1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /***/ 43 44 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 45 switch (CC) { 46 default: return llvm::CallingConv::C; 47 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 48 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 49 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 50 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 51 case CC_Win64: return llvm::CallingConv::Win64; 52 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 53 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 54 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 55 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 56 // TODO: Add support for __pascal to LLVM. 57 case CC_X86Pascal: return llvm::CallingConv::C; 58 // TODO: Add support for __vectorcall to LLVM. 59 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 60 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 61 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 62 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 63 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 64 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 65 case CC_Swift: return llvm::CallingConv::Swift; 66 } 67 } 68 69 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 70 /// qualification. Either or both of RD and MD may be null. A null RD indicates 71 /// that there is no meaningful 'this' type, and a null MD can occur when 72 /// calling a method pointer. 73 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 74 const CXXMethodDecl *MD) { 75 QualType RecTy; 76 if (RD) 77 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 78 else 79 RecTy = Context.VoidTy; 80 81 if (MD) 82 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 83 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 84 } 85 86 /// Returns the canonical formal type of the given C++ method. 87 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 88 return MD->getType()->getCanonicalTypeUnqualified() 89 .getAs<FunctionProtoType>(); 90 } 91 92 /// Returns the "extra-canonicalized" return type, which discards 93 /// qualifiers on the return type. Codegen doesn't care about them, 94 /// and it makes ABI code a little easier to be able to assume that 95 /// all parameter and return types are top-level unqualified. 96 static CanQualType GetReturnType(QualType RetTy) { 97 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 98 } 99 100 /// Arrange the argument and result information for a value of the given 101 /// unprototyped freestanding function type. 102 const CGFunctionInfo & 103 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 104 // When translating an unprototyped function type, always use a 105 // variadic type. 106 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 107 /*instanceMethod=*/false, 108 /*chainCall=*/false, None, 109 FTNP->getExtInfo(), {}, RequiredArgs(0)); 110 } 111 112 static void addExtParameterInfosForCall( 113 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 114 const FunctionProtoType *proto, 115 unsigned prefixArgs, 116 unsigned totalArgs) { 117 assert(proto->hasExtParameterInfos()); 118 assert(paramInfos.size() <= prefixArgs); 119 assert(proto->getNumParams() + prefixArgs <= totalArgs); 120 121 paramInfos.reserve(totalArgs); 122 123 // Add default infos for any prefix args that don't already have infos. 124 paramInfos.resize(prefixArgs); 125 126 // Add infos for the prototype. 127 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 128 paramInfos.push_back(ParamInfo); 129 // pass_object_size params have no parameter info. 130 if (ParamInfo.hasPassObjectSize()) 131 paramInfos.emplace_back(); 132 } 133 134 assert(paramInfos.size() <= totalArgs && 135 "Did we forget to insert pass_object_size args?"); 136 // Add default infos for the variadic and/or suffix arguments. 137 paramInfos.resize(totalArgs); 138 } 139 140 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 141 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 142 static void appendParameterTypes(const CodeGenTypes &CGT, 143 SmallVectorImpl<CanQualType> &prefix, 144 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 145 CanQual<FunctionProtoType> FPT) { 146 // Fast path: don't touch param info if we don't need to. 147 if (!FPT->hasExtParameterInfos()) { 148 assert(paramInfos.empty() && 149 "We have paramInfos, but the prototype doesn't?"); 150 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 151 return; 152 } 153 154 unsigned PrefixSize = prefix.size(); 155 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 156 // parameters; the only thing that can change this is the presence of 157 // pass_object_size. So, we preallocate for the common case. 158 prefix.reserve(prefix.size() + FPT->getNumParams()); 159 160 auto ExtInfos = FPT->getExtParameterInfos(); 161 assert(ExtInfos.size() == FPT->getNumParams()); 162 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 163 prefix.push_back(FPT->getParamType(I)); 164 if (ExtInfos[I].hasPassObjectSize()) 165 prefix.push_back(CGT.getContext().getSizeType()); 166 } 167 168 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 169 prefix.size()); 170 } 171 172 /// Arrange the LLVM function layout for a value of the given function 173 /// type, on top of any implicit parameters already stored. 174 static const CGFunctionInfo & 175 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 176 SmallVectorImpl<CanQualType> &prefix, 177 CanQual<FunctionProtoType> FTP) { 178 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 179 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 180 // FIXME: Kill copy. 181 appendParameterTypes(CGT, prefix, paramInfos, FTP); 182 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 183 184 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 185 /*chainCall=*/false, prefix, 186 FTP->getExtInfo(), paramInfos, 187 Required); 188 } 189 190 /// Arrange the argument and result information for a value of the 191 /// given freestanding function type. 192 const CGFunctionInfo & 193 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 194 SmallVector<CanQualType, 16> argTypes; 195 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 196 FTP); 197 } 198 199 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 200 // Set the appropriate calling convention for the Function. 201 if (D->hasAttr<StdCallAttr>()) 202 return CC_X86StdCall; 203 204 if (D->hasAttr<FastCallAttr>()) 205 return CC_X86FastCall; 206 207 if (D->hasAttr<RegCallAttr>()) 208 return CC_X86RegCall; 209 210 if (D->hasAttr<ThisCallAttr>()) 211 return CC_X86ThisCall; 212 213 if (D->hasAttr<VectorCallAttr>()) 214 return CC_X86VectorCall; 215 216 if (D->hasAttr<PascalAttr>()) 217 return CC_X86Pascal; 218 219 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 220 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 221 222 if (D->hasAttr<AArch64VectorPcsAttr>()) 223 return CC_AArch64VectorCall; 224 225 if (D->hasAttr<IntelOclBiccAttr>()) 226 return CC_IntelOclBicc; 227 228 if (D->hasAttr<MSABIAttr>()) 229 return IsWindows ? CC_C : CC_Win64; 230 231 if (D->hasAttr<SysVABIAttr>()) 232 return IsWindows ? CC_X86_64SysV : CC_C; 233 234 if (D->hasAttr<PreserveMostAttr>()) 235 return CC_PreserveMost; 236 237 if (D->hasAttr<PreserveAllAttr>()) 238 return CC_PreserveAll; 239 240 return CC_C; 241 } 242 243 /// Arrange the argument and result information for a call to an 244 /// unknown C++ non-static member function of the given abstract type. 245 /// (A null RD means we don't have any meaningful "this" argument type, 246 /// so fall back to a generic pointer type). 247 /// The member function must be an ordinary function, i.e. not a 248 /// constructor or destructor. 249 const CGFunctionInfo & 250 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 251 const FunctionProtoType *FTP, 252 const CXXMethodDecl *MD) { 253 SmallVector<CanQualType, 16> argTypes; 254 255 // Add the 'this' pointer. 256 argTypes.push_back(DeriveThisType(RD, MD)); 257 258 return ::arrangeLLVMFunctionInfo( 259 *this, true, argTypes, 260 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 261 } 262 263 /// Set calling convention for CUDA/HIP kernel. 264 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 265 const FunctionDecl *FD) { 266 if (FD->hasAttr<CUDAGlobalAttr>()) { 267 const FunctionType *FT = FTy->getAs<FunctionType>(); 268 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 269 FTy = FT->getCanonicalTypeUnqualified(); 270 } 271 } 272 273 /// Arrange the argument and result information for a declaration or 274 /// definition of the given C++ non-static member function. The 275 /// member function must be an ordinary function, i.e. not a 276 /// constructor or destructor. 277 const CGFunctionInfo & 278 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 279 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 280 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 281 282 CanQualType FT = GetFormalType(MD).getAs<Type>(); 283 setCUDAKernelCallingConvention(FT, CGM, MD); 284 auto prototype = FT.getAs<FunctionProtoType>(); 285 286 if (MD->isInstance()) { 287 // The abstract case is perfectly fine. 288 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 289 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 290 } 291 292 return arrangeFreeFunctionType(prototype); 293 } 294 295 bool CodeGenTypes::inheritingCtorHasParams( 296 const InheritedConstructor &Inherited, CXXCtorType Type) { 297 // Parameters are unnecessary if we're constructing a base class subobject 298 // and the inherited constructor lives in a virtual base. 299 return Type == Ctor_Complete || 300 !Inherited.getShadowDecl()->constructsVirtualBase() || 301 !Target.getCXXABI().hasConstructorVariants(); 302 } 303 304 const CGFunctionInfo & 305 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 306 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 307 308 SmallVector<CanQualType, 16> argTypes; 309 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 310 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 311 312 bool PassParams = true; 313 314 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 315 // A base class inheriting constructor doesn't get forwarded arguments 316 // needed to construct a virtual base (or base class thereof). 317 if (auto Inherited = CD->getInheritedConstructor()) 318 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 319 } 320 321 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 322 323 // Add the formal parameters. 324 if (PassParams) 325 appendParameterTypes(*this, argTypes, paramInfos, FTP); 326 327 CGCXXABI::AddedStructorArgs AddedArgs = 328 TheCXXABI.buildStructorSignature(GD, argTypes); 329 if (!paramInfos.empty()) { 330 // Note: prefix implies after the first param. 331 if (AddedArgs.Prefix) 332 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 333 FunctionProtoType::ExtParameterInfo{}); 334 if (AddedArgs.Suffix) 335 paramInfos.append(AddedArgs.Suffix, 336 FunctionProtoType::ExtParameterInfo{}); 337 } 338 339 RequiredArgs required = 340 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 341 : RequiredArgs::All); 342 343 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 344 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 345 ? argTypes.front() 346 : TheCXXABI.hasMostDerivedReturn(GD) 347 ? CGM.getContext().VoidPtrTy 348 : Context.VoidTy; 349 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 350 /*chainCall=*/false, argTypes, extInfo, 351 paramInfos, required); 352 } 353 354 static SmallVector<CanQualType, 16> 355 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 356 SmallVector<CanQualType, 16> argTypes; 357 for (auto &arg : args) 358 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 359 return argTypes; 360 } 361 362 static SmallVector<CanQualType, 16> 363 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 364 SmallVector<CanQualType, 16> argTypes; 365 for (auto &arg : args) 366 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 367 return argTypes; 368 } 369 370 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 371 getExtParameterInfosForCall(const FunctionProtoType *proto, 372 unsigned prefixArgs, unsigned totalArgs) { 373 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 374 if (proto->hasExtParameterInfos()) { 375 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 376 } 377 return result; 378 } 379 380 /// Arrange a call to a C++ method, passing the given arguments. 381 /// 382 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 383 /// parameter. 384 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 385 /// args. 386 /// PassProtoArgs indicates whether `args` has args for the parameters in the 387 /// given CXXConstructorDecl. 388 const CGFunctionInfo & 389 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 390 const CXXConstructorDecl *D, 391 CXXCtorType CtorKind, 392 unsigned ExtraPrefixArgs, 393 unsigned ExtraSuffixArgs, 394 bool PassProtoArgs) { 395 // FIXME: Kill copy. 396 SmallVector<CanQualType, 16> ArgTypes; 397 for (const auto &Arg : args) 398 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 399 400 // +1 for implicit this, which should always be args[0]. 401 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 402 403 CanQual<FunctionProtoType> FPT = GetFormalType(D); 404 RequiredArgs Required = PassProtoArgs 405 ? RequiredArgs::forPrototypePlus( 406 FPT, TotalPrefixArgs + ExtraSuffixArgs) 407 : RequiredArgs::All; 408 409 GlobalDecl GD(D, CtorKind); 410 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 411 ? ArgTypes.front() 412 : TheCXXABI.hasMostDerivedReturn(GD) 413 ? CGM.getContext().VoidPtrTy 414 : Context.VoidTy; 415 416 FunctionType::ExtInfo Info = FPT->getExtInfo(); 417 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 418 // If the prototype args are elided, we should only have ABI-specific args, 419 // which never have param info. 420 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 421 // ABI-specific suffix arguments are treated the same as variadic arguments. 422 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 423 ArgTypes.size()); 424 } 425 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 426 /*chainCall=*/false, ArgTypes, Info, 427 ParamInfos, Required); 428 } 429 430 /// Arrange the argument and result information for the declaration or 431 /// definition of the given function. 432 const CGFunctionInfo & 433 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 434 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 435 if (MD->isInstance()) 436 return arrangeCXXMethodDeclaration(MD); 437 438 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 439 440 assert(isa<FunctionType>(FTy)); 441 setCUDAKernelCallingConvention(FTy, CGM, FD); 442 443 // When declaring a function without a prototype, always use a 444 // non-variadic type. 445 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 446 return arrangeLLVMFunctionInfo( 447 noProto->getReturnType(), /*instanceMethod=*/false, 448 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 449 } 450 451 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 452 } 453 454 /// Arrange the argument and result information for the declaration or 455 /// definition of an Objective-C method. 456 const CGFunctionInfo & 457 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 458 // It happens that this is the same as a call with no optional 459 // arguments, except also using the formal 'self' type. 460 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 461 } 462 463 /// Arrange the argument and result information for the function type 464 /// through which to perform a send to the given Objective-C method, 465 /// using the given receiver type. The receiver type is not always 466 /// the 'self' type of the method or even an Objective-C pointer type. 467 /// This is *not* the right method for actually performing such a 468 /// message send, due to the possibility of optional arguments. 469 const CGFunctionInfo & 470 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 471 QualType receiverType) { 472 SmallVector<CanQualType, 16> argTys; 473 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 474 argTys.push_back(Context.getCanonicalParamType(receiverType)); 475 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 476 // FIXME: Kill copy? 477 for (const auto *I : MD->parameters()) { 478 argTys.push_back(Context.getCanonicalParamType(I->getType())); 479 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 480 I->hasAttr<NoEscapeAttr>()); 481 extParamInfos.push_back(extParamInfo); 482 } 483 484 FunctionType::ExtInfo einfo; 485 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 486 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 487 488 if (getContext().getLangOpts().ObjCAutoRefCount && 489 MD->hasAttr<NSReturnsRetainedAttr>()) 490 einfo = einfo.withProducesResult(true); 491 492 RequiredArgs required = 493 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 494 495 return arrangeLLVMFunctionInfo( 496 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 497 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 498 } 499 500 const CGFunctionInfo & 501 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 502 const CallArgList &args) { 503 auto argTypes = getArgTypesForCall(Context, args); 504 FunctionType::ExtInfo einfo; 505 506 return arrangeLLVMFunctionInfo( 507 GetReturnType(returnType), /*instanceMethod=*/false, 508 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 509 } 510 511 const CGFunctionInfo & 512 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 513 // FIXME: Do we need to handle ObjCMethodDecl? 514 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 515 516 if (isa<CXXConstructorDecl>(GD.getDecl()) || 517 isa<CXXDestructorDecl>(GD.getDecl())) 518 return arrangeCXXStructorDeclaration(GD); 519 520 return arrangeFunctionDeclaration(FD); 521 } 522 523 /// Arrange a thunk that takes 'this' as the first parameter followed by 524 /// varargs. Return a void pointer, regardless of the actual return type. 525 /// The body of the thunk will end in a musttail call to a function of the 526 /// correct type, and the caller will bitcast the function to the correct 527 /// prototype. 528 const CGFunctionInfo & 529 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 530 assert(MD->isVirtual() && "only methods have thunks"); 531 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 532 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 533 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 534 /*chainCall=*/false, ArgTys, 535 FTP->getExtInfo(), {}, RequiredArgs(1)); 536 } 537 538 const CGFunctionInfo & 539 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 540 CXXCtorType CT) { 541 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 542 543 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 544 SmallVector<CanQualType, 2> ArgTys; 545 const CXXRecordDecl *RD = CD->getParent(); 546 ArgTys.push_back(DeriveThisType(RD, CD)); 547 if (CT == Ctor_CopyingClosure) 548 ArgTys.push_back(*FTP->param_type_begin()); 549 if (RD->getNumVBases() > 0) 550 ArgTys.push_back(Context.IntTy); 551 CallingConv CC = Context.getDefaultCallingConvention( 552 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 553 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 554 /*chainCall=*/false, ArgTys, 555 FunctionType::ExtInfo(CC), {}, 556 RequiredArgs::All); 557 } 558 559 /// Arrange a call as unto a free function, except possibly with an 560 /// additional number of formal parameters considered required. 561 static const CGFunctionInfo & 562 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 563 CodeGenModule &CGM, 564 const CallArgList &args, 565 const FunctionType *fnType, 566 unsigned numExtraRequiredArgs, 567 bool chainCall) { 568 assert(args.size() >= numExtraRequiredArgs); 569 570 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 571 572 // In most cases, there are no optional arguments. 573 RequiredArgs required = RequiredArgs::All; 574 575 // If we have a variadic prototype, the required arguments are the 576 // extra prefix plus the arguments in the prototype. 577 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 578 if (proto->isVariadic()) 579 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 580 581 if (proto->hasExtParameterInfos()) 582 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 583 args.size()); 584 585 // If we don't have a prototype at all, but we're supposed to 586 // explicitly use the variadic convention for unprototyped calls, 587 // treat all of the arguments as required but preserve the nominal 588 // possibility of variadics. 