1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 63 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 64 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 65 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 66 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 67 case CC_Swift: return llvm::CallingConv::Swift; 68 } 69 } 70 71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 72 /// qualification. Either or both of RD and MD may be null. A null RD indicates 73 /// that there is no meaningful 'this' type, and a null MD can occur when 74 /// calling a method pointer. 75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 76 const CXXMethodDecl *MD) { 77 QualType RecTy; 78 if (RD) 79 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 80 else 81 RecTy = Context.VoidTy; 82 83 if (MD) 84 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 85 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 86 } 87 88 /// Returns the canonical formal type of the given C++ method. 89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 90 return MD->getType()->getCanonicalTypeUnqualified() 91 .getAs<FunctionProtoType>(); 92 } 93 94 /// Returns the "extra-canonicalized" return type, which discards 95 /// qualifiers on the return type. Codegen doesn't care about them, 96 /// and it makes ABI code a little easier to be able to assume that 97 /// all parameter and return types are top-level unqualified. 98 static CanQualType GetReturnType(QualType RetTy) { 99 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 100 } 101 102 /// Arrange the argument and result information for a value of the given 103 /// unprototyped freestanding function type. 104 const CGFunctionInfo & 105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 106 // When translating an unprototyped function type, always use a 107 // variadic type. 108 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 109 /*instanceMethod=*/false, 110 /*chainCall=*/false, None, 111 FTNP->getExtInfo(), {}, RequiredArgs(0)); 112 } 113 114 static void addExtParameterInfosForCall( 115 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 116 const FunctionProtoType *proto, 117 unsigned prefixArgs, 118 unsigned totalArgs) { 119 assert(proto->hasExtParameterInfos()); 120 assert(paramInfos.size() <= prefixArgs); 121 assert(proto->getNumParams() + prefixArgs <= totalArgs); 122 123 paramInfos.reserve(totalArgs); 124 125 // Add default infos for any prefix args that don't already have infos. 126 paramInfos.resize(prefixArgs); 127 128 // Add infos for the prototype. 129 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 130 paramInfos.push_back(ParamInfo); 131 // pass_object_size params have no parameter info. 132 if (ParamInfo.hasPassObjectSize()) 133 paramInfos.emplace_back(); 134 } 135 136 assert(paramInfos.size() <= totalArgs && 137 "Did we forget to insert pass_object_size args?"); 138 // Add default infos for the variadic and/or suffix arguments. 139 paramInfos.resize(totalArgs); 140 } 141 142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 144 static void appendParameterTypes(const CodeGenTypes &CGT, 145 SmallVectorImpl<CanQualType> &prefix, 146 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 147 CanQual<FunctionProtoType> FPT) { 148 // Fast path: don't touch param info if we don't need to. 149 if (!FPT->hasExtParameterInfos()) { 150 assert(paramInfos.empty() && 151 "We have paramInfos, but the prototype doesn't?"); 152 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 153 return; 154 } 155 156 unsigned PrefixSize = prefix.size(); 157 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 158 // parameters; the only thing that can change this is the presence of 159 // pass_object_size. So, we preallocate for the common case. 160 prefix.reserve(prefix.size() + FPT->getNumParams()); 161 162 auto ExtInfos = FPT->getExtParameterInfos(); 163 assert(ExtInfos.size() == FPT->getNumParams()); 164 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 165 prefix.push_back(FPT->getParamType(I)); 166 if (ExtInfos[I].hasPassObjectSize()) 167 prefix.push_back(CGT.getContext().getSizeType()); 168 } 169 170 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 171 prefix.size()); 172 } 173 174 /// Arrange the LLVM function layout for a value of the given function 175 /// type, on top of any implicit parameters already stored. 176 static const CGFunctionInfo & 177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 178 SmallVectorImpl<CanQualType> &prefix, 179 CanQual<FunctionProtoType> FTP) { 180 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 181 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 182 // FIXME: Kill copy. 183 appendParameterTypes(CGT, prefix, paramInfos, FTP); 184 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 185 186 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 187 /*chainCall=*/false, prefix, 188 FTP->getExtInfo(), paramInfos, 189 Required); 190 } 191 192 /// Arrange the argument and result information for a value of the 193 /// given freestanding function type. 194 const CGFunctionInfo & 195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 196 SmallVector<CanQualType, 16> argTypes; 197 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 198 FTP); 199 } 200 201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 202 // Set the appropriate calling convention for the Function. 203 if (D->hasAttr<StdCallAttr>()) 204 return CC_X86StdCall; 205 206 if (D->hasAttr<FastCallAttr>()) 207 return CC_X86FastCall; 208 209 if (D->hasAttr<RegCallAttr>()) 210 return CC_X86RegCall; 211 212 if (D->hasAttr<ThisCallAttr>()) 213 return CC_X86ThisCall; 214 215 if (D->hasAttr<VectorCallAttr>()) 216 return CC_X86VectorCall; 217 218 if (D->hasAttr<PascalAttr>()) 219 return CC_X86Pascal; 220 221 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 222 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 223 224 if (D->hasAttr<AArch64VectorPcsAttr>()) 225 return CC_AArch64VectorCall; 226 227 if (D->hasAttr<IntelOclBiccAttr>()) 228 return CC_IntelOclBicc; 229 230 if (D->hasAttr<MSABIAttr>()) 231 return IsWindows ? CC_C : CC_Win64; 232 233 if (D->hasAttr<SysVABIAttr>()) 234 return IsWindows ? CC_X86_64SysV : CC_C; 235 236 if (D->hasAttr<PreserveMostAttr>()) 237 return CC_PreserveMost; 238 239 if (D->hasAttr<PreserveAllAttr>()) 240 return CC_PreserveAll; 241 242 return CC_C; 243 } 244 245 /// Arrange the argument and result information for a call to an 246 /// unknown C++ non-static member function of the given abstract type. 247 /// (A null RD means we don't have any meaningful "this" argument type, 248 /// so fall back to a generic pointer type). 249 /// The member function must be an ordinary function, i.e. not a 250 /// constructor or destructor. 251 const CGFunctionInfo & 252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 253 const FunctionProtoType *FTP, 254 const CXXMethodDecl *MD) { 255 SmallVector<CanQualType, 16> argTypes; 256 257 // Add the 'this' pointer. 258 argTypes.push_back(DeriveThisType(RD, MD)); 259 260 return ::arrangeLLVMFunctionInfo( 261 *this, true, argTypes, 262 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 263 } 264 265 /// Set calling convention for CUDA/HIP kernel. 266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 267 const FunctionDecl *FD) { 268 if (FD->hasAttr<CUDAGlobalAttr>()) { 269 const FunctionType *FT = FTy->getAs<FunctionType>(); 270 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 271 FTy = FT->getCanonicalTypeUnqualified(); 272 } 273 } 274 275 /// Arrange the argument and result information for a declaration or 276 /// definition of the given C++ non-static member function. The 277 /// member function must be an ordinary function, i.e. not a 278 /// constructor or destructor. 279 const CGFunctionInfo & 280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 281 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 282 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 283 284 CanQualType FT = GetFormalType(MD).getAs<Type>(); 285 setCUDAKernelCallingConvention(FT, CGM, MD); 286 auto prototype = FT.getAs<FunctionProtoType>(); 287 288 if (MD->isInstance()) { 289 // The abstract case is perfectly fine. 290 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 291 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 292 } 293 294 return arrangeFreeFunctionType(prototype); 295 } 296 297 bool CodeGenTypes::inheritingCtorHasParams( 298 const InheritedConstructor &Inherited, CXXCtorType Type) { 299 // Parameters are unnecessary if we're constructing a base class subobject 300 // and the inherited constructor lives in a virtual base. 301 return Type == Ctor_Complete || 302 !Inherited.getShadowDecl()->constructsVirtualBase() || 303 !Target.getCXXABI().hasConstructorVariants(); 304 } 305 306 const CGFunctionInfo & 307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 308 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 309 310 SmallVector<CanQualType, 16> argTypes; 311 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 312 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 313 314 bool PassParams = true; 315 316 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 317 // A base class inheriting constructor doesn't get forwarded arguments 318 // needed to construct a virtual base (or base class thereof). 319 if (auto Inherited = CD->getInheritedConstructor()) 320 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 321 } 322 323 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 324 325 // Add the formal parameters. 326 if (PassParams) 327 appendParameterTypes(*this, argTypes, paramInfos, FTP); 328 329 CGCXXABI::AddedStructorArgCounts AddedArgs = 330 TheCXXABI.buildStructorSignature(GD, argTypes); 331 if (!paramInfos.empty()) { 332 // Note: prefix implies after the first param. 333 if (AddedArgs.Prefix) 334 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 335 FunctionProtoType::ExtParameterInfo{}); 336 if (AddedArgs.Suffix) 337 paramInfos.append(AddedArgs.Suffix, 338 FunctionProtoType::ExtParameterInfo{}); 339 } 340 341 RequiredArgs required = 342 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 343 : RequiredArgs::All); 344 345 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 346 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 347 ? argTypes.front() 348 : TheCXXABI.hasMostDerivedReturn(GD) 349 ? CGM.getContext().VoidPtrTy 350 : Context.VoidTy; 351 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 352 /*chainCall=*/false, argTypes, extInfo, 353 paramInfos, required); 354 } 355 356 static SmallVector<CanQualType, 16> 357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 358 SmallVector<CanQualType, 16> argTypes; 359 for (auto &arg : args) 360 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 361 return argTypes; 362 } 363 364 static SmallVector<CanQualType, 16> 365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 366 SmallVector<CanQualType, 16> argTypes; 367 for (auto &arg : args) 368 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 369 return argTypes; 370 } 371 372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 373 getExtParameterInfosForCall(const FunctionProtoType *proto, 374 unsigned prefixArgs, unsigned totalArgs) { 375 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 376 if (proto->hasExtParameterInfos()) { 377 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 378 } 379 return result; 380 } 381 382 /// Arrange a call to a C++ method, passing the given arguments. 383 /// 384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 385 /// parameter. 386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 387 /// args. 388 /// PassProtoArgs indicates whether `args` has args for the parameters in the 389 /// given CXXConstructorDecl. 390 const CGFunctionInfo & 391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 392 const CXXConstructorDecl *D, 393 CXXCtorType CtorKind, 394 unsigned ExtraPrefixArgs, 395 unsigned ExtraSuffixArgs, 396 bool PassProtoArgs) { 397 // FIXME: Kill copy. 398 SmallVector<CanQualType, 16> ArgTypes; 399 for (const auto &Arg : args) 400 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 401 402 // +1 for implicit this, which should always be args[0]. 403 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 404 405 CanQual<FunctionProtoType> FPT = GetFormalType(D); 406 RequiredArgs Required = PassProtoArgs 407 ? RequiredArgs::forPrototypePlus( 408 FPT, TotalPrefixArgs + ExtraSuffixArgs) 409 : RequiredArgs::All; 410 411 GlobalDecl GD(D, CtorKind); 412 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 413 ? ArgTypes.front() 414 : TheCXXABI.hasMostDerivedReturn(GD) 415 ? CGM.getContext().VoidPtrTy 416 : Context.VoidTy; 417 418 FunctionType::ExtInfo Info = FPT->getExtInfo(); 419 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 420 // If the prototype args are elided, we should only have ABI-specific args, 421 // which never have param info. 422 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 423 // ABI-specific suffix arguments are treated the same as variadic arguments. 424 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 425 ArgTypes.size()); 426 } 427 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 428 /*chainCall=*/false, ArgTypes, Info, 429 ParamInfos, Required); 430 } 431 432 /// Arrange the argument and result information for the declaration or 433 /// definition of the given function. 434 const CGFunctionInfo & 435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 436 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 437 if (MD->isInstance()) 438 return arrangeCXXMethodDeclaration(MD); 439 440 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 441 442 assert(isa<FunctionType>(FTy)); 443 setCUDAKernelCallingConvention(FTy, CGM, FD); 444 445 // When declaring a function without a prototype, always use a 446 // non-variadic type. 447 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 448 return arrangeLLVMFunctionInfo( 449 noProto->getReturnType(), /*instanceMethod=*/false, 450 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 451 } 452 453 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 454 } 455 456 /// Arrange the argument and result information for the declaration or 457 /// definition of an Objective-C method. 458 const CGFunctionInfo & 459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 460 // It happens that this is the same as a call with no optional 461 // arguments, except also using the formal 'self' type. 462 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 463 } 464 465 /// Arrange the argument and result information for the function type 466 /// through which to perform a send to the given Objective-C method, 467 /// using the given receiver type. The receiver type is not always 468 /// the 'self' type of the method or even an Objective-C pointer type. 469 /// This is *not* the right method for actually performing such a 470 /// message send, due to the possibility of optional arguments. 471 const CGFunctionInfo & 472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 473 QualType receiverType) { 474 SmallVector<CanQualType, 16> argTys; 475 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 476 argTys.push_back(Context.getCanonicalParamType(receiverType)); 477 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 478 // FIXME: Kill copy? 479 for (const auto *I : MD->parameters()) { 480 argTys.push_back(Context.getCanonicalParamType(I->getType())); 481 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 482 I->hasAttr<NoEscapeAttr>()); 483 extParamInfos.push_back(extParamInfo); 484 } 485 486 FunctionType::ExtInfo einfo; 487 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 488 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 489 490 if (getContext().getLangOpts().ObjCAutoRefCount && 491 MD->hasAttr<NSReturnsRetainedAttr>()) 492 einfo = einfo.withProducesResult(true); 493 494 RequiredArgs required = 495 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 496 497 return arrangeLLVMFunctionInfo( 498 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 499 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 500 } 501 502 const CGFunctionInfo & 503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 504 const CallArgList &args) { 505 auto argTypes = getArgTypesForCall(Context, args); 506 FunctionType::ExtInfo einfo; 507 508 return arrangeLLVMFunctionInfo( 509 GetReturnType(returnType), /*instanceMethod=*/false, 510 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 511 } 512 513 const CGFunctionInfo & 514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 515 // FIXME: Do we need to handle ObjCMethodDecl? 516 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 517 518 if (isa<CXXConstructorDecl>(GD.getDecl()) || 519 isa<CXXDestructorDecl>(GD.getDecl())) 520 return arrangeCXXStructorDeclaration(GD); 521 522 return arrangeFunctionDeclaration(FD); 523 } 524 525 /// Arrange a thunk that takes 'this' as the first parameter followed by 526 /// varargs. Return a void pointer, regardless of the actual return type. 527 /// The body of the thunk will end in a musttail call to a function of the 528 /// correct type, and the caller will bitcast the function to the correct 529 /// prototype. 530 const CGFunctionInfo & 531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 532 assert(MD->isVirtual() && "only methods have thunks"); 533 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 534 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 535 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 536 /*chainCall=*/false, ArgTys, 537 FTP->getExtInfo(), {}, RequiredArgs(1)); 538 } 539 540 const CGFunctionInfo & 541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 542 CXXCtorType CT) { 543 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 544 545 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 546 SmallVector<CanQualType, 2> ArgTys; 547 const CXXRecordDecl *RD = CD->getParent(); 548 ArgTys.push_back(DeriveThisType(RD, CD)); 549 if (CT == Ctor_CopyingClosure) 550 ArgTys.push_back(*FTP->param_type_begin()); 551 if (RD->getNumVBases() > 0) 552 ArgTys.push_back(Context.IntTy); 553 CallingConv CC = Context.getDefaultCallingConvention( 554 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 555 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 556 /*chainCall=*/false, ArgTys, 557 FunctionType::ExtInfo(CC), {}, 558 RequiredArgs::All); 559 } 560 561 /// Arrange a call as unto a free function, except possibly with an 562 /// additional number of formal parameters considered required. 563 static const CGFunctionInfo & 564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 565 CodeGenModule &CGM, 566 const CallArgList &args, 567 const FunctionType *fnType, 568 unsigned numExtraRequiredArgs, 569 bool chainCall) { 570 assert(args.size() >= numExtraRequiredArgs); 571 572 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 573 574 // In most cases, there are no optional arguments. 575 RequiredArgs required = RequiredArgs::All; 576 577 // If we have a variadic prototype, the required arguments are the 578 // extra prefix plus the arguments in the prototype. 579 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 580 if (proto->isVariadic()) 581 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 582 583 if (proto->hasExtParameterInfos()) 584 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 585 args.size()); 586 587 // If we don't have a prototype at all, but we're supposed to 588 // explicitly use the variadic convention for unprototyped calls, 589 // treat all of the arguments as required but preserve the nominal 590 // possibility of variadics. 591 } else if (CGM.getTargetCodeGenInfo() 592 .isNoProtoCallVariadic(args, 593 cast<FunctionNoProtoType>(fnType))) { 594 required = RequiredArgs(args.size()); 595 } 596 597 // FIXME: Kill copy. 598 SmallVector<CanQualType, 16> argTypes; 599 for (const auto &arg : args) 600 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 601 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 602 /*instanceMethod=*/false, chainCall, 603 argTypes, fnType->getExtInfo(), paramInfos, 604 required); 605 } 606 607 /// Figure out the rules for calling a function with the given formal 608 /// type using the given arguments. The arguments are necessary 609 /// because the function might be unprototyped, in which case it's 610 /// target-dependent in crazy ways. 611 const CGFunctionInfo & 612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 613 const FunctionType *fnType, 614 bool chainCall) { 615 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 616 chainCall ? 1 : 0, chainCall); 617 } 618 619 /// A block function is essentially a free function with an 620 /// extra implicit argument. 621 const CGFunctionInfo & 622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 623 const FunctionType *fnType) { 624 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 625 /*chainCall=*/false); 626 } 627 628 const CGFunctionInfo & 629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 630 const FunctionArgList ¶ms) { 631 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 632 auto argTypes = getArgTypesForDeclaration(Context, params); 633 634 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 635 /*instanceMethod*/ false, /*chainCall*/ false, 636 argTypes, proto->getExtInfo(), paramInfos, 637 RequiredArgs::forPrototypePlus(proto, 1)); 638 } 639 640 const CGFunctionInfo & 641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 642 const CallArgList &args) { 643 // FIXME: Kill copy. 644 SmallVector<CanQualType, 16> argTypes; 645 for (const auto &Arg : args) 646 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 647 return arrangeLLVMFunctionInfo( 648 GetReturnType(resultType), /*instanceMethod=*/false, 649 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 650 /*paramInfos=*/ {}, RequiredArgs::All); 651 } 652 653 const CGFunctionInfo & 654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 655 const FunctionArgList &args) { 656 auto argTypes = getArgTypesForDeclaration(Context, args); 657 658 return arrangeLLVMFunctionInfo( 659 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 660 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 661 } 662 663 const CGFunctionInfo & 664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 665 ArrayRef<CanQualType> argTypes) { 666 return arrangeLLVMFunctionInfo( 667 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 668 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 669 } 670 671 /// Arrange a call to a C++ method, passing the given arguments. 672 /// 673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 674 /// does not count `this`. 675 const CGFunctionInfo & 676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 677 const FunctionProtoType *proto, 678 RequiredArgs required, 679 unsigned numPrefixArgs) { 680 assert(numPrefixArgs + 1 <= args.size() && 681 "Emitting a call with less args than the required prefix?"); 682 // Add one to account for `this`. It's a bit awkward here, but we don't count 683 // `this` in similar places elsewhere. 