passed as integer arrays.
4937           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4938           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4939             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4940         }
4941         IRCallArgs[FirstIRArg] = Load;
4942       }
4943 
4944       break;
4945     }
4946 
4947     case ABIArgInfo::CoerceAndExpand: {
4948       auto coercionType = ArgInfo.getCoerceAndExpandType();
4949       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4950 
4951       llvm::Value *tempSize = nullptr;
4952       Address addr = Address::invalid();
4953       Address AllocaAddr = Address::invalid();
4954       if (I->isAggregate()) {
4955         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4956                               : I->getKnownRValue().getAggregateAddress();
4957 
4958       } else {
4959         RValue RV = I->getKnownRValue();
4960         assert(RV.isScalar()); // complex should always just be direct
4961 
4962         llvm::Type *scalarType = RV.getScalarVal()->getType();
4963         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4964         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4965 
4966         // Materialize to a temporary.
4967         addr = CreateTempAlloca(
4968             RV.getScalarVal()->getType(),
4969             CharUnits::fromQuantity(std::max(
4970                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4971             "tmp",
4972             /*ArraySize=*/nullptr, &AllocaAddr);
4973         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4974 
4975         Builder.CreateStore(RV.getScalarVal(), addr);
4976       }
4977 
4978       addr = Builder.CreateElementBitCast(addr, coercionType);
4979 
4980       unsigned IRArgPos = FirstIRArg;
4981       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4982         llvm::Type *eltType = coercionType->getElementType(i);
4983         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4984         Address eltAddr = Builder.CreateStructGEP(addr, i);
4985         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4986         IRCallArgs[IRArgPos++] = elt;
4987       }
4988       assert(IRArgPos == FirstIRArg + NumIRArgs);
4989 
4990       if (tempSize) {
4991         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4992       }
4993 
4994       break;
4995     }
4996 
4997     case ABIArgInfo::Expand: {
4998       unsigned IRArgPos = FirstIRArg;
4999       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5000       assert(IRArgPos == FirstIRArg + NumIRArgs);
5001       break;
5002     }
5003     }
5004   }
5005 
5006   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5007   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5008 
5009   // If we're using inalloca, set up that argument.
5010   if (ArgMemory.isValid()) {
5011     llvm::Value *Arg = ArgMemory.getPointer();
5012     if (CallInfo.isVariadic()) {
5013       // When passing non-POD arguments by value to variadic functions, we will
5014       // end up with a variadic prototype and an inalloca call site.  In such
5015       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
5016       // the callee.
5017       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5018       CalleePtr =
5019           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5020     } else {
5021       llvm::Type *LastParamTy =
5022           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5023       if (Arg->getType() != LastParamTy) {
5024 #ifndef NDEBUG
5025         // Assert that these structs have equivalent element types.
5026         llvm::StructType *FullTy = CallInfo.getArgStruct();
5027         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5028             cast<llvm::PointerType>(LastParamTy)->getElementType());
5029         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5030         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
5031                                                 DE = DeclaredTy->element_end(),
5032                                                 FI = FullTy->element_begin();
5033              DI != DE; ++DI, ++FI)
5034           assert(*DI == *FI);
5035 #endif
5036         Arg = Builder.CreateBitCast(Arg, LastParamTy);
5037       }
5038     }
5039     assert(IRFunctionArgs.hasInallocaArg());
5040     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5041   }
5042 
5043   // 2. Prepare the function pointer.
5044 
5045   // If the callee is a bitcast of a non-variadic function to have a
5046   // variadic function pointer type, check to see if we can remove the
5047   // bitcast.  This comes up with unprototyped functions.
5048   //
5049   // This makes the IR nicer, but more importantly it ensures that we
5050   // can inline the function at -O0 if it is marked always_inline.
5051   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5052                                    llvm::Value *Ptr) -> llvm::Function * {
5053     if (!CalleeFT->isVarArg())
5054       return nullptr;
5055 
5056     // Get underlying value if it's a bitcast
5057     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5058       if (CE->getOpcode() == llvm::Instruction::BitCast)
5059         Ptr = CE->getOperand(0);
5060     }
5061 
5062     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5063     if (!OrigFn)
5064       return nullptr;
5065 
5066     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5067 
5068     // If the original type is variadic, or if any of the component types
5069     // disagree, we cannot remove the cast.
