1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/Support/CallSite.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 using namespace clang; 35 using namespace CodeGen; 36 37 /***/ 38 39 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 40 switch (CC) { 41 default: return llvm::CallingConv::C; 42 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 43 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 44 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 45 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 46 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 47 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 48 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 49 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 50 // TODO: add support for CC_X86Pascal to llvm 51 } 52 } 53 54 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 55 /// qualification. 56 /// FIXME: address space qualification? 57 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 58 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 59 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 60 } 61 62 /// Returns the canonical formal type of the given C++ method. 63 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 64 return MD->getType()->getCanonicalTypeUnqualified() 65 .getAs<FunctionProtoType>(); 66 } 67 68 /// Returns the "extra-canonicalized" return type, which discards 69 /// qualifiers on the return type. Codegen doesn't care about them, 70 /// and it makes ABI code a little easier to be able to assume that 71 /// all parameter and return types are top-level unqualified. 72 static CanQualType GetReturnType(QualType RetTy) { 73 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 74 } 75 76 /// Arrange the argument and result information for a value of the given 77 /// unprototyped freestanding function type. 78 const CGFunctionInfo & 79 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 80 // When translating an unprototyped function type, always use a 81 // variadic type. 82 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 83 false, None, FTNP->getExtInfo(), 84 RequiredArgs(0)); 85 } 86 87 /// Arrange the LLVM function layout for a value of the given function 88 /// type, on top of any implicit parameters already stored. Use the 89 /// given ExtInfo instead of the ExtInfo from the function type. 90 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT, 91 bool IsInstanceMethod, 92 SmallVectorImpl<CanQualType> &prefix, 93 CanQual<FunctionProtoType> FTP, 94 FunctionType::ExtInfo extInfo) { 95 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 96 // FIXME: Kill copy. 97 for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i) 98 prefix.push_back(FTP->getParamType(i)); 99 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 100 return CGT.arrangeLLVMFunctionInfo(resultType, IsInstanceMethod, prefix, 101 extInfo, required); 102 } 103 104 /// Arrange the argument and result information for a free function (i.e. 105 /// not a C++ or ObjC instance method) of the given type. 106 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT, 107 SmallVectorImpl<CanQualType> &prefix, 108 CanQual<FunctionProtoType> FTP) { 109 return arrangeLLVMFunctionInfo(CGT, false, prefix, FTP, FTP->getExtInfo()); 110 } 111 112 /// Arrange the argument and result information for a free function (i.e. 113 /// not a C++ or ObjC instance method) of the given type. 114 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT, 115 SmallVectorImpl<CanQualType> &prefix, 116 CanQual<FunctionProtoType> FTP) { 117 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 118 return arrangeLLVMFunctionInfo(CGT, true, prefix, FTP, extInfo); 119 } 120 121 /// Arrange the argument and result information for a value of the 122 /// given freestanding function type. 123 const CGFunctionInfo & 124 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 125 SmallVector<CanQualType, 16> argTypes; 126 return ::arrangeFreeFunctionType(*this, argTypes, FTP); 127 } 128 129 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 130 // Set the appropriate calling convention for the Function. 131 if (D->hasAttr<StdCallAttr>()) 132 return CC_X86StdCall; 133 134 if (D->hasAttr<FastCallAttr>()) 135 return CC_X86FastCall; 136 137 if (D->hasAttr<ThisCallAttr>()) 138 return CC_X86ThisCall; 139 140 if (D->hasAttr<PascalAttr>()) 141 return CC_X86Pascal; 142 143 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 144 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 145 146 if (D->hasAttr<PnaclCallAttr>()) 147 return CC_PnaclCall; 148 149 if (D->hasAttr<IntelOclBiccAttr>()) 150 return CC_IntelOclBicc; 151 152 if (D->hasAttr<MSABIAttr>()) 153 return IsWindows ? CC_C : CC_X86_64Win64; 154 155 if (D->hasAttr<SysVABIAttr>()) 156 return IsWindows ? CC_X86_64SysV : CC_C; 157 158 return CC_C; 159 } 160 161 /// Arrange the argument and result information for a call to an 162 /// unknown C++ non-static member function of the given abstract type. 163 /// (Zero value of RD means we don't have any meaningful "this" argument type, 164 /// so fall back to a generic pointer type). 165 /// The member function must be an ordinary function, i.e. not a 166 /// constructor or destructor. 167 const CGFunctionInfo & 168 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 169 const FunctionProtoType *FTP) { 170 SmallVector<CanQualType, 16> argTypes; 171 172 // Add the 'this' pointer. 173 if (RD) 174 argTypes.push_back(GetThisType(Context, RD)); 175 else 176 argTypes.push_back(Context.VoidPtrTy); 177 178 return ::arrangeCXXMethodType(*this, argTypes, 179 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 180 } 181 182 /// Arrange the argument and result information for a declaration or 183 /// definition of the given C++ non-static member function. The 184 /// member function must be an ordinary function, i.e. not a 185 /// constructor or destructor. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 188 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 189 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 190 191 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 192 193 if (MD->isInstance()) { 194 // The abstract case is perfectly fine. 195 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 196 return arrangeCXXMethodType(ThisType, prototype.getTypePtr()); 197 } 198 199 return arrangeFreeFunctionType(prototype); 200 } 201 202 /// Arrange the argument and result information for a declaration 203 /// or definition to the given constructor variant. 204 const CGFunctionInfo & 205 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D, 206 CXXCtorType ctorKind) { 207 SmallVector<CanQualType, 16> argTypes; 208 argTypes.push_back(GetThisType(Context, D->getParent())); 209 210 GlobalDecl GD(D, ctorKind); 211 CanQualType resultType = 212 TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy; 213 214 CanQual<FunctionProtoType> FTP = GetFormalType(D); 215 216 // Add the formal parameters. 217 for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i) 218 argTypes.push_back(FTP->getParamType(i)); 219 220 TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes); 221 222 RequiredArgs required = 223 (D->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All); 224 225 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 226 return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo, required); 227 } 228 229 /// Arrange a call to a C++ method, passing the given arguments. 230 const CGFunctionInfo & 231 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 232 const CXXConstructorDecl *D, 233 CXXCtorType CtorKind, 234 unsigned ExtraArgs) { 235 // FIXME: Kill copy. 236 SmallVector<CanQualType, 16> ArgTypes; 237 for (CallArgList::const_iterator i = args.begin(), e = args.end(); i != e; 238 ++i) 239 ArgTypes.push_back(Context.getCanonicalParamType(i->Ty)); 240 241 CanQual<FunctionProtoType> FPT = GetFormalType(D); 242 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs); 243 GlobalDecl GD(D, CtorKind); 244 CanQualType ResultType = 245 TheCXXABI.HasThisReturn(GD) ? ArgTypes.front() : Context.VoidTy; 246 247 FunctionType::ExtInfo Info = FPT->getExtInfo(); 248 return arrangeLLVMFunctionInfo(ResultType, true, ArgTypes, Info, Required); 249 } 250 251 /// Arrange the argument and result information for a declaration, 252 /// definition, or call to the given destructor variant. It so 253 /// happens that all three cases produce the same information. 254 const CGFunctionInfo & 255 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D, 256 CXXDtorType dtorKind) { 257 SmallVector<CanQualType, 2> argTypes; 258 argTypes.push_back(GetThisType(Context, D->getParent())); 259 260 GlobalDecl GD(D, dtorKind); 261 CanQualType resultType = 262 TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy; 263 264 TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes); 265 266 CanQual<FunctionProtoType> FTP = GetFormalType(D); 267 assert(FTP->getNumParams() == 0 && "dtor with formal parameters"); 268 assert(FTP->isVariadic() == 0 && "dtor with formal parameters"); 269 270 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 271 return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo, 272 RequiredArgs::All); 273 } 274 275 /// Arrange the argument and result information for the declaration or 276 /// definition of the given function. 277 const CGFunctionInfo & 278 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 279 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 280 if (MD->isInstance()) 281 return arrangeCXXMethodDeclaration(MD); 282 283 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 284 285 assert(isa<FunctionType>(FTy)); 286 287 // When declaring a function without a prototype, always use a 288 // non-variadic type. 289 if (isa<FunctionNoProtoType>(FTy)) { 290 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 291 return arrangeLLVMFunctionInfo(noProto->getReturnType(), false, None, 292 noProto->getExtInfo(), RequiredArgs::All); 293 } 294 295 assert(isa<FunctionProtoType>(FTy)); 296 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 297 } 298 299 /// Arrange the argument and result information for the declaration or 300 /// definition of an Objective-C method. 301 const CGFunctionInfo & 302 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 303 // It happens that this is the same as a call with no optional 304 // arguments, except also using the formal 'self' type. 305 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 306 } 307 308 /// Arrange the argument and result information for the function type 309 /// through which to perform a send to the given Objective-C method, 310 /// using the given receiver type. The receiver type is not always 311 /// the 'self' type of the method or even an Objective-C pointer type. 312 /// This is *not* the right method for actually performing such a 313 /// message send, due to the possibility of optional arguments. 314 const CGFunctionInfo & 315 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 316 QualType receiverType) { 317 SmallVector<CanQualType, 16> argTys; 318 argTys.push_back(Context.getCanonicalParamType(receiverType)); 319 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 320 // FIXME: Kill copy? 321 for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), 322 e = MD->param_end(); i != e; ++i) { 323 argTys.push_back(Context.getCanonicalParamType((*i)->getType())); 324 } 325 326 FunctionType::ExtInfo einfo; 327 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 328 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 329 330 if (getContext().getLangOpts().ObjCAutoRefCount && 331 MD->hasAttr<NSReturnsRetainedAttr>()) 332 einfo = einfo.withProducesResult(true); 333 334 RequiredArgs required = 335 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 336 337 return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), false, 338 argTys, einfo, required); 339 } 340 341 const CGFunctionInfo & 342 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 343 // FIXME: Do we need to handle ObjCMethodDecl? 344 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 345 346 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 347 return arrangeCXXConstructorDeclaration(CD, GD.getCtorType()); 348 349 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 350 return arrangeCXXDestructor(DD, GD.getDtorType()); 351 352 return arrangeFunctionDeclaration(FD); 353 } 354 355 /// Arrange a call as unto a free function, except possibly with an 356 /// additional number of formal parameters considered required. 357 static const CGFunctionInfo & 358 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 359 CodeGenModule &CGM, 360 const CallArgList &args, 361 const FunctionType *fnType, 362 unsigned numExtraRequiredArgs) { 363 assert(args.size() >= numExtraRequiredArgs); 364 365 // In most cases, there are no optional arguments. 366 RequiredArgs required = RequiredArgs::All; 367 368 // If we have a variadic prototype, the required arguments are the 369 // extra prefix plus the arguments in the prototype. 370 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 371 if (proto->isVariadic()) 372 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 373 374 // If we don't have a prototype at all, but we're supposed to 375 // explicitly use the variadic convention for unprototyped calls, 376 // treat all of the arguments as required but preserve the nominal 377 // possibility of variadics. 