1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification. Either or both of RD and MD may be null. A null RD indicates
73 /// that there is no meaningful 'this' type, and a null MD can occur when
74 /// calling a method pointer.
75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
76                                          const CXXMethodDecl *MD) {
77   QualType RecTy;
78   if (RD)
79     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
80   else
81     RecTy = Context.VoidTy;
82 
83   if (MD)
84     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
85   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
86 }
87 
88 /// Returns the canonical formal type of the given C++ method.
89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
90   return MD->getType()->getCanonicalTypeUnqualified()
91            .getAs<FunctionProtoType>();
92 }
93 
94 /// Returns the "extra-canonicalized" return type, which discards
95 /// qualifiers on the return type.  Codegen doesn't care about them,
96 /// and it makes ABI code a little easier to be able to assume that
97 /// all parameter and return types are top-level unqualified.
98 static CanQualType GetReturnType(QualType RetTy) {
99   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
100 }
101 
102 /// Arrange the argument and result information for a value of the given
103 /// unprototyped freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
106   // When translating an unprototyped function type, always use a
107   // variadic type.
108   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
109                                  /*instanceMethod=*/false,
110                                  /*chainCall=*/false, None,
111                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
112 }
113 
114 static void addExtParameterInfosForCall(
115          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
116                                         const FunctionProtoType *proto,
117                                         unsigned prefixArgs,
118                                         unsigned totalArgs) {
119   assert(proto->hasExtParameterInfos());
120   assert(paramInfos.size() <= prefixArgs);
121   assert(proto->getNumParams() + prefixArgs <= totalArgs);
122 
123   paramInfos.reserve(totalArgs);
124 
125   // Add default infos for any prefix args that don't already have infos.
126   paramInfos.resize(prefixArgs);
127 
128   // Add infos for the prototype.
129   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
130     paramInfos.push_back(ParamInfo);
131     // pass_object_size params have no parameter info.
132     if (ParamInfo.hasPassObjectSize())
133       paramInfos.emplace_back();
134   }
135 
136   assert(paramInfos.size() <= totalArgs &&
137          "Did we forget to insert pass_object_size args?");
138   // Add default infos for the variadic and/or suffix arguments.
139   paramInfos.resize(totalArgs);
140 }
141 
142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
144 static void appendParameterTypes(const CodeGenTypes &CGT,
145                                  SmallVectorImpl<CanQualType> &prefix,
146               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
147                                  CanQual<FunctionProtoType> FPT) {
148   // Fast path: don't touch param info if we don't need to.
149   if (!FPT->hasExtParameterInfos()) {
150     assert(paramInfos.empty() &&
151            "We have paramInfos, but the prototype doesn't?");
152     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
153     return;
154   }
155 
156   unsigned PrefixSize = prefix.size();
157   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
158   // parameters; the only thing that can change this is the presence of
159   // pass_object_size. So, we preallocate for the common case.
160   prefix.reserve(prefix.size() + FPT->getNumParams());
161 
162   auto ExtInfos = FPT->getExtParameterInfos();
163   assert(ExtInfos.size() == FPT->getNumParams());
164   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
165     prefix.push_back(FPT->getParamType(I));
166     if (ExtInfos[I].hasPassObjectSize())
167       prefix.push_back(CGT.getContext().getSizeType());
168   }
169 
170   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
171                               prefix.size());
172 }
173 
174 /// Arrange the LLVM function layout for a value of the given function
175 /// type, on top of any implicit parameters already stored.
176 static const CGFunctionInfo &
177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
178                         SmallVectorImpl<CanQualType> &prefix,
179                         CanQual<FunctionProtoType> FTP) {
180   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
181   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
182   // FIXME: Kill copy.
183   appendParameterTypes(CGT, prefix, paramInfos, FTP);
184   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
185 
186   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
187                                      /*chainCall=*/false, prefix,
188                                      FTP->getExtInfo(), paramInfos,
189                                      Required);
190 }
191 
192 /// Arrange the argument and result information for a value of the
193 /// given freestanding function type.
194 const CGFunctionInfo &
195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
196   SmallVector<CanQualType, 16> argTypes;
197   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
198                                    FTP);
199 }
200 
201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
202   // Set the appropriate calling convention for the Function.
203   if (D->hasAttr<StdCallAttr>())
204     return CC_X86StdCall;
205 
206   if (D->hasAttr<FastCallAttr>())
207     return CC_X86FastCall;
208 
209   if (D->hasAttr<RegCallAttr>())
210     return CC_X86RegCall;
211 
212   if (D->hasAttr<ThisCallAttr>())
213     return CC_X86ThisCall;
214 
215   if (D->hasAttr<VectorCallAttr>())
216     return CC_X86VectorCall;
217 
218   if (D->hasAttr<PascalAttr>())
219     return CC_X86Pascal;
220 
221   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
222     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
223 
224   if (D->hasAttr<AArch64VectorPcsAttr>())
225     return CC_AArch64VectorCall;
226 
227   if (D->hasAttr<IntelOclBiccAttr>())
228     return CC_IntelOclBicc;
229 
230   if (D->hasAttr<MSABIAttr>())
231     return IsWindows ? CC_C : CC_Win64;
232 
233   if (D->hasAttr<SysVABIAttr>())
234     return IsWindows ? CC_X86_64SysV : CC_C;
235 
236   if (D->hasAttr<PreserveMostAttr>())
237     return CC_PreserveMost;
238 
239   if (D->hasAttr<PreserveAllAttr>())
240     return CC_PreserveAll;
241 
242   return CC_C;
243 }
244 
245 /// Arrange the argument and result information for a call to an
246 /// unknown C++ non-static member function of the given abstract type.
247 /// (A null RD means we don't have any meaningful "this" argument type,
248 ///  so fall back to a generic pointer type).
249 /// The member function must be an ordinary function, i.e. not a
250 /// constructor or destructor.
251 const CGFunctionInfo &
252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
253                                    const FunctionProtoType *FTP,
254                                    const CXXMethodDecl *MD) {
255   SmallVector<CanQualType, 16> argTypes;
256 
257   // Add the 'this' pointer.
258   argTypes.push_back(DeriveThisType(RD, MD));
259 
260   return ::arrangeLLVMFunctionInfo(
261       *this, true, argTypes,
262       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
263 }
264 
265 /// Set calling convention for CUDA/HIP kernel.
266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
267                                            const FunctionDecl *FD) {
268   if (FD->hasAttr<CUDAGlobalAttr>()) {
269     const FunctionType *FT = FTy->getAs<FunctionType>();
270     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
271     FTy = FT->getCanonicalTypeUnqualified();
272   }
273 }
274 
275 /// Arrange the argument and result information for a declaration or
276 /// definition of the given C++ non-static member function.  The
277 /// member function must be an ordinary function, i.e. not a
278 /// constructor or destructor.
279 const CGFunctionInfo &
280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
281   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
282   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
283 
284   CanQualType FT = GetFormalType(MD).getAs<Type>();
285   setCUDAKernelCallingConvention(FT, CGM, MD);
286   auto prototype = FT.getAs<FunctionProtoType>();
287 
288   if (MD->isInstance()) {
289     // The abstract case is perfectly fine.
290     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
291     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
292   }
293 
294   return arrangeFreeFunctionType(prototype);
295 }
296 
297 bool CodeGenTypes::inheritingCtorHasParams(
298     const InheritedConstructor &Inherited, CXXCtorType Type) {
299   // Parameters are unnecessary if we're constructing a base class subobject
300   // and the inherited constructor lives in a virtual base.
301   return Type == Ctor_Complete ||
302          !Inherited.getShadowDecl()->constructsVirtualBase() ||
303          !Target.getCXXABI().hasConstructorVariants();
304 }
305 
306 const CGFunctionInfo &
307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
308   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
309 
310   SmallVector<CanQualType, 16> argTypes;
311   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
312   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
313 
314   bool PassParams = true;
315 
316   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317     // A base class inheriting constructor doesn't get forwarded arguments
318     // needed to construct a virtual base (or base class thereof).
319     if (auto Inherited = CD->getInheritedConstructor())
320       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
321   }
322 
323   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
324 
325   // Add the formal parameters.
326   if (PassParams)
327     appendParameterTypes(*this, argTypes, paramInfos, FTP);
328 
329   CGCXXABI::AddedStructorArgCounts AddedArgs =
330       TheCXXABI.buildStructorSignature(GD, argTypes);
331   if (!paramInfos.empty()) {
332     // Note: prefix implies after the first param.
333     if (AddedArgs.Prefix)
334       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
335                         FunctionProtoType::ExtParameterInfo{});
336     if (AddedArgs.Suffix)
337       paramInfos.append(AddedArgs.Suffix,
338                         FunctionProtoType::ExtParameterInfo{});
339   }
340 
341   RequiredArgs required =
342       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
343                                       : RequiredArgs::All);
344 
345   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
346   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
347                                ? argTypes.front()
348                                : TheCXXABI.hasMostDerivedReturn(GD)
349                                      ? CGM.getContext().VoidPtrTy
350                                      : Context.VoidTy;
351   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
352                                  /*chainCall=*/false, argTypes, extInfo,
353                                  paramInfos, required);
354 }
355 
356 static SmallVector<CanQualType, 16>
357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
358   SmallVector<CanQualType, 16> argTypes;
359   for (auto &arg : args)
360     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
361   return argTypes;
362 }
363 
364 static SmallVector<CanQualType, 16>
365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
366   SmallVector<CanQualType, 16> argTypes;
367   for (auto &arg : args)
368     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
369   return argTypes;
370 }
371 
372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
373 getExtParameterInfosForCall(const FunctionProtoType *proto,
374                             unsigned prefixArgs, unsigned totalArgs) {
375   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
376   if (proto->hasExtParameterInfos()) {
377     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
378   }
379   return result;
380 }
381 
382 /// Arrange a call to a C++ method, passing the given arguments.
383 ///
384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
385 /// parameter.
386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
387 /// args.
388 /// PassProtoArgs indicates whether `args` has args for the parameters in the
389 /// given CXXConstructorDecl.
390 const CGFunctionInfo &
391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
392                                         const CXXConstructorDecl *D,
393                                         CXXCtorType CtorKind,
394                                         unsigned ExtraPrefixArgs,
395                                         unsigned ExtraSuffixArgs,
396                                         bool PassProtoArgs) {
397   // FIXME: Kill copy.
398   SmallVector<CanQualType, 16> ArgTypes;
399   for (const auto &Arg : args)
400     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
401 
402   // +1 for implicit this, which should always be args[0].
403   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
404 
405   CanQual<FunctionProtoType> FPT = GetFormalType(D);
406   RequiredArgs Required = PassProtoArgs
407                               ? RequiredArgs::forPrototypePlus(
408                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
409                               : RequiredArgs::All;
410 
411   GlobalDecl GD(D, CtorKind);
412   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
413                                ? ArgTypes.front()
414                                : TheCXXABI.hasMostDerivedReturn(GD)
415                                      ? CGM.getContext().VoidPtrTy
416                                      : Context.VoidTy;
417 
418   FunctionType::ExtInfo Info = FPT->getExtInfo();
419   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
420   // If the prototype args are elided, we should only have ABI-specific args,
421   // which never have param info.
422   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
423     // ABI-specific suffix arguments are treated the same as variadic arguments.
424     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
425                                 ArgTypes.size());
426   }
427   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
428                                  /*chainCall=*/false, ArgTypes, Info,
429                                  ParamInfos, Required);
430 }
431 
432 /// Arrange the argument and result information for the declaration or
433 /// definition of the given function.
434 const CGFunctionInfo &
435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
436   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
437     if (MD->isInstance())
438       return arrangeCXXMethodDeclaration(MD);
439 
440   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
441 
442   assert(isa<FunctionType>(FTy));
443   setCUDAKernelCallingConvention(FTy, CGM, FD);
444 
445   // When declaring a function without a prototype, always use a
446   // non-variadic type.
447   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
448     return arrangeLLVMFunctionInfo(
449         noProto->getReturnType(), /*instanceMethod=*/false,
450         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
451   }
452 
453   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
454 }
455 
456 /// Arrange the argument and result information for the declaration or
457 /// definition of an Objective-C method.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
460   // It happens that this is the same as a call with no optional
461   // arguments, except also using the formal 'self' type.
462   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
463 }
464 
465 /// Arrange the argument and result information for the function type
466 /// through which to perform a send to the given Objective-C method,
467 /// using the given receiver type.  The receiver type is not always
468 /// the 'self' type of the method or even an Objective-C pointer type.
469 /// This is *not* the right method for actually performing such a
470 /// message send, due to the possibility of optional arguments.
471 const CGFunctionInfo &
472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
473                                               QualType receiverType) {
474   SmallVector<CanQualType, 16> argTys;
475   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
476   argTys.push_back(Context.getCanonicalParamType(receiverType));
477   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
478   // FIXME: Kill copy?
479   for (const auto *I : MD->parameters()) {
480     argTys.push_back(Context.getCanonicalParamType(I->getType()));
481     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
482         I->hasAttr<NoEscapeAttr>());
483     extParamInfos.push_back(extParamInfo);
484   }
485 
486   FunctionType::ExtInfo einfo;
487   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
488   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
489 
490   if (getContext().getLangOpts().ObjCAutoRefCount &&
491       MD->hasAttr<NSReturnsRetainedAttr>())
492     einfo = einfo.withProducesResult(true);
493 
494   RequiredArgs required =
495     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
496 
497   return arrangeLLVMFunctionInfo(
498       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
499       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
500 }
501 
502 const CGFunctionInfo &
503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
504                                                  const CallArgList &args) {
505   auto argTypes = getArgTypesForCall(Context, args);
506   FunctionType::ExtInfo einfo;
507 
508   return arrangeLLVMFunctionInfo(
509       GetReturnType(returnType), /*instanceMethod=*/false,
510       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
511 }
512 
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
515   // FIXME: Do we need to handle ObjCMethodDecl?
516   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
517 
518   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
519       isa<CXXDestructorDecl>(GD.getDecl()))
520     return arrangeCXXStructorDeclaration(GD);
521 
522   return arrangeFunctionDeclaration(FD);
523 }
524 
525 /// Arrange a thunk that takes 'this' as the first parameter followed by
526 /// varargs.  Return a void pointer, regardless of the actual return type.
527 /// The body of the thunk will end in a musttail call to a function of the
528 /// correct type, and the caller will bitcast the function to the correct
529 /// prototype.
530 const CGFunctionInfo &
531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
532   assert(MD->isVirtual() && "only methods have thunks");
533   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
534   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
535   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
536                                  /*chainCall=*/false, ArgTys,
537                                  FTP->getExtInfo(), {}, RequiredArgs(1));
538 }
539 
540 const CGFunctionInfo &
541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
542                                    CXXCtorType CT) {
543   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
544 
545   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
546   SmallVector<CanQualType, 2> ArgTys;
547   const CXXRecordDecl *RD = CD->getParent();
548   ArgTys.push_back(DeriveThisType(RD, CD));
549   if (CT == Ctor_CopyingClosure)
550     ArgTys.push_back(*FTP->param_type_begin());
551   if (RD->getNumVBases() > 0)
552     ArgTys.push_back(Context.IntTy);
553   CallingConv CC = Context.getDefaultCallingConvention(
554       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
555   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
556                                  /*chainCall=*/false, ArgTys,
557                                  FunctionType::ExtInfo(CC), {},
558                                  RequiredArgs::All);
559 }
560 
561 /// Arrange a call as unto a free function, except possibly with an
562 /// additional number of formal parameters considered required.
563 static const CGFunctionInfo &
564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
565                             CodeGenModule &CGM,
566                             const CallArgList &args,
567                             const FunctionType *fnType,
568                             unsigned numExtraRequiredArgs,
569                             bool chainCall) {
570   assert(args.size() >= numExtraRequiredArgs);
571 
572   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
573 
574   // In most cases, there are no optional arguments.
575   RequiredArgs required = RequiredArgs::All;
576 
577   // If we have a variadic prototype, the required arguments are the
578   // extra prefix plus the arguments in the prototype.
579   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
580     if (proto->isVariadic())
581       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
582 
583     if (proto->hasExtParameterInfos())
584       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
585                                   args.size());
586 
587   // If we don't have a prototype at all, but we're supposed to
588   // explicitly use the variadic convention for unprototyped calls,
589   // treat all of the arguments as required but preserve the nominal
590   // possibility of variadics.
591   } else if (CGM.getTargetCodeGenInfo()
592                 .isNoProtoCallVariadic(args,
593                                        cast<FunctionNoProtoType>(fnType))) {
594     required = RequiredArgs(args.size());
595   }
596 
597   // FIXME: Kill copy.
598   SmallVector<CanQualType, 16> argTypes;
599   for (const auto &arg : args)
600     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
601   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
602                                      /*instanceMethod=*/false, chainCall,
603                                      argTypes, fnType->getExtInfo(), paramInfos,
604                                      required);
605 }
606 
607 /// Figure out the rules for calling a function with the given formal
608 /// type using the given arguments.  The arguments are necessary
609 /// because the function might be unprototyped, in which case it's
610 /// target-dependent in crazy ways.
611 const CGFunctionInfo &
612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
613                                       const FunctionType *fnType,
614                                       bool chainCall) {
615   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
616                                      chainCall ? 1 : 0, chainCall);
617 }
618 
619 /// A block function is essentially a free function with an
620 /// extra implicit argument.
621 const CGFunctionInfo &
622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
623                                        const FunctionType *fnType) {
624   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
625                                      /*chainCall=*/false);
626 }
627 
628 const CGFunctionInfo &
629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
630                                               const FunctionArgList &params) {
631   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
632   auto argTypes = getArgTypesForDeclaration(Context, params);
633 
634   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
635                                  /*instanceMethod*/ false, /*chainCall*/ false,
636                                  argTypes, proto->getExtInfo(), paramInfos,
637                                  RequiredArgs::forPrototypePlus(proto, 1));
638 }
639 
640 const CGFunctionInfo &
641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
642                                          const CallArgList &args) {
643   // FIXME: Kill copy.
644   SmallVector<CanQualType, 16> argTypes;
645   for (const auto &Arg : args)
646     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
647   return arrangeLLVMFunctionInfo(
648       GetReturnType(resultType), /*instanceMethod=*/false,
649       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
650       /*paramInfos=*/ {}, RequiredArgs::All);
651 }
652 
653 const CGFunctionInfo &
654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
655                                                 const FunctionArgList &args) {
656   auto argTypes = getArgTypesForDeclaration(Context, args);
657 
658   return arrangeLLVMFunctionInfo(
659       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
660       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
661 }
662 
663 const CGFunctionInfo &
664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
665                                               ArrayRef<CanQualType> argTypes) {
666   return arrangeLLVMFunctionInfo(
667       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
668       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
669 }
670 
671 /// Arrange a call to a C++ method, passing the given arguments.
672 ///
673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
674 /// does not count `this`.
675 const CGFunctionInfo &
676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
677                                    const FunctionProtoType *proto,
678                                    RequiredArgs required,
679                                    unsigned numPrefixArgs) {
680   assert(numPrefixArgs + 1 <= args.size() &&
681          "Emitting a call with less args than the required prefix?");
682   // Add one to account for `this`. It's a bit awkward here, but we don't count
683   // `this` in similar places elsewhere.
684   auto paramInfos =
685     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
686 
687   // FIXME: Kill copy.
688   auto argTypes = getArgTypesForCall(Context, args);
689 
690   FunctionType::ExtInfo info = proto->getExtInfo();
691   return arrangeLLVMFunctionInfo(
692       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
693       /*chainCall=*/false, argTypes, info, paramInfos, required);
694 }
695 
696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
697   return arrangeLLVMFunctionInfo(
698       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
699       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
700 }
701 
702 const CGFunctionInfo &
703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
704                           const CallArgList &args) {
705   assert(signature.arg_size() <= args.size());
706   if (signature.arg_size() == args.size())
707     return signature;
708 
709   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
710   auto sigParamInfos = signature.getExtParameterInfos();
711   if (!sigParamInfos.empty()) {
712     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
713     paramInfos.resize(args.size());
714   }
715 
716   auto argTypes = getArgTypesForCall(Context, args);
717 
718   assert(signature.getRequiredArgs().allowsOptionalArgs());
719   return arrangeLLVMFunctionInfo(signature.getReturnType(),
720                                  signature.isInstanceMethod(),
721                                  signature.isChainCall(),
722                                  argTypes,
723                                  signature.getExtInfo(),
724                                  paramInfos,
725                                  signature.getRequiredArgs());
726 }
727 
728 namespace clang {
729 namespace CodeGen {
730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
731 }
732 }
733 
734 /// Arrange the argument and result information for an abstract value
735 /// of a given function type.  This is the method which all of the
736 /// above functions ultimately defer to.
