1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification. Either or both of RD and MD may be null. A null RD indicates
73 /// that there is no meaningful 'this' type, and a null MD can occur when
74 /// calling a method pointer.
75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
76                                          const CXXMethodDecl *MD) {
77   QualType RecTy;
78   if (RD)
79     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
80   else
81     RecTy = Context.VoidTy;
82 
83   if (MD)
84     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
85   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
86 }
87 
88 /// Returns the canonical formal type of the given C++ method.
89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
90   return MD->getType()->getCanonicalTypeUnqualified()
91            .getAs<FunctionProtoType>();
92 }
93 
94 /// Returns the "extra-canonicalized" return type, which discards
95 /// qualifiers on the return type.  Codegen doesn't care about them,
96 /// and it makes ABI code a little easier to be able to assume that
97 /// all parameter and return types are top-level unqualified.
98 static CanQualType GetReturnType(QualType RetTy) {
99   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
100 }
101 
102 /// Arrange the argument and result information for a value of the given
103 /// unprototyped freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
106   // When translating an unprototyped function type, always use a
107   // variadic type.
108   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
109                                  /*instanceMethod=*/false,
110                                  /*chainCall=*/false, None,
111                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
112 }
113 
114 static void addExtParameterInfosForCall(
115          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
116                                         const FunctionProtoType *proto,
117                                         unsigned prefixArgs,
118                                         unsigned totalArgs) {
119   assert(proto->hasExtParameterInfos());
120   assert(paramInfos.size() <= prefixArgs);
121   assert(proto->getNumParams() + prefixArgs <= totalArgs);
122 
123   paramInfos.reserve(totalArgs);
124 
125   // Add default infos for any prefix args that don't already have infos.
126   paramInfos.resize(prefixArgs);
127 
128   // Add infos for the prototype.
129   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
130     paramInfos.push_back(ParamInfo);
131     // pass_object_size params have no parameter info.
132     if (ParamInfo.hasPassObjectSize())
133       paramInfos.emplace_back();
134   }
135 
136   assert(paramInfos.size() <= totalArgs &&
137          "Did we forget to insert pass_object_size args?");
138   // Add default infos for the variadic and/or suffix arguments.
139   paramInfos.resize(totalArgs);
140 }
141 
142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
144 static void appendParameterTypes(const CodeGenTypes &CGT,
145                                  SmallVectorImpl<CanQualType> &prefix,
146               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
147                                  CanQual<FunctionProtoType> FPT) {
148   // Fast path: don't touch param info if we don't need to.
149   if (!FPT->hasExtParameterInfos()) {
150     assert(paramInfos.empty() &&
151            "We have paramInfos, but the prototype doesn't?");
152     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
153     return;
154   }
155 
156   unsigned PrefixSize = prefix.size();
157   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
158   // parameters; the only thing that can change this is the presence of
159   // pass_object_size. So, we preallocate for the common case.
160   prefix.reserve(prefix.size() + FPT->getNumParams());
161 
162   auto ExtInfos = FPT->getExtParameterInfos();
163   assert(ExtInfos.size() == FPT->getNumParams());
164   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
165     prefix.push_back(FPT->getParamType(I));
166     if (ExtInfos[I].hasPassObjectSize())
167       prefix.push_back(CGT.getContext().getSizeType());
168   }
169 
170   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
171                               prefix.size());
172 }
173 
174 /// Arrange the LLVM function layout for a value of the given function
175 /// type, on top of any implicit parameters already stored.
176 static const CGFunctionInfo &
177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
178                         SmallVectorImpl<CanQualType> &prefix,
179                         CanQual<FunctionProtoType> FTP) {
180   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
181   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
182   // FIXME: Kill copy.
183   appendParameterTypes(CGT, prefix, paramInfos, FTP);
184   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
185 
186   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
187                                      /*chainCall=*/false, prefix,
188                                      FTP->getExtInfo(), paramInfos,
189                                      Required);
190 }
191 
192 /// Arrange the argument and result information for a value of the
193 /// given freestanding function type.
194 const CGFunctionInfo &
195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
196   SmallVector<CanQualType, 16> argTypes;
197   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
198                                    FTP);
199 }
200 
201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
202   // Set the appropriate calling convention for the Function.