589 } else if (CGM.getTargetCodeGenInfo() 590 .isNoProtoCallVariadic(args, 591 cast<FunctionNoProtoType>(fnType))) { 592 required = RequiredArgs(args.size()); 593 } 594 595 // FIXME: Kill copy. 596 SmallVector<CanQualType, 16> argTypes; 597 for (const auto &arg : args) 598 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 599 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 600 /*instanceMethod=*/false, chainCall, 601 argTypes, fnType->getExtInfo(), paramInfos, 602 required); 603 } 604 605 /// Figure out the rules for calling a function with the given formal 606 /// type using the given arguments. The arguments are necessary 607 /// because the function might be unprototyped, in which case it's 608 /// target-dependent in crazy ways. 609 const CGFunctionInfo & 610 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 611 const FunctionType *fnType, 612 bool chainCall) { 613 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 614 chainCall ? 1 : 0, chainCall); 615 } 616 617 /// A block function is essentially a free function with an 618 /// extra implicit argument. 619 const CGFunctionInfo & 620 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 621 const FunctionType *fnType) { 622 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 623 /*chainCall=*/false); 624 } 625 626 const CGFunctionInfo & 627 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 628 const FunctionArgList ¶ms) { 629 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 630 auto argTypes = getArgTypesForDeclaration(Context, params); 631 632 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 633 /*instanceMethod*/ false, /*chainCall*/ false, 634 argTypes, proto->getExtInfo(), paramInfos, 635 RequiredArgs::forPrototypePlus(proto, 1)); 636 } 637 638 const CGFunctionInfo & 639 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 640 const CallArgList &args) { 641 // FIXME: Kill copy. 642 SmallVector<CanQualType, 16> argTypes; 643 for (const auto &Arg : args) 644 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 645 return arrangeLLVMFunctionInfo( 646 GetReturnType(resultType), /*instanceMethod=*/false, 647 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 648 /*paramInfos=*/ {}, RequiredArgs::All); 649 } 650 651 const CGFunctionInfo & 652 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 653 const FunctionArgList &args) { 654 auto argTypes = getArgTypesForDeclaration(Context, args); 655 656 return arrangeLLVMFunctionInfo( 657 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 658 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 659 } 660 661 const CGFunctionInfo & 662 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 663 ArrayRef<CanQualType> argTypes) { 664 return arrangeLLVMFunctionInfo( 665 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 666 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 667 } 668 669 /// Arrange a call to a C++ method, passing the given arguments. 670 /// 671 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 672 /// does not count `this`. 673 const CGFunctionInfo & 674 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 675 const FunctionProtoType *proto, 676 RequiredArgs required, 677 unsigned numPrefixArgs) { 678 assert(numPrefixArgs + 1 <= args.size() && 679 "Emitting a call with less args than the required prefix?"); 680 // Add one to account for `this`. It's a bit awkward here, but we don't count 681 // `this` in similar places elsewhere. 682 auto paramInfos = 683 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 684 685 // FIXME: Kill copy. 686 auto argTypes = getArgTypesForCall(Context, args); 687 688 FunctionType::ExtInfo info = proto->getExtInfo(); 689 return arrangeLLVMFunctionInfo( 690 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 691 /*chainCall=*/false, argTypes, info, paramInfos, required); 692 } 693 694 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 695 return arrangeLLVMFunctionInfo( 696 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 697 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 698 } 699 700 const CGFunctionInfo & 701 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 702 const CallArgList &args) { 703 assert(signature.arg_size() <= args.size()); 704 if (signature.arg_size() == args.size()) 705 return signature; 706 707 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 708 auto sigParamInfos = signature.getExtParameterInfos(); 709 if (!sigParamInfos.empty()) { 710 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 711 paramInfos.resize(args.size()); 712 } 713 714 auto argTypes = getArgTypesForCall(Context, args); 715 716 assert(signature.getRequiredArgs().allowsOptionalArgs()); 717 return arrangeLLVMFunctionInfo(signature.getReturnType(), 718 signature.isInstanceMethod(), 719 signature.isChainCall(), 720 argTypes, 721 signature.getExtInfo(), 722 paramInfos, 723 signature.getRequiredArgs()); 724 } 725 726 namespace clang { 727 namespace CodeGen { 728 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 729 } 730 } 731 732 /// Arrange the argument and result information for an abstract value 733 /// of a given function type. This is the method which all of the 734 /// above functions ultimately defer to. 735 const CGFunctionInfo & 736 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 737 bool instanceMethod, 738 bool chainCall, 739 ArrayRef<CanQualType> argTypes, 740 FunctionType::ExtInfo info, 741 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 742 RequiredArgs required) { 743 assert(llvm::all_of(argTypes, 744 [](CanQualType T) { return T.isCanonicalAsParam(); })); 745 746 // Lookup or create unique function info. 747 llvm::FoldingSetNodeID ID; 748 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 749 required, resultType, argTypes); 750 751 void *insertPos = nullptr; 752 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 753 if (FI) 754 return *FI; 755 756 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 757 758 // Construct the function info. We co-allocate the ArgInfos. 759 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 760 paramInfos, resultType, argTypes, required); 761 FunctionInfos.InsertNode(FI, insertPos); 762 763 bool inserted = FunctionsBeingProcessed.insert(FI).second; 764 (void)inserted; 765 assert(inserted && "Recursively being processed?"); 766 767 // Compute ABI information. 768 if (CC == llvm::CallingConv::SPIR_KERNEL) { 769 // Force target independent argument handling for the host visible 770 // kernel functions. 771 computeSPIRKernelABIInfo(CGM, *FI); 772 } else if (info.getCC() == CC_Swift) { 773 swiftcall::computeABIInfo(CGM, *FI); 774 } else { 775 getABIInfo().computeInfo(*FI); 776 } 777 778 // Loop over all of the computed argument and return value info. If any of 779 // them are direct or extend without a specified coerce type, specify the 780 // default now. 781 ABIArgInfo &retInfo = FI->getReturnInfo(); 782 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 783 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 784 785 for (auto &I : FI->arguments()) 786 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 787 I.info.setCoerceToType(ConvertType(I.type)); 788 789 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 790 assert(erased && "Not in set?"); 791 792 return *FI; 793 } 794 795 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 796 bool instanceMethod, 797 bool chainCall, 798 const FunctionType::ExtInfo &info, 799 ArrayRef<ExtParameterInfo> paramInfos, 800 CanQualType resultType, 801 ArrayRef<CanQualType> argTypes, 802 RequiredArgs required) { 803 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 804 assert(!required.allowsOptionalArgs() || 805 required.getNumRequiredArgs() <= argTypes.size()); 806 807 void *buffer = 808 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 809 argTypes.size() + 1, paramInfos.size())); 810 811 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 812 FI->CallingConvention = llvmCC; 813 FI->EffectiveCallingConvention = llvmCC; 814 FI->ASTCallingConvention = info.getCC(); 815 FI->InstanceMethod = instanceMethod; 816 FI->ChainCall = chainCall; 817 FI->NoReturn = info.getNoReturn(); 818 FI->ReturnsRetained = info.getProducesResult(); 819 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 820 FI->NoCfCheck = info.getNoCfCheck(); 821 FI->Required = required; 822 FI->HasRegParm = info.getHasRegParm(); 823 FI->RegParm = info.getRegParm(); 824 FI->ArgStruct = nullptr; 825 FI->ArgStructAlign = 0; 826 FI->NumArgs = argTypes.size(); 827 FI->HasExtParameterInfos = !paramInfos.empty(); 828 FI->getArgsBuffer()[0].type = resultType; 829 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 830 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 831 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 832 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 833 return FI; 834 } 835 836 /***/ 837 838 namespace { 839 // ABIArgInfo::Expand implementation. 840 841 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 842 struct TypeExpansion { 843 enum TypeExpansionKind { 844 // Elements of constant arrays are expanded recursively. 845 TEK_ConstantArray, 846 // Record fields are expanded recursively (but if record is a union, only 847 // the field with the largest size is expanded). 848 TEK_Record, 849 // For complex types, real and imaginary parts are expanded recursively. 850 TEK_Complex, 851 // All other types are not expandable. 852 TEK_None 853 }; 854 855 const TypeExpansionKind Kind; 856 857 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 858 virtual ~TypeExpansion() {} 859 }; 860 861 struct ConstantArrayExpansion : TypeExpansion { 862 QualType EltTy; 863 uint64_t NumElts; 864 865 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 866 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 867 static bool classof(const TypeExpansion *TE) { 868 return TE->Kind == TEK_ConstantArray; 869 } 870 }; 871 872 struct RecordExpansion : TypeExpansion { 873 SmallVector<const CXXBaseSpecifier *, 1> Bases; 874 875 SmallVector<const FieldDecl *, 1> Fields; 876 877 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 878 SmallVector<const FieldDecl *, 1> &&Fields) 879 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 880 Fields(std::move(Fields)) {} 881 static bool classof(const TypeExpansion *TE) { 882 return TE->Kind == TEK_Record; 883 } 884 }; 885 886 struct ComplexExpansion : TypeExpansion { 887 QualType EltTy; 888 889 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 890 static bool classof(const TypeExpansion *TE) { 891 return TE->Kind == TEK_Complex; 892 } 893 }; 894 895 struct NoExpansion : TypeExpansion { 896 NoExpansion() : TypeExpansion(TEK_None) {} 897 static bool classof(const TypeExpansion *TE) { 898 return TE->Kind == TEK_None; 899 } 900 }; 901 } // namespace 902 903 static std::unique_ptr<TypeExpansion> 904 getTypeExpansion(QualType Ty, const ASTContext &Context) { 905 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 906 return std::make_unique<ConstantArrayExpansion>( 907 AT->getElementType(), AT->getSize().getZExtValue()); 908 } 909 if (const RecordType *RT = Ty->getAs<RecordType>()) { 910 SmallVector<const CXXBaseSpecifier *, 1> Bases; 911 SmallVector<const FieldDecl *, 1> Fields; 912 const RecordDecl *RD = RT->getDecl(); 913 assert(!RD->hasFlexibleArrayMember() && 914 "Cannot expand structure with flexible array."); 915 if (RD->isUnion()) { 916 // Unions can be here only in degenerative cases - all the fields are same 917 // after flattening. Thus we have to use the "largest" field. 918 const FieldDecl *LargestFD = nullptr; 919 CharUnits UnionSize = CharUnits::Zero(); 920 921 for (const auto *FD : RD->fields()) { 922 if (FD->isZeroLengthBitField(Context)) 923 continue; 924 assert(!FD->isBitField() && 925 "Cannot expand structure with bit-field members."); 926 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 927 if (UnionSize < FieldSize) { 928 UnionSize = FieldSize; 929 LargestFD = FD; 930 } 931 } 932 if (LargestFD) 933 Fields.push_back(LargestFD); 934 } else { 935 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 936 assert(!CXXRD->isDynamicClass() && 937 "cannot expand vtable pointers in dynamic classes"); 938 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 939 Bases.push_back(&BS); 940 } 941 942 for (const auto *FD : RD->fields()) { 943 if (FD->isZeroLengthBitField(Context)) 944 continue; 945 assert(!FD->isBitField() && 946 "Cannot expand structure with bit-field members."); 947 Fields.push_back(FD); 948 } 949 } 950 return std::make_unique<RecordExpansion>(std::move(Bases), 951 std::move(Fields)); 952 } 953 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 954 return std::make_unique<ComplexExpansion>(CT->getElementType()); 955 } 956 return std::make_unique<NoExpansion>(); 957 } 958 959 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 960 auto Exp = getTypeExpansion(Ty, Context); 961 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 962 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 963 } 964 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 965 int Res = 0; 966 for (auto BS : RExp->Bases) 967 Res += getExpansionSize(BS->getType(), Context); 968 for (auto FD : RExp->Fields) 969 Res += getExpansionSize(FD->getType(), Context); 970 return Res; 971 } 972 if (isa<ComplexExpansion>(Exp.get())) 973 return 2; 974 assert(isa<NoExpansion>(Exp.get())); 975 return 1; 976 } 977 978 void 979 CodeGenTypes::getExpandedTypes(QualType Ty, 980 SmallVectorImpl<llvm::Type *>::iterator &TI) { 981 auto Exp = getTypeExpansion(Ty, Context); 982 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 983 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 984 getExpandedTypes(CAExp->EltTy, TI); 985 } 986 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 987 for (auto BS : RExp->Bases) 988 getExpandedTypes(BS->getType(), TI); 989 for (auto FD : RExp->Fields) 990 getExpandedTypes(FD->getType(), TI); 991 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 992 llvm::Type *EltTy = ConvertType(CExp->EltTy); 993 *TI++ = EltTy; 994 *TI++ = EltTy; 995 } else { 996 assert(isa<NoExpansion>(Exp.get())); 997 *TI++ = ConvertType(Ty); 998 } 999 } 1000 1001 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1002 ConstantArrayExpansion *CAE, 1003 Address BaseAddr, 1004 llvm::function_ref<void(Address)> Fn) { 1005 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1006 CharUnits EltAlign = 1007 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1008 1009 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1010 llvm::Value *EltAddr = 1011 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1012 Fn(Address(EltAddr, EltAlign)); 1013 } 1014 } 1015 1016 void CodeGenFunction::ExpandTypeFromArgs( 1017 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1018 assert(LV.isSimple() && 1019 "Unexpected non-simple lvalue during struct expansion."); 1020 1021 auto Exp = getTypeExpansion(Ty, getContext()); 1022 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1023 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1024 [&](Address EltAddr) { 1025 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1026 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1027 }); 1028 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1029 Address This = LV.getAddress(); 1030 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1031 // Perform a single step derived-to-base conversion. 1032 Address Base = 1033 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1034 /*NullCheckValue=*/false, SourceLocation()); 1035 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1036 1037 // Recurse onto bases. 1038 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1039 } 1040 for (auto FD : RExp->Fields) { 1041 // FIXME: What are the right qualifiers here? 1042 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1043 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1044 } 1045 } else if (isa<ComplexExpansion>(Exp.get())) { 1046 auto realValue = *AI++; 1047 auto imagValue = *AI++; 1048 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1049 } else { 1050 assert(isa<NoExpansion>(Exp.get())); 1051 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1052 } 1053 } 1054 1055 void CodeGenFunction::ExpandTypeToArgs( 1056 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1057 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1058 auto Exp = getTypeExpansion(Ty, getContext()); 1059 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1060 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1061 : Arg.getKnownRValue().getAggregateAddress(); 1062 forConstantArrayExpansion( 1063 *this, CAExp, Addr, [&](Address EltAddr) { 1064 CallArg EltArg = CallArg( 1065 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1066 CAExp->EltTy); 1067 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1068 IRCallArgPos); 1069 }); 1070 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1071 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1072 : Arg.getKnownRValue().getAggregateAddress(); 1073 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1074 // Perform a single step derived-to-base conversion. 1075 Address Base = 1076 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1077 /*NullCheckValue=*/false, SourceLocation()); 1078 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1079 1080 // Recurse onto bases. 1081 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1082 IRCallArgPos); 1083 } 1084 1085 LValue LV = MakeAddrLValue(This, Ty); 1086 for (auto FD : RExp->Fields) { 1087 CallArg FldArg = 1088 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1089 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1090 IRCallArgPos); 1091 } 1092 } else if (isa<ComplexExpansion>(Exp.get())) { 1093 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1094 IRCallArgs[IRCallArgPos++] = CV.first; 1095 IRCallArgs[IRCallArgPos++] = CV.second; 1096 } else { 1097 assert(isa<NoExpansion>(Exp.get())); 1098 auto RV = Arg.getKnownRValue(); 1099 assert(RV.isScalar() && 1100 "Unexpected non-scalar rvalue during struct expansion."); 1101 1102 // Insert a bitcast as needed. 1103 llvm::Value *V = RV.getScalarVal(); 1104 if (IRCallArgPos < IRFuncTy->getNumParams() && 1105 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1106 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1107 1108 IRCallArgs[IRCallArgPos++] = V; 1109 } 1110 } 1111 1112 /// Create a temporary allocation for the purposes of coercion. 1113 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1114 CharUnits MinAlign) { 1115 // Don't use an alignment that's worse than what LLVM would prefer. 1116 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1117 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1118 1119 return CGF.CreateTempAlloca(Ty, Align); 1120 } 1121 1122 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1123 /// accessing some number of bytes out of it, try to gep into the struct to get 1124 /// at its inner goodness. Dive as deep as possible without entering an element 1125 /// with an in-memory size smaller than DstSize. 1126 static Address 1127 EnterStructPointerForCoercedAccess(Address SrcPtr, 1128 llvm::StructType *SrcSTy, 1129 uint64_t DstSize, CodeGenFunction &CGF) { 1130 // We can't dive into a zero-element struct. 1131 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1132 1133 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1134 1135 // If the first elt is at least as large as what we're looking for, or if the 1136 // first element is the same size as the whole struct, we can enter it. The 1137 // comparison must be made on the store size and not the alloca size. Using 1138 // the alloca size may overstate the size of the load. 1139 uint64_t FirstEltSize = 1140 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1141 if (FirstEltSize < DstSize && 1142 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1143 return SrcPtr; 1144 1145 // GEP into the first element. 1146 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1147 1148 // If the first element is a struct, recurse. 1149 llvm::Type *SrcTy = SrcPtr.getElementType(); 1150 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1151 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1152 1153 return SrcPtr; 1154 } 1155 1156 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1157 /// are either integers or pointers. This does a truncation of the value if it 1158 /// is too large or a zero extension if it is too small. 1159 /// 1160 /// This behaves as if the value were coerced through memory, so on big-endian 1161 /// targets the high bits are preserved in a truncation, while little-endian 1162 /// targets preserve the low bits. 1163 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1164 llvm::Type *Ty, 1165 CodeGenFunction &CGF) { 1166 if (Val->getType() == Ty) 1167 return Val; 1168 1169 if (isa<llvm::PointerType>(Val->getType())) { 1170 // If this is Pointer->Pointer avoid conversion to and from int. 1171 if (isa<llvm::PointerType>(Ty)) 1172 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1173 1174 // Convert the pointer to an integer so we can play with its width. 1175 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1176 } 1177 1178 llvm::Type *DestIntTy = Ty; 1179 if (isa<llvm::PointerType>(DestIntTy)) 1180 DestIntTy = CGF.IntPtrTy; 1181 1182 if (Val->getType() != DestIntTy) { 1183 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1184 if (DL.isBigEndian()) { 1185 // Preserve the high bits on big-endian targets. 