684 auto paramInfos = 685 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 686 687 // FIXME: Kill copy. 688 auto argTypes = getArgTypesForCall(Context, args); 689 690 FunctionType::ExtInfo info = proto->getExtInfo(); 691 return arrangeLLVMFunctionInfo( 692 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 693 /*chainCall=*/false, argTypes, info, paramInfos, required); 694 } 695 696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 697 return arrangeLLVMFunctionInfo( 698 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 699 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 700 } 701 702 const CGFunctionInfo & 703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 704 const CallArgList &args) { 705 assert(signature.arg_size() <= args.size()); 706 if (signature.arg_size() == args.size()) 707 return signature; 708 709 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 710 auto sigParamInfos = signature.getExtParameterInfos(); 711 if (!sigParamInfos.empty()) { 712 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 713 paramInfos.resize(args.size()); 714 } 715 716 auto argTypes = getArgTypesForCall(Context, args); 717 718 assert(signature.getRequiredArgs().allowsOptionalArgs()); 719 return arrangeLLVMFunctionInfo(signature.getReturnType(), 720 signature.isInstanceMethod(), 721 signature.isChainCall(), 722 argTypes, 723 signature.getExtInfo(), 724 paramInfos, 725 signature.getRequiredArgs()); 726 } 727 728 namespace clang { 729 namespace CodeGen { 730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 731 } 732 } 733 734 /// Arrange the argument and result information for an abstract value 735 /// of a given function type. This is the method which all of the 736 /// above functions ultimately defer to. 737 const CGFunctionInfo & 738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 739 bool instanceMethod, 740 bool chainCall, 741 ArrayRef<CanQualType> argTypes, 742 FunctionType::ExtInfo info, 743 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 744 RequiredArgs required) { 745 assert(llvm::all_of(argTypes, 746 [](CanQualType T) { return T.isCanonicalAsParam(); })); 747 748 // Lookup or create unique function info. 749 llvm::FoldingSetNodeID ID; 750 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 751 required, resultType, argTypes); 752 753 void *insertPos = nullptr; 754 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 755 if (FI) 756 return *FI; 757 758 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 759 760 // Construct the function info. We co-allocate the ArgInfos. 761 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 762 paramInfos, resultType, argTypes, required); 763 FunctionInfos.InsertNode(FI, insertPos); 764 765 bool inserted = FunctionsBeingProcessed.insert(FI).second; 766 (void)inserted; 767 assert(inserted && "Recursively being processed?"); 768 769 // Compute ABI information. 770 if (CC == llvm::CallingConv::SPIR_KERNEL) { 771 // Force target independent argument handling for the host visible 772 // kernel functions. 773 computeSPIRKernelABIInfo(CGM, *FI); 774 } else if (info.getCC() == CC_Swift) { 775 swiftcall::computeABIInfo(CGM, *FI); 776 } else { 777 getABIInfo().computeInfo(*FI); 778 } 779 780 // Loop over all of the computed argument and return value info. If any of 781 // them are direct or extend without a specified coerce type, specify the 782 // default now. 783 ABIArgInfo &retInfo = FI->getReturnInfo(); 784 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 785 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 786 787 for (auto &I : FI->arguments()) 788 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 789 I.info.setCoerceToType(ConvertType(I.type)); 790 791 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 792 assert(erased && "Not in set?"); 793 794 return *FI; 795 } 796 797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 798 bool instanceMethod, 799 bool chainCall, 800 const FunctionType::ExtInfo &info, 801 ArrayRef<ExtParameterInfo> paramInfos, 802 CanQualType resultType, 803 ArrayRef<CanQualType> argTypes, 804 RequiredArgs required) { 805 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 806 assert(!required.allowsOptionalArgs() || 807 required.getNumRequiredArgs() <= argTypes.size()); 808 809 void *buffer = 810 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 811 argTypes.size() + 1, paramInfos.size())); 812 813 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 814 FI->CallingConvention = llvmCC; 815 FI->EffectiveCallingConvention = llvmCC; 816 FI->ASTCallingConvention = info.getCC(); 817 FI->InstanceMethod = instanceMethod; 818 FI->ChainCall = chainCall; 819 FI->CmseNSCall = info.getCmseNSCall(); 820 FI->NoReturn = info.getNoReturn(); 821 FI->ReturnsRetained = info.getProducesResult(); 822 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 823 FI->NoCfCheck = info.getNoCfCheck(); 824 FI->Required = required; 825 FI->HasRegParm = info.getHasRegParm(); 826 FI->RegParm = info.getRegParm(); 827 FI->ArgStruct = nullptr; 828 FI->ArgStructAlign = 0; 829 FI->NumArgs = argTypes.size(); 830 FI->HasExtParameterInfos = !paramInfos.empty(); 831 FI->getArgsBuffer()[0].type = resultType; 832 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 833 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 834 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 835 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 836 return FI; 837 } 838 839 /***/ 840 841 namespace { 842 // ABIArgInfo::Expand implementation. 843 844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 845 struct TypeExpansion { 846 enum TypeExpansionKind { 847 // Elements of constant arrays are expanded recursively. 848 TEK_ConstantArray, 849 // Record fields are expanded recursively (but if record is a union, only 850 // the field with the largest size is expanded). 851 TEK_Record, 852 // For complex types, real and imaginary parts are expanded recursively. 853 TEK_Complex, 854 // All other types are not expandable. 855 TEK_None 856 }; 857 858 const TypeExpansionKind Kind; 859 860 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 861 virtual ~TypeExpansion() {} 862 }; 863 864 struct ConstantArrayExpansion : TypeExpansion { 865 QualType EltTy; 866 uint64_t NumElts; 867 868 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 869 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 870 static bool classof(const TypeExpansion *TE) { 871 return TE->Kind == TEK_ConstantArray; 872 } 873 }; 874 875 struct RecordExpansion : TypeExpansion { 876 SmallVector<const CXXBaseSpecifier *, 1> Bases; 877 878 SmallVector<const FieldDecl *, 1> Fields; 879 880 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 881 SmallVector<const FieldDecl *, 1> &&Fields) 882 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 883 Fields(std::move(Fields)) {} 884 static bool classof(const TypeExpansion *TE) { 885 return TE->Kind == TEK_Record; 886 } 887 }; 888 889 struct ComplexExpansion : TypeExpansion { 890 QualType EltTy; 891 892 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 893 static bool classof(const TypeExpansion *TE) { 894 return TE->Kind == TEK_Complex; 895 } 896 }; 897 898 struct NoExpansion : TypeExpansion { 899 NoExpansion() : TypeExpansion(TEK_None) {} 900 static bool classof(const TypeExpansion *TE) { 901 return TE->Kind == TEK_None; 902 } 903 }; 904 } // namespace 905 906 static std::unique_ptr<TypeExpansion> 907 getTypeExpansion(QualType Ty, const ASTContext &Context) { 908 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 909 return std::make_unique<ConstantArrayExpansion>( 910 AT->getElementType(), AT->getSize().getZExtValue()); 911 } 912 if (const RecordType *RT = Ty->getAs<RecordType>()) { 913 SmallVector<const CXXBaseSpecifier *, 1> Bases; 914 SmallVector<const FieldDecl *, 1> Fields; 915 const RecordDecl *RD = RT->getDecl(); 916 assert(!RD->hasFlexibleArrayMember() && 917 "Cannot expand structure with flexible array."); 918 if (RD->isUnion()) { 919 // Unions can be here only in degenerative cases - all the fields are same 920 // after flattening. Thus we have to use the "largest" field. 921 const FieldDecl *LargestFD = nullptr; 922 CharUnits UnionSize = CharUnits::Zero(); 923 924 for (const auto *FD : RD->fields()) { 925 if (FD->isZeroLengthBitField(Context)) 926 continue; 927 assert(!FD->isBitField() && 928 "Cannot expand structure with bit-field members."); 929 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 930 if (UnionSize < FieldSize) { 931 UnionSize = FieldSize; 932 LargestFD = FD; 933 } 934 } 935 if (LargestFD) 936 Fields.push_back(LargestFD); 937 } else { 938 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 939 assert(!CXXRD->isDynamicClass() && 940 "cannot expand vtable pointers in dynamic classes"); 941 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 942 Bases.push_back(&BS); 943 } 944 945 for (const auto *FD : RD->fields()) { 946 if (FD->isZeroLengthBitField(Context)) 947 continue; 948 assert(!FD->isBitField() && 949 "Cannot expand structure with bit-field members."); 950 Fields.push_back(FD); 951 } 952 } 953 return std::make_unique<RecordExpansion>(std::move(Bases), 954 std::move(Fields)); 955 } 956 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 957 return std::make_unique<ComplexExpansion>(CT->getElementType()); 958 } 959 return std::make_unique<NoExpansion>(); 960 } 961 962 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 963 auto Exp = getTypeExpansion(Ty, Context); 964 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 965 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 966 } 967 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 968 int Res = 0; 969 for (auto BS : RExp->Bases) 970 Res += getExpansionSize(BS->getType(), Context); 971 for (auto FD : RExp->Fields) 972 Res += getExpansionSize(FD->getType(), Context); 973 return Res; 974 } 975 if (isa<ComplexExpansion>(Exp.get())) 976 return 2; 977 assert(isa<NoExpansion>(Exp.get())); 978 return 1; 979 } 980 981 void 982 CodeGenTypes::getExpandedTypes(QualType Ty, 983 SmallVectorImpl<llvm::Type *>::iterator &TI) { 984 auto Exp = getTypeExpansion(Ty, Context); 985 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 986 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 987 getExpandedTypes(CAExp->EltTy, TI); 988 } 989 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 990 for (auto BS : RExp->Bases) 991 getExpandedTypes(BS->getType(), TI); 992 for (auto FD : RExp->Fields) 993 getExpandedTypes(FD->getType(), TI); 994 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 995 llvm::Type *EltTy = ConvertType(CExp->EltTy); 996 *TI++ = EltTy; 997 *TI++ = EltTy; 998 } else { 999 assert(isa<NoExpansion>(Exp.get())); 1000 *TI++ = ConvertType(Ty); 1001 } 1002 } 1003 1004 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1005 ConstantArrayExpansion *CAE, 1006 Address BaseAddr, 1007 llvm::function_ref<void(Address)> Fn) { 1008 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1009 CharUnits EltAlign = 1010 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1011 1012 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1013 llvm::Value *EltAddr = 1014 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1015 Fn(Address(EltAddr, EltAlign)); 1016 } 1017 } 1018 1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1020 llvm::Function::arg_iterator &AI) { 1021 assert(LV.isSimple() && 1022 "Unexpected non-simple lvalue during struct expansion."); 1023 1024 auto Exp = getTypeExpansion(Ty, getContext()); 1025 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1026 forConstantArrayExpansion( 1027 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1028 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1029 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1030 }); 1031 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1032 Address This = LV.getAddress(*this); 1033 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1034 // Perform a single step derived-to-base conversion. 1035 Address Base = 1036 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1037 /*NullCheckValue=*/false, SourceLocation()); 1038 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1039 1040 // Recurse onto bases. 1041 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1042 } 1043 for (auto FD : RExp->Fields) { 1044 // FIXME: What are the right qualifiers here? 1045 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1046 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1047 } 1048 } else if (isa<ComplexExpansion>(Exp.get())) { 1049 auto realValue = &*AI++; 1050 auto imagValue = &*AI++; 1051 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1052 } else { 1053 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1054 // primitive store. 1055 assert(isa<NoExpansion>(Exp.get())); 1056 if (LV.isBitField()) 1057 EmitStoreThroughLValue(RValue::get(&*AI++), LV); 1058 else 1059 EmitStoreOfScalar(&*AI++, LV); 1060 } 1061 } 1062 1063 void CodeGenFunction::ExpandTypeToArgs( 1064 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1065 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1066 auto Exp = getTypeExpansion(Ty, getContext()); 1067 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1068 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1069 : Arg.getKnownRValue().getAggregateAddress(); 1070 forConstantArrayExpansion( 1071 *this, CAExp, Addr, [&](Address EltAddr) { 1072 CallArg EltArg = CallArg( 1073 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1074 CAExp->EltTy); 1075 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1076 IRCallArgPos); 1077 }); 1078 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1079 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1080 : Arg.getKnownRValue().getAggregateAddress(); 1081 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1082 // Perform a single step derived-to-base conversion. 1083 Address Base = 1084 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1085 /*NullCheckValue=*/false, SourceLocation()); 1086 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1087 1088 // Recurse onto bases. 1089 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1090 IRCallArgPos); 1091 } 1092 1093 LValue LV = MakeAddrLValue(This, Ty); 1094 for (auto FD : RExp->Fields) { 1095 CallArg FldArg = 1096 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1097 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1098 IRCallArgPos); 1099 } 1100 } else if (isa<ComplexExpansion>(Exp.get())) { 1101 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1102 IRCallArgs[IRCallArgPos++] = CV.first; 1103 IRCallArgs[IRCallArgPos++] = CV.second; 1104 } else { 1105 assert(isa<NoExpansion>(Exp.get())); 1106 auto RV = Arg.getKnownRValue(); 1107 assert(RV.isScalar() && 1108 "Unexpected non-scalar rvalue during struct expansion."); 1109 1110 // Insert a bitcast as needed. 1111 llvm::Value *V = RV.getScalarVal(); 1112 if (IRCallArgPos < IRFuncTy->getNumParams() && 1113 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1114 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1115 1116 IRCallArgs[IRCallArgPos++] = V; 1117 } 1118 } 1119 1120 /// Create a temporary allocation for the purposes of coercion. 1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1122 CharUnits MinAlign) { 1123 // Don't use an alignment that's worse than what LLVM would prefer. 1124 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1125 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1126 1127 return CGF.CreateTempAlloca(Ty, Align); 1128 } 1129 1130 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1131 /// accessing some number of bytes out of it, try to gep into the struct to get 1132 /// at its inner goodness. Dive as deep as possible without entering an element 1133 /// with an in-memory size smaller than DstSize. 1134 static Address 1135 EnterStructPointerForCoercedAccess(Address SrcPtr, 1136 llvm::StructType *SrcSTy, 1137 uint64_t DstSize, CodeGenFunction &CGF) { 1138 // We can't dive into a zero-element struct. 1139 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1140 1141 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1142 1143 // If the first elt is at least as large as what we're looking for, or if the 1144 // first element is the same size as the whole struct, we can enter it. The 1145 // comparison must be made on the store size and not the alloca size. Using 1146 // the alloca size may overstate the size of the load. 1147 uint64_t FirstEltSize = 1148 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1149 if (FirstEltSize < DstSize && 1150 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1151 return SrcPtr; 1152 1153 // GEP into the first element. 1154 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1155 1156 // If the first element is a struct, recurse. 1157 llvm::Type *SrcTy = SrcPtr.getElementType(); 1158 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1159 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1160 1161 return SrcPtr; 1162 } 1163 1164 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1165 /// are either integers or pointers. This does a truncation of the value if it 1166 /// is too large or a zero extension if it is too small. 1167 /// 1168 /// This behaves as if the value were coerced through memory, so on big-endian 1169 /// targets the high bits are preserved in a truncation, while little-endian 1170 /// targets preserve the low bits. 1171 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1172 llvm::Type *Ty, 1173 CodeGenFunction &CGF) { 1174 if (Val->getType() == Ty) 1175 return Val; 1176 1177 if (isa<llvm::PointerType>(Val->getType())) { 1178 // If this is Pointer->Pointer avoid conversion to and from int. 1179 if (isa<llvm::PointerType>(Ty)) 1180 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1181 1182 // Convert the pointer to an integer so we can play with its width. 1183 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1184 } 1185 1186 llvm::Type *DestIntTy = Ty; 1187 if (isa<llvm::PointerType>(DestIntTy)) 1188 DestIntTy = CGF.IntPtrTy; 1189 1190 if (Val->getType() != DestIntTy) { 1191 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1192 if (DL.isBigEndian()) { 1193 // Preserve the high bits on big-endian targets. 1194 // That is what memory coercion does. 1195 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1196 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1197 1198 if (SrcSize > DstSize) { 1199 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1200 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1201 } else { 1202 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1203 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1204 } 1205 } else { 1206 // Little-endian targets preserve the low bits. No shifts required. 1207 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1208 } 1209 } 1210 1211 if (isa<llvm::PointerType>(Ty)) 1212 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1213 return Val; 1214 } 1215 1216 1217 1218 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1219 /// a pointer to an object of type \arg Ty, known to be aligned to 1220 /// \arg SrcAlign bytes. 1221 /// 1222 /// This safely handles the case when the src type is smaller than the 1223 /// destination type; in this situation the values of bits which not 1224 /// present in the src are undefined. 1225 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1226 CodeGenFunction &CGF) { 1227 llvm::Type *SrcTy = Src.getElementType(); 1228 1229 // If SrcTy and Ty are the same, just do a load. 1230 if (SrcTy == Ty) 1231 return CGF.Builder.CreateLoad(Src); 1232 1233 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1234 1235 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1236 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1237 SrcTy = Src.getElementType(); 1238 } 1239 1240 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1241 1242 // If the source and destination are integer or pointer types, just do an 1243 // extension or truncation to the desired type. 1244 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1245 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1246 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1247 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1248 } 1249 1250 // If load is legal, just bitcast the src pointer. 1251 if (SrcSize >= DstSize) { 1252 // Generally SrcSize is never greater than DstSize, since this means we are 1253 // losing bits. However, this can happen in cases where the structure has 1254 // additional padding, for example due to a user specified alignment. 1255 // 1256 // FIXME: Assert that we aren't truncating non-padding bits when have access 1257 // to that information. 1258 Src = CGF.Builder.CreateBitCast(Src, 1259 Ty->getPointerTo(Src.getAddressSpace())); 1260 return CGF.Builder.CreateLoad(Src); 1261 } 1262 1263 // Otherwise do coercion through memory. This is stupid, but simple. 1264 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1265 CGF.Builder.CreateMemCpy(Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 1266 Src.getPointer(), Src.getAlignment().getAsAlign(), 1267 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize)); 1268 return CGF.Builder.CreateLoad(Tmp); 1269 } 1270 1271 // Function to store a first-class aggregate into memory. We prefer to 1272 // store the elements rather than the aggregate to be more friendly to 1273 // fast-isel. 1274 // FIXME: Do we need to recurse here? 1275 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1276 Address Dest, bool DestIsVolatile) { 1277 // Prefer scalar stores to first-class aggregate stores. 1278 if (llvm::StructType *STy = 1279 dyn_cast<llvm::StructType>(Val->getType())) { 1280 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1281 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i); 1282 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1283 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1284 } 1285 } else { 1286 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1287 } 1288 } 1289 1290 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1291 /// where the source and destination may have different types. The 1292 /// destination is known to be aligned to \arg DstAlign bytes. 1293 /// 1294 /// This safely handles the case when the src type is larger than the 1295 /// destination type; the upper bits of the src will be lost. 1296 static void CreateCoercedStore(llvm::Value *Src, 1297 Address Dst, 1298 bool DstIsVolatile, 1299 CodeGenFunction &CGF) { 1300 llvm::Type *SrcTy = Src->getType(); 1301 llvm::Type *DstTy = Dst.getElementType(); 1302 if (SrcTy == DstTy) { 1303 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1304 return; 1305 } 1306 1307 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1308 1309 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1310 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1311 DstTy = Dst.getElementType(); 1312 } 1313 1314 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1315 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1316 if (SrcPtrTy && DstPtrTy && 1317 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1318 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1319 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1320 return; 1321 } 1322 1323 // If the source and destination are integer or pointer types, just do an 1324 // extension or truncation to the desired type. 1325 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1326 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1327 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1328 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1329 return; 1330 } 1331 1332 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1333 1334 // If store is legal, just bitcast the src pointer. 