1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification. Either or both of RD and MD may be null. A null RD indicates
73 /// that there is no meaningful 'this' type, and a null MD can occur when
74 /// calling a method pointer.
75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
76                                          const CXXMethodDecl *MD) {
77   QualType RecTy;
78   if (RD)
79     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
80   else
81     RecTy = Context.VoidTy;
82 
83   if (MD)
84     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
85   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
86 }
87 
88 /// Returns the canonical formal type of the given C++ method.
89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
90   return MD->getType()->getCanonicalTypeUnqualified()
91            .getAs<FunctionProtoType>();
92 }
93 
94 /// Returns the "extra-canonicalized" return type, which discards
95 /// qualifiers on the return type.  Codegen doesn't care about them,
96 /// and it makes ABI code a little easier to be able to assume that
97 /// all parameter and return types are top-level unqualified.
98 static CanQualType GetReturnType(QualType RetTy) {
99   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
100 }
101 
102 /// Arrange the argument and result information for a value of the given
103 /// unprototyped freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
106   // When translating an unprototyped function type, always use a
107   // variadic type.
108   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
109                                  /*instanceMethod=*/false,
110                                  /*chainCall=*/false, None,
111                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
112 }
113 
114 static void addExtParameterInfosForCall(
115          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
116                                         const FunctionProtoType *proto,
117                                         unsigned prefixArgs,
118                                         unsigned totalArgs) {
119   assert(proto->hasExtParameterInfos());
120   assert(paramInfos.size() <= prefixArgs);
121   assert(proto->getNumParams() + prefixArgs <= totalArgs);
122 
123   paramInfos.reserve(totalArgs);
124 
125   // Add default infos for any prefix args that don't already have infos.
126   paramInfos.resize(prefixArgs);
127 
128   // Add infos for the prototype.
129   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
130     paramInfos.push_back(ParamInfo);
131     // pass_object_size params have no parameter info.
132     if (ParamInfo.hasPassObjectSize())
133       paramInfos.emplace_back();
134   }
135 
136   assert(paramInfos.size() <= totalArgs &&
137          "Did we forget to insert pass_object_size args?");
138   // Add default infos for the variadic and/or suffix arguments.
139   paramInfos.resize(totalArgs);
140 }
141 
142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
144 static void appendParameterTypes(const CodeGenTypes &CGT,
145                                  SmallVectorImpl<CanQualType> &prefix,
146               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
147                                  CanQual<FunctionProtoType> FPT) {
148   // Fast path: don't touch param info if we don't need to.
149   if (!FPT->hasExtParameterInfos()) {
150     assert(paramInfos.empty() &&
151            "We have paramInfos, but the prototype doesn't?");
152     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
153     return;
154   }
155 
156   unsigned PrefixSize = prefix.size();
157   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
158   // parameters; the only thing that can change this is the presence of
159   // pass_object_size. So, we preallocate for the common case.
160   prefix.reserve(prefix.size() + FPT->getNumParams());
161 
162   auto ExtInfos = FPT->getExtParameterInfos();
163   assert(ExtInfos.size() == FPT->getNumParams());
164   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
165     prefix.push_back(FPT->getParamType(I));
166     if (ExtInfos[I].hasPassObjectSize())
167       prefix.push_back(CGT.getContext().getSizeType());
168   }
169 
170   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
171                               prefix.size());
172 }
173 
174 /// Arrange the LLVM function layout for a value of the given function
175 /// type, on top of any implicit parameters already stored.
176 static const CGFunctionInfo &
177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
178                         SmallVectorImpl<CanQualType> &prefix,
179                         CanQual<FunctionProtoType> FTP) {
180   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
181   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
182   // FIXME: Kill copy.
183   appendParameterTypes(CGT, prefix, paramInfos, FTP);
184   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
185 
186   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
187                                      /*chainCall=*/false, prefix,
188                                      FTP->getExtInfo(), paramInfos,
189                                      Required);
190 }
191 
192 /// Arrange the argument and result information for a value of the
193 /// given freestanding function type.
194 const CGFunctionInfo &
195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
196   SmallVector<CanQualType, 16> argTypes;
197   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
198                                    FTP);
199 }
200 
201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
202   // Set the appropriate calling convention for the Function.
203   if (D->hasAttr<StdCallAttr>())
204     return CC_X86StdCall;
205 
206   if (D->hasAttr<FastCallAttr>())
207     return CC_X86FastCall;
208 
209   if (D->hasAttr<RegCallAttr>())
210     return CC_X86RegCall;
211 
212   if (D->hasAttr<ThisCallAttr>())
213     return CC_X86ThisCall;
214 
215   if (D->hasAttr<VectorCallAttr>())
216     return CC_X86VectorCall;
217 
218   if (D->hasAttr<PascalAttr>())
219     return CC_X86Pascal;
220 
221   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
222     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
223 
224   if (D->hasAttr<AArch64VectorPcsAttr>())
225     return CC_AArch64VectorCall;
226 
227   if (D->hasAttr<IntelOclBiccAttr>())
228     return CC_IntelOclBicc;
229 
230   if (D->hasAttr<MSABIAttr>())
231     return IsWindows ? CC_C : CC_Win64;
232 
233   if (D->hasAttr<SysVABIAttr>())
234     return IsWindows ? CC_X86_64SysV : CC_C;
235 
236   if (D->hasAttr<PreserveMostAttr>())
237     return CC_PreserveMost;
238 
239   if (D->hasAttr<PreserveAllAttr>())
240     return CC_PreserveAll;
241 
242   return CC_C;
243 }
244 
245 /// Arrange the argument and result information for a call to an
246 /// unknown C++ non-static member function of the given abstract type.
247 /// (A null RD means we don't have any meaningful "this" argument type,
248 ///  so fall back to a generic pointer type).
249 /// The member function must be an ordinary function, i.e. not a
250 /// constructor or destructor.
251 const CGFunctionInfo &
252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
253                                    const FunctionProtoType *FTP,
254                                    const CXXMethodDecl *MD) {
255   SmallVector<CanQualType, 16> argTypes;
256 
257   // Add the 'this' pointer.
258   argTypes.push_back(DeriveThisType(RD, MD));
259 
260   return ::arrangeLLVMFunctionInfo(
261       *this, true, argTypes,
262       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
263 }
264 
265 /// Set calling convention for CUDA/HIP kernel.
266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
267                                            const FunctionDecl *FD) {
268   if (FD->hasAttr<CUDAGlobalAttr>()) {
269     const FunctionType *FT = FTy->getAs<FunctionType>();
270     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
271     FTy = FT->getCanonicalTypeUnqualified();
272   }
273 }
274 
275 /// Arrange the argument and result information for a declaration or
276 /// definition of the given C++ non-static member function.  The
277 /// member function must be an ordinary function, i.e. not a
278 /// constructor or destructor.
279 const CGFunctionInfo &
280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
281   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
282   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
283 
284   CanQualType FT = GetFormalType(MD).getAs<Type>();
285   setCUDAKernelCallingConvention(FT, CGM, MD);
286   auto prototype = FT.getAs<FunctionProtoType>();
287 
288   if (MD->isInstance()) {
289     // The abstract case is perfectly fine.
290     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
291     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
292   }
293 
294   return arrangeFreeFunctionType(prototype);
295 }
296 
297 bool CodeGenTypes::inheritingCtorHasParams(
298     const InheritedConstructor &Inherited, CXXCtorType Type) {
299   // Parameters are unnecessary if we're constructing a base class subobject
300   // and the inherited constructor lives in a virtual base.
301   return Type == Ctor_Complete ||
302          !Inherited.getShadowDecl()->constructsVirtualBase() ||
303          !Target.getCXXABI().hasConstructorVariants();
304 }
305 
306 const CGFunctionInfo &
307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
308   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
309 
310   SmallVector<CanQualType, 16> argTypes;
311   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
312   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
313 
314   bool PassParams = true;
315 
316   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317     // A base class inheriting constructor doesn't get forwarded arguments
318     // needed to construct a virtual base (or base class thereof).
319     if (auto Inherited = CD->getInheritedConstructor())
320       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
321   }
322 
323   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
324 
325   // Add the formal parameters.
326   if (PassParams)
327     appendParameterTypes(*this, argTypes, paramInfos, FTP);
328 
329   CGCXXABI::AddedStructorArgCounts AddedArgs =
330       TheCXXABI.buildStructorSignature(GD, argTypes);
331   if (!paramInfos.empty()) {
332     // Note: prefix implies after the first param.
333     if (AddedArgs.Prefix)
334       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
335                         FunctionProtoType::ExtParameterInfo{});
336     if (AddedArgs.Suffix)
337       paramInfos.append(AddedArgs.Suffix,
338                         FunctionProtoType::ExtParameterInfo{});
339   }
340 
341   RequiredArgs required =
342       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
343                                       : RequiredArgs::All);
344 
345   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
346   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
347                                ? argTypes.front()
348                                : TheCXXABI.hasMostDerivedReturn(GD)
349                                      ? CGM.getContext().VoidPtrTy
350                                      : Context.VoidTy;
351   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
352                                  /*chainCall=*/false, argTypes, extInfo,
353                                  paramInfos, required);
354 }
355 
356 static SmallVector<CanQualType, 16>
357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
358   SmallVector<CanQualType, 16> argTypes;
359   for (auto &arg : args)
360     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
361   return argTypes;
362 }
363 
364 static SmallVector<CanQualType, 16>
365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
366   SmallVector<CanQualType, 16> argTypes;
367   for (auto &arg : args)
368     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
369   return argTypes;
370 }
371 
372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
373 getExtParameterInfosForCall(const FunctionProtoType *proto,
374                             unsigned prefixArgs, unsigned totalArgs) {
375   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
376   if (proto->hasExtParameterInfos()) {
377     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
378   }
379   return result;
380 }
381 
382 /// Arrange a call to a C++ method, passing the given arguments.
383 ///
384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
385 /// parameter.
386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
387 /// args.
388 /// PassProtoArgs indicates whether `args` has args for the parameters in the
389 /// given CXXConstructorDecl.
390 const CGFunctionInfo &
391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
392                                         const CXXConstructorDecl *D,
393                                         CXXCtorType CtorKind,
394                                         unsigned ExtraPrefixArgs,
395                                         unsigned ExtraSuffixArgs,
396                                         bool PassProtoArgs) {
397   // FIXME: Kill copy.
398   SmallVector<CanQualType, 16> ArgTypes;
399   for (const auto &Arg : args)
400     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
401 
402   // +1 for implicit this, which should always be args[0].
403   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
404 
405   CanQual<FunctionProtoType> FPT = GetFormalType(D);
406   RequiredArgs Required = PassProtoArgs
407                               ? RequiredArgs::forPrototypePlus(
408                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
409                               : RequiredArgs::All;
410 
411   GlobalDecl GD(D, CtorKind);
412   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
413                                ? ArgTypes.front()
414                                : TheCXXABI.hasMostDerivedReturn(GD)
415                                      ? CGM.getContext().VoidPtrTy
416                                      : Context.VoidTy;
417 
418   FunctionType::ExtInfo Info = FPT->getExtInfo();
419   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
420   // If the prototype args are elided, we should only have ABI-specific args,
421   // which never have param info.
422   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
423     // ABI-specific suffix arguments are treated the same as variadic arguments.
424     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
425                                 ArgTypes.size());
426   }
427   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
428                                  /*chainCall=*/false, ArgTypes, Info,
429                                  ParamInfos, Required);
430 }
431 
432 /// Arrange the argument and result information for the declaration or
433 /// definition of the given function.
434 const CGFunctionInfo &
435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
436   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
437     if (MD->isInstance())
438       return arrangeCXXMethodDeclaration(MD);
439 
440   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
441 
442   assert(isa<FunctionType>(FTy));
443   setCUDAKernelCallingConvention(FTy, CGM, FD);
444 
445   // When declaring a function without a prototype, always use a
446   // non-variadic type.
447   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
448     return arrangeLLVMFunctionInfo(
449         noProto->getReturnType(), /*instanceMethod=*/false,
450         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
451   }
452 
453   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
454 }
455 
456 /// Arrange the argument and result information for the declaration or
457 /// definition of an Objective-C method.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
460   // It happens that this is the same as a call with no optional
461   // arguments, except also using the formal 'self' type.
462   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
463 }
464 
465 /// Arrange the argument and result information for the function type
466 /// through which to perform a send to the given Objective-C method,
467 /// using the given receiver type.  The receiver type is not always
468 /// the 'self' type of the method or even an Objective-C pointer type.
469 /// This is *not* the right method for actually performing such a
470 /// message send, due to the possibility of optional arguments.
471 const CGFunctionInfo &
472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
473                                               QualType receiverType) {
474   SmallVector<CanQualType, 16> argTys;
475   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
476   argTys.push_back(Context.getCanonicalParamType(receiverType));
477   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
478   // FIXME: Kill copy?
479   for (const auto *I : MD->parameters()) {
480     argTys.push_back(Context.getCanonicalParamType(I->getType()));
481     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
482         I->hasAttr<NoEscapeAttr>());
483     extParamInfos.push_back(extParamInfo);
484   }
485 
486   FunctionType::ExtInfo einfo;
487   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
488   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
489 
490   if (getContext().getLangOpts().ObjCAutoRefCount &&
491       MD->hasAttr<NSReturnsRetainedAttr>())
492     einfo = einfo.withProducesResult(true);
493 
494   RequiredArgs required =
495     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
496 
497   return arrangeLLVMFunctionInfo(
498       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
499       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
500 }
501 
502 const CGFunctionInfo &
503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
504                                                  const CallArgList &args) {
505   auto argTypes = getArgTypesForCall(Context, args);
506   FunctionType::ExtInfo einfo;
507 
508   return arrangeLLVMFunctionInfo(
509       GetReturnType(returnType), /*instanceMethod=*/false,
510       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
511 }
512 
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
515   // FIXME: Do we need to handle ObjCMethodDecl?
516   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
517 
518   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
519       isa<CXXDestructorDecl>(GD.getDecl()))
520     return arrangeCXXStructorDeclaration(GD);
521 
522   return arrangeFunctionDeclaration(FD);
523 }
524 
525 /// Arrange a thunk that takes 'this' as the first parameter followed by
526 /// varargs.  Return a void pointer, regardless of the actual return type.
527 /// The body of the thunk will end in a musttail call to a function of the
528 /// correct type, and the caller will bitcast the function to the correct
529 /// prototype.
530 const CGFunctionInfo &
531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
532   assert(MD->isVirtual() && "only methods have thunks");
533   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
534   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
535   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
536                                  /*chainCall=*/false, ArgTys,
537                                  FTP->getExtInfo(), {}, RequiredArgs(1));
538 }
539 
540 const CGFunctionInfo &
541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
542                                    CXXCtorType CT) {
543   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
544 
545   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
546   SmallVector<CanQualType, 2> ArgTys;
547   const CXXRecordDecl *RD = CD->getParent();
548   ArgTys.push_back(DeriveThisType(RD, CD));
549   if (CT == Ctor_CopyingClosure)
550     ArgTys.push_back(*FTP->param_type_begin());
551   if (RD->getNumVBases() > 0)
552     ArgTys.push_back(Context.IntTy);
553   CallingConv CC = Context.getDefaultCallingConvention(
554       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
555   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
556                                  /*chainCall=*/false, ArgTys,
557                                  FunctionType::ExtInfo(CC), {},
558                                  RequiredArgs::All);
559 }
560 
561 /// Arrange a call as unto a free function, except possibly with an
562 /// additional number of formal parameters considered required.
563 static const CGFunctionInfo &
564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
565                             CodeGenModule &CGM,
566                             const CallArgList &args,
567                             const FunctionType *fnType,
568                             unsigned numExtraRequiredArgs,
569                             bool chainCall) {
570   assert(args.size() >= numExtraRequiredArgs);
571 
572   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
573 
574   // In most cases, there are no optional arguments.
575   RequiredArgs required = RequiredArgs::All;
576 
577   // If we have a variadic prototype, the required arguments are the
578   // extra prefix plus the arguments in the prototype.
579   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
580     if (proto->isVariadic())
581       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
582 
583     if (proto->hasExtParameterInfos())
584       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
585                                   args.size());
586 
587   // If we don't have a prototype at all, but we're supposed to
588   // explicitly use the variadic convention for unprototyped calls,
589   // treat all of the arguments as required but preserve the nominal
590   // possibility of variadics.
591   } else if (CGM.getTargetCodeGenInfo()
592                 .isNoProtoCallVariadic(args,
593                                        cast<FunctionNoProtoType>(fnType))) {
594     required = RequiredArgs(args.size());
595   }
596 
597   // FIXME: Kill copy.
598   SmallVector<CanQualType, 16> argTypes;
599   for (const auto &arg : args)
600     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
601   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
602                                      /*instanceMethod=*/false, chainCall,
603                                      argTypes, fnType->getExtInfo(), paramInfos,
604                                      required);
605 }
606 
607 /// Figure out the rules for calling a function with the given formal
608 /// type using the given arguments.  The arguments are necessary
609 /// because the function might be unprototyped, in which case it's
610 /// target-dependent in crazy ways.
611 const CGFunctionInfo &
612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
613                                       const FunctionType *fnType,
614                                       bool chainCall) {
615   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
616                                      chainCall ? 1 : 0, chainCall);
617 }
618 
619 /// A block function is essentially a free function with an
620 /// extra implicit argument.
621 const CGFunctionInfo &
622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
623                                        const FunctionType *fnType) {
624   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
625                                      /*chainCall=*/false);
626 }
627 
628 const CGFunctionInfo &
629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
630                                               const FunctionArgList &params) {
631   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
632   auto argTypes = getArgTypesForDeclaration(Context, params);
633 
634   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
635                                  /*instanceMethod*/ false, /*chainCall*/ false,
636                                  argTypes, proto->getExtInfo(), paramInfos,
637                                  RequiredArgs::forPrototypePlus(proto, 1));
638 }
639 
640 const CGFunctionInfo &
641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
642                                          const CallArgList &args) {
643   // FIXME: Kill copy.
644   SmallVector<CanQualType, 16> argTypes;
645   for (const auto &Arg : args)
646     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
647   return arrangeLLVMFunctionInfo(
648       GetReturnType(resultType), /*instanceMethod=*/false,
649       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
650       /*paramInfos=*/ {}, RequiredArgs::All);
651 }
652 
653 const CGFunctionInfo &
654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
655                                                 const FunctionArgList &args) {
656   auto argTypes = getArgTypesForDeclaration(Context, args);
657 
658   return arrangeLLVMFunctionInfo(
659       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
660       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
661 }
662 
663 const CGFunctionInfo &
664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
665                                               ArrayRef<CanQualType> argTypes) {
666   return arrangeLLVMFunctionInfo(
667       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
668       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
669 }
670 
671 /// Arrange a call to a C++ method, passing the given arguments.
672 ///
673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
674 /// does not count `this`.
675 const CGFunctionInfo &
676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
677                                    const FunctionProtoType *proto,
678                                    RequiredArgs required,
679                                    unsigned numPrefixArgs) {
680   assert(numPrefixArgs + 1 <= args.size() &&
681          "Emitting a call with less args than the required prefix?");
682   // Add one to account for `this`. It's a bit awkward here, but we don't count
683   // `this` in similar places elsewhere.
684   auto paramInfos =
685     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
686 
687   // FIXME: Kill copy.
688   auto argTypes = getArgTypesForCall(Context, args);
689 
690   FunctionType::ExtInfo info = proto->getExtInfo();
691   return arrangeLLVMFunctionInfo(
692       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
693       /*chainCall=*/false, argTypes, info, paramInfos, required);
694 }
695 
696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
697   return arrangeLLVMFunctionInfo(
698       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
699       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
700 }
701 
702 const CGFunctionInfo &
703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
704                           const CallArgList &args) {
705   assert(signature.arg_size() <= args.size());
706   if (signature.arg_size() == args.size())
707     return signature;
708 
709   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
710   auto sigParamInfos = signature.getExtParameterInfos();
711   if (!sigParamInfos.empty()) {
712     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
713     paramInfos.resize(args.size());
714   }
715 
716   auto argTypes = getArgTypesForCall(Context, args);
717 
718   assert(signature.getRequiredArgs().allowsOptionalArgs());
719   return arrangeLLVMFunctionInfo(signature.getReturnType(),
720                                  signature.isInstanceMethod(),
721                                  signature.isChainCall(),
722                                  argTypes,
723                                  signature.getExtInfo(),
724                                  paramInfos,
725                                  signature.getRequiredArgs());
726 }
727 
728 namespace clang {
729 namespace CodeGen {
730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
731 }
732 }
733 
734 /// Arrange the argument and result information for an abstract value
735 /// of a given function type.  This is the method which all of the
736 /// above functions ultimately defer to.