203   if (D->hasAttr<StdCallAttr>())
204     return CC_X86StdCall;
205 
206   if (D->hasAttr<FastCallAttr>())
207     return CC_X86FastCall;
208 
209   if (D->hasAttr<RegCallAttr>())
210     return CC_X86RegCall;
211 
212   if (D->hasAttr<ThisCallAttr>())
213     return CC_X86ThisCall;
214 
215   if (D->hasAttr<VectorCallAttr>())
216     return CC_X86VectorCall;
217 
218   if (D->hasAttr<PascalAttr>())
219     return CC_X86Pascal;
220 
221   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
222     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
223 
224   if (D->hasAttr<AArch64VectorPcsAttr>())
225     return CC_AArch64VectorCall;
226 
227   if (D->hasAttr<IntelOclBiccAttr>())
228     return CC_IntelOclBicc;
229 
230   if (D->hasAttr<MSABIAttr>())
231     return IsWindows ? CC_C : CC_Win64;
232 
233   if (D->hasAttr<SysVABIAttr>())
234     return IsWindows ? CC_X86_64SysV : CC_C;
235 
236   if (D->hasAttr<PreserveMostAttr>())
237     return CC_PreserveMost;
238 
239   if (D->hasAttr<PreserveAllAttr>())
240     return CC_PreserveAll;
241 
242   return CC_C;
243 }
244 
245 /// Arrange the argument and result information for a call to an
246 /// unknown C++ non-static member function of the given abstract type.
247 /// (A null RD means we don't have any meaningful "this" argument type,
248 ///  so fall back to a generic pointer type).
249 /// The member function must be an ordinary function, i.e. not a
250 /// constructor or destructor.
251 const CGFunctionInfo &
252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
253                                    const FunctionProtoType *FTP,
254                                    const CXXMethodDecl *MD) {
255   SmallVector<CanQualType, 16> argTypes;
256 
257   // Add the 'this' pointer.
258   argTypes.push_back(DeriveThisType(RD, MD));
259 
260   return ::arrangeLLVMFunctionInfo(
261       *this, true, argTypes,
262       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
263 }
264 
265 /// Set calling convention for CUDA/HIP kernel.
266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
267                                            const FunctionDecl *FD) {
268   if (FD->hasAttr<CUDAGlobalAttr>()) {
269     const FunctionType *FT = FTy->getAs<FunctionType>();
270     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
271     FTy = FT->getCanonicalTypeUnqualified();
272   }
273 }
274 
275 /// Arrange the argument and result information for a declaration or
276 /// definition of the given C++ non-static member function.  The
277 /// member function must be an ordinary function, i.e. not a
278 /// constructor or destructor.
279 const CGFunctionInfo &
280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
281   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
282   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
283 
284   CanQualType FT = GetFormalType(MD).getAs<Type>();
285   setCUDAKernelCallingConvention(FT, CGM, MD);
286   auto prototype = FT.getAs<FunctionProtoType>();
287 
288   if (MD->isInstance()) {
289     // The abstract case is perfectly fine.
290     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
291     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
292   }
293 
294   return arrangeFreeFunctionType(prototype);
295 }
296 
297 bool CodeGenTypes::inheritingCtorHasParams(
298     const InheritedConstructor &Inherited, CXXCtorType Type) {
299   // Parameters are unnecessary if we're constructing a base class subobject
300   // and the inherited constructor lives in a virtual base.
301   return Type == Ctor_Complete ||
302          !Inherited.getShadowDecl()->constructsVirtualBase() ||
303          !Target.getCXXABI().hasConstructorVariants();
304 }
305 
306 const CGFunctionInfo &
307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
308   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
309 
310   SmallVector<CanQualType, 16> argTypes;
311   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
312   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
313 
314   bool PassParams = true;
315 
316   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317     // A base class inheriting constructor doesn't get forwarded arguments
318     // needed to construct a virtual base (or base class thereof).
319     if (auto Inherited = CD->getInheritedConstructor())
320       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
321   }
322 
323   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
324 
325   // Add the formal parameters.
326   if (PassParams)
327     appendParameterTypes(*this, argTypes, paramInfos, FTP);
328 
329   CGCXXABI::AddedStructorArgCounts AddedArgs =
330       TheCXXABI.buildStructorSignature(GD, argTypes);
331   if (!paramInfos.empty()) {
332     // Note: prefix implies after the first param.