378 } else if (CGM.getTargetCodeGenInfo() 379 .isNoProtoCallVariadic(args, 380 cast<FunctionNoProtoType>(fnType))) { 381 required = RequiredArgs(args.size()); 382 } 383 384 return CGT.arrangeFreeFunctionCall(fnType->getReturnType(), args, 385 fnType->getExtInfo(), required); 386 } 387 388 /// Figure out the rules for calling a function with the given formal 389 /// type using the given arguments. The arguments are necessary 390 /// because the function might be unprototyped, in which case it's 391 /// target-dependent in crazy ways. 392 const CGFunctionInfo & 393 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 394 const FunctionType *fnType) { 395 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 0); 396 } 397 398 /// A block function call is essentially a free-function call with an 399 /// extra implicit argument. 400 const CGFunctionInfo & 401 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 402 const FunctionType *fnType) { 403 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1); 404 } 405 406 const CGFunctionInfo & 407 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 408 const CallArgList &args, 409 FunctionType::ExtInfo info, 410 RequiredArgs required) { 411 // FIXME: Kill copy. 412 SmallVector<CanQualType, 16> argTypes; 413 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 414 i != e; ++i) 415 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 416 return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes, 417 info, required); 418 } 419 420 /// Arrange a call to a C++ method, passing the given arguments. 421 const CGFunctionInfo & 422 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 423 const FunctionProtoType *FPT, 424 RequiredArgs required) { 425 // FIXME: Kill copy. 426 SmallVector<CanQualType, 16> argTypes; 427 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 428 i != e; ++i) 429 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 430 431 FunctionType::ExtInfo info = FPT->getExtInfo(); 432 return arrangeLLVMFunctionInfo(GetReturnType(FPT->getReturnType()), true, 433 argTypes, info, required); 434 } 435 436 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration( 437 QualType resultType, const FunctionArgList &args, 438 const FunctionType::ExtInfo &info, bool isVariadic) { 439 // FIXME: Kill copy. 440 SmallVector<CanQualType, 16> argTypes; 441 for (FunctionArgList::const_iterator i = args.begin(), e = args.end(); 442 i != e; ++i) 443 argTypes.push_back(Context.getCanonicalParamType((*i)->getType())); 444 445 RequiredArgs required = 446 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 447 return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes, info, 448 required); 449 } 450 451 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 452 return arrangeLLVMFunctionInfo(getContext().VoidTy, false, None, 453 FunctionType::ExtInfo(), RequiredArgs::All); 454 } 455 456 /// Arrange the argument and result information for an abstract value 457 /// of a given function type. This is the method which all of the 458 /// above functions ultimately defer to. 459 const CGFunctionInfo & 460 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 461 bool IsInstanceMethod, 462 ArrayRef<CanQualType> argTypes, 463 FunctionType::ExtInfo info, 464 RequiredArgs required) { 465 #ifndef NDEBUG 466 for (ArrayRef<CanQualType>::const_iterator 467 I = argTypes.begin(), E = argTypes.end(); I != E; ++I) 468 assert(I->isCanonicalAsParam()); 469 #endif 470 471 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 472 473 // Lookup or create unique function info. 474 llvm::FoldingSetNodeID ID; 475 CGFunctionInfo::Profile(ID, IsInstanceMethod, info, required, resultType, 476 argTypes); 477 478 void *insertPos = 0; 479 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 480 if (FI) 481 return *FI; 482 483 // Construct the function info. We co-allocate the ArgInfos. 484 FI = CGFunctionInfo::create(CC, IsInstanceMethod, info, resultType, argTypes, 485 required); 486 FunctionInfos.InsertNode(FI, insertPos); 487 488 bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted; 489 assert(inserted && "Recursively being processed?"); 490 491 // Compute ABI information. 492 getABIInfo().computeInfo(*FI); 493 494 // Loop over all of the computed argument and return value info. If any of 495 // them are direct or extend without a specified coerce type, specify the 496 // default now. 497 ABIArgInfo &retInfo = FI->getReturnInfo(); 498 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0) 499 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 500 501 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); 502 I != E; ++I) 503 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) 504 I->info.setCoerceToType(ConvertType(I->type)); 505 506 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 507 assert(erased && "Not in set?"); 508 509 return *FI; 510 } 511 512 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 513 bool IsInstanceMethod, 514 const FunctionType::ExtInfo &info, 515 CanQualType resultType, 516 ArrayRef<CanQualType> argTypes, 517 RequiredArgs required) { 518 void *buffer = operator new(sizeof(CGFunctionInfo) + 519 sizeof(ArgInfo) * (argTypes.size() + 1)); 520 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 521 FI->CallingConvention = llvmCC; 522 FI->EffectiveCallingConvention = llvmCC; 523 FI->ASTCallingConvention = info.getCC(); 524 FI->InstanceMethod = IsInstanceMethod; 525 FI->NoReturn = info.getNoReturn(); 526 FI->ReturnsRetained = info.getProducesResult(); 527 FI->Required = required; 528 FI->HasRegParm = info.getHasRegParm(); 529 FI->RegParm = info.getRegParm(); 530 FI->ArgStruct = 0; 531 FI->NumArgs = argTypes.size(); 532 FI->getArgsBuffer()[0].type = resultType; 533 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 534 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 535 return FI; 536 } 537 538 /***/ 539 540 void CodeGenTypes::GetExpandedTypes(QualType type, 541 SmallVectorImpl<llvm::Type*> &expandedTypes) { 542 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { 543 uint64_t NumElts = AT->getSize().getZExtValue(); 544 for (uint64_t Elt = 0; Elt < NumElts; ++Elt) 545 GetExpandedTypes(AT->getElementType(), expandedTypes); 546 } else if (const RecordType *RT = type->getAs<RecordType>()) { 547 const RecordDecl *RD = RT->getDecl(); 548 assert(!RD->hasFlexibleArrayMember() && 549 "Cannot expand structure with flexible array."); 550 if (RD->isUnion()) { 551 // Unions can be here only in degenerative cases - all the fields are same 552 // after flattening. Thus we have to use the "largest" field. 553 const FieldDecl *LargestFD = 0; 554 CharUnits UnionSize = CharUnits::Zero(); 555 556 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 557 i != e; ++i) { 558 const FieldDecl *FD = *i; 559 assert(!FD->isBitField() && 560 "Cannot expand structure with bit-field members."); 561 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 562 if (UnionSize < FieldSize) { 563 UnionSize = FieldSize; 564 LargestFD = FD; 565 } 566 } 567 if (LargestFD) 568 GetExpandedTypes(LargestFD->getType(), expandedTypes); 569 } else { 570 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 571 i != e; ++i) { 572 assert(!i->isBitField() && 573 "Cannot expand structure with bit-field members."); 574 GetExpandedTypes(i->getType(), expandedTypes); 575 } 576 } 577 } else if (const ComplexType *CT = type->getAs<ComplexType>()) { 578 llvm::Type *EltTy = ConvertType(CT->getElementType()); 579 expandedTypes.push_back(EltTy); 580 expandedTypes.push_back(EltTy); 581 } else 582 expandedTypes.push_back(ConvertType(type)); 583 } 584 585 llvm::Function::arg_iterator 586 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 587 llvm::Function::arg_iterator AI) { 588 assert(LV.isSimple() && 589 "Unexpected non-simple lvalue during struct expansion."); 590 591 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 592 unsigned NumElts = AT->getSize().getZExtValue(); 593 QualType EltTy = AT->getElementType(); 594 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 595 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt); 596 LValue LV = MakeAddrLValue(EltAddr, EltTy); 597 AI = ExpandTypeFromArgs(EltTy, LV, AI); 598 } 599 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 600 RecordDecl *RD = RT->getDecl(); 601 if (RD->isUnion()) { 602 // Unions can be here only in degenerative cases - all the fields are same 603 // after flattening. Thus we have to use the "largest" field. 604 const FieldDecl *LargestFD = 0; 605 CharUnits UnionSize = CharUnits::Zero(); 606 607 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 608 i != e; ++i) { 609 const FieldDecl *FD = *i; 610 assert(!FD->isBitField() && 611 "Cannot expand structure with bit-field members."); 612 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 613 if (UnionSize < FieldSize) { 614 UnionSize = FieldSize; 615 LargestFD = FD; 616 } 617 } 618 if (LargestFD) { 619 // FIXME: What are the right qualifiers here? 620 LValue SubLV = EmitLValueForField(LV, LargestFD); 621 AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI); 622 } 623 } else { 624 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 625 i != e; ++i) { 626 FieldDecl *FD = *i; 627 QualType FT = FD->getType(); 628 629 // FIXME: What are the right qualifiers here? 630 LValue SubLV = EmitLValueForField(LV, FD); 631 AI = ExpandTypeFromArgs(FT, SubLV, AI); 632 } 633 } 634 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 635 QualType EltTy = CT->getElementType(); 636 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real"); 637 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); 638 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag"); 639 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); 640 } else { 641 EmitStoreThroughLValue(RValue::get(AI), LV); 642 ++AI; 643 } 644 645 return AI; 646 } 647 648 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 649 /// accessing some number of bytes out of it, try to gep into the struct to get 650 /// at its inner goodness. Dive as deep as possible without entering an element 651 /// with an in-memory size smaller than DstSize. 652 static llvm::Value * 653 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 654 llvm::StructType *SrcSTy, 655 uint64_t DstSize, CodeGenFunction &CGF) { 656 // We can't dive into a zero-element struct. 657 if (SrcSTy->getNumElements() == 0) return SrcPtr; 658 659 llvm::Type *FirstElt = SrcSTy->getElementType(0); 660 661 // If the first elt is at least as large as what we're looking for, or if the 662 // first element is the same size as the whole struct, we can enter it. 663 uint64_t FirstEltSize = 664 CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt); 665 if (FirstEltSize < DstSize && 666 FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy)) 667 return SrcPtr; 668 669 // GEP into the first element. 670 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 671 672 // If the first element is a struct, recurse. 673 llvm::Type *SrcTy = 674 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 675 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 676 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 677 678 return SrcPtr; 679 } 680 681 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 682 /// are either integers or pointers. This does a truncation of the value if it 683 /// is too large or a zero extension if it is too small. 684 /// 685 /// This behaves as if the value were coerced through memory, so on big-endian 686 /// targets the high bits are preserved in a truncation, while little-endian 687 /// targets preserve the low bits. 688 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 689 llvm::Type *Ty, 690 CodeGenFunction &CGF) { 691 if (Val->getType() == Ty) 692 return Val; 693 694 if (isa<llvm::PointerType>(Val->getType())) { 695 // If this is Pointer->Pointer avoid conversion to and from int. 696 if (isa<llvm::PointerType>(Ty)) 697 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 698 699 // Convert the pointer to an integer so we can play with its width. 700 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 701 } 702 703 llvm::Type *DestIntTy = Ty; 704 if (isa<llvm::PointerType>(DestIntTy)) 705 DestIntTy = CGF.IntPtrTy; 706 707 if (Val->getType() != DestIntTy) { 708 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 709 if (DL.isBigEndian()) { 710 // Preserve the high bits on big-endian targets. 711 // That is what memory coercion does. 712 uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType()); 713 uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy); 714 if (SrcSize > DstSize) { 715 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 716 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 717 } else { 718 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 719 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 720 } 721 } else { 722 // Little-endian targets preserve the low bits. No shifts required. 723 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 724 } 725 } 726 727 if (isa<llvm::PointerType>(Ty)) 728 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 729 return Val; 730 } 731 732 733 734 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 735 /// a pointer to an object of type \arg Ty. 736 /// 737 /// This safely handles the case when the src type is smaller than the 738 /// destination type; in this situation the values of bits which not 739 /// present in the src are undefined. 