737 const CGFunctionInfo &
738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
739                                       bool instanceMethod,
740                                       bool chainCall,
741                                       ArrayRef<CanQualType> argTypes,
742                                       FunctionType::ExtInfo info,
743                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
744                                       RequiredArgs required) {
745   assert(llvm::all_of(argTypes,
746                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
747 
748   // Lookup or create unique function info.
749   llvm::FoldingSetNodeID ID;
750   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
751                           required, resultType, argTypes);
752 
753   void *insertPos = nullptr;
754   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
755   if (FI)
756     return *FI;
757 
758   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
759 
760   // Construct the function info.  We co-allocate the ArgInfos.
761   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
762                               paramInfos, resultType, argTypes, required);
763   FunctionInfos.InsertNode(FI, insertPos);
764 
765   bool inserted = FunctionsBeingProcessed.insert(FI).second;
766   (void)inserted;
767   assert(inserted && "Recursively being processed?");
768 
769   // Compute ABI information.
770   if (CC == llvm::CallingConv::SPIR_KERNEL) {
771     // Force target independent argument handling for the host visible
772     // kernel functions.
773     computeSPIRKernelABIInfo(CGM, *FI);
774   } else if (info.getCC() == CC_Swift) {
775     swiftcall::computeABIInfo(CGM, *FI);
776   } else {
777     getABIInfo().computeInfo(*FI);
778   }
779 
780   // Loop over all of the computed argument and return value info.  If any of
781   // them are direct or extend without a specified coerce type, specify the
782   // default now.
783   ABIArgInfo &retInfo = FI->getReturnInfo();
784   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
785     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
786 
787   for (auto &I : FI->arguments())
788     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
789       I.info.setCoerceToType(ConvertType(I.type));
790 
791   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
792   assert(erased && "Not in set?");
793 
794   return *FI;
795 }
796 
797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
798                                        bool instanceMethod,
799                                        bool chainCall,
800                                        const FunctionType::ExtInfo &info,
801                                        ArrayRef<ExtParameterInfo> paramInfos,
802                                        CanQualType resultType,
803                                        ArrayRef<CanQualType> argTypes,
804                                        RequiredArgs required) {
805   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
806   assert(!required.allowsOptionalArgs() ||
807          required.getNumRequiredArgs() <= argTypes.size());
808 
809   void *buffer =
810     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
811                                   argTypes.size() + 1, paramInfos.size()));
812 
813   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
814   FI->CallingConvention = llvmCC;
815   FI->EffectiveCallingConvention = llvmCC;
816   FI->ASTCallingConvention = info.getCC();
817   FI->InstanceMethod = instanceMethod;
818   FI->ChainCall = chainCall;
819   FI->CmseNSCall = info.getCmseNSCall();
820   FI->NoReturn = info.getNoReturn();
821   FI->ReturnsRetained = info.getProducesResult();
822   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
823   FI->NoCfCheck = info.getNoCfCheck();
824   FI->Required = required;
825   FI->HasRegParm = info.getHasRegParm();
826   FI->RegParm = info.getRegParm();
827   FI->ArgStruct = nullptr;
828   FI->ArgStructAlign = 0;
829   FI->NumArgs = argTypes.size();
830   FI->HasExtParameterInfos = !paramInfos.empty();
831   FI->getArgsBuffer()[0].type = resultType;
832   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
833     FI->getArgsBuffer()[i + 1].type = argTypes[i];
834   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
835     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
836   return FI;
837 }
838 
839 /***/
840 
841 namespace {
842 // ABIArgInfo::Expand implementation.
843 
844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
845 struct TypeExpansion {
846   enum TypeExpansionKind {
847     // Elements of constant arrays are expanded recursively.
848     TEK_ConstantArray,
849     // Record fields are expanded recursively (but if record is a union, only
850     // the field with the largest size is expanded).
851     TEK_Record,
852     // For complex types, real and imaginary parts are expanded recursively.
853     TEK_Complex,
854     // All other types are not expandable.
855     TEK_None
856   };
857 
858   const TypeExpansionKind Kind;
859 
860   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
861   virtual ~TypeExpansion() {}
862 };
863 
864 struct ConstantArrayExpansion : TypeExpansion {
865   QualType EltTy;
866   uint64_t NumElts;
867 
868   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
869       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
870   static bool classof(const TypeExpansion *TE) {
871     return TE->Kind == TEK_ConstantArray;
872   }
873 };
874 
875 struct RecordExpansion : TypeExpansion {
876   SmallVector<const CXXBaseSpecifier *, 1> Bases;
877 
878   SmallVector<const FieldDecl *, 1> Fields;
879 
880   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
881                   SmallVector<const FieldDecl *, 1> &&Fields)
882       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
883         Fields(std::move(Fields)) {}
884   static bool classof(const TypeExpansion *TE) {
885     return TE->Kind == TEK_Record;
886   }
887 };
888 
889 struct ComplexExpansion : TypeExpansion {
890   QualType EltTy;
891 
892   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_Complex;
895   }
896 };
897 
898 struct NoExpansion : TypeExpansion {
899   NoExpansion() : TypeExpansion(TEK_None) {}
900   static bool classof(const TypeExpansion *TE) {
901     return TE->Kind == TEK_None;
902   }
903 };
904 }  // namespace
905 
906 static std::unique_ptr<TypeExpansion>
907 getTypeExpansion(QualType Ty, const ASTContext &Context) {
908   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
909     return std::make_unique<ConstantArrayExpansion>(
910         AT->getElementType(), AT->getSize().getZExtValue());
911   }
912   if (const RecordType *RT = Ty->getAs<RecordType>()) {
913     SmallVector<const CXXBaseSpecifier *, 1> Bases;
914     SmallVector<const FieldDecl *, 1> Fields;
915     const RecordDecl *RD = RT->getDecl();
916     assert(!RD->hasFlexibleArrayMember() &&
917            "Cannot expand structure with flexible array.");
918     if (RD->isUnion()) {
919       // Unions can be here only in degenerative cases - all the fields are same
920       // after flattening. Thus we have to use the "largest" field.
921       const FieldDecl *LargestFD = nullptr;
922       CharUnits UnionSize = CharUnits::Zero();
923 
924       for (const auto *FD : RD->fields()) {
925         if (FD->isZeroLengthBitField(Context))
926           continue;
927         assert(!FD->isBitField() &&
928                "Cannot expand structure with bit-field members.");
929         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
930         if (UnionSize < FieldSize) {
931           UnionSize = FieldSize;
932           LargestFD = FD;
933         }
934       }
935       if (LargestFD)
936         Fields.push_back(LargestFD);
937     } else {
938       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
939         assert(!CXXRD->isDynamicClass() &&
940                "cannot expand vtable pointers in dynamic classes");
941         for (const CXXBaseSpecifier &BS : CXXRD->bases())
942           Bases.push_back(&BS);
943       }
944 
945       for (const auto *FD : RD->fields()) {
946         if (FD->isZeroLengthBitField(Context))
947           continue;
948         assert(!FD->isBitField() &&
949                "Cannot expand structure with bit-field members.");
950         Fields.push_back(FD);
951       }
952     }
953     return std::make_unique<RecordExpansion>(std::move(Bases),
954                                               std::move(Fields));
955   }
956   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
957     return std::make_unique<ComplexExpansion>(CT->getElementType());
958   }
959   return std::make_unique<NoExpansion>();
960 }
961 
962 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
963   auto Exp = getTypeExpansion(Ty, Context);
964   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
965     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
966   }
967   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
968     int Res = 0;
969     for (auto BS : RExp->Bases)
970       Res += getExpansionSize(BS->getType(), Context);
971     for (auto FD : RExp->Fields)
972       Res += getExpansionSize(FD->getType(), Context);
973     return Res;
974   }
975   if (isa<ComplexExpansion>(Exp.get()))
976     return 2;
977   assert(isa<NoExpansion>(Exp.get()));
978   return 1;
979 }
980 
981 void
982 CodeGenTypes::getExpandedTypes(QualType Ty,
983                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
984   auto Exp = getTypeExpansion(Ty, Context);
985   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
986     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
987       getExpandedTypes(CAExp->EltTy, TI);
988     }
989   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     for (auto BS : RExp->Bases)
991       getExpandedTypes(BS->getType(), TI);
992     for (auto FD : RExp->Fields)
993       getExpandedTypes(FD->getType(), TI);
994   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
995     llvm::Type *EltTy = ConvertType(CExp->EltTy);
996     *TI++ = EltTy;
997     *TI++ = EltTy;
998   } else {
999     assert(isa<NoExpansion>(Exp.get()));
1000     *TI++ = ConvertType(Ty);
1001   }
1002 }
1003 
1004 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1005                                       ConstantArrayExpansion *CAE,
1006                                       Address BaseAddr,
1007                                       llvm::function_ref<void(Address)> Fn) {
1008   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1009   CharUnits EltAlign =
1010     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1011 
1012   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1013     llvm::Value *EltAddr =
1014       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1015     Fn(Address(EltAddr, EltAlign));
1016   }
1017 }
1018 
1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1020                                          llvm::Function::arg_iterator &AI) {
1021   assert(LV.isSimple() &&
1022          "Unexpected non-simple lvalue during struct expansion.");
1023 
1024   auto Exp = getTypeExpansion(Ty, getContext());
1025   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1026     forConstantArrayExpansion(
1027         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1028           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1029           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1030         });
1031   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1032     Address This = LV.getAddress(*this);
1033     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1034       // Perform a single step derived-to-base conversion.
1035       Address Base =
1036           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1037                                 /*NullCheckValue=*/false, SourceLocation());
1038       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1039 
1040       // Recurse onto bases.
1041       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1042     }
1043     for (auto FD : RExp->Fields) {
1044       // FIXME: What are the right qualifiers here?
1045       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1046       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1047     }
1048   } else if (isa<ComplexExpansion>(Exp.get())) {
1049     auto realValue = &*AI++;
1050     auto imagValue = &*AI++;
1051     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1052   } else {
1053     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1054     // primitive store.
1055     assert(isa<NoExpansion>(Exp.get()));
1056     if (LV.isBitField())
1057       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1058     else
1059       EmitStoreOfScalar(&*AI++, LV);
1060   }
1061 }
1062 
1063 void CodeGenFunction::ExpandTypeToArgs(
1064     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1065     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1066   auto Exp = getTypeExpansion(Ty, getContext());
1067   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1068     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1069                                    : Arg.getKnownRValue().getAggregateAddress();
1070     forConstantArrayExpansion(
1071         *this, CAExp, Addr, [&](Address EltAddr) {
1072           CallArg EltArg = CallArg(
1073               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1074               CAExp->EltTy);
1075           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1076                            IRCallArgPos);
1077         });
1078   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1079     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1080                                    : Arg.getKnownRValue().getAggregateAddress();
1081     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1082       // Perform a single step derived-to-base conversion.
1083       Address Base =
1084           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1085                                 /*NullCheckValue=*/false, SourceLocation());
1086       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1087 
1088       // Recurse onto bases.
1089       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1090                        IRCallArgPos);
1091     }
1092 
1093     LValue LV = MakeAddrLValue(This, Ty);
1094     for (auto FD : RExp->Fields) {
1095       CallArg FldArg =
1096           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1097       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1098                        IRCallArgPos);
1099     }
1100   } else if (isa<ComplexExpansion>(Exp.get())) {
1101     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1102     IRCallArgs[IRCallArgPos++] = CV.first;
1103     IRCallArgs[IRCallArgPos++] = CV.second;
1104   } else {
1105     assert(isa<NoExpansion>(Exp.get()));
1106     auto RV = Arg.getKnownRValue();
1107     assert(RV.isScalar() &&
1108            "Unexpected non-scalar rvalue during struct expansion.");
1109 
1110     // Insert a bitcast as needed.
1111     llvm::Value *V = RV.getScalarVal();
1112     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1113         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1114       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1115 
1116     IRCallArgs[IRCallArgPos++] = V;
1117   }
1118 }
1119 
1120 /// Create a temporary allocation for the purposes of coercion.
1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1122                                            CharUnits MinAlign,
1123                                            const Twine &Name = "tmp") {
1124   // Don't use an alignment that's worse than what LLVM would prefer.
1125   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1126   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1127 
1128   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1129 }
1130 
1131 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1132 /// accessing some number of bytes out of it, try to gep into the struct to get
1133 /// at its inner goodness.  Dive as deep as possible without entering an element
1134 /// with an in-memory size smaller than DstSize.
1135 static Address
1136 EnterStructPointerForCoercedAccess(Address SrcPtr,
1137                                    llvm::StructType *SrcSTy,
1138                                    uint64_t DstSize, CodeGenFunction &CGF) {
1139   // We can't dive into a zero-element struct.
1140   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1141 
1142   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1143 
1144   // If the first elt is at least as large as what we're looking for, or if the
1145   // first element is the same size as the whole struct, we can enter it. The
1146   // comparison must be made on the store size and not the alloca size. Using
1147   // the alloca size may overstate the size of the load.
1148   uint64_t FirstEltSize =
1149     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1150   if (FirstEltSize < DstSize &&
1151       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1152     return SrcPtr;
1153 
1154   // GEP into the first element.
1155   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1156 
1157   // If the first element is a struct, recurse.
1158   llvm::Type *SrcTy = SrcPtr.getElementType();
1159   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1160     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1161 
1162   return SrcPtr;
1163 }
1164 
1165 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1166 /// are either integers or pointers.  This does a truncation of the value if it
1167 /// is too large or a zero extension if it is too small.
1168 ///
1169 /// This behaves as if the value were coerced through memory, so on big-endian
1170 /// targets the high bits are preserved in a truncation, while little-endian
1171 /// targets preserve the low bits.
1172 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1173                                              llvm::Type *Ty,
1174                                              CodeGenFunction &CGF) {
1175   if (Val->getType() == Ty)
1176     return Val;
1177 
1178   if (isa<llvm::PointerType>(Val->getType())) {
1179     // If this is Pointer->Pointer avoid conversion to and from int.
1180     if (isa<llvm::PointerType>(Ty))
1181       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1182 
1183     // Convert the pointer to an integer so we can play with its width.
1184     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1185   }
1186 
1187   llvm::Type *DestIntTy = Ty;
1188   if (isa<llvm::PointerType>(DestIntTy))
1189     DestIntTy = CGF.IntPtrTy;
1190 
1191   if (Val->getType() != DestIntTy) {
1192     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1193     if (DL.isBigEndian()) {
1194       // Preserve the high bits on big-endian targets.
1195       // That is what memory coercion does.
1196       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1197       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1198 
1199       if (SrcSize > DstSize) {
1200         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1201         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1202       } else {
1203         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1204         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1205       }
1206     } else {
1207       // Little-endian targets preserve the low bits. No shifts required.
1208       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1209     }
1210   }
1211 
1212   if (isa<llvm::PointerType>(Ty))
1213     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1214   return Val;
1215 }
1216 
1217 
1218 
1219 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1220 /// a pointer to an object of type \arg Ty, known to be aligned to
1221 /// \arg SrcAlign bytes.
1222 ///
1223 /// This safely handles the case when the src type is smaller than the
1224 /// destination type; in this situation the values of bits which not
1225 /// present in the src are undefined.
1226 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1227                                       CodeGenFunction &CGF) {
1228   llvm::Type *SrcTy = Src.getElementType();
1229 
1230   // If SrcTy and Ty are the same, just do a load.
1231   if (SrcTy == Ty)
1232     return CGF.Builder.CreateLoad(Src);
1233 
1234   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1235 
1236   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1237     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1238                                              DstSize.getFixedSize(), CGF);
1239     SrcTy = Src.getElementType();
1240   }
1241 
1242   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1243 
1244   // If the source and destination are integer or pointer types, just do an
1245   // extension or truncation to the desired type.
1246   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1247       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1248     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1249     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1250   }
1251 
1252   // If load is legal, just bitcast the src pointer.
1253   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1254       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1255     // Generally SrcSize is never greater than DstSize, since this means we are
1256     // losing bits. However, this can happen in cases where the structure has
1257     // additional padding, for example due to a user specified alignment.
1258     //
1259     // FIXME: Assert that we aren't truncating non-padding bits when have access
1260     // to that information.
1261     Src = CGF.Builder.CreateBitCast(Src,
1262                                     Ty->getPointerTo(Src.getAddressSpace()));
1263     return CGF.Builder.CreateLoad(Src);
1264   }
1265 
1266   // Otherwise do coercion through memory. This is stupid, but simple.
1267   Address Tmp =
1268       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1269   CGF.Builder.CreateMemCpy(
1270       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1271       Src.getAlignment().getAsAlign(),
1272       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1273   return CGF.Builder.CreateLoad(Tmp);
1274 }
1275 
1276 // Function to store a first-class aggregate into memory.  We prefer to
1277 // store the elements rather than the aggregate to be more friendly to
1278 // fast-isel.
1279 // FIXME: Do we need to recurse here?
1280 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1281                                          bool DestIsVolatile) {
1282   // Prefer scalar stores to first-class aggregate stores.
1283   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1284     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1285       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1286       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1287       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1288     }
1289   } else {
1290     Builder.CreateStore(Val, Dest, DestIsVolatile);
1291   }
1292 }
1293 
1294 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1295 /// where the source and destination may have different types.  The
1296 /// destination is known to be aligned to \arg DstAlign bytes.
1297 ///
1298 /// This safely handles the case when the src type is larger than the
1299 /// destination type; the upper bits of the src will be lost.
1300 static void CreateCoercedStore(llvm::Value *Src,
1301                                Address Dst,
1302                                bool DstIsVolatile,
1303                                CodeGenFunction &CGF) {
1304   llvm::Type *SrcTy = Src->getType();
1305   llvm::Type *DstTy = Dst.getElementType();
1306   if (SrcTy == DstTy) {
1307     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1308     return;
1309   }
1310 
1311   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1312 
1313   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1314     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1315                                              SrcSize.getFixedSize(), CGF);
1316     DstTy = Dst.getElementType();
1317   }
1318 
1319   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1320   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1321   if (SrcPtrTy && DstPtrTy &&
1322       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1323     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1324     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1325     return;
1326   }
1327 
1328   // If the source and destination are integer or pointer types, just do an
1329   // extension or truncation to the desired type.
1330   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1331       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1332     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1333     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1334     return;
1335   }
1336 
1337   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1338 
1339   // If store is legal, just bitcast the src pointer.
1340   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1341       isa<llvm::ScalableVectorType>(DstTy) ||
1342       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1343     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1344     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1345   } else {
1346     // Otherwise do coercion through memory. This is stupid, but
1347     // simple.
1348 
1349     // Generally SrcSize is never greater than DstSize, since this means we are
1350     // losing bits. However, this can happen in cases where the structure has
1351     // additional padding, for example due to a user specified alignment.
1352     //
1353     // FIXME: Assert that we aren't truncating non-padding bits when have access
1354     // to that information.
1355     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1356     CGF.Builder.CreateStore(Src, Tmp);
1357     CGF.Builder.CreateMemCpy(
1358         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1359         Tmp.getAlignment().getAsAlign(),
1360         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1361   }
1362 }
1363 
1364 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1365                                    const ABIArgInfo &info) {
1366   if (unsigned offset = info.getDirectOffset()) {
1367     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1368     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1369                                              CharUnits::fromQuantity(offset));
1370     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1371   }
1372   return addr;
1373 }
1374 
1375 namespace {
1376 
1377 /// Encapsulates information about the way function arguments from
1378 /// CGFunctionInfo should be passed to actual LLVM IR function.