333     if (AddedArgs.Prefix)
334       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
335                         FunctionProtoType::ExtParameterInfo{});
336     if (AddedArgs.Suffix)
337       paramInfos.append(AddedArgs.Suffix,
338                         FunctionProtoType::ExtParameterInfo{});
339   }
340 
341   RequiredArgs required =
342       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
343                                       : RequiredArgs::All);
344 
345   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
346   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
347                                ? argTypes.front()
348                                : TheCXXABI.hasMostDerivedReturn(GD)
349                                      ? CGM.getContext().VoidPtrTy
350                                      : Context.VoidTy;
351   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
352                                  /*chainCall=*/false, argTypes, extInfo,
353                                  paramInfos, required);
354 }
355 
356 static SmallVector<CanQualType, 16>
357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
358   SmallVector<CanQualType, 16> argTypes;
359   for (auto &arg : args)
360     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
361   return argTypes;
362 }
363 
364 static SmallVector<CanQualType, 16>
365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
366   SmallVector<CanQualType, 16> argTypes;
367   for (auto &arg : args)
368     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
369   return argTypes;
370 }
371 
372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
373 getExtParameterInfosForCall(const FunctionProtoType *proto,
374                             unsigned prefixArgs, unsigned totalArgs) {
375   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
376   if (proto->hasExtParameterInfos()) {
377     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
378   }
379   return result;
380 }
381 
382 /// Arrange a call to a C++ method, passing the given arguments.
383 ///
384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
385 /// parameter.
386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
387 /// args.
388 /// PassProtoArgs indicates whether `args` has args for the parameters in the
389 /// given CXXConstructorDecl.
390 const CGFunctionInfo &
391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
392                                         const CXXConstructorDecl *D,
393                                         CXXCtorType CtorKind,
394                                         unsigned ExtraPrefixArgs,
395                                         unsigned ExtraSuffixArgs,
396                                         bool PassProtoArgs) {
397   // FIXME: Kill copy.
398   SmallVector<CanQualType, 16> ArgTypes;
399   for (const auto &Arg : args)
400     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
401 
402   // +1 for implicit this, which should always be args[0].
403   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
404 
405   CanQual<FunctionProtoType> FPT = GetFormalType(D);
406   RequiredArgs Required = PassProtoArgs
407                               ? RequiredArgs::forPrototypePlus(
408                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
409                               : RequiredArgs::All;
410 
411   GlobalDecl GD(D, CtorKind);
412   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
413                                ? ArgTypes.front()
414                                : TheCXXABI.hasMostDerivedReturn(GD)
415                                      ? CGM.getContext().VoidPtrTy
416                                      : Context.VoidTy;
417 
418   FunctionType::ExtInfo Info = FPT->getExtInfo();
419   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
420   // If the prototype args are elided, we should only have ABI-specific args,
421   // which never have param info.
422   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
423     // ABI-specific suffix arguments are treated the same as variadic arguments.
424     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
425                                 ArgTypes.size());
426   }
427   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
428                                  /*chainCall=*/false, ArgTypes, Info,
429                                  ParamInfos, Required);
430 }
431 
432 /// Arrange the argument and result information for the declaration or
433 /// definition of the given function.
434 const CGFunctionInfo &
435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
436   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
437     if (MD->isInstance())
438       return arrangeCXXMethodDeclaration(MD);
439 
440   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
441 
442   assert(isa<FunctionType>(FTy));
443   setCUDAKernelCallingConvention(FTy, CGM, FD);
444 
445   // When declaring a function without a prototype, always use a
446   // non-variadic type.
447   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
448     return arrangeLLVMFunctionInfo(
449         noProto->getReturnType(), /*instanceMethod=*/false,
450         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
451   }
452 
453   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
454 }
455 
456 /// Arrange the argument and result information for the declaration or
457 /// definition of an Objective-C method.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
460   // It happens that this is the same as a call with no optional
461   // arguments, except also using the formal 'self' type.
462   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
463 }
464 
465 /// Arrange the argument and result information for the function type
466 /// through which to perform a send to the given Objective-C method,
467 /// using the given receiver type.  The receiver type is not always
468 /// the 'self' type of the method or even an Objective-C pointer type.
469 /// This is *not* the right method for actually performing such a
470 /// message send, due to the possibility of optional arguments.