740 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 741 llvm::Type *Ty, 742 CodeGenFunction &CGF) { 743 llvm::Type *SrcTy = 744 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 745 746 // If SrcTy and Ty are the same, just do a load. 747 if (SrcTy == Ty) 748 return CGF.Builder.CreateLoad(SrcPtr); 749 750 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 751 752 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 753 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 754 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 755 } 756 757 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 758 759 // If the source and destination are integer or pointer types, just do an 760 // extension or truncation to the desired type. 761 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 762 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 763 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 764 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 765 } 766 767 // If load is legal, just bitcast the src pointer. 768 if (SrcSize >= DstSize) { 769 // Generally SrcSize is never greater than DstSize, since this means we are 770 // losing bits. However, this can happen in cases where the structure has 771 // additional padding, for example due to a user specified alignment. 772 // 773 // FIXME: Assert that we aren't truncating non-padding bits when have access 774 // to that information. 775 llvm::Value *Casted = 776 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 777 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 778 // FIXME: Use better alignment / avoid requiring aligned load. 779 Load->setAlignment(1); 780 return Load; 781 } 782 783 // Otherwise do coercion through memory. This is stupid, but 784 // simple. 785 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 786 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 787 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 788 llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy); 789 // FIXME: Use better alignment. 790 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 791 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 792 1, false); 793 return CGF.Builder.CreateLoad(Tmp); 794 } 795 796 // Function to store a first-class aggregate into memory. We prefer to 797 // store the elements rather than the aggregate to be more friendly to 798 // fast-isel. 799 // FIXME: Do we need to recurse here? 800 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 801 llvm::Value *DestPtr, bool DestIsVolatile, 802 bool LowAlignment) { 803 // Prefer scalar stores to first-class aggregate stores. 804 if (llvm::StructType *STy = 805 dyn_cast<llvm::StructType>(Val->getType())) { 806 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 807 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 808 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 809 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 810 DestIsVolatile); 811 if (LowAlignment) 812 SI->setAlignment(1); 813 } 814 } else { 815 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 816 if (LowAlignment) 817 SI->setAlignment(1); 818 } 819 } 820 821 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 822 /// where the source and destination may have different types. 823 /// 824 /// This safely handles the case when the src type is larger than the 825 /// destination type; the upper bits of the src will be lost. 826 static void CreateCoercedStore(llvm::Value *Src, 827 llvm::Value *DstPtr, 828 bool DstIsVolatile, 829 CodeGenFunction &CGF) { 830 llvm::Type *SrcTy = Src->getType(); 831 llvm::Type *DstTy = 832 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 833 if (SrcTy == DstTy) { 834 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 835 return; 836 } 837 838 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 839 840 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 841 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 842 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 843 } 844 845 // If the source and destination are integer or pointer types, just do an 846 // extension or truncation to the desired type. 847 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 848 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 849 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 850 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 851 return; 852 } 853 854 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 855 856 // If store is legal, just bitcast the src pointer. 857 if (SrcSize <= DstSize) { 858 llvm::Value *Casted = 859 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 860 // FIXME: Use better alignment / avoid requiring aligned store. 861 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 862 } else { 863 // Otherwise do coercion through memory. This is stupid, but 864 // simple. 865 866 // Generally SrcSize is never greater than DstSize, since this means we are 867 // losing bits. However, this can happen in cases where the structure has 868 // additional padding, for example due to a user specified alignment. 869 // 870 // FIXME: Assert that we aren't truncating non-padding bits when have access 871 // to that information. 872 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 873 CGF.Builder.CreateStore(Src, Tmp); 874 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 875 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 876 llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy); 877 // FIXME: Use better alignment. 878 CGF.Builder.CreateMemCpy(DstCasted, Casted, 879 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 880 1, false); 881 } 882 } 883 884 /***/ 885 886 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 887 return FI.getReturnInfo().isIndirect(); 888 } 889 890 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 891 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 892 switch (BT->getKind()) { 893 default: 894 return false; 895 case BuiltinType::Float: 896 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 897 case BuiltinType::Double: 898 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 899 case BuiltinType::LongDouble: 900 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 901 } 902 } 903 904 return false; 905 } 906 907 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 908 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 909 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 910 if (BT->getKind() == BuiltinType::LongDouble) 911 return getTarget().useObjCFP2RetForComplexLongDouble(); 912 } 913 } 914 915 return false; 916 } 917 918 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 919 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 920 return GetFunctionType(FI); 921 } 922 923 llvm::FunctionType * 924 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 925 926 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; 927 assert(Inserted && "Recursively being processed?"); 928 929 SmallVector<llvm::Type*, 8> argTypes; 930 llvm::Type *resultType = 0; 931 932 const ABIArgInfo &retAI = FI.getReturnInfo(); 933 switch (retAI.getKind()) { 934 case ABIArgInfo::Expand: 935 llvm_unreachable("Invalid ABI kind for return argument"); 936 937 case ABIArgInfo::Extend: 938 case ABIArgInfo::Direct: 939 resultType = retAI.getCoerceToType(); 940 break; 941 942 case ABIArgInfo::InAlloca: 943 resultType = llvm::Type::getVoidTy(getLLVMContext()); 944 break; 945 946 case ABIArgInfo::Indirect: { 947 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 948 resultType = llvm::Type::getVoidTy(getLLVMContext()); 949 950 QualType ret = FI.getReturnType(); 951 llvm::Type *ty = ConvertType(ret); 952 unsigned addressSpace = Context.getTargetAddressSpace(ret); 953 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 954 break; 955 } 956 957 case ABIArgInfo::Ignore: 958 resultType = llvm::Type::getVoidTy(getLLVMContext()); 959 break; 960 } 961 962 // Add in all of the required arguments. 963 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie; 964 if (FI.isVariadic()) { 965 ie = it + FI.getRequiredArgs().getNumRequiredArgs(); 966 } else { 967 ie = FI.arg_end(); 968 } 969 for (; it != ie; ++it) { 970 const ABIArgInfo &argAI = it->info; 971 972 // Insert a padding type to ensure proper alignment. 973 if (llvm::Type *PaddingType = argAI.getPaddingType()) 974 argTypes.push_back(PaddingType); 975 976 switch (argAI.getKind()) { 977 case ABIArgInfo::Ignore: 978 case ABIArgInfo::InAlloca: 979 break; 980 981 case ABIArgInfo::Indirect: { 982 // indirect arguments are always on the stack, which is addr space #0. 983 llvm::Type *LTy = ConvertTypeForMem(it->type); 984 argTypes.push_back(LTy->getPointerTo()); 985 break; 986 } 987 988 case ABIArgInfo::Extend: 989 case ABIArgInfo::Direct: { 990 // If the coerce-to type is a first class aggregate, flatten it. Either 991 // way is semantically identical, but fast-isel and the optimizer 992 // generally likes scalar values better than FCAs. 993 llvm::Type *argType = argAI.getCoerceToType(); 994 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { 995 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 996 argTypes.push_back(st->getElementType(i)); 997 } else { 998 argTypes.push_back(argType); 999 } 1000 break; 1001 } 1002 1003 case ABIArgInfo::Expand: 1004 GetExpandedTypes(it->type, argTypes); 1005 break; 1006 } 1007 } 1008 1009 // Add the inalloca struct as the last parameter type. 1010 if (llvm::StructType *ArgStruct = FI.getArgStruct()) 1011 argTypes.push_back(ArgStruct->getPointerTo()); 1012 1013 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1014 assert(Erased && "Not in set?"); 1015 1016 return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic()); 1017 } 1018 1019 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1020 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1021 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1022 1023 if (!isFuncTypeConvertible(FPT)) 1024 return llvm::StructType::get(getLLVMContext()); 1025 1026 const CGFunctionInfo *Info; 1027 if (isa<CXXDestructorDecl>(MD)) 1028 Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 1029 else 1030 Info = &arrangeCXXMethodDeclaration(MD); 1031 return GetFunctionType(*Info); 1032 } 1033 1034 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 1035 const Decl *TargetDecl, 1036 AttributeListType &PAL, 1037 unsigned &CallingConv, 1038 bool AttrOnCallSite) { 1039 llvm::AttrBuilder FuncAttrs; 1040 llvm::AttrBuilder RetAttrs; 1041 1042 CallingConv = FI.getEffectiveCallingConvention(); 1043 1044 if (FI.isNoReturn()) 1045 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1046 1047 // FIXME: handle sseregparm someday... 1048 if (TargetDecl) { 1049 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1050 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1051 if (TargetDecl->hasAttr<NoThrowAttr>()) 1052 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1053 if (TargetDecl->hasAttr<NoReturnAttr>()) 1054 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1055 1056 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1057 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 1058 if (FPT && FPT->isNothrow(getContext())) 1059 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1060 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1061 // These attributes are not inherited by overloads. 1062 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1063 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1064 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1065 } 1066 1067 // 'const' and 'pure' attribute functions are also nounwind. 