737 const CGFunctionInfo &
738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
739                                       bool instanceMethod,
740                                       bool chainCall,
741                                       ArrayRef<CanQualType> argTypes,
742                                       FunctionType::ExtInfo info,
743                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
744                                       RequiredArgs required) {
745   assert(llvm::all_of(argTypes,
746                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
747 
748   // Lookup or create unique function info.
749   llvm::FoldingSetNodeID ID;
750   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
751                           required, resultType, argTypes);
752 
753   void *insertPos = nullptr;
754   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
755   if (FI)
756     return *FI;
757 
758   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
759 
760   // Construct the function info.  We co-allocate the ArgInfos.
761   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
762                               paramInfos, resultType, argTypes, required);
763   FunctionInfos.InsertNode(FI, insertPos);
764 
765   bool inserted = FunctionsBeingProcessed.insert(FI).second;
766   (void)inserted;
767   assert(inserted && "Recursively being processed?");
768 
769   // Compute ABI information.
770   if (CC == llvm::CallingConv::SPIR_KERNEL) {
771     // Force target independent argument handling for the host visible
772     // kernel functions.
773     computeSPIRKernelABIInfo(CGM, *FI);
774   } else if (info.getCC() == CC_Swift) {
775     swiftcall::computeABIInfo(CGM, *FI);
776   } else {
777     getABIInfo().computeInfo(*FI);
778   }
779 
780   // Loop over all of the computed argument and return value info.  If any of
781   // them are direct or extend without a specified coerce type, specify the
782   // default now.
783   ABIArgInfo &retInfo = FI->getReturnInfo();
784   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
785     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
786 
787   for (auto &I : FI->arguments())
788     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
789       I.info.setCoerceToType(ConvertType(I.type));
790 
791   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
792   assert(erased && "Not in set?");
793 
794   return *FI;
795 }
796 
797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
798                                        bool instanceMethod,
799                                        bool chainCall,
800                                        const FunctionType::ExtInfo &info,
801                                        ArrayRef<ExtParameterInfo> paramInfos,
802                                        CanQualType resultType,
803                                        ArrayRef<CanQualType> argTypes,
804                                        RequiredArgs required) {
805   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
806   assert(!required.allowsOptionalArgs() ||
807          required.getNumRequiredArgs() <= argTypes.size());
808 
809   void *buffer =
810     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
811                                   argTypes.size() + 1, paramInfos.size()));
812 
813   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
814   FI->CallingConvention = llvmCC;
815   FI->EffectiveCallingConvention = llvmCC;
816   FI->ASTCallingConvention = info.getCC();
817   FI->InstanceMethod = instanceMethod;
818   FI->ChainCall = chainCall;
819   FI->CmseNSCall = info.getCmseNSCall();
820   FI->NoReturn = info.getNoReturn();
821   FI->ReturnsRetained = info.getProducesResult();
822   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
823   FI->NoCfCheck = info.getNoCfCheck();
824   FI->Required = required;
825   FI->HasRegParm = info.getHasRegParm();
826   FI->RegParm = info.getRegParm();
827   FI->ArgStruct = nullptr;
828   FI->ArgStructAlign = 0;
829   FI->NumArgs = argTypes.size();
830   FI->HasExtParameterInfos = !paramInfos.empty();
831   FI->getArgsBuffer()[0].type = resultType;
832   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
833     FI->getArgsBuffer()[i + 1].type = argTypes[i];
834   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
835     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
836   return FI;
837 }
838 
839 /***/
840 
841 namespace {
842 // ABIArgInfo::Expand implementation.
843 
844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
845 struct TypeExpansion {
846   enum TypeExpansionKind {
847     // Elements of constant arrays are expanded recursively.
848     TEK_ConstantArray,
849     // Record fields are expanded recursively (but if record is a union, only
850     // the field with the largest size is expanded).
851     TEK_Record,
852     // For complex types, real and imaginary parts are expanded recursively.
853     TEK_Complex,
854     // All other types are not expandable.
855     TEK_None
856   };
857 
858   const TypeExpansionKind Kind;
859 
860   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
861   virtual ~TypeExpansion() {}
862 };
863 
864 struct ConstantArrayExpansion : TypeExpansion {
865   QualType EltTy;
866   uint64_t NumElts;
867 
868   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
869       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
870   static bool classof(const TypeExpansion *TE) {
871     return TE->Kind == TEK_ConstantArray;
872   }
873 };
874 
875 struct RecordExpansion : TypeExpansion {
876   SmallVector<const CXXBaseSpecifier *, 1> Bases;
877 
878   SmallVector<const FieldDecl *, 1> Fields;
879 
880   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
881                   SmallVector<const FieldDecl *, 1> &&Fields)
882       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
883         Fields(std::move(Fields)) {}
884   static bool classof(const TypeExpansion *TE) {
885     return TE->Kind == TEK_Record;
886   }
887 };
888 
889 struct ComplexExpansion : TypeExpansion {
890   QualType EltTy;
891 
892   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_Complex;
895   }
896 };
897 
898 struct NoExpansion : TypeExpansion {
899   NoExpansion() : TypeExpansion(TEK_None) {}
900   static bool classof(const TypeExpansion *TE) {
901     return TE->Kind == TEK_None;
902   }
903 };
904 }  // namespace
905 
906 static std::unique_ptr<TypeExpansion>
907 getTypeExpansion(QualType Ty, const ASTContext &Context) {
908   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
909     return std::make_unique<ConstantArrayExpansion>(
910         AT->getElementType(), AT->getSize().getZExtValue());
911   }
912   if (const RecordType *RT = Ty->getAs<RecordType>()) {
913     SmallVector<const CXXBaseSpecifier *, 1> Bases;
914     SmallVector<const FieldDecl *, 1> Fields;
915     const RecordDecl *RD = RT->getDecl();
916     assert(!RD->hasFlexibleArrayMember() &&
917            "Cannot expand structure with flexible array.");
918     if (RD->isUnion()) {
919       // Unions can be here only in degenerative cases - all the fields are same
920       // after flattening. Thus we have to use the "largest" field.
921       const FieldDecl *LargestFD = nullptr;
922       CharUnits UnionSize = CharUnits::Zero();
923 
924       for (const auto *FD : RD->fields()) {
925         if (FD->isZeroLengthBitField(Context))
926           continue;
927         assert(!FD->isBitField() &&
928                "Cannot expand structure with bit-field members.");
929         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
930         if (UnionSize < FieldSize) {
931           UnionSize = FieldSize;
932           LargestFD = FD;
933         }
934       }
935       if (LargestFD)
936         Fields.push_back(LargestFD);
937     } else {
938       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
939         assert(!CXXRD->isDynamicClass() &&
940                "cannot expand vtable pointers in dynamic classes");
941         for (const CXXBaseSpecifier &BS : CXXRD->bases())
942           Bases.push_back(&BS);
943       }
944 
945       for (const auto *FD : RD->fields()) {
946         if (FD->isZeroLengthBitField(Context))
947           continue;
948         assert(!FD->isBitField() &&
949                "Cannot expand structure with bit-field members.");
950         Fields.push_back(FD);
951       }
952     }
953     return std::make_unique<RecordExpansion>(std::move(Bases),
954                                               std::move(Fields));
955   }
956   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
957     return std::make_unique<ComplexExpansion>(CT->getElementType());
958   }
959   return std::make_unique<NoExpansion>();
960 }
961 
962 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
963   auto Exp = getTypeExpansion(Ty, Context);
964   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
965     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
966   }
967   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
968     int Res = 0;
969     for (auto BS : RExp->Bases)
970       Res += getExpansionSize(BS->getType(), Context);
971     for (auto FD : RExp->Fields)
972       Res += getExpansionSize(FD->getType(), Context);
973     return Res;
974   }
975   if (isa<ComplexExpansion>(Exp.get()))
976     return 2;
977   assert(isa<NoExpansion>(Exp.get()));
978   return 1;
979 }
980 
981 void
982 CodeGenTypes::getExpandedTypes(QualType Ty,
983                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
984   auto Exp = getTypeExpansion(Ty, Context);
985   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
986     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
987       getExpandedTypes(CAExp->EltTy, TI);
988     }
989   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     for (auto BS : RExp->Bases)
991       getExpandedTypes(BS->getType(), TI);
992     for (auto FD : RExp->Fields)
993       getExpandedTypes(FD->getType(), TI);
994   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
995     llvm::Type *EltTy = ConvertType(CExp->EltTy);
996     *TI++ = EltTy;
997     *TI++ = EltTy;
998   } else {
999     assert(isa<NoExpansion>(Exp.get()));
1000     *TI++ = ConvertType(Ty);
1001   }
1002 }
1003 
1004 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1005                                       ConstantArrayExpansion *CAE,
1006                                       Address BaseAddr,
1007                                       llvm::function_ref<void(Address)> Fn) {
1008   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1009   CharUnits EltAlign =
1010     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1011 
1012   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1013     llvm::Value *EltAddr =
1014       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1015     Fn(Address(EltAddr, EltAlign));
1016   }
1017 }
1018 
1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1020                                          llvm::Function::arg_iterator &AI) {
1021   assert(LV.isSimple() &&
1022          "Unexpected non-simple lvalue during struct expansion.");
1023 
1024   auto Exp = getTypeExpansion(Ty, getContext());
1025   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1026     forConstantArrayExpansion(
1027         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1028           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1029           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1030         });
1031   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1032     Address This = LV.getAddress(*this);
1033     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1034       // Perform a single step derived-to-base conversion.
1035       Address Base =
1036           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1037                                 /*NullCheckValue=*/false, SourceLocation());
1038       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1039 
1040       // Recurse onto bases.
1041       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1042     }
1043     for (auto FD : RExp->Fields) {
1044       // FIXME: What are the right qualifiers here?
1045       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1046       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1047     }
1048   } else if (isa<ComplexExpansion>(Exp.get())) {
1049     auto realValue = &*AI++;
1050     auto imagValue = &*AI++;
1051     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1052   } else {
1053     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1054     // primitive store.
1055     assert(isa<NoExpansion>(Exp.get()));
1056     if (LV.isBitField())
1057       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1058     else
1059       EmitStoreOfScalar(&*AI++, LV);
1060   }
1061 }
1062 
1063 void CodeGenFunction::ExpandTypeToArgs(
1064     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1065     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1066   auto Exp = getTypeExpansion(Ty, getContext());
1067   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1068     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1069                                    : Arg.getKnownRValue().getAggregateAddress();
1070     forConstantArrayExpansion(
1071         *this, CAExp, Addr, [&](Address EltAddr) {
1072           CallArg EltArg = CallArg(
1073               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1074               CAExp->EltTy);
1075           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1076                            IRCallArgPos);
1077         });
1078   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1079     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1080                                    : Arg.getKnownRValue().getAggregateAddress();
1081     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1082       // Perform a single step derived-to-base conversion.
1083       Address Base =
1084           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1085                                 /*NullCheckValue=*/false, SourceLocation());
1086       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1087 
1088       // Recurse onto bases.
1089       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1090                        IRCallArgPos);
1091     }
1092 
1093     LValue LV = MakeAddrLValue(This, Ty);
1094     for (auto FD : RExp->Fields) {
1095       CallArg FldArg =
1096           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1097       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1098                        IRCallArgPos);
1099     }
1100   } else if (isa<ComplexExpansion>(Exp.get())) {
1101     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1102     IRCallArgs[IRCallArgPos++] = CV.first;
1103     IRCallArgs[IRCallArgPos++] = CV.second;
1104   } else {
1105     assert(isa<NoExpansion>(Exp.get()));
1106     auto RV = Arg.getKnownRValue();
1107     assert(RV.isScalar() &&
1108            "Unexpected non-scalar rvalue during struct expansion.");
1109 
1110     // Insert a bitcast as needed.
1111     llvm::Value *V = RV.getScalarVal();
1112     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1113         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1114       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1115 
1116     IRCallArgs[IRCallArgPos++] = V;
1117   }
1118 }
1119 
1120 /// Create a temporary allocation for the purposes of coercion.
1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1122                                            CharUnits MinAlign,
1123                                            const Twine &Name = "tmp") {
1124   // Don't use an alignment that's worse than what LLVM would prefer.
1125   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1126   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1127 
1128   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1129 }
1130 
1131 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1132 /// accessing some number of bytes out of it, try to gep into the struct to get
1133 /// at its inner goodness.  Dive as deep as possible without entering an element
1134 /// with an in-memory size smaller than DstSize.
1135 static Address
1136 EnterStructPointerForCoercedAccess(Address SrcPtr,
1137                                    llvm::StructType *SrcSTy,
1138                                    uint64_t DstSize, CodeGenFunction &CGF) {
1139   // We can't dive into a zero-element struct.
1140   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1141 
1142   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1143 
1144   // If the first elt is at least as large as what we're looking for, or if the
1145   // first element is the same size as the whole struct, we can enter it. The
1146   // comparison must be made on the store size and not the alloca size. Using
1147   // the alloca size may overstate the size of the load.
1148   uint64_t FirstEltSize =
1149     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1150   if (FirstEltSize < DstSize &&
1151       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1152     return SrcPtr;
1153 
1154   // GEP into the first element.
1155   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1156 
1157   // If the first element is a struct, recurse.
1158   llvm::Type *SrcTy = SrcPtr.getElementType();
1159   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1160     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1161 
1162   return SrcPtr;
1163 }
1164 
1165 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1166 /// are either integers or pointers.  This does a truncation of the value if it
1167 /// is too large or a zero extension if it is too small.
1168 ///
1169 /// This behaves as if the value were coerced through memory, so on big-endian
1170 /// targets the high bits are preserved in a truncation, while little-endian
1171 /// targets preserve the low bits.
1172 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1173                                              llvm::Type *Ty,
1174                                              CodeGenFunction &CGF) {
1175   if (Val->getType() == Ty)
1176     return Val;
1177 
1178   if (isa<llvm::PointerType>(Val->getType())) {
1179     // If this is Pointer->Pointer avoid conversion to and from int.
1180     if (isa<llvm::PointerType>(Ty))
1181       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1182 
1183     // Convert the pointer to an integer so we can play with its width.
1184     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1185   }
1186 
1187   llvm::Type *DestIntTy = Ty;
1188   if (isa<llvm::PointerType>(DestIntTy))
1189     DestIntTy = CGF.IntPtrTy;
1190 
1191   if (Val->getType() != DestIntTy) {
1192     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1193     if (DL.isBigEndian()) {
1194       // Preserve the high bits on big-endian targets.
1195       // That is what memory coercion does.
1196       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1197       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1198 
1199       if (SrcSize > DstSize) {
1200         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1201         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1202       } else {
1203         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1204         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1205       }
1206     } else {
1207       // Little-endian targets preserve the low bits. No shifts required.
1208       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1209     }
1210   }
1211 
1212   if (isa<llvm::PointerType>(Ty))
1213     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1214   return Val;
1215 }
1216 
1217 
1218 
1219 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1220 /// a pointer to an object of type \arg Ty, known to be aligned to
1221 /// \arg SrcAlign bytes.
1222 ///
1223 /// This safely handles the case when the src type is smaller than the
1224 /// destination type; in this situation the values of bits which not
1225 /// present in the src are undefined.
1226 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1227                                       CodeGenFunction &CGF) {
1228   llvm::Type *SrcTy = Src.getElementType();
1229 
1230   // If SrcTy and Ty are the same, just do a load.
1231   if (SrcTy == Ty)
1232     return CGF.Builder.CreateLoad(Src);
1233 
1234   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1235 
1236   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1237     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1238                                              DstSize.getFixedSize(), CGF);
1239     SrcTy = Src.getElementType();
1240   }
1241 
1242   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1243 
1244   // If the source and destination are integer or pointer types, just do an
1245   // extension or truncation to the desired type.
1246   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1247       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1248     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1249     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1250   }
1251 
1252   // If load is legal, just bitcast the src pointer.
1253   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1254       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1255     // Generally SrcSize is never greater than DstSize, since this means we are
1256     // losing bits. However, this can happen in cases where the structure has
1257     // additional padding, for example due to a user specified alignment.
1258     //
1259     // FIXME: Assert that we aren't truncating non-padding bits when have access
1260     // to that information.
1261     Src = CGF.Builder.CreateBitCast(Src,
1262                                     Ty->getPointerTo(Src.getAddressSpace()));
1263     return CGF.Builder.CreateLoad(Src);
1264   }
1265 
1266   // Otherwise do coercion through memory. This is stupid, but simple.
1267   Address Tmp =
1268       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1269   CGF.Builder.CreateMemCpy(
1270       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1271       Src.getAlignment().getAsAlign(),
1272       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1273   return CGF.Builder.CreateLoad(Tmp);
1274 }
1275 
1276 // Function to store a first-class aggregate into memory.  We prefer to
1277 // store the elements rather than the aggregate to be more friendly to
1278 // fast-isel.
1279 // FIXME: Do we need to recurse here?
1280 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1281                                          bool DestIsVolatile) {
1282   // Prefer scalar stores to first-class aggregate stores.
1283   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1284     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1285       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1286       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1287       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1288     }
1289   } else {
1290     Builder.CreateStore(Val, Dest, DestIsVolatile);
1291   }
1292 }
1293 
1294 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1295 /// where the source and destination may have different types.  The
1296 /// destination is known to be aligned to \arg DstAlign bytes.
1297 ///
1298 /// This safely handles the case when the src type is larger than the
1299 /// destination type; the upper bits of the src will be lost.
1300 static void CreateCoercedStore(llvm::Value *Src,
1301                                Address Dst,
1302                                bool DstIsVolatile,
1303                                CodeGenFunction &CGF) {
1304   llvm::Type *SrcTy = Src->getType();
1305   llvm::Type *DstTy = Dst.getElementType();
1306   if (SrcTy == DstTy) {
1307     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1308     return;
1309   }
1310 
1311   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1312 
1313   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1314     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1315                                              SrcSize.getFixedSize(), CGF);
1316     DstTy = Dst.getElementType();
1317   }
1318 
1319   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1320   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1321   if (SrcPtrTy && DstPtrTy &&
1322       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1323     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1324     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1325     return;
1326   }
1327 
1328   // If the source and destination are integer or pointer types, just do an
1329   // extension or truncation to the desired type.
1330   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1331       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1332     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1333     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1334     return;
1335   }
1336 
1337   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1338 
1339   // If store is legal, just bitcast the src pointer.
1340   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1341       isa<llvm::ScalableVectorType>(DstTy) ||
1342       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1343     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1344     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1345   } else {
1346     // Otherwise do coercion through memory. This is stupid, but
1347     // simple.
1348 
1349     // Generally SrcSize is never greater than DstSize, since this means we are
1350     // losing bits. However, this can happen in cases where the structure has
1351     // additional padding, for example due to a user specified alignment.
1352     //
1353     // FIXME: Assert that we aren't truncating non-padding bits when have access
1354     // to that information.
1355     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1356     CGF.Builder.CreateStore(Src, Tmp);
1357     CGF.Builder.CreateMemCpy(
1358         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1359         Tmp.getAlignment().getAsAlign(),
1360         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1361   }
1362 }
1363 
1364 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1365                                    const ABIArgInfo &info) {
1366   if (unsigned offset = info.getDirectOffset()) {
1367     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1368     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1369                                              CharUnits::fromQuantity(offset));
1370     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1371   }
1372   return addr;
1373 }
1374 
1375 namespace {
1376 
1377 /// Encapsulates information about the way function arguments from
1378 /// CGFunctionInfo should be passed to actual LLVM IR function.
