1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "ABIInfo.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Attributes.h"
27 #include "llvm/Support/CallSite.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/InlineAsm.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 using namespace clang;
32 using namespace CodeGen;
33 
34 /***/
35 
36 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
37   switch (CC) {
38   default: return llvm::CallingConv::C;
39   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
40   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
41   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
42   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
43   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
44   // TODO: add support for CC_X86Pascal to llvm
45   }
46 }
47 
48 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
49 /// qualification.
50 /// FIXME: address space qualification?
51 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
52   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
53   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
54 }
55 
56 /// Returns the canonical formal type of the given C++ method.
57 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
58   return MD->getType()->getCanonicalTypeUnqualified()
59            .getAs<FunctionProtoType>();
60 }
61 
62 /// Returns the "extra-canonicalized" return type, which discards
63 /// qualifiers on the return type.  Codegen doesn't care about them,
64 /// and it makes ABI code a little easier to be able to assume that
65 /// all parameter and return types are top-level unqualified.
66 static CanQualType GetReturnType(QualType RetTy) {
67   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
68 }
69 
70 /// Arrange the argument and result information for a value of the
71 /// given unprototyped function type.
72 const CGFunctionInfo &
73 CodeGenTypes::arrangeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
74   // When translating an unprototyped function type, always use a
75   // variadic type.
76   return arrangeFunctionType(FTNP->getResultType().getUnqualifiedType(),
77                              ArrayRef<CanQualType>(),
78                              FTNP->getExtInfo(),
79                              RequiredArgs(0));
80 }
81 
82 /// Arrange the argument and result information for a value of the
83 /// given function type, on top of any implicit parameters already
84 /// stored.
85 static const CGFunctionInfo &arrangeFunctionType(CodeGenTypes &CGT,
86                                   SmallVectorImpl<CanQualType> &argTypes,
87                                              CanQual<FunctionProtoType> FTP) {
88   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
89   // FIXME: Kill copy.
90   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
91     argTypes.push_back(FTP->getArgType(i));
92   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
93   return CGT.arrangeFunctionType(resultType, argTypes,
94                                  FTP->getExtInfo(), required);
95 }
96 
97 /// Arrange the argument and result information for a value of the
98 /// given function type.
99 const CGFunctionInfo &
100 CodeGenTypes::arrangeFunctionType(CanQual<FunctionProtoType> FTP) {
101   SmallVector<CanQualType, 16> argTypes;
102   return ::arrangeFunctionType(*this, argTypes, FTP);
103 }
104 
105 static CallingConv getCallingConventionForDecl(const Decl *D) {
106   // Set the appropriate calling convention for the Function.
107   if (D->hasAttr<StdCallAttr>())
108     return CC_X86StdCall;
109 
110   if (D->hasAttr<FastCallAttr>())
111     return CC_X86FastCall;
112 
113   if (D->hasAttr<ThisCallAttr>())
114     return CC_X86ThisCall;
115 
116   if (D->hasAttr<PascalAttr>())
117     return CC_X86Pascal;
118 
119   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
120     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
121 
122   return CC_C;
123 }
124 
125 /// Arrange the argument and result information for a call to an
126 /// unknown C++ non-static member function of the given abstract type.
127 /// The member function must be an ordinary function, i.e. not a
128 /// constructor or destructor.
129 const CGFunctionInfo &
130 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
131                                    const FunctionProtoType *FTP) {
132   SmallVector<CanQualType, 16> argTypes;
133 
134   // Add the 'this' pointer.
135   argTypes.push_back(GetThisType(Context, RD));
136 
137   return ::arrangeFunctionType(*this, argTypes,
138               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
139 }
140 
141 /// Arrange the argument and result information for a declaration or
142 /// definition of the given C++ non-static member function.  The
143 /// member function must be an ordinary function, i.e. not a
144 /// constructor or destructor.
145 const CGFunctionInfo &
146 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
147   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
148   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
149 
150   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
151 
152   if (MD->isInstance()) {
153     // The abstract case is perfectly fine.
154     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
155   }
156 
157   return arrangeFunctionType(prototype);
158 }
159 
160 /// Arrange the argument and result information for a declaration
161 /// or definition to the given constructor variant.
162 const CGFunctionInfo &
163 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
164                                                CXXCtorType ctorKind) {
165   SmallVector<CanQualType, 16> argTypes;
166   argTypes.push_back(GetThisType(Context, D->getParent()));
167   CanQualType resultType = Context.VoidTy;
168 
169   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
170 
171   CanQual<FunctionProtoType> FTP = GetFormalType(D);
172 
173   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
174 
175   // Add the formal parameters.
176   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
177     argTypes.push_back(FTP->getArgType(i));
178 
179   return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(), required);
180 }
181 
182 /// Arrange the argument and result information for a declaration,
183 /// definition, or call to the given destructor variant.  It so
184 /// happens that all three cases produce the same information.
185 const CGFunctionInfo &
186 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
187                                    CXXDtorType dtorKind) {
188   SmallVector<CanQualType, 2> argTypes;
189   argTypes.push_back(GetThisType(Context, D->getParent()));
190   CanQualType resultType = Context.VoidTy;
191 
192   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
193 
194   CanQual<FunctionProtoType> FTP = GetFormalType(D);
195   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
196 
197   return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(),
198                              RequiredArgs::All);
199 }
200 
201 /// Arrange the argument and result information for the declaration or
202 /// definition of the given function.
203 const CGFunctionInfo &
204 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
205   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
206     if (MD->isInstance())
207       return arrangeCXXMethodDeclaration(MD);
208 
209   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
210 
211   assert(isa<FunctionType>(FTy));
212 
213   // When declaring a function without a prototype, always use a
214   // non-variadic type.
215   if (isa<FunctionNoProtoType>(FTy)) {
216     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
217     return arrangeFunctionType(noProto->getResultType(),
218                                ArrayRef<CanQualType>(),
219                                noProto->getExtInfo(),
220                                RequiredArgs::All);
221   }
222 
223   assert(isa<FunctionProtoType>(FTy));
224   return arrangeFunctionType(FTy.getAs<FunctionProtoType>());
225 }
226 
227 /// Arrange the argument and result information for the declaration or
228 /// definition of an Objective-C method.
229 const CGFunctionInfo &
230 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
231   // It happens that this is the same as a call with no optional
232   // arguments, except also using the formal 'self' type.
233   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
234 }
235 
236 /// Arrange the argument and result information for the function type
237 /// through which to perform a send to the given Objective-C method,
238 /// using the given receiver type.  The receiver type is not always
239 /// the 'self' type of the method or even an Objective-C pointer type.
240 /// This is *not* the right method for actually performing such a
241 /// message send, due to the possibility of optional arguments.
242 const CGFunctionInfo &
243 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
244                                               QualType receiverType) {
245   SmallVector<CanQualType, 16> argTys;
246   argTys.push_back(Context.getCanonicalParamType(receiverType));
247   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
248   // FIXME: Kill copy?
249   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
250          e = MD->param_end(); i != e; ++i) {
251     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
252   }
253 
254   FunctionType::ExtInfo einfo;
255   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
256 
257   if (getContext().getLangOptions().ObjCAutoRefCount &&
258       MD->hasAttr<NSReturnsRetainedAttr>())
259     einfo = einfo.withProducesResult(true);
260 
261   RequiredArgs required =
262     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
263 
264   return arrangeFunctionType(GetReturnType(MD->getResultType()), argTys,
265                              einfo, required);
266 }
267 
268 const CGFunctionInfo &
269 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
270   // FIXME: Do we need to handle ObjCMethodDecl?
271   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
272 
273   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
274     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
275 
276   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
277     return arrangeCXXDestructor(DD, GD.getDtorType());
278 
279   return arrangeFunctionDeclaration(FD);
280 }
281 
282 /// Figure out the rules for calling a function with the given formal
283 /// type using the given arguments.  The arguments are necessary
284 /// because the function might be unprototyped, in which case it's
285 /// target-dependent in crazy ways.
286 const CGFunctionInfo &
287 CodeGenTypes::arrangeFunctionCall(const CallArgList &args,
288                                   const FunctionType *fnType) {
289   RequiredArgs required = RequiredArgs::All;
290   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
291     if (proto->isVariadic())
292       required = RequiredArgs(proto->getNumArgs());
293   } else if (CGM.getTargetCodeGenInfo()
294                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
295     required = RequiredArgs(0);
296   }
297 
298   return arrangeFunctionCall(fnType->getResultType(), args,
299                              fnType->getExtInfo(), required);
300 }
301 
302 const CGFunctionInfo &
303 CodeGenTypes::arrangeFunctionCall(QualType resultType,
304                                   const CallArgList &args,
305                                   const FunctionType::ExtInfo &info,
306                                   RequiredArgs required) {
307   // FIXME: Kill copy.