1068 if (TargetDecl->hasAttr<ConstAttr>()) { 1069 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1070 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1071 } else if (TargetDecl->hasAttr<PureAttr>()) { 1072 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1073 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1074 } 1075 if (TargetDecl->hasAttr<MallocAttr>()) 1076 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1077 } 1078 1079 if (CodeGenOpts.OptimizeSize) 1080 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1081 if (CodeGenOpts.OptimizeSize == 2) 1082 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1083 if (CodeGenOpts.DisableRedZone) 1084 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1085 if (CodeGenOpts.NoImplicitFloat) 1086 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1087 1088 if (AttrOnCallSite) { 1089 // Attributes that should go on the call site only. 1090 if (!CodeGenOpts.SimplifyLibCalls) 1091 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1092 } else { 1093 // Attributes that should go on the function, but not the call site. 1094 if (!CodeGenOpts.DisableFPElim) { 1095 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1096 } else if (CodeGenOpts.OmitLeafFramePointer) { 1097 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1098 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1099 } else { 1100 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1101 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1102 } 1103 1104 FuncAttrs.addAttribute("less-precise-fpmad", 1105 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1106 FuncAttrs.addAttribute("no-infs-fp-math", 1107 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1108 FuncAttrs.addAttribute("no-nans-fp-math", 1109 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1110 FuncAttrs.addAttribute("unsafe-fp-math", 1111 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1112 FuncAttrs.addAttribute("use-soft-float", 1113 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1114 FuncAttrs.addAttribute("stack-protector-buffer-size", 1115 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1116 1117 if (!CodeGenOpts.StackRealignment) 1118 FuncAttrs.addAttribute("no-realign-stack"); 1119 } 1120 1121 QualType RetTy = FI.getReturnType(); 1122 unsigned Index = 1; 1123 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1124 switch (RetAI.getKind()) { 1125 case ABIArgInfo::Extend: 1126 if (RetTy->hasSignedIntegerRepresentation()) 1127 RetAttrs.addAttribute(llvm::Attribute::SExt); 1128 else if (RetTy->hasUnsignedIntegerRepresentation()) 1129 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1130 // FALL THROUGH 1131 case ABIArgInfo::Direct: 1132 if (RetAI.getInReg()) 1133 RetAttrs.addAttribute(llvm::Attribute::InReg); 1134 break; 1135 case ABIArgInfo::Ignore: 1136 break; 1137 1138 case ABIArgInfo::InAlloca: { 1139 // inalloca disables readnone and readonly 1140 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1141 .removeAttribute(llvm::Attribute::ReadNone); 1142 break; 1143 } 1144 1145 case ABIArgInfo::Indirect: { 1146 llvm::AttrBuilder SRETAttrs; 1147 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1148 if (RetAI.getInReg()) 1149 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1150 PAL.push_back(llvm:: 1151 AttributeSet::get(getLLVMContext(), Index, SRETAttrs)); 1152 1153 ++Index; 1154 // sret disables readnone and readonly 1155 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1156 .removeAttribute(llvm::Attribute::ReadNone); 1157 break; 1158 } 1159 1160 case ABIArgInfo::Expand: 1161 llvm_unreachable("Invalid ABI kind for return argument"); 1162 } 1163 1164 if (RetAttrs.hasAttributes()) 1165 PAL.push_back(llvm:: 1166 AttributeSet::get(getLLVMContext(), 1167 llvm::AttributeSet::ReturnIndex, 1168 RetAttrs)); 1169 1170 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1171 ie = FI.arg_end(); it != ie; ++it) { 1172 QualType ParamType = it->type; 1173 const ABIArgInfo &AI = it->info; 1174 llvm::AttrBuilder Attrs; 1175 1176 if (AI.getPaddingType()) { 1177 if (AI.getPaddingInReg()) 1178 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, 1179 llvm::Attribute::InReg)); 1180 // Increment Index if there is padding. 1181 ++Index; 1182 } 1183 1184 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1185 // have the corresponding parameter variable. It doesn't make 1186 // sense to do it here because parameters are so messed up. 1187 switch (AI.getKind()) { 1188 case ABIArgInfo::Extend: 1189 if (ParamType->isSignedIntegerOrEnumerationType()) 1190 Attrs.addAttribute(llvm::Attribute::SExt); 1191 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 1192 Attrs.addAttribute(llvm::Attribute::ZExt); 1193 // FALL THROUGH 1194 case ABIArgInfo::Direct: 1195 if (AI.getInReg()) 1196 Attrs.addAttribute(llvm::Attribute::InReg); 1197 1198 // FIXME: handle sseregparm someday... 1199 1200 if (llvm::StructType *STy = 1201 dyn_cast<llvm::StructType>(AI.getCoerceToType())) { 1202 unsigned Extra = STy->getNumElements()-1; // 1 will be added below. 1203 if (Attrs.hasAttributes()) 1204 for (unsigned I = 0; I < Extra; ++I) 1205 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I, 1206 Attrs)); 1207 Index += Extra; 1208 } 1209 break; 1210 1211 case ABIArgInfo::Indirect: 1212 if (AI.getInReg()) 1213 Attrs.addAttribute(llvm::Attribute::InReg); 1214 1215 if (AI.getIndirectByVal()) 1216 Attrs.addAttribute(llvm::Attribute::ByVal); 1217 1218 Attrs.addAlignmentAttr(AI.getIndirectAlign()); 1219 1220 // byval disables readnone and readonly. 1221 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1222 .removeAttribute(llvm::Attribute::ReadNone); 1223 break; 1224 1225 case ABIArgInfo::Ignore: 1226 // Skip increment, no matching LLVM parameter. 1227 continue; 1228 1229 case ABIArgInfo::InAlloca: 1230 // inalloca disables readnone and readonly. 1231 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1232 .removeAttribute(llvm::Attribute::ReadNone); 1233 // Skip increment, no matching LLVM parameter. 1234 continue; 1235 1236 case ABIArgInfo::Expand: { 1237 SmallVector<llvm::Type*, 8> types; 1238 // FIXME: This is rather inefficient. Do we ever actually need to do 1239 // anything here? The result should be just reconstructed on the other 1240 // side, so extension should be a non-issue. 1241 getTypes().GetExpandedTypes(ParamType, types); 1242 Index += types.size(); 1243 continue; 1244 } 1245 } 1246 1247 if (Attrs.hasAttributes()) 1248 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs)); 1249 ++Index; 1250 } 1251 1252 // Add the inalloca attribute to the trailing inalloca parameter if present. 1253 if (FI.usesInAlloca()) { 1254 llvm::AttrBuilder Attrs; 1255 Attrs.addAttribute(llvm::Attribute::InAlloca); 1256 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs)); 1257 } 1258 1259 if (FuncAttrs.hasAttributes()) 1260 PAL.push_back(llvm:: 1261 AttributeSet::get(getLLVMContext(), 1262 llvm::AttributeSet::FunctionIndex, 1263 FuncAttrs)); 1264 } 1265 1266 /// An argument came in as a promoted argument; demote it back to its 1267 /// declared type. 1268 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1269 const VarDecl *var, 1270 llvm::Value *value) { 1271 llvm::Type *varType = CGF.ConvertType(var->getType()); 1272 1273 // This can happen with promotions that actually don't change the 1274 // underlying type, like the enum promotions. 1275 if (value->getType() == varType) return value; 1276 1277 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1278 && "unexpected promotion type"); 1279 1280 if (isa<llvm::IntegerType>(varType)) 1281 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1282 1283 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1284 } 1285 1286 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1287 llvm::Function *Fn, 1288 const FunctionArgList &Args) { 1289 // If this is an implicit-return-zero function, go ahead and 1290 // initialize the return value. TODO: it might be nice to have 1291 // a more general mechanism for this that didn't require synthesized 1292 // return statements. 1293 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 1294 if (FD->hasImplicitReturnZero()) { 1295 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 1296 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1297 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1298 Builder.CreateStore(Zero, ReturnValue); 1299 } 1300 } 1301 1302 // FIXME: We no longer need the types from FunctionArgList; lift up and 1303 // simplify. 1304 1305 // Emit allocs for param decls. Give the LLVM Argument nodes names. 1306 llvm::Function::arg_iterator AI = Fn->arg_begin(); 1307 1308 // If we're using inalloca, all the memory arguments are GEPs off of the last 1309 // parameter, which is a pointer to the complete memory area. 1310 llvm::Value *ArgStruct = 0; 1311 if (FI.usesInAlloca()) { 1312 llvm::Function::arg_iterator EI = Fn->arg_end(); 1313 --EI; 1314 ArgStruct = EI; 1315 assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo()); 1316 } 1317 1318 // Name the struct return argument. 1319 if (CGM.ReturnTypeUsesSRet(FI)) { 1320 AI->setName("agg.result"); 1321 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1322 AI->getArgNo() + 1, 1323 llvm::Attribute::NoAlias)); 1324 ++AI; 1325 } 1326 1327 // Track if we received the parameter as a pointer (indirect, byval, or 1328 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 1329 // into a local alloca for us. 1330 enum ValOrPointer { HaveValue = 0, HavePointer = 1 }; 1331 typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr; 1332 SmallVector<ValueAndIsPtr, 16> ArgVals; 1333 ArgVals.reserve(Args.size()); 1334 1335 // Create a pointer value for every parameter declaration. This usually 1336 // entails copying one or more LLVM IR arguments into an alloca. Don't push 1337 // any cleanups or do anything that might unwind. We do that separately, so 1338 // we can push the cleanups in the correct order for the ABI. 1339 assert(FI.arg_size() == Args.size() && 1340 "Mismatch between function signature & arguments."); 1341 unsigned ArgNo = 1; 1342 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1343 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1344 i != e; ++i, ++info_it, ++ArgNo) { 1345 const VarDecl *Arg = *i; 1346 QualType Ty = info_it->type; 1347 const ABIArgInfo &ArgI = info_it->info; 1348 1349 bool isPromoted = 1350 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1351 1352 // Skip the dummy padding argument. 1353 if (ArgI.getPaddingType()) 1354 ++AI; 1355 1356 switch (ArgI.getKind()) { 1357 case ABIArgInfo::InAlloca: { 1358 llvm::Value *V = Builder.CreateStructGEP( 1359 ArgStruct, ArgI.getInAllocaFieldIndex(), Arg->getName()); 1360 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 1361 continue; // Don't increment AI! 1362 } 1363 1364 case ABIArgInfo::Indirect: { 1365 llvm::Value *V = AI; 1366 1367 if (!hasScalarEvaluationKind(Ty)) { 1368 // Aggregates and complex variables are accessed by reference. All we 1369 // need to do is realign the value, if requested 1370 if (ArgI.getIndirectRealign()) { 1371 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 1372 1373 // Copy from the incoming argument pointer to the temporary with the 1374 // appropriate alignment. 1375 // 1376 // FIXME: We should have a common utility for generating an aggregate 1377 // copy. 1378 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 1379 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1380 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 1381 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 1382 Builder.CreateMemCpy(Dst, 1383 Src, 1384 llvm::ConstantInt::get(IntPtrTy, 1385 Size.getQuantity()), 1386 ArgI.getIndirectAlign(), 1387 false); 1388 V = AlignedTemp; 1389 } 1390 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 1391 } else { 1392 // Load scalar value from indirect argument. 1393 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1394 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty, 1395 Arg->getLocStart()); 1396 1397 if (isPromoted) 1398 V = emitArgumentDemotion(*this, Arg, V); 1399 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 1400 } 1401 break; 1402 } 1403 1404 case ABIArgInfo::Extend: 1405 case ABIArgInfo::Direct: { 1406 1407 // If we have the trivial case, handle it with no muss and fuss. 1408 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1409 ArgI.getCoerceToType() == ConvertType(Ty) && 1410 ArgI.getDirectOffset() == 0) { 1411 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1412 llvm::Value *V = AI; 1413 1414 if (Arg->getType().isRestrictQualified()) 1415 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1416 AI->getArgNo() + 1, 1417 llvm::Attribute::NoAlias)); 1418 1419 // Ensure the argument is the correct type. 1420 if (V->getType() != ArgI.getCoerceToType()) 1421 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1422 1423 if (isPromoted) 1424 V = emitArgumentDemotion(*this, Arg, V); 1425 1426 if (const CXXMethodDecl *MD = 1427 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 1428 if (MD->isVirtual() && Arg == CXXABIThisDecl) 1429 V = CGM.getCXXABI(). 1430 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V); 1431 } 1432 1433 // Because of merging of function types from multiple decls it is 1434 // possible for the type of an argument to not match the corresponding 1435 // type in the function type. Since we are codegening the callee 1436 // in here, add a cast to the argument type. 1437 llvm::Type *LTy = ConvertType(Arg->getType()); 1438 if (V->getType() != LTy) 1439 V = Builder.CreateBitCast(V, LTy); 1440 1441 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 1442 break; 1443 } 1444 1445 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); 1446 1447 // The alignment we need to use is the max of the requested alignment for 1448 // the argument plus the alignment required by our access code below. 1449 unsigned AlignmentToUse = 1450 CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType()); 1451 AlignmentToUse = std::max(AlignmentToUse, 1452 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1453 1454 Alloca->setAlignment(AlignmentToUse); 1455 llvm::Value *V = Alloca; 1456 llvm::Value *Ptr = V; // Pointer to store into. 1457 1458 // If the value is offset in memory, apply the offset now. 1459 if (unsigned Offs = ArgI.getDirectOffset()) { 1460 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1461 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1462 Ptr = Builder.CreateBitCast(Ptr, 1463 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1464 } 1465 1466 // If the coerce-to type is a first class aggregate, we flatten it and 1467 // pass the elements. Either way is semantically identical, but fast-isel 1468 // and the optimizer generally likes scalar values better than FCAs. 1469 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 1470 if (STy && STy->getNumElements() > 1) { 1471 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 1472 llvm::Type *DstTy = 1473 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 1474 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 1475 1476 if (SrcSize <= DstSize) { 1477 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1478 1479 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1480 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1481 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1482 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1483 Builder.CreateStore(AI++, EltPtr); 1484 } 1485 } else { 1486 llvm::AllocaInst *TempAlloca = 1487 CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); 1488 TempAlloca->setAlignment(AlignmentToUse); 1489 llvm::Value *TempV = TempAlloca; 1490 1491 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1492 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1493 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1494 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i); 1495 Builder.CreateStore(AI++, EltPtr); 1496 } 1497 1498 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); 1499 } 1500 } else { 1501 // Simple case, just do a coerced store of the argument into the alloca. 