1335 if (SrcSize <= DstSize) { 1336 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1337 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1338 } else { 1339 // Otherwise do coercion through memory. This is stupid, but 1340 // simple. 1341 1342 // Generally SrcSize is never greater than DstSize, since this means we are 1343 // losing bits. However, this can happen in cases where the structure has 1344 // additional padding, for example due to a user specified alignment. 1345 // 1346 // FIXME: Assert that we aren't truncating non-padding bits when have access 1347 // to that information. 1348 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1349 CGF.Builder.CreateStore(Src, Tmp); 1350 CGF.Builder.CreateMemCpy(Dst.getPointer(), Dst.getAlignment().getAsAlign(), 1351 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 1352 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize)); 1353 } 1354 } 1355 1356 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1357 const ABIArgInfo &info) { 1358 if (unsigned offset = info.getDirectOffset()) { 1359 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1360 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1361 CharUnits::fromQuantity(offset)); 1362 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1363 } 1364 return addr; 1365 } 1366 1367 namespace { 1368 1369 /// Encapsulates information about the way function arguments from 1370 /// CGFunctionInfo should be passed to actual LLVM IR function. 1371 class ClangToLLVMArgMapping { 1372 static const unsigned InvalidIndex = ~0U; 1373 unsigned InallocaArgNo; 1374 unsigned SRetArgNo; 1375 unsigned TotalIRArgs; 1376 1377 /// Arguments of LLVM IR function corresponding to single Clang argument. 1378 struct IRArgs { 1379 unsigned PaddingArgIndex; 1380 // Argument is expanded to IR arguments at positions 1381 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1382 unsigned FirstArgIndex; 1383 unsigned NumberOfArgs; 1384 1385 IRArgs() 1386 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1387 NumberOfArgs(0) {} 1388 }; 1389 1390 SmallVector<IRArgs, 8> ArgInfo; 1391 1392 public: 1393 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1394 bool OnlyRequiredArgs = false) 1395 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1396 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1397 construct(Context, FI, OnlyRequiredArgs); 1398 } 1399 1400 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1401 unsigned getInallocaArgNo() const { 1402 assert(hasInallocaArg()); 1403 return InallocaArgNo; 1404 } 1405 1406 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1407 unsigned getSRetArgNo() const { 1408 assert(hasSRetArg()); 1409 return SRetArgNo; 1410 } 1411 1412 unsigned totalIRArgs() const { return TotalIRArgs; } 1413 1414 bool hasPaddingArg(unsigned ArgNo) const { 1415 assert(ArgNo < ArgInfo.size()); 1416 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1417 } 1418 unsigned getPaddingArgNo(unsigned ArgNo) const { 1419 assert(hasPaddingArg(ArgNo)); 1420 return ArgInfo[ArgNo].PaddingArgIndex; 1421 } 1422 1423 /// Returns index of first IR argument corresponding to ArgNo, and their 1424 /// quantity. 1425 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1426 assert(ArgNo < ArgInfo.size()); 1427 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1428 ArgInfo[ArgNo].NumberOfArgs); 1429 } 1430 1431 private: 1432 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1433 bool OnlyRequiredArgs); 1434 }; 1435 1436 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1437 const CGFunctionInfo &FI, 1438 bool OnlyRequiredArgs) { 1439 unsigned IRArgNo = 0; 1440 bool SwapThisWithSRet = false; 1441 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1442 1443 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1444 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1445 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1446 } 1447 1448 unsigned ArgNo = 0; 1449 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1450 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1451 ++I, ++ArgNo) { 1452 assert(I != FI.arg_end()); 1453 QualType ArgType = I->type; 1454 const ABIArgInfo &AI = I->info; 1455 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1456 auto &IRArgs = ArgInfo[ArgNo]; 1457 1458 if (AI.getPaddingType()) 1459 IRArgs.PaddingArgIndex = IRArgNo++; 1460 1461 switch (AI.getKind()) { 1462 case ABIArgInfo::Extend: 1463 case ABIArgInfo::Direct: { 1464 // FIXME: handle sseregparm someday... 1465 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1466 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1467 IRArgs.NumberOfArgs = STy->getNumElements(); 1468 } else { 1469 IRArgs.NumberOfArgs = 1; 1470 } 1471 break; 1472 } 1473 case ABIArgInfo::Indirect: 1474 IRArgs.NumberOfArgs = 1; 1475 break; 1476 case ABIArgInfo::Ignore: 1477 case ABIArgInfo::InAlloca: 1478 // ignore and inalloca doesn't have matching LLVM parameters. 1479 IRArgs.NumberOfArgs = 0; 1480 break; 1481 case ABIArgInfo::CoerceAndExpand: 1482 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1483 break; 1484 case ABIArgInfo::Expand: 1485 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1486 break; 1487 } 1488 1489 if (IRArgs.NumberOfArgs > 0) { 1490 IRArgs.FirstArgIndex = IRArgNo; 1491 IRArgNo += IRArgs.NumberOfArgs; 1492 } 1493 1494 // Skip over the sret parameter when it comes second. We already handled it 1495 // above. 1496 if (IRArgNo == 1 && SwapThisWithSRet) 1497 IRArgNo++; 1498 } 1499 assert(ArgNo == ArgInfo.size()); 1500 1501 if (FI.usesInAlloca()) 1502 InallocaArgNo = IRArgNo++; 1503 1504 TotalIRArgs = IRArgNo; 1505 } 1506 } // namespace 1507 1508 /***/ 1509 1510 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1511 const auto &RI = FI.getReturnInfo(); 1512 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1513 } 1514 1515 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1516 return ReturnTypeUsesSRet(FI) && 1517 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1518 } 1519 1520 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1521 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1522 switch (BT->getKind()) { 1523 default: 1524 return false; 1525 case BuiltinType::Float: 1526 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1527 case BuiltinType::Double: 1528 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1529 case BuiltinType::LongDouble: 1530 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1531 } 1532 } 1533 1534 return false; 1535 } 1536 1537 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1538 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1539 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1540 if (BT->getKind() == BuiltinType::LongDouble) 1541 return getTarget().useObjCFP2RetForComplexLongDouble(); 1542 } 1543 } 1544 1545 return false; 1546 } 1547 1548 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1549 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1550 return GetFunctionType(FI); 1551 } 1552 1553 llvm::FunctionType * 1554 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1555 1556 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1557 (void)Inserted; 1558 assert(Inserted && "Recursively being processed?"); 1559 1560 llvm::Type *resultType = nullptr; 1561 const ABIArgInfo &retAI = FI.getReturnInfo(); 1562 switch (retAI.getKind()) { 1563 case ABIArgInfo::Expand: 1564 llvm_unreachable("Invalid ABI kind for return argument"); 1565 1566 case ABIArgInfo::Extend: 1567 case ABIArgInfo::Direct: 1568 resultType = retAI.getCoerceToType(); 1569 break; 1570 1571 case ABIArgInfo::InAlloca: 1572 if (retAI.getInAllocaSRet()) { 1573 // sret things on win32 aren't void, they return the sret pointer. 1574 QualType ret = FI.getReturnType(); 1575 llvm::Type *ty = ConvertType(ret); 1576 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1577 resultType = llvm::PointerType::get(ty, addressSpace); 1578 } else { 1579 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1580 } 1581 break; 1582 1583 case ABIArgInfo::Indirect: 1584 case ABIArgInfo::Ignore: 1585 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1586 break; 1587 1588 case ABIArgInfo::CoerceAndExpand: 1589 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1590 break; 1591 } 1592 1593 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1594 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1595 1596 // Add type for sret argument. 1597 if (IRFunctionArgs.hasSRetArg()) { 1598 QualType Ret = FI.getReturnType(); 1599 llvm::Type *Ty = ConvertType(Ret); 1600 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1601 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1602 llvm::PointerType::get(Ty, AddressSpace); 1603 } 1604 1605 // Add type for inalloca argument. 1606 if (IRFunctionArgs.hasInallocaArg()) { 1607 auto ArgStruct = FI.getArgStruct(); 1608 assert(ArgStruct); 1609 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1610 } 1611 1612 // Add in all of the required arguments. 1613 unsigned ArgNo = 0; 1614 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1615 ie = it + FI.getNumRequiredArgs(); 1616 for (; it != ie; ++it, ++ArgNo) { 1617 const ABIArgInfo &ArgInfo = it->info; 1618 1619 // Insert a padding type to ensure proper alignment. 1620 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1621 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1622 ArgInfo.getPaddingType(); 1623 1624 unsigned FirstIRArg, NumIRArgs; 1625 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1626 1627 switch (ArgInfo.getKind()) { 1628 case ABIArgInfo::Ignore: 1629 case ABIArgInfo::InAlloca: 1630 assert(NumIRArgs == 0); 1631 break; 1632 1633 case ABIArgInfo::Indirect: { 1634 assert(NumIRArgs == 1); 1635 // indirect arguments are always on the stack, which is alloca addr space. 1636 llvm::Type *LTy = ConvertTypeForMem(it->type); 1637 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1638 CGM.getDataLayout().getAllocaAddrSpace()); 1639 break; 1640 } 1641 1642 case ABIArgInfo::Extend: 1643 case ABIArgInfo::Direct: { 1644 // Fast-isel and the optimizer generally like scalar values better than 1645 // FCAs, so we flatten them if this is safe to do for this argument. 1646 llvm::Type *argType = ArgInfo.getCoerceToType(); 1647 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1648 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1649 assert(NumIRArgs == st->getNumElements()); 1650 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1651 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1652 } else { 1653 assert(NumIRArgs == 1); 1654 ArgTypes[FirstIRArg] = argType; 1655 } 1656 break; 1657 } 1658 1659 case ABIArgInfo::CoerceAndExpand: { 1660 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1661 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1662 *ArgTypesIter++ = EltTy; 1663 } 1664 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1665 break; 1666 } 1667 1668 case ABIArgInfo::Expand: 1669 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1670 getExpandedTypes(it->type, ArgTypesIter); 1671 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1672 break; 1673 } 1674 } 1675 1676 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1677 assert(Erased && "Not in set?"); 1678 1679 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1680 } 1681 1682 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1683 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1684 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1685 1686 if (!isFuncTypeConvertible(FPT)) 1687 return llvm::StructType::get(getLLVMContext()); 1688 1689 return GetFunctionType(GD); 1690 } 1691 1692 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1693 llvm::AttrBuilder &FuncAttrs, 1694 const FunctionProtoType *FPT) { 1695 if (!FPT) 1696 return; 1697 1698 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1699 FPT->isNothrow()) 1700 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1701 } 1702 1703 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1704 bool HasOptnone, 1705 bool AttrOnCallSite, 1706 llvm::AttrBuilder &FuncAttrs) { 1707 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1708 if (!HasOptnone) { 1709 if (CodeGenOpts.OptimizeSize) 1710 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1711 if (CodeGenOpts.OptimizeSize == 2) 1712 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1713 } 1714 1715 if (CodeGenOpts.DisableRedZone) 1716 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1717 if (CodeGenOpts.IndirectTlsSegRefs) 1718 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1719 if (CodeGenOpts.NoImplicitFloat) 1720 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1721 1722 if (AttrOnCallSite) { 1723 // Attributes that should go on the call site only. 1724 if (!CodeGenOpts.SimplifyLibCalls || 1725 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1726 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1727 if (!CodeGenOpts.TrapFuncName.empty()) 1728 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1729 } else { 1730 StringRef FpKind; 1731 switch (CodeGenOpts.getFramePointer()) { 1732 case CodeGenOptions::FramePointerKind::None: 1733 FpKind = "none"; 1734 break; 1735 case CodeGenOptions::FramePointerKind::NonLeaf: 1736 FpKind = "non-leaf"; 1737 break; 1738 case CodeGenOptions::FramePointerKind::All: 1739 FpKind = "all"; 1740 break; 1741 } 1742 FuncAttrs.addAttribute("frame-pointer", FpKind); 1743 1744 FuncAttrs.addAttribute("less-precise-fpmad", 1745 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1746 1747 if (CodeGenOpts.NullPointerIsValid) 1748 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1749 1750 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1751 FuncAttrs.addAttribute("denormal-fp-math", 1752 CodeGenOpts.FPDenormalMode.str()); 1753 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1754 FuncAttrs.addAttribute( 1755 "denormal-fp-math-f32", 1756 CodeGenOpts.FP32DenormalMode.str()); 1757 } 1758 1759 FuncAttrs.addAttribute("no-trapping-math", 1760 llvm::toStringRef(LangOpts.getFPExceptionMode() == 1761 LangOptions::FPE_Ignore)); 1762 1763 // Strict (compliant) code is the default, so only add this attribute to 1764 // indicate that we are trying to workaround a problem case. 1765 if (!CodeGenOpts.StrictFloatCastOverflow) 1766 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1767 1768 // TODO: Are these all needed? 1769 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1770 FuncAttrs.addAttribute("no-infs-fp-math", 1771 llvm::toStringRef(LangOpts.NoHonorInfs)); 1772 FuncAttrs.addAttribute("no-nans-fp-math", 1773 llvm::toStringRef(LangOpts.NoHonorNaNs)); 1774 FuncAttrs.addAttribute("unsafe-fp-math", 1775 llvm::toStringRef(LangOpts.UnsafeFPMath)); 1776 FuncAttrs.addAttribute("use-soft-float", 1777 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1778 FuncAttrs.addAttribute("stack-protector-buffer-size", 1779 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1780 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1781 llvm::toStringRef(LangOpts.NoSignedZero)); 1782 FuncAttrs.addAttribute( 1783 "correctly-rounded-divide-sqrt-fp-math", 1784 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1785 1786 // TODO: Reciprocal estimate codegen options should apply to instructions? 1787 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1788 if (!Recips.empty()) 1789 FuncAttrs.addAttribute("reciprocal-estimates", 1790 llvm::join(Recips, ",")); 1791 1792 if (!CodeGenOpts.PreferVectorWidth.empty() && 1793 CodeGenOpts.PreferVectorWidth != "none") 1794 FuncAttrs.addAttribute("prefer-vector-width", 1795 CodeGenOpts.PreferVectorWidth); 1796 1797 if (CodeGenOpts.StackRealignment) 1798 FuncAttrs.addAttribute("stackrealign"); 1799 if (CodeGenOpts.Backchain) 1800 FuncAttrs.addAttribute("backchain"); 1801 if (CodeGenOpts.EnableSegmentedStacks) 1802 FuncAttrs.addAttribute("split-stack"); 1803 1804 if (CodeGenOpts.SpeculativeLoadHardening) 1805 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1806 } 1807 1808 if (getLangOpts().assumeFunctionsAreConvergent()) { 1809 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1810 // convergent (meaning, they may call an intrinsically convergent op, such 1811 // as __syncthreads() / barrier(), and so can't have certain optimizations 1812 // applied around them). LLVM will remove this attribute where it safely 1813 // can. 1814 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1815 } 1816 1817 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1818 // Exceptions aren't supported in CUDA device code. 1819 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1820 } 1821 1822 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1823 StringRef Var, Value; 1824 std::tie(Var, Value) = Attr.split('='); 1825 FuncAttrs.addAttribute(Var, Value); 1826 } 1827 } 1828 1829 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1830 llvm::AttrBuilder FuncAttrs; 1831 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1832 /* AttrOnCallSite = */ false, FuncAttrs); 1833 // TODO: call GetCPUAndFeaturesAttributes? 1834 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1835 } 1836 1837 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1838 llvm::AttrBuilder &attrs) { 1839 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1840 /*for call*/ false, attrs); 1841 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1842 } 1843 1844 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1845 const LangOptions &LangOpts, 1846 const NoBuiltinAttr *NBA = nullptr) { 1847 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1848 SmallString<32> AttributeName; 1849 AttributeName += "no-builtin-"; 1850 AttributeName += BuiltinName; 1851 FuncAttrs.addAttribute(AttributeName); 1852 }; 1853 1854 // First, handle the language options passed through -fno-builtin. 1855 if (LangOpts.NoBuiltin) { 1856 // -fno-builtin disables them all. 1857 FuncAttrs.addAttribute("no-builtins"); 1858 return; 1859 } 1860 1861 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1862 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1863 1864 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1865 // the source. 1866 if (!NBA) 1867 return; 1868 1869 // If there is a wildcard in the builtin names specified through the 1870 // attribute, disable them all. 1871 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1872 FuncAttrs.addAttribute("no-builtins"); 1873 return; 1874 } 1875 1876 // And last, add the rest of the builtin names. 1877 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1878 } 1879 1880 /// Construct the IR attribute list of a function or call. 1881 /// 1882 /// When adding an attribute, please consider where it should be handled: 1883 /// 1884 /// - getDefaultFunctionAttributes is for attributes that are essentially 1885 /// part of the global target configuration (but perhaps can be 1886 /// overridden on a per-function basis). Adding attributes there 1887 /// will cause them to also be set in frontends that build on Clang's 1888 /// target-configuration logic, as well as for code defined in library 1889 /// modules such as CUDA's libdevice. 1890 /// 1891 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 1892 /// and adds declaration-specific, convention-specific, and 1893 /// frontend-specific logic. The last is of particular importance: 1894 /// attributes that restrict how the frontend generates code must be 1895 /// added here rather than getDefaultFunctionAttributes. 1896 /// 1897 void CodeGenModule::ConstructAttributeList( 1898 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1899 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1900 llvm::AttrBuilder FuncAttrs; 1901 llvm::AttrBuilder RetAttrs; 1902 1903 // Collect function IR attributes from the CC lowering. 1904 // We'll collect the paramete and result attributes later. 1905 CallingConv = FI.getEffectiveCallingConvention(); 1906 if (FI.isNoReturn()) 1907 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1908 if (FI.isCmseNSCall()) 1909 FuncAttrs.addAttribute("cmse_nonsecure_call"); 1910 1911 // Collect function IR attributes from the callee prototype if we have one. 1912 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1913 CalleeInfo.getCalleeFunctionProtoType()); 1914 1915 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1916 1917 bool HasOptnone = false; 1918 // The NoBuiltinAttr attached to the target FunctionDecl. 1919 const NoBuiltinAttr *NBA = nullptr; 1920 1921 // Collect function IR attributes based on declaration-specific 1922 // information. 1923 // FIXME: handle sseregparm someday... 1924 if (TargetDecl) { 1925 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1926 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1927 if (TargetDecl->hasAttr<NoThrowAttr>()) 1928 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1929 if (TargetDecl->hasAttr<NoReturnAttr>()) 1930 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1931 if (TargetDecl->hasAttr<ColdAttr>()) 1932 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1933 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1934 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1935 if (TargetDecl->hasAttr<ConvergentAttr>()) 1936 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1937 1938 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1939 AddAttributesFromFunctionProtoType( 1940 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1941 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 1942 // A sane operator new returns a non-aliasing pointer. 1943 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 1944 if (getCodeGenOpts().AssumeSaneOperatorNew && 1945 (Kind == OO_New || Kind == OO_Array_New)) 1946 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1947 } 1948 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1949 const bool IsVirtualCall = MD && MD->isVirtual(); 1950 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1951 // virtual function. These attributes are not inherited by overloads. 1952 if (!(AttrOnCallSite && IsVirtualCall)) { 1953 if (Fn->isNoReturn()) 1954 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1955 NBA = Fn->getAttr<NoBuiltinAttr>(); 1956 } 1957 } 1958 1959 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1960 if (TargetDecl->hasAttr<ConstAttr>()) { 1961 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1962 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1963 } else if (TargetDecl->hasAttr<PureAttr>()) { 1964 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1965 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1966 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1967 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1968 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1969 } 1970 if (TargetDecl->hasAttr<RestrictAttr>()) 1971 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1972 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1973 !CodeGenOpts.NullPointerIsValid) 1974 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1975 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1976 FuncAttrs.addAttribute("no_caller_saved_registers"); 1977 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1978 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1979 1980 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1981 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1982 Optional<unsigned> NumElemsParam; 1983 if (AllocSize->getNumElemsParam().isValid()) 1984 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1985 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1986 NumElemsParam); 1987 } 1988 1989 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1990 if (getLangOpts().OpenCLVersion <= 120) { 1991 // OpenCL v1.2 Work groups are always uniform 1992 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1993 } else { 1994 // OpenCL v2.0 Work groups may be whether uniform or not. 1995 // '-cl-uniform-work-group-size' compile option gets a hint 1996 // to the compiler that the global work-size be a multiple of 1997 // the work-group size specified to clEnqueueNDRangeKernel 1998 // (i.e. work groups are uniform). 