1379 class ClangToLLVMArgMapping {
1380   static const unsigned InvalidIndex = ~0U;
1381   unsigned InallocaArgNo;
1382   unsigned SRetArgNo;
1383   unsigned TotalIRArgs;
1384 
1385   /// Arguments of LLVM IR function corresponding to single Clang argument.
1386   struct IRArgs {
1387     unsigned PaddingArgIndex;
1388     // Argument is expanded to IR arguments at positions
1389     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1390     unsigned FirstArgIndex;
1391     unsigned NumberOfArgs;
1392 
1393     IRArgs()
1394         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1395           NumberOfArgs(0) {}
1396   };
1397 
1398   SmallVector<IRArgs, 8> ArgInfo;
1399 
1400 public:
1401   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1402                         bool OnlyRequiredArgs = false)
1403       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1404         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1405     construct(Context, FI, OnlyRequiredArgs);
1406   }
1407 
1408   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1409   unsigned getInallocaArgNo() const {
1410     assert(hasInallocaArg());
1411     return InallocaArgNo;
1412   }
1413 
1414   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1415   unsigned getSRetArgNo() const {
1416     assert(hasSRetArg());
1417     return SRetArgNo;
1418   }
1419 
1420   unsigned totalIRArgs() const { return TotalIRArgs; }
1421 
1422   bool hasPaddingArg(unsigned ArgNo) const {
1423     assert(ArgNo < ArgInfo.size());
1424     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1425   }
1426   unsigned getPaddingArgNo(unsigned ArgNo) const {
1427     assert(hasPaddingArg(ArgNo));
1428     return ArgInfo[ArgNo].PaddingArgIndex;
1429   }
1430 
1431   /// Returns index of first IR argument corresponding to ArgNo, and their
1432   /// quantity.
1433   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1434     assert(ArgNo < ArgInfo.size());
1435     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1436                           ArgInfo[ArgNo].NumberOfArgs);
1437   }
1438 
1439 private:
1440   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1441                  bool OnlyRequiredArgs);
1442 };
1443 
1444 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1445                                       const CGFunctionInfo &FI,
1446                                       bool OnlyRequiredArgs) {
1447   unsigned IRArgNo = 0;
1448   bool SwapThisWithSRet = false;
1449   const ABIArgInfo &RetAI = FI.getReturnInfo();
1450 
1451   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1452     SwapThisWithSRet = RetAI.isSRetAfterThis();
1453     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1454   }
1455 
1456   unsigned ArgNo = 0;
1457   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1458   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1459        ++I, ++ArgNo) {
1460     assert(I != FI.arg_end());
1461     QualType ArgType = I->type;
1462     const ABIArgInfo &AI = I->info;
1463     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1464     auto &IRArgs = ArgInfo[ArgNo];
1465 
1466     if (AI.getPaddingType())
1467       IRArgs.PaddingArgIndex = IRArgNo++;
1468 
1469     switch (AI.getKind()) {
1470     case ABIArgInfo::Extend:
1471     case ABIArgInfo::Direct: {
1472       // FIXME: handle sseregparm someday...
1473       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1474       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1475         IRArgs.NumberOfArgs = STy->getNumElements();
1476       } else {
1477         IRArgs.NumberOfArgs = 1;
1478       }
1479       break;
1480     }
1481     case ABIArgInfo::Indirect:
1482     case ABIArgInfo::IndirectAliased:
1483       IRArgs.NumberOfArgs = 1;
1484       break;
1485     case ABIArgInfo::Ignore:
1486     case ABIArgInfo::InAlloca:
1487       // ignore and inalloca doesn't have matching LLVM parameters.
1488       IRArgs.NumberOfArgs = 0;
1489       break;
1490     case ABIArgInfo::CoerceAndExpand:
1491       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1492       break;
1493     case ABIArgInfo::Expand:
1494       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1495       break;
1496     }
1497 
1498     if (IRArgs.NumberOfArgs > 0) {
1499       IRArgs.FirstArgIndex = IRArgNo;
1500       IRArgNo += IRArgs.NumberOfArgs;
1501     }
1502 
1503     // Skip over the sret parameter when it comes second.  We already handled it
1504     // above.
1505     if (IRArgNo == 1 && SwapThisWithSRet)
1506       IRArgNo++;
1507   }
1508   assert(ArgNo == ArgInfo.size());
1509 
1510   if (FI.usesInAlloca())
1511     InallocaArgNo = IRArgNo++;
1512 
1513   TotalIRArgs = IRArgNo;
1514 }
1515 }  // namespace
1516 
1517 /***/
1518 
1519 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1520   const auto &RI = FI.getReturnInfo();
1521   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1522 }
1523 
1524 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1525   return ReturnTypeUsesSRet(FI) &&
1526          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1527 }
1528 
1529 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1530   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1531     switch (BT->getKind()) {
1532     default:
1533       return false;
1534     case BuiltinType::Float:
1535       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1536     case BuiltinType::Double:
1537       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1538     case BuiltinType::LongDouble:
1539       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1540     }
1541   }
1542 
1543   return false;
1544 }
1545 
1546 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1547   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1548     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1549       if (BT->getKind() == BuiltinType::LongDouble)
1550         return getTarget().useObjCFP2RetForComplexLongDouble();
1551     }
1552   }
1553 
1554   return false;
1555 }
1556 
1557 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1558   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1559   return GetFunctionType(FI);
1560 }
1561 
1562 llvm::FunctionType *
1563 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1564 
1565   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1566   (void)Inserted;
1567   assert(Inserted && "Recursively being processed?");
1568 
1569   llvm::Type *resultType = nullptr;
1570   const ABIArgInfo &retAI = FI.getReturnInfo();
1571   switch (retAI.getKind()) {
1572   case ABIArgInfo::Expand:
1573   case ABIArgInfo::IndirectAliased:
1574     llvm_unreachable("Invalid ABI kind for return argument");
1575 
1576   case ABIArgInfo::Extend:
1577   case ABIArgInfo::Direct:
1578     resultType = retAI.getCoerceToType();
1579     break;
1580 
1581   case ABIArgInfo::InAlloca:
1582     if (retAI.getInAllocaSRet()) {
1583       // sret things on win32 aren't void, they return the sret pointer.
1584       QualType ret = FI.getReturnType();
1585       llvm::Type *ty = ConvertType(ret);
1586       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1587       resultType = llvm::PointerType::get(ty, addressSpace);
1588     } else {
1589       resultType = llvm::Type::getVoidTy(getLLVMContext());
1590     }
1591     break;
1592 
1593   case ABIArgInfo::Indirect:
1594   case ABIArgInfo::Ignore:
1595     resultType = llvm::Type::getVoidTy(getLLVMContext());
1596     break;
1597 
1598   case ABIArgInfo::CoerceAndExpand:
1599     resultType = retAI.getUnpaddedCoerceAndExpandType();
1600     break;
1601   }
1602 
1603   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1604   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1605 
1606   // Add type for sret argument.
1607   if (IRFunctionArgs.hasSRetArg()) {
1608     QualType Ret = FI.getReturnType();
1609     llvm::Type *Ty = ConvertType(Ret);
1610     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1611     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1612         llvm::PointerType::get(Ty, AddressSpace);
1613   }
1614 
1615   // Add type for inalloca argument.
1616   if (IRFunctionArgs.hasInallocaArg()) {
1617     auto ArgStruct = FI.getArgStruct();
1618     assert(ArgStruct);
1619     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1620   }
1621 
1622   // Add in all of the required arguments.
1623   unsigned ArgNo = 0;
1624   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1625                                      ie = it + FI.getNumRequiredArgs();
1626   for (; it != ie; ++it, ++ArgNo) {
1627     const ABIArgInfo &ArgInfo = it->info;
1628 
1629     // Insert a padding type to ensure proper alignment.
1630     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1631       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1632           ArgInfo.getPaddingType();
1633 
1634     unsigned FirstIRArg, NumIRArgs;
1635     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1636 
1637     switch (ArgInfo.getKind()) {
1638     case ABIArgInfo::Ignore:
1639     case ABIArgInfo::InAlloca:
1640       assert(NumIRArgs == 0);
1641       break;
1642 
1643     case ABIArgInfo::Indirect: {
1644       assert(NumIRArgs == 1);
1645       // indirect arguments are always on the stack, which is alloca addr space.
1646       llvm::Type *LTy = ConvertTypeForMem(it->type);
1647       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1648           CGM.getDataLayout().getAllocaAddrSpace());
1649       break;
1650     }
1651     case ABIArgInfo::IndirectAliased: {
1652       assert(NumIRArgs == 1);
1653       llvm::Type *LTy = ConvertTypeForMem(it->type);
1654       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1655       break;
1656     }
1657     case ABIArgInfo::Extend:
1658     case ABIArgInfo::Direct: {
1659       // Fast-isel and the optimizer generally like scalar values better than
1660       // FCAs, so we flatten them if this is safe to do for this argument.
1661       llvm::Type *argType = ArgInfo.getCoerceToType();
1662       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1663       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1664         assert(NumIRArgs == st->getNumElements());
1665         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1666           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1667       } else {
1668         assert(NumIRArgs == 1);
1669         ArgTypes[FirstIRArg] = argType;
1670       }
1671       break;
1672     }
1673 
1674     case ABIArgInfo::CoerceAndExpand: {
1675       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1676       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1677         *ArgTypesIter++ = EltTy;
1678       }
1679       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1680       break;
1681     }
1682 
1683     case ABIArgInfo::Expand:
1684       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1685       getExpandedTypes(it->type, ArgTypesIter);
1686       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1687       break;
1688     }
1689   }
1690 
1691   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1692   assert(Erased && "Not in set?");
1693 
1694   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1695 }
1696 
1697 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1698   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1699   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1700 
1701   if (!isFuncTypeConvertible(FPT))
1702     return llvm::StructType::get(getLLVMContext());
1703 
1704   return GetFunctionType(GD);
1705 }
1706 
1707 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1708                                                llvm::AttrBuilder &FuncAttrs,
1709                                                const FunctionProtoType *FPT) {
1710   if (!FPT)
1711     return;
1712 
1713   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1714       FPT->isNothrow())
1715     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1716 }
1717 
1718 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1719                                                  bool HasOptnone,
1720                                                  bool AttrOnCallSite,
1721                                                llvm::AttrBuilder &FuncAttrs) {
1722   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1723   if (!HasOptnone) {
1724     if (CodeGenOpts.OptimizeSize)
1725       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1726     if (CodeGenOpts.OptimizeSize == 2)
1727       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1728   }
1729 
1730   if (CodeGenOpts.DisableRedZone)
1731     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1732   if (CodeGenOpts.IndirectTlsSegRefs)
1733     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1734   if (CodeGenOpts.NoImplicitFloat)
1735     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1736 
1737   if (AttrOnCallSite) {
1738     // Attributes that should go on the call site only.
1739     if (!CodeGenOpts.SimplifyLibCalls ||
1740         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1741       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1742     if (!CodeGenOpts.TrapFuncName.empty())
1743       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1744   } else {
1745     StringRef FpKind;
1746     switch (CodeGenOpts.getFramePointer()) {
1747     case CodeGenOptions::FramePointerKind::None:
1748       FpKind = "none";
1749       break;
1750     case CodeGenOptions::FramePointerKind::NonLeaf:
1751       FpKind = "non-leaf";
1752       break;
1753     case CodeGenOptions::FramePointerKind::All:
1754       FpKind = "all";
1755       break;
1756     }
1757     FuncAttrs.addAttribute("frame-pointer", FpKind);
1758 
1759     FuncAttrs.addAttribute("less-precise-fpmad",
1760                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1761 
1762     if (CodeGenOpts.NullPointerIsValid)
1763       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1764 
1765     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1766       FuncAttrs.addAttribute("denormal-fp-math",
1767                              CodeGenOpts.FPDenormalMode.str());
1768     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1769       FuncAttrs.addAttribute(
1770           "denormal-fp-math-f32",
1771           CodeGenOpts.FP32DenormalMode.str());
1772     }
1773 
1774     FuncAttrs.addAttribute("no-trapping-math",
1775                            llvm::toStringRef(LangOpts.getFPExceptionMode() ==
1776                                              LangOptions::FPE_Ignore));
1777 
1778     // Strict (compliant) code is the default, so only add this attribute to
1779     // indicate that we are trying to workaround a problem case.
1780     if (!CodeGenOpts.StrictFloatCastOverflow)
1781       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1782 
1783     // TODO: Are these all needed?
1784     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1785     FuncAttrs.addAttribute("no-infs-fp-math",
1786                            llvm::toStringRef(LangOpts.NoHonorInfs));
1787     FuncAttrs.addAttribute("no-nans-fp-math",
1788                            llvm::toStringRef(LangOpts.NoHonorNaNs));
1789     FuncAttrs.addAttribute("unsafe-fp-math",
1790                            llvm::toStringRef(LangOpts.UnsafeFPMath));
1791     FuncAttrs.addAttribute("use-soft-float",
1792                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1793     FuncAttrs.addAttribute("stack-protector-buffer-size",
1794                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1795     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1796                            llvm::toStringRef(LangOpts.NoSignedZero));
1797     FuncAttrs.addAttribute(
1798         "correctly-rounded-divide-sqrt-fp-math",
1799         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1800 
1801     // TODO: Reciprocal estimate codegen options should apply to instructions?
1802     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1803     if (!Recips.empty())
1804       FuncAttrs.addAttribute("reciprocal-estimates",
1805                              llvm::join(Recips, ","));
1806 
1807     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1808         CodeGenOpts.PreferVectorWidth != "none")
1809       FuncAttrs.addAttribute("prefer-vector-width",
1810                              CodeGenOpts.PreferVectorWidth);
1811 
1812     if (CodeGenOpts.StackRealignment)
1813       FuncAttrs.addAttribute("stackrealign");
1814     if (CodeGenOpts.Backchain)
1815       FuncAttrs.addAttribute("backchain");
1816     if (CodeGenOpts.EnableSegmentedStacks)
1817       FuncAttrs.addAttribute("split-stack");
1818 
1819     if (CodeGenOpts.SpeculativeLoadHardening)
1820       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1821   }
1822 
1823   if (getLangOpts().assumeFunctionsAreConvergent()) {
1824     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1825     // convergent (meaning, they may call an intrinsically convergent op, such
1826     // as __syncthreads() / barrier(), and so can't have certain optimizations
1827     // applied around them).  LLVM will remove this attribute where it safely
1828     // can.
1829     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1830   }
1831 
1832   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1833     // Exceptions aren't supported in CUDA device code.
1834     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1835   }
1836 
1837   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1838     StringRef Var, Value;
1839     std::tie(Var, Value) = Attr.split('=');
1840     FuncAttrs.addAttribute(Var, Value);
1841   }
1842 }
1843 
1844 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1845   llvm::AttrBuilder FuncAttrs;
1846   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1847                                /* AttrOnCallSite = */ false, FuncAttrs);
1848   // TODO: call GetCPUAndFeaturesAttributes?
1849   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1850 }
1851 
1852 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1853                                                    llvm::AttrBuilder &attrs) {
1854   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1855                                /*for call*/ false, attrs);
1856   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1857 }
1858 
1859 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1860                                    const LangOptions &LangOpts,
1861                                    const NoBuiltinAttr *NBA = nullptr) {
1862   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1863     SmallString<32> AttributeName;
1864     AttributeName += "no-builtin-";
1865     AttributeName += BuiltinName;
1866     FuncAttrs.addAttribute(AttributeName);
1867   };
1868 
1869   // First, handle the language options passed through -fno-builtin.
1870   if (LangOpts.NoBuiltin) {
1871     // -fno-builtin disables them all.
1872     FuncAttrs.addAttribute("no-builtins");
1873     return;
1874   }
1875 
1876   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1877   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1878 
1879   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1880   // the source.
1881   if (!NBA)
1882     return;
1883 
1884   // If there is a wildcard in the builtin names specified through the
1885   // attribute, disable them all.
1886   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1887     FuncAttrs.addAttribute("no-builtins");
1888     return;
1889   }
1890 
1891   // And last, add the rest of the builtin names.
1892   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1893 }
1894 
1895 /// Construct the IR attribute list of a function or call.
1896 ///
1897 /// When adding an attribute, please consider where it should be handled:
1898 ///
1899 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1900 ///     part of the global target configuration (but perhaps can be
1901 ///     overridden on a per-function basis).  Adding attributes there
1902 ///     will cause them to also be set in frontends that build on Clang's
1903 ///     target-configuration logic, as well as for code defined in library
1904 ///     modules such as CUDA's libdevice.
1905 ///
1906 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1907 ///     and adds declaration-specific, convention-specific, and
1908 ///     frontend-specific logic.  The last is of particular importance:
1909 ///     attributes that restrict how the frontend generates code must be
1910 ///     added here rather than getDefaultFunctionAttributes.
1911 ///
1912 void CodeGenModule::ConstructAttributeList(
1913     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1914     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1915   llvm::AttrBuilder FuncAttrs;
1916   llvm::AttrBuilder RetAttrs;
1917 
1918   // Collect function IR attributes from the CC lowering.
1919   // We'll collect the paramete and result attributes later.
1920   CallingConv = FI.getEffectiveCallingConvention();
1921   if (FI.isNoReturn())
1922     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1923   if (FI.isCmseNSCall())
1924     FuncAttrs.addAttribute("cmse_nonsecure_call");
1925 
1926   // Collect function IR attributes from the callee prototype if we have one.
1927   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1928                                      CalleeInfo.getCalleeFunctionProtoType());
1929 
1930   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1931 
1932   bool HasOptnone = false;
1933   // The NoBuiltinAttr attached to the target FunctionDecl.
1934   const NoBuiltinAttr *NBA = nullptr;
1935 
1936   // Collect function IR attributes based on declaration-specific
1937   // information.
1938   // FIXME: handle sseregparm someday...
1939   if (TargetDecl) {
1940     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1941       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1942     if (TargetDecl->hasAttr<NoThrowAttr>())
1943       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1944     if (TargetDecl->hasAttr<NoReturnAttr>())
1945       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1946     if (TargetDecl->hasAttr<ColdAttr>())
1947       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1948     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1949       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1950     if (TargetDecl->hasAttr<ConvergentAttr>())
1951       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1952 
1953     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1954       AddAttributesFromFunctionProtoType(
1955           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1956       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1957         // A sane operator new returns a non-aliasing pointer.
1958         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1959         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1960             (Kind == OO_New || Kind == OO_Array_New))
1961           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1962       }
1963       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1964       const bool IsVirtualCall = MD && MD->isVirtual();
1965       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1966       // virtual function. These attributes are not inherited by overloads.
1967       if (!(AttrOnCallSite && IsVirtualCall)) {
1968         if (Fn->isNoReturn())
1969           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1970         NBA = Fn->getAttr<NoBuiltinAttr>();
1971       }
1972     }
1973 
1974     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1975     if (TargetDecl->hasAttr<ConstAttr>()) {
1976       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1977       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1978     } else if (TargetDecl->hasAttr<PureAttr>()) {
1979       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1980       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1981     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1982       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1983       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1984     }
1985     if (TargetDecl->hasAttr<RestrictAttr>())
1986       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1987     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1988         !CodeGenOpts.NullPointerIsValid)
1989       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1990     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1991       FuncAttrs.addAttribute("no_caller_saved_registers");
1992     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1993       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1994 
1995     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1996     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1997       Optional<unsigned> NumElemsParam;
1998       if (AllocSize->getNumElemsParam().isValid())
1999         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2000       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2001                                  NumElemsParam);
2002     }
2003 
2004     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2005       if (getLangOpts().OpenCLVersion <= 120) {
2006         // OpenCL v1.2 Work groups are always uniform
2007         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2008       } else {
2009         // OpenCL v2.0 Work groups may be whether uniform or not.
2010         // '-cl-uniform-work-group-size' compile option gets a hint
2011         // to the compiler that the global work-size be a multiple of
2012         // the work-group size specified to clEnqueueNDRangeKernel
2013         // (i.e. work groups are uniform).
2014         FuncAttrs.addAttribute("uniform-work-group-size",
2015                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2016       }
2017     }
2018   }
2019 
2020   // Attach "no-builtins" attributes to:
2021   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2022   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2023   // The attributes can come from:
2024   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2025   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2026   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2027 
2028   // Collect function IR attributes based on global settiings.