1502 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1503 AI->setName(Arg->getName() + ".coerce"); 1504 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 1505 } 1506 1507 1508 // Match to what EmitParmDecl is expecting for this type. 1509 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 1510 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart()); 1511 if (isPromoted) 1512 V = emitArgumentDemotion(*this, Arg, V); 1513 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 1514 } else { 1515 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 1516 } 1517 continue; // Skip ++AI increment, already done. 1518 } 1519 1520 case ABIArgInfo::Expand: { 1521 // If this structure was expanded into multiple arguments then 1522 // we need to create a temporary and reconstruct it from the 1523 // arguments. 1524 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1525 CharUnits Align = getContext().getDeclAlign(Arg); 1526 Alloca->setAlignment(Align.getQuantity()); 1527 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1528 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); 1529 ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer)); 1530 1531 // Name the arguments used in expansion and increment AI. 1532 unsigned Index = 0; 1533 for (; AI != End; ++AI, ++Index) 1534 AI->setName(Arg->getName() + "." + Twine(Index)); 1535 continue; 1536 } 1537 1538 case ABIArgInfo::Ignore: 1539 // Initialize the local variable appropriately. 1540 if (!hasScalarEvaluationKind(Ty)) { 1541 ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer)); 1542 } else { 1543 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 1544 ArgVals.push_back(ValueAndIsPtr(U, HaveValue)); 1545 } 1546 1547 // Skip increment, no matching LLVM parameter. 1548 continue; 1549 } 1550 1551 ++AI; 1552 } 1553 1554 if (FI.usesInAlloca()) 1555 ++AI; 1556 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1557 1558 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1559 for (int I = Args.size() - 1; I >= 0; --I) 1560 EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(), 1561 I + 1); 1562 } else { 1563 for (unsigned I = 0, E = Args.size(); I != E; ++I) 1564 EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(), 1565 I + 1); 1566 } 1567 } 1568 1569 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 1570 while (insn->use_empty()) { 1571 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 1572 if (!bitcast) return; 1573 1574 // This is "safe" because we would have used a ConstantExpr otherwise. 1575 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 1576 bitcast->eraseFromParent(); 1577 } 1578 } 1579 1580 /// Try to emit a fused autorelease of a return result. 1581 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1582 llvm::Value *result) { 1583 // We must be immediately followed the cast. 1584 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1585 if (BB->empty()) return 0; 1586 if (&BB->back() != result) return 0; 1587 1588 llvm::Type *resultType = result->getType(); 1589 1590 // result is in a BasicBlock and is therefore an Instruction. 1591 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1592 1593 SmallVector<llvm::Instruction*,4> insnsToKill; 1594 1595 // Look for: 1596 // %generator = bitcast %type1* %generator2 to %type2* 1597 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1598 // We would have emitted this as a constant if the operand weren't 1599 // an Instruction. 1600 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1601 1602 // Require the generator to be immediately followed by the cast. 1603 if (generator->getNextNode() != bitcast) 1604 return 0; 1605 1606 insnsToKill.push_back(bitcast); 1607 } 1608 1609 // Look for: 1610 // %generator = call i8* @objc_retain(i8* %originalResult) 1611 // or 1612 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1613 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1614 if (!call) return 0; 1615 1616 bool doRetainAutorelease; 1617 1618 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1619 doRetainAutorelease = true; 1620 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1621 .objc_retainAutoreleasedReturnValue) { 1622 doRetainAutorelease = false; 1623 1624 // If we emitted an assembly marker for this call (and the 1625 // ARCEntrypoints field should have been set if so), go looking 1626 // for that call. If we can't find it, we can't do this 1627 // optimization. But it should always be the immediately previous 1628 // instruction, unless we needed bitcasts around the call. 1629 if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) { 1630 llvm::Instruction *prev = call->getPrevNode(); 1631 assert(prev); 1632 if (isa<llvm::BitCastInst>(prev)) { 1633 prev = prev->getPrevNode(); 1634 assert(prev); 1635 } 1636 assert(isa<llvm::CallInst>(prev)); 1637 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 1638 CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker); 1639 insnsToKill.push_back(prev); 1640 } 1641 } else { 1642 return 0; 1643 } 1644 1645 result = call->getArgOperand(0); 1646 insnsToKill.push_back(call); 1647 1648 // Keep killing bitcasts, for sanity. Note that we no longer care 1649 // about precise ordering as long as there's exactly one use. 1650 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1651 if (!bitcast->hasOneUse()) break; 1652 insnsToKill.push_back(bitcast); 1653 result = bitcast->getOperand(0); 1654 } 1655 1656 // Delete all the unnecessary instructions, from latest to earliest. 1657 for (SmallVectorImpl<llvm::Instruction*>::iterator 1658 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1659 (*i)->eraseFromParent(); 1660 1661 // Do the fused retain/autorelease if we were asked to. 1662 if (doRetainAutorelease) 1663 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1664 1665 // Cast back to the result type. 1666 return CGF.Builder.CreateBitCast(result, resultType); 1667 } 1668 1669 /// If this is a +1 of the value of an immutable 'self', remove it. 1670 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 1671 llvm::Value *result) { 1672 // This is only applicable to a method with an immutable 'self'. 1673 const ObjCMethodDecl *method = 1674 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 1675 if (!method) return 0; 1676 const VarDecl *self = method->getSelfDecl(); 1677 if (!self->getType().isConstQualified()) return 0; 1678 1679 // Look for a retain call. 1680 llvm::CallInst *retainCall = 1681 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 1682 if (!retainCall || 1683 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 1684 return 0; 1685 1686 // Look for an ordinary load of 'self'. 1687 llvm::Value *retainedValue = retainCall->getArgOperand(0); 1688 llvm::LoadInst *load = 1689 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 1690 if (!load || load->isAtomic() || load->isVolatile() || 1691 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 1692 return 0; 1693 1694 // Okay! Burn it all down. This relies for correctness on the 1695 // assumption that the retain is emitted as part of the return and 1696 // that thereafter everything is used "linearly". 1697 llvm::Type *resultType = result->getType(); 1698 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 1699 assert(retainCall->use_empty()); 1700 retainCall->eraseFromParent(); 1701 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 1702 1703 return CGF.Builder.CreateBitCast(load, resultType); 1704 } 1705 1706 /// Emit an ARC autorelease of the result of a function. 1707 /// 1708 /// \return the value to actually return from the function 1709 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1710 llvm::Value *result) { 1711 // If we're returning 'self', kill the initial retain. This is a 1712 // heuristic attempt to "encourage correctness" in the really unfortunate 1713 // case where we have a return of self during a dealloc and we desperately 1714 // need to avoid the possible autorelease. 1715 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 1716 return self; 1717 1718 // At -O0, try to emit a fused retain/autorelease. 1719 if (CGF.shouldUseFusedARCCalls()) 1720 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1721 return fused; 1722 1723 return CGF.EmitARCAutoreleaseReturnValue(result); 1724 } 1725 1726 /// Heuristically search for a dominating store to the return-value slot. 1727 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 1728 // If there are multiple uses of the return-value slot, just check 1729 // for something immediately preceding the IP. Sometimes this can 1730 // happen with how we generate implicit-returns; it can also happen 1731 // with noreturn cleanups. 1732 if (!CGF.ReturnValue->hasOneUse()) { 1733 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1734 if (IP->empty()) return 0; 1735 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); 1736 if (!store) return 0; 1737 if (store->getPointerOperand() != CGF.ReturnValue) return 0; 1738 assert(!store->isAtomic() && !store->isVolatile()); // see below 1739 return store; 1740 } 1741 1742 llvm::StoreInst *store = 1743 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back()); 1744 if (!store) return 0; 1745 1746 // These aren't actually possible for non-coerced returns, and we 1747 // only care about non-coerced returns on this code path. 1748 assert(!store->isAtomic() && !store->isVolatile()); 1749 1750 // Now do a first-and-dirty dominance check: just walk up the 1751 // single-predecessors chain from the current insertion point. 1752 llvm::BasicBlock *StoreBB = store->getParent(); 1753 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1754 while (IP != StoreBB) { 1755 if (!(IP = IP->getSinglePredecessor())) 1756 return 0; 1757 } 1758 1759 // Okay, the store's basic block dominates the insertion point; we 1760 // can do our thing. 1761 return store; 1762 } 1763 1764 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 1765 bool EmitRetDbgLoc, 1766 SourceLocation EndLoc) { 1767 // Functions with no result always return void. 1768 if (ReturnValue == 0) { 1769 Builder.CreateRetVoid(); 1770 return; 1771 } 1772 1773 llvm::DebugLoc RetDbgLoc; 1774 llvm::Value *RV = 0; 1775 QualType RetTy = FI.getReturnType(); 1776 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1777 1778 switch (RetAI.getKind()) { 1779 case ABIArgInfo::InAlloca: 1780 // Do nothing; aggregrates get evaluated directly into the destination. 1781 break; 1782 1783 case ABIArgInfo::Indirect: { 1784 switch (getEvaluationKind(RetTy)) { 1785 case TEK_Complex: { 1786 ComplexPairTy RT = 1787 EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy), 1788 EndLoc); 1789 EmitStoreOfComplex(RT, 1790 MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy), 1791 /*isInit*/ true); 1792 break; 1793 } 1794 case TEK_Aggregate: 1795 // Do nothing; aggregrates get evaluated directly into the destination. 1796 break; 1797 case TEK_Scalar: 1798 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 1799 MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy), 1800 /*isInit*/ true); 1801 break; 1802 } 1803 break; 1804 } 1805 1806 case ABIArgInfo::Extend: 1807 case ABIArgInfo::Direct: 1808 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1809 RetAI.getDirectOffset() == 0) { 1810 // The internal return value temp always will have pointer-to-return-type 1811 // type, just do a load. 1812 1813 // If there is a dominating store to ReturnValue, we can elide 1814 // the load, zap the store, and usually zap the alloca. 1815 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { 1816 // Reuse the debug location from the store unless there is 1817 // cleanup code to be emitted between the store and return 1818 // instruction. 1819 if (EmitRetDbgLoc && !AutoreleaseResult) 1820 RetDbgLoc = SI->getDebugLoc(); 1821 // Get the stored value and nuke the now-dead store. 1822 RV = SI->getValueOperand(); 1823 SI->eraseFromParent(); 1824 1825 // If that was the only use of the return value, nuke it as well now. 1826 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1827 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1828 ReturnValue = 0; 1829 } 1830 1831 // Otherwise, we have to do a simple load. 1832 } else { 1833 RV = Builder.CreateLoad(ReturnValue); 1834 } 1835 } else { 1836 llvm::Value *V = ReturnValue; 1837 // If the value is offset in memory, apply the offset now. 1838 if (unsigned Offs = RetAI.getDirectOffset()) { 1839 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1840 V = Builder.CreateConstGEP1_32(V, Offs); 1841 V = Builder.CreateBitCast(V, 1842 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1843 } 1844 1845 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1846 } 1847 1848 // In ARC, end functions that return a retainable type with a call 1849 // to objc_autoreleaseReturnValue. 