1186 // That is what memory coercion does. 1187 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1188 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1189 1190 if (SrcSize > DstSize) { 1191 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1192 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1193 } else { 1194 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1195 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1196 } 1197 } else { 1198 // Little-endian targets preserve the low bits. No shifts required. 1199 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1200 } 1201 } 1202 1203 if (isa<llvm::PointerType>(Ty)) 1204 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1205 return Val; 1206 } 1207 1208 1209 1210 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1211 /// a pointer to an object of type \arg Ty, known to be aligned to 1212 /// \arg SrcAlign bytes. 1213 /// 1214 /// This safely handles the case when the src type is smaller than the 1215 /// destination type; in this situation the values of bits which not 1216 /// present in the src are undefined. 1217 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1218 CodeGenFunction &CGF) { 1219 llvm::Type *SrcTy = Src.getElementType(); 1220 1221 // If SrcTy and Ty are the same, just do a load. 1222 if (SrcTy == Ty) 1223 return CGF.Builder.CreateLoad(Src); 1224 1225 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1226 1227 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1228 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1229 SrcTy = Src.getType()->getElementType(); 1230 } 1231 1232 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1233 1234 // If the source and destination are integer or pointer types, just do an 1235 // extension or truncation to the desired type. 1236 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1237 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1238 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1239 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1240 } 1241 1242 // If load is legal, just bitcast the src pointer. 1243 if (SrcSize >= DstSize) { 1244 // Generally SrcSize is never greater than DstSize, since this means we are 1245 // losing bits. However, this can happen in cases where the structure has 1246 // additional padding, for example due to a user specified alignment. 1247 // 1248 // FIXME: Assert that we aren't truncating non-padding bits when have access 1249 // to that information. 1250 Src = CGF.Builder.CreateBitCast(Src, 1251 Ty->getPointerTo(Src.getAddressSpace())); 1252 return CGF.Builder.CreateLoad(Src); 1253 } 1254 1255 // Otherwise do coercion through memory. This is stupid, but simple. 1256 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1257 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1258 Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty); 1259 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1260 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1261 false); 1262 return CGF.Builder.CreateLoad(Tmp); 1263 } 1264 1265 // Function to store a first-class aggregate into memory. We prefer to 1266 // store the elements rather than the aggregate to be more friendly to 1267 // fast-isel. 1268 // FIXME: Do we need to recurse here? 1269 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1270 Address Dest, bool DestIsVolatile) { 1271 // Prefer scalar stores to first-class aggregate stores. 1272 if (llvm::StructType *STy = 1273 dyn_cast<llvm::StructType>(Val->getType())) { 1274 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1275 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i); 1276 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1277 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1278 } 1279 } else { 1280 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1281 } 1282 } 1283 1284 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1285 /// where the source and destination may have different types. The 1286 /// destination is known to be aligned to \arg DstAlign bytes. 1287 /// 1288 /// This safely handles the case when the src type is larger than the 1289 /// destination type; the upper bits of the src will be lost. 1290 static void CreateCoercedStore(llvm::Value *Src, 1291 Address Dst, 1292 bool DstIsVolatile, 1293 CodeGenFunction &CGF) { 1294 llvm::Type *SrcTy = Src->getType(); 1295 llvm::Type *DstTy = Dst.getType()->getElementType(); 1296 if (SrcTy == DstTy) { 1297 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1298 return; 1299 } 1300 1301 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1302 1303 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1304 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1305 DstTy = Dst.getType()->getElementType(); 1306 } 1307 1308 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1309 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1310 if (SrcPtrTy && DstPtrTy && 1311 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1312 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1313 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1314 return; 1315 } 1316 1317 // If the source and destination are integer or pointer types, just do an 1318 // extension or truncation to the desired type. 1319 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1320 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1321 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1322 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1323 return; 1324 } 1325 1326 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1327 1328 // If store is legal, just bitcast the src pointer. 1329 if (SrcSize <= DstSize) { 1330 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1331 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1332 } else { 1333 // Otherwise do coercion through memory. This is stupid, but 1334 // simple. 1335 1336 // Generally SrcSize is never greater than DstSize, since this means we are 1337 // losing bits. However, this can happen in cases where the structure has 1338 // additional padding, for example due to a user specified alignment. 1339 // 1340 // FIXME: Assert that we aren't truncating non-padding bits when have access 1341 // to that information. 1342 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1343 CGF.Builder.CreateStore(Src, Tmp); 1344 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1345 Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty); 1346 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1347 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1348 false); 1349 } 1350 } 1351 1352 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1353 const ABIArgInfo &info) { 1354 if (unsigned offset = info.getDirectOffset()) { 1355 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1356 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1357 CharUnits::fromQuantity(offset)); 1358 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1359 } 1360 return addr; 1361 } 1362 1363 namespace { 1364 1365 /// Encapsulates information about the way function arguments from 1366 /// CGFunctionInfo should be passed to actual LLVM IR function. 1367 class ClangToLLVMArgMapping { 1368 static const unsigned InvalidIndex = ~0U; 1369 unsigned InallocaArgNo; 1370 unsigned SRetArgNo; 1371 unsigned TotalIRArgs; 1372 1373 /// Arguments of LLVM IR function corresponding to single Clang argument. 1374 struct IRArgs { 1375 unsigned PaddingArgIndex; 1376 // Argument is expanded to IR arguments at positions 1377 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1378 unsigned FirstArgIndex; 1379 unsigned NumberOfArgs; 1380 1381 IRArgs() 1382 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1383 NumberOfArgs(0) {} 1384 }; 1385 1386 SmallVector<IRArgs, 8> ArgInfo; 1387 1388 public: 1389 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1390 bool OnlyRequiredArgs = false) 1391 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1392 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1393 construct(Context, FI, OnlyRequiredArgs); 1394 } 1395 1396 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1397 unsigned getInallocaArgNo() const { 1398 assert(hasInallocaArg()); 1399 return InallocaArgNo; 1400 } 1401 1402 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1403 unsigned getSRetArgNo() const { 1404 assert(hasSRetArg()); 1405 return SRetArgNo; 1406 } 1407 1408 unsigned totalIRArgs() const { return TotalIRArgs; } 1409 1410 bool hasPaddingArg(unsigned ArgNo) const { 1411 assert(ArgNo < ArgInfo.size()); 1412 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1413 } 1414 unsigned getPaddingArgNo(unsigned ArgNo) const { 1415 assert(hasPaddingArg(ArgNo)); 1416 return ArgInfo[ArgNo].PaddingArgIndex; 1417 } 1418 1419 /// Returns index of first IR argument corresponding to ArgNo, and their 1420 /// quantity. 1421 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1422 assert(ArgNo < ArgInfo.size()); 1423 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1424 ArgInfo[ArgNo].NumberOfArgs); 1425 } 1426 1427 private: 1428 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1429 bool OnlyRequiredArgs); 1430 }; 1431 1432 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1433 const CGFunctionInfo &FI, 1434 bool OnlyRequiredArgs) { 1435 unsigned IRArgNo = 0; 1436 bool SwapThisWithSRet = false; 1437 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1438 1439 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1440 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1441 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1442 } 1443 1444 unsigned ArgNo = 0; 1445 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1446 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1447 ++I, ++ArgNo) { 1448 assert(I != FI.arg_end()); 1449 QualType ArgType = I->type; 1450 const ABIArgInfo &AI = I->info; 1451 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1452 auto &IRArgs = ArgInfo[ArgNo]; 1453 1454 if (AI.getPaddingType()) 1455 IRArgs.PaddingArgIndex = IRArgNo++; 1456 1457 switch (AI.getKind()) { 1458 case ABIArgInfo::Extend: 1459 case ABIArgInfo::Direct: { 1460 // FIXME: handle sseregparm someday... 1461 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1462 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1463 IRArgs.NumberOfArgs = STy->getNumElements(); 1464 } else { 1465 IRArgs.NumberOfArgs = 1; 1466 } 1467 break; 1468 } 1469 case ABIArgInfo::Indirect: 1470 IRArgs.NumberOfArgs = 1; 1471 break; 1472 case ABIArgInfo::Ignore: 1473 case ABIArgInfo::InAlloca: 1474 // ignore and inalloca doesn't have matching LLVM parameters. 1475 IRArgs.NumberOfArgs = 0; 1476 break; 1477 case ABIArgInfo::CoerceAndExpand: 1478 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1479 break; 1480 case ABIArgInfo::Expand: 1481 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1482 break; 1483 } 1484 1485 if (IRArgs.NumberOfArgs > 0) { 1486 IRArgs.FirstArgIndex = IRArgNo; 1487 IRArgNo += IRArgs.NumberOfArgs; 1488 } 1489 1490 // Skip over the sret parameter when it comes second. We already handled it 1491 // above. 1492 if (IRArgNo == 1 && SwapThisWithSRet) 1493 IRArgNo++; 1494 } 1495 assert(ArgNo == ArgInfo.size()); 1496 1497 if (FI.usesInAlloca()) 1498 InallocaArgNo = IRArgNo++; 1499 1500 TotalIRArgs = IRArgNo; 1501 } 1502 } // namespace 1503 1504 /***/ 1505 1506 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1507 const auto &RI = FI.getReturnInfo(); 1508 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1509 } 1510 1511 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1512 return ReturnTypeUsesSRet(FI) && 1513 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1514 } 1515 1516 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1517 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1518 switch (BT->getKind()) { 1519 default: 1520 return false; 1521 case BuiltinType::Float: 1522 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1523 case BuiltinType::Double: 1524 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1525 case BuiltinType::LongDouble: 1526 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1527 } 1528 } 1529 1530 return false; 1531 } 1532 1533 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1534 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1535 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1536 if (BT->getKind() == BuiltinType::LongDouble) 1537 return getTarget().useObjCFP2RetForComplexLongDouble(); 1538 } 1539 } 1540 1541 return false; 1542 } 1543 1544 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1545 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1546 return GetFunctionType(FI); 1547 } 1548 1549 llvm::FunctionType * 1550 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1551 1552 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1553 (void)Inserted; 1554 assert(Inserted && "Recursively being processed?"); 1555 1556 llvm::Type *resultType = nullptr; 1557 const ABIArgInfo &retAI = FI.getReturnInfo(); 1558 switch (retAI.getKind()) { 1559 case ABIArgInfo::Expand: 1560 llvm_unreachable("Invalid ABI kind for return argument"); 1561 1562 case ABIArgInfo::Extend: 1563 case ABIArgInfo::Direct: 1564 resultType = retAI.getCoerceToType(); 1565 break; 1566 1567 case ABIArgInfo::InAlloca: 1568 if (retAI.getInAllocaSRet()) { 1569 // sret things on win32 aren't void, they return the sret pointer. 1570 QualType ret = FI.getReturnType(); 1571 llvm::Type *ty = ConvertType(ret); 1572 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1573 resultType = llvm::PointerType::get(ty, addressSpace); 1574 } else { 1575 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1576 } 1577 break; 1578 1579 case ABIArgInfo::Indirect: 1580 case ABIArgInfo::Ignore: 1581 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1582 break; 1583 1584 case ABIArgInfo::CoerceAndExpand: 1585 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1586 break; 1587 } 1588 1589 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1590 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1591 1592 // Add type for sret argument. 1593 if (IRFunctionArgs.hasSRetArg()) { 1594 QualType Ret = FI.getReturnType(); 1595 llvm::Type *Ty = ConvertType(Ret); 1596 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1597 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1598 llvm::PointerType::get(Ty, AddressSpace); 1599 } 1600 1601 // Add type for inalloca argument. 1602 if (IRFunctionArgs.hasInallocaArg()) { 1603 auto ArgStruct = FI.getArgStruct(); 1604 assert(ArgStruct); 1605 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1606 } 1607 1608 // Add in all of the required arguments. 1609 unsigned ArgNo = 0; 1610 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1611 ie = it + FI.getNumRequiredArgs(); 1612 for (; it != ie; ++it, ++ArgNo) { 1613 const ABIArgInfo &ArgInfo = it->info; 1614 1615 // Insert a padding type to ensure proper alignment. 1616 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1617 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1618 ArgInfo.getPaddingType(); 1619 1620 unsigned FirstIRArg, NumIRArgs; 1621 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1622 1623 switch (ArgInfo.getKind()) { 1624 case ABIArgInfo::Ignore: 1625 case ABIArgInfo::InAlloca: 1626 assert(NumIRArgs == 0); 1627 break; 1628 1629 case ABIArgInfo::Indirect: { 1630 assert(NumIRArgs == 1); 1631 // indirect arguments are always on the stack, which is alloca addr space. 1632 llvm::Type *LTy = ConvertTypeForMem(it->type); 1633 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1634 CGM.getDataLayout().getAllocaAddrSpace()); 1635 break; 1636 } 1637 1638 case ABIArgInfo::Extend: 1639 case ABIArgInfo::Direct: { 1640 // Fast-isel and the optimizer generally like scalar values better than 1641 // FCAs, so we flatten them if this is safe to do for this argument. 1642 llvm::Type *argType = ArgInfo.getCoerceToType(); 1643 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1644 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1645 assert(NumIRArgs == st->getNumElements()); 1646 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1647 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1648 } else { 1649 assert(NumIRArgs == 1); 1650 ArgTypes[FirstIRArg] = argType; 1651 } 1652 break; 1653 } 1654 1655 case ABIArgInfo::CoerceAndExpand: { 1656 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1657 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1658 *ArgTypesIter++ = EltTy; 1659 } 1660 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1661 break; 1662 } 1663 1664 case ABIArgInfo::Expand: 1665 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1666 getExpandedTypes(it->type, ArgTypesIter); 1667 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1668 break; 1669 } 1670 } 1671 1672 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1673 assert(Erased && "Not in set?"); 1674 1675 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1676 } 1677 1678 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1679 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1680 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1681 1682 if (!isFuncTypeConvertible(FPT)) 1683 return llvm::StructType::get(getLLVMContext()); 1684 1685 return GetFunctionType(GD); 1686 } 1687 1688 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1689 llvm::AttrBuilder &FuncAttrs, 1690 const FunctionProtoType *FPT) { 1691 if (!FPT) 1692 return; 1693 1694 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1695 FPT->isNothrow()) 1696 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1697 } 1698 1699 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1700 bool AttrOnCallSite, 1701 llvm::AttrBuilder &FuncAttrs) { 1702 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1703 if (!HasOptnone) { 1704 if (CodeGenOpts.OptimizeSize) 1705 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1706 if (CodeGenOpts.OptimizeSize == 2) 1707 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1708 } 1709 1710 if (CodeGenOpts.DisableRedZone) 1711 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1712 if (CodeGenOpts.IndirectTlsSegRefs) 1713 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1714 if (CodeGenOpts.NoImplicitFloat) 1715 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1716 1717 if (AttrOnCallSite) { 1718 // Attributes that should go on the call site only. 1719 if (!CodeGenOpts.SimplifyLibCalls || 1720 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1721 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1722 if (!CodeGenOpts.TrapFuncName.empty()) 1723 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1724 } else { 1725 StringRef FpKind; 1726 switch (CodeGenOpts.getFramePointer()) { 1727 case CodeGenOptions::FramePointerKind::None: 1728 FpKind = "none"; 1729 break; 1730 case CodeGenOptions::FramePointerKind::NonLeaf: 1731 FpKind = "non-leaf"; 1732 break; 1733 case CodeGenOptions::FramePointerKind::All: 1734 FpKind = "all"; 1735 break; 1736 } 1737 FuncAttrs.addAttribute("frame-pointer", FpKind); 1738 1739 FuncAttrs.addAttribute("less-precise-fpmad", 1740 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1741 1742 if (CodeGenOpts.NullPointerIsValid) 1743 FuncAttrs.addAttribute("null-pointer-is-valid", "true"); 1744 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::Invalid) 1745 FuncAttrs.addAttribute("denormal-fp-math", 1746 llvm::denormalModeName(CodeGenOpts.FPDenormalMode)); 1747 1748 FuncAttrs.addAttribute("no-trapping-math", 1749 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1750 1751 // Strict (compliant) code is the default, so only add this attribute to 1752 // indicate that we are trying to workaround a problem case. 1753 if (!CodeGenOpts.StrictFloatCastOverflow) 1754 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1755 1756 // TODO: Are these all needed? 1757 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1758 FuncAttrs.addAttribute("no-infs-fp-math", 1759 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1760 FuncAttrs.addAttribute("no-nans-fp-math", 1761 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1762 FuncAttrs.addAttribute("unsafe-fp-math", 1763 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1764 FuncAttrs.addAttribute("use-soft-float", 1765 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1766 FuncAttrs.addAttribute("stack-protector-buffer-size", 1767 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1768 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1769 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1770 FuncAttrs.addAttribute( 1771 "correctly-rounded-divide-sqrt-fp-math", 1772 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1773 1774 if (getLangOpts().OpenCL) 1775 FuncAttrs.addAttribute("denorms-are-zero", 1776 llvm::toStringRef(CodeGenOpts.FlushDenorm)); 1777 1778 // TODO: Reciprocal estimate codegen options should apply to instructions? 