1379 class ClangToLLVMArgMapping {
1380   static const unsigned InvalidIndex = ~0U;
1381   unsigned InallocaArgNo;
1382   unsigned SRetArgNo;
1383   unsigned TotalIRArgs;
1384 
1385   /// Arguments of LLVM IR function corresponding to single Clang argument.
1386   struct IRArgs {
1387     unsigned PaddingArgIndex;
1388     // Argument is expanded to IR arguments at positions
1389     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1390     unsigned FirstArgIndex;
1391     unsigned NumberOfArgs;
1392 
1393     IRArgs()
1394         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1395           NumberOfArgs(0) {}
1396   };
1397 
1398   SmallVector<IRArgs, 8> ArgInfo;
1399 
1400 public:
1401   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1402                         bool OnlyRequiredArgs = false)
1403       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1404         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1405     construct(Context, FI, OnlyRequiredArgs);
1406   }
1407 
1408   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1409   unsigned getInallocaArgNo() const {
1410     assert(hasInallocaArg());
1411     return InallocaArgNo;
1412   }
1413 
1414   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1415   unsigned getSRetArgNo() const {
1416     assert(hasSRetArg());
1417     return SRetArgNo;
1418   }
1419 
1420   unsigned totalIRArgs() const { return TotalIRArgs; }
1421 
1422   bool hasPaddingArg(unsigned ArgNo) const {
1423     assert(ArgNo < ArgInfo.size());
1424     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1425   }
1426   unsigned getPaddingArgNo(unsigned ArgNo) const {
1427     assert(hasPaddingArg(ArgNo));
1428     return ArgInfo[ArgNo].PaddingArgIndex;
1429   }
1430 
1431   /// Returns index of first IR argument corresponding to ArgNo, and their
1432   /// quantity.
1433   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1434     assert(ArgNo < ArgInfo.size());
1435     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1436                           ArgInfo[ArgNo].NumberOfArgs);
1437   }
1438 
1439 private:
1440   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1441                  bool OnlyRequiredArgs);
1442 };
1443 
1444 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1445                                       const CGFunctionInfo &FI,
1446                                       bool OnlyRequiredArgs) {
1447   unsigned IRArgNo = 0;
1448   bool SwapThisWithSRet = false;
1449   const ABIArgInfo &RetAI = FI.getReturnInfo();
1450 
1451   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1452     SwapThisWithSRet = RetAI.isSRetAfterThis();
1453     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1454   }
1455 
1456   unsigned ArgNo = 0;
1457   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1458   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1459        ++I, ++ArgNo) {
1460     assert(I != FI.arg_end());
1461     QualType ArgType = I->type;
1462     const ABIArgInfo &AI = I->info;
1463     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1464     auto &IRArgs = ArgInfo[ArgNo];
1465 
1466     if (AI.getPaddingType())
1467       IRArgs.PaddingArgIndex = IRArgNo++;
1468 
1469     switch (AI.getKind()) {
1470     case ABIArgInfo::Extend:
1471     case ABIArgInfo::Direct: {
1472       // FIXME: handle sseregparm someday...
1473       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1474       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1475         IRArgs.NumberOfArgs = STy->getNumElements();
1476       } else {
1477         IRArgs.NumberOfArgs = 1;
1478       }
1479       break;
1480     }
1481     case ABIArgInfo::Indirect:
1482     case ABIArgInfo::IndirectAliased:
1483       IRArgs.NumberOfArgs = 1;
1484       break;
1485     case ABIArgInfo::Ignore:
1486     case ABIArgInfo::InAlloca:
1487       // ignore and inalloca doesn't have matching LLVM parameters.
1488       IRArgs.NumberOfArgs = 0;
1489       break;
1490     case ABIArgInfo::CoerceAndExpand:
1491       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1492       break;
1493     case ABIArgInfo::Expand:
1494       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1495       break;
1496     }
1497 
1498     if (IRArgs.NumberOfArgs > 0) {
1499       IRArgs.FirstArgIndex = IRArgNo;
1500       IRArgNo += IRArgs.NumberOfArgs;
1501     }
1502 
1503     // Skip over the sret parameter when it comes second.  We already handled it
1504     // above.
1505     if (IRArgNo == 1 && SwapThisWithSRet)
1506       IRArgNo++;
1507   }
1508   assert(ArgNo == ArgInfo.size());
1509 
1510   if (FI.usesInAlloca())
1511     InallocaArgNo = IRArgNo++;
1512 
1513   TotalIRArgs = IRArgNo;
1514 }
1515 }  // namespace
1516 
1517 /***/
1518 
1519 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1520   const auto &RI = FI.getReturnInfo();
1521   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1522 }
1523 
1524 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1525   return ReturnTypeUsesSRet(FI) &&
1526          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1527 }
1528 
1529 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1530   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1531     switch (BT->getKind()) {
1532     default:
1533       return false;
1534     case BuiltinType::Float:
1535       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1536     case BuiltinType::Double:
1537       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1538     case BuiltinType::LongDouble:
1539       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1540     }
1541   }
1542 
1543   return false;
1544 }
1545 
1546 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1547   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1548     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1549       if (BT->getKind() == BuiltinType::LongDouble)
1550         return getTarget().useObjCFP2RetForComplexLongDouble();
1551     }
1552   }
1553 
1554   return false;
1555 }
1556 
1557 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1558   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1559   return GetFunctionType(FI);
1560 }
1561 
1562 llvm::FunctionType *
1563 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1564 
1565   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1566   (void)Inserted;
1567   assert(Inserted && "Recursively being processed?");
1568 
1569   llvm::Type *resultType = nullptr;
1570   const ABIArgInfo &retAI = FI.getReturnInfo();
1571   switch (retAI.getKind()) {
1572   case ABIArgInfo::Expand:
1573   case ABIArgInfo::IndirectAliased:
1574     llvm_unreachable("Invalid ABI kind for return argument");
1575 
1576   case ABIArgInfo::Extend:
1577   case ABIArgInfo::Direct:
1578     resultType = retAI.getCoerceToType();
1579     break;
1580 
1581   case ABIArgInfo::InAlloca:
1582     if (retAI.getInAllocaSRet()) {
1583       // sret things on win32 aren't void, they return the sret pointer.
1584       QualType ret = FI.getReturnType();
1585       llvm::Type *ty = ConvertType(ret);
1586       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1587       resultType = llvm::PointerType::get(ty, addressSpace);
1588     } else {
1589       resultType = llvm::Type::getVoidTy(getLLVMContext());
1590     }
1591     break;
1592 
1593   case ABIArgInfo::Indirect:
1594   case ABIArgInfo::Ignore:
1595     resultType = llvm::Type::getVoidTy(getLLVMContext());
1596     break;
1597 
1598   case ABIArgInfo::CoerceAndExpand:
1599     resultType = retAI.getUnpaddedCoerceAndExpandType();
1600     break;
1601   }
1602 
1603   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1604   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1605 
1606   // Add type for sret argument.
1607   if (IRFunctionArgs.hasSRetArg()) {
1608     QualType Ret = FI.getReturnType();
1609     llvm::Type *Ty = ConvertType(Ret);
1610     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1611     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1612         llvm::PointerType::get(Ty, AddressSpace);
1613   }
1614 
1615   // Add type for inalloca argument.
1616   if (IRFunctionArgs.hasInallocaArg()) {
1617     auto ArgStruct = FI.getArgStruct();
1618     assert(ArgStruct);
1619     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1620   }
1621 
1622   // Add in all of the required arguments.
1623   unsigned ArgNo = 0;
1624   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1625                                      ie = it + FI.getNumRequiredArgs();
1626   for (; it != ie; ++it, ++ArgNo) {
1627     const ABIArgInfo &ArgInfo = it->info;
1628 
1629     // Insert a padding type to ensure proper alignment.
1630     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1631       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1632           ArgInfo.getPaddingType();
1633 
1634     unsigned FirstIRArg, NumIRArgs;
1635     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1636 
1637     switch (ArgInfo.getKind()) {
1638     case ABIArgInfo::Ignore:
1639     case ABIArgInfo::InAlloca:
1640       assert(NumIRArgs == 0);
1641       break;
1642 
1643     case ABIArgInfo::Indirect: {
1644       assert(NumIRArgs == 1);
1645       // indirect arguments are always on the stack, which is alloca addr space.
1646       llvm::Type *LTy = ConvertTypeForMem(it->type);
1647       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1648           CGM.getDataLayout().getAllocaAddrSpace());
1649       break;
1650     }
1651     case ABIArgInfo::IndirectAliased: {
1652       assert(NumIRArgs == 1);
1653       llvm::Type *LTy = ConvertTypeForMem(it->type);
1654       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1655       break;
1656     }
1657     case ABIArgInfo::Extend:
1658     case ABIArgInfo::Direct: {
1659       // Fast-isel and the optimizer generally like scalar values better than
1660       // FCAs, so we flatten them if this is safe to do for this argument.
1661       llvm::Type *argType = ArgInfo.getCoerceToType();
1662       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1663       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1664         assert(NumIRArgs == st->getNumElements());
1665         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1666           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1667       } else {
1668         assert(NumIRArgs == 1);
1669         ArgTypes[FirstIRArg] = argType;
1670       }
1671       break;
1672     }
1673 
1674     case ABIArgInfo::CoerceAndExpand: {
1675       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1676       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1677         *ArgTypesIter++ = EltTy;
1678       }
1679       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1680       break;
1681     }
1682 
1683     case ABIArgInfo::Expand:
1684       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1685       getExpandedTypes(it->type, ArgTypesIter);
1686       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1687       break;
1688     }
1689   }
1690 
1691   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1692   assert(Erased && "Not in set?");
1693 
1694   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1695 }
1696 
1697 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1698   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1699   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1700 
1701   if (!isFuncTypeConvertible(FPT))
1702     return llvm::StructType::get(getLLVMContext());
1703 
1704   return GetFunctionType(GD);
1705 }
1706 
1707 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1708                                                llvm::AttrBuilder &FuncAttrs,
1709                                                const FunctionProtoType *FPT) {
1710   if (!FPT)
1711     return;
1712 
1713   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1714       FPT->isNothrow())
1715     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1716 }
1717 
1718 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1719                                                  bool HasOptnone,
1720                                                  bool AttrOnCallSite,
1721                                                llvm::AttrBuilder &FuncAttrs) {
1722   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1723   if (!HasOptnone) {
1724     if (CodeGenOpts.OptimizeSize)
1725       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1726     if (CodeGenOpts.OptimizeSize == 2)
1727       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1728   }
1729 
1730   if (CodeGenOpts.DisableRedZone)
1731     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1732   if (CodeGenOpts.IndirectTlsSegRefs)
1733     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1734   if (CodeGenOpts.NoImplicitFloat)
1735     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1736 
1737   if (AttrOnCallSite) {
1738     // Attributes that should go on the call site only.
1739     if (!CodeGenOpts.SimplifyLibCalls ||
1740         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1741       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1742     if (!CodeGenOpts.TrapFuncName.empty())
1743       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1744   } else {
1745     StringRef FpKind;
1746     switch (CodeGenOpts.getFramePointer()) {
1747     case CodeGenOptions::FramePointerKind::None:
1748       FpKind = "none";
1749       break;
1750     case CodeGenOptions::FramePointerKind::NonLeaf:
1751       FpKind = "non-leaf";
1752       break;
1753     case CodeGenOptions::FramePointerKind::All:
1754       FpKind = "all";
1755       break;
1756     }
1757     FuncAttrs.addAttribute("frame-pointer", FpKind);
1758 
1759     FuncAttrs.addAttribute("less-precise-fpmad",
1760                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1761 
1762     if (CodeGenOpts.NullPointerIsValid)
1763       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1764 
1765     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1766       FuncAttrs.addAttribute("denormal-fp-math",
1767                              CodeGenOpts.FPDenormalMode.str());
1768     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1769       FuncAttrs.addAttribute(
1770           "denormal-fp-math-f32",
1771           CodeGenOpts.FP32DenormalMode.str());
1772     }
1773 
1774     FuncAttrs.addAttribute("no-trapping-math",
1775                            llvm::toStringRef(LangOpts.getFPExceptionMode() ==
1776                                              LangOptions::FPE_Ignore));
1777 
1778     // Strict (compliant) code is the default, so only add this attribute to
1779     // indicate that we are trying to workaround a problem case.
1780     if (!CodeGenOpts.StrictFloatCastOverflow)
1781       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1782 
1783     // TODO: Are these all needed?
1784     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1785     FuncAttrs.addAttribute("no-infs-fp-math",
1786                            llvm::toStringRef(LangOpts.NoHonorInfs));
1787     FuncAttrs.addAttribute("no-nans-fp-math",
1788                            llvm::toStringRef(LangOpts.NoHonorNaNs));
1789     FuncAttrs.addAttribute("unsafe-fp-math",
1790                            llvm::toStringRef(LangOpts.UnsafeFPMath));
1791     FuncAttrs.addAttribute("use-soft-float",
1792                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1793     FuncAttrs.addAttribute("stack-protector-buffer-size",
1794                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1795     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1796                            llvm::toStringRef(LangOpts.NoSignedZero));
1797     if (getLangOpts().OpenCL) {
1798       FuncAttrs.addAttribute(
1799           "correctly-rounded-divide-sqrt-fp-math",
1800           llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1801     }
1802 
1803     // TODO: Reciprocal estimate codegen options should apply to instructions?
1804     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1805     if (!Recips.empty())
1806       FuncAttrs.addAttribute("reciprocal-estimates",
1807                              llvm::join(Recips, ","));
1808 
1809     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1810         CodeGenOpts.PreferVectorWidth != "none")
1811       FuncAttrs.addAttribute("prefer-vector-width",
1812                              CodeGenOpts.PreferVectorWidth);
1813 
1814     if (CodeGenOpts.StackRealignment)
1815       FuncAttrs.addAttribute("stackrealign");
1816     if (CodeGenOpts.Backchain)
1817       FuncAttrs.addAttribute("backchain");
1818     if (CodeGenOpts.EnableSegmentedStacks)
1819       FuncAttrs.addAttribute("split-stack");
1820 
1821     if (CodeGenOpts.SpeculativeLoadHardening)
1822       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1823   }
1824 
1825   if (getLangOpts().assumeFunctionsAreConvergent()) {
1826     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1827     // convergent (meaning, they may call an intrinsically convergent op, such
1828     // as __syncthreads() / barrier(), and so can't have certain optimizations
1829     // applied around them).  LLVM will remove this attribute where it safely
1830     // can.
1831     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1832   }
1833 
1834   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1835     // Exceptions aren't supported in CUDA device code.
1836     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1837   }
1838 
1839   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1840     StringRef Var, Value;
1841     std::tie(Var, Value) = Attr.split('=');
1842     FuncAttrs.addAttribute(Var, Value);
1843   }
1844 }
1845 
1846 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1847   llvm::AttrBuilder FuncAttrs;
1848   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1849                                /* AttrOnCallSite = */ false, FuncAttrs);
1850   // TODO: call GetCPUAndFeaturesAttributes?
1851   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1852 }
1853 
1854 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1855                                                    llvm::AttrBuilder &attrs) {
1856   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1857                                /*for call*/ false, attrs);
1858   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1859 }
1860 
1861 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1862                                    const LangOptions &LangOpts,
1863                                    const NoBuiltinAttr *NBA = nullptr) {
1864   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1865     SmallString<32> AttributeName;
1866     AttributeName += "no-builtin-";
1867     AttributeName += BuiltinName;
1868     FuncAttrs.addAttribute(AttributeName);
1869   };
1870 
1871   // First, handle the language options passed through -fno-builtin.
1872   if (LangOpts.NoBuiltin) {
1873     // -fno-builtin disables them all.
1874     FuncAttrs.addAttribute("no-builtins");
1875     return;
1876   }
1877 
1878   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1879   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1880 
1881   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1882   // the source.
1883   if (!NBA)
1884     return;
1885 
1886   // If there is a wildcard in the builtin names specified through the
1887   // attribute, disable them all.
1888   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1889     FuncAttrs.addAttribute("no-builtins");
1890     return;
1891   }
1892 
1893   // And last, add the rest of the builtin names.
1894   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1895 }
1896 
1897 /// Construct the IR attribute list of a function or call.
1898 ///
1899 /// When adding an attribute, please consider where it should be handled:
1900 ///
1901 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1902 ///     part of the global target configuration (but perhaps can be
1903 ///     overridden on a per-function basis).  Adding attributes there
1904 ///     will cause them to also be set in frontends that build on Clang's
1905 ///     target-configuration logic, as well as for code defined in library
1906 ///     modules such as CUDA's libdevice.
1907 ///
1908 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1909 ///     and adds declaration-specific, convention-specific, and
1910 ///     frontend-specific logic.  The last is of particular importance:
1911 ///     attributes that restrict how the frontend generates code must be
1912 ///     added here rather than getDefaultFunctionAttributes.
1913 ///
1914 void CodeGenModule::ConstructAttributeList(
1915     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1916     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1917   llvm::AttrBuilder FuncAttrs;
1918   llvm::AttrBuilder RetAttrs;
1919 
1920   // Collect function IR attributes from the CC lowering.
1921   // We'll collect the paramete and result attributes later.
1922   CallingConv = FI.getEffectiveCallingConvention();
1923   if (FI.isNoReturn())
1924     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1925   if (FI.isCmseNSCall())
1926     FuncAttrs.addAttribute("cmse_nonsecure_call");
1927 
1928   // Collect function IR attributes from the callee prototype if we have one.
1929   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1930                                      CalleeInfo.getCalleeFunctionProtoType());
1931 
1932   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1933 
1934   bool HasOptnone = false;
1935   // The NoBuiltinAttr attached to the target FunctionDecl.
1936   const NoBuiltinAttr *NBA = nullptr;
1937 
1938   // Collect function IR attributes based on declaration-specific
1939   // information.
1940   // FIXME: handle sseregparm someday...
1941   if (TargetDecl) {
1942     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1943       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1944     if (TargetDecl->hasAttr<NoThrowAttr>())
1945       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1946     if (TargetDecl->hasAttr<NoReturnAttr>())
1947       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1948     if (TargetDecl->hasAttr<ColdAttr>())
1949       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1950     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1951       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1952     if (TargetDecl->hasAttr<ConvergentAttr>())
1953       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1954 
1955     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1956       AddAttributesFromFunctionProtoType(
1957           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1958       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1959         // A sane operator new returns a non-aliasing pointer.
1960         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1961         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1962             (Kind == OO_New || Kind == OO_Array_New))
1963           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1964       }
1965       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1966       const bool IsVirtualCall = MD && MD->isVirtual();
1967       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1968       // virtual function. These attributes are not inherited by overloads.
1969       if (!(AttrOnCallSite && IsVirtualCall)) {
1970         if (Fn->isNoReturn())
1971           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1972         NBA = Fn->getAttr<NoBuiltinAttr>();
1973       }
1974     }
1975 
1976     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1977     if (TargetDecl->hasAttr<ConstAttr>()) {
1978       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1979       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1980     } else if (TargetDecl->hasAttr<PureAttr>()) {
1981       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1982       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1983     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1984       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1985       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1986     }
1987     if (TargetDecl->hasAttr<RestrictAttr>())
1988       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1989     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1990         !CodeGenOpts.NullPointerIsValid)
1991       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1992     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1993       FuncAttrs.addAttribute("no_caller_saved_registers");
1994     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1995       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1996 
1997     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1998     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1999       Optional<unsigned> NumElemsParam;
2000       if (AllocSize->getNumElemsParam().isValid())
2001         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2002       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2003                                  NumElemsParam);
2004     }
2005 
2006     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2007       if (getLangOpts().OpenCLVersion <= 120) {
2008         // OpenCL v1.2 Work groups are always uniform
2009         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2010       } else {
2011         // OpenCL v2.0 Work groups may be whether uniform or not.
2012         // '-cl-uniform-work-group-size' compile option gets a hint
2013         // to the compiler that the global work-size be a multiple of
2014         // the work-group size specified to clEnqueueNDRangeKernel
2015         // (i.e. work groups are uniform).