1850 if (AutoreleaseResult) { 1851 assert(getLangOpts().ObjCAutoRefCount && 1852 !FI.isReturnsRetained() && 1853 RetTy->isObjCRetainableType()); 1854 RV = emitAutoreleaseOfResult(*this, RV); 1855 } 1856 1857 break; 1858 1859 case ABIArgInfo::Ignore: 1860 break; 1861 1862 case ABIArgInfo::Expand: 1863 llvm_unreachable("Invalid ABI kind for return argument"); 1864 } 1865 1866 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1867 if (!RetDbgLoc.isUnknown()) 1868 Ret->setDebugLoc(RetDbgLoc); 1869 } 1870 1871 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 1872 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 1873 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 1874 } 1875 1876 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) { 1877 // FIXME: Generate IR in one pass, rather than going back and fixing up these 1878 // placeholders. 1879 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 1880 llvm::Value *Placeholder = 1881 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo()); 1882 Placeholder = CGF.Builder.CreateLoad(Placeholder); 1883 return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(), 1884 Ty.getQualifiers(), 1885 AggValueSlot::IsNotDestructed, 1886 AggValueSlot::DoesNotNeedGCBarriers, 1887 AggValueSlot::IsNotAliased); 1888 } 1889 1890 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1891 const VarDecl *param, 1892 SourceLocation loc) { 1893 // StartFunction converted the ABI-lowered parameter(s) into a 1894 // local alloca. We need to turn that into an r-value suitable 1895 // for EmitCall. 1896 llvm::Value *local = GetAddrOfLocalVar(param); 1897 1898 QualType type = param->getType(); 1899 1900 // For the most part, we just need to load the alloca, except: 1901 // 1) aggregate r-values are actually pointers to temporaries, and 1902 // 2) references to non-scalars are pointers directly to the aggregate. 1903 // I don't know why references to scalars are different here. 1904 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1905 if (!hasScalarEvaluationKind(ref->getPointeeType())) 1906 return args.add(RValue::getAggregate(local), type); 1907 1908 // Locals which are references to scalars are represented 1909 // with allocas holding the pointer. 1910 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1911 } 1912 1913 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 1914 AggValueSlot Slot = createPlaceholderSlot(*this, type); 1915 Slot.setExternallyDestructed(); 1916 1917 // FIXME: Either emit a copy constructor call, or figure out how to do 1918 // guaranteed tail calls with perfect forwarding in LLVM. 1919 CGM.ErrorUnsupported(param, "non-trivial argument copy for thunk"); 1920 EmitNullInitialization(Slot.getAddr(), type); 1921 1922 RValue RV = Slot.asRValue(); 1923 args.add(RV, type); 1924 return; 1925 } 1926 1927 args.add(convertTempToRValue(local, type, loc), type); 1928 } 1929 1930 static bool isProvablyNull(llvm::Value *addr) { 1931 return isa<llvm::ConstantPointerNull>(addr); 1932 } 1933 1934 static bool isProvablyNonNull(llvm::Value *addr) { 1935 return isa<llvm::AllocaInst>(addr); 1936 } 1937 1938 /// Emit the actual writing-back of a writeback. 1939 static void emitWriteback(CodeGenFunction &CGF, 1940 const CallArgList::Writeback &writeback) { 1941 const LValue &srcLV = writeback.Source; 1942 llvm::Value *srcAddr = srcLV.getAddress(); 1943 assert(!isProvablyNull(srcAddr) && 1944 "shouldn't have writeback for provably null argument"); 1945 1946 llvm::BasicBlock *contBB = 0; 1947 1948 // If the argument wasn't provably non-null, we need to null check 1949 // before doing the store. 1950 bool provablyNonNull = isProvablyNonNull(srcAddr); 1951 if (!provablyNonNull) { 1952 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 1953 contBB = CGF.createBasicBlock("icr.done"); 1954 1955 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1956 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 1957 CGF.EmitBlock(writebackBB); 1958 } 1959 1960 // Load the value to writeback. 1961 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 1962 1963 // Cast it back, in case we're writing an id to a Foo* or something. 1964 value = CGF.Builder.CreateBitCast(value, 1965 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 1966 "icr.writeback-cast"); 1967 1968 // Perform the writeback. 1969 1970 // If we have a "to use" value, it's something we need to emit a use 1971 // of. This has to be carefully threaded in: if it's done after the 1972 // release it's potentially undefined behavior (and the optimizer 1973 // will ignore it), and if it happens before the retain then the 1974 // optimizer could move the release there. 1975 if (writeback.ToUse) { 1976 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 1977 1978 // Retain the new value. No need to block-copy here: the block's 1979 // being passed up the stack. 1980 value = CGF.EmitARCRetainNonBlock(value); 1981 1982 // Emit the intrinsic use here. 1983 CGF.EmitARCIntrinsicUse(writeback.ToUse); 1984 1985 // Load the old value (primitively). 1986 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 1987 1988 // Put the new value in place (primitively). 1989 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 1990 1991 // Release the old value. 1992 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 1993 1994 // Otherwise, we can just do a normal lvalue store. 1995 } else { 1996 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 1997 } 1998 1999 // Jump to the continuation block. 2000 if (!provablyNonNull) 2001 CGF.EmitBlock(contBB); 2002 } 2003 2004 static void emitWritebacks(CodeGenFunction &CGF, 2005 const CallArgList &args) { 2006 for (CallArgList::writeback_iterator 2007 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) 2008 emitWriteback(CGF, *i); 2009 } 2010 2011 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 2012 const CallArgList &CallArgs) { 2013 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 2014 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 2015 CallArgs.getCleanupsToDeactivate(); 2016 // Iterate in reverse to increase the likelihood of popping the cleanup. 2017 for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator 2018 I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) { 2019 CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP); 2020 I->IsActiveIP->eraseFromParent(); 2021 } 2022 } 2023 2024 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 2025 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 2026 if (uop->getOpcode() == UO_AddrOf) 2027 return uop->getSubExpr(); 2028 return 0; 2029 } 2030 2031 /// Emit an argument that's being passed call-by-writeback. That is, 2032 /// we are passing the address of 2033 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 2034 const ObjCIndirectCopyRestoreExpr *CRE) { 2035 LValue srcLV; 2036 2037 // Make an optimistic effort to emit the address as an l-value. 2038 // This can fail if the the argument expression is more complicated. 2039 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 2040 srcLV = CGF.EmitLValue(lvExpr); 2041 2042 // Otherwise, just emit it as a scalar. 2043 } else { 2044 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 2045 2046 QualType srcAddrType = 2047 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 2048 srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType); 2049 } 2050 llvm::Value *srcAddr = srcLV.getAddress(); 2051 2052 // The dest and src types don't necessarily match in LLVM terms 2053 // because of the crazy ObjC compatibility rules. 2054 2055 llvm::PointerType *destType = 2056 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 2057 2058 // If the address is a constant null, just pass the appropriate null. 2059 if (isProvablyNull(srcAddr)) { 2060 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 2061 CRE->getType()); 2062 return; 2063 } 2064 2065 // Create the temporary. 2066 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 2067 "icr.temp"); 2068 // Loading an l-value can introduce a cleanup if the l-value is __weak, 2069 // and that cleanup will be conditional if we can't prove that the l-value 2070 // isn't null, so we need to register a dominating point so that the cleanups 2071 // system will make valid IR. 2072 CodeGenFunction::ConditionalEvaluation condEval(CGF); 2073 2074 // Zero-initialize it if we're not doing a copy-initialization. 2075 bool shouldCopy = CRE->shouldCopy(); 2076 if (!shouldCopy) { 2077 llvm::Value *null = 2078 llvm::ConstantPointerNull::get( 2079 cast<llvm::PointerType>(destType->getElementType())); 2080 CGF.Builder.CreateStore(null, temp); 2081 } 2082 2083 llvm::BasicBlock *contBB = 0; 2084 llvm::BasicBlock *originBB = 0; 2085 2086 // If the address is *not* known to be non-null, we need to switch. 2087 llvm::Value *finalArgument; 2088 2089 bool provablyNonNull = isProvablyNonNull(srcAddr); 2090 if (provablyNonNull) { 2091 finalArgument = temp; 2092 } else { 2093 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 2094 2095 finalArgument = CGF.Builder.CreateSelect(isNull, 2096 llvm::ConstantPointerNull::get(destType), 2097 temp, "icr.argument"); 2098 2099 // If we need to copy, then the load has to be conditional, which 2100 // means we need control flow. 2101 if (shouldCopy) { 2102 originBB = CGF.Builder.GetInsertBlock(); 2103 contBB = CGF.createBasicBlock("icr.cont"); 2104 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 2105 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 2106 CGF.EmitBlock(copyBB); 2107 condEval.begin(CGF); 2108 } 2109 } 2110 2111 llvm::Value *valueToUse = 0; 2112 2113 // Perform a copy if necessary. 2114 if (shouldCopy) { 2115 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 2116 assert(srcRV.isScalar()); 2117 2118 llvm::Value *src = srcRV.getScalarVal(); 2119 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 2120 "icr.cast"); 2121 2122 // Use an ordinary store, not a store-to-lvalue. 2123 CGF.Builder.CreateStore(src, temp); 2124 2125 // If optimization is enabled, and the value was held in a 2126 // __strong variable, we need to tell the optimizer that this 2127 // value has to stay alive until we're doing the store back. 2128 // This is because the temporary is effectively unretained, 2129 // and so otherwise we can violate the high-level semantics. 2130 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 2131 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 2132 valueToUse = src; 2133 } 2134 } 2135 2136 // Finish the control flow if we needed it. 2137 if (shouldCopy && !provablyNonNull) { 2138 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 2139 CGF.EmitBlock(contBB); 2140 2141 // Make a phi for the value to intrinsically use. 2142 if (valueToUse) { 2143 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 2144 "icr.to-use"); 2145 phiToUse->addIncoming(valueToUse, copyBB); 2146 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 2147 originBB); 2148 valueToUse = phiToUse; 2149 } 2150 2151 condEval.end(CGF); 2152 } 2153 2154 args.addWriteback(srcLV, temp, valueToUse); 2155 args.add(RValue::get(finalArgument), CRE->getType()); 2156 } 2157 2158 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 2159 assert(!StackBase && !StackCleanup.isValid()); 2160 2161 // Save the stack. 2162 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 2163 StackBase = CGF.Builder.CreateCall(F, "inalloca.save"); 2164 2165 // Control gets really tied up in landing pads, so we have to spill the 2166 // stacksave to an alloca to avoid violating SSA form. 2167 // TODO: This is dead if we never emit the cleanup. We should create the 2168 // alloca and store lazily on the first cleanup emission. 2169 StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem"); 2170 CGF.Builder.CreateStore(StackBase, StackBaseMem); 2171 CGF.pushStackRestore(EHCleanup, StackBaseMem); 2172 StackCleanup = CGF.EHStack.getInnermostEHScope(); 2173 assert(StackCleanup.isValid()); 2174 } 2175 2176 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 2177 if (StackBase) { 2178 CGF.DeactivateCleanupBlock(StackCleanup, StackBase); 2179 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 2180 // We could load StackBase from StackBaseMem, but in the non-exceptional 2181 // case we can skip it. 2182 CGF.Builder.CreateCall(F, StackBase); 2183 } 2184 } 2185 2186 void CodeGenFunction::EmitCallArgs(CallArgList &Args, 2187 ArrayRef<QualType> ArgTypes, 2188 CallExpr::const_arg_iterator ArgBeg, 2189 CallExpr::const_arg_iterator ArgEnd, 2190 bool ForceColumnInfo) { 2191 CGDebugInfo *DI = getDebugInfo(); 2192 SourceLocation CallLoc; 2193 if (DI) CallLoc = DI->getLocation(); 2194 2195 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 2196 // because arguments are destroyed left to right in the callee. 2197 if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2198 // Insert a stack save if we're going to need any inalloca args. 2199 bool HasInAllocaArgs = false; 2200 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 2201 I != E && !HasInAllocaArgs; ++I) 2202 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 2203 if (HasInAllocaArgs) { 2204 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 2205 Args.allocateArgumentMemory(*this); 2206 } 2207 2208 // Evaluate each argument. 