308   SmallVector<CanQualType, 16> argTypes;
309   for (CallArgList::const_iterator i = args.begin(), e = args.end();
310        i != e; ++i)
311     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
312   return arrangeFunctionType(GetReturnType(resultType), argTypes, info,
313                              required);
314 }
315 
316 const CGFunctionInfo &
317 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
318                                          const FunctionArgList &args,
319                                          const FunctionType::ExtInfo &info,
320                                          bool isVariadic) {
321   // FIXME: Kill copy.
322   SmallVector<CanQualType, 16> argTypes;
323   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
324        i != e; ++i)
325     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
326 
327   RequiredArgs required =
328     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
329   return arrangeFunctionType(GetReturnType(resultType), argTypes, info,
330                              required);
331 }
332 
333 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
334   return arrangeFunctionType(getContext().VoidTy, ArrayRef<CanQualType>(),
335                              FunctionType::ExtInfo(), RequiredArgs::All);
336 }
337 
338 /// Arrange the argument and result information for an abstract value
339 /// of a given function type.  This is the method which all of the
340 /// above functions ultimately defer to.
341 const CGFunctionInfo &
342 CodeGenTypes::arrangeFunctionType(CanQualType resultType,
343                                   ArrayRef<CanQualType> argTypes,
344                                   const FunctionType::ExtInfo &info,
345                                   RequiredArgs required) {
346 #ifndef NDEBUG
347   for (ArrayRef<CanQualType>::const_iterator
348          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
349     assert(I->isCanonicalAsParam());
350 #endif
351 
352   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
353 
354   // Lookup or create unique function info.
355   llvm::FoldingSetNodeID ID;
356   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
357 
358   void *insertPos = 0;
359   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
360   if (FI)
361     return *FI;
362 
363   // Construct the function info.  We co-allocate the ArgInfos.
364   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
365   FunctionInfos.InsertNode(FI, insertPos);
366 
367   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
368   assert(inserted && "Recursively being processed?");
369 
370   // Compute ABI information.
371   getABIInfo().computeInfo(*FI);
372 
373   // Loop over all of the computed argument and return value info.  If any of
374   // them are direct or extend without a specified coerce type, specify the
375   // default now.
376   ABIArgInfo &retInfo = FI->getReturnInfo();
377   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
378     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
379 
380   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
381        I != E; ++I)
382     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
383       I->info.setCoerceToType(ConvertType(I->type));
384 
385   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
386   assert(erased && "Not in set?");
387 
388   return *FI;
389 }
390 
391 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
392                                        const FunctionType::ExtInfo &info,
393                                        CanQualType resultType,
394                                        ArrayRef<CanQualType> argTypes,
395                                        RequiredArgs required) {
396   void *buffer = operator new(sizeof(CGFunctionInfo) +
397                               sizeof(ArgInfo) * (argTypes.size() + 1));
398   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
399   FI->CallingConvention = llvmCC;
400   FI->EffectiveCallingConvention = llvmCC;
401   FI->ASTCallingConvention = info.getCC();
402   FI->NoReturn = info.getNoReturn();
403   FI->ReturnsRetained = info.getProducesResult();
404   FI->Required = required;
405   FI->HasRegParm = info.getHasRegParm();
406   FI->RegParm = info.getRegParm();
407   FI->NumArgs = argTypes.size();
408   FI->getArgsBuffer()[0].type = resultType;
409   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
410     FI->getArgsBuffer()[i + 1].type = argTypes[i];
411   return FI;
412 }
413 
414 /***/
415 
416 void CodeGenTypes::GetExpandedTypes(QualType type,
417                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
418   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
419     uint64_t NumElts = AT->getSize().getZExtValue();
420     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
421       GetExpandedTypes(AT->getElementType(), expandedTypes);
422   } else if (const RecordType *RT = type->getAsStructureType()) {
423     const RecordDecl *RD = RT->getDecl();
424     assert(!RD->hasFlexibleArrayMember() &&
425            "Cannot expand structure with flexible array.");
426     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
427          i != e; ++i) {
428       const FieldDecl *FD = *i;
429       assert(!FD->isBitField() &&
430              "Cannot expand structure with bit-field members.");
431       GetExpandedTypes(FD->getType(), expandedTypes);
432     }
433   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
434     llvm::Type *EltTy = ConvertType(CT->getElementType());
435     expandedTypes.push_back(EltTy);
436     expandedTypes.push_back(EltTy);
437   } else
438     expandedTypes.push_back(ConvertType(type));
439 }
440 
441 llvm::Function::arg_iterator
442 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
443                                     llvm::Function::arg_iterator AI) {
444   assert(LV.isSimple() &&
445          "Unexpected non-simple lvalue during struct expansion.");
446   llvm::Value *Addr = LV.getAddress();
447 
448   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
449     unsigned NumElts = AT->getSize().getZExtValue();
450     QualType EltTy = AT->getElementType();
451     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
452       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
453       LValue LV = MakeAddrLValue(EltAddr, EltTy);
454       AI = ExpandTypeFromArgs(EltTy, LV, AI);
455     }
456   } else if (const RecordType *RT = Ty->getAsStructureType()) {
457     RecordDecl *RD = RT->getDecl();
458     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
459          i != e; ++i) {
460       FieldDecl *FD = *i;
461       QualType FT = FD->getType();
462 
463       // FIXME: What are the right qualifiers here?
464       LValue LV = EmitLValueForField(Addr, FD, 0);
465       AI = ExpandTypeFromArgs(FT, LV, AI);
466     }
467   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
468     QualType EltTy = CT->getElementType();
469     llvm::Value *RealAddr = Builder.CreateStructGEP(Addr, 0, "real");
470     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
471     llvm::Value *ImagAddr = Builder.CreateStructGEP(Addr, 1, "imag");
472     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
473   } else {
474     EmitStoreThroughLValue(RValue::get(AI), LV);
475     ++AI;
476   }
477 
478   return AI;
479 }
480 
481 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
482 /// accessing some number of bytes out of it, try to gep into the struct to get
483 /// at its inner goodness.  Dive as deep as possible without entering an element
484 /// with an in-memory size smaller than DstSize.
485 static llvm::Value *
486 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
487                                    llvm::StructType *SrcSTy,
488                                    uint64_t DstSize, CodeGenFunction &CGF) {
489   // We can't dive into a zero-element struct.
490   if (SrcSTy->getNumElements() == 0) return SrcPtr;
491 
492   llvm::Type *FirstElt = SrcSTy->getElementType(0);
493 
494   // If the first elt is at least as large as what we're looking for, or if the
495   // first element is the same size as the whole struct, we can enter it.
496   uint64_t FirstEltSize =
497     CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
498   if (FirstEltSize < DstSize &&
499       FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
500     return SrcPtr;
501 
502   // GEP into the first element.
503   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
504 
505   // If the first element is a struct, recurse.
506   llvm::Type *SrcTy =
507     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
508   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
509     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
510 
511   return SrcPtr;
512 }
513 
514 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
515 /// are either integers or pointers.  This does a truncation of the value if it
516 /// is too large or a zero extension if it is too small.
517 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
518                                              llvm::Type *Ty,
519                                              CodeGenFunction &CGF) {
520   if (Val->getType() == Ty)
521     return Val;
522 
523   if (isa<llvm::PointerType>(Val->getType())) {
524     // If this is Pointer->Pointer avoid conversion to and from int.
525     if (isa<llvm::PointerType>(Ty))
526       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
527 
528     // Convert the pointer to an integer so we can play with its width.
529     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
530   }
531 
532   llvm::Type *DestIntTy = Ty;
533   if (isa<llvm::PointerType>(DestIntTy))
534     DestIntTy = CGF.IntPtrTy;
535 
536   if (Val->getType() != DestIntTy)
537     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
538 
539   if (isa<llvm::PointerType>(Ty))
540     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
541   return Val;
542 }
543 
544 
545 
546 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
547 /// a pointer to an object of type \arg Ty.
548 ///
549 /// This safely handles the case when the src type is smaller than the
550 /// destination type; in this situation the values of bits which not
551 /// present in the src are undefined.
552 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
553                                       llvm::Type *Ty,
554                                       CodeGenFunction &CGF) {
555   llvm::Type *SrcTy =
556     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
557 
558   // If SrcTy and Ty are the same, just do a load.