1999 FuncAttrs.addAttribute("uniform-work-group-size", 2000 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2001 } 2002 } 2003 } 2004 2005 // Attach "no-builtins" attributes to: 2006 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2007 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2008 // The attributes can come from: 2009 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2010 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2011 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2012 2013 // Collect function IR attributes based on global settiings. 2014 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2015 2016 // Override some default IR attributes based on declaration-specific 2017 // information. 2018 if (TargetDecl) { 2019 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2020 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2021 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2022 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2023 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2024 FuncAttrs.removeAttribute("split-stack"); 2025 2026 // Add NonLazyBind attribute to function declarations when -fno-plt 2027 // is used. 2028 // FIXME: what if we just haven't processed the function definition 2029 // yet, or if it's an external definition like C99 inline? 2030 if (CodeGenOpts.NoPLT) { 2031 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2032 if (!Fn->isDefined() && !AttrOnCallSite) { 2033 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2034 } 2035 } 2036 } 2037 } 2038 2039 // Collect non-call-site function IR attributes from declaration-specific 2040 // information. 2041 if (!AttrOnCallSite) { 2042 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2043 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2044 2045 // Whether tail calls are enabled. 2046 auto shouldDisableTailCalls = [&] { 2047 // Should this be honored in getDefaultFunctionAttributes? 2048 if (CodeGenOpts.DisableTailCalls) 2049 return true; 2050 2051 if (!TargetDecl) 2052 return false; 2053 2054 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2055 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2056 return true; 2057 2058 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2059 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2060 if (!BD->doesNotEscape()) 2061 return true; 2062 } 2063 2064 return false; 2065 }; 2066 FuncAttrs.addAttribute("disable-tail-calls", 2067 llvm::toStringRef(shouldDisableTailCalls())); 2068 2069 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2070 // handles these separately to set them based on the global defaults. 2071 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2072 } 2073 2074 // Collect attributes from arguments and return values. 2075 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2076 2077 QualType RetTy = FI.getReturnType(); 2078 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2079 switch (RetAI.getKind()) { 2080 case ABIArgInfo::Extend: 2081 if (RetAI.isSignExt()) 2082 RetAttrs.addAttribute(llvm::Attribute::SExt); 2083 else 2084 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2085 LLVM_FALLTHROUGH; 2086 case ABIArgInfo::Direct: 2087 if (RetAI.getInReg()) 2088 RetAttrs.addAttribute(llvm::Attribute::InReg); 2089 break; 2090 case ABIArgInfo::Ignore: 2091 break; 2092 2093 case ABIArgInfo::InAlloca: 2094 case ABIArgInfo::Indirect: { 2095 // inalloca and sret disable readnone and readonly 2096 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2097 .removeAttribute(llvm::Attribute::ReadNone); 2098 break; 2099 } 2100 2101 case ABIArgInfo::CoerceAndExpand: 2102 break; 2103 2104 case ABIArgInfo::Expand: 2105 llvm_unreachable("Invalid ABI kind for return argument"); 2106 } 2107 2108 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2109 QualType PTy = RefTy->getPointeeType(); 2110 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2111 RetAttrs.addDereferenceableAttr( 2112 getMinimumObjectSize(PTy).getQuantity()); 2113 if (getContext().getTargetAddressSpace(PTy) == 0 && 2114 !CodeGenOpts.NullPointerIsValid) 2115 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2116 if (PTy->isObjectType()) { 2117 llvm::Align Alignment = 2118 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2119 RetAttrs.addAlignmentAttr(Alignment); 2120 } 2121 } 2122 2123 bool hasUsedSRet = false; 2124 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2125 2126 // Attach attributes to sret. 2127 if (IRFunctionArgs.hasSRetArg()) { 2128 llvm::AttrBuilder SRETAttrs; 2129 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2130 hasUsedSRet = true; 2131 if (RetAI.getInReg()) 2132 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2133 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2134 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2135 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2136 } 2137 2138 // Attach attributes to inalloca argument. 2139 if (IRFunctionArgs.hasInallocaArg()) { 2140 llvm::AttrBuilder Attrs; 2141 Attrs.addAttribute(llvm::Attribute::InAlloca); 2142 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2143 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2144 } 2145 2146 unsigned ArgNo = 0; 2147 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2148 E = FI.arg_end(); 2149 I != E; ++I, ++ArgNo) { 2150 QualType ParamType = I->type; 2151 const ABIArgInfo &AI = I->info; 2152 llvm::AttrBuilder Attrs; 2153 2154 // Add attribute for padding argument, if necessary. 2155 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2156 if (AI.getPaddingInReg()) { 2157 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2158 llvm::AttributeSet::get( 2159 getLLVMContext(), 2160 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2161 } 2162 } 2163 2164 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2165 // have the corresponding parameter variable. It doesn't make 2166 // sense to do it here because parameters are so messed up. 2167 switch (AI.getKind()) { 2168 case ABIArgInfo::Extend: 2169 if (AI.isSignExt()) 2170 Attrs.addAttribute(llvm::Attribute::SExt); 2171 else 2172 Attrs.addAttribute(llvm::Attribute::ZExt); 2173 LLVM_FALLTHROUGH; 2174 case ABIArgInfo::Direct: 2175 if (ArgNo == 0 && FI.isChainCall()) 2176 Attrs.addAttribute(llvm::Attribute::Nest); 2177 else if (AI.getInReg()) 2178 Attrs.addAttribute(llvm::Attribute::InReg); 2179 break; 2180 2181 case ABIArgInfo::Indirect: { 2182 if (AI.getInReg()) 2183 Attrs.addAttribute(llvm::Attribute::InReg); 2184 2185 if (AI.getIndirectByVal()) 2186 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2187 2188 CharUnits Align = AI.getIndirectAlign(); 2189 2190 // In a byval argument, it is important that the required 2191 // alignment of the type is honored, as LLVM might be creating a 2192 // *new* stack object, and needs to know what alignment to give 2193 // it. (Sometimes it can deduce a sensible alignment on its own, 2194 // but not if clang decides it must emit a packed struct, or the 2195 // user specifies increased alignment requirements.) 2196 // 2197 // This is different from indirect *not* byval, where the object 2198 // exists already, and the align attribute is purely 2199 // informative. 2200 assert(!Align.isZero()); 2201 2202 // For now, only add this when we have a byval argument. 2203 // TODO: be less lazy about updating test cases. 2204 if (AI.getIndirectByVal()) 2205 Attrs.addAlignmentAttr(Align.getQuantity()); 2206 2207 // byval disables readnone and readonly. 2208 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2209 .removeAttribute(llvm::Attribute::ReadNone); 2210 break; 2211 } 2212 case ABIArgInfo::Ignore: 2213 case ABIArgInfo::Expand: 2214 case ABIArgInfo::CoerceAndExpand: 2215 break; 2216 2217 case ABIArgInfo::InAlloca: 2218 // inalloca disables readnone and readonly. 2219 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2220 .removeAttribute(llvm::Attribute::ReadNone); 2221 continue; 2222 } 2223 2224 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2225 QualType PTy = RefTy->getPointeeType(); 2226 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2227 Attrs.addDereferenceableAttr( 2228 getMinimumObjectSize(PTy).getQuantity()); 2229 if (getContext().getTargetAddressSpace(PTy) == 0 && 2230 !CodeGenOpts.NullPointerIsValid) 2231 Attrs.addAttribute(llvm::Attribute::NonNull); 2232 if (PTy->isObjectType()) { 2233 llvm::Align Alignment = 2234 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2235 Attrs.addAlignmentAttr(Alignment); 2236 } 2237 } 2238 2239 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2240 case ParameterABI::Ordinary: 2241 break; 2242 2243 case ParameterABI::SwiftIndirectResult: { 2244 // Add 'sret' if we haven't already used it for something, but 2245 // only if the result is void. 2246 if (!hasUsedSRet && RetTy->isVoidType()) { 2247 Attrs.addAttribute(llvm::Attribute::StructRet); 2248 hasUsedSRet = true; 2249 } 2250 2251 // Add 'noalias' in either case. 2252 Attrs.addAttribute(llvm::Attribute::NoAlias); 2253 2254 // Add 'dereferenceable' and 'alignment'. 2255 auto PTy = ParamType->getPointeeType(); 2256 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2257 auto info = getContext().getTypeInfoInChars(PTy); 2258 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2259 Attrs.addAlignmentAttr(info.second.getAsAlign()); 2260 } 2261 break; 2262 } 2263 2264 case ParameterABI::SwiftErrorResult: 2265 Attrs.addAttribute(llvm::Attribute::SwiftError); 2266 break; 2267 2268 case ParameterABI::SwiftContext: 2269 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2270 break; 2271 } 2272 2273 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2274 Attrs.addAttribute(llvm::Attribute::NoCapture); 2275 2276 if (Attrs.hasAttributes()) { 2277 unsigned FirstIRArg, NumIRArgs; 2278 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2279 for (unsigned i = 0; i < NumIRArgs; i++) 2280 ArgAttrs[FirstIRArg + i] = 2281 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2282 } 2283 } 2284 assert(ArgNo == FI.arg_size()); 2285 2286 AttrList = llvm::AttributeList::get( 2287 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2288 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2289 } 2290 2291 /// An argument came in as a promoted argument; demote it back to its 2292 /// declared type. 2293 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2294 const VarDecl *var, 2295 llvm::Value *value) { 2296 llvm::Type *varType = CGF.ConvertType(var->getType()); 2297 2298 // This can happen with promotions that actually don't change the 2299 // underlying type, like the enum promotions. 2300 if (value->getType() == varType) return value; 2301 2302 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2303 && "unexpected promotion type"); 2304 2305 if (isa<llvm::IntegerType>(varType)) 2306 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2307 2308 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2309 } 2310 2311 /// Returns the attribute (either parameter attribute, or function 2312 /// attribute), which declares argument ArgNo to be non-null. 2313 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2314 QualType ArgType, unsigned ArgNo) { 2315 // FIXME: __attribute__((nonnull)) can also be applied to: 2316 // - references to pointers, where the pointee is known to be 2317 // nonnull (apparently a Clang extension) 2318 // - transparent unions containing pointers 2319 // In the former case, LLVM IR cannot represent the constraint. In 2320 // the latter case, we have no guarantee that the transparent union 2321 // is in fact passed as a pointer. 2322 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2323 return nullptr; 2324 // First, check attribute on parameter itself. 2325 if (PVD) { 2326 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2327 return ParmNNAttr; 2328 } 2329 // Check function attributes. 2330 if (!FD) 2331 return nullptr; 2332 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2333 if (NNAttr->isNonNull(ArgNo)) 2334 return NNAttr; 2335 } 2336 return nullptr; 2337 } 2338 2339 namespace { 2340 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2341 Address Temp; 2342 Address Arg; 2343 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2344 void Emit(CodeGenFunction &CGF, Flags flags) override { 2345 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2346 CGF.Builder.CreateStore(errorValue, Arg); 2347 } 2348 }; 2349 } 2350 2351 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2352 llvm::Function *Fn, 2353 const FunctionArgList &Args) { 2354 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2355 // Naked functions don't have prologues. 2356 return; 2357 2358 // If this is an implicit-return-zero function, go ahead and 2359 // initialize the return value. TODO: it might be nice to have 2360 // a more general mechanism for this that didn't require synthesized 2361 // return statements. 2362 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2363 if (FD->hasImplicitReturnZero()) { 2364 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2365 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2366 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2367 Builder.CreateStore(Zero, ReturnValue); 2368 } 2369 } 2370 2371 // FIXME: We no longer need the types from FunctionArgList; lift up and 2372 // simplify. 2373 2374 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2375 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2376 2377 // If we're using inalloca, all the memory arguments are GEPs off of the last 2378 // parameter, which is a pointer to the complete memory area. 2379 Address ArgStruct = Address::invalid(); 2380 if (IRFunctionArgs.hasInallocaArg()) { 2381 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2382 FI.getArgStructAlignment()); 2383 2384 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2385 } 2386 2387 // Name the struct return parameter. 2388 if (IRFunctionArgs.hasSRetArg()) { 2389 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2390 AI->setName("agg.result"); 2391 AI->addAttr(llvm::Attribute::NoAlias); 2392 } 2393 2394 // Track if we received the parameter as a pointer (indirect, byval, or 2395 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2396 // into a local alloca for us. 2397 SmallVector<ParamValue, 16> ArgVals; 2398 ArgVals.reserve(Args.size()); 2399 2400 // Create a pointer value for every parameter declaration. This usually 2401 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2402 // any cleanups or do anything that might unwind. We do that separately, so 2403 // we can push the cleanups in the correct order for the ABI. 2404 assert(FI.arg_size() == Args.size() && 2405 "Mismatch between function signature & arguments."); 2406 unsigned ArgNo = 0; 2407 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2408 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2409 i != e; ++i, ++info_it, ++ArgNo) { 2410 const VarDecl *Arg = *i; 2411 const ABIArgInfo &ArgI = info_it->info; 2412 2413 bool isPromoted = 2414 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2415 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2416 // the parameter is promoted. In this case we convert to 2417 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2418 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2419 assert(hasScalarEvaluationKind(Ty) == 2420 hasScalarEvaluationKind(Arg->getType())); 2421 2422 unsigned FirstIRArg, NumIRArgs; 2423 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2424 2425 switch (ArgI.getKind()) { 2426 case ABIArgInfo::InAlloca: { 2427 assert(NumIRArgs == 0); 2428 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2429 Address V = 2430 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2431 if (ArgI.getInAllocaIndirect()) 2432 V = Address(Builder.CreateLoad(V), 2433 getContext().getTypeAlignInChars(Ty)); 2434 ArgVals.push_back(ParamValue::forIndirect(V)); 2435 break; 2436 } 2437 2438 case ABIArgInfo::Indirect: { 2439 assert(NumIRArgs == 1); 2440 Address ParamAddr = 2441 Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign()); 2442 2443 if (!hasScalarEvaluationKind(Ty)) { 2444 // Aggregates and complex variables are accessed by reference. All we 2445 // need to do is realign the value, if requested. 2446 Address V = ParamAddr; 2447 if (ArgI.getIndirectRealign()) { 2448 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2449 2450 // Copy from the incoming argument pointer to the temporary with the 2451 // appropriate alignment. 2452 // 2453 // FIXME: We should have a common utility for generating an aggregate 2454 // copy. 2455 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2456 Builder.CreateMemCpy( 2457 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2458 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2459 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2460 V = AlignedTemp; 2461 } 2462 ArgVals.push_back(ParamValue::forIndirect(V)); 2463 } else { 2464 // Load scalar value from indirect argument. 2465 llvm::Value *V = 2466 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2467 2468 if (isPromoted) 2469 V = emitArgumentDemotion(*this, Arg, V); 2470 ArgVals.push_back(ParamValue::forDirect(V)); 2471 } 2472 break; 2473 } 2474 2475 case ABIArgInfo::Extend: 2476 case ABIArgInfo::Direct: { 2477 auto AI = Fn->getArg(FirstIRArg); 2478 llvm::Type *LTy = ConvertType(Arg->getType()); 2479 2480 // Prepare parameter attributes. So far, only attributes for pointer 2481 // parameters are prepared. See 2482 // http://llvm.org/docs/LangRef.html#paramattrs. 2483 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2484 ArgI.getCoerceToType()->isPointerTy()) { 2485 assert(NumIRArgs == 1); 2486 2487 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2488 // Set `nonnull` attribute if any. 2489 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2490 PVD->getFunctionScopeIndex()) && 2491 !CGM.getCodeGenOpts().NullPointerIsValid) 2492 AI->addAttr(llvm::Attribute::NonNull); 2493 2494 QualType OTy = PVD->getOriginalType(); 2495 if (const auto *ArrTy = 2496 getContext().getAsConstantArrayType(OTy)) { 2497 // A C99 array parameter declaration with the static keyword also 2498 // indicates dereferenceability, and if the size is constant we can 2499 // use the dereferenceable attribute (which requires the size in 2500 // bytes). 2501 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2502 QualType ETy = ArrTy->getElementType(); 2503 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2504 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2505 ArrSize) { 2506 llvm::AttrBuilder Attrs; 2507 Attrs.addDereferenceableAttr( 2508 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2509 AI->addAttrs(Attrs); 2510 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2511 !CGM.getCodeGenOpts().NullPointerIsValid) { 2512 AI->addAttr(llvm::Attribute::NonNull); 2513 } 2514 } 2515 } else if (const auto *ArrTy = 2516 getContext().getAsVariableArrayType(OTy)) { 2517 // For C99 VLAs with the static keyword, we don't know the size so 2518 // we can't use the dereferenceable attribute, but in addrspace(0) 2519 // we know that it must be nonnull. 2520 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2521 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2522 !CGM.getCodeGenOpts().NullPointerIsValid) 2523 AI->addAttr(llvm::Attribute::NonNull); 2524 } 2525 2526 // Set `align` attribute if any. 2527 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2528 if (!AVAttr) 2529 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2530 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2531 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2532 // If alignment-assumption sanitizer is enabled, we do *not* add 2533 // alignment attribute here, but emit normal alignment assumption, 2534 // so the UBSAN check could function. 2535 llvm::ConstantInt *AlignmentCI = 2536 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2537 unsigned AlignmentInt = 2538 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2539 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2540 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2541 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr( 2542 llvm::Align(AlignmentInt))); 2543 } 2544 } 2545 } 2546 2547 // Set 'noalias' if an argument type has the `restrict` qualifier. 2548 if (Arg->getType().isRestrictQualified()) 2549 AI->addAttr(llvm::Attribute::NoAlias); 2550 } 2551 2552 // Prepare the argument value. If we have the trivial case, handle it 2553 // with no muss and fuss. 2554 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2555 ArgI.getCoerceToType() == ConvertType(Ty) && 2556 ArgI.getDirectOffset() == 0) { 2557 assert(NumIRArgs == 1); 2558 2559 // LLVM expects swifterror parameters to be used in very restricted 2560 // ways. Copy the value into a less-restricted temporary. 2561 llvm::Value *V = AI; 2562 if (FI.getExtParameterInfo(ArgNo).getABI() 2563 == ParameterABI::SwiftErrorResult) { 2564 QualType pointeeTy = Ty->getPointeeType(); 2565 assert(pointeeTy->isPointerType()); 2566 Address temp = 2567 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2568 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2569 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2570 Builder.CreateStore(incomingErrorValue, temp); 2571 V = temp.getPointer(); 2572 2573 // Push a cleanup to copy the value back at the end of the function. 2574 // The convention does not guarantee that the value will be written 2575 // back if the function exits with an unwind exception. 2576 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2577 } 2578 2579 // Ensure the argument is the correct type. 2580 if (V->getType() != ArgI.getCoerceToType()) 2581 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2582 2583 if (isPromoted) 2584 V = emitArgumentDemotion(*this, Arg, V); 2585 2586 // Because of merging of function types from multiple decls it is 2587 // possible for the type of an argument to not match the corresponding 2588 // type in the function type. Since we are codegening the callee 2589 // in here, add a cast to the argument type. 2590 llvm::Type *LTy = ConvertType(Arg->getType()); 2591 if (V->getType() != LTy) 2592 V = Builder.CreateBitCast(V, LTy); 2593 2594 ArgVals.push_back(ParamValue::forDirect(V)); 2595 break; 2596 } 2597 2598 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2599 Arg->getName()); 2600 2601 // Pointer to store into. 2602 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2603 2604 // Fast-isel and the optimizer generally like scalar values better than 2605 // FCAs, so we flatten them if this is safe to do for this argument. 