2029   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2030 
2031   // Override some default IR attributes based on declaration-specific
2032   // information.
2033   if (TargetDecl) {
2034     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2035       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2036     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2037       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2038     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2039       FuncAttrs.removeAttribute("split-stack");
2040 
2041     // Add NonLazyBind attribute to function declarations when -fno-plt
2042     // is used.
2043     // FIXME: what if we just haven't processed the function definition
2044     // yet, or if it's an external definition like C99 inline?
2045     if (CodeGenOpts.NoPLT) {
2046       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2047         if (!Fn->isDefined() && !AttrOnCallSite) {
2048           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2049         }
2050       }
2051     }
2052   }
2053 
2054   // Collect non-call-site function IR attributes from declaration-specific
2055   // information.
2056   if (!AttrOnCallSite) {
2057     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2058       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2059 
2060     // Whether tail calls are enabled.
2061     auto shouldDisableTailCalls = [&] {
2062       // Should this be honored in getDefaultFunctionAttributes?
2063       if (CodeGenOpts.DisableTailCalls)
2064         return true;
2065 
2066       if (!TargetDecl)
2067         return false;
2068 
2069       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2070           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2071         return true;
2072 
2073       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2074         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2075           if (!BD->doesNotEscape())
2076             return true;
2077       }
2078 
2079       return false;
2080     };
2081     FuncAttrs.addAttribute("disable-tail-calls",
2082                            llvm::toStringRef(shouldDisableTailCalls()));
2083 
2084     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2085     // handles these separately to set them based on the global defaults.
2086     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2087   }
2088 
2089   // Collect attributes from arguments and return values.
2090   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2091 
2092   QualType RetTy = FI.getReturnType();
2093   const ABIArgInfo &RetAI = FI.getReturnInfo();
2094   switch (RetAI.getKind()) {
2095   case ABIArgInfo::Extend:
2096     if (RetAI.isSignExt())
2097       RetAttrs.addAttribute(llvm::Attribute::SExt);
2098     else
2099       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2100     LLVM_FALLTHROUGH;
2101   case ABIArgInfo::Direct:
2102     if (RetAI.getInReg())
2103       RetAttrs.addAttribute(llvm::Attribute::InReg);
2104     break;
2105   case ABIArgInfo::Ignore:
2106     break;
2107 
2108   case ABIArgInfo::InAlloca:
2109   case ABIArgInfo::Indirect: {
2110     // inalloca and sret disable readnone and readonly
2111     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2112       .removeAttribute(llvm::Attribute::ReadNone);
2113     break;
2114   }
2115 
2116   case ABIArgInfo::CoerceAndExpand:
2117     break;
2118 
2119   case ABIArgInfo::Expand:
2120   case ABIArgInfo::IndirectAliased:
2121     llvm_unreachable("Invalid ABI kind for return argument");
2122   }
2123 
2124   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2125     QualType PTy = RefTy->getPointeeType();
2126     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2127       RetAttrs.addDereferenceableAttr(
2128           getMinimumObjectSize(PTy).getQuantity());
2129     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2130         !CodeGenOpts.NullPointerIsValid)
2131       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2132     if (PTy->isObjectType()) {
2133       llvm::Align Alignment =
2134           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2135       RetAttrs.addAlignmentAttr(Alignment);
2136     }
2137   }
2138 
2139   bool hasUsedSRet = false;
2140   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2141 
2142   // Attach attributes to sret.
2143   if (IRFunctionArgs.hasSRetArg()) {
2144     llvm::AttrBuilder SRETAttrs;
2145     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2146     hasUsedSRet = true;
2147     if (RetAI.getInReg())
2148       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2149     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2150     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2151         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2152   }
2153 
2154   // Attach attributes to inalloca argument.
2155   if (IRFunctionArgs.hasInallocaArg()) {
2156     llvm::AttrBuilder Attrs;
2157     Attrs.addAttribute(llvm::Attribute::InAlloca);
2158     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2159         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2160   }
2161 
2162   unsigned ArgNo = 0;
2163   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2164                                           E = FI.arg_end();
2165        I != E; ++I, ++ArgNo) {
2166     QualType ParamType = I->type;
2167     const ABIArgInfo &AI = I->info;
2168     llvm::AttrBuilder Attrs;
2169 
2170     // Add attribute for padding argument, if necessary.
2171     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2172       if (AI.getPaddingInReg()) {
2173         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2174             llvm::AttributeSet::get(
2175                 getLLVMContext(),
2176                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2177       }
2178     }
2179 
2180     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2181     // have the corresponding parameter variable.  It doesn't make
2182     // sense to do it here because parameters are so messed up.
2183     switch (AI.getKind()) {
2184     case ABIArgInfo::Extend:
2185       if (AI.isSignExt())
2186         Attrs.addAttribute(llvm::Attribute::SExt);
2187       else
2188         Attrs.addAttribute(llvm::Attribute::ZExt);
2189       LLVM_FALLTHROUGH;
2190     case ABIArgInfo::Direct:
2191       if (ArgNo == 0 && FI.isChainCall())
2192         Attrs.addAttribute(llvm::Attribute::Nest);
2193       else if (AI.getInReg())
2194         Attrs.addAttribute(llvm::Attribute::InReg);
2195       break;
2196 
2197     case ABIArgInfo::Indirect: {
2198       if (AI.getInReg())
2199         Attrs.addAttribute(llvm::Attribute::InReg);
2200 
2201       if (AI.getIndirectByVal())
2202         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2203 
2204       auto *Decl = ParamType->getAsRecordDecl();
2205       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2206           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2207         // When calling the function, the pointer passed in will be the only
2208         // reference to the underlying object. Mark it accordingly.
2209         Attrs.addAttribute(llvm::Attribute::NoAlias);
2210 
2211       // TODO: We could add the byref attribute if not byval, but it would
2212       // require updating many testcases.
2213 
2214       CharUnits Align = AI.getIndirectAlign();
2215 
2216       // In a byval argument, it is important that the required
2217       // alignment of the type is honored, as LLVM might be creating a
2218       // *new* stack object, and needs to know what alignment to give
2219       // it. (Sometimes it can deduce a sensible alignment on its own,
2220       // but not if clang decides it must emit a packed struct, or the
2221       // user specifies increased alignment requirements.)
2222       //
2223       // This is different from indirect *not* byval, where the object
2224       // exists already, and the align attribute is purely
2225       // informative.
2226       assert(!Align.isZero());
2227 
2228       // For now, only add this when we have a byval argument.
2229       // TODO: be less lazy about updating test cases.
2230       if (AI.getIndirectByVal())
2231         Attrs.addAlignmentAttr(Align.getQuantity());
2232 
2233       // byval disables readnone and readonly.
2234       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2235         .removeAttribute(llvm::Attribute::ReadNone);
2236 
2237       break;
2238     }
2239     case ABIArgInfo::IndirectAliased: {
2240       CharUnits Align = AI.getIndirectAlign();
2241       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2242       Attrs.addAlignmentAttr(Align.getQuantity());
2243       break;
2244     }
2245     case ABIArgInfo::Ignore:
2246     case ABIArgInfo::Expand:
2247     case ABIArgInfo::CoerceAndExpand:
2248       break;
2249 
2250     case ABIArgInfo::InAlloca:
2251       // inalloca disables readnone and readonly.
2252       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2253           .removeAttribute(llvm::Attribute::ReadNone);
2254       continue;
2255     }
2256 
2257     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2258       QualType PTy = RefTy->getPointeeType();
2259       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2260         Attrs.addDereferenceableAttr(
2261             getMinimumObjectSize(PTy).getQuantity());
2262       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2263           !CodeGenOpts.NullPointerIsValid)
2264         Attrs.addAttribute(llvm::Attribute::NonNull);
2265       if (PTy->isObjectType()) {
2266         llvm::Align Alignment =
2267             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2268         Attrs.addAlignmentAttr(Alignment);
2269       }
2270     }
2271 
2272     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2273     case ParameterABI::Ordinary:
2274       break;
2275 
2276     case ParameterABI::SwiftIndirectResult: {
2277       // Add 'sret' if we haven't already used it for something, but
2278       // only if the result is void.
2279       if (!hasUsedSRet && RetTy->isVoidType()) {
2280         Attrs.addAttribute(llvm::Attribute::StructRet);
2281         hasUsedSRet = true;
2282       }
2283 
2284       // Add 'noalias' in either case.
2285       Attrs.addAttribute(llvm::Attribute::NoAlias);
2286 
2287       // Add 'dereferenceable' and 'alignment'.
2288       auto PTy = ParamType->getPointeeType();
2289       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2290         auto info = getContext().getTypeInfoInChars(PTy);
2291         Attrs.addDereferenceableAttr(info.first.getQuantity());
2292         Attrs.addAlignmentAttr(info.second.getAsAlign());
2293       }
2294       break;
2295     }
2296 
2297     case ParameterABI::SwiftErrorResult:
2298       Attrs.addAttribute(llvm::Attribute::SwiftError);
2299       break;
2300 
2301     case ParameterABI::SwiftContext:
2302       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2303       break;
2304     }
2305 
2306     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2307       Attrs.addAttribute(llvm::Attribute::NoCapture);
2308 
2309     if (Attrs.hasAttributes()) {
2310       unsigned FirstIRArg, NumIRArgs;
2311       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2312       for (unsigned i = 0; i < NumIRArgs; i++)
2313         ArgAttrs[FirstIRArg + i] =
2314             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2315     }
2316   }
2317   assert(ArgNo == FI.arg_size());
2318 
2319   AttrList = llvm::AttributeList::get(
2320       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2321       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2322 }
2323 
2324 /// An argument came in as a promoted argument; demote it back to its
2325 /// declared type.
2326 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2327                                          const VarDecl *var,
2328                                          llvm::Value *value) {
2329   llvm::Type *varType = CGF.ConvertType(var->getType());
2330 
2331   // This can happen with promotions that actually don't change the
2332   // underlying type, like the enum promotions.
2333   if (value->getType() == varType) return value;
2334 
2335   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2336          && "unexpected promotion type");
2337 
2338   if (isa<llvm::IntegerType>(varType))
2339     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2340 
2341   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2342 }
2343 
2344 /// Returns the attribute (either parameter attribute, or function
2345 /// attribute), which declares argument ArgNo to be non-null.
2346 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2347                                          QualType ArgType, unsigned ArgNo) {
2348   // FIXME: __attribute__((nonnull)) can also be applied to:
2349   //   - references to pointers, where the pointee is known to be
2350   //     nonnull (apparently a Clang extension)
2351   //   - transparent unions containing pointers
2352   // In the former case, LLVM IR cannot represent the constraint. In
2353   // the latter case, we have no guarantee that the transparent union
2354   // is in fact passed as a pointer.
2355   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2356     return nullptr;
2357   // First, check attribute on parameter itself.
2358   if (PVD) {
2359     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2360       return ParmNNAttr;
2361   }
2362   // Check function attributes.
2363   if (!FD)
2364     return nullptr;
2365   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2366     if (NNAttr->isNonNull(ArgNo))
2367       return NNAttr;
2368   }
2369   return nullptr;
2370 }
2371 
2372 namespace {
2373   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2374     Address Temp;
2375     Address Arg;
2376     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2377     void Emit(CodeGenFunction &CGF, Flags flags) override {
2378       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2379       CGF.Builder.CreateStore(errorValue, Arg);
2380     }
2381   };
2382 }
2383 
2384 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2385                                          llvm::Function *Fn,
2386                                          const FunctionArgList &Args) {
2387   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2388     // Naked functions don't have prologues.
2389     return;
2390 
2391   // If this is an implicit-return-zero function, go ahead and
2392   // initialize the return value.  TODO: it might be nice to have
2393   // a more general mechanism for this that didn't require synthesized
2394   // return statements.
2395   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2396     if (FD->hasImplicitReturnZero()) {
2397       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2398       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2399       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2400       Builder.CreateStore(Zero, ReturnValue);
2401     }
2402   }
2403 
2404   // FIXME: We no longer need the types from FunctionArgList; lift up and
2405   // simplify.
2406 
2407   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2408   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2409 
2410   // If we're using inalloca, all the memory arguments are GEPs off of the last
2411   // parameter, which is a pointer to the complete memory area.
2412   Address ArgStruct = Address::invalid();
2413   if (IRFunctionArgs.hasInallocaArg()) {
2414     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2415                         FI.getArgStructAlignment());
2416 
2417     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2418   }
2419 
2420   // Name the struct return parameter.
2421   if (IRFunctionArgs.hasSRetArg()) {
2422     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2423     AI->setName("agg.result");
2424     AI->addAttr(llvm::Attribute::NoAlias);
2425   }
2426 
2427   // Track if we received the parameter as a pointer (indirect, byval, or
2428   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2429   // into a local alloca for us.
2430   SmallVector<ParamValue, 16> ArgVals;
2431   ArgVals.reserve(Args.size());
2432 
2433   // Create a pointer value for every parameter declaration.  This usually
2434   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2435   // any cleanups or do anything that might unwind.  We do that separately, so
2436   // we can push the cleanups in the correct order for the ABI.
2437   assert(FI.arg_size() == Args.size() &&
2438          "Mismatch between function signature & arguments.");
2439   unsigned ArgNo = 0;
2440   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2441   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2442        i != e; ++i, ++info_it, ++ArgNo) {
2443     const VarDecl *Arg = *i;
2444     const ABIArgInfo &ArgI = info_it->info;
2445 
2446     bool isPromoted =
2447       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2448     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2449     // the parameter is promoted. In this case we convert to
2450     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2451     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2452     assert(hasScalarEvaluationKind(Ty) ==
2453            hasScalarEvaluationKind(Arg->getType()));
2454 
2455     unsigned FirstIRArg, NumIRArgs;
2456     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2457 
2458     switch (ArgI.getKind()) {
2459     case ABIArgInfo::InAlloca: {
2460       assert(NumIRArgs == 0);
2461       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2462       Address V =
2463           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2464       if (ArgI.getInAllocaIndirect())
2465         V = Address(Builder.CreateLoad(V),
2466                     getContext().getTypeAlignInChars(Ty));
2467       ArgVals.push_back(ParamValue::forIndirect(V));
2468       break;
2469     }
2470 
2471     case ABIArgInfo::Indirect:
2472     case ABIArgInfo::IndirectAliased: {
2473       assert(NumIRArgs == 1);
2474       Address ParamAddr =
2475           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2476 
2477       if (!hasScalarEvaluationKind(Ty)) {
2478         // Aggregates and complex variables are accessed by reference. All we
2479         // need to do is realign the value, if requested. Also, if the address
2480         // may be aliased, copy it to ensure that the parameter variable is
2481         // mutable and has a unique adress, as C requires.
2482         Address V = ParamAddr;
2483         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2484           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2485 
2486           // Copy from the incoming argument pointer to the temporary with the
2487           // appropriate alignment.
2488           //
2489           // FIXME: We should have a common utility for generating an aggregate
2490           // copy.
2491           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2492           Builder.CreateMemCpy(
2493               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2494               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2495               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2496           V = AlignedTemp;
2497         }
2498         ArgVals.push_back(ParamValue::forIndirect(V));
2499       } else {
2500         // Load scalar value from indirect argument.
2501         llvm::Value *V =
2502             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2503 
2504         if (isPromoted)
2505           V = emitArgumentDemotion(*this, Arg, V);
2506         ArgVals.push_back(ParamValue::forDirect(V));
2507       }
2508       break;
2509     }
2510 
2511     case ABIArgInfo::Extend:
2512     case ABIArgInfo::Direct: {
2513       auto AI = Fn->getArg(FirstIRArg);
2514       llvm::Type *LTy = ConvertType(Arg->getType());
2515 
2516       // Prepare parameter attributes. So far, only attributes for pointer
2517       // parameters are prepared. See
2518       // http://llvm.org/docs/LangRef.html#paramattrs.
2519       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2520           ArgI.getCoerceToType()->isPointerTy()) {
2521         assert(NumIRArgs == 1);
2522 
2523         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2524           // Set `nonnull` attribute if any.
2525           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2526                              PVD->getFunctionScopeIndex()) &&
2527               !CGM.getCodeGenOpts().NullPointerIsValid)
2528             AI->addAttr(llvm::Attribute::NonNull);
2529 
2530           QualType OTy = PVD->getOriginalType();
2531           if (const auto *ArrTy =
2532               getContext().getAsConstantArrayType(OTy)) {
2533             // A C99 array parameter declaration with the static keyword also
2534             // indicates dereferenceability, and if the size is constant we can
2535             // use the dereferenceable attribute (which requires the size in
2536             // bytes).
2537             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2538               QualType ETy = ArrTy->getElementType();
2539               llvm::Align Alignment =
2540                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2541               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2542               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2543               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2544                   ArrSize) {
2545                 llvm::AttrBuilder Attrs;
2546                 Attrs.addDereferenceableAttr(
2547                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2548                     ArrSize);
2549                 AI->addAttrs(Attrs);
2550               } else if (getContext().getTargetInfo().getNullPointerValue(
2551                              ETy.getAddressSpace()) == 0 &&
2552                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2553                 AI->addAttr(llvm::Attribute::NonNull);
2554               }
2555             }
2556           } else if (const auto *ArrTy =
2557                      getContext().getAsVariableArrayType(OTy)) {
2558             // For C99 VLAs with the static keyword, we don't know the size so
2559             // we can't use the dereferenceable attribute, but in addrspace(0)
2560             // we know that it must be nonnull.
2561             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2562               QualType ETy = ArrTy->getElementType();
2563               llvm::Align Alignment =
2564                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2565               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2566               if (!getContext().getTargetAddressSpace(ETy) &&
2567                   !CGM.getCodeGenOpts().NullPointerIsValid)
2568                 AI->addAttr(llvm::Attribute::NonNull);
2569             }
2570           }
2571 
2572           // Set `align` attribute if any.
2573           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2574           if (!AVAttr)
2575             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2576               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2577           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2578             // If alignment-assumption sanitizer is enabled, we do *not* add
2579             // alignment attribute here, but emit normal alignment assumption,
2580             // so the UBSAN check could function.
2581             llvm::ConstantInt *AlignmentCI =
2582                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2583             unsigned AlignmentInt =
2584                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2585             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2586               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2587               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2588                   llvm::Align(AlignmentInt)));
2589             }
2590           }
2591         }
2592 
2593         // Set 'noalias' if an argument type has the `restrict` qualifier.
2594         if (Arg->getType().isRestrictQualified())
2595           AI->addAttr(llvm::Attribute::NoAlias);
2596       }
2597 
2598       // Prepare the argument value. If we have the trivial case, handle it
2599       // with no muss and fuss.
2600       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2601           ArgI.getCoerceToType() == ConvertType(Ty) &&
2602           ArgI.getDirectOffset() == 0) {
2603         assert(NumIRArgs == 1);
2604 
2605         // LLVM expects swifterror parameters to be used in very restricted
2606         // ways.  Copy the value into a less-restricted temporary.
2607         llvm::Value *V = AI;
2608         if (FI.getExtParameterInfo(ArgNo).getABI()
2609               == ParameterABI::SwiftErrorResult) {
2610           QualType pointeeTy = Ty->getPointeeType();
2611           assert(pointeeTy->isPointerType());
2612           Address temp =
2613             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2614           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2615           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2616           Builder.CreateStore(incomingErrorValue, temp);
2617           V = temp.getPointer();
2618 
2619           // Push a cleanup to copy the value back at the end of the function.
2620           // The convention does not guarantee that the value will be written
2621           // back if the function exits with an unwind exception.
2622           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2623         }
2624 
2625         // Ensure the argument is the correct type.
2626         if (V->getType() != ArgI.getCoerceToType())
2627           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2628 
2629         if (isPromoted)
2630           V = emitArgumentDemotion(*this, Arg, V);
2631 
2632         // Because of merging of function types from multiple decls it is
2633         // possible for the type of an argument to not match the corresponding
2634         // type in the function type. Since we are codegening the callee
2635         // in here, add a cast to the argument type.