5070     if (OrigFT->isVarArg() ||
5071         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5072         OrigFT->getReturnType() != CalleeFT->getReturnType())
5073       return nullptr;
5074 
5075     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5076       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5077         return nullptr;
5078 
5079     return OrigFn;
5080   };
5081 
5082   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5083     CalleePtr = OrigFn;
5084     IRFuncTy = OrigFn->getFunctionType();
5085   }
5086 
5087   // 3. Perform the actual call.
5088 
5089   // Deactivate any cleanups that we're supposed to do immediately before
5090   // the call.
5091   if (!CallArgs.getCleanupsToDeactivate().empty())
5092     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5093 
5094   // Assert that the arguments we computed match up.  The IR verifier
5095   // will catch this, but this is a common enough source of problems
5096   // during IRGen changes that it's way better for debugging to catch
5097   // it ourselves here.
5098 #ifndef NDEBUG
5099   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5100   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5101     // Inalloca argument can have different type.
5102     if (IRFunctionArgs.hasInallocaArg() &&
5103         i == IRFunctionArgs.getInallocaArgNo())
5104       continue;
5105     if (i < IRFuncTy->getNumParams())
5106       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5107   }
5108 #endif
5109 
5110   // Update the largest vector width if any arguments have vector types.
5111   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5112     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
5113       LargestVectorWidth =
5114           std::max((uint64_t)LargestVectorWidth,
5115                    VT->getPrimitiveSizeInBits().getKnownMinSize());
5116   }
5117 
5118   // Compute the calling convention and attributes.
5119   unsigned CallingConv;
5120   llvm::AttributeList Attrs;
5121   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5122                              Callee.getAbstractInfo(), Attrs, CallingConv,
5123                              /*AttrOnCallSite=*/true);
5124 
5125   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5126     if (FD->hasAttr<StrictFPAttr>())
5127       // All calls within a strictfp function are marked strictfp
5128       Attrs =
5129         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5130                            llvm::Attribute::StrictFP);
5131 
5132   // Add call-site nomerge attribute if exists.
5133   if (InNoMergeAttributedStmt)
5134     Attrs =
5135         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5136                            llvm::Attribute::NoMerge);
5137 
5138   // Apply some call-site-specific attributes.
5139   // TODO: work this into building the attribute set.
5140 
5141   // Apply always_inline to all calls within flatten functions.
5142   // FIXME: should this really take priority over __try, below?
5143   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5144       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5145     Attrs =
5146         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5147                            llvm::Attribute::AlwaysInline);
5148   }
5149 
5150   // Disable inlining inside SEH __try blocks.
5151   if (isSEHTryScope()) {
5152     Attrs =
5153         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5154                            llvm::Attribute::NoInline);
5155   }
5156 
5157   // Decide whether to use a call or an invoke.
5158   bool CannotThrow;
5159   if (currentFunctionUsesSEHTry()) {
5160     // SEH cares about asynchronous exceptions, so everything can "throw."
5161     CannotThrow = false;
5162   } else if (isCleanupPadScope() &&
5163              EHPersonality::get(*this).isMSVCXXPersonality()) {
5164     // The MSVC++ personality will implicitly terminate the program if an
5165     // exception is thrown during a cleanup outside of a try/catch.
5166     // We don't need to model anything in IR to get this behavior.
5167     CannotThrow = true;
5168   } else {
5169     // Otherwise, nounwind call sites will never throw.
5170     CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
5171 
5172     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5173       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5174         CannotThrow = true;
5175   }
5176 
5177   // If we made a temporary, be sure to clean up after ourselves. Note that we
5178   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5179   // pop this cleanup later on. Being eager about this is OK, since this
5180   // temporary is 'invisible' outside of the callee.
5181   if (UnusedReturnSizePtr)
5182     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5183                                          UnusedReturnSizePtr);
5184 
5185   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5186 
5187   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5188       getBundlesForFunclet(CalleePtr);
5189 
5190   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5191     if (FD->hasAttr<StrictFPAttr>())
5192       // All calls within a strictfp function are marked strictfp
5193       Attrs =
5194         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5195                            llvm::Attribute::StrictFP);
5196 
5197   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5198   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5199 
5200   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5201   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5202 
5203   // Emit the actual call/invoke instruction.