2016         FuncAttrs.addAttribute("uniform-work-group-size",
2017                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2018       }
2019     }
2020   }
2021 
2022   // Attach "no-builtins" attributes to:
2023   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2024   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2025   // The attributes can come from:
2026   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2027   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2028   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2029 
2030   // Collect function IR attributes based on global settiings.
2031   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2032 
2033   // Override some default IR attributes based on declaration-specific
2034   // information.
2035   if (TargetDecl) {
2036     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2037       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2038     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2039       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2040     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2041       FuncAttrs.removeAttribute("split-stack");
2042 
2043     // Add NonLazyBind attribute to function declarations when -fno-plt
2044     // is used.
2045     // FIXME: what if we just haven't processed the function definition
2046     // yet, or if it's an external definition like C99 inline?
2047     if (CodeGenOpts.NoPLT) {
2048       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2049         if (!Fn->isDefined() && !AttrOnCallSite) {
2050           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2051         }
2052       }
2053     }
2054   }
2055 
2056   // Collect non-call-site function IR attributes from declaration-specific
2057   // information.
2058   if (!AttrOnCallSite) {
2059     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2060       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2061 
2062     // Whether tail calls are enabled.
2063     auto shouldDisableTailCalls = [&] {
2064       // Should this be honored in getDefaultFunctionAttributes?
2065       if (CodeGenOpts.DisableTailCalls)
2066         return true;
2067 
2068       if (!TargetDecl)
2069         return false;
2070 
2071       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2072           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2073         return true;
2074 
2075       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2076         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2077           if (!BD->doesNotEscape())
2078             return true;
2079       }
2080 
2081       return false;
2082     };
2083     FuncAttrs.addAttribute("disable-tail-calls",
2084                            llvm::toStringRef(shouldDisableTailCalls()));
2085 
2086     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2087     // handles these separately to set them based on the global defaults.
2088     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2089   }
2090 
2091   // Collect attributes from arguments and return values.
2092   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2093 
2094   QualType RetTy = FI.getReturnType();
2095   const ABIArgInfo &RetAI = FI.getReturnInfo();
2096   switch (RetAI.getKind()) {
2097   case ABIArgInfo::Extend:
2098     if (RetAI.isSignExt())
2099       RetAttrs.addAttribute(llvm::Attribute::SExt);
2100     else
2101       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2102     LLVM_FALLTHROUGH;
2103   case ABIArgInfo::Direct:
2104     if (RetAI.getInReg())
2105       RetAttrs.addAttribute(llvm::Attribute::InReg);
2106     break;
2107   case ABIArgInfo::Ignore:
2108     break;
2109 
2110   case ABIArgInfo::InAlloca:
2111   case ABIArgInfo::Indirect: {
2112     // inalloca and sret disable readnone and readonly
2113     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2114       .removeAttribute(llvm::Attribute::ReadNone);
2115     break;
2116   }
2117 
2118   case ABIArgInfo::CoerceAndExpand:
2119     break;
2120 
2121   case ABIArgInfo::Expand:
2122   case ABIArgInfo::IndirectAliased:
2123     llvm_unreachable("Invalid ABI kind for return argument");
2124   }
2125 
2126   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2127     QualType PTy = RefTy->getPointeeType();
2128     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2129       RetAttrs.addDereferenceableAttr(
2130           getMinimumObjectSize(PTy).getQuantity());
2131     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2132         !CodeGenOpts.NullPointerIsValid)
2133       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2134     if (PTy->isObjectType()) {
2135       llvm::Align Alignment =
2136           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2137       RetAttrs.addAlignmentAttr(Alignment);
2138     }
2139   }
2140 
2141   bool hasUsedSRet = false;
2142   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2143 
2144   // Attach attributes to sret.
2145   if (IRFunctionArgs.hasSRetArg()) {
2146     llvm::AttrBuilder SRETAttrs;
2147     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2148     hasUsedSRet = true;
2149     if (RetAI.getInReg())
2150       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2151     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2152     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2153         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2154   }
2155 
2156   // Attach attributes to inalloca argument.
2157   if (IRFunctionArgs.hasInallocaArg()) {
2158     llvm::AttrBuilder Attrs;
2159     Attrs.addAttribute(llvm::Attribute::InAlloca);
2160     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2161         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2162   }
2163 
2164   unsigned ArgNo = 0;
2165   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2166                                           E = FI.arg_end();
2167        I != E; ++I, ++ArgNo) {
2168     QualType ParamType = I->type;
2169     const ABIArgInfo &AI = I->info;
2170     llvm::AttrBuilder Attrs;
2171 
2172     // Add attribute for padding argument, if necessary.
2173     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2174       if (AI.getPaddingInReg()) {
2175         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2176             llvm::AttributeSet::get(
2177                 getLLVMContext(),
2178                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2179       }
2180     }
2181 
2182     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2183     // have the corresponding parameter variable.  It doesn't make
2184     // sense to do it here because parameters are so messed up.
2185     switch (AI.getKind()) {
2186     case ABIArgInfo::Extend:
2187       if (AI.isSignExt())
2188         Attrs.addAttribute(llvm::Attribute::SExt);
2189       else
2190         Attrs.addAttribute(llvm::Attribute::ZExt);
2191       LLVM_FALLTHROUGH;
2192     case ABIArgInfo::Direct:
2193       if (ArgNo == 0 && FI.isChainCall())
2194         Attrs.addAttribute(llvm::Attribute::Nest);
2195       else if (AI.getInReg())
2196         Attrs.addAttribute(llvm::Attribute::InReg);
2197       break;
2198 
2199     case ABIArgInfo::Indirect: {
2200       if (AI.getInReg())
2201         Attrs.addAttribute(llvm::Attribute::InReg);
2202 
2203       if (AI.getIndirectByVal())
2204         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2205 
2206       auto *Decl = ParamType->getAsRecordDecl();
2207       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2208           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2209         // When calling the function, the pointer passed in will be the only
2210         // reference to the underlying object. Mark it accordingly.
2211         Attrs.addAttribute(llvm::Attribute::NoAlias);
2212 
2213       // TODO: We could add the byref attribute if not byval, but it would
2214       // require updating many testcases.
2215 
2216       CharUnits Align = AI.getIndirectAlign();
2217 
2218       // In a byval argument, it is important that the required
2219       // alignment of the type is honored, as LLVM might be creating a
2220       // *new* stack object, and needs to know what alignment to give
2221       // it. (Sometimes it can deduce a sensible alignment on its own,
2222       // but not if clang decides it must emit a packed struct, or the
2223       // user specifies increased alignment requirements.)
2224       //
2225       // This is different from indirect *not* byval, where the object
2226       // exists already, and the align attribute is purely
2227       // informative.
2228       assert(!Align.isZero());
2229 
2230       // For now, only add this when we have a byval argument.
2231       // TODO: be less lazy about updating test cases.
2232       if (AI.getIndirectByVal())
2233         Attrs.addAlignmentAttr(Align.getQuantity());
2234 
2235       // byval disables readnone and readonly.
2236       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2237         .removeAttribute(llvm::Attribute::ReadNone);
2238 
2239       break;
2240     }
2241     case ABIArgInfo::IndirectAliased: {
2242       CharUnits Align = AI.getIndirectAlign();
2243       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2244       Attrs.addAlignmentAttr(Align.getQuantity());
2245       break;
2246     }
2247     case ABIArgInfo::Ignore:
2248     case ABIArgInfo::Expand:
2249     case ABIArgInfo::CoerceAndExpand:
2250       break;
2251 
2252     case ABIArgInfo::InAlloca:
2253       // inalloca disables readnone and readonly.
2254       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2255           .removeAttribute(llvm::Attribute::ReadNone);
2256       continue;
2257     }
2258 
2259     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2260       QualType PTy = RefTy->getPointeeType();
2261       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2262         Attrs.addDereferenceableAttr(
2263             getMinimumObjectSize(PTy).getQuantity());
2264       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2265           !CodeGenOpts.NullPointerIsValid)
2266         Attrs.addAttribute(llvm::Attribute::NonNull);
2267       if (PTy->isObjectType()) {
2268         llvm::Align Alignment =
2269             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2270         Attrs.addAlignmentAttr(Alignment);
2271       }
2272     }
2273 
2274     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2275     case ParameterABI::Ordinary:
2276       break;
2277 
2278     case ParameterABI::SwiftIndirectResult: {
2279       // Add 'sret' if we haven't already used it for something, but
2280       // only if the result is void.
2281       if (!hasUsedSRet && RetTy->isVoidType()) {
2282         Attrs.addAttribute(llvm::Attribute::StructRet);
2283         hasUsedSRet = true;
2284       }
2285 
2286       // Add 'noalias' in either case.
2287       Attrs.addAttribute(llvm::Attribute::NoAlias);
2288 
2289       // Add 'dereferenceable' and 'alignment'.
2290       auto PTy = ParamType->getPointeeType();
2291       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2292         auto info = getContext().getTypeInfoInChars(PTy);
2293         Attrs.addDereferenceableAttr(info.first.getQuantity());
2294         Attrs.addAlignmentAttr(info.second.getAsAlign());
2295       }
2296       break;
2297     }
2298 
2299     case ParameterABI::SwiftErrorResult:
2300       Attrs.addAttribute(llvm::Attribute::SwiftError);
2301       break;
2302 
2303     case ParameterABI::SwiftContext:
2304       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2305       break;
2306     }
2307 
2308     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2309       Attrs.addAttribute(llvm::Attribute::NoCapture);
2310 
2311     if (Attrs.hasAttributes()) {
2312       unsigned FirstIRArg, NumIRArgs;
2313       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2314       for (unsigned i = 0; i < NumIRArgs; i++)
2315         ArgAttrs[FirstIRArg + i] =
2316             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2317     }
2318   }
2319   assert(ArgNo == FI.arg_size());
2320 
2321   AttrList = llvm::AttributeList::get(
2322       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2323       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2324 }
2325 
2326 /// An argument came in as a promoted argument; demote it back to its
2327 /// declared type.
2328 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2329                                          const VarDecl *var,
2330                                          llvm::Value *value) {
2331   llvm::Type *varType = CGF.ConvertType(var->getType());
2332 
2333   // This can happen with promotions that actually don't change the
2334   // underlying type, like the enum promotions.
2335   if (value->getType() == varType) return value;
2336 
2337   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2338          && "unexpected promotion type");
2339 
2340   if (isa<llvm::IntegerType>(varType))
2341     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2342 
2343   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2344 }
2345 
2346 /// Returns the attribute (either parameter attribute, or function
2347 /// attribute), which declares argument ArgNo to be non-null.
2348 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2349                                          QualType ArgType, unsigned ArgNo) {
2350   // FIXME: __attribute__((nonnull)) can also be applied to:
2351   //   - references to pointers, where the pointee is known to be
2352   //     nonnull (apparently a Clang extension)
2353   //   - transparent unions containing pointers
2354   // In the former case, LLVM IR cannot represent the constraint. In
2355   // the latter case, we have no guarantee that the transparent union
2356   // is in fact passed as a pointer.
2357   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2358     return nullptr;
2359   // First, check attribute on parameter itself.
2360   if (PVD) {
2361     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2362       return ParmNNAttr;
2363   }
2364   // Check function attributes.
2365   if (!FD)
2366     return nullptr;
2367   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2368     if (NNAttr->isNonNull(ArgNo))
2369       return NNAttr;
2370   }
2371   return nullptr;
2372 }
2373 
2374 namespace {
2375   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2376     Address Temp;
2377     Address Arg;
2378     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2379     void Emit(CodeGenFunction &CGF, Flags flags) override {
2380       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2381       CGF.Builder.CreateStore(errorValue, Arg);
2382     }
2383   };
2384 }
2385 
2386 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2387                                          llvm::Function *Fn,
2388                                          const FunctionArgList &Args) {
2389   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2390     // Naked functions don't have prologues.
2391     return;
2392 
2393   // If this is an implicit-return-zero function, go ahead and
2394   // initialize the return value.  TODO: it might be nice to have
2395   // a more general mechanism for this that didn't require synthesized
2396   // return statements.
2397   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2398     if (FD->hasImplicitReturnZero()) {
2399       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2400       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2401       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2402       Builder.CreateStore(Zero, ReturnValue);
2403     }
2404   }
2405 
2406   // FIXME: We no longer need the types from FunctionArgList; lift up and
2407   // simplify.
2408 
2409   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2410   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2411 
2412   // If we're using inalloca, all the memory arguments are GEPs off of the last
2413   // parameter, which is a pointer to the complete memory area.
2414   Address ArgStruct = Address::invalid();
2415   if (IRFunctionArgs.hasInallocaArg()) {
2416     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2417                         FI.getArgStructAlignment());
2418 
2419     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2420   }
2421 
2422   // Name the struct return parameter.
2423   if (IRFunctionArgs.hasSRetArg()) {
2424     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2425     AI->setName("agg.result");
2426     AI->addAttr(llvm::Attribute::NoAlias);
2427   }
2428 
2429   // Track if we received the parameter as a pointer (indirect, byval, or
2430   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2431   // into a local alloca for us.
2432   SmallVector<ParamValue, 16> ArgVals;
2433   ArgVals.reserve(Args.size());
2434 
2435   // Create a pointer value for every parameter declaration.  This usually
2436   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2437   // any cleanups or do anything that might unwind.  We do that separately, so
2438   // we can push the cleanups in the correct order for the ABI.
2439   assert(FI.arg_size() == Args.size() &&
2440          "Mismatch between function signature & arguments.");
2441   unsigned ArgNo = 0;
2442   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2443   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2444        i != e; ++i, ++info_it, ++ArgNo) {
2445     const VarDecl *Arg = *i;
2446     const ABIArgInfo &ArgI = info_it->info;
2447 
2448     bool isPromoted =
2449       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2450     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2451     // the parameter is promoted. In this case we convert to
2452     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2453     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2454     assert(hasScalarEvaluationKind(Ty) ==
2455            hasScalarEvaluationKind(Arg->getType()));
2456 
2457     unsigned FirstIRArg, NumIRArgs;
2458     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2459 
2460     switch (ArgI.getKind()) {
2461     case ABIArgInfo::InAlloca: {
2462       assert(NumIRArgs == 0);
2463       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2464       Address V =
2465           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2466       if (ArgI.getInAllocaIndirect())
2467         V = Address(Builder.CreateLoad(V),
2468                     getContext().getTypeAlignInChars(Ty));
2469       ArgVals.push_back(ParamValue::forIndirect(V));
2470       break;
2471     }
2472 
2473     case ABIArgInfo::Indirect:
2474     case ABIArgInfo::IndirectAliased: {
2475       assert(NumIRArgs == 1);
2476       Address ParamAddr =
2477           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2478 
2479       if (!hasScalarEvaluationKind(Ty)) {
2480         // Aggregates and complex variables are accessed by reference. All we
2481         // need to do is realign the value, if requested. Also, if the address
2482         // may be aliased, copy it to ensure that the parameter variable is
2483         // mutable and has a unique adress, as C requires.
2484         Address V = ParamAddr;
2485         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2486           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2487 
2488           // Copy from the incoming argument pointer to the temporary with the
2489           // appropriate alignment.
2490           //
2491           // FIXME: We should have a common utility for generating an aggregate
2492           // copy.
2493           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2494           Builder.CreateMemCpy(
2495               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2496               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2497               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2498           V = AlignedTemp;
2499         }
2500         ArgVals.push_back(ParamValue::forIndirect(V));
2501       } else {
2502         // Load scalar value from indirect argument.
2503         llvm::Value *V =
2504             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2505 
2506         if (isPromoted)
2507           V = emitArgumentDemotion(*this, Arg, V);
2508         ArgVals.push_back(ParamValue::forDirect(V));
2509       }
2510       break;
2511     }
2512 
2513     case ABIArgInfo::Extend:
2514     case ABIArgInfo::Direct: {
2515       auto AI = Fn->getArg(FirstIRArg);
2516       llvm::Type *LTy = ConvertType(Arg->getType());
2517 
2518       // Prepare parameter attributes. So far, only attributes for pointer
2519       // parameters are prepared. See
2520       // http://llvm.org/docs/LangRef.html#paramattrs.
2521       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2522           ArgI.getCoerceToType()->isPointerTy()) {
2523         assert(NumIRArgs == 1);
2524 
2525         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2526           // Set `nonnull` attribute if any.
2527           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2528                              PVD->getFunctionScopeIndex()) &&
2529               !CGM.getCodeGenOpts().NullPointerIsValid)
2530             AI->addAttr(llvm::Attribute::NonNull);
2531 
2532           QualType OTy = PVD->getOriginalType();
2533           if (const auto *ArrTy =
2534               getContext().getAsConstantArrayType(OTy)) {
2535             // A C99 array parameter declaration with the static keyword also
2536             // indicates dereferenceability, and if the size is constant we can
2537             // use the dereferenceable attribute (which requires the size in
2538             // bytes).
2539             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2540               QualType ETy = ArrTy->getElementType();
2541               llvm::Align Alignment =
2542                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2543               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2544               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2545               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2546                   ArrSize) {
2547                 llvm::AttrBuilder Attrs;
2548                 Attrs.addDereferenceableAttr(
2549                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2550                     ArrSize);
2551                 AI->addAttrs(Attrs);
2552               } else if (getContext().getTargetInfo().getNullPointerValue(
2553                              ETy.getAddressSpace()) == 0 &&
2554                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2555                 AI->addAttr(llvm::Attribute::NonNull);
2556               }
2557             }
2558           } else if (const auto *ArrTy =
2559                      getContext().getAsVariableArrayType(OTy)) {
2560             // For C99 VLAs with the static keyword, we don't know the size so
2561             // we can't use the dereferenceable attribute, but in addrspace(0)
2562             // we know that it must be nonnull.
2563             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2564               QualType ETy = ArrTy->getElementType();
2565               llvm::Align Alignment =
2566                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2567               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2568               if (!getContext().getTargetAddressSpace(ETy) &&
2569                   !CGM.getCodeGenOpts().NullPointerIsValid)
2570                 AI->addAttr(llvm::Attribute::NonNull);
2571             }
2572           }
2573 
2574           // Set `align` attribute if any.
2575           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2576           if (!AVAttr)
2577             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2578               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2579           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2580             // If alignment-assumption sanitizer is enabled, we do *not* add
2581             // alignment attribute here, but emit normal alignment assumption,
2582             // so the UBSAN check could function.
2583             llvm::ConstantInt *AlignmentCI =
2584                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2585             unsigned AlignmentInt =
2586                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2587             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2588               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2589               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2590                   llvm::Align(AlignmentInt)));
2591             }
2592           }
2593         }
2594 
2595         // Set 'noalias' if an argument type has the `restrict` qualifier.
2596         if (Arg->getType().isRestrictQualified())
2597           AI->addAttr(llvm::Attribute::NoAlias);
2598       }
2599 
2600       // Prepare the argument value. If we have the trivial case, handle it
2601       // with no muss and fuss.
2602       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2603           ArgI.getCoerceToType() == ConvertType(Ty) &&
2604           ArgI.getDirectOffset() == 0) {
2605         assert(NumIRArgs == 1);
2606 
2607         // LLVM expects swifterror parameters to be used in very restricted
2608         // ways.  Copy the value into a less-restricted temporary.
2609         llvm::Value *V = AI;
2610         if (FI.getExtParameterInfo(ArgNo).getABI()
2611               == ParameterABI::SwiftErrorResult) {
2612           QualType pointeeTy = Ty->getPointeeType();
2613           assert(pointeeTy->isPointerType());
2614           Address temp =
2615             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2616           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2617           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2618           Builder.CreateStore(incomingErrorValue, temp);
2619           V = temp.getPointer();
2620 
2621           // Push a cleanup to copy the value back at the end of the function.
2622           // The convention does not guarantee that the value will be written
2623           // back if the function exits with an unwind exception.
2624           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2625         }
2626 
2627         // Ensure the argument is the correct type.
2628         if (V->getType() != ArgI.getCoerceToType())
2629           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2630 
2631         if (isPromoted)
2632           V = emitArgumentDemotion(*this, Arg, V);
2633 
2634         // Because of merging of function types from multiple decls it is
2635         // possible for the type of an argument to not match the corresponding
2636         // type in the function type. Since we are codegening the callee
2637         // in here, add a cast to the argument type.