559   if (SrcTy == Ty)
560     return CGF.Builder.CreateLoad(SrcPtr);
561 
562   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
563 
564   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
565     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
566     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
567   }
568 
569   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
570 
571   // If the source and destination are integer or pointer types, just do an
572   // extension or truncation to the desired type.
573   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
574       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
575     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
576     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
577   }
578 
579   // If load is legal, just bitcast the src pointer.
580   if (SrcSize >= DstSize) {
581     // Generally SrcSize is never greater than DstSize, since this means we are
582     // losing bits. However, this can happen in cases where the structure has
583     // additional padding, for example due to a user specified alignment.
584     //
585     // FIXME: Assert that we aren't truncating non-padding bits when have access
586     // to that information.
587     llvm::Value *Casted =
588       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
589     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
590     // FIXME: Use better alignment / avoid requiring aligned load.
591     Load->setAlignment(1);
592     return Load;
593   }
594 
595   // Otherwise do coercion through memory. This is stupid, but
596   // simple.
597   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
598   llvm::Value *Casted =
599     CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
600   llvm::StoreInst *Store =
601     CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
602   // FIXME: Use better alignment / avoid requiring aligned store.
603   Store->setAlignment(1);
604   return CGF.Builder.CreateLoad(Tmp);
605 }
606 
607 // Function to store a first-class aggregate into memory.  We prefer to
608 // store the elements rather than the aggregate to be more friendly to
609 // fast-isel.
610 // FIXME: Do we need to recurse here?
611 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
612                           llvm::Value *DestPtr, bool DestIsVolatile,
613                           bool LowAlignment) {
614   // Prefer scalar stores to first-class aggregate stores.
615   if (llvm::StructType *STy =
616         dyn_cast<llvm::StructType>(Val->getType())) {
617     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
618       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
619       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
620       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
621                                                     DestIsVolatile);
622       if (LowAlignment)
623         SI->setAlignment(1);
624     }
625   } else {
626     CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
627   }
628 }
629 
630 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
631 /// where the source and destination may have different types.
632 ///
633 /// This safely handles the case when the src type is larger than the
634 /// destination type; the upper bits of the src will be lost.
635 static void CreateCoercedStore(llvm::Value *Src,
636                                llvm::Value *DstPtr,
637                                bool DstIsVolatile,
638                                CodeGenFunction &CGF) {
639   llvm::Type *SrcTy = Src->getType();
640   llvm::Type *DstTy =
641     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
642   if (SrcTy == DstTy) {
643     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
644     return;
645   }
646 
647   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
648 
649   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
650     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
651     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
652   }
653 
654   // If the source and destination are integer or pointer types, just do an
655   // extension or truncation to the desired type.
656   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
657       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
658     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
659     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
660     return;
661   }
662 
663   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
664 
665   // If store is legal, just bitcast the src pointer.
666   if (SrcSize <= DstSize) {
667     llvm::Value *Casted =
668       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
669     // FIXME: Use better alignment / avoid requiring aligned store.
670     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
671   } else {
672     // Otherwise do coercion through memory. This is stupid, but
673     // simple.
674 
675     // Generally SrcSize is never greater than DstSize, since this means we are
676     // losing bits. However, this can happen in cases where the structure has
677     // additional padding, for example due to a user specified alignment.
678     //
679     // FIXME: Assert that we aren't truncating non-padding bits when have access
680     // to that information.
681     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
682     CGF.Builder.CreateStore(Src, Tmp);
683     llvm::Value *Casted =
684       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
685     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
686     // FIXME: Use better alignment / avoid requiring aligned load.
687     Load->setAlignment(1);
688     CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
689   }
690 }
691 
692 /***/
693 
694 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
695   return FI.getReturnInfo().isIndirect();
696 }
697 
698 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
699   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
700     switch (BT->getKind()) {
701     default:
702       return false;
703     case BuiltinType::Float:
704       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
705     case BuiltinType::Double:
706       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
707     case BuiltinType::LongDouble:
708       return getContext().getTargetInfo().useObjCFPRetForRealType(
709         TargetInfo::LongDouble);
710     }
711   }
712 
713   return false;
714 }
715 
716 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
717   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
718     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
719       if (BT->getKind() == BuiltinType::LongDouble)
720         return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
721     }
722   }
723 
724   return false;
725 }
726 
727 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
728   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
729   return GetFunctionType(FI);
730 }
731 
732 llvm::FunctionType *
733 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
734 
735   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
736   assert(Inserted && "Recursively being processed?");
737 
738   SmallVector<llvm::Type*, 8> argTypes;
739   llvm::Type *resultType = 0;
740 
741   const ABIArgInfo &retAI = FI.getReturnInfo();
742   switch (retAI.getKind()) {
743   case ABIArgInfo::Expand:
744     llvm_unreachable("Invalid ABI kind for return argument");
745 
746   case ABIArgInfo::Extend:
747   case ABIArgInfo::Direct:
748     resultType = retAI.getCoerceToType();
749     break;
750 
751   case ABIArgInfo::Indirect: {
752     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
753     resultType = llvm::Type::getVoidTy(getLLVMContext());
754 
755     QualType ret = FI.getReturnType();
756     llvm::Type *ty = ConvertType(ret);
757     unsigned addressSpace = Context.getTargetAddressSpace(ret);
758     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
759     break;
760   }
761 
762   case ABIArgInfo::Ignore:
763     resultType = llvm::Type::getVoidTy(getLLVMContext());
764     break;
765   }
766 
767   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
768          ie = FI.arg_end(); it != ie; ++it) {
769     const ABIArgInfo &argAI = it->info;
770 
771     switch (argAI.getKind()) {
772     case ABIArgInfo::Ignore:
773       break;
774 
775     case ABIArgInfo::Indirect: {
776       // indirect arguments are always on the stack, which is addr space #0.
777       llvm::Type *LTy = ConvertTypeForMem(it->type);
778       argTypes.push_back(LTy->getPointerTo());
779       break;
780     }
781 
782     case ABIArgInfo::Extend:
783     case ABIArgInfo::Direct: {
784       // Insert a padding type to ensure proper alignment.
785       if (llvm::Type *PaddingType = argAI.getPaddingType())
786         argTypes.push_back(PaddingType);
787       // If the coerce-to type is a first class aggregate, flatten it.  Either
788       // way is semantically identical, but fast-isel and the optimizer
789       // generally likes scalar values better than FCAs.
790       llvm::Type *argType = argAI.getCoerceToType();
791       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
792         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
793           argTypes.push_back(st->getElementType(i));
794       } else {
795         argTypes.push_back(argType);
796       }
797       break;
798     }
799 
800     case ABIArgInfo::Expand:
801       GetExpandedTypes(it->type, argTypes);
802       break;
803     }
804   }
805 
806   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
807   assert(Erased && "Not in set?");
808 
809   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
810 }
811 
812 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
813   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
814   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
815 
816   if (!isFuncTypeConvertible(FPT))
817     return llvm::StructType::get(getLLVMContext());
818 
819   const CGFunctionInfo *Info;
820   if (isa<CXXDestructorDecl>(MD))
821     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
822   else
823     Info = &arrangeCXXMethodDeclaration(MD);
824   return GetFunctionType(*Info);
825 }
826 
827 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
828                                            const Decl *TargetDecl,
829                                            AttributeListType &PAL,
830                                            unsigned &CallingConv) {
831   llvm::Attributes FuncAttrs;
832   llvm::Attributes RetAttrs;
833 
834   CallingConv = FI.getEffectiveCallingConvention();
835 
836   if (FI.isNoReturn())
837     FuncAttrs |= llvm::Attribute::NoReturn;
838 
839   // FIXME: handle sseregparm someday...
840   if (TargetDecl) {
841     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
842       FuncAttrs |= llvm::Attribute::ReturnsTwice;
843     if (TargetDecl->hasAttr<NoThrowAttr>())
844       FuncAttrs |= llvm::Attribute::NoUnwind;
845     else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
846       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
847       if (FPT && FPT->isNothrow(getContext()))
848         FuncAttrs |= llvm::Attribute::NoUnwind;
849     }
850 
851     if (TargetDecl->hasAttr<NoReturnAttr>())
852       FuncAttrs |= llvm::Attribute::NoReturn;
853 
854     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
855       FuncAttrs |= llvm::Attribute::ReturnsTwice;
856 
857     // 'const' and 'pure' attribute functions are also nounwind.