5204   llvm::CallBase *CI;
5205   if (!InvokeDest) {
5206     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5207   } else {
5208     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5209     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5210                               BundleList);
5211     EmitBlock(Cont);
5212   }
5213   if (callOrInvoke)
5214     *callOrInvoke = CI;
5215 
5216   // If this is within a function that has the guard(nocf) attribute and is an
5217   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5218   // Control Flow Guard checks should not be added, even if the call is inlined.
5219   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5220     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5221       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5222         Attrs = Attrs.addAttribute(
5223             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
5224     }
5225   }
5226 
5227   // Apply the attributes and calling convention.
5228   CI->setAttributes(Attrs);
5229   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5230 
5231   // Apply various metadata.
5232 
5233   if (!CI->getType()->isVoidTy())
5234     CI->setName("call");
5235 
5236   // Update largest vector width from the return type.
5237   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
5238     LargestVectorWidth =
5239         std::max((uint64_t)LargestVectorWidth,
5240                  VT->getPrimitiveSizeInBits().getKnownMinSize());
5241 
5242   // Insert instrumentation or attach profile metadata at indirect call sites.
5243   // For more details, see the comment before the definition of
5244   // IPVK_IndirectCallTarget in InstrProfData.inc.
5245   if (!CI->getCalledFunction())
5246     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5247                      CI, CalleePtr);
5248 
5249   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5250   // optimizer it can aggressively ignore unwind edges.
5251   if (CGM.getLangOpts().ObjCAutoRefCount)
5252     AddObjCARCExceptionMetadata(CI);
5253 
5254   // Suppress tail calls if requested.
5255   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5256     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5257       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5258   }
5259 
5260   // Add metadata for calls to MSAllocator functions
5261   if (getDebugInfo() && TargetDecl &&
5262       TargetDecl->hasAttr<MSAllocatorAttr>())
5263     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5264 
5265   // 4. Finish the call.
5266 
5267   // If the call doesn't return, finish the basic block and clear the
5268   // insertion point; this allows the rest of IRGen to discard
5269   // unreachable code.
5270   if (CI->doesNotReturn()) {
5271     if (UnusedReturnSizePtr)
5272       PopCleanupBlock();
5273 
5274     // Strip away the noreturn attribute to better diagnose unreachable UB.
5275     if (SanOpts.has(SanitizerKind::Unreachable)) {
5276       // Also remove from function since CallBase::hasFnAttr additionally checks
5277       // attributes of the called function.
5278       if (auto *F = CI->getCalledFunction())
5279         F->removeFnAttr(llvm::Attribute::NoReturn);
5280       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
5281                           llvm::Attribute::NoReturn);
5282 
5283       // Avoid incompatibility with ASan which relies on the `noreturn`
5284       // attribute to insert handler calls.
5285       if (SanOpts.hasOneOf(SanitizerKind::Address |
5286                            SanitizerKind::KernelAddress)) {
5287         SanitizerScope SanScope(this);
5288         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5289         Builder.SetInsertPoint(CI);
5290         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5291         llvm::FunctionCallee Fn =
5292             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5293         EmitNounwindRuntimeCall(Fn);
5294       }
5295     }
5296 
5297     EmitUnreachable(Loc);
5298     Builder.ClearInsertionPoint();
5299 
5300     // FIXME: For now, emit a dummy basic block because expr emitters in
5301     // generally are not ready to handle emitting expressions at unreachable
5302     // points.
5303     EnsureInsertPoint();
5304 
5305     // Return a reasonable RValue.
5306     return GetUndefRValue(RetTy);
5307   }
5308 
5309   // Perform the swifterror writeback.
5310   if (swiftErrorTemp.isValid()) {
5311     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5312     Builder.CreateStore(errorResult, swiftErrorArg);
5313   }
5314 
5315   // Emit any call-associated writebacks immediately.  Arguably this
5316   // should happen after any return-value munging.
5317   if (CallArgs.hasWritebacks())
5318     emitWritebacks(*this, CallArgs);
5319 
5320   // The stack cleanup for inalloca arguments has to run out of the normal
5321   // lexical order, so deactivate it and run it manually here.
5322   CallArgs.freeArgumentMemory(*this);
5323 
5324   // Extract the return value.