2638         llvm::Type *LTy = ConvertType(Arg->getType());
2639         if (V->getType() != LTy)
2640           V = Builder.CreateBitCast(V, LTy);
2641 
2642         ArgVals.push_back(ParamValue::forDirect(V));
2643         break;
2644       }
2645 
2646       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2647                                      Arg->getName());
2648 
2649       // Pointer to store into.
2650       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2651 
2652       // Fast-isel and the optimizer generally like scalar values better than
2653       // FCAs, so we flatten them if this is safe to do for this argument.
2654       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2655       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2656           STy->getNumElements() > 1) {
2657         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2658         llvm::Type *DstTy = Ptr.getElementType();
2659         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2660 
2661         Address AddrToStoreInto = Address::invalid();
2662         if (SrcSize <= DstSize) {
2663           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2664         } else {
2665           AddrToStoreInto =
2666             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2667         }
2668 
2669         assert(STy->getNumElements() == NumIRArgs);
2670         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2671           auto AI = Fn->getArg(FirstIRArg + i);
2672           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2673           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2674           Builder.CreateStore(AI, EltPtr);
2675         }
2676 
2677         if (SrcSize > DstSize) {
2678           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2679         }
2680 
2681       } else {
2682         // Simple case, just do a coerced store of the argument into the alloca.
2683         assert(NumIRArgs == 1);
2684         auto AI = Fn->getArg(FirstIRArg);
2685         AI->setName(Arg->getName() + ".coerce");
2686         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2687       }
2688 
2689       // Match to what EmitParmDecl is expecting for this type.
2690       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2691         llvm::Value *V =
2692             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2693         if (isPromoted)
2694           V = emitArgumentDemotion(*this, Arg, V);
2695         ArgVals.push_back(ParamValue::forDirect(V));
2696       } else {
2697         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2698       }
2699       break;
2700     }
2701 
2702     case ABIArgInfo::CoerceAndExpand: {
2703       // Reconstruct into a temporary.
2704       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2705       ArgVals.push_back(ParamValue::forIndirect(alloca));
2706 
2707       auto coercionType = ArgI.getCoerceAndExpandType();
2708       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2709 
2710       unsigned argIndex = FirstIRArg;
2711       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2712         llvm::Type *eltType = coercionType->getElementType(i);
2713         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2714           continue;
2715 
2716         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2717         auto elt = Fn->getArg(argIndex++);
2718         Builder.CreateStore(elt, eltAddr);
2719       }
2720       assert(argIndex == FirstIRArg + NumIRArgs);
2721       break;
2722     }
2723 
2724     case ABIArgInfo::Expand: {
2725       // If this structure was expanded into multiple arguments then
2726       // we need to create a temporary and reconstruct it from the
2727       // arguments.
2728       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2729       LValue LV = MakeAddrLValue(Alloca, Ty);
2730       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2731 
2732       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2733       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2734       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2735       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2736         auto AI = Fn->getArg(FirstIRArg + i);
2737         AI->setName(Arg->getName() + "." + Twine(i));
2738       }
2739       break;
2740     }
2741 
2742     case ABIArgInfo::Ignore:
2743       assert(NumIRArgs == 0);
2744       // Initialize the local variable appropriately.
2745       if (!hasScalarEvaluationKind(Ty)) {
2746         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2747       } else {
2748         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2749         ArgVals.push_back(ParamValue::forDirect(U));
2750       }
2751       break;
2752     }
2753   }
2754 
2755   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2756     for (int I = Args.size() - 1; I >= 0; --I)
2757       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2758   } else {
2759     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2760       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2761   }
2762 }
2763 
2764 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2765   while (insn->use_empty()) {
2766     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2767     if (!bitcast) return;
2768 
2769     // This is "safe" because we would have used a ConstantExpr otherwise.
2770     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2771     bitcast->eraseFromParent();
2772   }
2773 }
2774 
2775 /// Try to emit a fused autorelease of a return result.
2776 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2777                                                     llvm::Value *result) {
2778   // We must be immediately followed the cast.
2779   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2780   if (BB->empty()) return nullptr;
2781   if (&BB->back() != result) return nullptr;
2782 
2783   llvm::Type *resultType = result->getType();
2784 
2785   // result is in a BasicBlock and is therefore an Instruction.
2786   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2787 
2788   SmallVector<llvm::Instruction *, 4> InstsToKill;
2789 
2790   // Look for:
2791   //  %generator = bitcast %type1* %generator2 to %type2*
2792   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2793     // We would have emitted this as a constant if the operand weren't
2794     // an Instruction.
2795     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2796 
2797     // Require the generator to be immediately followed by the cast.
2798     if (generator->getNextNode() != bitcast)
2799       return nullptr;
2800 
2801     InstsToKill.push_back(bitcast);
2802   }
2803 
2804   // Look for:
2805   //   %generator = call i8* @objc_retain(i8* %originalResult)
2806   // or
2807   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2808   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2809   if (!call) return nullptr;
2810 
2811   bool doRetainAutorelease;
2812 
2813   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2814     doRetainAutorelease = true;
2815   } else if (call->getCalledOperand() ==
2816              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
2817     doRetainAutorelease = false;
2818 
2819     // If we emitted an assembly marker for this call (and the
2820     // ARCEntrypoints field should have been set if so), go looking
2821     // for that call.  If we can't find it, we can't do this
2822     // optimization.  But it should always be the immediately previous
2823     // instruction, unless we needed bitcasts around the call.
2824     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2825       llvm::Instruction *prev = call->getPrevNode();
2826       assert(prev);
2827       if (isa<llvm::BitCastInst>(prev)) {
2828         prev = prev->getPrevNode();
2829         assert(prev);
2830       }
2831       assert(isa<llvm::CallInst>(prev));
2832       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
2833              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2834       InstsToKill.push_back(prev);
2835     }
2836   } else {
2837     return nullptr;
2838   }
2839 
2840   result = call->getArgOperand(0);
2841   InstsToKill.push_back(call);
2842 
2843   // Keep killing bitcasts, for sanity.  Note that we no longer care
2844   // about precise ordering as long as there's exactly one use.
2845   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2846     if (!bitcast->hasOneUse()) break;
2847     InstsToKill.push_back(bitcast);
2848     result = bitcast->getOperand(0);
2849   }
2850 
2851   // Delete all the unnecessary instructions, from latest to earliest.
2852   for (auto *I : InstsToKill)
2853     I->eraseFromParent();
2854 
2855   // Do the fused retain/autorelease if we were asked to.
2856   if (doRetainAutorelease)
2857     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2858 
2859   // Cast back to the result type.
2860   return CGF.Builder.CreateBitCast(result, resultType);
2861 }
2862 
2863 /// If this is a +1 of the value of an immutable 'self', remove it.
2864 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2865                                           llvm::Value *result) {
2866   // This is only applicable to a method with an immutable 'self'.
2867   const ObjCMethodDecl *method =
2868     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2869   if (!method) return nullptr;
2870   const VarDecl *self = method->getSelfDecl();
2871   if (!self->getType().isConstQualified()) return nullptr;
2872 
2873   // Look for a retain call.
2874   llvm::CallInst *retainCall =
2875     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2876   if (!retainCall || retainCall->getCalledOperand() !=
2877                          CGF.CGM.getObjCEntrypoints().objc_retain)
2878     return nullptr;
2879 
2880   // Look for an ordinary load of 'self'.
2881   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2882   llvm::LoadInst *load =
2883     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2884   if (!load || load->isAtomic() || load->isVolatile() ||
2885       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2886     return nullptr;
2887 
2888   // Okay!  Burn it all down.  This relies for correctness on the
2889   // assumption that the retain is emitted as part of the return and
2890   // that thereafter everything is used "linearly".
2891   llvm::Type *resultType = result->getType();
2892   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2893   assert(retainCall->use_empty());
2894   retainCall->eraseFromParent();
2895   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2896 
2897   return CGF.Builder.CreateBitCast(load, resultType);
2898 }
2899 
2900 /// Emit an ARC autorelease of the result of a function.
2901 ///
2902 /// \return the value to actually return from the function
2903 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2904                                             llvm::Value *result) {
2905   // If we're returning 'self', kill the initial retain.  This is a
2906   // heuristic attempt to "encourage correctness" in the really unfortunate
2907   // case where we have a return of self during a dealloc and we desperately
2908   // need to avoid the possible autorelease.
2909   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2910     return self;
2911 
2912   // At -O0, try to emit a fused retain/autorelease.
2913   if (CGF.shouldUseFusedARCCalls())
2914     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2915       return fused;
2916 
2917   return CGF.EmitARCAutoreleaseReturnValue(result);
2918 }
2919 
2920 /// Heuristically search for a dominating store to the return-value slot.
2921 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2922   // Check if a User is a store which pointerOperand is the ReturnValue.
2923   // We are looking for stores to the ReturnValue, not for stores of the
2924   // ReturnValue to some other location.
2925   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2926     auto *SI = dyn_cast<llvm::StoreInst>(U);
2927     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2928       return nullptr;
2929     // These aren't actually possible for non-coerced returns, and we
2930     // only care about non-coerced returns on this code path.
2931     assert(!SI->isAtomic() && !SI->isVolatile());
2932     return SI;
2933   };
2934   // If there are multiple uses of the return-value slot, just check
2935   // for something immediately preceding the IP.  Sometimes this can
2936   // happen with how we generate implicit-returns; it can also happen
2937   // with noreturn cleanups.
2938   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2939     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2940     if (IP->empty()) return nullptr;
2941     llvm::Instruction *I = &IP->back();
2942 
2943     // Skip lifetime markers
2944     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2945                                             IE = IP->rend();
2946          II != IE; ++II) {
2947       if (llvm::IntrinsicInst *Intrinsic =
2948               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2949         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2950           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2951           ++II;
2952           if (II == IE)
2953             break;
2954           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2955             continue;
2956         }
2957       }
2958       I = &*II;
2959       break;
2960     }
2961 
2962     return GetStoreIfValid(I);
2963   }
2964 
2965   llvm::StoreInst *store =
2966       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2967   if (!store) return nullptr;
2968 
2969   // Now do a first-and-dirty dominance check: just walk up the
2970   // single-predecessors chain from the current insertion point.
2971   llvm::BasicBlock *StoreBB = store->getParent();
2972   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2973   while (IP != StoreBB) {
2974     if (!(IP = IP->getSinglePredecessor()))
2975       return nullptr;
2976   }
2977 
2978   // Okay, the store's basic block dominates the insertion point; we
2979   // can do our thing.
2980   return store;
2981 }
2982 
2983 // Helper functions for EmitCMSEClearRecord
2984 
2985 // Set the bits corresponding to a field having width `BitWidth` and located at
2986 // offset `BitOffset` (from the least significant bit) within a storage unit of
2987 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
2988 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
2989 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
2990                         int BitWidth, int CharWidth) {
2991   assert(CharWidth <= 64);
2992   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
2993 
2994   int Pos = 0;
2995   if (BitOffset >= CharWidth) {
2996     Pos += BitOffset / CharWidth;
2997     BitOffset = BitOffset % CharWidth;
2998   }
2999 
3000   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3001   if (BitOffset + BitWidth >= CharWidth) {
3002     Bits[Pos++] |= (Used << BitOffset) & Used;
3003     BitWidth -= CharWidth - BitOffset;
3004     BitOffset = 0;
3005   }
3006 
3007   while (BitWidth >= CharWidth) {
3008     Bits[Pos++] = Used;
3009     BitWidth -= CharWidth;
3010   }
3011 
3012   if (BitWidth > 0)
3013     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3014 }
3015 
3016 // Set the bits corresponding to a field having width `BitWidth` and located at
3017 // offset `BitOffset` (from the least significant bit) within a storage unit of
3018 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3019 // `Bits` corresponds to one target byte. Use target endian layout.
3020 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3021                         int StorageSize, int BitOffset, int BitWidth,
3022                         int CharWidth, bool BigEndian) {
3023 
3024   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3025   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3026 
3027   if (BigEndian)
3028     std::reverse(TmpBits.begin(), TmpBits.end());
3029 
3030   for (uint64_t V : TmpBits)
3031     Bits[StorageOffset++] |= V;
3032 }
3033 
3034 static void setUsedBits(CodeGenModule &, QualType, int,
3035                         SmallVectorImpl<uint64_t> &);
3036 
3037 // Set the bits in `Bits`, which correspond to the value representations of
3038 // the actual members of the record type `RTy`. Note that this function does
3039 // not handle base classes, virtual tables, etc, since they cannot happen in
3040 // CMSE function arguments or return. The bit mask corresponds to the target
3041 // memory layout, i.e. it's endian dependent.
3042 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3043                         SmallVectorImpl<uint64_t> &Bits) {
3044   ASTContext &Context = CGM.getContext();
3045   int CharWidth = Context.getCharWidth();
3046   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3047   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3048   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3049 
3050   int Idx = 0;
3051   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3052     const FieldDecl *F = *I;
3053 
3054     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3055         F->getType()->isIncompleteArrayType())
3056       continue;
3057 
3058     if (F->isBitField()) {
3059       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3060       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3061                   BFI.StorageSize / CharWidth, BFI.Offset,
3062                   BFI.Size, CharWidth,
3063                   CGM.getDataLayout().isBigEndian());
3064       continue;
3065     }
3066 
3067     setUsedBits(CGM, F->getType(),
3068                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3069   }
3070 }
3071 
3072 // Set the bits in `Bits`, which correspond to the value representations of
3073 // the elements of an array type `ATy`.
3074 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3075                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3076   const ASTContext &Context = CGM.getContext();
3077 
3078   QualType ETy = Context.getBaseElementType(ATy);
3079   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3080   SmallVector<uint64_t, 4> TmpBits(Size);
3081   setUsedBits(CGM, ETy, 0, TmpBits);
3082 
3083   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3084     auto Src = TmpBits.begin();
3085     auto Dst = Bits.begin() + Offset + I * Size;
3086     for (int J = 0; J < Size; ++J)
3087       *Dst++ |= *Src++;
3088   }
3089 }
3090 
3091 // Set the bits in `Bits`, which correspond to the value representations of
3092 // the type `QTy`.
3093 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3094                         SmallVectorImpl<uint64_t> &Bits) {
3095   if (const auto *RTy = QTy->getAs<RecordType>())
3096     return setUsedBits(CGM, RTy, Offset, Bits);
3097 
3098   ASTContext &Context = CGM.getContext();
3099   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3100     return setUsedBits(CGM, ATy, Offset, Bits);
3101 
3102   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3103   if (Size <= 0)
3104     return;
3105 
3106   std::fill_n(Bits.begin() + Offset, Size,
3107               (uint64_t(1) << Context.getCharWidth()) - 1);
3108 }
3109 
3110 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3111                                    int Pos, int Size, int CharWidth,
3112                                    bool BigEndian) {
3113   assert(Size > 0);
3114   uint64_t Mask = 0;
3115   if (BigEndian) {
3116     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3117          ++P)
3118       Mask = (Mask << CharWidth) | *P;
3119   } else {
3120     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3121     do
3122       Mask = (Mask << CharWidth) | *--P;
3123     while (P != End);
3124   }
3125   return Mask;
3126 }
3127 
3128 // Emit code to clear the bits in a record, which aren't a part of any user
3129 // declared member, when the record is a function return.
3130 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3131                                                   llvm::IntegerType *ITy,
3132                                                   QualType QTy) {
3133   assert(Src->getType() == ITy);
3134   assert(ITy->getScalarSizeInBits() <= 64);
3135 
3136   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3137   int Size = DataLayout.getTypeStoreSize(ITy);
3138   SmallVector<uint64_t, 4> Bits(Size);
3139   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3140 
3141   int CharWidth = CGM.getContext().getCharWidth();
3142   uint64_t Mask =
3143       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3144 
3145   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3146 }
3147 
3148 // Emit code to clear the bits in a record, which aren't a part of any user
3149 // declared member, when the record is a function argument.
3150 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3151                                                   llvm::ArrayType *ATy,
3152                                                   QualType QTy) {
3153   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3154   int Size = DataLayout.getTypeStoreSize(ATy);
3155   SmallVector<uint64_t, 16> Bits(Size);
3156   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3157 
3158   // Clear each element of the LLVM array.
3159   int CharWidth = CGM.getContext().getCharWidth();
3160   int CharsPerElt =
3161       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3162   int MaskIndex = 0;
3163   llvm::Value *R = llvm::UndefValue::get(ATy);
3164   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3165     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3166                                        DataLayout.isBigEndian());
3167     MaskIndex += CharsPerElt;
3168     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3169     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3170     R = Builder.CreateInsertValue(R, T1, I);
3171   }
3172 
3173   return R;
3174 }
3175 
3176 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3177                                          bool EmitRetDbgLoc,
3178                                          SourceLocation EndLoc) {
3179   if (FI.isNoReturn()) {
3180     // Noreturn functions don't return.
3181     EmitUnreachable(EndLoc);
3182     return;
3183   }
3184 
3185   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3186     // Naked functions don't have epilogues.
3187     Builder.CreateUnreachable();
3188     return;
3189   }
3190 
3191   // Functions with no result always return void.
3192   if (!ReturnValue.isValid()) {
3193     Builder.CreateRetVoid();
3194     return;
3195   }
3196 
3197   llvm::DebugLoc RetDbgLoc;
3198   llvm::Value *RV = nullptr;
3199   QualType RetTy = FI.getReturnType();
3200   const ABIArgInfo &RetAI = FI.getReturnInfo();
3201 
3202   switch (RetAI.getKind()) {
3203   case ABIArgInfo::InAlloca:
3204     // Aggregrates get evaluated directly into the destination.  Sometimes we
3205     // need to return the sret value in a register, though.
3206     assert(hasAggregateEvaluationKind(RetTy));
3207     if (RetAI.getInAllocaSRet()) {
3208       llvm::Function::arg_iterator EI = CurFn->arg_end();
3209       --EI;
3210       llvm::Value *ArgStruct = &*EI;
3211       llvm::Value *SRet = Builder.CreateStructGEP(
3212           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3213       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3214     }
3215     break;
3216 
3217   case ABIArgInfo::Indirect: {
3218     auto AI = CurFn->arg_begin();
3219     if (RetAI.isSRetAfterThis())
3220       ++AI;
3221     switch (getEvaluationKind(RetTy)) {
3222     case TEK_Complex: {
3223       ComplexPairTy RT =
3224         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3225       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3226                          /*isInit*/ true);
3227       break;
3228     }
3229     case TEK_Aggregate:
3230       // Do nothing; aggregrates get evaluated directly into the destination.
3231       break;
3232     case TEK_Scalar:
3233       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3234                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3235                         /*isInit*/ true);
3236       break;
3237     }
3238     break;
3239   }
3240 
3241   case ABIArgInfo::Extend:
3242   case ABIArgInfo::Direct:
3243     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3244         RetAI.getDirectOffset() == 0) {
3245       // The internal return value temp always will have pointer-to-return-type
3246       // type, just do a load.
3247 
3248       // If there is a dominating store to ReturnValue, we can elide
3249       // the load, zap the store, and usually zap the alloca.
3250       if (llvm::StoreInst *SI =
3251               findDominatingStoreToReturnValue(*this)) {
3252         // Reuse the debug location from the store unless there is
3253         // cleanup code to be emitted between the store and return
3254         // instruction.
3255         if (EmitRetDbgLoc && !AutoreleaseResult)
3256           RetDbgLoc = SI->getDebugLoc();
3257         // Get the stored value and nuke the now-dead store.
3258         RV = SI->getValueOperand();
3259         SI->eraseFromParent();
3260 
3261       // Otherwise, we have to do a simple load.
3262       } else {
3263         RV = Builder.CreateLoad(ReturnValue);
3264       }
3265     } else {
3266       // If the value is offset in memory, apply the offset now.
3267       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3268 
3269       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3270     }
3271 
3272     // In ARC, end functions that return a retainable type with a call
3273     // to objc_autoreleaseReturnValue.
3274     if (AutoreleaseResult) {
3275 #ifndef NDEBUG
3276       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3277       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3278       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3279       // CurCodeDecl or BlockInfo.