2606 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2607 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2608 STy->getNumElements() > 1) { 2609 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2610 llvm::Type *DstTy = Ptr.getElementType(); 2611 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2612 2613 Address AddrToStoreInto = Address::invalid(); 2614 if (SrcSize <= DstSize) { 2615 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2616 } else { 2617 AddrToStoreInto = 2618 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2619 } 2620 2621 assert(STy->getNumElements() == NumIRArgs); 2622 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2623 auto AI = Fn->getArg(FirstIRArg + i); 2624 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2625 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2626 Builder.CreateStore(AI, EltPtr); 2627 } 2628 2629 if (SrcSize > DstSize) { 2630 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2631 } 2632 2633 } else { 2634 // Simple case, just do a coerced store of the argument into the alloca. 2635 assert(NumIRArgs == 1); 2636 auto AI = Fn->getArg(FirstIRArg); 2637 AI->setName(Arg->getName() + ".coerce"); 2638 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2639 } 2640 2641 // Match to what EmitParmDecl is expecting for this type. 2642 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2643 llvm::Value *V = 2644 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2645 if (isPromoted) 2646 V = emitArgumentDemotion(*this, Arg, V); 2647 ArgVals.push_back(ParamValue::forDirect(V)); 2648 } else { 2649 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2650 } 2651 break; 2652 } 2653 2654 case ABIArgInfo::CoerceAndExpand: { 2655 // Reconstruct into a temporary. 2656 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2657 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2658 2659 auto coercionType = ArgI.getCoerceAndExpandType(); 2660 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2661 2662 unsigned argIndex = FirstIRArg; 2663 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2664 llvm::Type *eltType = coercionType->getElementType(i); 2665 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2666 continue; 2667 2668 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2669 auto elt = Fn->getArg(argIndex++); 2670 Builder.CreateStore(elt, eltAddr); 2671 } 2672 assert(argIndex == FirstIRArg + NumIRArgs); 2673 break; 2674 } 2675 2676 case ABIArgInfo::Expand: { 2677 // If this structure was expanded into multiple arguments then 2678 // we need to create a temporary and reconstruct it from the 2679 // arguments. 2680 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2681 LValue LV = MakeAddrLValue(Alloca, Ty); 2682 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2683 2684 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2685 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2686 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2687 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2688 auto AI = Fn->getArg(FirstIRArg + i); 2689 AI->setName(Arg->getName() + "." + Twine(i)); 2690 } 2691 break; 2692 } 2693 2694 case ABIArgInfo::Ignore: 2695 assert(NumIRArgs == 0); 2696 // Initialize the local variable appropriately. 2697 if (!hasScalarEvaluationKind(Ty)) { 2698 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2699 } else { 2700 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2701 ArgVals.push_back(ParamValue::forDirect(U)); 2702 } 2703 break; 2704 } 2705 } 2706 2707 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2708 for (int I = Args.size() - 1; I >= 0; --I) 2709 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2710 } else { 2711 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2712 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2713 } 2714 } 2715 2716 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2717 while (insn->use_empty()) { 2718 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2719 if (!bitcast) return; 2720 2721 // This is "safe" because we would have used a ConstantExpr otherwise. 2722 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2723 bitcast->eraseFromParent(); 2724 } 2725 } 2726 2727 /// Try to emit a fused autorelease of a return result. 2728 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2729 llvm::Value *result) { 2730 // We must be immediately followed the cast. 2731 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2732 if (BB->empty()) return nullptr; 2733 if (&BB->back() != result) return nullptr; 2734 2735 llvm::Type *resultType = result->getType(); 2736 2737 // result is in a BasicBlock and is therefore an Instruction. 2738 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2739 2740 SmallVector<llvm::Instruction *, 4> InstsToKill; 2741 2742 // Look for: 2743 // %generator = bitcast %type1* %generator2 to %type2* 2744 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2745 // We would have emitted this as a constant if the operand weren't 2746 // an Instruction. 2747 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2748 2749 // Require the generator to be immediately followed by the cast. 2750 if (generator->getNextNode() != bitcast) 2751 return nullptr; 2752 2753 InstsToKill.push_back(bitcast); 2754 } 2755 2756 // Look for: 2757 // %generator = call i8* @objc_retain(i8* %originalResult) 2758 // or 2759 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2760 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2761 if (!call) return nullptr; 2762 2763 bool doRetainAutorelease; 2764 2765 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2766 doRetainAutorelease = true; 2767 } else if (call->getCalledOperand() == 2768 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 2769 doRetainAutorelease = false; 2770 2771 // If we emitted an assembly marker for this call (and the 2772 // ARCEntrypoints field should have been set if so), go looking 2773 // for that call. If we can't find it, we can't do this 2774 // optimization. But it should always be the immediately previous 2775 // instruction, unless we needed bitcasts around the call. 2776 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2777 llvm::Instruction *prev = call->getPrevNode(); 2778 assert(prev); 2779 if (isa<llvm::BitCastInst>(prev)) { 2780 prev = prev->getPrevNode(); 2781 assert(prev); 2782 } 2783 assert(isa<llvm::CallInst>(prev)); 2784 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 2785 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2786 InstsToKill.push_back(prev); 2787 } 2788 } else { 2789 return nullptr; 2790 } 2791 2792 result = call->getArgOperand(0); 2793 InstsToKill.push_back(call); 2794 2795 // Keep killing bitcasts, for sanity. Note that we no longer care 2796 // about precise ordering as long as there's exactly one use. 2797 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2798 if (!bitcast->hasOneUse()) break; 2799 InstsToKill.push_back(bitcast); 2800 result = bitcast->getOperand(0); 2801 } 2802 2803 // Delete all the unnecessary instructions, from latest to earliest. 2804 for (auto *I : InstsToKill) 2805 I->eraseFromParent(); 2806 2807 // Do the fused retain/autorelease if we were asked to. 2808 if (doRetainAutorelease) 2809 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2810 2811 // Cast back to the result type. 2812 return CGF.Builder.CreateBitCast(result, resultType); 2813 } 2814 2815 /// If this is a +1 of the value of an immutable 'self', remove it. 2816 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2817 llvm::Value *result) { 2818 // This is only applicable to a method with an immutable 'self'. 2819 const ObjCMethodDecl *method = 2820 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2821 if (!method) return nullptr; 2822 const VarDecl *self = method->getSelfDecl(); 2823 if (!self->getType().isConstQualified()) return nullptr; 2824 2825 // Look for a retain call. 2826 llvm::CallInst *retainCall = 2827 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2828 if (!retainCall || retainCall->getCalledOperand() != 2829 CGF.CGM.getObjCEntrypoints().objc_retain) 2830 return nullptr; 2831 2832 // Look for an ordinary load of 'self'. 2833 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2834 llvm::LoadInst *load = 2835 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2836 if (!load || load->isAtomic() || load->isVolatile() || 2837 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2838 return nullptr; 2839 2840 // Okay! Burn it all down. This relies for correctness on the 2841 // assumption that the retain is emitted as part of the return and 2842 // that thereafter everything is used "linearly". 2843 llvm::Type *resultType = result->getType(); 2844 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2845 assert(retainCall->use_empty()); 2846 retainCall->eraseFromParent(); 2847 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2848 2849 return CGF.Builder.CreateBitCast(load, resultType); 2850 } 2851 2852 /// Emit an ARC autorelease of the result of a function. 2853 /// 2854 /// \return the value to actually return from the function 2855 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2856 llvm::Value *result) { 2857 // If we're returning 'self', kill the initial retain. This is a 2858 // heuristic attempt to "encourage correctness" in the really unfortunate 2859 // case where we have a return of self during a dealloc and we desperately 2860 // need to avoid the possible autorelease. 2861 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2862 return self; 2863 2864 // At -O0, try to emit a fused retain/autorelease. 2865 if (CGF.shouldUseFusedARCCalls()) 2866 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2867 return fused; 2868 2869 return CGF.EmitARCAutoreleaseReturnValue(result); 2870 } 2871 2872 /// Heuristically search for a dominating store to the return-value slot. 2873 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2874 // Check if a User is a store which pointerOperand is the ReturnValue. 2875 // We are looking for stores to the ReturnValue, not for stores of the 2876 // ReturnValue to some other location. 2877 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2878 auto *SI = dyn_cast<llvm::StoreInst>(U); 2879 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2880 return nullptr; 2881 // These aren't actually possible for non-coerced returns, and we 2882 // only care about non-coerced returns on this code path. 2883 assert(!SI->isAtomic() && !SI->isVolatile()); 2884 return SI; 2885 }; 2886 // If there are multiple uses of the return-value slot, just check 2887 // for something immediately preceding the IP. Sometimes this can 2888 // happen with how we generate implicit-returns; it can also happen 2889 // with noreturn cleanups. 2890 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2891 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2892 if (IP->empty()) return nullptr; 2893 llvm::Instruction *I = &IP->back(); 2894 2895 // Skip lifetime markers 2896 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2897 IE = IP->rend(); 2898 II != IE; ++II) { 2899 if (llvm::IntrinsicInst *Intrinsic = 2900 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2901 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2902 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2903 ++II; 2904 if (II == IE) 2905 break; 2906 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2907 continue; 2908 } 2909 } 2910 I = &*II; 2911 break; 2912 } 2913 2914 return GetStoreIfValid(I); 2915 } 2916 2917 llvm::StoreInst *store = 2918 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2919 if (!store) return nullptr; 2920 2921 // Now do a first-and-dirty dominance check: just walk up the 2922 // single-predecessors chain from the current insertion point. 2923 llvm::BasicBlock *StoreBB = store->getParent(); 2924 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2925 while (IP != StoreBB) { 2926 if (!(IP = IP->getSinglePredecessor())) 2927 return nullptr; 2928 } 2929 2930 // Okay, the store's basic block dominates the insertion point; we 2931 // can do our thing. 2932 return store; 2933 } 2934 2935 // Helper functions for EmitCMSEClearRecord 2936 2937 // Set the bits corresponding to a field having width `BitWidth` and located at 2938 // offset `BitOffset` (from the least significant bit) within a storage unit of 2939 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 2940 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 2941 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 2942 int BitWidth, int CharWidth) { 2943 assert(CharWidth <= 64); 2944 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 2945 2946 int Pos = 0; 2947 if (BitOffset >= CharWidth) { 2948 Pos += BitOffset / CharWidth; 2949 BitOffset = BitOffset % CharWidth; 2950 } 2951 2952 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 2953 if (BitOffset + BitWidth >= CharWidth) { 2954 Bits[Pos++] |= (Used << BitOffset) & Used; 2955 BitWidth -= CharWidth - BitOffset; 2956 BitOffset = 0; 2957 } 2958 2959 while (BitWidth >= CharWidth) { 2960 Bits[Pos++] = Used; 2961 BitWidth -= CharWidth; 2962 } 2963 2964 if (BitWidth > 0) 2965 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 2966 } 2967 2968 // Set the bits corresponding to a field having width `BitWidth` and located at 2969 // offset `BitOffset` (from the least significant bit) within a storage unit of 2970 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 2971 // `Bits` corresponds to one target byte. Use target endian layout. 2972 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 2973 int StorageSize, int BitOffset, int BitWidth, 2974 int CharWidth, bool BigEndian) { 2975 2976 SmallVector<uint64_t, 8> TmpBits(StorageSize); 2977 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 2978 2979 if (BigEndian) 2980 std::reverse(TmpBits.begin(), TmpBits.end()); 2981 2982 for (uint64_t V : TmpBits) 2983 Bits[StorageOffset++] |= V; 2984 } 2985 2986 static void setUsedBits(CodeGenModule &, QualType, int, 2987 SmallVectorImpl<uint64_t> &); 2988 2989 // Set the bits in `Bits`, which correspond to the value representations of 2990 // the actual members of the record type `RTy`. Note that this function does 2991 // not handle base classes, virtual tables, etc, since they cannot happen in 2992 // CMSE function arguments or return. The bit mask corresponds to the target 2993 // memory layout, i.e. it's endian dependent. 2994 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 2995 SmallVectorImpl<uint64_t> &Bits) { 2996 ASTContext &Context = CGM.getContext(); 2997 int CharWidth = Context.getCharWidth(); 2998 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 2999 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3000 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3001 3002 int Idx = 0; 3003 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3004 const FieldDecl *F = *I; 3005 3006 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3007 F->getType()->isIncompleteArrayType()) 3008 continue; 3009 3010 if (F->isBitField()) { 3011 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3012 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3013 BFI.StorageSize / CharWidth, BFI.Offset, 3014 BFI.Size, CharWidth, 3015 CGM.getDataLayout().isBigEndian()); 3016 continue; 3017 } 3018 3019 setUsedBits(CGM, F->getType(), 3020 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3021 } 3022 } 3023 3024 // Set the bits in `Bits`, which correspond to the value representations of 3025 // the elements of an array type `ATy`. 3026 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3027 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3028 const ASTContext &Context = CGM.getContext(); 3029 3030 QualType ETy = Context.getBaseElementType(ATy); 3031 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3032 SmallVector<uint64_t, 4> TmpBits(Size); 3033 setUsedBits(CGM, ETy, 0, TmpBits); 3034 3035 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3036 auto Src = TmpBits.begin(); 3037 auto Dst = Bits.begin() + Offset + I * Size; 3038 for (int J = 0; J < Size; ++J) 3039 *Dst++ |= *Src++; 3040 } 3041 } 3042 3043 // Set the bits in `Bits`, which correspond to the value representations of 3044 // the type `QTy`. 3045 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3046 SmallVectorImpl<uint64_t> &Bits) { 3047 if (const auto *RTy = QTy->getAs<RecordType>()) 3048 return setUsedBits(CGM, RTy, Offset, Bits); 3049 3050 ASTContext &Context = CGM.getContext(); 3051 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3052 return setUsedBits(CGM, ATy, Offset, Bits); 3053 3054 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3055 if (Size <= 0) 3056 return; 3057 3058 std::fill_n(Bits.begin() + Offset, Size, 3059 (uint64_t(1) << Context.getCharWidth()) - 1); 3060 } 3061 3062 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3063 int Pos, int Size, int CharWidth, 3064 bool BigEndian) { 3065 assert(Size > 0); 3066 uint64_t Mask = 0; 3067 if (BigEndian) { 3068 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3069 ++P) 3070 Mask = (Mask << CharWidth) | *P; 3071 } else { 3072 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3073 do 3074 Mask = (Mask << CharWidth) | *--P; 3075 while (P != End); 3076 } 3077 return Mask; 3078 } 3079 3080 // Emit code to clear the bits in a record, which aren't a part of any user 3081 // declared member, when the record is a function return. 3082 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3083 llvm::IntegerType *ITy, 3084 QualType QTy) { 3085 assert(Src->getType() == ITy); 3086 assert(ITy->getScalarSizeInBits() <= 64); 3087 3088 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3089 int Size = DataLayout.getTypeStoreSize(ITy); 3090 SmallVector<uint64_t, 4> Bits(Size); 3091 setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits); 3092 3093 int CharWidth = CGM.getContext().getCharWidth(); 3094 uint64_t Mask = 3095 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3096 3097 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3098 } 3099 3100 // Emit code to clear the bits in a record, which aren't a part of any user 3101 // declared member, when the record is a function argument. 3102 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3103 llvm::ArrayType *ATy, 3104 QualType QTy) { 3105 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3106 int Size = DataLayout.getTypeStoreSize(ATy); 3107 SmallVector<uint64_t, 16> Bits(Size); 3108 setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits); 3109 3110 // Clear each element of the LLVM array. 3111 int CharWidth = CGM.getContext().getCharWidth(); 3112 int CharsPerElt = 3113 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3114 int MaskIndex = 0; 3115 llvm::Value *R = llvm::UndefValue::get(ATy); 3116 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3117 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3118 DataLayout.isBigEndian()); 3119 MaskIndex += CharsPerElt; 3120 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3121 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3122 R = Builder.CreateInsertValue(R, T1, I); 3123 } 3124 3125 return R; 3126 } 3127 3128 // Emit code to clear the padding bits when returning or passing as an argument 3129 // a 16-bit floating-point value. 3130 llvm::Value *CodeGenFunction::EmitCMSEClearFP16(llvm::Value *Src) { 3131 llvm::Type *RetTy = Src->getType(); 3132 assert(RetTy->isFloatTy() || 3133 (RetTy->isIntegerTy() && RetTy->getIntegerBitWidth() == 32)); 3134 if (RetTy->isFloatTy()) { 3135 llvm::Value *T0 = Builder.CreateBitCast(Src, Builder.getIntNTy(32)); 3136 llvm::Value *T1 = Builder.CreateAnd(T0, 0xffff, "cmse.clear"); 3137 return Builder.CreateBitCast(T1, RetTy); 3138 } 3139 return Builder.CreateAnd(Src, 0xffff, "cmse.clear"); 3140 } 3141 3142 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3143 bool EmitRetDbgLoc, 3144 SourceLocation EndLoc) { 3145 if (FI.isNoReturn()) { 3146 // Noreturn functions don't return. 3147 EmitUnreachable(EndLoc); 3148 return; 3149 } 3150 3151 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3152 // Naked functions don't have epilogues. 3153 Builder.CreateUnreachable(); 3154 return; 3155 } 3156 3157 // Functions with no result always return void. 3158 if (!ReturnValue.isValid()) { 3159 Builder.CreateRetVoid(); 3160 return; 3161 } 3162 3163 llvm::DebugLoc RetDbgLoc; 3164 llvm::Value *RV = nullptr; 3165 QualType RetTy = FI.getReturnType(); 3166 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3167 3168 switch (RetAI.getKind()) { 3169 case ABIArgInfo::InAlloca: 3170 // Aggregrates get evaluated directly into the destination. Sometimes we 3171 // need to return the sret value in a register, though. 3172 assert(hasAggregateEvaluationKind(RetTy)); 3173 if (RetAI.getInAllocaSRet()) { 3174 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3175 --EI; 3176 llvm::Value *ArgStruct = &*EI; 3177 llvm::Value *SRet = Builder.CreateStructGEP( 3178 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 3179 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 3180 } 3181 break; 3182 3183 case ABIArgInfo::Indirect: { 3184 auto AI = CurFn->arg_begin(); 3185 if (RetAI.isSRetAfterThis()) 3186 ++AI; 3187 switch (getEvaluationKind(RetTy)) { 3188 case TEK_Complex: { 3189 ComplexPairTy RT = 3190 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3191 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3192 /*isInit*/ true); 3193 break; 3194 } 3195 case TEK_Aggregate: 3196 // Do nothing; aggregrates get evaluated directly into the destination. 3197 break; 3198 case TEK_Scalar: 3199 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 3200 MakeNaturalAlignAddrLValue(&*AI, RetTy), 3201 /*isInit*/ true); 3202 break; 3203 } 3204 break; 3205 } 3206 3207 case ABIArgInfo::Extend: 3208 case ABIArgInfo::Direct: 3209 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3210 RetAI.getDirectOffset() == 0) { 3211 // The internal return value temp always will have pointer-to-return-type 3212 // type, just do a load. 3213 3214 // If there is a dominating store to ReturnValue, we can elide 3215 // the load, zap the store, and usually zap the alloca. 3216 if (llvm::StoreInst *SI = 3217 findDominatingStoreToReturnValue(*this)) { 3218 // Reuse the debug location from the store unless there is 3219 // cleanup code to be emitted between the store and return 3220 // instruction. 3221 if (EmitRetDbgLoc && !AutoreleaseResult) 3222 RetDbgLoc = SI->getDebugLoc(); 3223 // Get the stored value and nuke the now-dead store. 3224 RV = SI->getValueOperand(); 3225 SI->eraseFromParent(); 3226 3227 // Otherwise, we have to do a simple load. 3228 } else { 3229 RV = Builder.CreateLoad(ReturnValue); 3230 } 3231 } else { 3232 // If the value is offset in memory, apply the offset now. 3233 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3234 3235 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3236 } 3237 3238 // In ARC, end functions that return a retainable type with a call 3239 // to objc_autoreleaseReturnValue. 3240 if (AutoreleaseResult) { 3241 #ifndef NDEBUG 3242 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3243 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3244 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3245 // CurCodeDecl or BlockInfo. 