1779 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1780 if (!Recips.empty()) 1781 FuncAttrs.addAttribute("reciprocal-estimates", 1782 llvm::join(Recips, ",")); 1783 1784 if (!CodeGenOpts.PreferVectorWidth.empty() && 1785 CodeGenOpts.PreferVectorWidth != "none") 1786 FuncAttrs.addAttribute("prefer-vector-width", 1787 CodeGenOpts.PreferVectorWidth); 1788 1789 if (CodeGenOpts.StackRealignment) 1790 FuncAttrs.addAttribute("stackrealign"); 1791 if (CodeGenOpts.Backchain) 1792 FuncAttrs.addAttribute("backchain"); 1793 1794 if (CodeGenOpts.SpeculativeLoadHardening) 1795 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1796 } 1797 1798 if (getLangOpts().assumeFunctionsAreConvergent()) { 1799 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1800 // convergent (meaning, they may call an intrinsically convergent op, such 1801 // as __syncthreads() / barrier(), and so can't have certain optimizations 1802 // applied around them). LLVM will remove this attribute where it safely 1803 // can. 1804 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1805 } 1806 1807 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1808 // Exceptions aren't supported in CUDA device code. 1809 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1810 1811 // Respect -fcuda-flush-denormals-to-zero. 1812 if (CodeGenOpts.FlushDenorm) 1813 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1814 } 1815 1816 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1817 StringRef Var, Value; 1818 std::tie(Var, Value) = Attr.split('='); 1819 FuncAttrs.addAttribute(Var, Value); 1820 } 1821 } 1822 1823 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1824 llvm::AttrBuilder FuncAttrs; 1825 ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(), 1826 /* AttrOnCallSite = */ false, FuncAttrs); 1827 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1828 } 1829 1830 void CodeGenModule::ConstructAttributeList( 1831 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1832 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1833 llvm::AttrBuilder FuncAttrs; 1834 llvm::AttrBuilder RetAttrs; 1835 1836 CallingConv = FI.getEffectiveCallingConvention(); 1837 if (FI.isNoReturn()) 1838 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1839 1840 // If we have information about the function prototype, we can learn 1841 // attributes from there. 1842 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1843 CalleeInfo.getCalleeFunctionProtoType()); 1844 1845 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1846 1847 bool HasOptnone = false; 1848 // FIXME: handle sseregparm someday... 1849 if (TargetDecl) { 1850 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1851 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1852 if (TargetDecl->hasAttr<NoThrowAttr>()) 1853 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1854 if (TargetDecl->hasAttr<NoReturnAttr>()) 1855 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1856 if (TargetDecl->hasAttr<ColdAttr>()) 1857 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1858 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1859 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1860 if (TargetDecl->hasAttr<ConvergentAttr>()) 1861 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1862 1863 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1864 AddAttributesFromFunctionProtoType( 1865 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1866 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1867 const bool IsVirtualCall = MD && MD->isVirtual(); 1868 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1869 // virtual function. These attributes are not inherited by overloads. 1870 if (!(AttrOnCallSite && IsVirtualCall)) { 1871 if (Fn->isNoReturn()) 1872 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1873 1874 if (const auto *NBA = TargetDecl->getAttr<NoBuiltinAttr>()) { 1875 bool HasWildcard = llvm::is_contained(NBA->builtinNames(), "*"); 1876 if (HasWildcard) 1877 FuncAttrs.addAttribute("no-builtins"); 1878 else 1879 for (StringRef BuiltinName : NBA->builtinNames()) { 1880 SmallString<32> AttributeName; 1881 AttributeName += "no-builtin-"; 1882 AttributeName += BuiltinName; 1883 FuncAttrs.addAttribute(AttributeName); 1884 } 1885 } 1886 } 1887 } 1888 1889 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1890 if (TargetDecl->hasAttr<ConstAttr>()) { 1891 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1892 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1893 } else if (TargetDecl->hasAttr<PureAttr>()) { 1894 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1895 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1896 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1897 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1898 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1899 } 1900 if (TargetDecl->hasAttr<RestrictAttr>()) 1901 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1902 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1903 !CodeGenOpts.NullPointerIsValid) 1904 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1905 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1906 FuncAttrs.addAttribute("no_caller_saved_registers"); 1907 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1908 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1909 1910 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1911 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1912 Optional<unsigned> NumElemsParam; 1913 if (AllocSize->getNumElemsParam().isValid()) 1914 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1915 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1916 NumElemsParam); 1917 } 1918 } 1919 1920 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1921 1922 // This must run after constructing the default function attribute list 1923 // to ensure that the speculative load hardening attribute is removed 1924 // in the case where the -mspeculative-load-hardening flag was passed. 1925 if (TargetDecl) { 1926 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 1927 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 1928 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 1929 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1930 } 1931 1932 if (CodeGenOpts.EnableSegmentedStacks && 1933 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1934 FuncAttrs.addAttribute("split-stack"); 1935 1936 // Add NonLazyBind attribute to function declarations when -fno-plt 1937 // is used. 1938 if (TargetDecl && CodeGenOpts.NoPLT) { 1939 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1940 if (!Fn->isDefined() && !AttrOnCallSite) { 1941 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1942 } 1943 } 1944 } 1945 1946 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1947 if (getLangOpts().OpenCLVersion <= 120) { 1948 // OpenCL v1.2 Work groups are always uniform 1949 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1950 } else { 1951 // OpenCL v2.0 Work groups may be whether uniform or not. 1952 // '-cl-uniform-work-group-size' compile option gets a hint 1953 // to the compiler that the global work-size be a multiple of 1954 // the work-group size specified to clEnqueueNDRangeKernel 1955 // (i.e. work groups are uniform). 1956 FuncAttrs.addAttribute("uniform-work-group-size", 1957 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1958 } 1959 } 1960 1961 if (!AttrOnCallSite) { 1962 bool DisableTailCalls = false; 1963 1964 if (CodeGenOpts.DisableTailCalls) 1965 DisableTailCalls = true; 1966 else if (TargetDecl) { 1967 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1968 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1969 DisableTailCalls = true; 1970 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1971 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1972 if (!BD->doesNotEscape()) 1973 DisableTailCalls = true; 1974 } 1975 } 1976 1977 FuncAttrs.addAttribute("disable-tail-calls", 1978 llvm::toStringRef(DisableTailCalls)); 1979 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 1980 } 1981 1982 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1983 1984 QualType RetTy = FI.getReturnType(); 1985 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1986 switch (RetAI.getKind()) { 1987 case ABIArgInfo::Extend: 1988 if (RetAI.isSignExt()) 1989 RetAttrs.addAttribute(llvm::Attribute::SExt); 1990 else 1991 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1992 LLVM_FALLTHROUGH; 1993 case ABIArgInfo::Direct: 1994 if (RetAI.getInReg()) 1995 RetAttrs.addAttribute(llvm::Attribute::InReg); 1996 break; 1997 case ABIArgInfo::Ignore: 1998 break; 1999 2000 case ABIArgInfo::InAlloca: 2001 case ABIArgInfo::Indirect: { 2002 // inalloca and sret disable readnone and readonly 2003 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2004 .removeAttribute(llvm::Attribute::ReadNone); 2005 break; 2006 } 2007 2008 case ABIArgInfo::CoerceAndExpand: 2009 break; 2010 2011 case ABIArgInfo::Expand: 2012 llvm_unreachable("Invalid ABI kind for return argument"); 2013 } 2014 2015 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2016 QualType PTy = RefTy->getPointeeType(); 2017 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2018 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2019 .getQuantity()); 2020 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2021 !CodeGenOpts.NullPointerIsValid) 2022 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2023 } 2024 2025 bool hasUsedSRet = false; 2026 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2027 2028 // Attach attributes to sret. 2029 if (IRFunctionArgs.hasSRetArg()) { 2030 llvm::AttrBuilder SRETAttrs; 2031 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2032 hasUsedSRet = true; 2033 if (RetAI.getInReg()) 2034 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2035 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2036 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2037 } 2038 2039 // Attach attributes to inalloca argument. 2040 if (IRFunctionArgs.hasInallocaArg()) { 2041 llvm::AttrBuilder Attrs; 2042 Attrs.addAttribute(llvm::Attribute::InAlloca); 2043 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2044 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2045 } 2046 2047 unsigned ArgNo = 0; 2048 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2049 E = FI.arg_end(); 2050 I != E; ++I, ++ArgNo) { 2051 QualType ParamType = I->type; 2052 const ABIArgInfo &AI = I->info; 2053 llvm::AttrBuilder Attrs; 2054 2055 // Add attribute for padding argument, if necessary. 2056 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2057 if (AI.getPaddingInReg()) { 2058 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2059 llvm::AttributeSet::get( 2060 getLLVMContext(), 2061 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2062 } 2063 } 2064 2065 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2066 // have the corresponding parameter variable. It doesn't make 2067 // sense to do it here because parameters are so messed up. 2068 switch (AI.getKind()) { 2069 case ABIArgInfo::Extend: 2070 if (AI.isSignExt()) 2071 Attrs.addAttribute(llvm::Attribute::SExt); 2072 else 2073 Attrs.addAttribute(llvm::Attribute::ZExt); 2074 LLVM_FALLTHROUGH; 2075 case ABIArgInfo::Direct: 2076 if (ArgNo == 0 && FI.isChainCall()) 2077 Attrs.addAttribute(llvm::Attribute::Nest); 2078 else if (AI.getInReg()) 2079 Attrs.addAttribute(llvm::Attribute::InReg); 2080 break; 2081 2082 case ABIArgInfo::Indirect: { 2083 if (AI.getInReg()) 2084 Attrs.addAttribute(llvm::Attribute::InReg); 2085 2086 if (AI.getIndirectByVal()) 2087 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2088 2089 CharUnits Align = AI.getIndirectAlign(); 2090 2091 // In a byval argument, it is important that the required 2092 // alignment of the type is honored, as LLVM might be creating a 2093 // *new* stack object, and needs to know what alignment to give 2094 // it. (Sometimes it can deduce a sensible alignment on its own, 2095 // but not if clang decides it must emit a packed struct, or the 2096 // user specifies increased alignment requirements.) 2097 // 2098 // This is different from indirect *not* byval, where the object 2099 // exists already, and the align attribute is purely 2100 // informative. 2101 assert(!Align.isZero()); 2102 2103 // For now, only add this when we have a byval argument. 2104 // TODO: be less lazy about updating test cases. 2105 if (AI.getIndirectByVal()) 2106 Attrs.addAlignmentAttr(Align.getQuantity()); 2107 2108 // byval disables readnone and readonly. 2109 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2110 .removeAttribute(llvm::Attribute::ReadNone); 2111 break; 2112 } 2113 case ABIArgInfo::Ignore: 2114 case ABIArgInfo::Expand: 2115 case ABIArgInfo::CoerceAndExpand: 2116 break; 2117 2118 case ABIArgInfo::InAlloca: 2119 // inalloca disables readnone and readonly. 2120 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2121 .removeAttribute(llvm::Attribute::ReadNone); 2122 continue; 2123 } 2124 2125 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2126 QualType PTy = RefTy->getPointeeType(); 2127 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2128 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2129 .getQuantity()); 2130 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2131 !CodeGenOpts.NullPointerIsValid) 2132 Attrs.addAttribute(llvm::Attribute::NonNull); 2133 } 2134 2135 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2136 case ParameterABI::Ordinary: 2137 break; 2138 2139 case ParameterABI::SwiftIndirectResult: { 2140 // Add 'sret' if we haven't already used it for something, but 2141 // only if the result is void. 2142 if (!hasUsedSRet && RetTy->isVoidType()) { 2143 Attrs.addAttribute(llvm::Attribute::StructRet); 2144 hasUsedSRet = true; 2145 } 2146 2147 // Add 'noalias' in either case. 2148 Attrs.addAttribute(llvm::Attribute::NoAlias); 2149 2150 // Add 'dereferenceable' and 'alignment'. 2151 auto PTy = ParamType->getPointeeType(); 2152 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2153 auto info = getContext().getTypeInfoInChars(PTy); 2154 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2155 Attrs.addAttribute(llvm::Attribute::getWithAlignment( 2156 getLLVMContext(), info.second.getAsAlign())); 2157 } 2158 break; 2159 } 2160 2161 case ParameterABI::SwiftErrorResult: 2162 Attrs.addAttribute(llvm::Attribute::SwiftError); 2163 break; 2164 2165 case ParameterABI::SwiftContext: 2166 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2167 break; 2168 } 2169 2170 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2171 Attrs.addAttribute(llvm::Attribute::NoCapture); 2172 2173 if (Attrs.hasAttributes()) { 2174 unsigned FirstIRArg, NumIRArgs; 2175 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2176 for (unsigned i = 0; i < NumIRArgs; i++) 2177 ArgAttrs[FirstIRArg + i] = 2178 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2179 } 2180 } 2181 assert(ArgNo == FI.arg_size()); 2182 2183 AttrList = llvm::AttributeList::get( 2184 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2185 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2186 } 2187 2188 /// An argument came in as a promoted argument; demote it back to its 2189 /// declared type. 2190 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2191 const VarDecl *var, 2192 llvm::Value *value) { 2193 llvm::Type *varType = CGF.ConvertType(var->getType()); 2194 2195 // This can happen with promotions that actually don't change the 2196 // underlying type, like the enum promotions. 2197 if (value->getType() == varType) return value; 2198 2199 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2200 && "unexpected promotion type"); 2201 2202 if (isa<llvm::IntegerType>(varType)) 2203 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2204 2205 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2206 } 2207 2208 /// Returns the attribute (either parameter attribute, or function 2209 /// attribute), which declares argument ArgNo to be non-null. 2210 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2211 QualType ArgType, unsigned ArgNo) { 2212 // FIXME: __attribute__((nonnull)) can also be applied to: 2213 // - references to pointers, where the pointee is known to be 2214 // nonnull (apparently a Clang extension) 2215 // - transparent unions containing pointers 2216 // In the former case, LLVM IR cannot represent the constraint. In 2217 // the latter case, we have no guarantee that the transparent union 2218 // is in fact passed as a pointer. 2219 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2220 return nullptr; 2221 // First, check attribute on parameter itself. 2222 if (PVD) { 2223 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2224 return ParmNNAttr; 2225 } 2226 // Check function attributes. 2227 if (!FD) 2228 return nullptr; 2229 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2230 if (NNAttr->isNonNull(ArgNo)) 2231 return NNAttr; 2232 } 2233 return nullptr; 2234 } 2235 2236 namespace { 2237 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2238 Address Temp; 2239 Address Arg; 2240 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2241 void Emit(CodeGenFunction &CGF, Flags flags) override { 2242 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2243 CGF.Builder.CreateStore(errorValue, Arg); 2244 } 2245 }; 2246 } 2247 2248 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2249 llvm::Function *Fn, 2250 const FunctionArgList &Args) { 2251 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2252 // Naked functions don't have prologues. 2253 return; 2254 2255 // If this is an implicit-return-zero function, go ahead and 2256 // initialize the return value. TODO: it might be nice to have 2257 // a more general mechanism for this that didn't require synthesized 2258 // return statements. 2259 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2260 if (FD->hasImplicitReturnZero()) { 2261 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2262 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2263 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2264 Builder.CreateStore(Zero, ReturnValue); 2265 } 2266 } 2267 2268 // FIXME: We no longer need the types from FunctionArgList; lift up and 2269 // simplify. 2270 2271 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2272 // Flattened function arguments. 2273 SmallVector<llvm::Value *, 16> FnArgs; 2274 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2275 for (auto &Arg : Fn->args()) { 2276 FnArgs.push_back(&Arg); 2277 } 2278 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2279 2280 // If we're using inalloca, all the memory arguments are GEPs off of the last 2281 // parameter, which is a pointer to the complete memory area. 2282 Address ArgStruct = Address::invalid(); 2283 if (IRFunctionArgs.hasInallocaArg()) { 2284 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2285 FI.getArgStructAlignment()); 2286 2287 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2288 } 2289 2290 // Name the struct return parameter. 2291 if (IRFunctionArgs.hasSRetArg()) { 2292 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2293 AI->setName("agg.result"); 2294 AI->addAttr(llvm::Attribute::NoAlias); 2295 } 2296 2297 // Track if we received the parameter as a pointer (indirect, byval, or 2298 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2299 // into a local alloca for us. 2300 SmallVector<ParamValue, 16> ArgVals; 2301 ArgVals.reserve(Args.size()); 2302 2303 // Create a pointer value for every parameter declaration. This usually 2304 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2305 // any cleanups or do anything that might unwind. We do that separately, so 2306 // we can push the cleanups in the correct order for the ABI. 2307 assert(FI.arg_size() == Args.size() && 2308 "Mismatch between function signature & arguments."); 2309 unsigned ArgNo = 0; 2310 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2311 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2312 i != e; ++i, ++info_it, ++ArgNo) { 2313 const VarDecl *Arg = *i; 2314 const ABIArgInfo &ArgI = info_it->info; 2315 2316 bool isPromoted = 2317 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2318 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2319 // the parameter is promoted. In this case we convert to 2320 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2321 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2322 assert(hasScalarEvaluationKind(Ty) == 2323 hasScalarEvaluationKind(Arg->getType())); 2324 2325 unsigned FirstIRArg, NumIRArgs; 2326 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2327 2328 switch (ArgI.getKind()) { 2329 case ABIArgInfo::InAlloca: { 2330 assert(NumIRArgs == 0); 2331 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2332 Address V = 2333 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2334 ArgVals.push_back(ParamValue::forIndirect(V)); 2335 break; 2336 } 2337 2338 case ABIArgInfo::Indirect: { 2339 assert(NumIRArgs == 1); 2340 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2341 2342 if (!hasScalarEvaluationKind(Ty)) { 2343 // Aggregates and complex variables are accessed by reference. All we 2344 // need to do is realign the value, if requested. 2345 Address V = ParamAddr; 2346 if (ArgI.getIndirectRealign()) { 2347 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2348 2349 // Copy from the incoming argument pointer to the temporary with the 2350 // appropriate alignment. 