471 const CGFunctionInfo &
472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
473                                               QualType receiverType) {
474   SmallVector<CanQualType, 16> argTys;
475   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
476   argTys.push_back(Context.getCanonicalParamType(receiverType));
477   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
478   // FIXME: Kill copy?
479   for (const auto *I : MD->parameters()) {
480     argTys.push_back(Context.getCanonicalParamType(I->getType()));
481     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
482         I->hasAttr<NoEscapeAttr>());
483     extParamInfos.push_back(extParamInfo);
484   }
485 
486   FunctionType::ExtInfo einfo;
487   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
488   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
489 
490   if (getContext().getLangOpts().ObjCAutoRefCount &&
491       MD->hasAttr<NSReturnsRetainedAttr>())
492     einfo = einfo.withProducesResult(true);
493 
494   RequiredArgs required =
495     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
496 
497   return arrangeLLVMFunctionInfo(
498       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
499       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
500 }
501 
502 const CGFunctionInfo &
503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
504                                                  const CallArgList &args) {
505   auto argTypes = getArgTypesForCall(Context, args);
506   FunctionType::ExtInfo einfo;
507 
508   return arrangeLLVMFunctionInfo(
509       GetReturnType(returnType), /*instanceMethod=*/false,
510       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
511 }
512 
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
515   // FIXME: Do we need to handle ObjCMethodDecl?
516   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
517 
518   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
519       isa<CXXDestructorDecl>(GD.getDecl()))
520     return arrangeCXXStructorDeclaration(GD);
521 
522   return arrangeFunctionDeclaration(FD);
523 }
524 
525 /// Arrange a thunk that takes 'this' as the first parameter followed by
526 /// varargs.  Return a void pointer, regardless of the actual return type.
527 /// The body of the thunk will end in a musttail call to a function of the
528 /// correct type, and the caller will bitcast the function to the correct
529 /// prototype.
530 const CGFunctionInfo &
531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
532   assert(MD->isVirtual() && "only methods have thunks");
533   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
534   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
535   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
536                                  /*chainCall=*/false, ArgTys,
537                                  FTP->getExtInfo(), {}, RequiredArgs(1));
538 }
539 
540 const CGFunctionInfo &
541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
542                                    CXXCtorType CT) {
543   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
544 
545   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
546   SmallVector<CanQualType, 2> ArgTys;
547   const CXXRecordDecl *RD = CD->getParent();
548   ArgTys.push_back(DeriveThisType(RD, CD));
549   if (CT == Ctor_CopyingClosure)
550     ArgTys.push_back(*FTP->param_type_begin());
551   if (RD->getNumVBases() > 0)
552     ArgTys.push_back(Context.IntTy);
553   CallingConv CC = Context.getDefaultCallingConvention(
554       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
555   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
556                                  /*chainCall=*/false, ArgTys,
557                                  FunctionType::ExtInfo(CC), {},
558                                  RequiredArgs::All);
559 }
560 
561 /// Arrange a call as unto a free function, except possibly with an
562 /// additional number of formal parameters considered required.
563 static const CGFunctionInfo &
564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
565                             CodeGenModule &CGM,
566                             const CallArgList &args,
567                             const FunctionType *fnType,
568                             unsigned numExtraRequiredArgs,
569                             bool chainCall) {
570   assert(args.size() >= numExtraRequiredArgs);
571 
572   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
573 
574   // In most cases, there are no optional arguments.
575   RequiredArgs required = RequiredArgs::All;
576 
577   // If we have a variadic prototype, the required arguments are the
578   // extra prefix plus the arguments in the prototype.
579   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
580     if (proto->isVariadic())
581       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
582 
583     if (proto->hasExtParameterInfos())
584       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
585                                   args.size());
586 
587   // If we don't have a prototype at all, but we're supposed to
588   // explicitly use the variadic convention for unprototyped calls,
589   // treat all of the arguments as required but preserve the nominal
590   // possibility of variadics.
591   } else if (CGM.getTargetCodeGenInfo()
592                 .isNoProtoCallVariadic(args,
593                                        cast<FunctionNoProtoType>(fnType))) {
594     required = RequiredArgs(args.size());
595   }
596 
597   // FIXME: Kill copy.