858     if (TargetDecl->hasAttr<ConstAttr>()) {
859       FuncAttrs |= llvm::Attribute::ReadNone;
860       FuncAttrs |= llvm::Attribute::NoUnwind;
861     } else if (TargetDecl->hasAttr<PureAttr>()) {
862       FuncAttrs |= llvm::Attribute::ReadOnly;
863       FuncAttrs |= llvm::Attribute::NoUnwind;
864     }
865     if (TargetDecl->hasAttr<MallocAttr>())
866       RetAttrs |= llvm::Attribute::NoAlias;
867   }
868 
869   if (CodeGenOpts.OptimizeSize)
870     FuncAttrs |= llvm::Attribute::OptimizeForSize;
871   if (CodeGenOpts.DisableRedZone)
872     FuncAttrs |= llvm::Attribute::NoRedZone;
873   if (CodeGenOpts.NoImplicitFloat)
874     FuncAttrs |= llvm::Attribute::NoImplicitFloat;
875 
876   QualType RetTy = FI.getReturnType();
877   unsigned Index = 1;
878   const ABIArgInfo &RetAI = FI.getReturnInfo();
879   switch (RetAI.getKind()) {
880   case ABIArgInfo::Extend:
881    if (RetTy->hasSignedIntegerRepresentation())
882      RetAttrs |= llvm::Attribute::SExt;
883    else if (RetTy->hasUnsignedIntegerRepresentation())
884      RetAttrs |= llvm::Attribute::ZExt;
885     break;
886   case ABIArgInfo::Direct:
887   case ABIArgInfo::Ignore:
888     break;
889 
890   case ABIArgInfo::Indirect:
891     PAL.push_back(llvm::AttributeWithIndex::get(Index,
892                                                 llvm::Attribute::StructRet));
893     ++Index;
894     // sret disables readnone and readonly
895     FuncAttrs &= ~(llvm::Attribute::ReadOnly |
896                    llvm::Attribute::ReadNone);
897     break;
898 
899   case ABIArgInfo::Expand:
900     llvm_unreachable("Invalid ABI kind for return argument");
901   }
902 
903   if (RetAttrs)
904     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
905 
906   // FIXME: RegParm should be reduced in case of global register variable.
907   signed RegParm;
908   if (FI.getHasRegParm())
909     RegParm = FI.getRegParm();
910   else
911     RegParm = CodeGenOpts.NumRegisterParameters;
912 
913   unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0);
914   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
915          ie = FI.arg_end(); it != ie; ++it) {
916     QualType ParamType = it->type;
917     const ABIArgInfo &AI = it->info;
918     llvm::Attributes Attrs;
919 
920     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
921     // have the corresponding parameter variable.  It doesn't make
922     // sense to do it here because parameters are so messed up.
923     switch (AI.getKind()) {
924     case ABIArgInfo::Extend:
925       if (ParamType->isSignedIntegerOrEnumerationType())
926         Attrs |= llvm::Attribute::SExt;
927       else if (ParamType->isUnsignedIntegerOrEnumerationType())
928         Attrs |= llvm::Attribute::ZExt;
929       // FALL THROUGH
930     case ABIArgInfo::Direct:
931       if (RegParm > 0 &&
932           (ParamType->isIntegerType() || ParamType->isPointerType() ||
933            ParamType->isReferenceType())) {
934         RegParm -=
935         (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
936         if (RegParm >= 0)
937           Attrs |= llvm::Attribute::InReg;
938       }
939       // FIXME: handle sseregparm someday...
940 
941       // Increment Index if there is padding.
942       Index += (AI.getPaddingType() != 0);
943 
944       if (llvm::StructType *STy =
945             dyn_cast<llvm::StructType>(AI.getCoerceToType()))
946         Index += STy->getNumElements()-1;  // 1 will be added below.
947       break;
948 
949     case ABIArgInfo::Indirect:
950       if (AI.getIndirectByVal())
951         Attrs |= llvm::Attribute::ByVal;
952 
953       Attrs |=
954         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
955       // byval disables readnone and readonly.
956       FuncAttrs &= ~(llvm::Attribute::ReadOnly |
957                      llvm::Attribute::ReadNone);
958       break;
959 
960     case ABIArgInfo::Ignore:
961       // Skip increment, no matching LLVM parameter.
962       continue;
963 
964     case ABIArgInfo::Expand: {
965       SmallVector<llvm::Type*, 8> types;
966       // FIXME: This is rather inefficient. Do we ever actually need to do
967       // anything here? The result should be just reconstructed on the other
968       // side, so extension should be a non-issue.
969       getTypes().GetExpandedTypes(ParamType, types);
970       Index += types.size();
971       continue;
972     }
973     }
974 
975     if (Attrs)
976       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs));
977     ++Index;
978   }
979   if (FuncAttrs)
980     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
981 }
982 
983 /// An argument came in as a promoted argument; demote it back to its
984 /// declared type.
985 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
986                                          const VarDecl *var,
987                                          llvm::Value *value) {
988   llvm::Type *varType = CGF.ConvertType(var->getType());
989 
990   // This can happen with promotions that actually don't change the
991   // underlying type, like the enum promotions.
992   if (value->getType() == varType) return value;
993 
994   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
995          && "unexpected promotion type");
996 
997   if (isa<llvm::IntegerType>(varType))
998     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
999 
1000   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1001 }
1002 
1003 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1004                                          llvm::Function *Fn,
1005                                          const FunctionArgList &Args) {
1006   // If this is an implicit-return-zero function, go ahead and
1007   // initialize the return value.  TODO: it might be nice to have
1008   // a more general mechanism for this that didn't require synthesized
1009   // return statements.
1010   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
1011     if (FD->hasImplicitReturnZero()) {
1012       QualType RetTy = FD->getResultType().getUnqualifiedType();
1013       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1014       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1015       Builder.CreateStore(Zero, ReturnValue);
1016     }
1017   }
1018 
1019   // FIXME: We no longer need the types from FunctionArgList; lift up and
1020   // simplify.
1021 
1022   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1023   llvm::Function::arg_iterator AI = Fn->arg_begin();
1024 
1025   // Name the struct return argument.
1026   if (CGM.ReturnTypeUsesSRet(FI)) {
1027     AI->setName("agg.result");
1028     AI->addAttr(llvm::Attribute::NoAlias);
1029     ++AI;
1030   }
1031 
1032   assert(FI.arg_size() == Args.size() &&
1033          "Mismatch between function signature & arguments.");
1034   unsigned ArgNo = 1;
1035   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1036   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1037        i != e; ++i, ++info_it, ++ArgNo) {
1038     const VarDecl *Arg = *i;
1039     QualType Ty = info_it->type;
1040     const ABIArgInfo &ArgI = info_it->info;
1041 
1042     bool isPromoted =
1043       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1044 
1045     switch (ArgI.getKind()) {
1046     case ABIArgInfo::Indirect: {
1047       llvm::Value *V = AI;
1048 
1049       if (hasAggregateLLVMType(Ty)) {
1050         // Aggregates and complex variables are accessed by reference.  All we
1051         // need to do is realign the value, if requested
1052         if (ArgI.getIndirectRealign()) {
1053           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1054 
1055           // Copy from the incoming argument pointer to the temporary with the
1056           // appropriate alignment.
1057           //
1058           // FIXME: We should have a common utility for generating an aggregate
1059           // copy.
1060           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1061           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1062           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1063           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1064           Builder.CreateMemCpy(Dst,
1065                                Src,
1066                                llvm::ConstantInt::get(IntPtrTy,
1067                                                       Size.getQuantity()),
1068                                ArgI.getIndirectAlign(),
1069                                false);
1070           V = AlignedTemp;
1071         }
1072       } else {
1073         // Load scalar value from indirect argument.
1074         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1075         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1076 
1077         if (isPromoted)
1078           V = emitArgumentDemotion(*this, Arg, V);
1079       }
1080       EmitParmDecl(*Arg, V, ArgNo);
1081       break;
1082     }
1083 
1084     case ABIArgInfo::Extend:
1085     case ABIArgInfo::Direct: {
1086       // Skip the dummy padding argument.
1087       if (ArgI.getPaddingType())
1088         ++AI;
1089 
1090       // If we have the trivial case, handle it with no muss and fuss.
1091       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1092           ArgI.getCoerceToType() == ConvertType(Ty) &&
1093           ArgI.getDirectOffset() == 0) {
1094         assert(AI != Fn->arg_end() && "Argument mismatch!");
1095         llvm::Value *V = AI;
1096 
1097         if (Arg->getType().isRestrictQualified())
1098           AI->addAttr(llvm::Attribute::NoAlias);
1099 
1100         // Ensure the argument is the correct type.