2351 // 2352 // FIXME: We should have a common utility for generating an aggregate 2353 // copy. 2354 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2355 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2356 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2357 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2358 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2359 V = AlignedTemp; 2360 } 2361 ArgVals.push_back(ParamValue::forIndirect(V)); 2362 } else { 2363 // Load scalar value from indirect argument. 2364 llvm::Value *V = 2365 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2366 2367 if (isPromoted) 2368 V = emitArgumentDemotion(*this, Arg, V); 2369 ArgVals.push_back(ParamValue::forDirect(V)); 2370 } 2371 break; 2372 } 2373 2374 case ABIArgInfo::Extend: 2375 case ABIArgInfo::Direct: { 2376 2377 // If we have the trivial case, handle it with no muss and fuss. 2378 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2379 ArgI.getCoerceToType() == ConvertType(Ty) && 2380 ArgI.getDirectOffset() == 0) { 2381 assert(NumIRArgs == 1); 2382 llvm::Value *V = FnArgs[FirstIRArg]; 2383 auto AI = cast<llvm::Argument>(V); 2384 2385 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2386 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2387 PVD->getFunctionScopeIndex()) && 2388 !CGM.getCodeGenOpts().NullPointerIsValid) 2389 AI->addAttr(llvm::Attribute::NonNull); 2390 2391 QualType OTy = PVD->getOriginalType(); 2392 if (const auto *ArrTy = 2393 getContext().getAsConstantArrayType(OTy)) { 2394 // A C99 array parameter declaration with the static keyword also 2395 // indicates dereferenceability, and if the size is constant we can 2396 // use the dereferenceable attribute (which requires the size in 2397 // bytes). 2398 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2399 QualType ETy = ArrTy->getElementType(); 2400 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2401 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2402 ArrSize) { 2403 llvm::AttrBuilder Attrs; 2404 Attrs.addDereferenceableAttr( 2405 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2406 AI->addAttrs(Attrs); 2407 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2408 !CGM.getCodeGenOpts().NullPointerIsValid) { 2409 AI->addAttr(llvm::Attribute::NonNull); 2410 } 2411 } 2412 } else if (const auto *ArrTy = 2413 getContext().getAsVariableArrayType(OTy)) { 2414 // For C99 VLAs with the static keyword, we don't know the size so 2415 // we can't use the dereferenceable attribute, but in addrspace(0) 2416 // we know that it must be nonnull. 2417 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2418 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2419 !CGM.getCodeGenOpts().NullPointerIsValid) 2420 AI->addAttr(llvm::Attribute::NonNull); 2421 } 2422 2423 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2424 if (!AVAttr) 2425 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2426 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2427 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2428 // If alignment-assumption sanitizer is enabled, we do *not* add 2429 // alignment attribute here, but emit normal alignment assumption, 2430 // so the UBSAN check could function. 2431 llvm::Value *AlignmentValue = 2432 EmitScalarExpr(AVAttr->getAlignment()); 2433 llvm::ConstantInt *AlignmentCI = 2434 cast<llvm::ConstantInt>(AlignmentValue); 2435 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2436 +llvm::Value::MaximumAlignment); 2437 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2438 } 2439 } 2440 2441 if (Arg->getType().isRestrictQualified()) 2442 AI->addAttr(llvm::Attribute::NoAlias); 2443 2444 // LLVM expects swifterror parameters to be used in very restricted 2445 // ways. Copy the value into a less-restricted temporary. 2446 if (FI.getExtParameterInfo(ArgNo).getABI() 2447 == ParameterABI::SwiftErrorResult) { 2448 QualType pointeeTy = Ty->getPointeeType(); 2449 assert(pointeeTy->isPointerType()); 2450 Address temp = 2451 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2452 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2453 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2454 Builder.CreateStore(incomingErrorValue, temp); 2455 V = temp.getPointer(); 2456 2457 // Push a cleanup to copy the value back at the end of the function. 2458 // The convention does not guarantee that the value will be written 2459 // back if the function exits with an unwind exception. 2460 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2461 } 2462 2463 // Ensure the argument is the correct type. 2464 if (V->getType() != ArgI.getCoerceToType()) 2465 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2466 2467 if (isPromoted) 2468 V = emitArgumentDemotion(*this, Arg, V); 2469 2470 // Because of merging of function types from multiple decls it is 2471 // possible for the type of an argument to not match the corresponding 2472 // type in the function type. Since we are codegening the callee 2473 // in here, add a cast to the argument type. 2474 llvm::Type *LTy = ConvertType(Arg->getType()); 2475 if (V->getType() != LTy) 2476 V = Builder.CreateBitCast(V, LTy); 2477 2478 ArgVals.push_back(ParamValue::forDirect(V)); 2479 break; 2480 } 2481 2482 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2483 Arg->getName()); 2484 2485 // Pointer to store into. 2486 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2487 2488 // Fast-isel and the optimizer generally like scalar values better than 2489 // FCAs, so we flatten them if this is safe to do for this argument. 2490 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2491 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2492 STy->getNumElements() > 1) { 2493 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2494 llvm::Type *DstTy = Ptr.getElementType(); 2495 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2496 2497 Address AddrToStoreInto = Address::invalid(); 2498 if (SrcSize <= DstSize) { 2499 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2500 } else { 2501 AddrToStoreInto = 2502 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2503 } 2504 2505 assert(STy->getNumElements() == NumIRArgs); 2506 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2507 auto AI = FnArgs[FirstIRArg + i]; 2508 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2509 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2510 Builder.CreateStore(AI, EltPtr); 2511 } 2512 2513 if (SrcSize > DstSize) { 2514 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2515 } 2516 2517 } else { 2518 // Simple case, just do a coerced store of the argument into the alloca. 2519 assert(NumIRArgs == 1); 2520 auto AI = FnArgs[FirstIRArg]; 2521 AI->setName(Arg->getName() + ".coerce"); 2522 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2523 } 2524 2525 // Match to what EmitParmDecl is expecting for this type. 2526 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2527 llvm::Value *V = 2528 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2529 if (isPromoted) 2530 V = emitArgumentDemotion(*this, Arg, V); 2531 ArgVals.push_back(ParamValue::forDirect(V)); 2532 } else { 2533 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2534 } 2535 break; 2536 } 2537 2538 case ABIArgInfo::CoerceAndExpand: { 2539 // Reconstruct into a temporary. 2540 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2541 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2542 2543 auto coercionType = ArgI.getCoerceAndExpandType(); 2544 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2545 2546 unsigned argIndex = FirstIRArg; 2547 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2548 llvm::Type *eltType = coercionType->getElementType(i); 2549 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2550 continue; 2551 2552 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2553 auto elt = FnArgs[argIndex++]; 2554 Builder.CreateStore(elt, eltAddr); 2555 } 2556 assert(argIndex == FirstIRArg + NumIRArgs); 2557 break; 2558 } 2559 2560 case ABIArgInfo::Expand: { 2561 // If this structure was expanded into multiple arguments then 2562 // we need to create a temporary and reconstruct it from the 2563 // arguments. 2564 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2565 LValue LV = MakeAddrLValue(Alloca, Ty); 2566 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2567 2568 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2569 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2570 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2571 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2572 auto AI = FnArgs[FirstIRArg + i]; 2573 AI->setName(Arg->getName() + "." + Twine(i)); 2574 } 2575 break; 2576 } 2577 2578 case ABIArgInfo::Ignore: 2579 assert(NumIRArgs == 0); 2580 // Initialize the local variable appropriately. 2581 if (!hasScalarEvaluationKind(Ty)) { 2582 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2583 } else { 2584 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2585 ArgVals.push_back(ParamValue::forDirect(U)); 2586 } 2587 break; 2588 } 2589 } 2590 2591 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2592 for (int I = Args.size() - 1; I >= 0; --I) 2593 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2594 } else { 2595 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2596 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2597 } 2598 } 2599 2600 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2601 while (insn->use_empty()) { 2602 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2603 if (!bitcast) return; 2604 2605 // This is "safe" because we would have used a ConstantExpr otherwise. 2606 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2607 bitcast->eraseFromParent(); 2608 } 2609 } 2610 2611 /// Try to emit a fused autorelease of a return result. 2612 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2613 llvm::Value *result) { 2614 // We must be immediately followed the cast. 2615 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2616 if (BB->empty()) return nullptr; 2617 if (&BB->back() != result) return nullptr; 2618 2619 llvm::Type *resultType = result->getType(); 2620 2621 // result is in a BasicBlock and is therefore an Instruction. 2622 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2623 2624 SmallVector<llvm::Instruction *, 4> InstsToKill; 2625 2626 // Look for: 2627 // %generator = bitcast %type1* %generator2 to %type2* 2628 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2629 // We would have emitted this as a constant if the operand weren't 2630 // an Instruction. 2631 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2632 2633 // Require the generator to be immediately followed by the cast. 2634 if (generator->getNextNode() != bitcast) 2635 return nullptr; 2636 2637 InstsToKill.push_back(bitcast); 2638 } 2639 2640 // Look for: 2641 // %generator = call i8* @objc_retain(i8* %originalResult) 2642 // or 2643 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2644 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2645 if (!call) return nullptr; 2646 2647 bool doRetainAutorelease; 2648 2649 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2650 doRetainAutorelease = true; 2651 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2652 .objc_retainAutoreleasedReturnValue) { 2653 doRetainAutorelease = false; 2654 2655 // If we emitted an assembly marker for this call (and the 2656 // ARCEntrypoints field should have been set if so), go looking 2657 // for that call. If we can't find it, we can't do this 2658 // optimization. But it should always be the immediately previous 2659 // instruction, unless we needed bitcasts around the call. 2660 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2661 llvm::Instruction *prev = call->getPrevNode(); 2662 assert(prev); 2663 if (isa<llvm::BitCastInst>(prev)) { 2664 prev = prev->getPrevNode(); 2665 assert(prev); 2666 } 2667 assert(isa<llvm::CallInst>(prev)); 2668 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2669 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2670 InstsToKill.push_back(prev); 2671 } 2672 } else { 2673 return nullptr; 2674 } 2675 2676 result = call->getArgOperand(0); 2677 InstsToKill.push_back(call); 2678 2679 // Keep killing bitcasts, for sanity. Note that we no longer care 2680 // about precise ordering as long as there's exactly one use. 2681 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2682 if (!bitcast->hasOneUse()) break; 2683 InstsToKill.push_back(bitcast); 2684 result = bitcast->getOperand(0); 2685 } 2686 2687 // Delete all the unnecessary instructions, from latest to earliest. 2688 for (auto *I : InstsToKill) 2689 I->eraseFromParent(); 2690 2691 // Do the fused retain/autorelease if we were asked to. 2692 if (doRetainAutorelease) 2693 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2694 2695 // Cast back to the result type. 2696 return CGF.Builder.CreateBitCast(result, resultType); 2697 } 2698 2699 /// If this is a +1 of the value of an immutable 'self', remove it. 2700 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2701 llvm::Value *result) { 2702 // This is only applicable to a method with an immutable 'self'. 2703 const ObjCMethodDecl *method = 2704 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2705 if (!method) return nullptr; 2706 const VarDecl *self = method->getSelfDecl(); 2707 if (!self->getType().isConstQualified()) return nullptr; 2708 2709 // Look for a retain call. 2710 llvm::CallInst *retainCall = 2711 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2712 if (!retainCall || 2713 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2714 return nullptr; 2715 2716 // Look for an ordinary load of 'self'. 2717 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2718 llvm::LoadInst *load = 2719 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2720 if (!load || load->isAtomic() || load->isVolatile() || 2721 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2722 return nullptr; 2723 2724 // Okay! Burn it all down. This relies for correctness on the 2725 // assumption that the retain is emitted as part of the return and 2726 // that thereafter everything is used "linearly". 2727 llvm::Type *resultType = result->getType(); 2728 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2729 assert(retainCall->use_empty()); 2730 retainCall->eraseFromParent(); 2731 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2732 2733 return CGF.Builder.CreateBitCast(load, resultType); 2734 } 2735 2736 /// Emit an ARC autorelease of the result of a function. 2737 /// 2738 /// \return the value to actually return from the function 2739 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2740 llvm::Value *result) { 2741 // If we're returning 'self', kill the initial retain. This is a 2742 // heuristic attempt to "encourage correctness" in the really unfortunate 2743 // case where we have a return of self during a dealloc and we desperately 2744 // need to avoid the possible autorelease. 2745 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2746 return self; 2747 2748 // At -O0, try to emit a fused retain/autorelease. 2749 if (CGF.shouldUseFusedARCCalls()) 2750 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2751 return fused; 2752 2753 return CGF.EmitARCAutoreleaseReturnValue(result); 2754 } 2755 2756 /// Heuristically search for a dominating store to the return-value slot. 2757 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2758 // Check if a User is a store which pointerOperand is the ReturnValue. 2759 // We are looking for stores to the ReturnValue, not for stores of the 2760 // ReturnValue to some other location. 2761 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2762 auto *SI = dyn_cast<llvm::StoreInst>(U); 2763 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2764 return nullptr; 2765 // These aren't actually possible for non-coerced returns, and we 2766 // only care about non-coerced returns on this code path. 2767 assert(!SI->isAtomic() && !SI->isVolatile()); 2768 return SI; 2769 }; 2770 // If there are multiple uses of the return-value slot, just check 2771 // for something immediately preceding the IP. Sometimes this can 2772 // happen with how we generate implicit-returns; it can also happen 2773 // with noreturn cleanups. 2774 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2775 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2776 if (IP->empty()) return nullptr; 2777 llvm::Instruction *I = &IP->back(); 2778 2779 // Skip lifetime markers 2780 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2781 IE = IP->rend(); 2782 II != IE; ++II) { 2783 if (llvm::IntrinsicInst *Intrinsic = 2784 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2785 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2786 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2787 ++II; 2788 if (II == IE) 2789 break; 2790 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2791 continue; 2792 } 2793 } 2794 I = &*II; 2795 break; 2796 } 2797 2798 return GetStoreIfValid(I); 2799 } 2800 2801 llvm::StoreInst *store = 2802 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2803 if (!store) return nullptr; 2804 2805 // Now do a first-and-dirty dominance check: just walk up the 2806 // single-predecessors chain from the current insertion point. 2807 llvm::BasicBlock *StoreBB = store->getParent(); 2808 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2809 while (IP != StoreBB) { 2810 if (!(IP = IP->getSinglePredecessor())) 2811 return nullptr; 2812 } 2813 2814 // Okay, the store's basic block dominates the insertion point; we 2815 // can do our thing. 2816 return store; 2817 } 2818 2819 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2820 bool EmitRetDbgLoc, 2821 SourceLocation EndLoc) { 2822 if (FI.isNoReturn()) { 2823 // Noreturn functions don't return. 2824 EmitUnreachable(EndLoc); 2825 return; 2826 } 2827 2828 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2829 // Naked functions don't have epilogues. 2830 Builder.CreateUnreachable(); 2831 return; 2832 } 2833 2834 // Functions with no result always return void. 2835 if (!ReturnValue.isValid()) { 2836 Builder.CreateRetVoid(); 2837 return; 2838 } 2839 2840 llvm::DebugLoc RetDbgLoc; 2841 llvm::Value *RV = nullptr; 2842 QualType RetTy = FI.getReturnType(); 2843 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2844 2845 switch (RetAI.getKind()) { 2846 case ABIArgInfo::InAlloca: 2847 // Aggregrates get evaluated directly into the destination. Sometimes we 2848 // need to return the sret value in a register, though. 2849 assert(hasAggregateEvaluationKind(RetTy)); 2850 if (RetAI.getInAllocaSRet()) { 2851 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2852 --EI; 2853 llvm::Value *ArgStruct = &*EI; 2854 llvm::Value *SRet = Builder.CreateStructGEP( 2855 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2856 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2857 } 2858 break; 2859 2860 case ABIArgInfo::Indirect: { 2861 auto AI = CurFn->arg_begin(); 2862 if (RetAI.isSRetAfterThis()) 2863 ++AI; 2864 switch (getEvaluationKind(RetTy)) { 2865 case TEK_Complex: { 2866 ComplexPairTy RT = 2867 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2868 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2869 /*isInit*/ true); 2870 break; 2871 } 2872 case TEK_Aggregate: 2873 // Do nothing; aggregrates get evaluated directly into the destination. 2874 break; 2875 case TEK_Scalar: 2876 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2877 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2878 /*isInit*/ true); 2879 break; 2880 } 2881 break; 2882 } 2883 2884 case ABIArgInfo::Extend: 2885 case ABIArgInfo::Direct: 2886 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2887 RetAI.getDirectOffset() == 0) { 2888 // The internal return value temp always will have pointer-to-return-type 2889 // type, just do a load. 2890 2891 // If there is a dominating store to ReturnValue, we can elide 2892 // the load, zap the store, and usually zap the alloca. 2893 if (llvm::StoreInst *SI = 2894 findDominatingStoreToReturnValue(*this)) { 2895 // Reuse the debug location from the store unless there is 2896 // cleanup code to be emitted between the store and return 2897 // instruction. 2898 if (EmitRetDbgLoc && !AutoreleaseResult) 2899 RetDbgLoc = SI->getDebugLoc(); 2900 // Get the stored value and nuke the now-dead store. 2901 RV = SI->getValueOperand(); 2902 SI->eraseFromParent(); 2903 2904 // Otherwise, we have to do a simple load. 2905 } else { 2906 RV = Builder.CreateLoad(ReturnValue); 2907 } 2908 } else { 2909 // If the value is offset in memory, apply the offset now. 2910 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2911 2912 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2913 } 2914 2915 // In ARC, end functions that return a retainable type with a call 2916 // to objc_autoreleaseReturnValue. 2917 if (AutoreleaseResult) { 2918 #ifndef NDEBUG 2919 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2920 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2921 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2922 // CurCodeDecl or BlockInfo. 