2209 size_t CallArgsStart = Args.size(); 2210 for (int I = ArgTypes.size() - 1; I >= 0; --I) { 2211 CallExpr::const_arg_iterator Arg = ArgBeg + I; 2212 EmitCallArg(Args, *Arg, ArgTypes[I]); 2213 // Restore the debug location. 2214 if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo); 2215 } 2216 2217 // Un-reverse the arguments we just evaluated so they match up with the LLVM 2218 // IR function. 2219 std::reverse(Args.begin() + CallArgsStart, Args.end()); 2220 return; 2221 } 2222 2223 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 2224 CallExpr::const_arg_iterator Arg = ArgBeg + I; 2225 assert(Arg != ArgEnd); 2226 EmitCallArg(Args, *Arg, ArgTypes[I]); 2227 // Restore the debug location. 2228 if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo); 2229 } 2230 } 2231 2232 namespace { 2233 2234 struct DestroyUnpassedArg : EHScopeStack::Cleanup { 2235 DestroyUnpassedArg(llvm::Value *Addr, QualType Ty) 2236 : Addr(Addr), Ty(Ty) {} 2237 2238 llvm::Value *Addr; 2239 QualType Ty; 2240 2241 void Emit(CodeGenFunction &CGF, Flags flags) { 2242 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 2243 assert(!Dtor->isTrivial()); 2244 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 2245 /*Delegating=*/false, Addr); 2246 } 2247 }; 2248 2249 } 2250 2251 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 2252 QualType type) { 2253 if (const ObjCIndirectCopyRestoreExpr *CRE 2254 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 2255 assert(getLangOpts().ObjCAutoRefCount); 2256 assert(getContext().hasSameType(E->getType(), type)); 2257 return emitWritebackArg(*this, args, CRE); 2258 } 2259 2260 assert(type->isReferenceType() == E->isGLValue() && 2261 "reference binding to unmaterialized r-value!"); 2262 2263 if (E->isGLValue()) { 2264 assert(E->getObjectKind() == OK_Ordinary); 2265 return args.add(EmitReferenceBindingToExpr(E), type); 2266 } 2267 2268 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 2269 2270 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 2271 // However, we still have to push an EH-only cleanup in case we unwind before 2272 // we make it to the call. 2273 if (HasAggregateEvalKind && args.isUsingInAlloca()) { 2274 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 2275 AggValueSlot Slot = createPlaceholderSlot(*this, type); 2276 Slot.setExternallyDestructed(); 2277 EmitAggExpr(E, Slot); 2278 RValue RV = Slot.asRValue(); 2279 args.add(RV, type); 2280 2281 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2282 if (RD->hasNonTrivialDestructor()) { 2283 // Create a no-op GEP between the placeholder and the cleanup so we can 2284 // RAUW it successfully. It also serves as a marker of the first 2285 // instruction where the cleanup is active. 2286 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type); 2287 // This unreachable is a temporary marker which will be removed later. 2288 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 2289 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 2290 } 2291 return; 2292 } 2293 2294 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 2295 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 2296 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 2297 assert(L.isSimple()); 2298 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 2299 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 2300 } else { 2301 // We can't represent a misaligned lvalue in the CallArgList, so copy 2302 // to an aligned temporary now. 2303 llvm::Value *tmp = CreateMemTemp(type); 2304 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(), 2305 L.getAlignment()); 2306 args.add(RValue::getAggregate(tmp), type); 2307 } 2308 return; 2309 } 2310 2311 args.add(EmitAnyExprToTemp(E), type); 2312 } 2313 2314 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2315 // optimizer it can aggressively ignore unwind edges. 2316 void 2317 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 2318 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 2319 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 2320 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 2321 CGM.getNoObjCARCExceptionsMetadata()); 2322 } 2323 2324 /// Emits a call to the given no-arguments nounwind runtime function. 2325 llvm::CallInst * 2326 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2327 const llvm::Twine &name) { 2328 return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name); 2329 } 2330 2331 /// Emits a call to the given nounwind runtime function. 2332 llvm::CallInst * 2333 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2334 ArrayRef<llvm::Value*> args, 2335 const llvm::Twine &name) { 2336 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 2337 call->setDoesNotThrow(); 2338 return call; 2339 } 2340 2341 /// Emits a simple call (never an invoke) to the given no-arguments 2342 /// runtime function. 2343 llvm::CallInst * 2344 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2345 const llvm::Twine &name) { 2346 return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name); 2347 } 2348 2349 /// Emits a simple call (never an invoke) to the given runtime 2350 /// function. 2351 llvm::CallInst * 2352 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2353 ArrayRef<llvm::Value*> args, 2354 const llvm::Twine &name) { 2355 llvm::CallInst *call = Builder.CreateCall(callee, args, name); 2356 call->setCallingConv(getRuntimeCC()); 2357 return call; 2358 } 2359 2360 /// Emits a call or invoke to the given noreturn runtime function. 2361 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2362 ArrayRef<llvm::Value*> args) { 2363 if (getInvokeDest()) { 2364 llvm::InvokeInst *invoke = 2365 Builder.CreateInvoke(callee, 2366 getUnreachableBlock(), 2367 getInvokeDest(), 2368 args); 2369 invoke->setDoesNotReturn(); 2370 invoke->setCallingConv(getRuntimeCC()); 2371 } else { 2372 llvm::CallInst *call = Builder.CreateCall(callee, args); 2373 call->setDoesNotReturn(); 2374 call->setCallingConv(getRuntimeCC()); 2375 Builder.CreateUnreachable(); 2376 } 2377 PGO.setCurrentRegionUnreachable(); 2378 } 2379 2380 /// Emits a call or invoke instruction to the given nullary runtime 2381 /// function. 2382 llvm::CallSite 2383 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2384 const Twine &name) { 2385 return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name); 2386 } 2387 2388 /// Emits a call or invoke instruction to the given runtime function. 2389 llvm::CallSite 2390 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2391 ArrayRef<llvm::Value*> args, 2392 const Twine &name) { 2393 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 2394 callSite.setCallingConv(getRuntimeCC()); 2395 return callSite; 2396 } 2397 2398 llvm::CallSite 2399 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2400 const Twine &Name) { 2401 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); 2402 } 2403 2404 /// Emits a call or invoke instruction to the given function, depending 2405 /// on the current state of the EH stack. 2406 llvm::CallSite 2407 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2408 ArrayRef<llvm::Value *> Args, 2409 const Twine &Name) { 2410 llvm::BasicBlock *InvokeDest = getInvokeDest(); 2411 2412 llvm::Instruction *Inst; 2413 if (!InvokeDest) 2414 Inst = Builder.CreateCall(Callee, Args, Name); 2415 else { 2416 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 2417 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 2418 EmitBlock(ContBB); 2419 } 2420 2421 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2422 // optimizer it can aggressively ignore unwind edges. 2423 if (CGM.getLangOpts().ObjCAutoRefCount) 2424 AddObjCARCExceptionMetadata(Inst); 2425 2426 return Inst; 2427 } 2428 2429 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 2430 llvm::FunctionType *FTy) { 2431 if (ArgNo < FTy->getNumParams()) 2432 assert(Elt->getType() == FTy->getParamType(ArgNo)); 2433 else 2434 assert(FTy->isVarArg()); 2435 ++ArgNo; 2436 } 2437 2438 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 2439 SmallVectorImpl<llvm::Value *> &Args, 2440 llvm::FunctionType *IRFuncTy) { 2441 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2442 unsigned NumElts = AT->getSize().getZExtValue(); 2443 QualType EltTy = AT->getElementType(); 2444 llvm::Value *Addr = RV.getAggregateAddr(); 2445 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 2446 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 2447 RValue EltRV = convertTempToRValue(EltAddr, EltTy, SourceLocation()); 2448 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); 2449 } 2450 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 2451 RecordDecl *RD = RT->getDecl(); 2452 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 2453 LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty); 2454 2455 if (RD->isUnion()) { 2456 const FieldDecl *LargestFD = 0; 2457 CharUnits UnionSize = CharUnits::Zero(); 2458 2459 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2460 i != e; ++i) { 2461 const FieldDecl *FD = *i; 2462 assert(!FD->isBitField() && 2463 "Cannot expand structure with bit-field members."); 2464 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 2465 if (UnionSize < FieldSize) { 2466 UnionSize = FieldSize; 2467 LargestFD = FD; 2468 } 2469 } 2470 if (LargestFD) { 2471 RValue FldRV = EmitRValueForField(LV, LargestFD, SourceLocation()); 2472 ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy); 2473 } 2474 } else { 2475 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2476 i != e; ++i) { 2477 FieldDecl *FD = *i; 2478 2479 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 2480 ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy); 2481 } 2482 } 2483 } else if (Ty->isAnyComplexType()) { 2484 ComplexPairTy CV = RV.getComplexVal(); 2485 Args.push_back(CV.first); 2486 Args.push_back(CV.second); 2487 } else { 2488 assert(RV.isScalar() && 2489 "Unexpected non-scalar rvalue during struct expansion."); 2490 2491 // Insert a bitcast as needed. 2492 llvm::Value *V = RV.getScalarVal(); 2493 if (Args.size() < IRFuncTy->getNumParams() && 2494 V->getType() != IRFuncTy->getParamType(Args.size())) 2495 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 2496 2497 Args.push_back(V); 2498 } 2499 } 2500 2501 /// \brief Store a non-aggregate value to an address to initialize it. For 2502 /// initialization, a non-atomic store will be used. 2503 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 2504 LValue Dst) { 2505 if (Src.isScalar()) 2506 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 2507 else 2508 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 2509 } 2510 2511 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 2512 llvm::Value *New) { 2513 DeferredReplacements.push_back(std::make_pair(Old, New)); 2514 } 2515 2516 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 2517 llvm::Value *Callee, 2518 ReturnValueSlot ReturnValue, 2519 const CallArgList &CallArgs, 2520 const Decl *TargetDecl, 2521 llvm::Instruction **callOrInvoke) { 2522 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 2523 SmallVector<llvm::Value*, 16> Args; 2524 2525 // Handle struct-return functions by passing a pointer to the 2526 // location that we would like to return into. 2527 QualType RetTy = CallInfo.getReturnType(); 2528 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 2529 2530 // IRArgNo - Keep track of the argument number in the callee we're looking at. 2531 unsigned IRArgNo = 0; 2532 llvm::FunctionType *IRFuncTy = 2533 cast<llvm::FunctionType>( 2534 cast<llvm::PointerType>(Callee->getType())->getElementType()); 2535 2536 // If we're using inalloca, insert the allocation after the stack save. 2537 // FIXME: Do this earlier rather than hacking it in here! 2538 llvm::Value *ArgMemory = 0; 2539 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 2540 llvm::AllocaInst *AI = new llvm::AllocaInst( 2541 ArgStruct, "argmem", CallArgs.getStackBase()->getNextNode()); 2542 AI->setUsedWithInAlloca(true); 2543 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 2544 ArgMemory = AI; 2545 } 2546 2547 // If the call returns a temporary with struct return, create a temporary 2548 // alloca to hold the result, unless one is given to us. 2549 llvm::Value *SRetPtr = 0; 2550 if (CGM.ReturnTypeUsesSRet(CallInfo) || RetAI.isInAlloca()) { 2551 SRetPtr = ReturnValue.getValue(); 2552 if (!SRetPtr) 2553 SRetPtr = CreateMemTemp(RetTy); 2554 if (CGM.ReturnTypeUsesSRet(CallInfo)) { 2555 Args.push_back(SRetPtr); 2556 checkArgMatches(SRetPtr, IRArgNo, IRFuncTy); 2557 } else { 2558 llvm::Value *Addr = 2559 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 2560 Builder.CreateStore(SRetPtr, Addr); 2561 } 2562 } 2563 2564 assert(CallInfo.arg_size() == CallArgs.size() && 2565 "Mismatch between function signature & arguments."); 2566 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 2567 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 2568 I != E; ++I, ++info_it) { 2569 const ABIArgInfo &ArgInfo = info_it->info; 2570 RValue RV = I->RV; 2571 2572 CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty); 2573 2574 // Insert a padding argument to ensure proper alignment. 