2636         llvm::Type *LTy = ConvertType(Arg->getType());
2637         if (V->getType() != LTy)
2638           V = Builder.CreateBitCast(V, LTy);
2639 
2640         ArgVals.push_back(ParamValue::forDirect(V));
2641         break;
2642       }
2643 
2644       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2645                                      Arg->getName());
2646 
2647       // Pointer to store into.
2648       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2649 
2650       // Fast-isel and the optimizer generally like scalar values better than
2651       // FCAs, so we flatten them if this is safe to do for this argument.
2652       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2653       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2654           STy->getNumElements() > 1) {
2655         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2656         llvm::Type *DstTy = Ptr.getElementType();
2657         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2658 
2659         Address AddrToStoreInto = Address::invalid();
2660         if (SrcSize <= DstSize) {
2661           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2662         } else {
2663           AddrToStoreInto =
2664             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2665         }
2666 
2667         assert(STy->getNumElements() == NumIRArgs);
2668         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2669           auto AI = Fn->getArg(FirstIRArg + i);
2670           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2671           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2672           Builder.CreateStore(AI, EltPtr);
2673         }
2674 
2675         if (SrcSize > DstSize) {
2676           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2677         }
2678 
2679       } else {
2680         // Simple case, just do a coerced store of the argument into the alloca.
2681         assert(NumIRArgs == 1);
2682         auto AI = Fn->getArg(FirstIRArg);
2683         AI->setName(Arg->getName() + ".coerce");
2684         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2685       }
2686 
2687       // Match to what EmitParmDecl is expecting for this type.
2688       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2689         llvm::Value *V =
2690             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2691         if (isPromoted)
2692           V = emitArgumentDemotion(*this, Arg, V);
2693         ArgVals.push_back(ParamValue::forDirect(V));
2694       } else {
2695         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2696       }
2697       break;
2698     }
2699 
2700     case ABIArgInfo::CoerceAndExpand: {
2701       // Reconstruct into a temporary.
2702       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2703       ArgVals.push_back(ParamValue::forIndirect(alloca));
2704 
2705       auto coercionType = ArgI.getCoerceAndExpandType();
2706       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2707 
2708       unsigned argIndex = FirstIRArg;
2709       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2710         llvm::Type *eltType = coercionType->getElementType(i);
2711         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2712           continue;
2713 
2714         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2715         auto elt = Fn->getArg(argIndex++);
2716         Builder.CreateStore(elt, eltAddr);
2717       }
2718       assert(argIndex == FirstIRArg + NumIRArgs);
2719       break;
2720     }
2721 
2722     case ABIArgInfo::Expand: {
2723       // If this structure was expanded into multiple arguments then
2724       // we need to create a temporary and reconstruct it from the
2725       // arguments.
2726       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2727       LValue LV = MakeAddrLValue(Alloca, Ty);
2728       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2729 
2730       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2731       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2732       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2733       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2734         auto AI = Fn->getArg(FirstIRArg + i);
2735         AI->setName(Arg->getName() + "." + Twine(i));
2736       }
2737       break;
2738     }
2739 
2740     case ABIArgInfo::Ignore:
2741       assert(NumIRArgs == 0);
2742       // Initialize the local variable appropriately.
2743       if (!hasScalarEvaluationKind(Ty)) {
2744         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2745       } else {
2746         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2747         ArgVals.push_back(ParamValue::forDirect(U));
2748       }
2749       break;
2750     }
2751   }
2752 
2753   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2754     for (int I = Args.size() - 1; I >= 0; --I)
2755       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2756   } else {
2757     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2758       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2759   }
2760 }
2761 
2762 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2763   while (insn->use_empty()) {
2764     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2765     if (!bitcast) return;
2766 
2767     // This is "safe" because we would have used a ConstantExpr otherwise.
2768     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2769     bitcast->eraseFromParent();
2770   }
2771 }
2772 
2773 /// Try to emit a fused autorelease of a return result.
2774 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2775                                                     llvm::Value *result) {
2776   // We must be immediately followed the cast.
2777   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2778   if (BB->empty()) return nullptr;
2779   if (&BB->back() != result) return nullptr;
2780 
2781   llvm::Type *resultType = result->getType();
2782 
2783   // result is in a BasicBlock and is therefore an Instruction.
2784   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2785 
2786   SmallVector<llvm::Instruction *, 4> InstsToKill;
2787 
2788   // Look for:
2789   //  %generator = bitcast %type1* %generator2 to %type2*
2790   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2791     // We would have emitted this as a constant if the operand weren't
2792     // an Instruction.
2793     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2794 
2795     // Require the generator to be immediately followed by the cast.
2796     if (generator->getNextNode() != bitcast)
2797       return nullptr;
2798 
2799     InstsToKill.push_back(bitcast);
2800   }
2801 
2802   // Look for:
2803   //   %generator = call i8* @objc_retain(i8* %originalResult)
2804   // or
2805   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2806   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2807   if (!call) return nullptr;
2808 
2809   bool doRetainAutorelease;
2810 
2811   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2812     doRetainAutorelease = true;
2813   } else if (call->getCalledOperand() ==
2814              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
2815     doRetainAutorelease = false;
2816 
2817     // If we emitted an assembly marker for this call (and the
2818     // ARCEntrypoints field should have been set if so), go looking
2819     // for that call.  If we can't find it, we can't do this
2820     // optimization.  But it should always be the immediately previous
2821     // instruction, unless we needed bitcasts around the call.
2822     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2823       llvm::Instruction *prev = call->getPrevNode();
2824       assert(prev);
2825       if (isa<llvm::BitCastInst>(prev)) {
2826         prev = prev->getPrevNode();
2827         assert(prev);
2828       }
2829       assert(isa<llvm::CallInst>(prev));
2830       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
2831              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2832       InstsToKill.push_back(prev);
2833     }
2834   } else {
2835     return nullptr;
2836   }
2837 
2838   result = call->getArgOperand(0);
2839   InstsToKill.push_back(call);
2840 
2841   // Keep killing bitcasts, for sanity.  Note that we no longer care
2842   // about precise ordering as long as there's exactly one use.
2843   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2844     if (!bitcast->hasOneUse()) break;
2845     InstsToKill.push_back(bitcast);
2846     result = bitcast->getOperand(0);
2847   }
2848 
2849   // Delete all the unnecessary instructions, from latest to earliest.
2850   for (auto *I : InstsToKill)
2851     I->eraseFromParent();
2852 
2853   // Do the fused retain/autorelease if we were asked to.
2854   if (doRetainAutorelease)
2855     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2856 
2857   // Cast back to the result type.
2858   return CGF.Builder.CreateBitCast(result, resultType);
2859 }
2860 
2861 /// If this is a +1 of the value of an immutable 'self', remove it.
2862 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2863                                           llvm::Value *result) {
2864   // This is only applicable to a method with an immutable 'self'.
2865   const ObjCMethodDecl *method =
2866     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2867   if (!method) return nullptr;
2868   const VarDecl *self = method->getSelfDecl();
2869   if (!self->getType().isConstQualified()) return nullptr;
2870 
2871   // Look for a retain call.
2872   llvm::CallInst *retainCall =
2873     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2874   if (!retainCall || retainCall->getCalledOperand() !=
2875                          CGF.CGM.getObjCEntrypoints().objc_retain)
2876     return nullptr;
2877 
2878   // Look for an ordinary load of 'self'.
2879   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2880   llvm::LoadInst *load =
2881     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2882   if (!load || load->isAtomic() || load->isVolatile() ||
2883       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2884     return nullptr;
2885 
2886   // Okay!  Burn it all down.  This relies for correctness on the
2887   // assumption that the retain is emitted as part of the return and
2888   // that thereafter everything is used "linearly".
2889   llvm::Type *resultType = result->getType();
2890   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2891   assert(retainCall->use_empty());
2892   retainCall->eraseFromParent();
2893   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2894 
2895   return CGF.Builder.CreateBitCast(load, resultType);
2896 }
2897 
2898 /// Emit an ARC autorelease of the result of a function.
2899 ///
2900 /// \return the value to actually return from the function
2901 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2902                                             llvm::Value *result) {
2903   // If we're returning 'self', kill the initial retain.  This is a
2904   // heuristic attempt to "encourage correctness" in the really unfortunate
2905   // case where we have a return of self during a dealloc and we desperately
2906   // need to avoid the possible autorelease.
2907   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2908     return self;
2909 
2910   // At -O0, try to emit a fused retain/autorelease.
2911   if (CGF.shouldUseFusedARCCalls())
2912     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2913       return fused;
2914 
2915   return CGF.EmitARCAutoreleaseReturnValue(result);
2916 }
2917 
2918 /// Heuristically search for a dominating store to the return-value slot.
2919 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2920   // Check if a User is a store which pointerOperand is the ReturnValue.
2921   // We are looking for stores to the ReturnValue, not for stores of the
2922   // ReturnValue to some other location.
2923   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2924     auto *SI = dyn_cast<llvm::StoreInst>(U);
2925     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2926       return nullptr;
2927     // These aren't actually possible for non-coerced returns, and we
2928     // only care about non-coerced returns on this code path.
2929     assert(!SI->isAtomic() && !SI->isVolatile());
2930     return SI;
2931   };
2932   // If there are multiple uses of the return-value slot, just check
2933   // for something immediately preceding the IP.  Sometimes this can
2934   // happen with how we generate implicit-returns; it can also happen
2935   // with noreturn cleanups.
2936   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2937     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2938     if (IP->empty()) return nullptr;
2939     llvm::Instruction *I = &IP->back();
2940 
2941     // Skip lifetime markers
2942     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2943                                             IE = IP->rend();
2944          II != IE; ++II) {
2945       if (llvm::IntrinsicInst *Intrinsic =
2946               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2947         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2948           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2949           ++II;
2950           if (II == IE)
2951             break;
2952           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2953             continue;
2954         }
2955       }
2956       I = &*II;
2957       break;
2958     }
2959 
2960     return GetStoreIfValid(I);
2961   }
2962 
2963   llvm::StoreInst *store =
2964       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2965   if (!store) return nullptr;
2966 
2967   // Now do a first-and-dirty dominance check: just walk up the
2968   // single-predecessors chain from the current insertion point.
2969   llvm::BasicBlock *StoreBB = store->getParent();
2970   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2971   while (IP != StoreBB) {
2972     if (!(IP = IP->getSinglePredecessor()))
2973       return nullptr;
2974   }
2975 
2976   // Okay, the store's basic block dominates the insertion point; we
2977   // can do our thing.
2978   return store;
2979 }
2980 
2981 // Helper functions for EmitCMSEClearRecord
2982 
2983 // Set the bits corresponding to a field having width `BitWidth` and located at
2984 // offset `BitOffset` (from the least significant bit) within a storage unit of
2985 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
2986 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
2987 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
2988                         int BitWidth, int CharWidth) {
2989   assert(CharWidth <= 64);
2990   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
2991 
2992   int Pos = 0;
2993   if (BitOffset >= CharWidth) {
2994     Pos += BitOffset / CharWidth;
2995     BitOffset = BitOffset % CharWidth;
2996   }
2997 
2998   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
2999   if (BitOffset + BitWidth >= CharWidth) {
3000     Bits[Pos++] |= (Used << BitOffset) & Used;
3001     BitWidth -= CharWidth - BitOffset;
3002     BitOffset = 0;
3003   }
3004 
3005   while (BitWidth >= CharWidth) {
3006     Bits[Pos++] = Used;
3007     BitWidth -= CharWidth;
3008   }
3009 
3010   if (BitWidth > 0)
3011     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3012 }
3013 
3014 // Set the bits corresponding to a field having width `BitWidth` and located at
3015 // offset `BitOffset` (from the least significant bit) within a storage unit of
3016 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3017 // `Bits` corresponds to one target byte. Use target endian layout.
3018 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3019                         int StorageSize, int BitOffset, int BitWidth,
3020                         int CharWidth, bool BigEndian) {
3021 
3022   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3023   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3024 
3025   if (BigEndian)
3026     std::reverse(TmpBits.begin(), TmpBits.end());
3027 
3028   for (uint64_t V : TmpBits)
3029     Bits[StorageOffset++] |= V;
3030 }
3031 
3032 static void setUsedBits(CodeGenModule &, QualType, int,
3033                         SmallVectorImpl<uint64_t> &);
3034 
3035 // Set the bits in `Bits`, which correspond to the value representations of
3036 // the actual members of the record type `RTy`. Note that this function does
3037 // not handle base classes, virtual tables, etc, since they cannot happen in
3038 // CMSE function arguments or return. The bit mask corresponds to the target
3039 // memory layout, i.e. it's endian dependent.
3040 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3041                         SmallVectorImpl<uint64_t> &Bits) {
3042   ASTContext &Context = CGM.getContext();
3043   int CharWidth = Context.getCharWidth();
3044   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3045   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3046   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3047 
3048   int Idx = 0;
3049   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3050     const FieldDecl *F = *I;
3051 
3052     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3053         F->getType()->isIncompleteArrayType())
3054       continue;
3055 
3056     if (F->isBitField()) {
3057       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3058       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3059                   BFI.StorageSize / CharWidth, BFI.Offset,
3060                   BFI.Size, CharWidth,
3061                   CGM.getDataLayout().isBigEndian());
3062       continue;
3063     }
3064 
3065     setUsedBits(CGM, F->getType(),
3066                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3067   }
3068 }
3069 
3070 // Set the bits in `Bits`, which correspond to the value representations of
3071 // the elements of an array type `ATy`.
3072 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3073                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3074   const ASTContext &Context = CGM.getContext();
3075 
3076   QualType ETy = Context.getBaseElementType(ATy);
3077   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3078   SmallVector<uint64_t, 4> TmpBits(Size);
3079   setUsedBits(CGM, ETy, 0, TmpBits);
3080 
3081   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3082     auto Src = TmpBits.begin();
3083     auto Dst = Bits.begin() + Offset + I * Size;
3084     for (int J = 0; J < Size; ++J)
3085       *Dst++ |= *Src++;
3086   }
3087 }
3088 
3089 // Set the bits in `Bits`, which correspond to the value representations of
3090 // the type `QTy`.
3091 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3092                         SmallVectorImpl<uint64_t> &Bits) {
3093   if (const auto *RTy = QTy->getAs<RecordType>())
3094     return setUsedBits(CGM, RTy, Offset, Bits);
3095 
3096   ASTContext &Context = CGM.getContext();
3097   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3098     return setUsedBits(CGM, ATy, Offset, Bits);
3099 
3100   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3101   if (Size <= 0)
3102     return;
3103 
3104   std::fill_n(Bits.begin() + Offset, Size,
3105               (uint64_t(1) << Context.getCharWidth()) - 1);
3106 }
3107 
3108 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3109                                    int Pos, int Size, int CharWidth,
3110                                    bool BigEndian) {
3111   assert(Size > 0);
3112   uint64_t Mask = 0;
3113   if (BigEndian) {
3114     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3115          ++P)
3116       Mask = (Mask << CharWidth) | *P;
3117   } else {
3118     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3119     do
3120       Mask = (Mask << CharWidth) | *--P;
3121     while (P != End);
3122   }
3123   return Mask;
3124 }
3125 
3126 // Emit code to clear the bits in a record, which aren't a part of any user
3127 // declared member, when the record is a function return.
3128 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3129                                                   llvm::IntegerType *ITy,
3130                                                   QualType QTy) {
3131   assert(Src->getType() == ITy);
3132   assert(ITy->getScalarSizeInBits() <= 64);
3133 
3134   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3135   int Size = DataLayout.getTypeStoreSize(ITy);
3136   SmallVector<uint64_t, 4> Bits(Size);
3137   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3138 
3139   int CharWidth = CGM.getContext().getCharWidth();
3140   uint64_t Mask =
3141       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3142 
3143   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3144 }
3145 
3146 // Emit code to clear the bits in a record, which aren't a part of any user
3147 // declared member, when the record is a function argument.
3148 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3149                                                   llvm::ArrayType *ATy,
3150                                                   QualType QTy) {
3151   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3152   int Size = DataLayout.getTypeStoreSize(ATy);
3153   SmallVector<uint64_t, 16> Bits(Size);
3154   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3155 
3156   // Clear each element of the LLVM array.
3157   int CharWidth = CGM.getContext().getCharWidth();
3158   int CharsPerElt =
3159       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3160   int MaskIndex = 0;
3161   llvm::Value *R = llvm::UndefValue::get(ATy);
3162   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3163     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3164                                        DataLayout.isBigEndian());
3165     MaskIndex += CharsPerElt;
3166     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3167     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3168     R = Builder.CreateInsertValue(R, T1, I);
3169   }
3170 
3171   return R;
3172 }
3173 
3174 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3175                                          bool EmitRetDbgLoc,
3176                                          SourceLocation EndLoc) {
3177   if (FI.isNoReturn()) {
3178     // Noreturn functions don't return.
3179     EmitUnreachable(EndLoc);
3180     return;
3181   }
3182 
3183   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3184     // Naked functions don't have epilogues.
3185     Builder.CreateUnreachable();
3186     return;
3187   }
3188 
3189   // Functions with no result always return void.
3190   if (!ReturnValue.isValid()) {
3191     Builder.CreateRetVoid();
3192     return;
3193   }
3194 
3195   llvm::DebugLoc RetDbgLoc;
3196   llvm::Value *RV = nullptr;
3197   QualType RetTy = FI.getReturnType();
3198   const ABIArgInfo &RetAI = FI.getReturnInfo();
3199 
3200   switch (RetAI.getKind()) {
3201   case ABIArgInfo::InAlloca:
3202     // Aggregrates get evaluated directly into the destination.  Sometimes we
3203     // need to return the sret value in a register, though.
3204     assert(hasAggregateEvaluationKind(RetTy));
3205     if (RetAI.getInAllocaSRet()) {
3206       llvm::Function::arg_iterator EI = CurFn->arg_end();
3207       --EI;
3208       llvm::Value *ArgStruct = &*EI;
3209       llvm::Value *SRet = Builder.CreateStructGEP(
3210           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3211       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3212     }
3213     break;
3214 
3215   case ABIArgInfo::Indirect: {
3216     auto AI = CurFn->arg_begin();
3217     if (RetAI.isSRetAfterThis())
3218       ++AI;
3219     switch (getEvaluationKind(RetTy)) {
3220     case TEK_Complex: {
3221       ComplexPairTy RT =
3222         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3223       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3224                          /*isInit*/ true);
3225       break;
3226     }
3227     case TEK_Aggregate:
3228       // Do nothing; aggregrates get evaluated directly into the destination.
3229       break;
3230     case TEK_Scalar:
3231       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3232                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3233                         /*isInit*/ true);
3234       break;
3235     }
3236     break;
3237   }
3238 
3239   case ABIArgInfo::Extend:
3240   case ABIArgInfo::Direct:
3241     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3242         RetAI.getDirectOffset() == 0) {
3243       // The internal return value temp always will have pointer-to-return-type
3244       // type, just do a load.
3245 
3246       // If there is a dominating store to ReturnValue, we can elide
3247       // the load, zap the store, and usually zap the alloca.
3248       if (llvm::StoreInst *SI =
3249               findDominatingStoreToReturnValue(*this)) {
3250         // Reuse the debug location from the store unless there is
3251         // cleanup code to be emitted between the store and return
3252         // instruction.
3253         if (EmitRetDbgLoc && !AutoreleaseResult)
3254           RetDbgLoc = SI->getDebugLoc();
3255         // Get the stored value and nuke the now-dead store.
3256         RV = SI->getValueOperand();
3257         SI->eraseFromParent();
3258 
3259       // Otherwise, we have to do a simple load.
3260       } else {
3261         RV = Builder.CreateLoad(ReturnValue);
3262       }
3263     } else {
3264       // If the value is offset in memory, apply the offset now.
3265       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3266 
3267       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3268     }
3269 
3270     // In ARC, end functions that return a retainable type with a call
3271     // to objc_autoreleaseReturnValue.
3272     if (AutoreleaseResult) {
3273 #ifndef NDEBUG
3274       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3275       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3276       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3277       // CurCodeDecl or BlockInfo.