598   SmallVector<CanQualType, 16> argTypes;
599   for (const auto &arg : args)
600     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
601   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
602                                      /*instanceMethod=*/false, chainCall,
603                                      argTypes, fnType->getExtInfo(), paramInfos,
604                                      required);
605 }
606 
607 /// Figure out the rules for calling a function with the given formal
608 /// type using the given arguments.  The arguments are necessary
609 /// because the function might be unprototyped, in which case it's
610 /// target-dependent in crazy ways.
611 const CGFunctionInfo &
612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
613                                       const FunctionType *fnType,
614                                       bool chainCall) {
615   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
616                                      chainCall ? 1 : 0, chainCall);
617 }
618 
619 /// A block function is essentially a free function with an
620 /// extra implicit argument.
621 const CGFunctionInfo &
622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
623                                        const FunctionType *fnType) {
624   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
625                                      /*chainCall=*/false);
626 }
627 
628 const CGFunctionInfo &
629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
630                                               const FunctionArgList &params) {
631   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
632   auto argTypes = getArgTypesForDeclaration(Context, params);
633 
634   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
635                                  /*instanceMethod*/ false, /*chainCall*/ false,
636                                  argTypes, proto->getExtInfo(), paramInfos,
637                                  RequiredArgs::forPrototypePlus(proto, 1));
638 }
639 
640 const CGFunctionInfo &
641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
642                                          const CallArgList &args) {
643   // FIXME: Kill copy.
644   SmallVector<CanQualType, 16> argTypes;
645   for (const auto &Arg : args)
646     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
647   return arrangeLLVMFunctionInfo(
648       GetReturnType(resultType), /*instanceMethod=*/false,
649       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
650       /*paramInfos=*/ {}, RequiredArgs::All);
651 }
652 
653 const CGFunctionInfo &
654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
655                                                 const FunctionArgList &args) {
656   auto argTypes = getArgTypesForDeclaration(Context, args);
657 
658   return arrangeLLVMFunctionInfo(
659       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
660       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
661 }
662 
663 const CGFunctionInfo &
664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
665                                               ArrayRef<CanQualType> argTypes) {
666   return arrangeLLVMFunctionInfo(
667       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
668       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
669 }
670 
671 /// Arrange a call to a C++ method, passing the given arguments.
672 ///
673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
674 /// does not count `this`.
675 const CGFunctionInfo &
676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
677                                    const FunctionProtoType *proto,
678                                    RequiredArgs required,
679                                    unsigned numPrefixArgs) {
680   assert(numPrefixArgs + 1 <= args.size() &&
681          "Emitting a call with less args than the required prefix?");
682   // Add one to account for `this`. It's a bit awkward here, but we don't count
683   // `this` in similar places elsewhere.
684   auto paramInfos =
685     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
686 
687   // FIXME: Kill copy.
688   auto argTypes = getArgTypesForCall(Context, args);
689 
690   FunctionType::ExtInfo info = proto->getExtInfo();
691   return arrangeLLVMFunctionInfo(
692       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
693       /*chainCall=*/false, argTypes, info, paramInfos, required);
694 }
695 
696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
697   return arrangeLLVMFunctionInfo(
698       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
699       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
700 }
701 
702 const CGFunctionInfo &
703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
704                           const CallArgList &args) {
705   assert(signature.arg_size() <= args.size());
706   if (signature.arg_size() == args.size())
707     return signature;
708 
709   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
710   auto sigParamInfos = signature.getExtParameterInfos();
711   if (!sigParamInfos.empty()) {
712     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
713     paramInfos.resize(args.size());
714   }
715 
716   auto argTypes = getArgTypesForCall(Context, args);
717 
718   assert(signature.getRequiredArgs().allowsOptionalArgs());
719   return arrangeLLVMFunctionInfo(signature.getReturnType(),
720                                  signature.isInstanceMethod(),
721                                  signature.isChainCall(),
722                                  argTypes,
723                                  signature.getExtInfo(),
724                                  paramInfos,
725                                  signature.getRequiredArgs());
726 }
727 
728 namespace clang {
729 namespace CodeGen {
730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
731 }
732 }
733 
734 /// Arrange the argument and result information for an abstract value
735 /// of a given function type.  This is the method which all of the
736 /// above functions ultimately defer to.