5325   RValue Ret = [&] {
5326     switch (RetAI.getKind()) {
5327     case ABIArgInfo::CoerceAndExpand: {
5328       auto coercionType = RetAI.getCoerceAndExpandType();
5329 
5330       Address addr = SRetPtr;
5331       addr = Builder.CreateElementBitCast(addr, coercionType);
5332 
5333       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5334       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5335 
5336       unsigned unpaddedIndex = 0;
5337       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5338         llvm::Type *eltType = coercionType->getElementType(i);
5339         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5340         Address eltAddr = Builder.CreateStructGEP(addr, i);
5341         llvm::Value *elt = CI;
5342         if (requiresExtract)
5343           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5344         else
5345           assert(unpaddedIndex == 0);
5346         Builder.CreateStore(elt, eltAddr);
5347       }
5348       // FALLTHROUGH
5349       LLVM_FALLTHROUGH;
5350     }
5351 
5352     case ABIArgInfo::InAlloca:
5353     case ABIArgInfo::Indirect: {
5354       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5355       if (UnusedReturnSizePtr)
5356         PopCleanupBlock();
5357       return ret;
5358     }
5359 
5360     case ABIArgInfo::Ignore:
5361       // If we are ignoring an argument that had a result, make sure to
5362       // construct the appropriate return value for our caller.
5363       return GetUndefRValue(RetTy);
5364 
5365     case ABIArgInfo::Extend:
5366     case ABIArgInfo::Direct: {
5367       llvm::Type *RetIRTy = ConvertType(RetTy);
5368       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5369         switch (getEvaluationKind(RetTy)) {
5370         case TEK_Complex: {
5371           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5372           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5373           return RValue::getComplex(std::make_pair(Real, Imag));
5374         }
5375         case TEK_Aggregate: {
5376           Address DestPtr = ReturnValue.getValue();
5377           bool DestIsVolatile = ReturnValue.isVolatile();
5378 
5379           if (!DestPtr.isValid()) {
5380             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5381             DestIsVolatile = false;
5382           }
5383           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5384           return RValue::getAggregate(DestPtr);
5385         }
5386         case TEK_Scalar: {
5387           // If the argument doesn't match, perform a bitcast to coerce it.  This
5388           // can happen due to trivial type mismatches.
5389           llvm::Value *V = CI;
5390           if (V->getType() != RetIRTy)
5391             V = Builder.CreateBitCast(V, RetIRTy);
5392           return RValue::get(V);
5393         }
5394         }
5395         llvm_unreachable("bad evaluation kind");
5396       }
5397 
5398       Address DestPtr = ReturnValue.getValue();
5399       bool DestIsVolatile = ReturnValue.isVolatile();
5400 
5401       if (!DestPtr.isValid()) {
5402         DestPtr = CreateMemTemp(RetTy, "coerce");
5403         DestIsVolatile = false;
5404       }
5405 
5406       // If the value is offset in memory, apply the offset now.
5407       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5408       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5409 
5410       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5411     }
5412 
5413     case ABIArgInfo::Expand:
5414     case ABIArgInfo::IndirectAliased:
5415       llvm_unreachable("Invalid ABI kind for return argument");
5416     }
5417 
5418     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5419   } ();
5420 
5421   // Emit the assume_aligned check on the return value.
5422   if (Ret.isScalar() && TargetDecl) {
5423     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5424     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5425   }
5426 
5427   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5428   // we can't use the full cleanup mechanism.
5429   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5430     LifetimeEnd.Emit(*this, /*Flags=*/{});
5431 
5432   if (!ReturnValue.isExternallyDestructed() &&
5433       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5434     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5435                 RetTy);
5436 
5437   return Ret;
5438 }
5439 
5440 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5441   if (isVirtual()) {
5442     const CallExpr *CE = getVirtualCallExpr();
5443     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5444         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5445         CE ? CE->getBeginLoc() : SourceLocation());
5446   }
5447 
5448   return *this;
5449 }
5450 
5451 /* VarArg handling */
5452 
5453 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5454   VAListAddr = VE->isMicrosoftABI()
5455                  ? EmitMSVAListRef(VE->getSubExpr())
5456                  : EmitVAListRef(VE->getSubExpr());
5457   QualType Ty = VE->getType();
5458   if (VE->isMicrosoftABI())
5459     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5460   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5461 }
5462