3278       QualType RT;
3279 
3280       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3281         RT = FD->getReturnType();
3282       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3283         RT = MD->getReturnType();
3284       else if (isa<BlockDecl>(CurCodeDecl))
3285         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3286       else
3287         llvm_unreachable("Unexpected function/method type");
3288 
3289       assert(getLangOpts().ObjCAutoRefCount &&
3290              !FI.isReturnsRetained() &&
3291              RT->isObjCRetainableType());
3292 #endif
3293       RV = emitAutoreleaseOfResult(*this, RV);
3294     }
3295 
3296     break;
3297 
3298   case ABIArgInfo::Ignore:
3299     break;
3300 
3301   case ABIArgInfo::CoerceAndExpand: {
3302     auto coercionType = RetAI.getCoerceAndExpandType();
3303 
3304     // Load all of the coerced elements out into results.
3305     llvm::SmallVector<llvm::Value*, 4> results;
3306     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3307     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3308       auto coercedEltType = coercionType->getElementType(i);
3309       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3310         continue;
3311 
3312       auto eltAddr = Builder.CreateStructGEP(addr, i);
3313       auto elt = Builder.CreateLoad(eltAddr);
3314       results.push_back(elt);
3315     }
3316 
3317     // If we have one result, it's the single direct result type.
3318     if (results.size() == 1) {
3319       RV = results[0];
3320 
3321     // Otherwise, we need to make a first-class aggregate.
3322     } else {
3323       // Construct a return type that lacks padding elements.
3324       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3325 
3326       RV = llvm::UndefValue::get(returnType);
3327       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3328         RV = Builder.CreateInsertValue(RV, results[i], i);
3329       }
3330     }
3331     break;
3332   }
3333   case ABIArgInfo::Expand:
3334   case ABIArgInfo::IndirectAliased:
3335     llvm_unreachable("Invalid ABI kind for return argument");
3336   }
3337 
3338   llvm::Instruction *Ret;
3339   if (RV) {
3340     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3341       // For certain return types, clear padding bits, as they may reveal
3342       // sensitive information.
3343       // Small struct/union types are passed as integers.
3344       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3345       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3346         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3347     }
3348     EmitReturnValueCheck(RV);
3349     Ret = Builder.CreateRet(RV);
3350   } else {
3351     Ret = Builder.CreateRetVoid();
3352   }
3353 
3354   if (RetDbgLoc)
3355     Ret->setDebugLoc(std::move(RetDbgLoc));
3356 }
3357 
3358 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3359   // A current decl may not be available when emitting vtable thunks.
3360   if (!CurCodeDecl)
3361     return;
3362 
3363   // If the return block isn't reachable, neither is this check, so don't emit
3364   // it.
3365   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3366     return;
3367 
3368   ReturnsNonNullAttr *RetNNAttr = nullptr;
3369   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3370     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3371 
3372   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3373     return;
3374 
3375   // Prefer the returns_nonnull attribute if it's present.
3376   SourceLocation AttrLoc;
3377   SanitizerMask CheckKind;
3378   SanitizerHandler Handler;
3379   if (RetNNAttr) {
3380     assert(!requiresReturnValueNullabilityCheck() &&
3381            "Cannot check nullability and the nonnull attribute");
3382     AttrLoc = RetNNAttr->getLocation();
3383     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3384     Handler = SanitizerHandler::NonnullReturn;
3385   } else {
3386     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3387       if (auto *TSI = DD->getTypeSourceInfo())
3388         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3389           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3390     CheckKind = SanitizerKind::NullabilityReturn;
3391     Handler = SanitizerHandler::NullabilityReturn;
3392   }
3393 
3394   SanitizerScope SanScope(this);
3395 
3396   // Make sure the "return" source location is valid. If we're checking a
3397   // nullability annotation, make sure the preconditions for the check are met.
3398   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3399   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3400   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3401   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3402   if (requiresReturnValueNullabilityCheck())
3403     CanNullCheck =
3404         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3405   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3406   EmitBlock(Check);
3407 
3408   // Now do the null check.
3409   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3410   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3411   llvm::Value *DynamicData[] = {SLocPtr};
3412   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3413 
3414   EmitBlock(NoCheck);
3415 
3416 #ifndef NDEBUG
3417   // The return location should not be used after the check has been emitted.
3418   ReturnLocation = Address::invalid();
3419 #endif
3420 }
3421 
3422 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3423   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3424   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3425 }
3426 
3427 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3428                                           QualType Ty) {
3429   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3430   // placeholders.
3431   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3432   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3433   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3434 
3435   // FIXME: When we generate this IR in one pass, we shouldn't need
3436   // this win32-specific alignment hack.
3437   CharUnits Align = CharUnits::fromQuantity(4);
3438   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3439 
3440   return AggValueSlot::forAddr(Address(Placeholder, Align),
3441                                Ty.getQualifiers(),
3442                                AggValueSlot::IsNotDestructed,
3443                                AggValueSlot::DoesNotNeedGCBarriers,
3444                                AggValueSlot::IsNotAliased,
3445                                AggValueSlot::DoesNotOverlap);
3446 }
3447 
3448 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3449                                           const VarDecl *param,
3450                                           SourceLocation loc) {
3451   // StartFunction converted the ABI-lowered parameter(s) into a
3452   // local alloca.  We need to turn that into an r-value suitable
3453   // for EmitCall.
3454   Address local = GetAddrOfLocalVar(param);
3455 
3456   QualType type = param->getType();
3457 
3458   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3459     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3460   }
3461 
3462   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3463   // but the argument needs to be the original pointer.
3464   if (type->isReferenceType()) {
3465     args.add(RValue::get(Builder.CreateLoad(local)), type);
3466 
3467   // In ARC, move out of consumed arguments so that the release cleanup
3468   // entered by StartFunction doesn't cause an over-release.  This isn't
3469   // optimal -O0 code generation, but it should get cleaned up when
3470   // optimization is enabled.  This also assumes that delegate calls are
3471   // performed exactly once for a set of arguments, but that should be safe.
3472   } else if (getLangOpts().ObjCAutoRefCount &&
3473              param->hasAttr<NSConsumedAttr>() &&
3474              type->isObjCRetainableType()) {
3475     llvm::Value *ptr = Builder.CreateLoad(local);
3476     auto null =
3477       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3478     Builder.CreateStore(null, local);
3479     args.add(RValue::get(ptr), type);
3480 
3481   // For the most part, we just need to load the alloca, except that
3482   // aggregate r-values are actually pointers to temporaries.
3483   } else {
3484     args.add(convertTempToRValue(local, type, loc), type);
3485   }
3486 
3487   // Deactivate the cleanup for the callee-destructed param that was pushed.
3488   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3489       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3490       param->needsDestruction(getContext())) {
3491     EHScopeStack::stable_iterator cleanup =
3492         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3493     assert(cleanup.isValid() &&
3494            "cleanup for callee-destructed param not recorded");
3495     // This unreachable is a temporary marker which will be removed later.
3496     llvm::Instruction *isActive = Builder.CreateUnreachable();
3497     args.addArgCleanupDeactivation(cleanup, isActive);
3498   }
3499 }
3500 
3501 static bool isProvablyNull(llvm::Value *addr) {
3502   return isa<llvm::ConstantPointerNull>(addr);
3503 }
3504 
3505 /// Emit the actual writing-back of a writeback.
3506 static void emitWriteback(CodeGenFunction &CGF,
3507                           const CallArgList::Writeback &writeback) {
3508   const LValue &srcLV = writeback.Source;
3509   Address srcAddr = srcLV.getAddress(CGF);
3510   assert(!isProvablyNull(srcAddr.getPointer()) &&
3511          "shouldn't have writeback for provably null argument");
3512 
3513   llvm::BasicBlock *contBB = nullptr;
3514 
3515   // If the argument wasn't provably non-null, we need to null check
3516   // before doing the store.
3517   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3518                                               CGF.CGM.getDataLayout());
3519   if (!provablyNonNull) {
3520     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3521     contBB = CGF.createBasicBlock("icr.done");
3522 
3523     llvm::Value *isNull =
3524       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3525     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3526     CGF.EmitBlock(writebackBB);
3527   }
3528 
3529   // Load the value to writeback.
3530   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3531 
3532   // Cast it back, in case we're writing an id to a Foo* or something.
3533   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3534                                     "icr.writeback-cast");
3535 
3536   // Perform the writeback.
3537 
3538   // If we have a "to use" value, it's something we need to emit a use
3539   // of.  This has to be carefully threaded in: if it's done after the
3540   // release it's potentially undefined behavior (and the optimizer
3541   // will ignore it), and if it happens before the retain then the
3542   // optimizer could move the release there.
3543   if (writeback.ToUse) {
3544     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3545 
3546     // Retain the new value.  No need to block-copy here:  the block's
3547     // being passed up the stack.
3548     value = CGF.EmitARCRetainNonBlock(value);
3549 
3550     // Emit the intrinsic use here.
3551     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3552 
3553     // Load the old value (primitively).
3554     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3555 
3556     // Put the new value in place (primitively).
3557     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3558 
3559     // Release the old value.
3560     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3561 
3562   // Otherwise, we can just do a normal lvalue store.
3563   } else {
3564     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3565   }
3566 
3567   // Jump to the continuation block.
3568   if (!provablyNonNull)
3569     CGF.EmitBlock(contBB);
3570 }
3571 
3572 static void emitWritebacks(CodeGenFunction &CGF,
3573                            const CallArgList &args) {
3574   for (const auto &I : args.writebacks())
3575     emitWriteback(CGF, I);
3576 }
3577 
3578 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3579                                             const CallArgList &CallArgs) {
3580   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3581     CallArgs.getCleanupsToDeactivate();
3582   // Iterate in reverse to increase the likelihood of popping the cleanup.
3583   for (const auto &I : llvm::reverse(Cleanups)) {
3584     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3585     I.IsActiveIP->eraseFromParent();
3586   }
3587 }
3588 
3589 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3590   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3591     if (uop->getOpcode() == UO_AddrOf)
3592       return uop->getSubExpr();
3593   return nullptr;
3594 }
3595 
3596 /// Emit an argument that's being passed call-by-writeback.  That is,
3597 /// we are passing the address of an __autoreleased temporary; it
3598 /// might be copy-initialized with the current value of the given
3599 /// address, but it will definitely be copied out of after the call.
3600 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3601                              const ObjCIndirectCopyRestoreExpr *CRE) {
3602   LValue srcLV;
3603 
3604   // Make an optimistic effort to emit the address as an l-value.
3605   // This can fail if the argument expression is more complicated.
3606   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3607     srcLV = CGF.EmitLValue(lvExpr);
3608 
3609   // Otherwise, just emit it as a scalar.
3610   } else {
3611     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3612 
3613     QualType srcAddrType =
3614       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3615     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3616   }
3617   Address srcAddr = srcLV.getAddress(CGF);
3618 
3619   // The dest and src types don't necessarily match in LLVM terms
3620   // because of the crazy ObjC compatibility rules.
3621 
3622   llvm::PointerType *destType =
3623     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3624 
3625   // If the address is a constant null, just pass the appropriate null.
3626   if (isProvablyNull(srcAddr.getPointer())) {
3627     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3628              CRE->getType());
3629     return;
3630   }
3631 
3632   // Create the temporary.
3633   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3634                                       CGF.getPointerAlign(),
3635                                       "icr.temp");
3636   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3637   // and that cleanup will be conditional if we can't prove that the l-value
3638   // isn't null, so we need to register a dominating point so that the cleanups
3639   // system will make valid IR.
3640   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3641 
3642   // Zero-initialize it if we're not doing a copy-initialization.
3643   bool shouldCopy = CRE->shouldCopy();
3644   if (!shouldCopy) {
3645     llvm::Value *null =
3646       llvm::ConstantPointerNull::get(
3647         cast<llvm::PointerType>(destType->getElementType()));
3648     CGF.Builder.CreateStore(null, temp);
3649   }
3650 
3651   llvm::BasicBlock *contBB = nullptr;
3652   llvm::BasicBlock *originBB = nullptr;
3653 
3654   // If the address is *not* known to be non-null, we need to switch.
3655   llvm::Value *finalArgument;
3656 
3657   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3658                                               CGF.CGM.getDataLayout());
3659   if (provablyNonNull) {
3660     finalArgument = temp.getPointer();
3661   } else {
3662     llvm::Value *isNull =
3663       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3664 
3665     finalArgument = CGF.Builder.CreateSelect(isNull,
3666                                    llvm::ConstantPointerNull::get(destType),
3667                                              temp.getPointer(), "icr.argument");
3668 
3669     // If we need to copy, then the load has to be conditional, which
3670     // means we need control flow.
3671     if (shouldCopy) {
3672       originBB = CGF.Builder.GetInsertBlock();
3673       contBB = CGF.createBasicBlock("icr.cont");
3674       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3675       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3676       CGF.EmitBlock(copyBB);
3677       condEval.begin(CGF);
3678     }
3679   }
3680 
3681   llvm::Value *valueToUse = nullptr;
3682 
3683   // Perform a copy if necessary.
3684   if (shouldCopy) {
3685     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3686     assert(srcRV.isScalar());
3687 
3688     llvm::Value *src = srcRV.getScalarVal();
3689     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3690                                     "icr.cast");
3691 
3692     // Use an ordinary store, not a store-to-lvalue.
3693     CGF.Builder.CreateStore(src, temp);
3694 
3695     // If optimization is enabled, and the value was held in a
3696     // __strong variable, we need to tell the optimizer that this
3697     // value has to stay alive until we're doing the store back.
3698     // This is because the temporary is effectively unretained,
3699     // and so otherwise we can violate the high-level semantics.
3700     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3701         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3702       valueToUse = src;
3703     }
3704   }
3705 
3706   // Finish the control flow if we needed it.
3707   if (shouldCopy && !provablyNonNull) {
3708     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3709     CGF.EmitBlock(contBB);
3710 
3711     // Make a phi for the value to intrinsically use.
3712     if (valueToUse) {
3713       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3714                                                       "icr.to-use");
3715       phiToUse->addIncoming(valueToUse, copyBB);
3716       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3717                             originBB);
3718       valueToUse = phiToUse;
3719     }
3720 
3721     condEval.end(CGF);
3722   }
3723 
3724   args.addWriteback(srcLV, temp, valueToUse);
3725   args.add(RValue::get(finalArgument), CRE->getType());
3726 }
3727 
3728 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3729   assert(!StackBase);
3730 
3731   // Save the stack.
3732   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3733   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3734 }
3735 
3736 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3737   if (StackBase) {
3738     // Restore the stack after the call.
3739     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3740     CGF.Builder.CreateCall(F, StackBase);
3741   }
3742 }
3743 
3744 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3745                                           SourceLocation ArgLoc,
3746                                           AbstractCallee AC,
3747                                           unsigned ParmNum) {
3748   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3749                          SanOpts.has(SanitizerKind::NullabilityArg)))
3750     return;
3751 
3752   // The param decl may be missing in a variadic function.
3753   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3754   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3755 
3756   // Prefer the nonnull attribute if it's present.
3757   const NonNullAttr *NNAttr = nullptr;
3758   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3759     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3760 
3761   bool CanCheckNullability = false;
3762   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3763     auto Nullability = PVD->getType()->getNullability(getContext());
3764     CanCheckNullability = Nullability &&
3765                           *Nullability == NullabilityKind::NonNull &&
3766                           PVD->getTypeSourceInfo();
3767   }
3768 
3769   if (!NNAttr && !CanCheckNullability)
3770     return;
3771 
3772   SourceLocation AttrLoc;
3773   SanitizerMask CheckKind;
3774   SanitizerHandler Handler;
3775   if (NNAttr) {
3776     AttrLoc = NNAttr->getLocation();
3777     CheckKind = SanitizerKind::NonnullAttribute;
3778     Handler = SanitizerHandler::NonnullArg;
3779   } else {
3780     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3781     CheckKind = SanitizerKind::NullabilityArg;
3782     Handler = SanitizerHandler::NullabilityArg;
3783   }
3784 
3785   SanitizerScope SanScope(this);
3786   assert(RV.isScalar());
3787   llvm::Value *V = RV.getScalarVal();
3788   llvm::Value *Cond =
3789       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3790   llvm::Constant *StaticData[] = {
3791       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3792       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3793   };
3794   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3795 }
3796 
3797 void CodeGenFunction::EmitCallArgs(
3798     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3799     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3800     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3801   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3802 
3803   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3804   // because arguments are destroyed left to right in the callee. As a special
3805   // case, there are certain language constructs that require left-to-right
3806   // evaluation, and in those cases we consider the evaluation order requirement
3807   // to trump the "destruction order is reverse construction order" guarantee.
3808   bool LeftToRight =
3809       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3810           ? Order == EvaluationOrder::ForceLeftToRight
3811           : Order != EvaluationOrder::ForceRightToLeft;
3812 
3813   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3814                                          RValue EmittedArg) {
3815     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3816       return;
3817     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3818     if (PS == nullptr)
3819       return;
3820 
3821     const auto &Context = getContext();
3822     auto SizeTy = Context.getSizeType();
3823     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3824     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3825     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3826                                                      EmittedArg.getScalarVal(),
3827                                                      PS->isDynamic());
3828     Args.add(RValue::get(V), SizeTy);
3829     // If we're emitting args in reverse, be sure to do so with
3830     // pass_object_size, as well.
3831     if (!LeftToRight)
3832       std::swap(Args.back(), *(&Args.back() - 1));
3833   };
3834 
3835   // Insert a stack save if we're going to need any inalloca args.
3836   bool HasInAllocaArgs = false;
3837   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3838     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3839          I != E && !HasInAllocaArgs; ++I)
3840       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3841     if (HasInAllocaArgs) {
3842       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3843       Args.allocateArgumentMemory(*this);
3844     }
3845   }
3846 
3847   // Evaluate each argument in the appropriate order.
3848   size_t CallArgsStart = Args.size();
3849   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3850     unsigned Idx = LeftToRight ? I : E - I - 1;
3851     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3852     unsigned InitialArgSize = Args.size();
3853     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3854     // the argument and parameter match or the objc method is parameterized.
3855     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3856             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3857                                                 ArgTypes[Idx]) ||
3858             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3859              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3860            "Argument and parameter types don't match");
3861     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3862     // In particular, we depend on it being the last arg in Args, and the
3863     // objectsize bits depend on there only being one arg if !LeftToRight.
3864     assert(InitialArgSize + 1 == Args.size() &&
3865            "The code below depends on only adding one arg per EmitCallArg");
3866     (void)InitialArgSize;
3867     // Since pointer argument are never emitted as LValue, it is safe to emit
3868     // non-null argument check for r-value only.
3869     if (!Args.back().hasLValue()) {
3870       RValue RVArg = Args.back().getKnownRValue();
3871       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3872                           ParamsToSkip + Idx);
3873       // @llvm.objectsize should never have side-effects and shouldn't need
3874       // destruction/cleanups, so we can safely "emit" it after its arg,
3875       // regardless of right-to-leftness
3876       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3877     }
3878   }
3879 
3880   if (!LeftToRight) {
3881     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3882     // IR function.
3883     std::reverse(Args.begin() + CallArgsStart, Args.end());
3884   }
3885 }
3886 
3887 namespace {
3888 
3889 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3890   DestroyUnpassedArg(Address Addr, QualType Ty)
3891       : Addr(Addr), Ty(Ty) {}
3892 
3893   Address Addr;
3894   QualType Ty;
3895 
3896   void Emit(CodeGenFunction &CGF, Flags flags) override {
3897     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3898     if (DtorKind == QualType::DK_cxx_destructor) {
3899       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3900       assert(!Dtor->isTrivial());
3901       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3902                                 /*Delegating=*/false, Addr, Ty);
3903     } else {
3904       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3905     }
3906   }
3907 };
3908 
3909 struct DisableDebugLocationUpdates {
3910   CodeGenFunction &CGF;
3911   bool disabledDebugInfo;
3912   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3913     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3914       CGF.disableDebugInfo();
3915   }
3916   ~DisableDebugLocationUpdates() {
3917     if (disabledDebugInfo)
3918       CGF.enableDebugInfo();
3919   }
3920 };
3921 
3922 } // end anonymous namespace
3923 
3924 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3925   if (!HasLV)
3926     return RV;
3927   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3928   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3929                         LV.isVolatile());
3930   IsUsed = true;
3931   return RValue::getAggregate(Copy.getAddress(CGF));
3932 }
3933 
3934 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3935   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3936   if (!HasLV && RV.isScalar())
3937     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3938   else if (!HasLV && RV.isComplex())
3939     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3940   else {
3941     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3942     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3943     // We assume that call args are never copied into subobjects.