1101         if (V->getType() != ArgI.getCoerceToType())
1102           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1103 
1104         if (isPromoted)
1105           V = emitArgumentDemotion(*this, Arg, V);
1106 
1107         EmitParmDecl(*Arg, V, ArgNo);
1108         break;
1109       }
1110 
1111       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1112 
1113       // The alignment we need to use is the max of the requested alignment for
1114       // the argument plus the alignment required by our access code below.
1115       unsigned AlignmentToUse =
1116         CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
1117       AlignmentToUse = std::max(AlignmentToUse,
1118                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1119 
1120       Alloca->setAlignment(AlignmentToUse);
1121       llvm::Value *V = Alloca;
1122       llvm::Value *Ptr = V;    // Pointer to store into.
1123 
1124       // If the value is offset in memory, apply the offset now.
1125       if (unsigned Offs = ArgI.getDirectOffset()) {
1126         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1127         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1128         Ptr = Builder.CreateBitCast(Ptr,
1129                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1130       }
1131 
1132       // If the coerce-to type is a first class aggregate, we flatten it and
1133       // pass the elements. Either way is semantically identical, but fast-isel
1134       // and the optimizer generally likes scalar values better than FCAs.
1135       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1136       if (STy && STy->getNumElements() > 1) {
1137         uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy);
1138         llvm::Type *DstTy =
1139           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1140         uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy);
1141 
1142         if (SrcSize <= DstSize) {
1143           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1144 
1145           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1146             assert(AI != Fn->arg_end() && "Argument mismatch!");
1147             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1148             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1149             Builder.CreateStore(AI++, EltPtr);
1150           }
1151         } else {
1152           llvm::AllocaInst *TempAlloca =
1153             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1154           TempAlloca->setAlignment(AlignmentToUse);
1155           llvm::Value *TempV = TempAlloca;
1156 
1157           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1158             assert(AI != Fn->arg_end() && "Argument mismatch!");
1159             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1160             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1161             Builder.CreateStore(AI++, EltPtr);
1162           }
1163 
1164           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1165         }
1166       } else {
1167         // Simple case, just do a coerced store of the argument into the alloca.
1168         assert(AI != Fn->arg_end() && "Argument mismatch!");
1169         AI->setName(Arg->getName() + ".coerce");
1170         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1171       }
1172 
1173 
1174       // Match to what EmitParmDecl is expecting for this type.
1175       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1176         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1177         if (isPromoted)
1178           V = emitArgumentDemotion(*this, Arg, V);
1179       }
1180       EmitParmDecl(*Arg, V, ArgNo);
1181       continue;  // Skip ++AI increment, already done.
1182     }
1183 
1184     case ABIArgInfo::Expand: {
1185       // If this structure was expanded into multiple arguments then
1186       // we need to create a temporary and reconstruct it from the
1187       // arguments.
1188       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1189       CharUnits Align = getContext().getDeclAlign(Arg);
1190       Alloca->setAlignment(Align.getQuantity());
1191       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1192       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1193       EmitParmDecl(*Arg, Alloca, ArgNo);
1194 
1195       // Name the arguments used in expansion and increment AI.
1196       unsigned Index = 0;
1197       for (; AI != End; ++AI, ++Index)
1198         AI->setName(Arg->getName() + "." + Twine(Index));
1199       continue;
1200     }
1201 
1202     case ABIArgInfo::Ignore:
1203       // Initialize the local variable appropriately.
1204       if (hasAggregateLLVMType(Ty))
1205         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1206       else
1207         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1208                      ArgNo);
1209 
1210       // Skip increment, no matching LLVM parameter.
1211       continue;
1212     }
1213 
1214     ++AI;
1215   }
1216   assert(AI == Fn->arg_end() && "Argument mismatch!");
1217 }
1218 
1219 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1220   while (insn->use_empty()) {
1221     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1222     if (!bitcast) return;
1223 
1224     // This is "safe" because we would have used a ConstantExpr otherwise.
1225     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1226     bitcast->eraseFromParent();
1227   }
1228 }
1229 
1230 /// Try to emit a fused autorelease of a return result.
1231 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1232                                                     llvm::Value *result) {
1233   // We must be immediately followed the cast.
1234   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1235   if (BB->empty()) return 0;
1236   if (&BB->back() != result) return 0;
1237 
1238   llvm::Type *resultType = result->getType();
1239 
1240   // result is in a BasicBlock and is therefore an Instruction.
1241   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1242 
1243   SmallVector<llvm::Instruction*,4> insnsToKill;
1244 
1245   // Look for:
1246   //  %generator = bitcast %type1* %generator2 to %type2*
1247   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1248     // We would have emitted this as a constant if the operand weren't
1249     // an Instruction.
1250     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1251 
1252     // Require the generator to be immediately followed by the cast.
1253     if (generator->getNextNode() != bitcast)
1254       return 0;
1255 
1256     insnsToKill.push_back(bitcast);
1257   }
1258 
1259   // Look for:
1260   //   %generator = call i8* @objc_retain(i8* %originalResult)
1261   // or
1262   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1263   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1264   if (!call) return 0;
1265 
1266   bool doRetainAutorelease;
1267 
1268   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1269     doRetainAutorelease = true;
1270   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1271                                           .objc_retainAutoreleasedReturnValue) {
1272     doRetainAutorelease = false;
1273 
1274     // Look for an inline asm immediately preceding the call and kill it, too.
1275     llvm::Instruction *prev = call->getPrevNode();
1276     if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev))
1277       if (asmCall->getCalledValue()
1278             == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker)
1279         insnsToKill.push_back(prev);
1280   } else {
1281     return 0;
1282   }
1283 
1284   result = call->getArgOperand(0);
1285   insnsToKill.push_back(call);
1286 
1287   // Keep killing bitcasts, for sanity.  Note that we no longer care
1288   // about precise ordering as long as there's exactly one use.
1289   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1290     if (!bitcast->hasOneUse()) break;
1291     insnsToKill.push_back(bitcast);
1292     result = bitcast->getOperand(0);
1293   }
1294 
1295   // Delete all the unnecessary instructions, from latest to earliest.
1296   for (SmallVectorImpl<llvm::Instruction*>::iterator
1297          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1298     (*i)->eraseFromParent();
1299 
1300   // Do the fused retain/autorelease if we were asked to.
1301   if (doRetainAutorelease)
1302     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1303 
1304   // Cast back to the result type.
1305   return CGF.Builder.CreateBitCast(result, resultType);
1306 }
1307 
1308 /// If this is a +1 of the value of an immutable 'self', remove it.
1309 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1310                                           llvm::Value *result) {
1311   // This is only applicable to a method with an immutable 'self'.
1312   const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl);
1313   if (!method) return 0;
1314   const VarDecl *self = method->getSelfDecl();
1315   if (!self->getType().isConstQualified()) return 0;
1316 
1317   // Look for a retain call.
1318   llvm::CallInst *retainCall =
1319     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1320   if (!retainCall ||
1321       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1322     return 0;
1323 
1324   // Look for an ordinary load of 'self'.
1325   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1326   llvm::LoadInst *load =
1327     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1328   if (!load || load->isAtomic() || load->isVolatile() ||
1329       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1330     return 0;
1331 
1332   // Okay!  Burn it all down.  This relies for correctness on the
1333   // assumption that the retain is emitted as part of the return and
1334   // that thereafter everything is used "linearly".
1335   llvm::Type *resultType = result->getType();
1336   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1337   assert(retainCall->use_empty());
1338   retainCall->eraseFromParent();
1339   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1340 
1341   return CGF.Builder.CreateBitCast(load, resultType);
1342 }
1343 
1344 /// Emit an ARC autorelease of the result of a function.
1345 ///
1346 /// \return the value to actually return from the function
1347 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1348                                             llvm::Value *result) {
1349   // If we're returning 'self', kill the initial retain.  This is a
1350   // heuristic attempt to "encourage correctness" in the really unfortunate
1351   // case where we have a return of self during a dealloc and we desperately
1352   // need to avoid the possible autorelease.
1353   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1354     return self;
1355 
1356   // At -O0, try to emit a fused retain/autorelease.
1357   if (CGF.shouldUseFusedARCCalls())
1358     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1359       return fused;
1360 
1361   return CGF.EmitARCAutoreleaseReturnValue(result);
1362 }
1363 
1364 /// Heuristically search for a dominating store to the return-value slot.
1365 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1366   // If there are multiple uses of the return-value slot, just check
1367   // for something immediately preceding the IP.  Sometimes this can
1368   // happen with how we generate implicit-returns; it can also happen
1369   // with noreturn cleanups.