2575 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) { 2576 Args.push_back(llvm::UndefValue::get(PaddingType)); 2577 ++IRArgNo; 2578 } 2579 2580 switch (ArgInfo.getKind()) { 2581 case ABIArgInfo::InAlloca: { 2582 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 2583 if (RV.isAggregate()) { 2584 // Replace the placeholder with the appropriate argument slot GEP. 2585 llvm::Instruction *Placeholder = 2586 cast<llvm::Instruction>(RV.getAggregateAddr()); 2587 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 2588 Builder.SetInsertPoint(Placeholder); 2589 llvm::Value *Addr = Builder.CreateStructGEP( 2590 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 2591 Builder.restoreIP(IP); 2592 deferPlaceholderReplacement(Placeholder, Addr); 2593 } else { 2594 // Store the RValue into the argument struct. 2595 llvm::Value *Addr = 2596 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 2597 LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign); 2598 EmitInitStoreOfNonAggregate(*this, RV, argLV); 2599 } 2600 break; // Don't increment IRArgNo! 2601 } 2602 2603 case ABIArgInfo::Indirect: { 2604 if (RV.isScalar() || RV.isComplex()) { 2605 // Make a temporary alloca to pass the argument. 2606 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2607 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 2608 AI->setAlignment(ArgInfo.getIndirectAlign()); 2609 Args.push_back(AI); 2610 2611 LValue argLV = MakeAddrLValue(Args.back(), I->Ty, TypeAlign); 2612 EmitInitStoreOfNonAggregate(*this, RV, argLV); 2613 2614 // Validate argument match. 2615 checkArgMatches(AI, IRArgNo, IRFuncTy); 2616 } else { 2617 // We want to avoid creating an unnecessary temporary+copy here; 2618 // however, we need one in three cases: 2619 // 1. If the argument is not byval, and we are required to copy the 2620 // source. (This case doesn't occur on any common architecture.) 2621 // 2. If the argument is byval, RV is not sufficiently aligned, and 2622 // we cannot force it to be sufficiently aligned. 2623 // 3. If the argument is byval, but RV is located in an address space 2624 // different than that of the argument (0). 2625 llvm::Value *Addr = RV.getAggregateAddr(); 2626 unsigned Align = ArgInfo.getIndirectAlign(); 2627 const llvm::DataLayout *TD = &CGM.getDataLayout(); 2628 const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace(); 2629 const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ? 2630 IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0); 2631 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 2632 (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align && 2633 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) || 2634 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 2635 // Create an aligned temporary, and copy to it. 2636 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2637 if (Align > AI->getAlignment()) 2638 AI->setAlignment(Align); 2639 Args.push_back(AI); 2640 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 2641 2642 // Validate argument match. 2643 checkArgMatches(AI, IRArgNo, IRFuncTy); 2644 } else { 2645 // Skip the extra memcpy call. 2646 Args.push_back(Addr); 2647 2648 // Validate argument match. 2649 checkArgMatches(Addr, IRArgNo, IRFuncTy); 2650 } 2651 } 2652 break; 2653 } 2654 2655 case ABIArgInfo::Ignore: 2656 break; 2657 2658 case ABIArgInfo::Extend: 2659 case ABIArgInfo::Direct: { 2660 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 2661 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 2662 ArgInfo.getDirectOffset() == 0) { 2663 llvm::Value *V; 2664 if (RV.isScalar()) 2665 V = RV.getScalarVal(); 2666 else 2667 V = Builder.CreateLoad(RV.getAggregateAddr()); 2668 2669 // If the argument doesn't match, perform a bitcast to coerce it. This 2670 // can happen due to trivial type mismatches. 2671 if (IRArgNo < IRFuncTy->getNumParams() && 2672 V->getType() != IRFuncTy->getParamType(IRArgNo)) 2673 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 2674 Args.push_back(V); 2675 2676 checkArgMatches(V, IRArgNo, IRFuncTy); 2677 break; 2678 } 2679 2680 // FIXME: Avoid the conversion through memory if possible. 2681 llvm::Value *SrcPtr; 2682 if (RV.isScalar() || RV.isComplex()) { 2683 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 2684 LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign); 2685 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 2686 } else 2687 SrcPtr = RV.getAggregateAddr(); 2688 2689 // If the value is offset in memory, apply the offset now. 2690 if (unsigned Offs = ArgInfo.getDirectOffset()) { 2691 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 2692 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 2693 SrcPtr = Builder.CreateBitCast(SrcPtr, 2694 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 2695 2696 } 2697 2698 // If the coerce-to type is a first class aggregate, we flatten it and 2699 // pass the elements. Either way is semantically identical, but fast-isel 2700 // and the optimizer generally likes scalar values better than FCAs. 2701 if (llvm::StructType *STy = 2702 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 2703 llvm::Type *SrcTy = 2704 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 2705 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 2706 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 2707 2708 // If the source type is smaller than the destination type of the 2709 // coerce-to logic, copy the source value into a temp alloca the size 2710 // of the destination type to allow loading all of it. The bits past 2711 // the source value are left undef. 2712 if (SrcSize < DstSize) { 2713 llvm::AllocaInst *TempAlloca 2714 = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce"); 2715 Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0); 2716 SrcPtr = TempAlloca; 2717 } else { 2718 SrcPtr = Builder.CreateBitCast(SrcPtr, 2719 llvm::PointerType::getUnqual(STy)); 2720 } 2721 2722 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2723 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 2724 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 2725 // We don't know what we're loading from. 2726 LI->setAlignment(1); 2727 Args.push_back(LI); 2728 2729 // Validate argument match. 2730 checkArgMatches(LI, IRArgNo, IRFuncTy); 2731 } 2732 } else { 2733 // In the simple case, just pass the coerced loaded value. 2734 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 2735 *this)); 2736 2737 // Validate argument match. 2738 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 2739 } 2740 2741 break; 2742 } 2743 2744 case ABIArgInfo::Expand: 2745 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 2746 IRArgNo = Args.size(); 2747 break; 2748 } 2749 } 2750 2751 if (ArgMemory) { 2752 llvm::Value *Arg = ArgMemory; 2753 llvm::Type *LastParamTy = 2754 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 2755 if (Arg->getType() != LastParamTy) { 2756 #ifndef NDEBUG 2757 // Assert that these structs have equivalent element types. 2758 llvm::StructType *FullTy = CallInfo.getArgStruct(); 2759 llvm::StructType *Prefix = cast<llvm::StructType>( 2760 cast<llvm::PointerType>(LastParamTy)->getElementType()); 2761 2762 // For variadic functions, the caller might supply a larger struct than 2763 // the callee expects, and that's OK. 2764 assert(Prefix->getNumElements() == FullTy->getNumElements() || 2765 (CallInfo.isVariadic() && 2766 Prefix->getNumElements() <= FullTy->getNumElements())); 2767 2768 for (llvm::StructType::element_iterator PI = Prefix->element_begin(), 2769 PE = Prefix->element_end(), 2770 FI = FullTy->element_begin(); 2771 PI != PE; ++PI, ++FI) 2772 assert(*PI == *FI); 2773 #endif 2774 Arg = Builder.CreateBitCast(Arg, LastParamTy); 2775 } 2776 Args.push_back(Arg); 2777 } 2778 2779 if (!CallArgs.getCleanupsToDeactivate().empty()) 2780 deactivateArgCleanupsBeforeCall(*this, CallArgs); 2781 2782 // If the callee is a bitcast of a function to a varargs pointer to function 2783 // type, check to see if we can remove the bitcast. This handles some cases 2784 // with unprototyped functions. 2785 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 2786 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 2787 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 2788 llvm::FunctionType *CurFT = 2789 cast<llvm::FunctionType>(CurPT->getElementType()); 2790 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 2791 2792 if (CE->getOpcode() == llvm::Instruction::BitCast && 2793 ActualFT->getReturnType() == CurFT->getReturnType() && 2794 ActualFT->getNumParams() == CurFT->getNumParams() && 2795 ActualFT->getNumParams() == Args.size() && 2796 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 2797 bool ArgsMatch = true; 2798 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 2799 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 2800 ArgsMatch = false; 2801 break; 2802 } 2803 2804 // Strip the cast if we can get away with it. This is a nice cleanup, 2805 // but also allows us to inline the function at -O0 if it is marked 2806 // always_inline. 2807 if (ArgsMatch) 2808 Callee = CalleeF; 2809 } 2810 } 2811 2812 unsigned CallingConv; 2813 CodeGen::AttributeListType AttributeList; 2814 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, 2815 CallingConv, true); 2816 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 2817 AttributeList); 2818 2819 llvm::BasicBlock *InvokeDest = 0; 2820 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 2821 llvm::Attribute::NoUnwind)) 2822 InvokeDest = getInvokeDest(); 2823 2824 llvm::CallSite CS; 2825 if (!InvokeDest) { 2826 CS = Builder.CreateCall(Callee, Args); 2827 } else { 2828 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 2829 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); 2830 EmitBlock(Cont); 2831 } 2832 if (callOrInvoke) 2833 *callOrInvoke = CS.getInstruction(); 2834 2835 CS.setAttributes(Attrs); 2836 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2837 2838 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2839 // optimizer it can aggressively ignore unwind edges. 2840 if (CGM.getLangOpts().ObjCAutoRefCount) 2841 AddObjCARCExceptionMetadata(CS.getInstruction()); 2842 2843 // If the call doesn't return, finish the basic block and clear the 2844 // insertion point; this allows the rest of IRgen to discard 2845 // unreachable code. 2846 if (CS.doesNotReturn()) { 2847 Builder.CreateUnreachable(); 2848 Builder.ClearInsertionPoint(); 2849 2850 // FIXME: For now, emit a dummy basic block because expr emitters in 2851 // generally are not ready to handle emitting expressions at unreachable 2852 // points. 2853 EnsureInsertPoint(); 2854 2855 // Return a reasonable RValue. 2856 return GetUndefRValue(RetTy); 2857 } 2858 2859 llvm::Instruction *CI = CS.getInstruction(); 2860 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 2861 CI->setName("call"); 2862 2863 // Emit any writebacks immediately. Arguably this should happen 2864 // after any return-value munging. 2865 if (CallArgs.hasWritebacks()) 2866 emitWritebacks(*this, CallArgs); 2867 2868 // The stack cleanup for inalloca arguments has to run out of the normal 2869 // lexical order, so deactivate it and run it manually here. 2870 CallArgs.freeArgumentMemory(*this); 2871 2872 switch (RetAI.getKind()) { 2873 case ABIArgInfo::InAlloca: 2874 case ABIArgInfo::Indirect: 2875 return convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 2876 2877 case ABIArgInfo::Ignore: 2878 // If we are ignoring an argument that had a result, make sure to 2879 // construct the appropriate return value for our caller. 2880 return GetUndefRValue(RetTy); 2881 2882 case ABIArgInfo::Extend: 2883 case ABIArgInfo::Direct: { 2884 llvm::Type *RetIRTy = ConvertType(RetTy); 2885 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 2886 switch (getEvaluationKind(RetTy)) { 2887 case TEK_Complex: { 2888 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 2889 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 2890 return RValue::getComplex(std::make_pair(Real, Imag)); 2891 } 2892 case TEK_Aggregate: { 2893 llvm::Value *DestPtr = ReturnValue.getValue(); 2894 bool DestIsVolatile = ReturnValue.isVolatile(); 2895 2896 if (!DestPtr) { 2897 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 2898 DestIsVolatile = false; 2899 } 2900 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 2901 return RValue::getAggregate(DestPtr); 2902 } 2903 case TEK_Scalar: { 2904 // If the argument doesn't match, perform a bitcast to coerce it. This 2905 // can happen due to trivial type mismatches. 2906 llvm::Value *V = CI; 2907 if (V->getType() != RetIRTy) 2908 V = Builder.CreateBitCast(V, RetIRTy); 2909 return RValue::get(V); 2910 } 2911 } 2912 llvm_unreachable("bad evaluation kind"); 2913 } 2914 2915 llvm::Value *DestPtr = ReturnValue.getValue(); 2916 bool DestIsVolatile = ReturnValue.isVolatile(); 2917 2918 if (!DestPtr) { 2919 DestPtr = CreateMemTemp(RetTy, "coerce"); 2920 DestIsVolatile = false; 2921 } 2922 2923 // If the value is offset in memory, apply the offset now. 2924 llvm::Value *StorePtr = DestPtr; 2925 if (unsigned Offs = RetAI.getDirectOffset()) { 2926 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 2927 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 2928 StorePtr = Builder.CreateBitCast(StorePtr, 2929 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 2930 } 2931 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 2932 2933 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 2934 } 2935 2936 case ABIArgInfo::Expand: 2937 llvm_unreachable("Invalid ABI kind for return argument"); 2938 } 2939 2940 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 2941 } 2942 2943 /* VarArg handling */ 2944 2945 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 2946 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 2947 } 2948