3944     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3945                           HasLV ? LV.isVolatileQualified()
3946                                 : RV.isVolatileQualified());
3947   }
3948   IsUsed = true;
3949 }
3950 
3951 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3952                                   QualType type) {
3953   DisableDebugLocationUpdates Dis(*this, E);
3954   if (const ObjCIndirectCopyRestoreExpr *CRE
3955         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3956     assert(getLangOpts().ObjCAutoRefCount);
3957     return emitWritebackArg(*this, args, CRE);
3958   }
3959 
3960   assert(type->isReferenceType() == E->isGLValue() &&
3961          "reference binding to unmaterialized r-value!");
3962 
3963   if (E->isGLValue()) {
3964     assert(E->getObjectKind() == OK_Ordinary);
3965     return args.add(EmitReferenceBindingToExpr(E), type);
3966   }
3967 
3968   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3969 
3970   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3971   // However, we still have to push an EH-only cleanup in case we unwind before
3972   // we make it to the call.
3973   if (HasAggregateEvalKind &&
3974       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3975     // If we're using inalloca, use the argument memory.  Otherwise, use a
3976     // temporary.
3977     AggValueSlot Slot;
3978     if (args.isUsingInAlloca())
3979       Slot = createPlaceholderSlot(*this, type);
3980     else
3981       Slot = CreateAggTemp(type, "agg.tmp");
3982 
3983     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3984     if (const auto *RD = type->getAsCXXRecordDecl())
3985       DestroyedInCallee = RD->hasNonTrivialDestructor();
3986     else
3987       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3988 
3989     if (DestroyedInCallee)
3990       Slot.setExternallyDestructed();
3991 
3992     EmitAggExpr(E, Slot);
3993     RValue RV = Slot.asRValue();
3994     args.add(RV, type);
3995 
3996     if (DestroyedInCallee && NeedsEHCleanup) {
3997       // Create a no-op GEP between the placeholder and the cleanup so we can
3998       // RAUW it successfully.  It also serves as a marker of the first
3999       // instruction where the cleanup is active.
4000       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4001                                               type);
4002       // This unreachable is a temporary marker which will be removed later.
4003       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4004       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4005     }
4006     return;
4007   }
4008 
4009   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4010       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4011     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4012     assert(L.isSimple());
4013     args.addUncopiedAggregate(L, type);
4014     return;
4015   }
4016 
4017   args.add(EmitAnyExprToTemp(E), type);
4018 }
4019 
4020 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4021   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4022   // implicitly widens null pointer constants that are arguments to varargs
4023   // functions to pointer-sized ints.
4024   if (!getTarget().getTriple().isOSWindows())
4025     return Arg->getType();
4026 
4027   if (Arg->getType()->isIntegerType() &&
4028       getContext().getTypeSize(Arg->getType()) <
4029           getContext().getTargetInfo().getPointerWidth(0) &&
4030       Arg->isNullPointerConstant(getContext(),
4031                                  Expr::NPC_ValueDependentIsNotNull)) {
4032     return getContext().getIntPtrType();
4033   }
4034 
4035   return Arg->getType();
4036 }
4037 
4038 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4039 // optimizer it can aggressively ignore unwind edges.
4040 void
4041 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4042   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4043       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4044     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4045                       CGM.getNoObjCARCExceptionsMetadata());
4046 }
4047 
4048 /// Emits a call to the given no-arguments nounwind runtime function.
4049 llvm::CallInst *
4050 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4051                                          const llvm::Twine &name) {
4052   return EmitNounwindRuntimeCall(callee, None, name);
4053 }
4054 
4055 /// Emits a call to the given nounwind runtime function.
4056 llvm::CallInst *
4057 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4058                                          ArrayRef<llvm::Value *> args,
4059                                          const llvm::Twine &name) {
4060   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4061   call->setDoesNotThrow();
4062   return call;
4063 }
4064 
4065 /// Emits a simple call (never an invoke) to the given no-arguments
4066 /// runtime function.
4067 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4068                                                  const llvm::Twine &name) {
4069   return EmitRuntimeCall(callee, None, name);
4070 }
4071 
4072 // Calls which may throw must have operand bundles indicating which funclet
4073 // they are nested within.
4074 SmallVector<llvm::OperandBundleDef, 1>
4075 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4076   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4077   // There is no need for a funclet operand bundle if we aren't inside a
4078   // funclet.
4079   if (!CurrentFuncletPad)
4080     return BundleList;
4081 
4082   // Skip intrinsics which cannot throw.
4083   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4084   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4085     return BundleList;
4086 
4087   BundleList.emplace_back("funclet", CurrentFuncletPad);
4088   return BundleList;
4089 }
4090 
4091 /// Emits a simple call (never an invoke) to the given runtime function.
4092 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4093                                                  ArrayRef<llvm::Value *> args,
4094                                                  const llvm::Twine &name) {
4095   llvm::CallInst *call = Builder.CreateCall(
4096       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4097   call->setCallingConv(getRuntimeCC());
4098   return call;
4099 }
4100 
4101 /// Emits a call or invoke to the given noreturn runtime function.
4102 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4103     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4104   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4105       getBundlesForFunclet(callee.getCallee());
4106 
4107   if (getInvokeDest()) {
4108     llvm::InvokeInst *invoke =
4109       Builder.CreateInvoke(callee,
4110                            getUnreachableBlock(),
4111                            getInvokeDest(),
4112                            args,
4113                            BundleList);
4114     invoke->setDoesNotReturn();
4115     invoke->setCallingConv(getRuntimeCC());
4116   } else {
4117     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4118     call->setDoesNotReturn();
4119     call->setCallingConv(getRuntimeCC());
4120     Builder.CreateUnreachable();
4121   }
4122 }
4123 
4124 /// Emits a call or invoke instruction to the given nullary runtime function.
4125 llvm::CallBase *
4126 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4127                                          const Twine &name) {
4128   return EmitRuntimeCallOrInvoke(callee, None, name);
4129 }
4130 
4131 /// Emits a call or invoke instruction to the given runtime function.
4132 llvm::CallBase *
4133 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4134                                          ArrayRef<llvm::Value *> args,
4135                                          const Twine &name) {
4136   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4137   call->setCallingConv(getRuntimeCC());
4138   return call;
4139 }
4140 
4141 /// Emits a call or invoke instruction to the given function, depending
4142 /// on the current state of the EH stack.
4143 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4144                                                   ArrayRef<llvm::Value *> Args,
4145                                                   const Twine &Name) {
4146   llvm::BasicBlock *InvokeDest = getInvokeDest();
4147   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4148       getBundlesForFunclet(Callee.getCallee());
4149 
4150   llvm::CallBase *Inst;
4151   if (!InvokeDest)
4152     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4153   else {
4154     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4155     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4156                                 Name);
4157     EmitBlock(ContBB);
4158   }
4159 
4160   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4161   // optimizer it can aggressively ignore unwind edges.
4162   if (CGM.getLangOpts().ObjCAutoRefCount)
4163     AddObjCARCExceptionMetadata(Inst);
4164 
4165   return Inst;
4166 }
4167 
4168 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4169                                                   llvm::Value *New) {
4170   DeferredReplacements.push_back(std::make_pair(Old, New));
4171 }
4172 
4173 namespace {
4174 
4175 /// Specify given \p NewAlign as the alignment of return value attribute. If
4176 /// such attribute already exists, re-set it to the maximal one of two options.
4177 LLVM_NODISCARD llvm::AttributeList
4178 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4179                                 const llvm::AttributeList &Attrs,
4180                                 llvm::Align NewAlign) {
4181   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4182   if (CurAlign >= NewAlign)
4183     return Attrs;
4184   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4185   return Attrs
4186       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4187                        llvm::Attribute::AttrKind::Alignment)
4188       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4189 }
4190 
4191 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4192 protected:
4193   CodeGenFunction &CGF;
4194 
4195   /// We do nothing if this is, or becomes, nullptr.
4196   const AlignedAttrTy *AA = nullptr;
4197 
4198   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4199   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4200 
4201   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4202       : CGF(CGF_) {
4203     if (!FuncDecl)
4204       return;
4205     AA = FuncDecl->getAttr<AlignedAttrTy>();
4206   }
4207 
4208 public:
4209   /// If we can, materialize the alignment as an attribute on return value.
4210   LLVM_NODISCARD llvm::AttributeList
4211   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4212     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4213       return Attrs;
4214     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4215     if (!AlignmentCI)
4216       return Attrs;
4217     // We may legitimately have non-power-of-2 alignment here.
4218     // If so, this is UB land, emit it via `@llvm.assume` instead.
4219     if (!AlignmentCI->getValue().isPowerOf2())
4220       return Attrs;
4221     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4222         CGF.getLLVMContext(), Attrs,
4223         llvm::Align(
4224             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4225     AA = nullptr; // We're done. Disallow doing anything else.
4226     return NewAttrs;
4227   }
4228 
4229   /// Emit alignment assumption.
4230   /// This is a general fallback that we take if either there is an offset,
4231   /// or the alignment is variable or we are sanitizing for alignment.
4232   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4233     if (!AA)
4234       return;
4235     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4236                                 AA->getLocation(), Alignment, OffsetCI);
4237     AA = nullptr; // We're done. Disallow doing anything else.
4238   }
4239 };
4240 
4241 /// Helper data structure to emit `AssumeAlignedAttr`.
4242 class AssumeAlignedAttrEmitter final
4243     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4244 public:
4245   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4246       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4247     if (!AA)
4248       return;
4249     // It is guaranteed that the alignment/offset are constants.
4250     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4251     if (Expr *Offset = AA->getOffset()) {
4252       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4253       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4254         OffsetCI = nullptr;
4255     }
4256   }
4257 };
4258 
4259 /// Helper data structure to emit `AllocAlignAttr`.
4260 class AllocAlignAttrEmitter final
4261     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4262 public:
4263   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4264                         const CallArgList &CallArgs)
4265       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4266     if (!AA)
4267       return;
4268     // Alignment may or may not be a constant, and that is okay.
4269     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4270                     .getRValue(CGF)
4271                     .getScalarVal();
4272   }
4273 };
4274 
4275 } // namespace
4276 
4277 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4278                                  const CGCallee &Callee,
4279                                  ReturnValueSlot ReturnValue,
4280                                  const CallArgList &CallArgs,
4281                                  llvm::CallBase **callOrInvoke,
4282                                  SourceLocation Loc) {
4283   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4284 
4285   assert(Callee.isOrdinary() || Callee.isVirtual());
4286 
4287   // Handle struct-return functions by passing a pointer to the
4288   // location that we would like to return into.
4289   QualType RetTy = CallInfo.getReturnType();
4290   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4291 
4292   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4293 
4294   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4295   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4296     // We can only guarantee that a function is called from the correct
4297     // context/function based on the appropriate target attributes,
4298     // so only check in the case where we have both always_inline and target
4299     // since otherwise we could be making a conditional call after a check for
4300     // the proper cpu features (and it won't cause code generation issues due to
4301     // function based code generation).
4302     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4303         TargetDecl->hasAttr<TargetAttr>())
4304       checkTargetFeatures(Loc, FD);
4305 
4306     // Some architectures (such as x86-64) have the ABI changed based on
4307     // attribute-target/features. Give them a chance to diagnose.
4308     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4309         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4310   }
4311 
4312 #ifndef NDEBUG
4313   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4314     // For an inalloca varargs function, we don't expect CallInfo to match the
4315     // function pointer's type, because the inalloca struct a will have extra
4316     // fields in it for the varargs parameters.  Code later in this function
4317     // bitcasts the function pointer to the type derived from CallInfo.
4318     //
4319     // In other cases, we assert that the types match up (until pointers stop
4320     // having pointee types).
4321     llvm::Type *TypeFromVal;
4322     if (Callee.isVirtual())
4323       TypeFromVal = Callee.getVirtualFunctionType();
4324     else
4325       TypeFromVal =
4326           Callee.getFunctionPointer()->getType()->getPointerElementType();
4327     assert(IRFuncTy == TypeFromVal);
4328   }
4329 #endif
4330 
4331   // 1. Set up the arguments.
4332 
4333   // If we're using inalloca, insert the allocation after the stack save.
4334   // FIXME: Do this earlier rather than hacking it in here!
4335   Address ArgMemory = Address::invalid();
4336   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4337     const llvm::DataLayout &DL = CGM.getDataLayout();
4338     llvm::Instruction *IP = CallArgs.getStackBase();
4339     llvm::AllocaInst *AI;
4340     if (IP) {
4341       IP = IP->getNextNode();
4342       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4343                                 "argmem", IP);
4344     } else {
4345       AI = CreateTempAlloca(ArgStruct, "argmem");
4346     }
4347     auto Align = CallInfo.getArgStructAlignment();
4348     AI->setAlignment(Align.getAsAlign());
4349     AI->setUsedWithInAlloca(true);
4350     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4351     ArgMemory = Address(AI, Align);
4352   }
4353 
4354   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4355   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4356 
4357   // If the call returns a temporary with struct return, create a temporary
4358   // alloca to hold the result, unless one is given to us.
4359   Address SRetPtr = Address::invalid();
4360   Address SRetAlloca = Address::invalid();
4361   llvm::Value *UnusedReturnSizePtr = nullptr;
4362   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4363     if (!ReturnValue.isNull()) {
4364       SRetPtr = ReturnValue.getValue();
4365     } else {
4366       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4367       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4368         uint64_t size =
4369             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4370         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4371       }
4372     }
4373     if (IRFunctionArgs.hasSRetArg()) {
4374       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4375     } else if (RetAI.isInAlloca()) {
4376       Address Addr =
4377           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4378       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4379     }
4380   }
4381 
4382   Address swiftErrorTemp = Address::invalid();
4383   Address swiftErrorArg = Address::invalid();
4384 
4385   // When passing arguments using temporary allocas, we need to add the
4386   // appropriate lifetime markers. This vector keeps track of all the lifetime
4387   // markers that need to be ended right after the call.
4388   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4389 
4390   // Translate all of the arguments as necessary to match the IR lowering.
4391   assert(CallInfo.arg_size() == CallArgs.size() &&
4392          "Mismatch between function signature & arguments.");
4393   unsigned ArgNo = 0;
4394   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4395   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4396        I != E; ++I, ++info_it, ++ArgNo) {
4397     const ABIArgInfo &ArgInfo = info_it->info;
4398 
4399     // Insert a padding argument to ensure proper alignment.
4400     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4401       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4402           llvm::UndefValue::get(ArgInfo.getPaddingType());
4403 
4404     unsigned FirstIRArg, NumIRArgs;
4405     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4406 
4407     switch (ArgInfo.getKind()) {
4408     case ABIArgInfo::InAlloca: {
4409       assert(NumIRArgs == 0);
4410       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4411       if (I->isAggregate()) {
4412         Address Addr = I->hasLValue()
4413                            ? I->getKnownLValue().getAddress(*this)
4414                            : I->getKnownRValue().getAggregateAddress();
4415         llvm::Instruction *Placeholder =
4416             cast<llvm::Instruction>(Addr.getPointer());
4417 
4418         if (!ArgInfo.getInAllocaIndirect()) {
4419           // Replace the placeholder with the appropriate argument slot GEP.
4420           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4421           Builder.SetInsertPoint(Placeholder);
4422           Addr = Builder.CreateStructGEP(ArgMemory,
4423                                          ArgInfo.getInAllocaFieldIndex());
4424           Builder.restoreIP(IP);
4425         } else {
4426           // For indirect things such as overaligned structs, replace the
4427           // placeholder with a regular aggregate temporary alloca. Store the
4428           // address of this alloca into the struct.
4429           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4430           Address ArgSlot = Builder.CreateStructGEP(
4431               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4432           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4433         }
4434         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4435       } else if (ArgInfo.getInAllocaIndirect()) {
4436         // Make a temporary alloca and store the address of it into the argument
4437         // struct.
4438         Address Addr = CreateMemTempWithoutCast(
4439             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4440             "indirect-arg-temp");
4441         I->copyInto(*this, Addr);
4442         Address ArgSlot =
4443             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4444         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4445       } else {
4446         // Store the RValue into the argument struct.
4447         Address Addr =
4448             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4449         unsigned AS = Addr.getType()->getPointerAddressSpace();
4450         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4451         // There are some cases where a trivial bitcast is not avoidable.  The
4452         // definition of a type later in a translation unit may change it's type
4453         // from {}* to (%struct.foo*)*.
4454         if (Addr.getType() != MemType)
4455           Addr = Builder.CreateBitCast(Addr, MemType);
4456         I->copyInto(*this, Addr);
4457       }
4458       break;
4459     }
4460 
4461     case ABIArgInfo::Indirect:
4462     case ABIArgInfo::IndirectAliased: {
4463       assert(NumIRArgs == 1);
4464       if (!I->isAggregate()) {
4465         // Make a temporary alloca to pass the argument.
4466         Address Addr = CreateMemTempWithoutCast(
4467             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4468         IRCallArgs[FirstIRArg] = Addr.getPointer();
4469 
4470         I->copyInto(*this, Addr);
4471       } else {
4472         // We want to avoid creating an unnecessary temporary+copy here;
4473         // however, we need one in three cases:
4474         // 1. If the argument is not byval, and we are required to copy the
4475         //    source.  (This case doesn't occur on any common architecture.)
4476         // 2. If the argument is byval, RV is not sufficiently aligned, and
4477         //    we cannot force it to be sufficiently aligned.
4478         // 3. If the argument is byval, but RV is not located in default
4479         //    or alloca address space.
4480         Address Addr = I->hasLValue()
4481                            ? I->getKnownLValue().getAddress(*this)
4482                            : I->getKnownRValue().getAggregateAddress();
4483         llvm::Value *V = Addr.getPointer();
4484         CharUnits Align = ArgInfo.getIndirectAlign();
4485         const llvm::DataLayout *TD = &CGM.getDataLayout();
4486 
4487         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4488                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4489                     TD->getAllocaAddrSpace()) &&
4490                "indirect argument must be in alloca address space");
4491 
4492         bool NeedCopy = false;
4493 
4494         if (Addr.getAlignment() < Align &&
4495             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4496                 Align.getAsAlign()) {
4497           NeedCopy = true;
4498         } else if (I->hasLValue()) {
4499           auto LV = I->getKnownLValue();
4500           auto AS = LV.getAddressSpace();
4501 
4502           if (!ArgInfo.getIndirectByVal() ||
4503               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4504             NeedCopy = true;
4505           }
4506           if (!getLangOpts().OpenCL) {
4507             if ((ArgInfo.getIndirectByVal() &&
4508                 (AS != LangAS::Default &&
4509                  AS != CGM.getASTAllocaAddressSpace()))) {
4510               NeedCopy = true;
4511             }
4512           }
4513           // For OpenCL even if RV is located in default or alloca address space
4514           // we don't want to perform address space cast for it.
4515           else if ((ArgInfo.getIndirectByVal() &&
4516                     Addr.getType()->getAddressSpace() != IRFuncTy->
4517                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4518             NeedCopy = true;
4519           }
4520         }
4521 
4522         if (NeedCopy) {
4523           // Create an aligned temporary, and copy to it.
4524           Address AI = CreateMemTempWithoutCast(
4525               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4526           IRCallArgs[FirstIRArg] = AI.getPointer();
4527 
4528           // Emit lifetime markers for the temporary alloca.
4529           uint64_t ByvalTempElementSize =
4530               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4531           llvm::Value *LifetimeSize =
4532               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4533 
4534           // Add cleanup code to emit the end lifetime marker after the call.
4535           if (LifetimeSize) // In case we disabled lifetime markers.
4536             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4537 
4538           // Generate the copy.
4539           I->copyInto(*this, AI);
4540         } else {
4541           // Skip the extra memcpy call.