3280       QualType RT;
3281 
3282       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3283         RT = FD->getReturnType();
3284       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3285         RT = MD->getReturnType();
3286       else if (isa<BlockDecl>(CurCodeDecl))
3287         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3288       else
3289         llvm_unreachable("Unexpected function/method type");
3290 
3291       assert(getLangOpts().ObjCAutoRefCount &&
3292              !FI.isReturnsRetained() &&
3293              RT->isObjCRetainableType());
3294 #endif
3295       RV = emitAutoreleaseOfResult(*this, RV);
3296     }
3297 
3298     break;
3299 
3300   case ABIArgInfo::Ignore:
3301     break;
3302 
3303   case ABIArgInfo::CoerceAndExpand: {
3304     auto coercionType = RetAI.getCoerceAndExpandType();
3305 
3306     // Load all of the coerced elements out into results.
3307     llvm::SmallVector<llvm::Value*, 4> results;
3308     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3309     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3310       auto coercedEltType = coercionType->getElementType(i);
3311       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3312         continue;
3313 
3314       auto eltAddr = Builder.CreateStructGEP(addr, i);
3315       auto elt = Builder.CreateLoad(eltAddr);
3316       results.push_back(elt);
3317     }
3318 
3319     // If we have one result, it's the single direct result type.
3320     if (results.size() == 1) {
3321       RV = results[0];
3322 
3323     // Otherwise, we need to make a first-class aggregate.
3324     } else {
3325       // Construct a return type that lacks padding elements.
3326       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3327 
3328       RV = llvm::UndefValue::get(returnType);
3329       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3330         RV = Builder.CreateInsertValue(RV, results[i], i);
3331       }
3332     }
3333     break;
3334   }
3335   case ABIArgInfo::Expand:
3336   case ABIArgInfo::IndirectAliased:
3337     llvm_unreachable("Invalid ABI kind for return argument");
3338   }
3339 
3340   llvm::Instruction *Ret;
3341   if (RV) {
3342     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3343       // For certain return types, clear padding bits, as they may reveal
3344       // sensitive information.
3345       // Small struct/union types are passed as integers.
3346       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3347       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3348         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3349     }
3350     EmitReturnValueCheck(RV);
3351     Ret = Builder.CreateRet(RV);
3352   } else {
3353     Ret = Builder.CreateRetVoid();
3354   }
3355 
3356   if (RetDbgLoc)
3357     Ret->setDebugLoc(std::move(RetDbgLoc));
3358 }
3359 
3360 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3361   // A current decl may not be available when emitting vtable thunks.
3362   if (!CurCodeDecl)
3363     return;
3364 
3365   // If the return block isn't reachable, neither is this check, so don't emit
3366   // it.
3367   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3368     return;
3369 
3370   ReturnsNonNullAttr *RetNNAttr = nullptr;
3371   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3372     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3373 
3374   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3375     return;
3376 
3377   // Prefer the returns_nonnull attribute if it's present.
3378   SourceLocation AttrLoc;
3379   SanitizerMask CheckKind;
3380   SanitizerHandler Handler;
3381   if (RetNNAttr) {
3382     assert(!requiresReturnValueNullabilityCheck() &&
3383            "Cannot check nullability and the nonnull attribute");
3384     AttrLoc = RetNNAttr->getLocation();
3385     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3386     Handler = SanitizerHandler::NonnullReturn;
3387   } else {
3388     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3389       if (auto *TSI = DD->getTypeSourceInfo())
3390         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3391           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3392     CheckKind = SanitizerKind::NullabilityReturn;
3393     Handler = SanitizerHandler::NullabilityReturn;
3394   }
3395 
3396   SanitizerScope SanScope(this);
3397 
3398   // Make sure the "return" source location is valid. If we're checking a
3399   // nullability annotation, make sure the preconditions for the check are met.
3400   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3401   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3402   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3403   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3404   if (requiresReturnValueNullabilityCheck())
3405     CanNullCheck =
3406         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3407   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3408   EmitBlock(Check);
3409 
3410   // Now do the null check.
3411   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3412   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3413   llvm::Value *DynamicData[] = {SLocPtr};
3414   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3415 
3416   EmitBlock(NoCheck);
3417 
3418 #ifndef NDEBUG
3419   // The return location should not be used after the check has been emitted.
3420   ReturnLocation = Address::invalid();
3421 #endif
3422 }
3423 
3424 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3425   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3426   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3427 }
3428 
3429 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3430                                           QualType Ty) {
3431   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3432   // placeholders.
3433   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3434   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3435   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3436 
3437   // FIXME: When we generate this IR in one pass, we shouldn't need
3438   // this win32-specific alignment hack.
3439   CharUnits Align = CharUnits::fromQuantity(4);
3440   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3441 
3442   return AggValueSlot::forAddr(Address(Placeholder, Align),
3443                                Ty.getQualifiers(),
3444                                AggValueSlot::IsNotDestructed,
3445                                AggValueSlot::DoesNotNeedGCBarriers,
3446                                AggValueSlot::IsNotAliased,
3447                                AggValueSlot::DoesNotOverlap);
3448 }
3449 
3450 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3451                                           const VarDecl *param,
3452                                           SourceLocation loc) {
3453   // StartFunction converted the ABI-lowered parameter(s) into a
3454   // local alloca.  We need to turn that into an r-value suitable
3455   // for EmitCall.
3456   Address local = GetAddrOfLocalVar(param);
3457 
3458   QualType type = param->getType();
3459 
3460   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3461     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3462   }
3463 
3464   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3465   // but the argument needs to be the original pointer.
3466   if (type->isReferenceType()) {
3467     args.add(RValue::get(Builder.CreateLoad(local)), type);
3468 
3469   // In ARC, move out of consumed arguments so that the release cleanup
3470   // entered by StartFunction doesn't cause an over-release.  This isn't
3471   // optimal -O0 code generation, but it should get cleaned up when
3472   // optimization is enabled.  This also assumes that delegate calls are
3473   // performed exactly once for a set of arguments, but that should be safe.
3474   } else if (getLangOpts().ObjCAutoRefCount &&
3475              param->hasAttr<NSConsumedAttr>() &&
3476              type->isObjCRetainableType()) {
3477     llvm::Value *ptr = Builder.CreateLoad(local);
3478     auto null =
3479       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3480     Builder.CreateStore(null, local);
3481     args.add(RValue::get(ptr), type);
3482 
3483   // For the most part, we just need to load the alloca, except that
3484   // aggregate r-values are actually pointers to temporaries.
3485   } else {
3486     args.add(convertTempToRValue(local, type, loc), type);
3487   }
3488 
3489   // Deactivate the cleanup for the callee-destructed param that was pushed.
3490   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3491       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3492       param->needsDestruction(getContext())) {
3493     EHScopeStack::stable_iterator cleanup =
3494         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3495     assert(cleanup.isValid() &&
3496            "cleanup for callee-destructed param not recorded");
3497     // This unreachable is a temporary marker which will be removed later.
3498     llvm::Instruction *isActive = Builder.CreateUnreachable();
3499     args.addArgCleanupDeactivation(cleanup, isActive);
3500   }
3501 }
3502 
3503 static bool isProvablyNull(llvm::Value *addr) {
3504   return isa<llvm::ConstantPointerNull>(addr);
3505 }
3506 
3507 /// Emit the actual writing-back of a writeback.
3508 static void emitWriteback(CodeGenFunction &CGF,
3509                           const CallArgList::Writeback &writeback) {
3510   const LValue &srcLV = writeback.Source;
3511   Address srcAddr = srcLV.getAddress(CGF);
3512   assert(!isProvablyNull(srcAddr.getPointer()) &&
3513          "shouldn't have writeback for provably null argument");
3514 
3515   llvm::BasicBlock *contBB = nullptr;
3516 
3517   // If the argument wasn't provably non-null, we need to null check
3518   // before doing the store.
3519   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3520                                               CGF.CGM.getDataLayout());
3521   if (!provablyNonNull) {
3522     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3523     contBB = CGF.createBasicBlock("icr.done");
3524 
3525     llvm::Value *isNull =
3526       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3527     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3528     CGF.EmitBlock(writebackBB);
3529   }
3530 
3531   // Load the value to writeback.
3532   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3533 
3534   // Cast it back, in case we're writing an id to a Foo* or something.
3535   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3536                                     "icr.writeback-cast");
3537 
3538   // Perform the writeback.
3539 
3540   // If we have a "to use" value, it's something we need to emit a use
3541   // of.  This has to be carefully threaded in: if it's done after the
3542   // release it's potentially undefined behavior (and the optimizer
3543   // will ignore it), and if it happens before the retain then the
3544   // optimizer could move the release there.
3545   if (writeback.ToUse) {
3546     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3547 
3548     // Retain the new value.  No need to block-copy here:  the block's
3549     // being passed up the stack.
3550     value = CGF.EmitARCRetainNonBlock(value);
3551 
3552     // Emit the intrinsic use here.
3553     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3554 
3555     // Load the old value (primitively).
3556     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3557 
3558     // Put the new value in place (primitively).
3559     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3560 
3561     // Release the old value.
3562     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3563 
3564   // Otherwise, we can just do a normal lvalue store.
3565   } else {
3566     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3567   }
3568 
3569   // Jump to the continuation block.
3570   if (!provablyNonNull)
3571     CGF.EmitBlock(contBB);
3572 }
3573 
3574 static void emitWritebacks(CodeGenFunction &CGF,
3575                            const CallArgList &args) {
3576   for (const auto &I : args.writebacks())
3577     emitWriteback(CGF, I);
3578 }
3579 
3580 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3581                                             const CallArgList &CallArgs) {
3582   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3583     CallArgs.getCleanupsToDeactivate();
3584   // Iterate in reverse to increase the likelihood of popping the cleanup.
3585   for (const auto &I : llvm::reverse(Cleanups)) {
3586     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3587     I.IsActiveIP->eraseFromParent();
3588   }
3589 }
3590 
3591 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3592   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3593     if (uop->getOpcode() == UO_AddrOf)
3594       return uop->getSubExpr();
3595   return nullptr;
3596 }
3597 
3598 /// Emit an argument that's being passed call-by-writeback.  That is,
3599 /// we are passing the address of an __autoreleased temporary; it
3600 /// might be copy-initialized with the current value of the given
3601 /// address, but it will definitely be copied out of after the call.
3602 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3603                              const ObjCIndirectCopyRestoreExpr *CRE) {
3604   LValue srcLV;
3605 
3606   // Make an optimistic effort to emit the address as an l-value.
3607   // This can fail if the argument expression is more complicated.
3608   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3609     srcLV = CGF.EmitLValue(lvExpr);
3610 
3611   // Otherwise, just emit it as a scalar.
3612   } else {
3613     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3614 
3615     QualType srcAddrType =
3616       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3617     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3618   }
3619   Address srcAddr = srcLV.getAddress(CGF);
3620 
3621   // The dest and src types don't necessarily match in LLVM terms
3622   // because of the crazy ObjC compatibility rules.
3623 
3624   llvm::PointerType *destType =
3625     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3626 
3627   // If the address is a constant null, just pass the appropriate null.
3628   if (isProvablyNull(srcAddr.getPointer())) {
3629     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3630              CRE->getType());
3631     return;
3632   }
3633 
3634   // Create the temporary.
3635   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3636                                       CGF.getPointerAlign(),
3637                                       "icr.temp");
3638   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3639   // and that cleanup will be conditional if we can't prove that the l-value
3640   // isn't null, so we need to register a dominating point so that the cleanups
3641   // system will make valid IR.
3642   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3643 
3644   // Zero-initialize it if we're not doing a copy-initialization.
3645   bool shouldCopy = CRE->shouldCopy();
3646   if (!shouldCopy) {
3647     llvm::Value *null =
3648       llvm::ConstantPointerNull::get(
3649         cast<llvm::PointerType>(destType->getElementType()));
3650     CGF.Builder.CreateStore(null, temp);
3651   }
3652 
3653   llvm::BasicBlock *contBB = nullptr;
3654   llvm::BasicBlock *originBB = nullptr;
3655 
3656   // If the address is *not* known to be non-null, we need to switch.
3657   llvm::Value *finalArgument;
3658 
3659   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3660                                               CGF.CGM.getDataLayout());
3661   if (provablyNonNull) {
3662     finalArgument = temp.getPointer();
3663   } else {
3664     llvm::Value *isNull =
3665       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3666 
3667     finalArgument = CGF.Builder.CreateSelect(isNull,
3668                                    llvm::ConstantPointerNull::get(destType),
3669                                              temp.getPointer(), "icr.argument");
3670 
3671     // If we need to copy, then the load has to be conditional, which
3672     // means we need control flow.
3673     if (shouldCopy) {
3674       originBB = CGF.Builder.GetInsertBlock();
3675       contBB = CGF.createBasicBlock("icr.cont");
3676       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3677       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3678       CGF.EmitBlock(copyBB);
3679       condEval.begin(CGF);
3680     }
3681   }
3682 
3683   llvm::Value *valueToUse = nullptr;
3684 
3685   // Perform a copy if necessary.
3686   if (shouldCopy) {
3687     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3688     assert(srcRV.isScalar());
3689 
3690     llvm::Value *src = srcRV.getScalarVal();
3691     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3692                                     "icr.cast");
3693 
3694     // Use an ordinary store, not a store-to-lvalue.
3695     CGF.Builder.CreateStore(src, temp);
3696 
3697     // If optimization is enabled, and the value was held in a
3698     // __strong variable, we need to tell the optimizer that this
3699     // value has to stay alive until we're doing the store back.
3700     // This is because the temporary is effectively unretained,
3701     // and so otherwise we can violate the high-level semantics.
3702     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3703         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3704       valueToUse = src;
3705     }
3706   }
3707 
3708   // Finish the control flow if we needed it.
3709   if (shouldCopy && !provablyNonNull) {
3710     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3711     CGF.EmitBlock(contBB);
3712 
3713     // Make a phi for the value to intrinsically use.
3714     if (valueToUse) {
3715       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3716                                                       "icr.to-use");
3717       phiToUse->addIncoming(valueToUse, copyBB);
3718       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3719                             originBB);
3720       valueToUse = phiToUse;
3721     }
3722 
3723     condEval.end(CGF);
3724   }
3725 
3726   args.addWriteback(srcLV, temp, valueToUse);
3727   args.add(RValue::get(finalArgument), CRE->getType());
3728 }
3729 
3730 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3731   assert(!StackBase);
3732 
3733   // Save the stack.
3734   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3735   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3736 }
3737 
3738 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3739   if (StackBase) {
3740     // Restore the stack after the call.
3741     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3742     CGF.Builder.CreateCall(F, StackBase);
3743   }
3744 }
3745 
3746 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3747                                           SourceLocation ArgLoc,
3748                                           AbstractCallee AC,
3749                                           unsigned ParmNum) {
3750   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3751                          SanOpts.has(SanitizerKind::NullabilityArg)))
3752     return;
3753 
3754   // The param decl may be missing in a variadic function.
3755   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3756   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3757 
3758   // Prefer the nonnull attribute if it's present.
3759   const NonNullAttr *NNAttr = nullptr;
3760   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3761     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3762 
3763   bool CanCheckNullability = false;
3764   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3765     auto Nullability = PVD->getType()->getNullability(getContext());
3766     CanCheckNullability = Nullability &&
3767                           *Nullability == NullabilityKind::NonNull &&
3768                           PVD->getTypeSourceInfo();
3769   }
3770 
3771   if (!NNAttr && !CanCheckNullability)
3772     return;
3773 
3774   SourceLocation AttrLoc;
3775   SanitizerMask CheckKind;
3776   SanitizerHandler Handler;
3777   if (NNAttr) {
3778     AttrLoc = NNAttr->getLocation();
3779     CheckKind = SanitizerKind::NonnullAttribute;
3780     Handler = SanitizerHandler::NonnullArg;
3781   } else {
3782     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3783     CheckKind = SanitizerKind::NullabilityArg;
3784     Handler = SanitizerHandler::NullabilityArg;
3785   }
3786 
3787   SanitizerScope SanScope(this);
3788   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
3789   llvm::Constant *StaticData[] = {
3790       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3791       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3792   };
3793   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3794 }
3795 
3796 void CodeGenFunction::EmitCallArgs(
3797     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3798     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3799     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3800   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3801 
3802   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3803   // because arguments are destroyed left to right in the callee. As a special
3804   // case, there are certain language constructs that require left-to-right
3805   // evaluation, and in those cases we consider the evaluation order requirement
3806   // to trump the "destruction order is reverse construction order" guarantee.
3807   bool LeftToRight =
3808       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3809           ? Order == EvaluationOrder::ForceLeftToRight
3810           : Order != EvaluationOrder::ForceRightToLeft;
3811 
3812   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3813                                          RValue EmittedArg) {
3814     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3815       return;
3816     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3817     if (PS == nullptr)
3818       return;
3819 
3820     const auto &Context = getContext();
3821     auto SizeTy = Context.getSizeType();
3822     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3823     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3824     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3825                                                      EmittedArg.getScalarVal(),
3826                                                      PS->isDynamic());
3827     Args.add(RValue::get(V), SizeTy);
3828     // If we're emitting args in reverse, be sure to do so with
3829     // pass_object_size, as well.
3830     if (!LeftToRight)
3831       std::swap(Args.back(), *(&Args.back() - 1));
3832   };
3833 
3834   // Insert a stack save if we're going to need any inalloca args.
3835   bool HasInAllocaArgs = false;
3836   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3837     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3838          I != E && !HasInAllocaArgs; ++I)
3839       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3840     if (HasInAllocaArgs) {
3841       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3842       Args.allocateArgumentMemory(*this);
3843     }
3844   }
3845 
3846   // Evaluate each argument in the appropriate order.
3847   size_t CallArgsStart = Args.size();
3848   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3849     unsigned Idx = LeftToRight ? I : E - I - 1;
3850     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3851     unsigned InitialArgSize = Args.size();
3852     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3853     // the argument and parameter match or the objc method is parameterized.
3854     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3855             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3856                                                 ArgTypes[Idx]) ||
3857             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3858              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3859            "Argument and parameter types don't match");
3860     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3861     // In particular, we depend on it being the last arg in Args, and the
3862     // objectsize bits depend on there only being one arg if !LeftToRight.
3863     assert(InitialArgSize + 1 == Args.size() &&
3864            "The code below depends on only adding one arg per EmitCallArg");
3865     (void)InitialArgSize;
3866     // Since pointer argument are never emitted as LValue, it is safe to emit
3867     // non-null argument check for r-value only.
3868     if (!Args.back().hasLValue()) {
3869       RValue RVArg = Args.back().getKnownRValue();
3870       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3871                           ParamsToSkip + Idx);
3872       // @llvm.objectsize should never have side-effects and shouldn't need
3873       // destruction/cleanups, so we can safely "emit" it after its arg,
3874       // regardless of right-to-leftness
3875       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3876     }
3877   }
3878 
3879   if (!LeftToRight) {
3880     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3881     // IR function.
3882     std::reverse(Args.begin() + CallArgsStart, Args.end());
3883   }
3884 }
3885 
3886 namespace {
3887 
3888 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3889   DestroyUnpassedArg(Address Addr, QualType Ty)
3890       : Addr(Addr), Ty(Ty) {}
3891 
3892   Address Addr;
3893   QualType Ty;
3894 
3895   void Emit(CodeGenFunction &CGF, Flags flags) override {
3896     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3897     if (DtorKind == QualType::DK_cxx_destructor) {
3898       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3899       assert(!Dtor->isTrivial());
3900       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3901                                 /*Delegating=*/false, Addr, Ty);
3902     } else {
3903       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3904     }
3905   }
3906 };
3907 
3908 struct DisableDebugLocationUpdates {
3909   CodeGenFunction &CGF;
3910   bool disabledDebugInfo;
3911   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3912     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3913       CGF.disableDebugInfo();
3914   }
3915   ~DisableDebugLocationUpdates() {
3916     if (disabledDebugInfo)
3917       CGF.enableDebugInfo();
3918   }
3919 };
3920 
3921 } // end anonymous namespace
3922 
3923 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3924   if (!HasLV)
3925     return RV;
3926   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3927   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3928                         LV.isVolatile());
3929   IsUsed = true;
3930   return RValue::getAggregate(Copy.getAddress(CGF));
3931 }
3932 
3933 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3934   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3935   if (!HasLV && RV.isScalar())
3936     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3937   else if (!HasLV && RV.isComplex())
3938     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3939   else {
3940     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3941     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3942     // We assume that call args are never copied into subobjects.