3246 QualType RT; 3247 3248 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3249 RT = FD->getReturnType(); 3250 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3251 RT = MD->getReturnType(); 3252 else if (isa<BlockDecl>(CurCodeDecl)) 3253 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3254 else 3255 llvm_unreachable("Unexpected function/method type"); 3256 3257 assert(getLangOpts().ObjCAutoRefCount && 3258 !FI.isReturnsRetained() && 3259 RT->isObjCRetainableType()); 3260 #endif 3261 RV = emitAutoreleaseOfResult(*this, RV); 3262 } 3263 3264 break; 3265 3266 case ABIArgInfo::Ignore: 3267 break; 3268 3269 case ABIArgInfo::CoerceAndExpand: { 3270 auto coercionType = RetAI.getCoerceAndExpandType(); 3271 3272 // Load all of the coerced elements out into results. 3273 llvm::SmallVector<llvm::Value*, 4> results; 3274 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3275 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3276 auto coercedEltType = coercionType->getElementType(i); 3277 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3278 continue; 3279 3280 auto eltAddr = Builder.CreateStructGEP(addr, i); 3281 auto elt = Builder.CreateLoad(eltAddr); 3282 results.push_back(elt); 3283 } 3284 3285 // If we have one result, it's the single direct result type. 3286 if (results.size() == 1) { 3287 RV = results[0]; 3288 3289 // Otherwise, we need to make a first-class aggregate. 3290 } else { 3291 // Construct a return type that lacks padding elements. 3292 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3293 3294 RV = llvm::UndefValue::get(returnType); 3295 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3296 RV = Builder.CreateInsertValue(RV, results[i], i); 3297 } 3298 } 3299 break; 3300 } 3301 3302 case ABIArgInfo::Expand: 3303 llvm_unreachable("Invalid ABI kind for return argument"); 3304 } 3305 3306 llvm::Instruction *Ret; 3307 if (RV) { 3308 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3309 // For certain return types, clear padding bits, as they may reveal 3310 // sensitive information. 3311 const Type *RTy = RetTy.getCanonicalType().getTypePtr(); 3312 if (RTy->isFloat16Type() || RTy->isHalfType()) { 3313 // 16-bit floating-point types are passed in a 32-bit integer or float, 3314 // with unspecified upper bits. 3315 RV = EmitCMSEClearFP16(RV); 3316 } else { 3317 // Small struct/union types are passed as integers. 3318 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3319 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3320 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3321 } 3322 } 3323 EmitReturnValueCheck(RV); 3324 Ret = Builder.CreateRet(RV); 3325 } else { 3326 Ret = Builder.CreateRetVoid(); 3327 } 3328 3329 if (RetDbgLoc) 3330 Ret->setDebugLoc(std::move(RetDbgLoc)); 3331 } 3332 3333 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3334 // A current decl may not be available when emitting vtable thunks. 3335 if (!CurCodeDecl) 3336 return; 3337 3338 // If the return block isn't reachable, neither is this check, so don't emit 3339 // it. 3340 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3341 return; 3342 3343 ReturnsNonNullAttr *RetNNAttr = nullptr; 3344 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3345 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3346 3347 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3348 return; 3349 3350 // Prefer the returns_nonnull attribute if it's present. 3351 SourceLocation AttrLoc; 3352 SanitizerMask CheckKind; 3353 SanitizerHandler Handler; 3354 if (RetNNAttr) { 3355 assert(!requiresReturnValueNullabilityCheck() && 3356 "Cannot check nullability and the nonnull attribute"); 3357 AttrLoc = RetNNAttr->getLocation(); 3358 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3359 Handler = SanitizerHandler::NonnullReturn; 3360 } else { 3361 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3362 if (auto *TSI = DD->getTypeSourceInfo()) 3363 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3364 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3365 CheckKind = SanitizerKind::NullabilityReturn; 3366 Handler = SanitizerHandler::NullabilityReturn; 3367 } 3368 3369 SanitizerScope SanScope(this); 3370 3371 // Make sure the "return" source location is valid. If we're checking a 3372 // nullability annotation, make sure the preconditions for the check are met. 3373 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3374 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3375 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3376 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3377 if (requiresReturnValueNullabilityCheck()) 3378 CanNullCheck = 3379 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3380 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3381 EmitBlock(Check); 3382 3383 // Now do the null check. 3384 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3385 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3386 llvm::Value *DynamicData[] = {SLocPtr}; 3387 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3388 3389 EmitBlock(NoCheck); 3390 3391 #ifndef NDEBUG 3392 // The return location should not be used after the check has been emitted. 3393 ReturnLocation = Address::invalid(); 3394 #endif 3395 } 3396 3397 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3398 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3399 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3400 } 3401 3402 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3403 QualType Ty) { 3404 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3405 // placeholders. 3406 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3407 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3408 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3409 3410 // FIXME: When we generate this IR in one pass, we shouldn't need 3411 // this win32-specific alignment hack. 3412 CharUnits Align = CharUnits::fromQuantity(4); 3413 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3414 3415 return AggValueSlot::forAddr(Address(Placeholder, Align), 3416 Ty.getQualifiers(), 3417 AggValueSlot::IsNotDestructed, 3418 AggValueSlot::DoesNotNeedGCBarriers, 3419 AggValueSlot::IsNotAliased, 3420 AggValueSlot::DoesNotOverlap); 3421 } 3422 3423 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3424 const VarDecl *param, 3425 SourceLocation loc) { 3426 // StartFunction converted the ABI-lowered parameter(s) into a 3427 // local alloca. We need to turn that into an r-value suitable 3428 // for EmitCall. 3429 Address local = GetAddrOfLocalVar(param); 3430 3431 QualType type = param->getType(); 3432 3433 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3434 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3435 } 3436 3437 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3438 // but the argument needs to be the original pointer. 3439 if (type->isReferenceType()) { 3440 args.add(RValue::get(Builder.CreateLoad(local)), type); 3441 3442 // In ARC, move out of consumed arguments so that the release cleanup 3443 // entered by StartFunction doesn't cause an over-release. This isn't 3444 // optimal -O0 code generation, but it should get cleaned up when 3445 // optimization is enabled. This also assumes that delegate calls are 3446 // performed exactly once for a set of arguments, but that should be safe. 3447 } else if (getLangOpts().ObjCAutoRefCount && 3448 param->hasAttr<NSConsumedAttr>() && 3449 type->isObjCRetainableType()) { 3450 llvm::Value *ptr = Builder.CreateLoad(local); 3451 auto null = 3452 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3453 Builder.CreateStore(null, local); 3454 args.add(RValue::get(ptr), type); 3455 3456 // For the most part, we just need to load the alloca, except that 3457 // aggregate r-values are actually pointers to temporaries. 3458 } else { 3459 args.add(convertTempToRValue(local, type, loc), type); 3460 } 3461 3462 // Deactivate the cleanup for the callee-destructed param that was pushed. 3463 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3464 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3465 param->needsDestruction(getContext())) { 3466 EHScopeStack::stable_iterator cleanup = 3467 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3468 assert(cleanup.isValid() && 3469 "cleanup for callee-destructed param not recorded"); 3470 // This unreachable is a temporary marker which will be removed later. 3471 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3472 args.addArgCleanupDeactivation(cleanup, isActive); 3473 } 3474 } 3475 3476 static bool isProvablyNull(llvm::Value *addr) { 3477 return isa<llvm::ConstantPointerNull>(addr); 3478 } 3479 3480 /// Emit the actual writing-back of a writeback. 3481 static void emitWriteback(CodeGenFunction &CGF, 3482 const CallArgList::Writeback &writeback) { 3483 const LValue &srcLV = writeback.Source; 3484 Address srcAddr = srcLV.getAddress(CGF); 3485 assert(!isProvablyNull(srcAddr.getPointer()) && 3486 "shouldn't have writeback for provably null argument"); 3487 3488 llvm::BasicBlock *contBB = nullptr; 3489 3490 // If the argument wasn't provably non-null, we need to null check 3491 // before doing the store. 3492 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3493 CGF.CGM.getDataLayout()); 3494 if (!provablyNonNull) { 3495 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3496 contBB = CGF.createBasicBlock("icr.done"); 3497 3498 llvm::Value *isNull = 3499 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3500 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3501 CGF.EmitBlock(writebackBB); 3502 } 3503 3504 // Load the value to writeback. 3505 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3506 3507 // Cast it back, in case we're writing an id to a Foo* or something. 3508 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3509 "icr.writeback-cast"); 3510 3511 // Perform the writeback. 3512 3513 // If we have a "to use" value, it's something we need to emit a use 3514 // of. This has to be carefully threaded in: if it's done after the 3515 // release it's potentially undefined behavior (and the optimizer 3516 // will ignore it), and if it happens before the retain then the 3517 // optimizer could move the release there. 3518 if (writeback.ToUse) { 3519 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3520 3521 // Retain the new value. No need to block-copy here: the block's 3522 // being passed up the stack. 3523 value = CGF.EmitARCRetainNonBlock(value); 3524 3525 // Emit the intrinsic use here. 3526 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3527 3528 // Load the old value (primitively). 3529 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3530 3531 // Put the new value in place (primitively). 3532 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3533 3534 // Release the old value. 3535 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3536 3537 // Otherwise, we can just do a normal lvalue store. 3538 } else { 3539 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3540 } 3541 3542 // Jump to the continuation block. 3543 if (!provablyNonNull) 3544 CGF.EmitBlock(contBB); 3545 } 3546 3547 static void emitWritebacks(CodeGenFunction &CGF, 3548 const CallArgList &args) { 3549 for (const auto &I : args.writebacks()) 3550 emitWriteback(CGF, I); 3551 } 3552 3553 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3554 const CallArgList &CallArgs) { 3555 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3556 CallArgs.getCleanupsToDeactivate(); 3557 // Iterate in reverse to increase the likelihood of popping the cleanup. 3558 for (const auto &I : llvm::reverse(Cleanups)) { 3559 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3560 I.IsActiveIP->eraseFromParent(); 3561 } 3562 } 3563 3564 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3565 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3566 if (uop->getOpcode() == UO_AddrOf) 3567 return uop->getSubExpr(); 3568 return nullptr; 3569 } 3570 3571 /// Emit an argument that's being passed call-by-writeback. That is, 3572 /// we are passing the address of an __autoreleased temporary; it 3573 /// might be copy-initialized with the current value of the given 3574 /// address, but it will definitely be copied out of after the call. 3575 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3576 const ObjCIndirectCopyRestoreExpr *CRE) { 3577 LValue srcLV; 3578 3579 // Make an optimistic effort to emit the address as an l-value. 3580 // This can fail if the argument expression is more complicated. 3581 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3582 srcLV = CGF.EmitLValue(lvExpr); 3583 3584 // Otherwise, just emit it as a scalar. 3585 } else { 3586 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3587 3588 QualType srcAddrType = 3589 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3590 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3591 } 3592 Address srcAddr = srcLV.getAddress(CGF); 3593 3594 // The dest and src types don't necessarily match in LLVM terms 3595 // because of the crazy ObjC compatibility rules. 3596 3597 llvm::PointerType *destType = 3598 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3599 3600 // If the address is a constant null, just pass the appropriate null. 3601 if (isProvablyNull(srcAddr.getPointer())) { 3602 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3603 CRE->getType()); 3604 return; 3605 } 3606 3607 // Create the temporary. 3608 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3609 CGF.getPointerAlign(), 3610 "icr.temp"); 3611 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3612 // and that cleanup will be conditional if we can't prove that the l-value 3613 // isn't null, so we need to register a dominating point so that the cleanups 3614 // system will make valid IR. 3615 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3616 3617 // Zero-initialize it if we're not doing a copy-initialization. 3618 bool shouldCopy = CRE->shouldCopy(); 3619 if (!shouldCopy) { 3620 llvm::Value *null = 3621 llvm::ConstantPointerNull::get( 3622 cast<llvm::PointerType>(destType->getElementType())); 3623 CGF.Builder.CreateStore(null, temp); 3624 } 3625 3626 llvm::BasicBlock *contBB = nullptr; 3627 llvm::BasicBlock *originBB = nullptr; 3628 3629 // If the address is *not* known to be non-null, we need to switch. 3630 llvm::Value *finalArgument; 3631 3632 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3633 CGF.CGM.getDataLayout()); 3634 if (provablyNonNull) { 3635 finalArgument = temp.getPointer(); 3636 } else { 3637 llvm::Value *isNull = 3638 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3639 3640 finalArgument = CGF.Builder.CreateSelect(isNull, 3641 llvm::ConstantPointerNull::get(destType), 3642 temp.getPointer(), "icr.argument"); 3643 3644 // If we need to copy, then the load has to be conditional, which 3645 // means we need control flow. 3646 if (shouldCopy) { 3647 originBB = CGF.Builder.GetInsertBlock(); 3648 contBB = CGF.createBasicBlock("icr.cont"); 3649 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3650 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3651 CGF.EmitBlock(copyBB); 3652 condEval.begin(CGF); 3653 } 3654 } 3655 3656 llvm::Value *valueToUse = nullptr; 3657 3658 // Perform a copy if necessary. 3659 if (shouldCopy) { 3660 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3661 assert(srcRV.isScalar()); 3662 3663 llvm::Value *src = srcRV.getScalarVal(); 3664 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3665 "icr.cast"); 3666 3667 // Use an ordinary store, not a store-to-lvalue. 3668 CGF.Builder.CreateStore(src, temp); 3669 3670 // If optimization is enabled, and the value was held in a 3671 // __strong variable, we need to tell the optimizer that this 3672 // value has to stay alive until we're doing the store back. 3673 // This is because the temporary is effectively unretained, 3674 // and so otherwise we can violate the high-level semantics. 3675 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3676 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3677 valueToUse = src; 3678 } 3679 } 3680 3681 // Finish the control flow if we needed it. 3682 if (shouldCopy && !provablyNonNull) { 3683 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3684 CGF.EmitBlock(contBB); 3685 3686 // Make a phi for the value to intrinsically use. 3687 if (valueToUse) { 3688 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3689 "icr.to-use"); 3690 phiToUse->addIncoming(valueToUse, copyBB); 3691 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3692 originBB); 3693 valueToUse = phiToUse; 3694 } 3695 3696 condEval.end(CGF); 3697 } 3698 3699 args.addWriteback(srcLV, temp, valueToUse); 3700 args.add(RValue::get(finalArgument), CRE->getType()); 3701 } 3702 3703 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3704 assert(!StackBase); 3705 3706 // Save the stack. 3707 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3708 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3709 } 3710 3711 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3712 if (StackBase) { 3713 // Restore the stack after the call. 3714 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3715 CGF.Builder.CreateCall(F, StackBase); 3716 } 3717 } 3718 3719 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3720 SourceLocation ArgLoc, 3721 AbstractCallee AC, 3722 unsigned ParmNum) { 3723 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3724 SanOpts.has(SanitizerKind::NullabilityArg))) 3725 return; 3726 3727 // The param decl may be missing in a variadic function. 3728 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3729 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3730 3731 // Prefer the nonnull attribute if it's present. 3732 const NonNullAttr *NNAttr = nullptr; 3733 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3734 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3735 3736 bool CanCheckNullability = false; 3737 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3738 auto Nullability = PVD->getType()->getNullability(getContext()); 3739 CanCheckNullability = Nullability && 3740 *Nullability == NullabilityKind::NonNull && 3741 PVD->getTypeSourceInfo(); 3742 } 3743 3744 if (!NNAttr && !CanCheckNullability) 3745 return; 3746 3747 SourceLocation AttrLoc; 3748 SanitizerMask CheckKind; 3749 SanitizerHandler Handler; 3750 if (NNAttr) { 3751 AttrLoc = NNAttr->getLocation(); 3752 CheckKind = SanitizerKind::NonnullAttribute; 3753 Handler = SanitizerHandler::NonnullArg; 3754 } else { 3755 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3756 CheckKind = SanitizerKind::NullabilityArg; 3757 Handler = SanitizerHandler::NullabilityArg; 3758 } 3759 3760 SanitizerScope SanScope(this); 3761 assert(RV.isScalar()); 3762 llvm::Value *V = RV.getScalarVal(); 3763 llvm::Value *Cond = 3764 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3765 llvm::Constant *StaticData[] = { 3766 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3767 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3768 }; 3769 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3770 } 3771 3772 void CodeGenFunction::EmitCallArgs( 3773 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3774 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3775 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3776 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3777 3778 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3779 // because arguments are destroyed left to right in the callee. As a special 3780 // case, there are certain language constructs that require left-to-right 3781 // evaluation, and in those cases we consider the evaluation order requirement 3782 // to trump the "destruction order is reverse construction order" guarantee. 3783 bool LeftToRight = 3784 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3785 ? Order == EvaluationOrder::ForceLeftToRight 3786 : Order != EvaluationOrder::ForceRightToLeft; 3787 3788 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3789 RValue EmittedArg) { 3790 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3791 return; 3792 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3793 if (PS == nullptr) 3794 return; 3795 3796 const auto &Context = getContext(); 3797 auto SizeTy = Context.getSizeType(); 3798 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3799 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3800 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3801 EmittedArg.getScalarVal(), 3802 PS->isDynamic()); 3803 Args.add(RValue::get(V), SizeTy); 3804 // If we're emitting args in reverse, be sure to do so with 3805 // pass_object_size, as well. 3806 if (!LeftToRight) 3807 std::swap(Args.back(), *(&Args.back() - 1)); 3808 }; 3809 3810 // Insert a stack save if we're going to need any inalloca args. 3811 bool HasInAllocaArgs = false; 3812 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3813 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3814 I != E && !HasInAllocaArgs; ++I) 3815 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3816 if (HasInAllocaArgs) { 3817 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3818 Args.allocateArgumentMemory(*this); 3819 } 3820 } 3821 3822 // Evaluate each argument in the appropriate order. 3823 size_t CallArgsStart = Args.size(); 3824 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3825 unsigned Idx = LeftToRight ? I : E - I - 1; 3826 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3827 unsigned InitialArgSize = Args.size(); 3828 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3829 // the argument and parameter match or the objc method is parameterized. 3830 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3831 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3832 ArgTypes[Idx]) || 3833 (isa<ObjCMethodDecl>(AC.getDecl()) && 3834 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3835 "Argument and parameter types don't match"); 3836 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3837 // In particular, we depend on it being the last arg in Args, and the 3838 // objectsize bits depend on there only being one arg if !LeftToRight. 3839 assert(InitialArgSize + 1 == Args.size() && 3840 "The code below depends on only adding one arg per EmitCallArg"); 3841 (void)InitialArgSize; 3842 // Since pointer argument are never emitted as LValue, it is safe to emit 3843 // non-null argument check for r-value only. 3844 if (!Args.back().hasLValue()) { 3845 RValue RVArg = Args.back().getKnownRValue(); 3846 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3847 ParamsToSkip + Idx); 3848 // @llvm.objectsize should never have side-effects and shouldn't need 3849 // destruction/cleanups, so we can safely "emit" it after its arg, 3850 // regardless of right-to-leftness 3851 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3852 } 3853 } 3854 3855 if (!LeftToRight) { 3856 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3857 // IR function. 