2923 QualType RT; 2924 2925 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2926 RT = FD->getReturnType(); 2927 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2928 RT = MD->getReturnType(); 2929 else if (isa<BlockDecl>(CurCodeDecl)) 2930 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2931 else 2932 llvm_unreachable("Unexpected function/method type"); 2933 2934 assert(getLangOpts().ObjCAutoRefCount && 2935 !FI.isReturnsRetained() && 2936 RT->isObjCRetainableType()); 2937 #endif 2938 RV = emitAutoreleaseOfResult(*this, RV); 2939 } 2940 2941 break; 2942 2943 case ABIArgInfo::Ignore: 2944 break; 2945 2946 case ABIArgInfo::CoerceAndExpand: { 2947 auto coercionType = RetAI.getCoerceAndExpandType(); 2948 2949 // Load all of the coerced elements out into results. 2950 llvm::SmallVector<llvm::Value*, 4> results; 2951 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2952 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2953 auto coercedEltType = coercionType->getElementType(i); 2954 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2955 continue; 2956 2957 auto eltAddr = Builder.CreateStructGEP(addr, i); 2958 auto elt = Builder.CreateLoad(eltAddr); 2959 results.push_back(elt); 2960 } 2961 2962 // If we have one result, it's the single direct result type. 2963 if (results.size() == 1) { 2964 RV = results[0]; 2965 2966 // Otherwise, we need to make a first-class aggregate. 2967 } else { 2968 // Construct a return type that lacks padding elements. 2969 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2970 2971 RV = llvm::UndefValue::get(returnType); 2972 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2973 RV = Builder.CreateInsertValue(RV, results[i], i); 2974 } 2975 } 2976 break; 2977 } 2978 2979 case ABIArgInfo::Expand: 2980 llvm_unreachable("Invalid ABI kind for return argument"); 2981 } 2982 2983 llvm::Instruction *Ret; 2984 if (RV) { 2985 EmitReturnValueCheck(RV); 2986 Ret = Builder.CreateRet(RV); 2987 } else { 2988 Ret = Builder.CreateRetVoid(); 2989 } 2990 2991 if (RetDbgLoc) 2992 Ret->setDebugLoc(std::move(RetDbgLoc)); 2993 } 2994 2995 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2996 // A current decl may not be available when emitting vtable thunks. 2997 if (!CurCodeDecl) 2998 return; 2999 3000 ReturnsNonNullAttr *RetNNAttr = nullptr; 3001 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3002 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3003 3004 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3005 return; 3006 3007 // Prefer the returns_nonnull attribute if it's present. 3008 SourceLocation AttrLoc; 3009 SanitizerMask CheckKind; 3010 SanitizerHandler Handler; 3011 if (RetNNAttr) { 3012 assert(!requiresReturnValueNullabilityCheck() && 3013 "Cannot check nullability and the nonnull attribute"); 3014 AttrLoc = RetNNAttr->getLocation(); 3015 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3016 Handler = SanitizerHandler::NonnullReturn; 3017 } else { 3018 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3019 if (auto *TSI = DD->getTypeSourceInfo()) 3020 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 3021 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3022 CheckKind = SanitizerKind::NullabilityReturn; 3023 Handler = SanitizerHandler::NullabilityReturn; 3024 } 3025 3026 SanitizerScope SanScope(this); 3027 3028 // Make sure the "return" source location is valid. If we're checking a 3029 // nullability annotation, make sure the preconditions for the check are met. 3030 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3031 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3032 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3033 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3034 if (requiresReturnValueNullabilityCheck()) 3035 CanNullCheck = 3036 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3037 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3038 EmitBlock(Check); 3039 3040 // Now do the null check. 3041 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3042 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3043 llvm::Value *DynamicData[] = {SLocPtr}; 3044 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3045 3046 EmitBlock(NoCheck); 3047 3048 #ifndef NDEBUG 3049 // The return location should not be used after the check has been emitted. 3050 ReturnLocation = Address::invalid(); 3051 #endif 3052 } 3053 3054 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3055 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3056 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3057 } 3058 3059 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3060 QualType Ty) { 3061 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3062 // placeholders. 3063 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3064 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3065 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3066 3067 // FIXME: When we generate this IR in one pass, we shouldn't need 3068 // this win32-specific alignment hack. 3069 CharUnits Align = CharUnits::fromQuantity(4); 3070 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3071 3072 return AggValueSlot::forAddr(Address(Placeholder, Align), 3073 Ty.getQualifiers(), 3074 AggValueSlot::IsNotDestructed, 3075 AggValueSlot::DoesNotNeedGCBarriers, 3076 AggValueSlot::IsNotAliased, 3077 AggValueSlot::DoesNotOverlap); 3078 } 3079 3080 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3081 const VarDecl *param, 3082 SourceLocation loc) { 3083 // StartFunction converted the ABI-lowered parameter(s) into a 3084 // local alloca. We need to turn that into an r-value suitable 3085 // for EmitCall. 3086 Address local = GetAddrOfLocalVar(param); 3087 3088 QualType type = param->getType(); 3089 3090 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3091 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3092 } 3093 3094 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3095 // but the argument needs to be the original pointer. 3096 if (type->isReferenceType()) { 3097 args.add(RValue::get(Builder.CreateLoad(local)), type); 3098 3099 // In ARC, move out of consumed arguments so that the release cleanup 3100 // entered by StartFunction doesn't cause an over-release. This isn't 3101 // optimal -O0 code generation, but it should get cleaned up when 3102 // optimization is enabled. This also assumes that delegate calls are 3103 // performed exactly once for a set of arguments, but that should be safe. 3104 } else if (getLangOpts().ObjCAutoRefCount && 3105 param->hasAttr<NSConsumedAttr>() && 3106 type->isObjCRetainableType()) { 3107 llvm::Value *ptr = Builder.CreateLoad(local); 3108 auto null = 3109 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3110 Builder.CreateStore(null, local); 3111 args.add(RValue::get(ptr), type); 3112 3113 // For the most part, we just need to load the alloca, except that 3114 // aggregate r-values are actually pointers to temporaries. 3115 } else { 3116 args.add(convertTempToRValue(local, type, loc), type); 3117 } 3118 3119 // Deactivate the cleanup for the callee-destructed param that was pushed. 3120 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3121 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3122 param->needsDestruction(getContext())) { 3123 EHScopeStack::stable_iterator cleanup = 3124 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3125 assert(cleanup.isValid() && 3126 "cleanup for callee-destructed param not recorded"); 3127 // This unreachable is a temporary marker which will be removed later. 3128 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3129 args.addArgCleanupDeactivation(cleanup, isActive); 3130 } 3131 } 3132 3133 static bool isProvablyNull(llvm::Value *addr) { 3134 return isa<llvm::ConstantPointerNull>(addr); 3135 } 3136 3137 /// Emit the actual writing-back of a writeback. 3138 static void emitWriteback(CodeGenFunction &CGF, 3139 const CallArgList::Writeback &writeback) { 3140 const LValue &srcLV = writeback.Source; 3141 Address srcAddr = srcLV.getAddress(); 3142 assert(!isProvablyNull(srcAddr.getPointer()) && 3143 "shouldn't have writeback for provably null argument"); 3144 3145 llvm::BasicBlock *contBB = nullptr; 3146 3147 // If the argument wasn't provably non-null, we need to null check 3148 // before doing the store. 3149 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3150 CGF.CGM.getDataLayout()); 3151 if (!provablyNonNull) { 3152 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3153 contBB = CGF.createBasicBlock("icr.done"); 3154 3155 llvm::Value *isNull = 3156 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3157 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3158 CGF.EmitBlock(writebackBB); 3159 } 3160 3161 // Load the value to writeback. 3162 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3163 3164 // Cast it back, in case we're writing an id to a Foo* or something. 3165 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3166 "icr.writeback-cast"); 3167 3168 // Perform the writeback. 3169 3170 // If we have a "to use" value, it's something we need to emit a use 3171 // of. This has to be carefully threaded in: if it's done after the 3172 // release it's potentially undefined behavior (and the optimizer 3173 // will ignore it), and if it happens before the retain then the 3174 // optimizer could move the release there. 3175 if (writeback.ToUse) { 3176 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3177 3178 // Retain the new value. No need to block-copy here: the block's 3179 // being passed up the stack. 3180 value = CGF.EmitARCRetainNonBlock(value); 3181 3182 // Emit the intrinsic use here. 3183 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3184 3185 // Load the old value (primitively). 3186 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3187 3188 // Put the new value in place (primitively). 3189 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3190 3191 // Release the old value. 3192 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3193 3194 // Otherwise, we can just do a normal lvalue store. 3195 } else { 3196 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3197 } 3198 3199 // Jump to the continuation block. 3200 if (!provablyNonNull) 3201 CGF.EmitBlock(contBB); 3202 } 3203 3204 static void emitWritebacks(CodeGenFunction &CGF, 3205 const CallArgList &args) { 3206 for (const auto &I : args.writebacks()) 3207 emitWriteback(CGF, I); 3208 } 3209 3210 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3211 const CallArgList &CallArgs) { 3212 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3213 CallArgs.getCleanupsToDeactivate(); 3214 // Iterate in reverse to increase the likelihood of popping the cleanup. 3215 for (const auto &I : llvm::reverse(Cleanups)) { 3216 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3217 I.IsActiveIP->eraseFromParent(); 3218 } 3219 } 3220 3221 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3222 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3223 if (uop->getOpcode() == UO_AddrOf) 3224 return uop->getSubExpr(); 3225 return nullptr; 3226 } 3227 3228 /// Emit an argument that's being passed call-by-writeback. That is, 3229 /// we are passing the address of an __autoreleased temporary; it 3230 /// might be copy-initialized with the current value of the given 3231 /// address, but it will definitely be copied out of after the call. 3232 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3233 const ObjCIndirectCopyRestoreExpr *CRE) { 3234 LValue srcLV; 3235 3236 // Make an optimistic effort to emit the address as an l-value. 3237 // This can fail if the argument expression is more complicated. 3238 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3239 srcLV = CGF.EmitLValue(lvExpr); 3240 3241 // Otherwise, just emit it as a scalar. 3242 } else { 3243 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3244 3245 QualType srcAddrType = 3246 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3247 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3248 } 3249 Address srcAddr = srcLV.getAddress(); 3250 3251 // The dest and src types don't necessarily match in LLVM terms 3252 // because of the crazy ObjC compatibility rules. 3253 3254 llvm::PointerType *destType = 3255 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3256 3257 // If the address is a constant null, just pass the appropriate null. 3258 if (isProvablyNull(srcAddr.getPointer())) { 3259 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3260 CRE->getType()); 3261 return; 3262 } 3263 3264 // Create the temporary. 3265 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3266 CGF.getPointerAlign(), 3267 "icr.temp"); 3268 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3269 // and that cleanup will be conditional if we can't prove that the l-value 3270 // isn't null, so we need to register a dominating point so that the cleanups 3271 // system will make valid IR. 3272 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3273 3274 // Zero-initialize it if we're not doing a copy-initialization. 3275 bool shouldCopy = CRE->shouldCopy(); 3276 if (!shouldCopy) { 3277 llvm::Value *null = 3278 llvm::ConstantPointerNull::get( 3279 cast<llvm::PointerType>(destType->getElementType())); 3280 CGF.Builder.CreateStore(null, temp); 3281 } 3282 3283 llvm::BasicBlock *contBB = nullptr; 3284 llvm::BasicBlock *originBB = nullptr; 3285 3286 // If the address is *not* known to be non-null, we need to switch. 3287 llvm::Value *finalArgument; 3288 3289 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3290 CGF.CGM.getDataLayout()); 3291 if (provablyNonNull) { 3292 finalArgument = temp.getPointer(); 3293 } else { 3294 llvm::Value *isNull = 3295 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3296 3297 finalArgument = CGF.Builder.CreateSelect(isNull, 3298 llvm::ConstantPointerNull::get(destType), 3299 temp.getPointer(), "icr.argument"); 3300 3301 // If we need to copy, then the load has to be conditional, which 3302 // means we need control flow. 3303 if (shouldCopy) { 3304 originBB = CGF.Builder.GetInsertBlock(); 3305 contBB = CGF.createBasicBlock("icr.cont"); 3306 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3307 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3308 CGF.EmitBlock(copyBB); 3309 condEval.begin(CGF); 3310 } 3311 } 3312 3313 llvm::Value *valueToUse = nullptr; 3314 3315 // Perform a copy if necessary. 3316 if (shouldCopy) { 3317 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3318 assert(srcRV.isScalar()); 3319 3320 llvm::Value *src = srcRV.getScalarVal(); 3321 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3322 "icr.cast"); 3323 3324 // Use an ordinary store, not a store-to-lvalue. 3325 CGF.Builder.CreateStore(src, temp); 3326 3327 // If optimization is enabled, and the value was held in a 3328 // __strong variable, we need to tell the optimizer that this 3329 // value has to stay alive until we're doing the store back. 3330 // This is because the temporary is effectively unretained, 3331 // and so otherwise we can violate the high-level semantics. 3332 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3333 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3334 valueToUse = src; 3335 } 3336 } 3337 3338 // Finish the control flow if we needed it. 3339 if (shouldCopy && !provablyNonNull) { 3340 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3341 CGF.EmitBlock(contBB); 3342 3343 // Make a phi for the value to intrinsically use. 3344 if (valueToUse) { 3345 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3346 "icr.to-use"); 3347 phiToUse->addIncoming(valueToUse, copyBB); 3348 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3349 originBB); 3350 valueToUse = phiToUse; 3351 } 3352 3353 condEval.end(CGF); 3354 } 3355 3356 args.addWriteback(srcLV, temp, valueToUse); 3357 args.add(RValue::get(finalArgument), CRE->getType()); 3358 } 3359 3360 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3361 assert(!StackBase); 3362 3363 // Save the stack. 3364 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3365 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3366 } 3367 3368 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3369 if (StackBase) { 3370 // Restore the stack after the call. 3371 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3372 CGF.Builder.CreateCall(F, StackBase); 3373 } 3374 } 3375 3376 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3377 SourceLocation ArgLoc, 3378 AbstractCallee AC, 3379 unsigned ParmNum) { 3380 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3381 SanOpts.has(SanitizerKind::NullabilityArg))) 3382 return; 3383 3384 // The param decl may be missing in a variadic function. 3385 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3386 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3387 3388 // Prefer the nonnull attribute if it's present. 3389 const NonNullAttr *NNAttr = nullptr; 3390 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3391 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3392 3393 bool CanCheckNullability = false; 3394 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3395 auto Nullability = PVD->getType()->getNullability(getContext()); 3396 CanCheckNullability = Nullability && 3397 *Nullability == NullabilityKind::NonNull && 3398 PVD->getTypeSourceInfo(); 3399 } 3400 3401 if (!NNAttr && !CanCheckNullability) 3402 return; 3403 3404 SourceLocation AttrLoc; 3405 SanitizerMask CheckKind; 3406 SanitizerHandler Handler; 3407 if (NNAttr) { 3408 AttrLoc = NNAttr->getLocation(); 3409 CheckKind = SanitizerKind::NonnullAttribute; 3410 Handler = SanitizerHandler::NonnullArg; 3411 } else { 3412 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3413 CheckKind = SanitizerKind::NullabilityArg; 3414 Handler = SanitizerHandler::NullabilityArg; 3415 } 3416 3417 SanitizerScope SanScope(this); 3418 assert(RV.isScalar()); 3419 llvm::Value *V = RV.getScalarVal(); 3420 llvm::Value *Cond = 3421 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3422 llvm::Constant *StaticData[] = { 3423 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3424 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3425 }; 3426 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3427 } 3428 3429 void CodeGenFunction::EmitCallArgs( 3430 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3431 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3432 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3433 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3434 3435 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3436 // because arguments are destroyed left to right in the callee. As a special 3437 // case, there are certain language constructs that require left-to-right 3438 // evaluation, and in those cases we consider the evaluation order requirement 3439 // to trump the "destruction order is reverse construction order" guarantee. 3440 bool LeftToRight = 3441 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3442 ? Order == EvaluationOrder::ForceLeftToRight 3443 : Order != EvaluationOrder::ForceRightToLeft; 3444 3445 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3446 RValue EmittedArg) { 3447 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3448 return; 3449 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3450 if (PS == nullptr) 3451 return; 3452 3453 const auto &Context = getContext(); 3454 auto SizeTy = Context.getSizeType(); 3455 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3456 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3457 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3458 EmittedArg.getScalarVal(), 3459 PS->isDynamic()); 3460 Args.add(RValue::get(V), SizeTy); 3461 // If we're emitting args in reverse, be sure to do so with 3462 // pass_object_size, as well. 3463 if (!LeftToRight) 3464 std::swap(Args.back(), *(&Args.back() - 1)); 3465 }; 3466 3467 // Insert a stack save if we're going to need any inalloca args. 3468 bool HasInAllocaArgs = false; 3469 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3470 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3471 I != E && !HasInAllocaArgs; ++I) 3472 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3473 if (HasInAllocaArgs) { 3474 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3475 Args.allocateArgumentMemory(*this); 3476 } 3477 } 3478 3479 // Evaluate each argument in the appropriate order. 3480 size_t CallArgsStart = Args.size(); 3481 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3482 unsigned Idx = LeftToRight ? I : E - I - 1; 3483 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3484 unsigned InitialArgSize = Args.size(); 3485 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3486 // the argument and parameter match or the objc method is parameterized. 