3943     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3944                           HasLV ? LV.isVolatileQualified()
3945                                 : RV.isVolatileQualified());
3946   }
3947   IsUsed = true;
3948 }
3949 
3950 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3951                                   QualType type) {
3952   DisableDebugLocationUpdates Dis(*this, E);
3953   if (const ObjCIndirectCopyRestoreExpr *CRE
3954         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3955     assert(getLangOpts().ObjCAutoRefCount);
3956     return emitWritebackArg(*this, args, CRE);
3957   }
3958 
3959   assert(type->isReferenceType() == E->isGLValue() &&
3960          "reference binding to unmaterialized r-value!");
3961 
3962   if (E->isGLValue()) {
3963     assert(E->getObjectKind() == OK_Ordinary);
3964     return args.add(EmitReferenceBindingToExpr(E), type);
3965   }
3966 
3967   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3968 
3969   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3970   // However, we still have to push an EH-only cleanup in case we unwind before
3971   // we make it to the call.
3972   if (HasAggregateEvalKind &&
3973       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3974     // If we're using inalloca, use the argument memory.  Otherwise, use a
3975     // temporary.
3976     AggValueSlot Slot;
3977     if (args.isUsingInAlloca())
3978       Slot = createPlaceholderSlot(*this, type);
3979     else
3980       Slot = CreateAggTemp(type, "agg.tmp");
3981 
3982     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3983     if (const auto *RD = type->getAsCXXRecordDecl())
3984       DestroyedInCallee = RD->hasNonTrivialDestructor();
3985     else
3986       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3987 
3988     if (DestroyedInCallee)
3989       Slot.setExternallyDestructed();
3990 
3991     EmitAggExpr(E, Slot);
3992     RValue RV = Slot.asRValue();
3993     args.add(RV, type);
3994 
3995     if (DestroyedInCallee && NeedsEHCleanup) {
3996       // Create a no-op GEP between the placeholder and the cleanup so we can
3997       // RAUW it successfully.  It also serves as a marker of the first
3998       // instruction where the cleanup is active.
3999       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4000                                               type);
4001       // This unreachable is a temporary marker which will be removed later.
4002       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4003       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4004     }
4005     return;
4006   }
4007 
4008   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4009       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4010     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4011     assert(L.isSimple());
4012     args.addUncopiedAggregate(L, type);
4013     return;
4014   }
4015 
4016   args.add(EmitAnyExprToTemp(E), type);
4017 }
4018 
4019 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4020   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4021   // implicitly widens null pointer constants that are arguments to varargs
4022   // functions to pointer-sized ints.
4023   if (!getTarget().getTriple().isOSWindows())
4024     return Arg->getType();
4025 
4026   if (Arg->getType()->isIntegerType() &&
4027       getContext().getTypeSize(Arg->getType()) <
4028           getContext().getTargetInfo().getPointerWidth(0) &&
4029       Arg->isNullPointerConstant(getContext(),
4030                                  Expr::NPC_ValueDependentIsNotNull)) {
4031     return getContext().getIntPtrType();
4032   }
4033 
4034   return Arg->getType();
4035 }
4036 
4037 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4038 // optimizer it can aggressively ignore unwind edges.
4039 void
4040 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4041   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4042       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4043     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4044                       CGM.getNoObjCARCExceptionsMetadata());
4045 }
4046 
4047 /// Emits a call to the given no-arguments nounwind runtime function.
4048 llvm::CallInst *
4049 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4050                                          const llvm::Twine &name) {
4051   return EmitNounwindRuntimeCall(callee, None, name);
4052 }
4053 
4054 /// Emits a call to the given nounwind runtime function.
4055 llvm::CallInst *
4056 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4057                                          ArrayRef<llvm::Value *> args,
4058                                          const llvm::Twine &name) {
4059   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4060   call->setDoesNotThrow();
4061   return call;
4062 }
4063 
4064 /// Emits a simple call (never an invoke) to the given no-arguments
4065 /// runtime function.
4066 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4067                                                  const llvm::Twine &name) {
4068   return EmitRuntimeCall(callee, None, name);
4069 }
4070 
4071 // Calls which may throw must have operand bundles indicating which funclet
4072 // they are nested within.
4073 SmallVector<llvm::OperandBundleDef, 1>
4074 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4075   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4076   // There is no need for a funclet operand bundle if we aren't inside a
4077   // funclet.
4078   if (!CurrentFuncletPad)
4079     return BundleList;
4080 
4081   // Skip intrinsics which cannot throw.
4082   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4083   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4084     return BundleList;
4085 
4086   BundleList.emplace_back("funclet", CurrentFuncletPad);
4087   return BundleList;
4088 }
4089 
4090 /// Emits a simple call (never an invoke) to the given runtime function.
4091 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4092                                                  ArrayRef<llvm::Value *> args,
4093                                                  const llvm::Twine &name) {
4094   llvm::CallInst *call = Builder.CreateCall(
4095       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4096   call->setCallingConv(getRuntimeCC());
4097   return call;
4098 }
4099 
4100 /// Emits a call or invoke to the given noreturn runtime function.
4101 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4102     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4103   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4104       getBundlesForFunclet(callee.getCallee());
4105 
4106   if (getInvokeDest()) {
4107     llvm::InvokeInst *invoke =
4108       Builder.CreateInvoke(callee,
4109                            getUnreachableBlock(),
4110                            getInvokeDest(),
4111                            args,
4112                            BundleList);
4113     invoke->setDoesNotReturn();
4114     invoke->setCallingConv(getRuntimeCC());
4115   } else {
4116     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4117     call->setDoesNotReturn();
4118     call->setCallingConv(getRuntimeCC());
4119     Builder.CreateUnreachable();
4120   }
4121 }
4122 
4123 /// Emits a call or invoke instruction to the given nullary runtime function.
4124 llvm::CallBase *
4125 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4126                                          const Twine &name) {
4127   return EmitRuntimeCallOrInvoke(callee, None, name);
4128 }
4129 
4130 /// Emits a call or invoke instruction to the given runtime function.
4131 llvm::CallBase *
4132 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4133                                          ArrayRef<llvm::Value *> args,
4134                                          const Twine &name) {
4135   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4136   call->setCallingConv(getRuntimeCC());
4137   return call;
4138 }
4139 
4140 /// Emits a call or invoke instruction to the given function, depending
4141 /// on the current state of the EH stack.
4142 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4143                                                   ArrayRef<llvm::Value *> Args,
4144                                                   const Twine &Name) {
4145   llvm::BasicBlock *InvokeDest = getInvokeDest();
4146   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4147       getBundlesForFunclet(Callee.getCallee());
4148 
4149   llvm::CallBase *Inst;
4150   if (!InvokeDest)
4151     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4152   else {
4153     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4154     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4155                                 Name);
4156     EmitBlock(ContBB);
4157   }
4158 
4159   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4160   // optimizer it can aggressively ignore unwind edges.
4161   if (CGM.getLangOpts().ObjCAutoRefCount)
4162     AddObjCARCExceptionMetadata(Inst);
4163 
4164   return Inst;
4165 }
4166 
4167 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4168                                                   llvm::Value *New) {
4169   DeferredReplacements.push_back(std::make_pair(Old, New));
4170 }
4171 
4172 namespace {
4173 
4174 /// Specify given \p NewAlign as the alignment of return value attribute. If
4175 /// such attribute already exists, re-set it to the maximal one of two options.
4176 LLVM_NODISCARD llvm::AttributeList
4177 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4178                                 const llvm::AttributeList &Attrs,
4179                                 llvm::Align NewAlign) {
4180   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4181   if (CurAlign >= NewAlign)
4182     return Attrs;
4183   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4184   return Attrs
4185       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4186                        llvm::Attribute::AttrKind::Alignment)
4187       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4188 }
4189 
4190 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4191 protected:
4192   CodeGenFunction &CGF;
4193 
4194   /// We do nothing if this is, or becomes, nullptr.
4195   const AlignedAttrTy *AA = nullptr;
4196 
4197   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4198   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4199 
4200   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4201       : CGF(CGF_) {
4202     if (!FuncDecl)
4203       return;
4204     AA = FuncDecl->getAttr<AlignedAttrTy>();
4205   }
4206 
4207 public:
4208   /// If we can, materialize the alignment as an attribute on return value.
4209   LLVM_NODISCARD llvm::AttributeList
4210   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4211     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4212       return Attrs;
4213     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4214     if (!AlignmentCI)
4215       return Attrs;
4216     // We may legitimately have non-power-of-2 alignment here.
4217     // If so, this is UB land, emit it via `@llvm.assume` instead.
4218     if (!AlignmentCI->getValue().isPowerOf2())
4219       return Attrs;
4220     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4221         CGF.getLLVMContext(), Attrs,
4222         llvm::Align(
4223             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4224     AA = nullptr; // We're done. Disallow doing anything else.
4225     return NewAttrs;
4226   }
4227 
4228   /// Emit alignment assumption.
4229   /// This is a general fallback that we take if either there is an offset,
4230   /// or the alignment is variable or we are sanitizing for alignment.
4231   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4232     if (!AA)
4233       return;
4234     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4235                                 AA->getLocation(), Alignment, OffsetCI);
4236     AA = nullptr; // We're done. Disallow doing anything else.
4237   }
4238 };
4239 
4240 /// Helper data structure to emit `AssumeAlignedAttr`.
4241 class AssumeAlignedAttrEmitter final
4242     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4243 public:
4244   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4245       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4246     if (!AA)
4247       return;
4248     // It is guaranteed that the alignment/offset are constants.
4249     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4250     if (Expr *Offset = AA->getOffset()) {
4251       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4252       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4253         OffsetCI = nullptr;
4254     }
4255   }
4256 };
4257 
4258 /// Helper data structure to emit `AllocAlignAttr`.
4259 class AllocAlignAttrEmitter final
4260     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4261 public:
4262   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4263                         const CallArgList &CallArgs)
4264       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4265     if (!AA)
4266       return;
4267     // Alignment may or may not be a constant, and that is okay.
4268     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4269                     .getRValue(CGF)
4270                     .getScalarVal();
4271   }
4272 };
4273 
4274 } // namespace
4275 
4276 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4277                                  const CGCallee &Callee,
4278                                  ReturnValueSlot ReturnValue,
4279                                  const CallArgList &CallArgs,
4280                                  llvm::CallBase **callOrInvoke,
4281                                  SourceLocation Loc) {
4282   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4283 
4284   assert(Callee.isOrdinary() || Callee.isVirtual());
4285 
4286   // Handle struct-return functions by passing a pointer to the
4287   // location that we would like to return into.
4288   QualType RetTy = CallInfo.getReturnType();
4289   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4290 
4291   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4292 
4293   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4294   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4295     // We can only guarantee that a function is called from the correct
4296     // context/function based on the appropriate target attributes,
4297     // so only check in the case where we have both always_inline and target
4298     // since otherwise we could be making a conditional call after a check for
4299     // the proper cpu features (and it won't cause code generation issues due to
4300     // function based code generation).
4301     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4302         TargetDecl->hasAttr<TargetAttr>())
4303       checkTargetFeatures(Loc, FD);
4304 
4305     // Some architectures (such as x86-64) have the ABI changed based on
4306     // attribute-target/features. Give them a chance to diagnose.
4307     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4308         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4309   }
4310 
4311 #ifndef NDEBUG
4312   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4313     // For an inalloca varargs function, we don't expect CallInfo to match the
4314     // function pointer's type, because the inalloca struct a will have extra
4315     // fields in it for the varargs parameters.  Code later in this function
4316     // bitcasts the function pointer to the type derived from CallInfo.
4317     //
4318     // In other cases, we assert that the types match up (until pointers stop
4319     // having pointee types).
4320     llvm::Type *TypeFromVal;
4321     if (Callee.isVirtual())
4322       TypeFromVal = Callee.getVirtualFunctionType();
4323     else
4324       TypeFromVal =
4325           Callee.getFunctionPointer()->getType()->getPointerElementType();
4326     assert(IRFuncTy == TypeFromVal);
4327   }
4328 #endif
4329 
4330   // 1. Set up the arguments.
4331 
4332   // If we're using inalloca, insert the allocation after the stack save.
4333   // FIXME: Do this earlier rather than hacking it in here!
4334   Address ArgMemory = Address::invalid();
4335   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4336     const llvm::DataLayout &DL = CGM.getDataLayout();
4337     llvm::Instruction *IP = CallArgs.getStackBase();
4338     llvm::AllocaInst *AI;
4339     if (IP) {
4340       IP = IP->getNextNode();
4341       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4342                                 "argmem", IP);
4343     } else {
4344       AI = CreateTempAlloca(ArgStruct, "argmem");
4345     }
4346     auto Align = CallInfo.getArgStructAlignment();
4347     AI->setAlignment(Align.getAsAlign());
4348     AI->setUsedWithInAlloca(true);
4349     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4350     ArgMemory = Address(AI, Align);
4351   }
4352 
4353   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4354   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4355 
4356   // If the call returns a temporary with struct return, create a temporary
4357   // alloca to hold the result, unless one is given to us.
4358   Address SRetPtr = Address::invalid();
4359   Address SRetAlloca = Address::invalid();
4360   llvm::Value *UnusedReturnSizePtr = nullptr;
4361   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4362     if (!ReturnValue.isNull()) {
4363       SRetPtr = ReturnValue.getValue();
4364     } else {
4365       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4366       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4367         uint64_t size =
4368             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4369         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4370       }
4371     }
4372     if (IRFunctionArgs.hasSRetArg()) {
4373       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4374     } else if (RetAI.isInAlloca()) {
4375       Address Addr =
4376           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4377       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4378     }
4379   }
4380 
4381   Address swiftErrorTemp = Address::invalid();
4382   Address swiftErrorArg = Address::invalid();
4383 
4384   // When passing arguments using temporary allocas, we need to add the
4385   // appropriate lifetime markers. This vector keeps track of all the lifetime
4386   // markers that need to be ended right after the call.
4387   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4388 
4389   // Translate all of the arguments as necessary to match the IR lowering.
4390   assert(CallInfo.arg_size() == CallArgs.size() &&
4391          "Mismatch between function signature & arguments.");
4392   unsigned ArgNo = 0;
4393   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4394   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4395        I != E; ++I, ++info_it, ++ArgNo) {
4396     const ABIArgInfo &ArgInfo = info_it->info;
4397 
4398     // Insert a padding argument to ensure proper alignment.
4399     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4400       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4401           llvm::UndefValue::get(ArgInfo.getPaddingType());
4402 
4403     unsigned FirstIRArg, NumIRArgs;
4404     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4405 
4406     switch (ArgInfo.getKind()) {
4407     case ABIArgInfo::InAlloca: {
4408       assert(NumIRArgs == 0);
4409       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4410       if (I->isAggregate()) {
4411         Address Addr = I->hasLValue()
4412                            ? I->getKnownLValue().getAddress(*this)
4413                            : I->getKnownRValue().getAggregateAddress();
4414         llvm::Instruction *Placeholder =
4415             cast<llvm::Instruction>(Addr.getPointer());
4416 
4417         if (!ArgInfo.getInAllocaIndirect()) {
4418           // Replace the placeholder with the appropriate argument slot GEP.
4419           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4420           Builder.SetInsertPoint(Placeholder);
4421           Addr = Builder.CreateStructGEP(ArgMemory,
4422                                          ArgInfo.getInAllocaFieldIndex());
4423           Builder.restoreIP(IP);
4424         } else {
4425           // For indirect things such as overaligned structs, replace the
4426           // placeholder with a regular aggregate temporary alloca. Store the
4427           // address of this alloca into the struct.
4428           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4429           Address ArgSlot = Builder.CreateStructGEP(
4430               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4431           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4432         }
4433         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4434       } else if (ArgInfo.getInAllocaIndirect()) {
4435         // Make a temporary alloca and store the address of it into the argument
4436         // struct.
4437         Address Addr = CreateMemTempWithoutCast(
4438             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4439             "indirect-arg-temp");
4440         I->copyInto(*this, Addr);
4441         Address ArgSlot =
4442             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4443         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4444       } else {
4445         // Store the RValue into the argument struct.
4446         Address Addr =
4447             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4448         unsigned AS = Addr.getType()->getPointerAddressSpace();
4449         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4450         // There are some cases where a trivial bitcast is not avoidable.  The
4451         // definition of a type later in a translation unit may change it's type
4452         // from {}* to (%struct.foo*)*.
4453         if (Addr.getType() != MemType)
4454           Addr = Builder.CreateBitCast(Addr, MemType);
4455         I->copyInto(*this, Addr);
4456       }
4457       break;
4458     }
4459 
4460     case ABIArgInfo::Indirect:
4461     case ABIArgInfo::IndirectAliased: {
4462       assert(NumIRArgs == 1);
4463       if (!I->isAggregate()) {
4464         // Make a temporary alloca to pass the argument.
4465         Address Addr = CreateMemTempWithoutCast(
4466             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4467         IRCallArgs[FirstIRArg] = Addr.getPointer();
4468 
4469         I->copyInto(*this, Addr);
4470       } else {
4471         // We want to avoid creating an unnecessary temporary+copy here;
4472         // however, we need one in three cases:
4473         // 1. If the argument is not byval, and we are required to copy the
4474         //    source.  (This case doesn't occur on any common architecture.)
4475         // 2. If the argument is byval, RV is not sufficiently aligned, and
4476         //    we cannot force it to be sufficiently aligned.
4477         // 3. If the argument is byval, but RV is not located in default
4478         //    or alloca address space.
4479         Address Addr = I->hasLValue()
4480                            ? I->getKnownLValue().getAddress(*this)
4481                            : I->getKnownRValue().getAggregateAddress();
4482         llvm::Value *V = Addr.getPointer();
4483         CharUnits Align = ArgInfo.getIndirectAlign();
4484         const llvm::DataLayout *TD = &CGM.getDataLayout();
4485 
4486         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4487                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4488                     TD->getAllocaAddrSpace()) &&
4489                "indirect argument must be in alloca address space");
4490 
4491         bool NeedCopy = false;
4492 
4493         if (Addr.getAlignment() < Align &&
4494             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4495                 Align.getAsAlign()) {
4496           NeedCopy = true;
4497         } else if (I->hasLValue()) {
4498           auto LV = I->getKnownLValue();
4499           auto AS = LV.getAddressSpace();
4500 
4501           if (!ArgInfo.getIndirectByVal() ||
4502               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4503             NeedCopy = true;
4504           }
4505           if (!getLangOpts().OpenCL) {
4506             if ((ArgInfo.getIndirectByVal() &&
4507                 (AS != LangAS::Default &&
4508                  AS != CGM.getASTAllocaAddressSpace()))) {
4509               NeedCopy = true;
4510             }
4511           }
4512           // For OpenCL even if RV is located in default or alloca address space
4513           // we don't want to perform address space cast for it.
4514           else if ((ArgInfo.getIndirectByVal() &&
4515                     Addr.getType()->getAddressSpace() != IRFuncTy->
4516                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4517             NeedCopy = true;
4518           }
4519         }
4520 
4521         if (NeedCopy) {
4522           // Create an aligned temporary, and copy to it.
4523           Address AI = CreateMemTempWithoutCast(
4524               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4525           IRCallArgs[FirstIRArg] = AI.getPointer();
4526 
4527           // Emit lifetime markers for the temporary alloca.
4528           uint64_t ByvalTempElementSize =
4529               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4530           llvm::Value *LifetimeSize =
4531               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4532 
4533           // Add cleanup code to emit the end lifetime marker after the call.
4534           if (LifetimeSize) // In case we disabled lifetime markers.
4535             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4536 
4537           // Generate the copy.
4538           I->copyInto(*this, AI);
4539         } else {
4540           // Skip the extra memcpy call.