3858 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3859 } 3860 } 3861 3862 namespace { 3863 3864 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3865 DestroyUnpassedArg(Address Addr, QualType Ty) 3866 : Addr(Addr), Ty(Ty) {} 3867 3868 Address Addr; 3869 QualType Ty; 3870 3871 void Emit(CodeGenFunction &CGF, Flags flags) override { 3872 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3873 if (DtorKind == QualType::DK_cxx_destructor) { 3874 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3875 assert(!Dtor->isTrivial()); 3876 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3877 /*Delegating=*/false, Addr, Ty); 3878 } else { 3879 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3880 } 3881 } 3882 }; 3883 3884 struct DisableDebugLocationUpdates { 3885 CodeGenFunction &CGF; 3886 bool disabledDebugInfo; 3887 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3888 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3889 CGF.disableDebugInfo(); 3890 } 3891 ~DisableDebugLocationUpdates() { 3892 if (disabledDebugInfo) 3893 CGF.enableDebugInfo(); 3894 } 3895 }; 3896 3897 } // end anonymous namespace 3898 3899 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3900 if (!HasLV) 3901 return RV; 3902 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3903 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3904 LV.isVolatile()); 3905 IsUsed = true; 3906 return RValue::getAggregate(Copy.getAddress(CGF)); 3907 } 3908 3909 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3910 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3911 if (!HasLV && RV.isScalar()) 3912 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 3913 else if (!HasLV && RV.isComplex()) 3914 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3915 else { 3916 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 3917 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3918 // We assume that call args are never copied into subobjects. 3919 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3920 HasLV ? LV.isVolatileQualified() 3921 : RV.isVolatileQualified()); 3922 } 3923 IsUsed = true; 3924 } 3925 3926 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3927 QualType type) { 3928 DisableDebugLocationUpdates Dis(*this, E); 3929 if (const ObjCIndirectCopyRestoreExpr *CRE 3930 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3931 assert(getLangOpts().ObjCAutoRefCount); 3932 return emitWritebackArg(*this, args, CRE); 3933 } 3934 3935 assert(type->isReferenceType() == E->isGLValue() && 3936 "reference binding to unmaterialized r-value!"); 3937 3938 if (E->isGLValue()) { 3939 assert(E->getObjectKind() == OK_Ordinary); 3940 return args.add(EmitReferenceBindingToExpr(E), type); 3941 } 3942 3943 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3944 3945 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3946 // However, we still have to push an EH-only cleanup in case we unwind before 3947 // we make it to the call. 3948 if (HasAggregateEvalKind && 3949 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3950 // If we're using inalloca, use the argument memory. Otherwise, use a 3951 // temporary. 3952 AggValueSlot Slot; 3953 if (args.isUsingInAlloca()) 3954 Slot = createPlaceholderSlot(*this, type); 3955 else 3956 Slot = CreateAggTemp(type, "agg.tmp"); 3957 3958 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3959 if (const auto *RD = type->getAsCXXRecordDecl()) 3960 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3961 else 3962 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3963 3964 if (DestroyedInCallee) 3965 Slot.setExternallyDestructed(); 3966 3967 EmitAggExpr(E, Slot); 3968 RValue RV = Slot.asRValue(); 3969 args.add(RV, type); 3970 3971 if (DestroyedInCallee && NeedsEHCleanup) { 3972 // Create a no-op GEP between the placeholder and the cleanup so we can 3973 // RAUW it successfully. It also serves as a marker of the first 3974 // instruction where the cleanup is active. 3975 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3976 type); 3977 // This unreachable is a temporary marker which will be removed later. 3978 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3979 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3980 } 3981 return; 3982 } 3983 3984 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3985 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3986 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3987 assert(L.isSimple()); 3988 args.addUncopiedAggregate(L, type); 3989 return; 3990 } 3991 3992 args.add(EmitAnyExprToTemp(E), type); 3993 } 3994 3995 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3996 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3997 // implicitly widens null pointer constants that are arguments to varargs 3998 // functions to pointer-sized ints. 3999 if (!getTarget().getTriple().isOSWindows()) 4000 return Arg->getType(); 4001 4002 if (Arg->getType()->isIntegerType() && 4003 getContext().getTypeSize(Arg->getType()) < 4004 getContext().getTargetInfo().getPointerWidth(0) && 4005 Arg->isNullPointerConstant(getContext(), 4006 Expr::NPC_ValueDependentIsNotNull)) { 4007 return getContext().getIntPtrType(); 4008 } 4009 4010 return Arg->getType(); 4011 } 4012 4013 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4014 // optimizer it can aggressively ignore unwind edges. 4015 void 4016 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4017 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4018 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4019 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4020 CGM.getNoObjCARCExceptionsMetadata()); 4021 } 4022 4023 /// Emits a call to the given no-arguments nounwind runtime function. 4024 llvm::CallInst * 4025 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4026 const llvm::Twine &name) { 4027 return EmitNounwindRuntimeCall(callee, None, name); 4028 } 4029 4030 /// Emits a call to the given nounwind runtime function. 4031 llvm::CallInst * 4032 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4033 ArrayRef<llvm::Value *> args, 4034 const llvm::Twine &name) { 4035 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4036 call->setDoesNotThrow(); 4037 return call; 4038 } 4039 4040 /// Emits a simple call (never an invoke) to the given no-arguments 4041 /// runtime function. 4042 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4043 const llvm::Twine &name) { 4044 return EmitRuntimeCall(callee, None, name); 4045 } 4046 4047 // Calls which may throw must have operand bundles indicating which funclet 4048 // they are nested within. 4049 SmallVector<llvm::OperandBundleDef, 1> 4050 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4051 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4052 // There is no need for a funclet operand bundle if we aren't inside a 4053 // funclet. 4054 if (!CurrentFuncletPad) 4055 return BundleList; 4056 4057 // Skip intrinsics which cannot throw. 4058 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4059 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4060 return BundleList; 4061 4062 BundleList.emplace_back("funclet", CurrentFuncletPad); 4063 return BundleList; 4064 } 4065 4066 /// Emits a simple call (never an invoke) to the given runtime function. 4067 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4068 ArrayRef<llvm::Value *> args, 4069 const llvm::Twine &name) { 4070 llvm::CallInst *call = Builder.CreateCall( 4071 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4072 call->setCallingConv(getRuntimeCC()); 4073 return call; 4074 } 4075 4076 /// Emits a call or invoke to the given noreturn runtime function. 4077 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4078 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4079 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4080 getBundlesForFunclet(callee.getCallee()); 4081 4082 if (getInvokeDest()) { 4083 llvm::InvokeInst *invoke = 4084 Builder.CreateInvoke(callee, 4085 getUnreachableBlock(), 4086 getInvokeDest(), 4087 args, 4088 BundleList); 4089 invoke->setDoesNotReturn(); 4090 invoke->setCallingConv(getRuntimeCC()); 4091 } else { 4092 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4093 call->setDoesNotReturn(); 4094 call->setCallingConv(getRuntimeCC()); 4095 Builder.CreateUnreachable(); 4096 } 4097 } 4098 4099 /// Emits a call or invoke instruction to the given nullary runtime function. 4100 llvm::CallBase * 4101 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4102 const Twine &name) { 4103 return EmitRuntimeCallOrInvoke(callee, None, name); 4104 } 4105 4106 /// Emits a call or invoke instruction to the given runtime function. 4107 llvm::CallBase * 4108 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4109 ArrayRef<llvm::Value *> args, 4110 const Twine &name) { 4111 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4112 call->setCallingConv(getRuntimeCC()); 4113 return call; 4114 } 4115 4116 /// Emits a call or invoke instruction to the given function, depending 4117 /// on the current state of the EH stack. 4118 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4119 ArrayRef<llvm::Value *> Args, 4120 const Twine &Name) { 4121 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4122 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4123 getBundlesForFunclet(Callee.getCallee()); 4124 4125 llvm::CallBase *Inst; 4126 if (!InvokeDest) 4127 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4128 else { 4129 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4130 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4131 Name); 4132 EmitBlock(ContBB); 4133 } 4134 4135 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4136 // optimizer it can aggressively ignore unwind edges. 4137 if (CGM.getLangOpts().ObjCAutoRefCount) 4138 AddObjCARCExceptionMetadata(Inst); 4139 4140 return Inst; 4141 } 4142 4143 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4144 llvm::Value *New) { 4145 DeferredReplacements.push_back(std::make_pair(Old, New)); 4146 } 4147 4148 namespace { 4149 4150 /// Specify given \p NewAlign as the alignment of return value attribute. If 4151 /// such attribute already exists, re-set it to the maximal one of two options. 4152 LLVM_NODISCARD llvm::AttributeList 4153 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4154 const llvm::AttributeList &Attrs, 4155 llvm::Align NewAlign) { 4156 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4157 if (CurAlign >= NewAlign) 4158 return Attrs; 4159 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4160 return Attrs 4161 .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex, 4162 llvm::Attribute::AttrKind::Alignment) 4163 .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr); 4164 } 4165 4166 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4167 protected: 4168 CodeGenFunction &CGF; 4169 4170 /// We do nothing if this is, or becomes, nullptr. 4171 const AlignedAttrTy *AA = nullptr; 4172 4173 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4174 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4175 4176 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4177 : CGF(CGF_) { 4178 if (!FuncDecl) 4179 return; 4180 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4181 } 4182 4183 public: 4184 /// If we can, materialize the alignment as an attribute on return value. 4185 LLVM_NODISCARD llvm::AttributeList 4186 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4187 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4188 return Attrs; 4189 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4190 if (!AlignmentCI) 4191 return Attrs; 4192 // We may legitimately have non-power-of-2 alignment here. 4193 // If so, this is UB land, emit it via `@llvm.assume` instead. 4194 if (!AlignmentCI->getValue().isPowerOf2()) 4195 return Attrs; 4196 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4197 CGF.getLLVMContext(), Attrs, 4198 llvm::Align( 4199 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4200 AA = nullptr; // We're done. Disallow doing anything else. 4201 return NewAttrs; 4202 } 4203 4204 /// Emit alignment assumption. 4205 /// This is a general fallback that we take if either there is an offset, 4206 /// or the alignment is variable or we are sanitizing for alignment. 4207 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4208 if (!AA) 4209 return; 4210 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4211 AA->getLocation(), Alignment, OffsetCI); 4212 AA = nullptr; // We're done. Disallow doing anything else. 4213 } 4214 }; 4215 4216 /// Helper data structure to emit `AssumeAlignedAttr`. 4217 class AssumeAlignedAttrEmitter final 4218 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4219 public: 4220 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4221 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4222 if (!AA) 4223 return; 4224 // It is guaranteed that the alignment/offset are constants. 4225 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4226 if (Expr *Offset = AA->getOffset()) { 4227 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4228 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4229 OffsetCI = nullptr; 4230 } 4231 } 4232 }; 4233 4234 /// Helper data structure to emit `AllocAlignAttr`. 4235 class AllocAlignAttrEmitter final 4236 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4237 public: 4238 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4239 const CallArgList &CallArgs) 4240 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4241 if (!AA) 4242 return; 4243 // Alignment may or may not be a constant, and that is okay. 4244 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4245 .getRValue(CGF) 4246 .getScalarVal(); 4247 } 4248 }; 4249 4250 } // namespace 4251 4252 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4253 const CGCallee &Callee, 4254 ReturnValueSlot ReturnValue, 4255 const CallArgList &CallArgs, 4256 llvm::CallBase **callOrInvoke, 4257 SourceLocation Loc) { 4258 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4259 4260 assert(Callee.isOrdinary() || Callee.isVirtual()); 4261 4262 // Handle struct-return functions by passing a pointer to the 4263 // location that we would like to return into. 4264 QualType RetTy = CallInfo.getReturnType(); 4265 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4266 4267 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4268 4269 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4270 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4271 // We can only guarantee that a function is called from the correct 4272 // context/function based on the appropriate target attributes, 4273 // so only check in the case where we have both always_inline and target 4274 // since otherwise we could be making a conditional call after a check for 4275 // the proper cpu features (and it won't cause code generation issues due to 4276 // function based code generation). 4277 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4278 TargetDecl->hasAttr<TargetAttr>()) 4279 checkTargetFeatures(Loc, FD); 4280 4281 #ifndef NDEBUG 4282 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4283 // For an inalloca varargs function, we don't expect CallInfo to match the 4284 // function pointer's type, because the inalloca struct a will have extra 4285 // fields in it for the varargs parameters. Code later in this function 4286 // bitcasts the function pointer to the type derived from CallInfo. 4287 // 4288 // In other cases, we assert that the types match up (until pointers stop 4289 // having pointee types). 4290 llvm::Type *TypeFromVal; 4291 if (Callee.isVirtual()) 4292 TypeFromVal = Callee.getVirtualFunctionType(); 4293 else 4294 TypeFromVal = 4295 Callee.getFunctionPointer()->getType()->getPointerElementType(); 4296 assert(IRFuncTy == TypeFromVal); 4297 } 4298 #endif 4299 4300 // 1. Set up the arguments. 4301 4302 // If we're using inalloca, insert the allocation after the stack save. 4303 // FIXME: Do this earlier rather than hacking it in here! 4304 Address ArgMemory = Address::invalid(); 4305 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4306 const llvm::DataLayout &DL = CGM.getDataLayout(); 4307 llvm::Instruction *IP = CallArgs.getStackBase(); 4308 llvm::AllocaInst *AI; 4309 if (IP) { 4310 IP = IP->getNextNode(); 4311 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4312 "argmem", IP); 4313 } else { 4314 AI = CreateTempAlloca(ArgStruct, "argmem"); 4315 } 4316 auto Align = CallInfo.getArgStructAlignment(); 4317 AI->setAlignment(Align.getAsAlign()); 4318 AI->setUsedWithInAlloca(true); 4319 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4320 ArgMemory = Address(AI, Align); 4321 } 4322 4323 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4324 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4325 4326 // If the call returns a temporary with struct return, create a temporary 4327 // alloca to hold the result, unless one is given to us. 4328 Address SRetPtr = Address::invalid(); 4329 Address SRetAlloca = Address::invalid(); 4330 llvm::Value *UnusedReturnSizePtr = nullptr; 4331 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4332 if (!ReturnValue.isNull()) { 4333 SRetPtr = ReturnValue.getValue(); 4334 } else { 4335 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4336 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4337 uint64_t size = 4338 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4339 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4340 } 4341 } 4342 if (IRFunctionArgs.hasSRetArg()) { 4343 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4344 } else if (RetAI.isInAlloca()) { 4345 Address Addr = 4346 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4347 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4348 } 4349 } 4350 4351 Address swiftErrorTemp = Address::invalid(); 4352 Address swiftErrorArg = Address::invalid(); 4353 4354 // When passing arguments using temporary allocas, we need to add the 4355 // appropriate lifetime markers. This vector keeps track of all the lifetime 4356 // markers that need to be ended right after the call. 4357 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4358 4359 // Translate all of the arguments as necessary to match the IR lowering. 4360 assert(CallInfo.arg_size() == CallArgs.size() && 4361 "Mismatch between function signature & arguments."); 4362 unsigned ArgNo = 0; 4363 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4364 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4365 I != E; ++I, ++info_it, ++ArgNo) { 4366 const ABIArgInfo &ArgInfo = info_it->info; 4367 4368 // Insert a padding argument to ensure proper alignment. 4369 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4370 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4371 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4372 4373 unsigned FirstIRArg, NumIRArgs; 4374 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4375 4376 switch (ArgInfo.getKind()) { 4377 case ABIArgInfo::InAlloca: { 4378 assert(NumIRArgs == 0); 4379 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4380 if (I->isAggregate()) { 4381 Address Addr = I->hasLValue() 4382 ? I->getKnownLValue().getAddress(*this) 4383 : I->getKnownRValue().getAggregateAddress(); 4384 llvm::Instruction *Placeholder = 4385 cast<llvm::Instruction>(Addr.getPointer()); 4386 4387 if (!ArgInfo.getInAllocaIndirect()) { 4388 // Replace the placeholder with the appropriate argument slot GEP. 4389 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4390 Builder.SetInsertPoint(Placeholder); 4391 Addr = Builder.CreateStructGEP(ArgMemory, 4392 ArgInfo.getInAllocaFieldIndex()); 4393 Builder.restoreIP(IP); 4394 } else { 4395 // For indirect things such as overaligned structs, replace the 4396 // placeholder with a regular aggregate temporary alloca. Store the 4397 // address of this alloca into the struct. 4398 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4399 Address ArgSlot = Builder.CreateStructGEP( 4400 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4401 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4402 } 4403 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4404 } else if (ArgInfo.getInAllocaIndirect()) { 4405 // Make a temporary alloca and store the address of it into the argument 4406 // struct. 4407 Address Addr = CreateMemTempWithoutCast( 4408 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4409 "indirect-arg-temp"); 4410 I->copyInto(*this, Addr); 4411 Address ArgSlot = 4412 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4413 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4414 } else { 4415 // Store the RValue into the argument struct. 4416 Address Addr = 4417 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4418 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4419 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4420 // There are some cases where a trivial bitcast is not avoidable. The 4421 // definition of a type later in a translation unit may change it's type 4422 // from {}* to (%struct.foo*)*. 4423 if (Addr.getType() != MemType) 4424 Addr = Builder.CreateBitCast(Addr, MemType); 4425 I->copyInto(*this, Addr); 4426 } 4427 break; 4428 } 4429 4430 case ABIArgInfo::Indirect: { 4431 assert(NumIRArgs == 1); 4432 if (!I->isAggregate()) { 4433 // Make a temporary alloca to pass the argument. 4434 Address Addr = CreateMemTempWithoutCast( 4435 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4436 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4437 4438 I->copyInto(*this, Addr); 4439 } else { 4440 // We want to avoid creating an unnecessary temporary+copy here; 4441 // however, we need one in three cases: 4442 // 1. If the argument is not byval, and we are required to copy the 4443 // source. (This case doesn't occur on any common architecture.) 4444 // 2. If the argument is byval, RV is not sufficiently aligned, and 4445 // we cannot force it to be sufficiently aligned. 4446 // 3. If the argument is byval, but RV is not located in default 4447 // or alloca address space. 4448 Address Addr = I->hasLValue() 4449 ? I->getKnownLValue().getAddress(*this) 4450 : I->getKnownRValue().getAggregateAddress(); 4451 llvm::Value *V = Addr.getPointer(); 4452 CharUnits Align = ArgInfo.getIndirectAlign(); 4453 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4454 4455 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4456 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4457 TD->getAllocaAddrSpace()) && 4458 "indirect argument must be in alloca address space"); 4459 4460 bool NeedCopy = false; 4461 4462 if (Addr.getAlignment() < Align && 4463 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4464 Align.getAsAlign()) { 4465 NeedCopy = true; 4466 } else if (I->hasLValue()) { 4467 auto LV = I->getKnownLValue(); 4468 auto AS = LV.getAddressSpace(); 4469 4470 if (!ArgInfo.getIndirectByVal() || 4471 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4472 NeedCopy = true; 4473 } 4474 if (!getLangOpts().OpenCL) { 4475 if ((ArgInfo.getIndirectByVal() && 4476 (AS != LangAS::Default && 4477 AS != CGM.getASTAllocaAddressSpace()))) { 4478 NeedCopy = true; 4479 } 4480 } 4481 // For OpenCL even if RV is located in default or alloca address space 4482 // we don't want to perform address space cast for it. 4483 else if ((ArgInfo.getIndirectByVal() && 4484 Addr.getType()->getAddressSpace() != IRFuncTy-> 4485 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4486 NeedCopy = true; 4487 } 4488 } 4489 4490 if (NeedCopy) { 4491 // Create an aligned temporary, and copy to it. 4492 Address AI = CreateMemTempWithoutCast( 4493 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4494 IRCallArgs[FirstIRArg] = AI.getPointer(); 4495 4496 // Emit lifetime markers for the temporary alloca. 4497 uint64_t ByvalTempElementSize = 4498 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4499 llvm::Value *LifetimeSize = 4500 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4501 4502 // Add cleanup code to emit the end lifetime marker after the call. 4503 if (LifetimeSize) // In case we disabled lifetime markers. 