1370   if (!CGF.ReturnValue->hasOneUse()) {
1371     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1372     if (IP->empty()) return 0;
1373     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1374     if (!store) return 0;
1375     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1376     assert(!store->isAtomic() && !store->isVolatile()); // see below
1377     return store;
1378   }
1379 
1380   llvm::StoreInst *store =
1381     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1382   if (!store) return 0;
1383 
1384   // These aren't actually possible for non-coerced returns, and we
1385   // only care about non-coerced returns on this code path.
1386   assert(!store->isAtomic() && !store->isVolatile());
1387 
1388   // Now do a first-and-dirty dominance check: just walk up the
1389   // single-predecessors chain from the current insertion point.
1390   llvm::BasicBlock *StoreBB = store->getParent();
1391   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1392   while (IP != StoreBB) {
1393     if (!(IP = IP->getSinglePredecessor()))
1394       return 0;
1395   }
1396 
1397   // Okay, the store's basic block dominates the insertion point; we
1398   // can do our thing.
1399   return store;
1400 }
1401 
1402 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1403   // Functions with no result always return void.
1404   if (ReturnValue == 0) {
1405     Builder.CreateRetVoid();
1406     return;
1407   }
1408 
1409   llvm::DebugLoc RetDbgLoc;
1410   llvm::Value *RV = 0;
1411   QualType RetTy = FI.getReturnType();
1412   const ABIArgInfo &RetAI = FI.getReturnInfo();
1413 
1414   switch (RetAI.getKind()) {
1415   case ABIArgInfo::Indirect: {
1416     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1417     if (RetTy->isAnyComplexType()) {
1418       ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1419       StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1420     } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1421       // Do nothing; aggregrates get evaluated directly into the destination.
1422     } else {
1423       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1424                         false, Alignment, RetTy);
1425     }
1426     break;
1427   }
1428 
1429   case ABIArgInfo::Extend:
1430   case ABIArgInfo::Direct:
1431     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1432         RetAI.getDirectOffset() == 0) {
1433       // The internal return value temp always will have pointer-to-return-type
1434       // type, just do a load.
1435 
1436       // If there is a dominating store to ReturnValue, we can elide
1437       // the load, zap the store, and usually zap the alloca.
1438       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1439         // Get the stored value and nuke the now-dead store.
1440         RetDbgLoc = SI->getDebugLoc();
1441         RV = SI->getValueOperand();
1442         SI->eraseFromParent();
1443 
1444         // If that was the only use of the return value, nuke it as well now.
1445         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1446           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1447           ReturnValue = 0;
1448         }
1449 
1450       // Otherwise, we have to do a simple load.
1451       } else {
1452         RV = Builder.CreateLoad(ReturnValue);
1453       }
1454     } else {
1455       llvm::Value *V = ReturnValue;
1456       // If the value is offset in memory, apply the offset now.
1457       if (unsigned Offs = RetAI.getDirectOffset()) {
1458         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1459         V = Builder.CreateConstGEP1_32(V, Offs);
1460         V = Builder.CreateBitCast(V,
1461                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1462       }
1463 
1464       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1465     }
1466 
1467     // In ARC, end functions that return a retainable type with a call
1468     // to objc_autoreleaseReturnValue.
1469     if (AutoreleaseResult) {
1470       assert(getLangOptions().ObjCAutoRefCount &&
1471              !FI.isReturnsRetained() &&
1472              RetTy->isObjCRetainableType());
1473       RV = emitAutoreleaseOfResult(*this, RV);
1474     }
1475 
1476     break;
1477 
1478   case ABIArgInfo::Ignore:
1479     break;
1480 
1481   case ABIArgInfo::Expand:
1482     llvm_unreachable("Invalid ABI kind for return argument");
1483   }
1484 
1485   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1486   if (!RetDbgLoc.isUnknown())
1487     Ret->setDebugLoc(RetDbgLoc);
1488 }
1489 
1490 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1491                                           const VarDecl *param) {
1492   // StartFunction converted the ABI-lowered parameter(s) into a
1493   // local alloca.  We need to turn that into an r-value suitable
1494   // for EmitCall.
1495   llvm::Value *local = GetAddrOfLocalVar(param);
1496 
1497   QualType type = param->getType();
1498 
1499   // For the most part, we just need to load the alloca, except:
1500   // 1) aggregate r-values are actually pointers to temporaries, and
1501   // 2) references to aggregates are pointers directly to the aggregate.
1502   // I don't know why references to non-aggregates are different here.
1503   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1504     if (hasAggregateLLVMType(ref->getPointeeType()))
1505       return args.add(RValue::getAggregate(local), type);
1506 
1507     // Locals which are references to scalars are represented
1508     // with allocas holding the pointer.
1509     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1510   }
1511 
1512   if (type->isAnyComplexType()) {
1513     ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1514     return args.add(RValue::getComplex(complex), type);
1515   }
1516 
1517   if (hasAggregateLLVMType(type))
1518     return args.add(RValue::getAggregate(local), type);
1519 
1520   unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1521   llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1522   return args.add(RValue::get(value), type);
1523 }
1524 
1525 static bool isProvablyNull(llvm::Value *addr) {
1526   return isa<llvm::ConstantPointerNull>(addr);
1527 }
1528 
1529 static bool isProvablyNonNull(llvm::Value *addr) {
1530   return isa<llvm::AllocaInst>(addr);
1531 }
1532 
1533 /// Emit the actual writing-back of a writeback.
1534 static void emitWriteback(CodeGenFunction &CGF,
1535                           const CallArgList::Writeback &writeback) {
1536   llvm::Value *srcAddr = writeback.Address;
1537   assert(!isProvablyNull(srcAddr) &&
1538          "shouldn't have writeback for provably null argument");
1539 
1540   llvm::BasicBlock *contBB = 0;
1541 
1542   // If the argument wasn't provably non-null, we need to null check
1543   // before doing the store.
1544   bool provablyNonNull = isProvablyNonNull(srcAddr);
1545   if (!provablyNonNull) {
1546     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1547     contBB = CGF.createBasicBlock("icr.done");
1548 
1549     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1550     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1551     CGF.EmitBlock(writebackBB);
1552   }
1553 
1554   // Load the value to writeback.
1555   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1556 
1557   // Cast it back, in case we're writing an id to a Foo* or something.
1558   value = CGF.Builder.CreateBitCast(value,
1559                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1560                             "icr.writeback-cast");
1561 
1562   // Perform the writeback.
1563   QualType srcAddrType = writeback.AddressType;
1564   CGF.EmitStoreThroughLValue(RValue::get(value),
1565                              CGF.MakeAddrLValue(srcAddr, srcAddrType));
1566 
1567   // Jump to the continuation block.
1568   if (!provablyNonNull)
1569     CGF.EmitBlock(contBB);
1570 }
1571 
1572 static void emitWritebacks(CodeGenFunction &CGF,
1573                            const CallArgList &args) {
1574   for (CallArgList::writeback_iterator
1575          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1576     emitWriteback(CGF, *i);
1577 }
1578 
1579 /// Emit an argument that's being passed call-by-writeback.  That is,
1580 /// we are passing the address of
1581 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1582                              const ObjCIndirectCopyRestoreExpr *CRE) {
1583   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1584 
1585   // The dest and src types don't necessarily match in LLVM terms
1586   // because of the crazy ObjC compatibility rules.
1587 
1588   llvm::PointerType *destType =
1589     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1590 
1591   // If the address is a constant null, just pass the appropriate null.
1592   if (isProvablyNull(srcAddr)) {
1593     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1594              CRE->getType());
1595     return;
1596   }
1597 
1598   QualType srcAddrType =
1599     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1600 
1601   // Create the temporary.
1602   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1603                                            "icr.temp");
1604 
1605   // Zero-initialize it if we're not doing a copy-initialization.
1606   bool shouldCopy = CRE->shouldCopy();
1607   if (!shouldCopy) {
1608     llvm::Value *null =
1609       llvm::ConstantPointerNull::get(
1610         cast<llvm::PointerType>(destType->getElementType()));
1611     CGF.Builder.CreateStore(null, temp);
1612   }
1613 
1614   llvm::BasicBlock *contBB = 0;
1615 
1616   // If the address is *not* known to be non-null, we need to switch.
1617   llvm::Value *finalArgument;
1618 
1619   bool provablyNonNull = isProvablyNonNull(srcAddr);
1620   if (provablyNonNull) {
1621     finalArgument = temp;
1622   } else {
1623     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1624 
1625     finalArgument = CGF.Builder.CreateSelect(isNull,
1626                                    llvm::ConstantPointerNull::get(destType),
1627                                              temp, "icr.argument");
1628 
1629     // If we need to copy, then the load has to be conditional, which
1630     // means we need control flow.