737 const CGFunctionInfo &
738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
739                                       bool instanceMethod,
740                                       bool chainCall,
741                                       ArrayRef<CanQualType> argTypes,
742                                       FunctionType::ExtInfo info,
743                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
744                                       RequiredArgs required) {
745   assert(llvm::all_of(argTypes,
746                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
747 
748   // Lookup or create unique function info.
749   llvm::FoldingSetNodeID ID;
750   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
751                           required, resultType, argTypes);
752 
753   void *insertPos = nullptr;
754   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
755   if (FI)
756     return *FI;
757 
758   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
759 
760   // Construct the function info.  We co-allocate the ArgInfos.
761   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
762                               paramInfos, resultType, argTypes, required);
763   FunctionInfos.InsertNode(FI, insertPos);
764 
765   bool inserted = FunctionsBeingProcessed.insert(FI).second;
766   (void)inserted;
767   assert(inserted && "Recursively being processed?");
768 
769   // Compute ABI information.
770   if (CC == llvm::CallingConv::SPIR_KERNEL) {
771     // Force target independent argument handling for the host visible
772     // kernel functions.
773     computeSPIRKernelABIInfo(CGM, *FI);
774   } else if (info.getCC() == CC_Swift) {
775     swiftcall::computeABIInfo(CGM, *FI);
776   } else {
777     getABIInfo().computeInfo(*FI);
778   }
779 
780   // Loop over all of the computed argument and return value info.  If any of
781   // them are direct or extend without a specified coerce type, specify the
782   // default now.
783   ABIArgInfo &retInfo = FI->getReturnInfo();
784   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
785     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
786 
787   for (auto &I : FI->arguments())
788     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
789       I.info.setCoerceToType(ConvertType(I.type));
790 
791   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
792   assert(erased && "Not in set?");
793 
794   return *FI;
795 }
796 
797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
798                                        bool instanceMethod,
799                                        bool chainCall,
800                                        const FunctionType::ExtInfo &info,
801                                        ArrayRef<ExtParameterInfo> paramInfos,
802                                        CanQualType resultType,
803                                        ArrayRef<CanQualType> argTypes,
804                                        RequiredArgs required) {
805   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
806   assert(!required.allowsOptionalArgs() ||
807          required.getNumRequiredArgs() <= argTypes.size());
808 
809   void *buffer =
810     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
811                                   argTypes.size() + 1, paramInfos.size()));
812 
813   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
814   FI->CallingConvention = llvmCC;
815   FI->EffectiveCallingConvention = llvmCC;
816   FI->ASTCallingConvention = info.getCC();
817   FI->InstanceMethod = instanceMethod;
818   FI->ChainCall = chainCall;
819   FI->CmseNSCall = info.getCmseNSCall();
820   FI->NoReturn = info.getNoReturn();
821   FI->ReturnsRetained = info.getProducesResult();
822   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
823   FI->NoCfCheck = info.getNoCfCheck();
824   FI->Required = required;
825   FI->HasRegParm = info.getHasRegParm();
826   FI->RegParm = info.getRegParm();
827   FI->ArgStruct = nullptr;
828   FI->ArgStructAlign = 0;
829   FI->NumArgs = argTypes.size();
830   FI->HasExtParameterInfos = !paramInfos.empty();
831   FI->getArgsBuffer()[0].type = resultType;
832   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
833     FI->getArgsBuffer()[i + 1].type = argTypes[i];
834   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
835     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
836   return FI;
837 }
838 
839 /***/
840 
841 namespace {
842 // ABIArgInfo::Expand implementation.
843 
844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
845 struct TypeExpansion {
846   enum TypeExpansionKind {
847     // Elements of constant arrays are expanded recursively.
848     TEK_ConstantArray,
849     // Record fields are expanded recursively (but if record is a union, only
850     // the field with the largest size is expanded).
851     TEK_Record,
852     // For complex types, real and imaginary parts are expanded recursively.
853     TEK_Complex,
854     // All other types are not expandable.