4504 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4505 4506 // Generate the copy. 4507 I->copyInto(*this, AI); 4508 } else { 4509 // Skip the extra memcpy call. 4510 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4511 CGM.getDataLayout().getAllocaAddrSpace()); 4512 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4513 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4514 true); 4515 } 4516 } 4517 break; 4518 } 4519 4520 case ABIArgInfo::Ignore: 4521 assert(NumIRArgs == 0); 4522 break; 4523 4524 case ABIArgInfo::Extend: 4525 case ABIArgInfo::Direct: { 4526 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4527 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4528 ArgInfo.getDirectOffset() == 0) { 4529 assert(NumIRArgs == 1); 4530 llvm::Value *V; 4531 if (!I->isAggregate()) 4532 V = I->getKnownRValue().getScalarVal(); 4533 else 4534 V = Builder.CreateLoad( 4535 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4536 : I->getKnownRValue().getAggregateAddress()); 4537 4538 // Implement swifterror by copying into a new swifterror argument. 4539 // We'll write back in the normal path out of the call. 4540 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4541 == ParameterABI::SwiftErrorResult) { 4542 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4543 4544 QualType pointeeTy = I->Ty->getPointeeType(); 4545 swiftErrorArg = 4546 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4547 4548 swiftErrorTemp = 4549 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4550 V = swiftErrorTemp.getPointer(); 4551 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4552 4553 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4554 Builder.CreateStore(errorValue, swiftErrorTemp); 4555 } 4556 4557 // We might have to widen integers, but we should never truncate. 4558 if (ArgInfo.getCoerceToType() != V->getType() && 4559 V->getType()->isIntegerTy()) 4560 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4561 4562 // If the argument doesn't match, perform a bitcast to coerce it. This 4563 // can happen due to trivial type mismatches. 4564 if (FirstIRArg < IRFuncTy->getNumParams() && 4565 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4566 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4567 4568 IRCallArgs[FirstIRArg] = V; 4569 break; 4570 } 4571 4572 // FIXME: Avoid the conversion through memory if possible. 4573 Address Src = Address::invalid(); 4574 if (!I->isAggregate()) { 4575 Src = CreateMemTemp(I->Ty, "coerce"); 4576 I->copyInto(*this, Src); 4577 } else { 4578 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4579 : I->getKnownRValue().getAggregateAddress(); 4580 } 4581 4582 // If the value is offset in memory, apply the offset now. 4583 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4584 4585 // Fast-isel and the optimizer generally like scalar values better than 4586 // FCAs, so we flatten them if this is safe to do for this argument. 4587 llvm::StructType *STy = 4588 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4589 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4590 llvm::Type *SrcTy = Src.getElementType(); 4591 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4592 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4593 4594 // If the source type is smaller than the destination type of the 4595 // coerce-to logic, copy the source value into a temp alloca the size 4596 // of the destination type to allow loading all of it. The bits past 4597 // the source value are left undef. 4598 if (SrcSize < DstSize) { 4599 Address TempAlloca 4600 = CreateTempAlloca(STy, Src.getAlignment(), 4601 Src.getName() + ".coerce"); 4602 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4603 Src = TempAlloca; 4604 } else { 4605 Src = Builder.CreateBitCast(Src, 4606 STy->getPointerTo(Src.getAddressSpace())); 4607 } 4608 4609 assert(NumIRArgs == STy->getNumElements()); 4610 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4611 Address EltPtr = Builder.CreateStructGEP(Src, i); 4612 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4613 IRCallArgs[FirstIRArg + i] = LI; 4614 } 4615 } else { 4616 // In the simple case, just pass the coerced loaded value. 4617 assert(NumIRArgs == 1); 4618 llvm::Value *Load = 4619 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4620 4621 if (CallInfo.isCmseNSCall()) { 4622 // For certain parameter types, clear padding bits, as they may reveal 4623 // sensitive information. 4624 const Type *PTy = I->Ty.getCanonicalType().getTypePtr(); 4625 // 16-bit floating-point types are passed in a 32-bit integer or 4626 // float, with unspecified upper bits. 4627 if (PTy->isFloat16Type() || PTy->isHalfType()) { 4628 Load = EmitCMSEClearFP16(Load); 4629 } else { 4630 // Small struct/union types are passed as integer arrays. 4631 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 4632 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 4633 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 4634 } 4635 } 4636 IRCallArgs[FirstIRArg] = Load; 4637 } 4638 4639 break; 4640 } 4641 4642 case ABIArgInfo::CoerceAndExpand: { 4643 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4644 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4645 4646 llvm::Value *tempSize = nullptr; 4647 Address addr = Address::invalid(); 4648 Address AllocaAddr = Address::invalid(); 4649 if (I->isAggregate()) { 4650 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4651 : I->getKnownRValue().getAggregateAddress(); 4652 4653 } else { 4654 RValue RV = I->getKnownRValue(); 4655 assert(RV.isScalar()); // complex should always just be direct 4656 4657 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4658 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4659 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4660 4661 // Materialize to a temporary. 4662 addr = CreateTempAlloca( 4663 RV.getScalarVal()->getType(), 4664 CharUnits::fromQuantity(std::max( 4665 (unsigned)layout->getAlignment().value(), scalarAlign)), 4666 "tmp", 4667 /*ArraySize=*/nullptr, &AllocaAddr); 4668 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4669 4670 Builder.CreateStore(RV.getScalarVal(), addr); 4671 } 4672 4673 addr = Builder.CreateElementBitCast(addr, coercionType); 4674 4675 unsigned IRArgPos = FirstIRArg; 4676 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4677 llvm::Type *eltType = coercionType->getElementType(i); 4678 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4679 Address eltAddr = Builder.CreateStructGEP(addr, i); 4680 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4681 IRCallArgs[IRArgPos++] = elt; 4682 } 4683 assert(IRArgPos == FirstIRArg + NumIRArgs); 4684 4685 if (tempSize) { 4686 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4687 } 4688 4689 break; 4690 } 4691 4692 case ABIArgInfo::Expand: 4693 unsigned IRArgPos = FirstIRArg; 4694 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4695 assert(IRArgPos == FirstIRArg + NumIRArgs); 4696 break; 4697 } 4698 } 4699 4700 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4701 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4702 4703 // If we're using inalloca, set up that argument. 4704 if (ArgMemory.isValid()) { 4705 llvm::Value *Arg = ArgMemory.getPointer(); 4706 if (CallInfo.isVariadic()) { 4707 // When passing non-POD arguments by value to variadic functions, we will 4708 // end up with a variadic prototype and an inalloca call site. In such 4709 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4710 // the callee. 4711 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4712 CalleePtr = 4713 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4714 } else { 4715 llvm::Type *LastParamTy = 4716 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4717 if (Arg->getType() != LastParamTy) { 4718 #ifndef NDEBUG 4719 // Assert that these structs have equivalent element types. 4720 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4721 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4722 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4723 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4724 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4725 DE = DeclaredTy->element_end(), 4726 FI = FullTy->element_begin(); 4727 DI != DE; ++DI, ++FI) 4728 assert(*DI == *FI); 4729 #endif 4730 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4731 } 4732 } 4733 assert(IRFunctionArgs.hasInallocaArg()); 4734 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4735 } 4736 4737 // 2. Prepare the function pointer. 4738 4739 // If the callee is a bitcast of a non-variadic function to have a 4740 // variadic function pointer type, check to see if we can remove the 4741 // bitcast. This comes up with unprototyped functions. 4742 // 4743 // This makes the IR nicer, but more importantly it ensures that we 4744 // can inline the function at -O0 if it is marked always_inline. 4745 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4746 llvm::Value *Ptr) -> llvm::Function * { 4747 if (!CalleeFT->isVarArg()) 4748 return nullptr; 4749 4750 // Get underlying value if it's a bitcast 4751 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4752 if (CE->getOpcode() == llvm::Instruction::BitCast) 4753 Ptr = CE->getOperand(0); 4754 } 4755 4756 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4757 if (!OrigFn) 4758 return nullptr; 4759 4760 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4761 4762 // If the original type is variadic, or if any of the component types 4763 // disagree, we cannot remove the cast. 4764 if (OrigFT->isVarArg() || 4765 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4766 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4767 return nullptr; 4768 4769 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4770 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4771 return nullptr; 4772 4773 return OrigFn; 4774 }; 4775 4776 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4777 CalleePtr = OrigFn; 4778 IRFuncTy = OrigFn->getFunctionType(); 4779 } 4780 4781 // 3. Perform the actual call. 4782 4783 // Deactivate any cleanups that we're supposed to do immediately before 4784 // the call. 4785 if (!CallArgs.getCleanupsToDeactivate().empty()) 4786 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4787 4788 // Assert that the arguments we computed match up. The IR verifier 4789 // will catch this, but this is a common enough source of problems 4790 // during IRGen changes that it's way better for debugging to catch 4791 // it ourselves here. 4792 #ifndef NDEBUG 4793 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4794 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4795 // Inalloca argument can have different type. 4796 if (IRFunctionArgs.hasInallocaArg() && 4797 i == IRFunctionArgs.getInallocaArgNo()) 4798 continue; 4799 if (i < IRFuncTy->getNumParams()) 4800 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4801 } 4802 #endif 4803 4804 // Update the largest vector width if any arguments have vector types. 4805 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4806 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4807 LargestVectorWidth = 4808 std::max((uint64_t)LargestVectorWidth, 4809 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4810 } 4811 4812 // Compute the calling convention and attributes. 4813 unsigned CallingConv; 4814 llvm::AttributeList Attrs; 4815 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4816 Callee.getAbstractInfo(), Attrs, CallingConv, 4817 /*AttrOnCallSite=*/true); 4818 4819 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4820 if (FD->usesFPIntrin()) 4821 // All calls within a strictfp function are marked strictfp 4822 Attrs = 4823 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4824 llvm::Attribute::StrictFP); 4825 4826 // Add call-site nomerge attribute if exists. 4827 if (InNoMergeAttributedStmt) 4828 Attrs = 4829 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4830 llvm::Attribute::NoMerge); 4831 4832 // Apply some call-site-specific attributes. 4833 // TODO: work this into building the attribute set. 4834 4835 // Apply always_inline to all calls within flatten functions. 4836 // FIXME: should this really take priority over __try, below? 4837 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4838 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 4839 Attrs = 4840 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4841 llvm::Attribute::AlwaysInline); 4842 } 4843 4844 // Disable inlining inside SEH __try blocks. 4845 if (isSEHTryScope()) { 4846 Attrs = 4847 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4848 llvm::Attribute::NoInline); 4849 } 4850 4851 // Decide whether to use a call or an invoke. 4852 bool CannotThrow; 4853 if (currentFunctionUsesSEHTry()) { 4854 // SEH cares about asynchronous exceptions, so everything can "throw." 4855 CannotThrow = false; 4856 } else if (isCleanupPadScope() && 4857 EHPersonality::get(*this).isMSVCXXPersonality()) { 4858 // The MSVC++ personality will implicitly terminate the program if an 4859 // exception is thrown during a cleanup outside of a try/catch. 4860 // We don't need to model anything in IR to get this behavior. 4861 CannotThrow = true; 4862 } else { 4863 // Otherwise, nounwind call sites will never throw. 4864 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4865 llvm::Attribute::NoUnwind); 4866 } 4867 4868 // If we made a temporary, be sure to clean up after ourselves. Note that we 4869 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4870 // pop this cleanup later on. Being eager about this is OK, since this 4871 // temporary is 'invisible' outside of the callee. 4872 if (UnusedReturnSizePtr) 4873 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4874 UnusedReturnSizePtr); 4875 4876 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4877 4878 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4879 getBundlesForFunclet(CalleePtr); 4880 4881 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4882 if (FD->usesFPIntrin()) 4883 // All calls within a strictfp function are marked strictfp 4884 Attrs = 4885 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4886 llvm::Attribute::StrictFP); 4887 4888 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 4889 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4890 4891 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 4892 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4893 4894 // Emit the actual call/invoke instruction. 4895 llvm::CallBase *CI; 4896 if (!InvokeDest) { 4897 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 4898 } else { 4899 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4900 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 4901 BundleList); 4902 EmitBlock(Cont); 4903 } 4904 if (callOrInvoke) 4905 *callOrInvoke = CI; 4906 4907 // If this is within a function that has the guard(nocf) attribute and is an 4908 // indirect call, add the "guard_nocf" attribute to this call to indicate that 4909 // Control Flow Guard checks should not be added, even if the call is inlined. 4910 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 4911 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 4912 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 4913 Attrs = Attrs.addAttribute( 4914 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf"); 4915 } 4916 } 4917 4918 // Apply the attributes and calling convention. 4919 CI->setAttributes(Attrs); 4920 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4921 4922 // Apply various metadata. 4923 4924 if (!CI->getType()->isVoidTy()) 4925 CI->setName("call"); 4926 4927 // Update largest vector width from the return type. 4928 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4929 LargestVectorWidth = 4930 std::max((uint64_t)LargestVectorWidth, 4931 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4932 4933 // Insert instrumentation or attach profile metadata at indirect call sites. 4934 // For more details, see the comment before the definition of 4935 // IPVK_IndirectCallTarget in InstrProfData.inc. 4936 if (!CI->getCalledFunction()) 4937 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4938 CI, CalleePtr); 4939 4940 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4941 // optimizer it can aggressively ignore unwind edges. 4942 if (CGM.getLangOpts().ObjCAutoRefCount) 4943 AddObjCARCExceptionMetadata(CI); 4944 4945 // Suppress tail calls if requested. 4946 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4947 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4948 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4949 } 4950 4951 // Add metadata for calls to MSAllocator functions 4952 if (getDebugInfo() && TargetDecl && 4953 TargetDecl->hasAttr<MSAllocatorAttr>()) 4954 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc); 4955 4956 // 4. Finish the call. 4957 4958 // If the call doesn't return, finish the basic block and clear the 4959 // insertion point; this allows the rest of IRGen to discard 4960 // unreachable code. 4961 if (CI->doesNotReturn()) { 4962 if (UnusedReturnSizePtr) 4963 PopCleanupBlock(); 4964 4965 // Strip away the noreturn attribute to better diagnose unreachable UB. 4966 if (SanOpts.has(SanitizerKind::Unreachable)) { 4967 // Also remove from function since CallBase::hasFnAttr additionally checks 4968 // attributes of the called function. 4969 if (auto *F = CI->getCalledFunction()) 4970 F->removeFnAttr(llvm::Attribute::NoReturn); 4971 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 4972 llvm::Attribute::NoReturn); 4973 4974 // Avoid incompatibility with ASan which relies on the `noreturn` 4975 // attribute to insert handler calls. 4976 if (SanOpts.hasOneOf(SanitizerKind::Address | 4977 SanitizerKind::KernelAddress)) { 4978 SanitizerScope SanScope(this); 4979 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 4980 Builder.SetInsertPoint(CI); 4981 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 4982 llvm::FunctionCallee Fn = 4983 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 4984 EmitNounwindRuntimeCall(Fn); 4985 } 4986 } 4987 4988 EmitUnreachable(Loc); 4989 Builder.ClearInsertionPoint(); 4990 4991 // FIXME: For now, emit a dummy basic block because expr emitters in 4992 // generally are not ready to handle emitting expressions at unreachable 4993 // points. 4994 EnsureInsertPoint(); 4995 4996 // Return a reasonable RValue. 4997 return GetUndefRValue(RetTy); 4998 } 4999 5000 // Perform the swifterror writeback. 5001 if (swiftErrorTemp.isValid()) { 5002 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5003 Builder.CreateStore(errorResult, swiftErrorArg); 5004 } 5005 5006 // Emit any call-associated writebacks immediately. Arguably this 5007 // should happen after any return-value munging. 5008 if (CallArgs.hasWritebacks()) 5009 emitWritebacks(*this, CallArgs); 5010 5011 // The stack cleanup for inalloca arguments has to run out of the normal 5012 // lexical order, so deactivate it and run it manually here. 5013 CallArgs.freeArgumentMemory(*this); 5014 5015 // Extract the return value. 5016 RValue Ret = [&] { 5017 switch (RetAI.getKind()) { 5018 case ABIArgInfo::CoerceAndExpand: { 5019 auto coercionType = RetAI.getCoerceAndExpandType(); 5020 5021 Address addr = SRetPtr; 5022 addr = Builder.CreateElementBitCast(addr, coercionType); 5023 5024 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5025 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5026 5027 unsigned unpaddedIndex = 0; 5028 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5029 llvm::Type *eltType = coercionType->getElementType(i); 5030 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5031 Address eltAddr = Builder.CreateStructGEP(addr, i); 5032 llvm::Value *elt = CI; 5033 if (requiresExtract) 5034 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5035 else 5036 assert(unpaddedIndex == 0); 5037 Builder.CreateStore(elt, eltAddr); 5038 } 5039 // FALLTHROUGH 5040 LLVM_FALLTHROUGH; 5041 } 5042 5043 case ABIArgInfo::InAlloca: 5044 case ABIArgInfo::Indirect: { 5045 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5046 if (UnusedReturnSizePtr) 5047 PopCleanupBlock(); 5048 return ret; 5049 } 5050 5051 case ABIArgInfo::Ignore: 5052 // If we are ignoring an argument that had a result, make sure to 5053 // construct the appropriate return value for our caller. 5054 return GetUndefRValue(RetTy); 5055 5056 case ABIArgInfo::Extend: 5057 case ABIArgInfo::Direct: { 5058 llvm::Type *RetIRTy = ConvertType(RetTy); 5059 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5060 switch (getEvaluationKind(RetTy)) { 5061 case TEK_Complex: { 5062 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5063 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5064 return RValue::getComplex(std::make_pair(Real, Imag)); 5065 } 5066 case TEK_Aggregate: { 5067 Address DestPtr = ReturnValue.getValue(); 5068 bool DestIsVolatile = ReturnValue.isVolatile(); 5069 5070 if (!DestPtr.isValid()) { 5071 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5072 DestIsVolatile = false; 5073 } 5074 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 5075 return RValue::getAggregate(DestPtr); 5076 } 5077 case TEK_Scalar: { 5078 // If the argument doesn't match, perform a bitcast to coerce it. This 5079 // can happen due to trivial type mismatches. 5080 llvm::Value *V = CI; 5081 if (V->getType() != RetIRTy) 5082 V = Builder.CreateBitCast(V, RetIRTy); 5083 return RValue::get(V); 5084 } 5085 } 5086 llvm_unreachable("bad evaluation kind"); 5087 } 5088 5089 Address DestPtr = ReturnValue.getValue(); 5090 bool DestIsVolatile = ReturnValue.isVolatile(); 5091 5092 if (!DestPtr.isValid()) { 5093 DestPtr = CreateMemTemp(RetTy, "coerce"); 5094 DestIsVolatile = false; 5095 } 5096 5097 // If the value is offset in memory, apply the offset now. 5098 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5099 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5100 5101 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5102 } 5103 5104 case ABIArgInfo::Expand: 5105 llvm_unreachable("Invalid ABI kind for return argument"); 5106 } 5107 5108 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5109 } (); 5110 5111 // Emit the assume_aligned check on the return value. 5112 if (Ret.isScalar() && TargetDecl) { 5113 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5114 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5115 } 5116 5117 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5118 // we can't use the full cleanup mechanism. 5119 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5120 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5121 5122 if (!ReturnValue.isExternallyDestructed() && 5123 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5124 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5125 RetTy); 5126 5127 return Ret; 5128 } 5129 5130 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5131 if (isVirtual()) { 5132 const CallExpr *CE = getVirtualCallExpr(); 5133 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5134 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5135 CE ? CE->getBeginLoc() : SourceLocation()); 5136 } 5137 5138 return *this; 5139 } 5140 5141 /* VarArg handling */ 5142 5143 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5144 VAListAddr = VE->isMicrosoftABI() 5145 ? EmitMSVAListRef(VE->getSubExpr()) 5146 : EmitVAListRef(VE->getSubExpr()); 5147 QualType Ty = VE->getType(); 5148 if (VE->isMicrosoftABI()) 5149 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5150 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5151 } 5152