1631     if (shouldCopy) {
1632       contBB = CGF.createBasicBlock("icr.cont");
1633       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1634       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1635       CGF.EmitBlock(copyBB);
1636     }
1637   }
1638 
1639   // Perform a copy if necessary.
1640   if (shouldCopy) {
1641     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1642     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1643     assert(srcRV.isScalar());
1644 
1645     llvm::Value *src = srcRV.getScalarVal();
1646     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1647                                     "icr.cast");
1648 
1649     // Use an ordinary store, not a store-to-lvalue.
1650     CGF.Builder.CreateStore(src, temp);
1651   }
1652 
1653   // Finish the control flow if we needed it.
1654   if (shouldCopy && !provablyNonNull)
1655     CGF.EmitBlock(contBB);
1656 
1657   args.addWriteback(srcAddr, srcAddrType, temp);
1658   args.add(RValue::get(finalArgument), CRE->getType());
1659 }
1660 
1661 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1662                                   QualType type) {
1663   if (const ObjCIndirectCopyRestoreExpr *CRE
1664         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1665     assert(getContext().getLangOptions().ObjCAutoRefCount);
1666     assert(getContext().hasSameType(E->getType(), type));
1667     return emitWritebackArg(*this, args, CRE);
1668   }
1669 
1670   assert(type->isReferenceType() == E->isGLValue() &&
1671          "reference binding to unmaterialized r-value!");
1672 
1673   if (E->isGLValue()) {
1674     assert(E->getObjectKind() == OK_Ordinary);
1675     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1676                     type);
1677   }
1678 
1679   if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1680       isa<ImplicitCastExpr>(E) &&
1681       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1682     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1683     assert(L.isSimple());
1684     args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1685     return;
1686   }
1687 
1688   args.add(EmitAnyExprToTemp(E), type);
1689 }
1690 
1691 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1692 // optimizer it can aggressively ignore unwind edges.
1693 void
1694 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
1695   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1696       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1697     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
1698                       CGM.getNoObjCARCExceptionsMetadata());
1699 }
1700 
1701 /// Emits a call or invoke instruction to the given function, depending
1702 /// on the current state of the EH stack.
1703 llvm::CallSite
1704 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1705                                   ArrayRef<llvm::Value *> Args,
1706                                   const Twine &Name) {
1707   llvm::BasicBlock *InvokeDest = getInvokeDest();
1708 
1709   llvm::Instruction *Inst;
1710   if (!InvokeDest)
1711     Inst = Builder.CreateCall(Callee, Args, Name);
1712   else {
1713     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1714     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
1715     EmitBlock(ContBB);
1716   }
1717 
1718   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1719   // optimizer it can aggressively ignore unwind edges.
1720   if (CGM.getLangOptions().ObjCAutoRefCount)
1721     AddObjCARCExceptionMetadata(Inst);
1722 
1723   return Inst;
1724 }
1725 
1726 llvm::CallSite
1727 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1728                                   const Twine &Name) {
1729   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1730 }
1731 
1732 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1733                             llvm::FunctionType *FTy) {
1734   if (ArgNo < FTy->getNumParams())
1735     assert(Elt->getType() == FTy->getParamType(ArgNo));
1736   else
1737     assert(FTy->isVarArg());
1738   ++ArgNo;
1739 }
1740 
1741 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1742                                        SmallVector<llvm::Value*,16> &Args,
1743                                        llvm::FunctionType *IRFuncTy) {
1744   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1745     unsigned NumElts = AT->getSize().getZExtValue();
1746     QualType EltTy = AT->getElementType();
1747     llvm::Value *Addr = RV.getAggregateAddr();
1748     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1749       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1750       LValue LV = MakeAddrLValue(EltAddr, EltTy);
1751       RValue EltRV;
1752       if (EltTy->isAnyComplexType())
1753         // FIXME: Volatile?
1754         EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1755       else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1756         EltRV = LV.asAggregateRValue();
1757       else
1758         EltRV = EmitLoadOfLValue(LV);
1759       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1760     }
1761   } else if (const RecordType *RT = Ty->getAsStructureType()) {
1762     RecordDecl *RD = RT->getDecl();
1763     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1764     llvm::Value *Addr = RV.getAggregateAddr();
1765     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1766          i != e; ++i) {
1767       FieldDecl *FD = *i;
1768       QualType FT = FD->getType();
1769 
1770       // FIXME: What are the right qualifiers here?
1771       LValue LV = EmitLValueForField(Addr, FD, 0);
1772       RValue FldRV;
1773       if (FT->isAnyComplexType())
1774         // FIXME: Volatile?
1775         FldRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1776       else if (CodeGenFunction::hasAggregateLLVMType(FT))
1777         FldRV = LV.asAggregateRValue();
1778       else
1779         FldRV = EmitLoadOfLValue(LV);
1780       ExpandTypeToArgs(FT, FldRV, Args, IRFuncTy);
1781     }
1782   } else if (Ty->isAnyComplexType()) {
1783     ComplexPairTy CV = RV.getComplexVal();
1784     Args.push_back(CV.first);
1785     Args.push_back(CV.second);
1786   } else {
1787     assert(RV.isScalar() &&
1788            "Unexpected non-scalar rvalue during struct expansion.");
1789 
1790     // Insert a bitcast as needed.
1791     llvm::Value *V = RV.getScalarVal();
1792     if (Args.size() < IRFuncTy->getNumParams() &&
1793         V->getType() != IRFuncTy->getParamType(Args.size()))
1794       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1795 
1796     Args.push_back(V);
1797   }
1798 }
1799 
1800 
1801 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1802                                  llvm::Value *Callee,
1803                                  ReturnValueSlot ReturnValue,
1804                                  const CallArgList &CallArgs,
1805                                  const Decl *TargetDecl,
1806                                  llvm::Instruction **callOrInvoke) {
1807   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1808   SmallVector<llvm::Value*, 16> Args;
1809 
1810   // Handle struct-return functions by passing a pointer to the
1811   // location that we would like to return into.
1812   QualType RetTy = CallInfo.getReturnType();
1813   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1814 
1815   // IRArgNo - Keep track of the argument number in the callee we're looking at.
1816   unsigned IRArgNo = 0;
1817   llvm::FunctionType *IRFuncTy =
1818     cast<llvm::FunctionType>(
1819                   cast<llvm::PointerType>(Callee->getType())->getElementType());
1820 
1821   // If the call returns a temporary with struct return, create a temporary
1822   // alloca to hold the result, unless one is given to us.
1823   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1824     llvm::Value *Value = ReturnValue.getValue();
1825     if (!Value)
1826       Value = CreateMemTemp(RetTy);
1827     Args.push_back(Value);
1828     checkArgMatches(Value, IRArgNo, IRFuncTy);
1829   }
1830 
1831   assert(CallInfo.arg_size() == CallArgs.size() &&
1832          "Mismatch between function signature & arguments.");
1833   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1834   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1835        I != E; ++I, ++info_it) {
1836     const ABIArgInfo &ArgInfo = info_it->info;
1837     RValue RV = I->RV;
1838 
1839     unsigned TypeAlign =
1840       getContext().getTypeAlignInChars(I->Ty).getQuantity();
1841     switch (ArgInfo.getKind()) {
1842     case ABIArgInfo::Indirect: {
1843       if (RV.isScalar() || RV.isComplex()) {
1844         // Make a temporary alloca to pass the argument.
1845         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1846         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1847           AI->setAlignment(ArgInfo.getIndirectAlign());
1848         Args.push_back(AI);
1849 
1850         if (RV.isScalar())
1851           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1852                             TypeAlign, I->Ty);
1853         else
1854           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1855 
1856         // Validate argument match.
1857         checkArgMatches(AI, IRArgNo, IRFuncTy);
1858       } else {
1859         // We want to avoid creating an unnecessary temporary+copy here;
1860         // however, we need one in two cases:
1861         // 1. If the argument is not byval, and we are required to copy the
1862         //    source.  (This case doesn't occur on any common architecture.)
1863         // 2. If the argument is byval, RV is not sufficiently aligned, and
1864         //    we cannot force it to be sufficiently aligned.
1865         llvm::Value *Addr = RV.getAggregateAddr();
1866         unsigned Align = ArgInfo.getIndirectAlign();
1867         const llvm::TargetData *TD = &CGM.getTargetData();
1868         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
1869             (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
1870              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
1871           // Create an aligned temporary, and copy to it.
1872           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1873           if (Align > AI->getAlignment())
1874             AI->setAlignment(Align);
1875           Args.push_back(AI);
1876           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
1877 
1878           // Validate argument match.