3487 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3488 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3489 ArgTypes[Idx]) || 3490 (isa<ObjCMethodDecl>(AC.getDecl()) && 3491 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3492 "Argument and parameter types don't match"); 3493 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3494 // In particular, we depend on it being the last arg in Args, and the 3495 // objectsize bits depend on there only being one arg if !LeftToRight. 3496 assert(InitialArgSize + 1 == Args.size() && 3497 "The code below depends on only adding one arg per EmitCallArg"); 3498 (void)InitialArgSize; 3499 // Since pointer argument are never emitted as LValue, it is safe to emit 3500 // non-null argument check for r-value only. 3501 if (!Args.back().hasLValue()) { 3502 RValue RVArg = Args.back().getKnownRValue(); 3503 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3504 ParamsToSkip + Idx); 3505 // @llvm.objectsize should never have side-effects and shouldn't need 3506 // destruction/cleanups, so we can safely "emit" it after its arg, 3507 // regardless of right-to-leftness 3508 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3509 } 3510 } 3511 3512 if (!LeftToRight) { 3513 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3514 // IR function. 3515 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3516 } 3517 } 3518 3519 namespace { 3520 3521 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3522 DestroyUnpassedArg(Address Addr, QualType Ty) 3523 : Addr(Addr), Ty(Ty) {} 3524 3525 Address Addr; 3526 QualType Ty; 3527 3528 void Emit(CodeGenFunction &CGF, Flags flags) override { 3529 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3530 if (DtorKind == QualType::DK_cxx_destructor) { 3531 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3532 assert(!Dtor->isTrivial()); 3533 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3534 /*Delegating=*/false, Addr, Ty); 3535 } else { 3536 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3537 } 3538 } 3539 }; 3540 3541 struct DisableDebugLocationUpdates { 3542 CodeGenFunction &CGF; 3543 bool disabledDebugInfo; 3544 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3545 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3546 CGF.disableDebugInfo(); 3547 } 3548 ~DisableDebugLocationUpdates() { 3549 if (disabledDebugInfo) 3550 CGF.enableDebugInfo(); 3551 } 3552 }; 3553 3554 } // end anonymous namespace 3555 3556 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3557 if (!HasLV) 3558 return RV; 3559 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3560 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3561 LV.isVolatile()); 3562 IsUsed = true; 3563 return RValue::getAggregate(Copy.getAddress()); 3564 } 3565 3566 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3567 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3568 if (!HasLV && RV.isScalar()) 3569 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 3570 else if (!HasLV && RV.isComplex()) 3571 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3572 else { 3573 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3574 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3575 // We assume that call args are never copied into subobjects. 3576 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3577 HasLV ? LV.isVolatileQualified() 3578 : RV.isVolatileQualified()); 3579 } 3580 IsUsed = true; 3581 } 3582 3583 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3584 QualType type) { 3585 DisableDebugLocationUpdates Dis(*this, E); 3586 if (const ObjCIndirectCopyRestoreExpr *CRE 3587 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3588 assert(getLangOpts().ObjCAutoRefCount); 3589 return emitWritebackArg(*this, args, CRE); 3590 } 3591 3592 assert(type->isReferenceType() == E->isGLValue() && 3593 "reference binding to unmaterialized r-value!"); 3594 3595 if (E->isGLValue()) { 3596 assert(E->getObjectKind() == OK_Ordinary); 3597 return args.add(EmitReferenceBindingToExpr(E), type); 3598 } 3599 3600 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3601 3602 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3603 // However, we still have to push an EH-only cleanup in case we unwind before 3604 // we make it to the call. 3605 if (HasAggregateEvalKind && 3606 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3607 // If we're using inalloca, use the argument memory. Otherwise, use a 3608 // temporary. 3609 AggValueSlot Slot; 3610 if (args.isUsingInAlloca()) 3611 Slot = createPlaceholderSlot(*this, type); 3612 else 3613 Slot = CreateAggTemp(type, "agg.tmp"); 3614 3615 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3616 if (const auto *RD = type->getAsCXXRecordDecl()) 3617 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3618 else 3619 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3620 3621 if (DestroyedInCallee) 3622 Slot.setExternallyDestructed(); 3623 3624 EmitAggExpr(E, Slot); 3625 RValue RV = Slot.asRValue(); 3626 args.add(RV, type); 3627 3628 if (DestroyedInCallee && NeedsEHCleanup) { 3629 // Create a no-op GEP between the placeholder and the cleanup so we can 3630 // RAUW it successfully. It also serves as a marker of the first 3631 // instruction where the cleanup is active. 3632 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3633 type); 3634 // This unreachable is a temporary marker which will be removed later. 3635 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3636 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3637 } 3638 return; 3639 } 3640 3641 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3642 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3643 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3644 assert(L.isSimple()); 3645 args.addUncopiedAggregate(L, type); 3646 return; 3647 } 3648 3649 args.add(EmitAnyExprToTemp(E), type); 3650 } 3651 3652 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3653 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3654 // implicitly widens null pointer constants that are arguments to varargs 3655 // functions to pointer-sized ints. 3656 if (!getTarget().getTriple().isOSWindows()) 3657 return Arg->getType(); 3658 3659 if (Arg->getType()->isIntegerType() && 3660 getContext().getTypeSize(Arg->getType()) < 3661 getContext().getTargetInfo().getPointerWidth(0) && 3662 Arg->isNullPointerConstant(getContext(), 3663 Expr::NPC_ValueDependentIsNotNull)) { 3664 return getContext().getIntPtrType(); 3665 } 3666 3667 return Arg->getType(); 3668 } 3669 3670 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3671 // optimizer it can aggressively ignore unwind edges. 3672 void 3673 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3674 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3675 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3676 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3677 CGM.getNoObjCARCExceptionsMetadata()); 3678 } 3679 3680 /// Emits a call to the given no-arguments nounwind runtime function. 3681 llvm::CallInst * 3682 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3683 const llvm::Twine &name) { 3684 return EmitNounwindRuntimeCall(callee, None, name); 3685 } 3686 3687 /// Emits a call to the given nounwind runtime function. 3688 llvm::CallInst * 3689 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3690 ArrayRef<llvm::Value *> args, 3691 const llvm::Twine &name) { 3692 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3693 call->setDoesNotThrow(); 3694 return call; 3695 } 3696 3697 /// Emits a simple call (never an invoke) to the given no-arguments 3698 /// runtime function. 3699 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 3700 const llvm::Twine &name) { 3701 return EmitRuntimeCall(callee, None, name); 3702 } 3703 3704 // Calls which may throw must have operand bundles indicating which funclet 3705 // they are nested within. 3706 SmallVector<llvm::OperandBundleDef, 1> 3707 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3708 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3709 // There is no need for a funclet operand bundle if we aren't inside a 3710 // funclet. 3711 if (!CurrentFuncletPad) 3712 return BundleList; 3713 3714 // Skip intrinsics which cannot throw. 3715 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3716 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3717 return BundleList; 3718 3719 BundleList.emplace_back("funclet", CurrentFuncletPad); 3720 return BundleList; 3721 } 3722 3723 /// Emits a simple call (never an invoke) to the given runtime function. 3724 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 3725 ArrayRef<llvm::Value *> args, 3726 const llvm::Twine &name) { 3727 llvm::CallInst *call = Builder.CreateCall( 3728 callee, args, getBundlesForFunclet(callee.getCallee()), name); 3729 call->setCallingConv(getRuntimeCC()); 3730 return call; 3731 } 3732 3733 /// Emits a call or invoke to the given noreturn runtime function. 3734 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 3735 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 3736 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3737 getBundlesForFunclet(callee.getCallee()); 3738 3739 if (getInvokeDest()) { 3740 llvm::InvokeInst *invoke = 3741 Builder.CreateInvoke(callee, 3742 getUnreachableBlock(), 3743 getInvokeDest(), 3744 args, 3745 BundleList); 3746 invoke->setDoesNotReturn(); 3747 invoke->setCallingConv(getRuntimeCC()); 3748 } else { 3749 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3750 call->setDoesNotReturn(); 3751 call->setCallingConv(getRuntimeCC()); 3752 Builder.CreateUnreachable(); 3753 } 3754 } 3755 3756 /// Emits a call or invoke instruction to the given nullary runtime function. 3757 llvm::CallBase * 3758 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3759 const Twine &name) { 3760 return EmitRuntimeCallOrInvoke(callee, None, name); 3761 } 3762 3763 /// Emits a call or invoke instruction to the given runtime function. 3764 llvm::CallBase * 3765 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3766 ArrayRef<llvm::Value *> args, 3767 const Twine &name) { 3768 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 3769 call->setCallingConv(getRuntimeCC()); 3770 return call; 3771 } 3772 3773 /// Emits a call or invoke instruction to the given function, depending 3774 /// on the current state of the EH stack. 3775 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 3776 ArrayRef<llvm::Value *> Args, 3777 const Twine &Name) { 3778 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3779 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3780 getBundlesForFunclet(Callee.getCallee()); 3781 3782 llvm::CallBase *Inst; 3783 if (!InvokeDest) 3784 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3785 else { 3786 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3787 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3788 Name); 3789 EmitBlock(ContBB); 3790 } 3791 3792 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3793 // optimizer it can aggressively ignore unwind edges. 3794 if (CGM.getLangOpts().ObjCAutoRefCount) 3795 AddObjCARCExceptionMetadata(Inst); 3796 3797 return Inst; 3798 } 3799 3800 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3801 llvm::Value *New) { 3802 DeferredReplacements.push_back(std::make_pair(Old, New)); 3803 } 3804 3805 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3806 const CGCallee &Callee, 3807 ReturnValueSlot ReturnValue, 3808 const CallArgList &CallArgs, 3809 llvm::CallBase **callOrInvoke, 3810 SourceLocation Loc) { 3811 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3812 3813 assert(Callee.isOrdinary() || Callee.isVirtual()); 3814 3815 // Handle struct-return functions by passing a pointer to the 3816 // location that we would like to return into. 3817 QualType RetTy = CallInfo.getReturnType(); 3818 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3819 3820 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 3821 3822 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 3823 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 3824 // We can only guarantee that a function is called from the correct 3825 // context/function based on the appropriate target attributes, 3826 // so only check in the case where we have both always_inline and target 3827 // since otherwise we could be making a conditional call after a check for 3828 // the proper cpu features (and it won't cause code generation issues due to 3829 // function based code generation). 3830 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 3831 TargetDecl->hasAttr<TargetAttr>()) 3832 checkTargetFeatures(Loc, FD); 3833 3834 #ifndef NDEBUG 3835 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 3836 // For an inalloca varargs function, we don't expect CallInfo to match the 3837 // function pointer's type, because the inalloca struct a will have extra 3838 // fields in it for the varargs parameters. Code later in this function 3839 // bitcasts the function pointer to the type derived from CallInfo. 3840 // 3841 // In other cases, we assert that the types match up (until pointers stop 3842 // having pointee types). 3843 llvm::Type *TypeFromVal; 3844 if (Callee.isVirtual()) 3845 TypeFromVal = Callee.getVirtualFunctionType(); 3846 else 3847 TypeFromVal = 3848 Callee.getFunctionPointer()->getType()->getPointerElementType(); 3849 assert(IRFuncTy == TypeFromVal); 3850 } 3851 #endif 3852 3853 // 1. Set up the arguments. 3854 3855 // If we're using inalloca, insert the allocation after the stack save. 3856 // FIXME: Do this earlier rather than hacking it in here! 3857 Address ArgMemory = Address::invalid(); 3858 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3859 const llvm::DataLayout &DL = CGM.getDataLayout(); 3860 llvm::Instruction *IP = CallArgs.getStackBase(); 3861 llvm::AllocaInst *AI; 3862 if (IP) { 3863 IP = IP->getNextNode(); 3864 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3865 "argmem", IP); 3866 } else { 3867 AI = CreateTempAlloca(ArgStruct, "argmem"); 3868 } 3869 auto Align = CallInfo.getArgStructAlignment(); 3870 AI->setAlignment(Align.getAsAlign()); 3871 AI->setUsedWithInAlloca(true); 3872 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3873 ArgMemory = Address(AI, Align); 3874 } 3875 3876 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3877 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3878 3879 // If the call returns a temporary with struct return, create a temporary 3880 // alloca to hold the result, unless one is given to us. 3881 Address SRetPtr = Address::invalid(); 3882 Address SRetAlloca = Address::invalid(); 3883 llvm::Value *UnusedReturnSizePtr = nullptr; 3884 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3885 if (!ReturnValue.isNull()) { 3886 SRetPtr = ReturnValue.getValue(); 3887 } else { 3888 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 3889 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3890 uint64_t size = 3891 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3892 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 3893 } 3894 } 3895 if (IRFunctionArgs.hasSRetArg()) { 3896 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3897 } else if (RetAI.isInAlloca()) { 3898 Address Addr = 3899 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 3900 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3901 } 3902 } 3903 3904 Address swiftErrorTemp = Address::invalid(); 3905 Address swiftErrorArg = Address::invalid(); 3906 3907 // When passing arguments using temporary allocas, we need to add the 3908 // appropriate lifetime markers. This vector keeps track of all the lifetime 3909 // markers that need to be ended right after the call. 3910 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 3911 3912 // Translate all of the arguments as necessary to match the IR lowering. 3913 assert(CallInfo.arg_size() == CallArgs.size() && 3914 "Mismatch between function signature & arguments."); 3915 unsigned ArgNo = 0; 3916 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3917 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3918 I != E; ++I, ++info_it, ++ArgNo) { 3919 const ABIArgInfo &ArgInfo = info_it->info; 3920 3921 // Insert a padding argument to ensure proper alignment. 3922 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3923 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3924 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3925 3926 unsigned FirstIRArg, NumIRArgs; 3927 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3928 3929 switch (ArgInfo.getKind()) { 3930 case ABIArgInfo::InAlloca: { 3931 assert(NumIRArgs == 0); 3932 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3933 if (I->isAggregate()) { 3934 // Replace the placeholder with the appropriate argument slot GEP. 3935 Address Addr = I->hasLValue() 3936 ? I->getKnownLValue().getAddress() 3937 : I->getKnownRValue().getAggregateAddress(); 3938 llvm::Instruction *Placeholder = 3939 cast<llvm::Instruction>(Addr.getPointer()); 3940 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3941 Builder.SetInsertPoint(Placeholder); 3942 Addr = 3943 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 3944 Builder.restoreIP(IP); 3945 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3946 } else { 3947 // Store the RValue into the argument struct. 3948 Address Addr = 3949 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 3950 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3951 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3952 // There are some cases where a trivial bitcast is not avoidable. The 3953 // definition of a type later in a translation unit may change it's type 3954 // from {}* to (%struct.foo*)*. 3955 if (Addr.getType() != MemType) 3956 Addr = Builder.CreateBitCast(Addr, MemType); 3957 I->copyInto(*this, Addr); 3958 } 3959 break; 3960 } 3961 3962 case ABIArgInfo::Indirect: { 3963 assert(NumIRArgs == 1); 3964 if (!I->isAggregate()) { 3965 // Make a temporary alloca to pass the argument. 3966 Address Addr = CreateMemTempWithoutCast( 3967 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 3968 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3969 3970 I->copyInto(*this, Addr); 3971 } else { 3972 // We want to avoid creating an unnecessary temporary+copy here; 3973 // however, we need one in three cases: 3974 // 1. If the argument is not byval, and we are required to copy the 3975 // source. (This case doesn't occur on any common architecture.) 3976 // 2. If the argument is byval, RV is not sufficiently aligned, and 3977 // we cannot force it to be sufficiently aligned. 3978 // 3. If the argument is byval, but RV is not located in default 3979 // or alloca address space. 3980 Address Addr = I->hasLValue() 3981 ? I->getKnownLValue().getAddress() 3982 : I->getKnownRValue().getAggregateAddress(); 3983 llvm::Value *V = Addr.getPointer(); 3984 CharUnits Align = ArgInfo.getIndirectAlign(); 3985 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3986 3987 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3988 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3989 TD->getAllocaAddrSpace()) && 3990 "indirect argument must be in alloca address space"); 3991 3992 bool NeedCopy = false; 3993 3994 if (Addr.getAlignment() < Align && 3995 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3996 Align.getQuantity()) { 3997 NeedCopy = true; 3998 } else if (I->hasLValue()) { 3999 auto LV = I->getKnownLValue(); 4000 auto AS = LV.getAddressSpace(); 4001 4002 if ((!ArgInfo.getIndirectByVal() && 4003 (LV.getAlignment() >= 4004 getContext().getTypeAlignInChars(I->Ty)))) { 4005 NeedCopy = true; 4006 } 4007 if (!getLangOpts().OpenCL) { 4008 if ((ArgInfo.getIndirectByVal() && 4009 (AS != LangAS::Default && 4010 AS != CGM.getASTAllocaAddressSpace()))) { 4011 NeedCopy = true; 4012 } 4013 } 4014 // For OpenCL even if RV is located in default or alloca address space 4015 // we don't want to perform address space cast for it. 4016 else if ((ArgInfo.getIndirectByVal() && 4017 Addr.getType()->getAddressSpace() != IRFuncTy-> 4018 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4019 NeedCopy = true; 4020 } 4021 } 4022 4023 if (NeedCopy) { 4024 // Create an aligned temporary, and copy to it. 4025 Address AI = CreateMemTempWithoutCast( 4026 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4027 IRCallArgs[FirstIRArg] = AI.getPointer(); 4028 4029 // Emit lifetime markers for the temporary alloca. 4030 uint64_t ByvalTempElementSize = 4031 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4032 llvm::Value *LifetimeSize = 4033 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4034 4035 // Add cleanup code to emit the end lifetime marker after the call. 4036 if (LifetimeSize) // In case we disabled lifetime markers. 4037 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4038 4039 // Generate the copy. 4040 I->copyInto(*this, AI); 4041 } else { 4042 // Skip the extra memcpy call. 4043 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4044 CGM.getDataLayout().getAllocaAddrSpace()); 4045 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4046 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4047 true); 4048 } 4049 } 4050 break; 4051 } 4052 4053 case ABIArgInfo::Ignore: 4054 assert(NumIRArgs == 0); 4055 break; 4056 4057 case ABIArgInfo::Extend: 4058 case ABIArgInfo::Direct: { 4059 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4060 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4061 ArgInfo.getDirectOffset() == 0) { 4062 assert(NumIRArgs == 1); 4063 llvm::Value *V; 4064 if (!I->isAggregate()) 4065 V = I->getKnownRValue().getScalarVal(); 4066 else 4067 V = Builder.CreateLoad( 4068 I->hasLValue() ? I->getKnownLValue().getAddress() 4069 : I->getKnownRValue().getAggregateAddress()); 4070 4071 // Implement swifterror by copying into a new swifterror argument. 