4541           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4542               CGM.getDataLayout().getAllocaAddrSpace());
4543           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4544               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4545               true);
4546         }
4547       }
4548       break;
4549     }
4550 
4551     case ABIArgInfo::Ignore:
4552       assert(NumIRArgs == 0);
4553       break;
4554 
4555     case ABIArgInfo::Extend:
4556     case ABIArgInfo::Direct: {
4557       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4558           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4559           ArgInfo.getDirectOffset() == 0) {
4560         assert(NumIRArgs == 1);
4561         llvm::Value *V;
4562         if (!I->isAggregate())
4563           V = I->getKnownRValue().getScalarVal();
4564         else
4565           V = Builder.CreateLoad(
4566               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4567                              : I->getKnownRValue().getAggregateAddress());
4568 
4569         // Implement swifterror by copying into a new swifterror argument.
4570         // We'll write back in the normal path out of the call.
4571         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4572               == ParameterABI::SwiftErrorResult) {
4573           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4574 
4575           QualType pointeeTy = I->Ty->getPointeeType();
4576           swiftErrorArg =
4577             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4578 
4579           swiftErrorTemp =
4580             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4581           V = swiftErrorTemp.getPointer();
4582           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4583 
4584           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4585           Builder.CreateStore(errorValue, swiftErrorTemp);
4586         }
4587 
4588         // We might have to widen integers, but we should never truncate.
4589         if (ArgInfo.getCoerceToType() != V->getType() &&
4590             V->getType()->isIntegerTy())
4591           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4592 
4593         // If the argument doesn't match, perform a bitcast to coerce it.  This
4594         // can happen due to trivial type mismatches.
4595         if (FirstIRArg < IRFuncTy->getNumParams() &&
4596             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4597           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4598 
4599         IRCallArgs[FirstIRArg] = V;
4600         break;
4601       }
4602 
4603       // FIXME: Avoid the conversion through memory if possible.
4604       Address Src = Address::invalid();
4605       if (!I->isAggregate()) {
4606         Src = CreateMemTemp(I->Ty, "coerce");
4607         I->copyInto(*this, Src);
4608       } else {
4609         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4610                              : I->getKnownRValue().getAggregateAddress();
4611       }
4612 
4613       // If the value is offset in memory, apply the offset now.
4614       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4615 
4616       // Fast-isel and the optimizer generally like scalar values better than
4617       // FCAs, so we flatten them if this is safe to do for this argument.
4618       llvm::StructType *STy =
4619             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4620       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4621         llvm::Type *SrcTy = Src.getElementType();
4622         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4623         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4624 
4625         // If the source type is smaller than the destination type of the
4626         // coerce-to logic, copy the source value into a temp alloca the size
4627         // of the destination type to allow loading all of it. The bits past
4628         // the source value are left undef.
4629         if (SrcSize < DstSize) {
4630           Address TempAlloca
4631             = CreateTempAlloca(STy, Src.getAlignment(),
4632                                Src.getName() + ".coerce");
4633           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4634           Src = TempAlloca;
4635         } else {
4636           Src = Builder.CreateBitCast(Src,
4637                                       STy->getPointerTo(Src.getAddressSpace()));
4638         }
4639 
4640         assert(NumIRArgs == STy->getNumElements());
4641         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4642           Address EltPtr = Builder.CreateStructGEP(Src, i);
4643           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4644           IRCallArgs[FirstIRArg + i] = LI;
4645         }
4646       } else {
4647         // In the simple case, just pass the coerced loaded value.
4648         assert(NumIRArgs == 1);
4649         llvm::Value *Load =
4650             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4651 
4652         if (CallInfo.isCmseNSCall()) {
4653           // For certain parameter types, clear padding bits, as they may reveal
4654           // sensitive information.
4655           // Small struct/union types are passed as integer arrays.
4656           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4657           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4658             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4659         }
4660         IRCallArgs[FirstIRArg] = Load;
4661       }
4662 
4663       break;
4664     }
4665 
4666     case ABIArgInfo::CoerceAndExpand: {
4667       auto coercionType = ArgInfo.getCoerceAndExpandType();
4668       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4669 
4670       llvm::Value *tempSize = nullptr;
4671       Address addr = Address::invalid();
4672       Address AllocaAddr = Address::invalid();
4673       if (I->isAggregate()) {
4674         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4675                               : I->getKnownRValue().getAggregateAddress();
4676 
4677       } else {
4678         RValue RV = I->getKnownRValue();
4679         assert(RV.isScalar()); // complex should always just be direct
4680 
4681         llvm::Type *scalarType = RV.getScalarVal()->getType();
4682         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4683         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4684 
4685         // Materialize to a temporary.
4686         addr = CreateTempAlloca(
4687             RV.getScalarVal()->getType(),
4688             CharUnits::fromQuantity(std::max(
4689                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4690             "tmp",
4691             /*ArraySize=*/nullptr, &AllocaAddr);
4692         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4693 
4694         Builder.CreateStore(RV.getScalarVal(), addr);
4695       }
4696 
4697       addr = Builder.CreateElementBitCast(addr, coercionType);
4698 
4699       unsigned IRArgPos = FirstIRArg;
4700       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4701         llvm::Type *eltType = coercionType->getElementType(i);
4702         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4703         Address eltAddr = Builder.CreateStructGEP(addr, i);
4704         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4705         IRCallArgs[IRArgPos++] = elt;
4706       }
4707       assert(IRArgPos == FirstIRArg + NumIRArgs);
4708 
4709       if (tempSize) {
4710         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4711       }
4712 
4713       break;
4714     }
4715 
4716     case ABIArgInfo::Expand: {
4717       unsigned IRArgPos = FirstIRArg;
4718       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4719       assert(IRArgPos == FirstIRArg + NumIRArgs);
4720       break;
4721     }
4722     }
4723   }
4724 
4725   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4726   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4727 
4728   // If we're using inalloca, set up that argument.
4729   if (ArgMemory.isValid()) {
4730     llvm::Value *Arg = ArgMemory.getPointer();
4731     if (CallInfo.isVariadic()) {
4732       // When passing non-POD arguments by value to variadic functions, we will
4733       // end up with a variadic prototype and an inalloca call site.  In such
4734       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4735       // the callee.
4736       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4737       CalleePtr =
4738           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4739     } else {
4740       llvm::Type *LastParamTy =
4741           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4742       if (Arg->getType() != LastParamTy) {
4743 #ifndef NDEBUG
4744         // Assert that these structs have equivalent element types.
4745         llvm::StructType *FullTy = CallInfo.getArgStruct();
4746         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4747             cast<llvm::PointerType>(LastParamTy)->getElementType());
4748         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4749         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4750                                                 DE = DeclaredTy->element_end(),
4751                                                 FI = FullTy->element_begin();
4752              DI != DE; ++DI, ++FI)
4753           assert(*DI == *FI);
4754 #endif
4755         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4756       }
4757     }
4758     assert(IRFunctionArgs.hasInallocaArg());
4759     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4760   }
4761 
4762   // 2. Prepare the function pointer.
4763 
4764   // If the callee is a bitcast of a non-variadic function to have a
4765   // variadic function pointer type, check to see if we can remove the
4766   // bitcast.  This comes up with unprototyped functions.
4767   //
4768   // This makes the IR nicer, but more importantly it ensures that we
4769   // can inline the function at -O0 if it is marked always_inline.
4770   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4771                                    llvm::Value *Ptr) -> llvm::Function * {
4772     if (!CalleeFT->isVarArg())
4773       return nullptr;
4774 
4775     // Get underlying value if it's a bitcast
4776     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4777       if (CE->getOpcode() == llvm::Instruction::BitCast)
4778         Ptr = CE->getOperand(0);
4779     }
4780 
4781     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4782     if (!OrigFn)
4783       return nullptr;
4784 
4785     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4786 
4787     // If the original type is variadic, or if any of the component types
4788     // disagree, we cannot remove the cast.
4789     if (OrigFT->isVarArg() ||
4790         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4791         OrigFT->getReturnType() != CalleeFT->getReturnType())
4792       return nullptr;
4793 
4794     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4795       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4796         return nullptr;
4797 
4798     return OrigFn;
4799   };
4800 
4801   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4802     CalleePtr = OrigFn;
4803     IRFuncTy = OrigFn->getFunctionType();
4804   }
4805 
4806   // 3. Perform the actual call.
4807 
4808   // Deactivate any cleanups that we're supposed to do immediately before
4809   // the call.
4810   if (!CallArgs.getCleanupsToDeactivate().empty())
4811     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4812 
4813   // Assert that the arguments we computed match up.  The IR verifier
4814   // will catch this, but this is a common enough source of problems
4815   // during IRGen changes that it's way better for debugging to catch
4816   // it ourselves here.
4817 #ifndef NDEBUG
4818   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4819   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4820     // Inalloca argument can have different type.
4821     if (IRFunctionArgs.hasInallocaArg() &&
4822         i == IRFunctionArgs.getInallocaArgNo())
4823       continue;
4824     if (i < IRFuncTy->getNumParams())
4825       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4826   }
4827 #endif
4828 
4829   // Update the largest vector width if any arguments have vector types.
4830   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4831     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4832       LargestVectorWidth =
4833           std::max((uint64_t)LargestVectorWidth,
4834                    VT->getPrimitiveSizeInBits().getKnownMinSize());
4835   }
4836 
4837   // Compute the calling convention and attributes.
4838   unsigned CallingConv;
4839   llvm::AttributeList Attrs;
4840   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4841                              Callee.getAbstractInfo(), Attrs, CallingConv,
4842                              /*AttrOnCallSite=*/true);
4843 
4844   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4845     if (FD->usesFPIntrin())
4846       // All calls within a strictfp function are marked strictfp
4847       Attrs =
4848         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4849                            llvm::Attribute::StrictFP);
4850 
4851   // Add call-site nomerge attribute if exists.
4852   if (InNoMergeAttributedStmt)
4853     Attrs =
4854       Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4855                          llvm::Attribute::NoMerge);
4856 
4857   // Apply some call-site-specific attributes.
4858   // TODO: work this into building the attribute set.
4859 
4860   // Apply always_inline to all calls within flatten functions.
4861   // FIXME: should this really take priority over __try, below?
4862   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4863       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4864     Attrs =
4865         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4866                            llvm::Attribute::AlwaysInline);
4867   }
4868 
4869   // Disable inlining inside SEH __try blocks.
4870   if (isSEHTryScope()) {
4871     Attrs =
4872         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4873                            llvm::Attribute::NoInline);
4874   }
4875 
4876   // Decide whether to use a call or an invoke.
4877   bool CannotThrow;
4878   if (currentFunctionUsesSEHTry()) {
4879     // SEH cares about asynchronous exceptions, so everything can "throw."
4880     CannotThrow = false;
4881   } else if (isCleanupPadScope() &&
4882              EHPersonality::get(*this).isMSVCXXPersonality()) {
4883     // The MSVC++ personality will implicitly terminate the program if an
4884     // exception is thrown during a cleanup outside of a try/catch.
4885     // We don't need to model anything in IR to get this behavior.
4886     CannotThrow = true;
4887   } else {
4888     // Otherwise, nounwind call sites will never throw.
4889     CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
4890 
4891     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
4892       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
4893         CannotThrow = true;
4894   }
4895 
4896   // If we made a temporary, be sure to clean up after ourselves. Note that we
4897   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4898   // pop this cleanup later on. Being eager about this is OK, since this
4899   // temporary is 'invisible' outside of the callee.
4900   if (UnusedReturnSizePtr)
4901     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4902                                          UnusedReturnSizePtr);
4903 
4904   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4905 
4906   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4907       getBundlesForFunclet(CalleePtr);
4908 
4909   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4910     if (FD->usesFPIntrin())
4911       // All calls within a strictfp function are marked strictfp
4912       Attrs =
4913         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4914                            llvm::Attribute::StrictFP);
4915 
4916   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
4917   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4918 
4919   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
4920   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4921 
4922   // Emit the actual call/invoke instruction.
4923   llvm::CallBase *CI;
4924   if (!InvokeDest) {
4925     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4926   } else {
4927     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4928     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4929                               BundleList);
4930     EmitBlock(Cont);
4931   }
4932   if (callOrInvoke)
4933     *callOrInvoke = CI;
4934 
4935   // If this is within a function that has the guard(nocf) attribute and is an
4936   // indirect call, add the "guard_nocf" attribute to this call to indicate that
4937   // Control Flow Guard checks should not be added, even if the call is inlined.
4938   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4939     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4940       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4941         Attrs = Attrs.addAttribute(
4942             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4943     }
4944   }
4945 
4946   // Apply the attributes and calling convention.
4947   CI->setAttributes(Attrs);
4948   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4949 
4950   // Apply various metadata.
4951 
4952   if (!CI->getType()->isVoidTy())
4953     CI->setName("call");
4954 
4955   // Update largest vector width from the return type.
4956   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4957     LargestVectorWidth =
4958         std::max((uint64_t)LargestVectorWidth,
4959                  VT->getPrimitiveSizeInBits().getKnownMinSize());
4960 
4961   // Insert instrumentation or attach profile metadata at indirect call sites.
4962   // For more details, see the comment before the definition of
4963   // IPVK_IndirectCallTarget in InstrProfData.inc.
4964   if (!CI->getCalledFunction())
4965     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4966                      CI, CalleePtr);
4967 
4968   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4969   // optimizer it can aggressively ignore unwind edges.
4970   if (CGM.getLangOpts().ObjCAutoRefCount)
4971     AddObjCARCExceptionMetadata(CI);
4972 
4973   // Suppress tail calls if requested.
4974   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4975     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4976       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4977   }
4978 
4979   // Add metadata for calls to MSAllocator functions
4980   if (getDebugInfo() && TargetDecl &&
4981       TargetDecl->hasAttr<MSAllocatorAttr>())
4982     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
4983 
4984   // 4. Finish the call.
4985 
4986   // If the call doesn't return, finish the basic block and clear the
4987   // insertion point; this allows the rest of IRGen to discard
4988   // unreachable code.
4989   if (CI->doesNotReturn()) {
4990     if (UnusedReturnSizePtr)
4991       PopCleanupBlock();
4992 
4993     // Strip away the noreturn attribute to better diagnose unreachable UB.
4994     if (SanOpts.has(SanitizerKind::Unreachable)) {
4995       // Also remove from function since CallBase::hasFnAttr additionally checks
4996       // attributes of the called function.
4997       if (auto *F = CI->getCalledFunction())
4998         F->removeFnAttr(llvm::Attribute::NoReturn);
4999       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
5000                           llvm::Attribute::NoReturn);
5001 
5002       // Avoid incompatibility with ASan which relies on the `noreturn`
5003       // attribute to insert handler calls.
5004       if (SanOpts.hasOneOf(SanitizerKind::Address |
5005                            SanitizerKind::KernelAddress)) {
5006         SanitizerScope SanScope(this);
5007         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5008         Builder.SetInsertPoint(CI);
5009         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5010         llvm::FunctionCallee Fn =
5011             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5012         EmitNounwindRuntimeCall(Fn);
5013       }
5014     }
5015 
5016     EmitUnreachable(Loc);
5017     Builder.ClearInsertionPoint();
5018 
5019     // FIXME: For now, emit a dummy basic block because expr emitters in
5020     // generally are not ready to handle emitting expressions at unreachable
5021     // points.
5022     EnsureInsertPoint();
5023 
5024     // Return a reasonable RValue.
5025     return GetUndefRValue(RetTy);
5026   }
5027 
5028   // Perform the swifterror writeback.
5029   if (swiftErrorTemp.isValid()) {
5030     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5031     Builder.CreateStore(errorResult, swiftErrorArg);
5032   }
5033 
5034   // Emit any call-associated writebacks immediately.  Arguably this
5035   // should happen after any return-value munging.
5036   if (CallArgs.hasWritebacks())
5037     emitWritebacks(*this, CallArgs);
5038 
5039   // The stack cleanup for inalloca arguments has to run out of the normal
5040   // lexical order, so deactivate it and run it manually here.
5041   CallArgs.freeArgumentMemory(*this);
5042 
5043   // Extract the return value.
5044   RValue Ret = [&] {
5045     switch (RetAI.getKind()) {
5046     case ABIArgInfo::CoerceAndExpand: {
5047       auto coercionType = RetAI.getCoerceAndExpandType();
5048 
5049       Address addr = SRetPtr;
5050       addr = Builder.CreateElementBitCast(addr, coercionType);
5051 
5052       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5053       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5054 
5055       unsigned unpaddedIndex = 0;
5056       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5057         llvm::Type *eltType = coercionType->getElementType(i);
5058         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5059         Address eltAddr = Builder.CreateStructGEP(addr, i);
5060         llvm::Value *elt = CI;
5061         if (requiresExtract)
5062           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5063         else
5064           assert(unpaddedIndex == 0);
5065         Builder.CreateStore(elt, eltAddr);
5066       }
5067       // FALLTHROUGH
5068       LLVM_FALLTHROUGH;
5069     }
5070 
5071     case ABIArgInfo::InAlloca:
5072     case ABIArgInfo::Indirect: {
5073       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5074       if (UnusedReturnSizePtr)
5075         PopCleanupBlock();
5076       return ret;
5077     }
5078 
5079     case ABIArgInfo::Ignore:
5080       // If we are ignoring an argument that had a result, make sure to
5081       // construct the appropriate return value for our caller.
5082       return GetUndefRValue(RetTy);
5083 
5084     case ABIArgInfo::Extend:
5085     case ABIArgInfo::Direct: {
5086       llvm::Type *RetIRTy = ConvertType(RetTy);
5087       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5088         switch (getEvaluationKind(RetTy)) {
5089         case TEK_Complex: {
5090           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5091           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5092           return RValue::getComplex(std::make_pair(Real, Imag));
5093         }
5094         case TEK_Aggregate: {
5095           Address DestPtr = ReturnValue.getValue();
5096           bool DestIsVolatile = ReturnValue.isVolatile();
5097 
5098           if (!DestPtr.isValid()) {
5099             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5100             DestIsVolatile = false;
5101           }
5102           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5103           return RValue::getAggregate(DestPtr);
5104         }
5105         case TEK_Scalar: {
5106           // If the argument doesn't match, perform a bitcast to coerce it.  This
5107           // can happen due to trivial type mismatches.
5108           llvm::Value *V = CI;
5109           if (V->getType() != RetIRTy)
5110             V = Builder.CreateBitCast(V, RetIRTy);
5111           return RValue::get(V);
5112         }
5113         }
5114         llvm_unreachable("bad evaluation kind");
5115       }
5116 
5117       Address DestPtr = ReturnValue.getValue();
5118       bool DestIsVolatile = ReturnValue.isVolatile();
5119 
5120       if (!DestPtr.isValid()) {
5121         DestPtr = CreateMemTemp(RetTy, "coerce");
5122         DestIsVolatile = false;
5123       }
5124 
5125       // If the value is offset in memory, apply the offset now.
5126       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5127       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5128 
5129       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5130     }
5131 
5132     case ABIArgInfo::Expand:
5133     case ABIArgInfo::IndirectAliased:
5134       llvm_unreachable("Invalid ABI kind for return argument");
5135     }
5136 
5137     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5138   } ();
5139 
5140   // Emit the assume_aligned check on the return value.
5141   if (Ret.isScalar() && TargetDecl) {
5142     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5143     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5144   }
5145 
5146   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5147   // we can't use the full cleanup mechanism.
5148   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5149     LifetimeEnd.Emit(*this, /*Flags=*/{});
5150 
5151   if (!ReturnValue.isExternallyDestructed() &&
5152       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5153     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5154                 RetTy);
5155 
5156   return Ret;
5157 }
5158 
5159 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5160   if (isVirtual()) {
5161     const CallExpr *CE = getVirtualCallExpr();
5162     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5163         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5164         CE ? CE->getBeginLoc() : SourceLocation());
5165   }
5166 
5167   return *this;
5168 }
5169 
5170 /* VarArg handling */
5171 
5172 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5173   VAListAddr = VE->isMicrosoftABI()
5174                  ? EmitMSVAListRef(VE->getSubExpr())
5175                  : EmitVAListRef(VE->getSubExpr());
5176   QualType Ty = VE->getType();
5177   if (VE->isMicrosoftABI())
5178     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5179   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5180 }
5181