4542           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4543               CGM.getDataLayout().getAllocaAddrSpace());
4544           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4545               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4546               true);
4547         }
4548       }
4549       break;
4550     }
4551 
4552     case ABIArgInfo::Ignore:
4553       assert(NumIRArgs == 0);
4554       break;
4555 
4556     case ABIArgInfo::Extend:
4557     case ABIArgInfo::Direct: {
4558       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4559           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4560           ArgInfo.getDirectOffset() == 0) {
4561         assert(NumIRArgs == 1);
4562         llvm::Value *V;
4563         if (!I->isAggregate())
4564           V = I->getKnownRValue().getScalarVal();
4565         else
4566           V = Builder.CreateLoad(
4567               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4568                              : I->getKnownRValue().getAggregateAddress());
4569 
4570         // Implement swifterror by copying into a new swifterror argument.
4571         // We'll write back in the normal path out of the call.
4572         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4573               == ParameterABI::SwiftErrorResult) {
4574           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4575 
4576           QualType pointeeTy = I->Ty->getPointeeType();
4577           swiftErrorArg =
4578             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4579 
4580           swiftErrorTemp =
4581             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4582           V = swiftErrorTemp.getPointer();
4583           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4584 
4585           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4586           Builder.CreateStore(errorValue, swiftErrorTemp);
4587         }
4588 
4589         // We might have to widen integers, but we should never truncate.
4590         if (ArgInfo.getCoerceToType() != V->getType() &&
4591             V->getType()->isIntegerTy())
4592           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4593 
4594         // If the argument doesn't match, perform a bitcast to coerce it.  This
4595         // can happen due to trivial type mismatches.
4596         if (FirstIRArg < IRFuncTy->getNumParams() &&
4597             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4598           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4599 
4600         IRCallArgs[FirstIRArg] = V;
4601         break;
4602       }
4603 
4604       // FIXME: Avoid the conversion through memory if possible.
4605       Address Src = Address::invalid();
4606       if (!I->isAggregate()) {
4607         Src = CreateMemTemp(I->Ty, "coerce");
4608         I->copyInto(*this, Src);
4609       } else {
4610         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4611                              : I->getKnownRValue().getAggregateAddress();
4612       }
4613 
4614       // If the value is offset in memory, apply the offset now.
4615       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4616 
4617       // Fast-isel and the optimizer generally like scalar values better than
4618       // FCAs, so we flatten them if this is safe to do for this argument.
4619       llvm::StructType *STy =
4620             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4621       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4622         llvm::Type *SrcTy = Src.getElementType();
4623         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4624         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4625 
4626         // If the source type is smaller than the destination type of the
4627         // coerce-to logic, copy the source value into a temp alloca the size
4628         // of the destination type to allow loading all of it. The bits past
4629         // the source value are left undef.
4630         if (SrcSize < DstSize) {
4631           Address TempAlloca
4632             = CreateTempAlloca(STy, Src.getAlignment(),
4633                                Src.getName() + ".coerce");
4634           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4635           Src = TempAlloca;
4636         } else {
4637           Src = Builder.CreateBitCast(Src,
4638                                       STy->getPointerTo(Src.getAddressSpace()));
4639         }
4640 
4641         assert(NumIRArgs == STy->getNumElements());
4642         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4643           Address EltPtr = Builder.CreateStructGEP(Src, i);
4644           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4645           IRCallArgs[FirstIRArg + i] = LI;
4646         }
4647       } else {
4648         // In the simple case, just pass the coerced loaded value.
4649         assert(NumIRArgs == 1);
4650         llvm::Value *Load =
4651             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4652 
4653         if (CallInfo.isCmseNSCall()) {
4654           // For certain parameter types, clear padding bits, as they may reveal
4655           // sensitive information.
4656           // Small struct/union types are passed as integer arrays.
4657           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4658           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4659             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4660         }
4661         IRCallArgs[FirstIRArg] = Load;
4662       }
4663 
4664       break;
4665     }
4666 
4667     case ABIArgInfo::CoerceAndExpand: {
4668       auto coercionType = ArgInfo.getCoerceAndExpandType();
4669       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4670 
4671       llvm::Value *tempSize = nullptr;
4672       Address addr = Address::invalid();
4673       Address AllocaAddr = Address::invalid();
4674       if (I->isAggregate()) {
4675         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4676                               : I->getKnownRValue().getAggregateAddress();
4677 
4678       } else {
4679         RValue RV = I->getKnownRValue();
4680         assert(RV.isScalar()); // complex should always just be direct
4681 
4682         llvm::Type *scalarType = RV.getScalarVal()->getType();
4683         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4684         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4685 
4686         // Materialize to a temporary.
4687         addr = CreateTempAlloca(
4688             RV.getScalarVal()->getType(),
4689             CharUnits::fromQuantity(std::max(
4690                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4691             "tmp",
4692             /*ArraySize=*/nullptr, &AllocaAddr);
4693         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4694 
4695         Builder.CreateStore(RV.getScalarVal(), addr);
4696       }
4697 
4698       addr = Builder.CreateElementBitCast(addr, coercionType);
4699 
4700       unsigned IRArgPos = FirstIRArg;
4701       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4702         llvm::Type *eltType = coercionType->getElementType(i);
4703         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4704         Address eltAddr = Builder.CreateStructGEP(addr, i);
4705         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4706         IRCallArgs[IRArgPos++] = elt;
4707       }
4708       assert(IRArgPos == FirstIRArg + NumIRArgs);
4709 
4710       if (tempSize) {
4711         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4712       }
4713 
4714       break;
4715     }
4716 
4717     case ABIArgInfo::Expand: {
4718       unsigned IRArgPos = FirstIRArg;
4719       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4720       assert(IRArgPos == FirstIRArg + NumIRArgs);
4721       break;
4722     }
4723     }
4724   }
4725 
4726   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4727   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4728 
4729   // If we're using inalloca, set up that argument.
4730   if (ArgMemory.isValid()) {
4731     llvm::Value *Arg = ArgMemory.getPointer();
4732     if (CallInfo.isVariadic()) {
4733       // When passing non-POD arguments by value to variadic functions, we will
4734       // end up with a variadic prototype and an inalloca call site.  In such
4735       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4736       // the callee.
4737       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4738       CalleePtr =
4739           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4740     } else {
4741       llvm::Type *LastParamTy =
4742           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4743       if (Arg->getType() != LastParamTy) {
4744 #ifndef NDEBUG
4745         // Assert that these structs have equivalent element types.
4746         llvm::StructType *FullTy = CallInfo.getArgStruct();
4747         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4748             cast<llvm::PointerType>(LastParamTy)->getElementType());
4749         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4750         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4751                                                 DE = DeclaredTy->element_end(),
4752                                                 FI = FullTy->element_begin();
4753              DI != DE; ++DI, ++FI)
4754           assert(*DI == *FI);
4755 #endif
4756         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4757       }
4758     }
4759     assert(IRFunctionArgs.hasInallocaArg());
4760     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4761   }
4762 
4763   // 2. Prepare the function pointer.
4764 
4765   // If the callee is a bitcast of a non-variadic function to have a
4766   // variadic function pointer type, check to see if we can remove the
4767   // bitcast.  This comes up with unprototyped functions.
4768   //
4769   // This makes the IR nicer, but more importantly it ensures that we
4770   // can inline the function at -O0 if it is marked always_inline.
4771   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4772                                    llvm::Value *Ptr) -> llvm::Function * {
4773     if (!CalleeFT->isVarArg())
4774       return nullptr;
4775 
4776     // Get underlying value if it's a bitcast
4777     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4778       if (CE->getOpcode() == llvm::Instruction::BitCast)
4779         Ptr = CE->getOperand(0);
4780     }
4781 
4782     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4783     if (!OrigFn)
4784       return nullptr;
4785 
4786     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4787 
4788     // If the original type is variadic, or if any of the component types
4789     // disagree, we cannot remove the cast.
4790     if (OrigFT->isVarArg() ||
4791         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4792         OrigFT->getReturnType() != CalleeFT->getReturnType())
4793       return nullptr;
4794 
4795     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4796       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4797         return nullptr;
4798 
4799     return OrigFn;
4800   };
4801 
4802   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4803     CalleePtr = OrigFn;
4804     IRFuncTy = OrigFn->getFunctionType();
4805   }
4806 
4807   // 3. Perform the actual call.
4808 
4809   // Deactivate any cleanups that we're supposed to do immediately before
4810   // the call.
4811   if (!CallArgs.getCleanupsToDeactivate().empty())
4812     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4813 
4814   // Assert that the arguments we computed match up.  The IR verifier
4815   // will catch this, but this is a common enough source of problems
4816   // during IRGen changes that it's way better for debugging to catch
4817   // it ourselves here.
4818 #ifndef NDEBUG
4819   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4820   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4821     // Inalloca argument can have different type.
4822     if (IRFunctionArgs.hasInallocaArg() &&
4823         i == IRFunctionArgs.getInallocaArgNo())
4824       continue;
4825     if (i < IRFuncTy->getNumParams())
4826       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4827   }
4828 #endif
4829 
4830   // Update the largest vector width if any arguments have vector types.
4831   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4832     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4833       LargestVectorWidth =
4834           std::max((uint64_t)LargestVectorWidth,
4835                    VT->getPrimitiveSizeInBits().getKnownMinSize());
4836   }
4837 
4838   // Compute the calling convention and attributes.
4839   unsigned CallingConv;
4840   llvm::AttributeList Attrs;
4841   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4842                              Callee.getAbstractInfo(), Attrs, CallingConv,
4843                              /*AttrOnCallSite=*/true);
4844 
4845   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4846     if (FD->usesFPIntrin())
4847       // All calls within a strictfp function are marked strictfp
4848       Attrs =
4849         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4850                            llvm::Attribute::StrictFP);
4851 
4852   // Add call-site nomerge attribute if exists.
4853   if (InNoMergeAttributedStmt)
4854     Attrs =
4855       Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4856                          llvm::Attribute::NoMerge);
4857 
4858   // Apply some call-site-specific attributes.
4859   // TODO: work this into building the attribute set.
4860 
4861   // Apply always_inline to all calls within flatten functions.
4862   // FIXME: should this really take priority over __try, below?
4863   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4864       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4865     Attrs =
4866         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4867                            llvm::Attribute::AlwaysInline);
4868   }
4869 
4870   // Disable inlining inside SEH __try blocks.
4871   if (isSEHTryScope()) {
4872     Attrs =
4873         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4874                            llvm::Attribute::NoInline);
4875   }
4876 
4877   // Decide whether to use a call or an invoke.
4878   bool CannotThrow;
4879   if (currentFunctionUsesSEHTry()) {
4880     // SEH cares about asynchronous exceptions, so everything can "throw."
4881     CannotThrow = false;
4882   } else if (isCleanupPadScope() &&
4883              EHPersonality::get(*this).isMSVCXXPersonality()) {
4884     // The MSVC++ personality will implicitly terminate the program if an
4885     // exception is thrown during a cleanup outside of a try/catch.
4886     // We don't need to model anything in IR to get this behavior.
4887     CannotThrow = true;
4888   } else {
4889     // Otherwise, nounwind call sites will never throw.
4890     CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
4891 
4892     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
4893       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
4894         CannotThrow = true;
4895   }
4896 
4897   // If we made a temporary, be sure to clean up after ourselves. Note that we
4898   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4899   // pop this cleanup later on. Being eager about this is OK, since this
4900   // temporary is 'invisible' outside of the callee.
4901   if (UnusedReturnSizePtr)
4902     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4903                                          UnusedReturnSizePtr);
4904 
4905   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4906 
4907   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4908       getBundlesForFunclet(CalleePtr);
4909 
4910   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4911     if (FD->usesFPIntrin())
4912       // All calls within a strictfp function are marked strictfp
4913       Attrs =
4914         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4915                            llvm::Attribute::StrictFP);
4916 
4917   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
4918   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4919 
4920   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
4921   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4922 
4923   // Emit the actual call/invoke instruction.
4924   llvm::CallBase *CI;
4925   if (!InvokeDest) {
4926     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4927   } else {
4928     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4929     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4930                               BundleList);
4931     EmitBlock(Cont);
4932   }
4933   if (callOrInvoke)
4934     *callOrInvoke = CI;
4935 
4936   // If this is within a function that has the guard(nocf) attribute and is an
4937   // indirect call, add the "guard_nocf" attribute to this call to indicate that
4938   // Control Flow Guard checks should not be added, even if the call is inlined.
4939   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4940     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4941       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4942         Attrs = Attrs.addAttribute(
4943             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4944     }
4945   }
4946 
4947   // Apply the attributes and calling convention.
4948   CI->setAttributes(Attrs);
4949   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4950 
4951   // Apply various metadata.
4952 
4953   if (!CI->getType()->isVoidTy())
4954     CI->setName("call");
4955 
4956   // Update largest vector width from the return type.
4957   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4958     LargestVectorWidth =
4959         std::max((uint64_t)LargestVectorWidth,
4960                  VT->getPrimitiveSizeInBits().getKnownMinSize());
4961 
4962   // Insert instrumentation or attach profile metadata at indirect call sites.
4963   // For more details, see the comment before the definition of
4964   // IPVK_IndirectCallTarget in InstrProfData.inc.
4965   if (!CI->getCalledFunction())
4966     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4967                      CI, CalleePtr);
4968 
4969   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4970   // optimizer it can aggressively ignore unwind edges.
4971   if (CGM.getLangOpts().ObjCAutoRefCount)
4972     AddObjCARCExceptionMetadata(CI);
4973 
4974   // Suppress tail calls if requested.
4975   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4976     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4977       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4978   }
4979 
4980   // Add metadata for calls to MSAllocator functions
4981   if (getDebugInfo() && TargetDecl &&
4982       TargetDecl->hasAttr<MSAllocatorAttr>())
4983     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
4984 
4985   // 4. Finish the call.
4986 
4987   // If the call doesn't return, finish the basic block and clear the
4988   // insertion point; this allows the rest of IRGen to discard
4989   // unreachable code.
4990   if (CI->doesNotReturn()) {
4991     if (UnusedReturnSizePtr)
4992       PopCleanupBlock();
4993 
4994     // Strip away the noreturn attribute to better diagnose unreachable UB.
4995     if (SanOpts.has(SanitizerKind::Unreachable)) {
4996       // Also remove from function since CallBase::hasFnAttr additionally checks
4997       // attributes of the called function.
4998       if (auto *F = CI->getCalledFunction())
4999         F->removeFnAttr(llvm::Attribute::NoReturn);
5000       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
5001                           llvm::Attribute::NoReturn);
5002 
5003       // Avoid incompatibility with ASan which relies on the `noreturn`
5004       // attribute to insert handler calls.
5005       if (SanOpts.hasOneOf(SanitizerKind::Address |
5006                            SanitizerKind::KernelAddress)) {
5007         SanitizerScope SanScope(this);
5008         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5009         Builder.SetInsertPoint(CI);
5010         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5011         llvm::FunctionCallee Fn =
5012             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5013         EmitNounwindRuntimeCall(Fn);
5014       }
5015     }
5016 
5017     EmitUnreachable(Loc);
5018     Builder.ClearInsertionPoint();
5019 
5020     // FIXME: For now, emit a dummy basic block because expr emitters in
5021     // generally are not ready to handle emitting expressions at unreachable
5022     // points.
5023     EnsureInsertPoint();
5024 
5025     // Return a reasonable RValue.
5026     return GetUndefRValue(RetTy);
5027   }
5028 
5029   // Perform the swifterror writeback.
5030   if (swiftErrorTemp.isValid()) {
5031     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5032     Builder.CreateStore(errorResult, swiftErrorArg);
5033   }
5034 
5035   // Emit any call-associated writebacks immediately.  Arguably this
5036   // should happen after any return-value munging.
5037   if (CallArgs.hasWritebacks())
5038     emitWritebacks(*this, CallArgs);
5039 
5040   // The stack cleanup for inalloca arguments has to run out of the normal
5041   // lexical order, so deactivate it and run it manually here.
5042   CallArgs.freeArgumentMemory(*this);
5043 
5044   // Extract the return value.
5045   RValue Ret = [&] {
5046     switch (RetAI.getKind()) {
5047     case ABIArgInfo::CoerceAndExpand: {
5048       auto coercionType = RetAI.getCoerceAndExpandType();
5049 
5050       Address addr = SRetPtr;
5051       addr = Builder.CreateElementBitCast(addr, coercionType);
5052 
5053       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5054       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5055 
5056       unsigned unpaddedIndex = 0;
5057       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5058         llvm::Type *eltType = coercionType->getElementType(i);
5059         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5060         Address eltAddr = Builder.CreateStructGEP(addr, i);
5061         llvm::Value *elt = CI;
5062         if (requiresExtract)
5063           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5064         else
5065           assert(unpaddedIndex == 0);
5066         Builder.CreateStore(elt, eltAddr);
5067       }
5068       // FALLTHROUGH
5069       LLVM_FALLTHROUGH;
5070     }
5071 
5072     case ABIArgInfo::InAlloca:
5073     case ABIArgInfo::Indirect: {
5074       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5075       if (UnusedReturnSizePtr)
5076         PopCleanupBlock();
5077       return ret;
5078     }
5079 
5080     case ABIArgInfo::Ignore:
5081       // If we are ignoring an argument that had a result, make sure to
5082       // construct the appropriate return value for our caller.
5083       return GetUndefRValue(RetTy);
5084 
5085     case ABIArgInfo::Extend:
5086     case ABIArgInfo::Direct: {
5087       llvm::Type *RetIRTy = ConvertType(RetTy);
5088       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5089         switch (getEvaluationKind(RetTy)) {
5090         case TEK_Complex: {
5091           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5092           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5093           return RValue::getComplex(std::make_pair(Real, Imag));
5094         }
5095         case TEK_Aggregate: {
5096           Address DestPtr = ReturnValue.getValue();
5097           bool DestIsVolatile = ReturnValue.isVolatile();
5098 
5099           if (!DestPtr.isValid()) {
5100             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5101             DestIsVolatile = false;
5102           }
5103           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5104           return RValue::getAggregate(DestPtr);
5105         }
5106         case TEK_Scalar: {
5107           // If the argument doesn't match, perform a bitcast to coerce it.  This
5108           // can happen due to trivial type mismatches.
5109           llvm::Value *V = CI;
5110           if (V->getType() != RetIRTy)
5111             V = Builder.CreateBitCast(V, RetIRTy);
5112           return RValue::get(V);
5113         }
5114         }
5115         llvm_unreachable("bad evaluation kind");
5116       }
5117 
5118       Address DestPtr = ReturnValue.getValue();
5119       bool DestIsVolatile = ReturnValue.isVolatile();
5120 
5121       if (!DestPtr.isValid()) {
5122         DestPtr = CreateMemTemp(RetTy, "coerce");
5123         DestIsVolatile = false;
5124       }
5125 
5126       // If the value is offset in memory, apply the offset now.
5127       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5128       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5129 
5130       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5131     }
5132 
5133     case ABIArgInfo::Expand:
5134     case ABIArgInfo::IndirectAliased:
5135       llvm_unreachable("Invalid ABI kind for return argument");
5136     }
5137 
5138     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5139   } ();
5140 
5141   // Emit the assume_aligned check on the return value.
5142   if (Ret.isScalar() && TargetDecl) {
5143     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5144     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5145   }
5146 
5147   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5148   // we can't use the full cleanup mechanism.
5149   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5150     LifetimeEnd.Emit(*this, /*Flags=*/{});
5151 
5152   if (!ReturnValue.isExternallyDestructed() &&
5153       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5154     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5155                 RetTy);
5156 
5157   return Ret;
5158 }
5159 
5160 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5161   if (isVirtual()) {
5162     const CallExpr *CE = getVirtualCallExpr();
5163     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5164         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5165         CE ? CE->getBeginLoc() : SourceLocation());
5166   }
5167 
5168   return *this;
5169 }
5170 
5171 /* VarArg handling */
5172 
5173 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5174   VAListAddr = VE->isMicrosoftABI()
5175                  ? EmitMSVAListRef(VE->getSubExpr())
5176                  : EmitVAListRef(VE->getSubExpr());
5177   QualType Ty = VE->getType();
5178   if (VE->isMicrosoftABI())
5179     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5180   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5181 }
5182