1879           checkArgMatches(AI, IRArgNo, IRFuncTy);
1880         } else {
1881           // Skip the extra memcpy call.
1882           Args.push_back(Addr);
1883 
1884           // Validate argument match.
1885           checkArgMatches(Addr, IRArgNo, IRFuncTy);
1886         }
1887       }
1888       break;
1889     }
1890 
1891     case ABIArgInfo::Ignore:
1892       break;
1893 
1894     case ABIArgInfo::Extend:
1895     case ABIArgInfo::Direct: {
1896       // Insert a padding argument to ensure proper alignment.
1897       if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
1898         Args.push_back(llvm::UndefValue::get(PaddingType));
1899         ++IRArgNo;
1900       }
1901 
1902       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
1903           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
1904           ArgInfo.getDirectOffset() == 0) {
1905         llvm::Value *V;
1906         if (RV.isScalar())
1907           V = RV.getScalarVal();
1908         else
1909           V = Builder.CreateLoad(RV.getAggregateAddr());
1910 
1911         // If the argument doesn't match, perform a bitcast to coerce it.  This
1912         // can happen due to trivial type mismatches.
1913         if (IRArgNo < IRFuncTy->getNumParams() &&
1914             V->getType() != IRFuncTy->getParamType(IRArgNo))
1915           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
1916         Args.push_back(V);
1917 
1918         checkArgMatches(V, IRArgNo, IRFuncTy);
1919         break;
1920       }
1921 
1922       // FIXME: Avoid the conversion through memory if possible.
1923       llvm::Value *SrcPtr;
1924       if (RV.isScalar()) {
1925         SrcPtr = CreateMemTemp(I->Ty, "coerce");
1926         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
1927       } else if (RV.isComplex()) {
1928         SrcPtr = CreateMemTemp(I->Ty, "coerce");
1929         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
1930       } else
1931         SrcPtr = RV.getAggregateAddr();
1932 
1933       // If the value is offset in memory, apply the offset now.
1934       if (unsigned Offs = ArgInfo.getDirectOffset()) {
1935         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
1936         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
1937         SrcPtr = Builder.CreateBitCast(SrcPtr,
1938                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
1939 
1940       }
1941 
1942       // If the coerce-to type is a first class aggregate, we flatten it and
1943       // pass the elements. Either way is semantically identical, but fast-isel
1944       // and the optimizer generally likes scalar values better than FCAs.
1945       if (llvm::StructType *STy =
1946             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
1947         SrcPtr = Builder.CreateBitCast(SrcPtr,
1948                                        llvm::PointerType::getUnqual(STy));
1949         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1950           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
1951           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
1952           // We don't know what we're loading from.
1953           LI->setAlignment(1);
1954           Args.push_back(LI);
1955 
1956           // Validate argument match.
1957           checkArgMatches(LI, IRArgNo, IRFuncTy);
1958         }
1959       } else {
1960         // In the simple case, just pass the coerced loaded value.
1961         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
1962                                          *this));
1963 
1964         // Validate argument match.
1965         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
1966       }
1967 
1968       break;
1969     }
1970 
1971     case ABIArgInfo::Expand:
1972       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
1973       IRArgNo = Args.size();
1974       break;
1975     }
1976   }
1977 
1978   // If the callee is a bitcast of a function to a varargs pointer to function
1979   // type, check to see if we can remove the bitcast.  This handles some cases
1980   // with unprototyped functions.
1981   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
1982     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
1983       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
1984       llvm::FunctionType *CurFT =
1985         cast<llvm::FunctionType>(CurPT->getElementType());
1986       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
1987 
1988       if (CE->getOpcode() == llvm::Instruction::BitCast &&
1989           ActualFT->getReturnType() == CurFT->getReturnType() &&
1990           ActualFT->getNumParams() == CurFT->getNumParams() &&
1991           ActualFT->getNumParams() == Args.size() &&
1992           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
1993         bool ArgsMatch = true;
1994         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
1995           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
1996             ArgsMatch = false;
1997             break;
1998           }
1999 
2000         // Strip the cast if we can get away with it.  This is a nice cleanup,
2001         // but also allows us to inline the function at -O0 if it is marked
2002         // always_inline.
2003         if (ArgsMatch)
2004           Callee = CalleeF;
2005       }
2006     }
2007 
2008   unsigned CallingConv;
2009   CodeGen::AttributeListType AttributeList;
2010   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
2011   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
2012                                                    AttributeList.end());
2013 
2014   llvm::BasicBlock *InvokeDest = 0;
2015   if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
2016     InvokeDest = getInvokeDest();
2017 
2018   llvm::CallSite CS;
2019   if (!InvokeDest) {
2020     CS = Builder.CreateCall(Callee, Args);
2021   } else {
2022     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2023     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2024     EmitBlock(Cont);
2025   }
2026   if (callOrInvoke)
2027     *callOrInvoke = CS.getInstruction();
2028 
2029   CS.setAttributes(Attrs);
2030   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2031 
2032   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2033   // optimizer it can aggressively ignore unwind edges.
2034   if (CGM.getLangOptions().ObjCAutoRefCount)
2035     AddObjCARCExceptionMetadata(CS.getInstruction());
2036 
2037   // If the call doesn't return, finish the basic block and clear the
2038   // insertion point; this allows the rest of IRgen to discard
2039   // unreachable code.
2040   if (CS.doesNotReturn()) {
2041     Builder.CreateUnreachable();
2042     Builder.ClearInsertionPoint();
2043 
2044     // FIXME: For now, emit a dummy basic block because expr emitters in
2045     // generally are not ready to handle emitting expressions at unreachable
2046     // points.
2047     EnsureInsertPoint();
2048 
2049     // Return a reasonable RValue.
2050     return GetUndefRValue(RetTy);
2051   }
2052 
2053   llvm::Instruction *CI = CS.getInstruction();
2054   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2055     CI->setName("call");
2056 
2057   // Emit any writebacks immediately.  Arguably this should happen
2058   // after any return-value munging.
2059   if (CallArgs.hasWritebacks())
2060     emitWritebacks(*this, CallArgs);
2061 
2062   switch (RetAI.getKind()) {
2063   case ABIArgInfo::Indirect: {
2064     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2065     if (RetTy->isAnyComplexType())
2066       return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2067     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2068       return RValue::getAggregate(Args[0]);
2069     return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
2070   }
2071 
2072   case ABIArgInfo::Ignore:
2073     // If we are ignoring an argument that had a result, make sure to
2074     // construct the appropriate return value for our caller.
2075     return GetUndefRValue(RetTy);
2076 
2077   case ABIArgInfo::Extend:
2078   case ABIArgInfo::Direct: {
2079     llvm::Type *RetIRTy = ConvertType(RetTy);
2080     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2081       if (RetTy->isAnyComplexType()) {
2082         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2083         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2084         return RValue::getComplex(std::make_pair(Real, Imag));
2085       }
2086       if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2087         llvm::Value *DestPtr = ReturnValue.getValue();
2088         bool DestIsVolatile = ReturnValue.isVolatile();
2089 
2090         if (!DestPtr) {
2091           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2092           DestIsVolatile = false;
2093         }
2094         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2095         return RValue::getAggregate(DestPtr);
2096       }
2097 
2098       // If the argument doesn't match, perform a bitcast to coerce it.  This
2099       // can happen due to trivial type mismatches.
2100       llvm::Value *V = CI;
2101       if (V->getType() != RetIRTy)
2102         V = Builder.CreateBitCast(V, RetIRTy);
2103       return RValue::get(V);
2104     }
2105 
2106     llvm::Value *DestPtr = ReturnValue.getValue();
2107     bool DestIsVolatile = ReturnValue.isVolatile();
2108 
2109     if (!DestPtr) {
2110       DestPtr = CreateMemTemp(RetTy, "coerce");
2111       DestIsVolatile = false;
2112     }
2113 
2114     // If the value is offset in memory, apply the offset now.
2115     llvm::Value *StorePtr = DestPtr;
2116     if (unsigned Offs = RetAI.getDirectOffset()) {
2117       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2118       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2119       StorePtr = Builder.CreateBitCast(StorePtr,
2120                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2121     }
2122     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2123 
2124     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2125     if (RetTy->isAnyComplexType())
2126       return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
2127     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2128       return RValue::getAggregate(DestPtr);
2129     return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
2130   }
2131 
2132   case ABIArgInfo::Expand:
2133     llvm_unreachable("Invalid ABI kind for return argument");
2134   }
2135 
2136   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2137 }
2138 
2139 /* VarArg handling */
2140 
2141 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2142   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2143 }
2144