4072 // We'll write back in the normal path out of the call. 4073 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4074 == ParameterABI::SwiftErrorResult) { 4075 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4076 4077 QualType pointeeTy = I->Ty->getPointeeType(); 4078 swiftErrorArg = 4079 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4080 4081 swiftErrorTemp = 4082 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4083 V = swiftErrorTemp.getPointer(); 4084 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4085 4086 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4087 Builder.CreateStore(errorValue, swiftErrorTemp); 4088 } 4089 4090 // We might have to widen integers, but we should never truncate. 4091 if (ArgInfo.getCoerceToType() != V->getType() && 4092 V->getType()->isIntegerTy()) 4093 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4094 4095 // If the argument doesn't match, perform a bitcast to coerce it. This 4096 // can happen due to trivial type mismatches. 4097 if (FirstIRArg < IRFuncTy->getNumParams() && 4098 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4099 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4100 4101 IRCallArgs[FirstIRArg] = V; 4102 break; 4103 } 4104 4105 // FIXME: Avoid the conversion through memory if possible. 4106 Address Src = Address::invalid(); 4107 if (!I->isAggregate()) { 4108 Src = CreateMemTemp(I->Ty, "coerce"); 4109 I->copyInto(*this, Src); 4110 } else { 4111 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 4112 : I->getKnownRValue().getAggregateAddress(); 4113 } 4114 4115 // If the value is offset in memory, apply the offset now. 4116 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4117 4118 // Fast-isel and the optimizer generally like scalar values better than 4119 // FCAs, so we flatten them if this is safe to do for this argument. 4120 llvm::StructType *STy = 4121 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4122 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4123 llvm::Type *SrcTy = Src.getType()->getElementType(); 4124 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4125 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4126 4127 // If the source type is smaller than the destination type of the 4128 // coerce-to logic, copy the source value into a temp alloca the size 4129 // of the destination type to allow loading all of it. The bits past 4130 // the source value are left undef. 4131 if (SrcSize < DstSize) { 4132 Address TempAlloca 4133 = CreateTempAlloca(STy, Src.getAlignment(), 4134 Src.getName() + ".coerce"); 4135 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4136 Src = TempAlloca; 4137 } else { 4138 Src = Builder.CreateBitCast(Src, 4139 STy->getPointerTo(Src.getAddressSpace())); 4140 } 4141 4142 assert(NumIRArgs == STy->getNumElements()); 4143 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4144 Address EltPtr = Builder.CreateStructGEP(Src, i); 4145 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4146 IRCallArgs[FirstIRArg + i] = LI; 4147 } 4148 } else { 4149 // In the simple case, just pass the coerced loaded value. 4150 assert(NumIRArgs == 1); 4151 IRCallArgs[FirstIRArg] = 4152 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4153 } 4154 4155 break; 4156 } 4157 4158 case ABIArgInfo::CoerceAndExpand: { 4159 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4160 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4161 4162 llvm::Value *tempSize = nullptr; 4163 Address addr = Address::invalid(); 4164 Address AllocaAddr = Address::invalid(); 4165 if (I->isAggregate()) { 4166 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4167 : I->getKnownRValue().getAggregateAddress(); 4168 4169 } else { 4170 RValue RV = I->getKnownRValue(); 4171 assert(RV.isScalar()); // complex should always just be direct 4172 4173 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4174 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4175 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4176 4177 // Materialize to a temporary. 4178 addr = CreateTempAlloca( 4179 RV.getScalarVal()->getType(), 4180 CharUnits::fromQuantity(std::max( 4181 (unsigned)layout->getAlignment().value(), scalarAlign)), 4182 "tmp", 4183 /*ArraySize=*/nullptr, &AllocaAddr); 4184 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4185 4186 Builder.CreateStore(RV.getScalarVal(), addr); 4187 } 4188 4189 addr = Builder.CreateElementBitCast(addr, coercionType); 4190 4191 unsigned IRArgPos = FirstIRArg; 4192 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4193 llvm::Type *eltType = coercionType->getElementType(i); 4194 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4195 Address eltAddr = Builder.CreateStructGEP(addr, i); 4196 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4197 IRCallArgs[IRArgPos++] = elt; 4198 } 4199 assert(IRArgPos == FirstIRArg + NumIRArgs); 4200 4201 if (tempSize) { 4202 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4203 } 4204 4205 break; 4206 } 4207 4208 case ABIArgInfo::Expand: 4209 unsigned IRArgPos = FirstIRArg; 4210 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4211 assert(IRArgPos == FirstIRArg + NumIRArgs); 4212 break; 4213 } 4214 } 4215 4216 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4217 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4218 4219 // If we're using inalloca, set up that argument. 4220 if (ArgMemory.isValid()) { 4221 llvm::Value *Arg = ArgMemory.getPointer(); 4222 if (CallInfo.isVariadic()) { 4223 // When passing non-POD arguments by value to variadic functions, we will 4224 // end up with a variadic prototype and an inalloca call site. In such 4225 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4226 // the callee. 4227 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4228 CalleePtr = 4229 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4230 } else { 4231 llvm::Type *LastParamTy = 4232 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4233 if (Arg->getType() != LastParamTy) { 4234 #ifndef NDEBUG 4235 // Assert that these structs have equivalent element types. 4236 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4237 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4238 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4239 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4240 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4241 DE = DeclaredTy->element_end(), 4242 FI = FullTy->element_begin(); 4243 DI != DE; ++DI, ++FI) 4244 assert(*DI == *FI); 4245 #endif 4246 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4247 } 4248 } 4249 assert(IRFunctionArgs.hasInallocaArg()); 4250 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4251 } 4252 4253 // 2. Prepare the function pointer. 4254 4255 // If the callee is a bitcast of a non-variadic function to have a 4256 // variadic function pointer type, check to see if we can remove the 4257 // bitcast. This comes up with unprototyped functions. 4258 // 4259 // This makes the IR nicer, but more importantly it ensures that we 4260 // can inline the function at -O0 if it is marked always_inline. 4261 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4262 llvm::Value *Ptr) -> llvm::Function * { 4263 if (!CalleeFT->isVarArg()) 4264 return nullptr; 4265 4266 // Get underlying value if it's a bitcast 4267 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4268 if (CE->getOpcode() == llvm::Instruction::BitCast) 4269 Ptr = CE->getOperand(0); 4270 } 4271 4272 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4273 if (!OrigFn) 4274 return nullptr; 4275 4276 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4277 4278 // If the original type is variadic, or if any of the component types 4279 // disagree, we cannot remove the cast. 4280 if (OrigFT->isVarArg() || 4281 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4282 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4283 return nullptr; 4284 4285 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4286 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4287 return nullptr; 4288 4289 return OrigFn; 4290 }; 4291 4292 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4293 CalleePtr = OrigFn; 4294 IRFuncTy = OrigFn->getFunctionType(); 4295 } 4296 4297 // 3. Perform the actual call. 4298 4299 // Deactivate any cleanups that we're supposed to do immediately before 4300 // the call. 4301 if (!CallArgs.getCleanupsToDeactivate().empty()) 4302 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4303 4304 // Assert that the arguments we computed match up. The IR verifier 4305 // will catch this, but this is a common enough source of problems 4306 // during IRGen changes that it's way better for debugging to catch 4307 // it ourselves here. 4308 #ifndef NDEBUG 4309 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4310 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4311 // Inalloca argument can have different type. 4312 if (IRFunctionArgs.hasInallocaArg() && 4313 i == IRFunctionArgs.getInallocaArgNo()) 4314 continue; 4315 if (i < IRFuncTy->getNumParams()) 4316 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4317 } 4318 #endif 4319 4320 // Update the largest vector width if any arguments have vector types. 4321 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4322 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4323 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 4324 VT->getPrimitiveSizeInBits().getFixedSize()); 4325 } 4326 4327 // Compute the calling convention and attributes. 4328 unsigned CallingConv; 4329 llvm::AttributeList Attrs; 4330 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4331 Callee.getAbstractInfo(), Attrs, CallingConv, 4332 /*AttrOnCallSite=*/true); 4333 4334 // Apply some call-site-specific attributes. 4335 // TODO: work this into building the attribute set. 4336 4337 // Apply always_inline to all calls within flatten functions. 4338 // FIXME: should this really take priority over __try, below? 4339 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4340 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 4341 Attrs = 4342 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4343 llvm::Attribute::AlwaysInline); 4344 } 4345 4346 // Disable inlining inside SEH __try blocks. 4347 if (isSEHTryScope()) { 4348 Attrs = 4349 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4350 llvm::Attribute::NoInline); 4351 } 4352 4353 // Decide whether to use a call or an invoke. 4354 bool CannotThrow; 4355 if (currentFunctionUsesSEHTry()) { 4356 // SEH cares about asynchronous exceptions, so everything can "throw." 4357 CannotThrow = false; 4358 } else if (isCleanupPadScope() && 4359 EHPersonality::get(*this).isMSVCXXPersonality()) { 4360 // The MSVC++ personality will implicitly terminate the program if an 4361 // exception is thrown during a cleanup outside of a try/catch. 4362 // We don't need to model anything in IR to get this behavior. 4363 CannotThrow = true; 4364 } else { 4365 // Otherwise, nounwind call sites will never throw. 4366 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4367 llvm::Attribute::NoUnwind); 4368 } 4369 4370 // If we made a temporary, be sure to clean up after ourselves. Note that we 4371 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4372 // pop this cleanup later on. Being eager about this is OK, since this 4373 // temporary is 'invisible' outside of the callee. 4374 if (UnusedReturnSizePtr) 4375 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4376 UnusedReturnSizePtr); 4377 4378 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4379 4380 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4381 getBundlesForFunclet(CalleePtr); 4382 4383 // Emit the actual call/invoke instruction. 4384 llvm::CallBase *CI; 4385 if (!InvokeDest) { 4386 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 4387 } else { 4388 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4389 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 4390 BundleList); 4391 EmitBlock(Cont); 4392 } 4393 if (callOrInvoke) 4394 *callOrInvoke = CI; 4395 4396 // Apply the attributes and calling convention. 4397 CI->setAttributes(Attrs); 4398 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4399 4400 // Apply various metadata. 4401 4402 if (!CI->getType()->isVoidTy()) 4403 CI->setName("call"); 4404 4405 // Update largest vector width from the return type. 4406 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4407 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 4408 VT->getPrimitiveSizeInBits().getFixedSize()); 4409 4410 // Insert instrumentation or attach profile metadata at indirect call sites. 4411 // For more details, see the comment before the definition of 4412 // IPVK_IndirectCallTarget in InstrProfData.inc. 4413 if (!CI->getCalledFunction()) 4414 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4415 CI, CalleePtr); 4416 4417 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4418 // optimizer it can aggressively ignore unwind edges. 4419 if (CGM.getLangOpts().ObjCAutoRefCount) 4420 AddObjCARCExceptionMetadata(CI); 4421 4422 // Suppress tail calls if requested. 4423 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4424 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4425 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4426 } 4427 4428 // Add metadata for calls to MSAllocator functions 4429 if (getDebugInfo() && TargetDecl && 4430 TargetDecl->hasAttr<MSAllocatorAttr>()) 4431 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc); 4432 4433 // 4. Finish the call. 4434 4435 // If the call doesn't return, finish the basic block and clear the 4436 // insertion point; this allows the rest of IRGen to discard 4437 // unreachable code. 4438 if (CI->doesNotReturn()) { 4439 if (UnusedReturnSizePtr) 4440 PopCleanupBlock(); 4441 4442 // Strip away the noreturn attribute to better diagnose unreachable UB. 4443 if (SanOpts.has(SanitizerKind::Unreachable)) { 4444 // Also remove from function since CallBase::hasFnAttr additionally checks 4445 // attributes of the called function. 4446 if (auto *F = CI->getCalledFunction()) 4447 F->removeFnAttr(llvm::Attribute::NoReturn); 4448 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 4449 llvm::Attribute::NoReturn); 4450 4451 // Avoid incompatibility with ASan which relies on the `noreturn` 4452 // attribute to insert handler calls. 4453 if (SanOpts.hasOneOf(SanitizerKind::Address | 4454 SanitizerKind::KernelAddress)) { 4455 SanitizerScope SanScope(this); 4456 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 4457 Builder.SetInsertPoint(CI); 4458 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 4459 llvm::FunctionCallee Fn = 4460 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 4461 EmitNounwindRuntimeCall(Fn); 4462 } 4463 } 4464 4465 EmitUnreachable(Loc); 4466 Builder.ClearInsertionPoint(); 4467 4468 // FIXME: For now, emit a dummy basic block because expr emitters in 4469 // generally are not ready to handle emitting expressions at unreachable 4470 // points. 4471 EnsureInsertPoint(); 4472 4473 // Return a reasonable RValue. 4474 return GetUndefRValue(RetTy); 4475 } 4476 4477 // Perform the swifterror writeback. 4478 if (swiftErrorTemp.isValid()) { 4479 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4480 Builder.CreateStore(errorResult, swiftErrorArg); 4481 } 4482 4483 // Emit any call-associated writebacks immediately. Arguably this 4484 // should happen after any return-value munging. 4485 if (CallArgs.hasWritebacks()) 4486 emitWritebacks(*this, CallArgs); 4487 4488 // The stack cleanup for inalloca arguments has to run out of the normal 4489 // lexical order, so deactivate it and run it manually here. 4490 CallArgs.freeArgumentMemory(*this); 4491 4492 // Extract the return value. 4493 RValue Ret = [&] { 4494 switch (RetAI.getKind()) { 4495 case ABIArgInfo::CoerceAndExpand: { 4496 auto coercionType = RetAI.getCoerceAndExpandType(); 4497 4498 Address addr = SRetPtr; 4499 addr = Builder.CreateElementBitCast(addr, coercionType); 4500 4501 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4502 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4503 4504 unsigned unpaddedIndex = 0; 4505 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4506 llvm::Type *eltType = coercionType->getElementType(i); 4507 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4508 Address eltAddr = Builder.CreateStructGEP(addr, i); 4509 llvm::Value *elt = CI; 4510 if (requiresExtract) 4511 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4512 else 4513 assert(unpaddedIndex == 0); 4514 Builder.CreateStore(elt, eltAddr); 4515 } 4516 // FALLTHROUGH 4517 LLVM_FALLTHROUGH; 4518 } 4519 4520 case ABIArgInfo::InAlloca: 4521 case ABIArgInfo::Indirect: { 4522 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4523 if (UnusedReturnSizePtr) 4524 PopCleanupBlock(); 4525 return ret; 4526 } 4527 4528 case ABIArgInfo::Ignore: 4529 // If we are ignoring an argument that had a result, make sure to 4530 // construct the appropriate return value for our caller. 4531 return GetUndefRValue(RetTy); 4532 4533 case ABIArgInfo::Extend: 4534 case ABIArgInfo::Direct: { 4535 llvm::Type *RetIRTy = ConvertType(RetTy); 4536 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4537 switch (getEvaluationKind(RetTy)) { 4538 case TEK_Complex: { 4539 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4540 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4541 return RValue::getComplex(std::make_pair(Real, Imag)); 4542 } 4543 case TEK_Aggregate: { 4544 Address DestPtr = ReturnValue.getValue(); 4545 bool DestIsVolatile = ReturnValue.isVolatile(); 4546 4547 if (!DestPtr.isValid()) { 4548 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4549 DestIsVolatile = false; 4550 } 4551 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4552 return RValue::getAggregate(DestPtr); 4553 } 4554 case TEK_Scalar: { 4555 // If the argument doesn't match, perform a bitcast to coerce it. This 4556 // can happen due to trivial type mismatches. 4557 llvm::Value *V = CI; 4558 if (V->getType() != RetIRTy) 4559 V = Builder.CreateBitCast(V, RetIRTy); 4560 return RValue::get(V); 4561 } 4562 } 4563 llvm_unreachable("bad evaluation kind"); 4564 } 4565 4566 Address DestPtr = ReturnValue.getValue(); 4567 bool DestIsVolatile = ReturnValue.isVolatile(); 4568 4569 if (!DestPtr.isValid()) { 4570 DestPtr = CreateMemTemp(RetTy, "coerce"); 4571 DestIsVolatile = false; 4572 } 4573 4574 // If the value is offset in memory, apply the offset now. 4575 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4576 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4577 4578 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4579 } 4580 4581 case ABIArgInfo::Expand: 4582 llvm_unreachable("Invalid ABI kind for return argument"); 4583 } 4584 4585 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4586 } (); 4587 4588 // Emit the assume_aligned check on the return value. 4589 if (Ret.isScalar() && TargetDecl) { 4590 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4591 llvm::Value *OffsetValue = nullptr; 4592 if (const auto *Offset = AA->getOffset()) 4593 OffsetValue = EmitScalarExpr(Offset); 4594 4595 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4596 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4597 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4598 AlignmentCI, OffsetValue); 4599 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4600 llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()] 4601 .getRValue(*this) 4602 .getScalarVal(); 4603 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4604 AlignmentVal); 4605 } 4606 } 4607 4608 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 4609 // we can't use the full cleanup mechanism. 4610 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 4611 LifetimeEnd.Emit(*this, /*Flags=*/{}); 4612 4613 return Ret; 4614 } 4615 4616 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4617 if (isVirtual()) { 4618 const CallExpr *CE = getVirtualCallExpr(); 4619 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4620 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 4621 CE ? CE->getBeginLoc() : SourceLocation()); 4622 } 4623 4624 return *this; 4625 } 4626 4627 /* VarArg handling */ 4628 4629 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4630 VAListAddr = VE->isMicrosoftABI() 4631 ? EmitMSVAListRef(VE->getSubExpr()) 4632 : EmitVAListRef(VE->getSubExpr()); 4633 QualType Ty = VE->getType(); 4634 if (VE->isMicrosoftABI()) 4635 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4636 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4637 } 4638