855     TEK_None
856   };
857 
858   const TypeExpansionKind Kind;
859 
860   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
861   virtual ~TypeExpansion() {}
862 };
863 
864 struct ConstantArrayExpansion : TypeExpansion {
865   QualType EltTy;
866   uint64_t NumElts;
867 
868   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
869       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
870   static bool classof(const TypeExpansion *TE) {
871     return TE->Kind == TEK_ConstantArray;
872   }
873 };
874 
875 struct RecordExpansion : TypeExpansion {
876   SmallVector<const CXXBaseSpecifier *, 1> Bases;
877 
878   SmallVector<const FieldDecl *, 1> Fields;
879 
880   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
881                   SmallVector<const FieldDecl *, 1> &&Fields)
882       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
883         Fields(std::move(Fields)) {}
884   static bool classof(const TypeExpansion *TE) {
885     return TE->Kind == TEK_Record;
886   }
887 };
888 
889 struct ComplexExpansion : TypeExpansion {
890   QualType EltTy;
891 
892   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_Complex;
895   }
896 };
897 
898 struct NoExpansion : TypeExpansion {
899   NoExpansion() : TypeExpansion(TEK_None) {}
900   static bool classof(const TypeExpansion *TE) {
901     return TE->Kind == TEK_None;
902   }
903 };
904 }  // namespace
905 
906 static std::unique_ptr<TypeExpansion>
907 getTypeExpansion(QualType Ty, const ASTContext &Context) {
908   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
909     return std::make_unique<ConstantArrayExpansion>(
910         AT->getElementType(), AT->getSize().getZExtValue());
911   }
912   if (const RecordType *RT = Ty->getAs<RecordType>()) {
913     SmallVector<const CXXBaseSpecifier *, 1> Bases;
914     SmallVector<const FieldDecl *, 1> Fields;
915     const RecordDecl *RD = RT->getDecl();
916     assert(!RD->hasFlexibleArrayMember() &&
917            "Cannot expand structure with flexible array.");
918     if (RD->isUnion()) {
919       // Unions can be here only in degenerative cases - all the fields are same
920       // after flattening. Thus we have to use the "largest" field.
921       const FieldDecl *LargestFD = nullptr;
922       CharUnits UnionSize = CharUnits::Zero();
923 
924       for (const auto *FD : RD->fields()) {
925         if (FD->isZeroLengthBitField(Context))
926           continue;
927         assert(!FD->isBitField() &&
928                "Cannot expand structure with bit-field members.");
929         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
930         if (UnionSize < FieldSize) {
931           UnionSize = FieldSize;
932           LargestFD = FD;
933         }
934       }
935       if (LargestFD)
936         Fields.push_back(LargestFD);
937     } else {
938       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
939         assert(!CXXRD->isDynamicClass() &&
940                "cannot expand vtable pointers in dynamic classes");
941         for (const CXXBaseSpecifier &BS : CXXRD->bases())
942           Bases.push_back(&BS);
943       }
944 
945       for (const auto *FD : RD->fields()) {
946         if (FD->isZeroLengthBitField(Context))
947           continue;
948         assert(!FD->isBitField() &&
949                "Cannot expand structure with bit-field members.");
950         Fields.push_back(FD);
951       }
952     }
953     return std::make_unique<RecordExpansion>(std::move(Bases),
954                                               std::move(Fields));
955   }
956   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
957     return std::make_unique<ComplexExpansion>(CT->getElementType());
958   }
959   return std::make_unique<NoExpansion>();
960 }
961 
962 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
963   auto Exp = getTypeExpansion(Ty, Context);
964   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
965     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
966   }
967   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
968     int Res = 0;
969     for (auto BS : RExp->Bases)
970       Res += getExpansionSize(BS->getType(), Context);
971     for (auto FD : RExp->Fields)
972       Res += getExpansionSize(FD->getType(), Context);
973     return Res;
974   }
975   if (isa<ComplexExpansion>(Exp.get()))
976     return 2;
977   assert(isa<NoExpansion>(Exp.get()));
978   return 1;
979 }
980 
981 void
982 CodeGenTypes::getExpandedTypes(QualType Ty,
983                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
984   auto Exp = getTypeExpansion(Ty, Context);
985   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
986     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
987       getExpandedTypes(CAExp->EltTy, TI);
988     }
989   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     for (auto BS : RExp->Bases)
991       getExpandedTypes(BS->getType(), TI);
992     for (auto FD : RExp->Fields)
993       getExpandedTypes(FD->getType(), TI);
994   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
995     llvm::Type *EltTy = ConvertType(CExp->EltTy);
996     *TI++ = EltTy;
997     *TI++ = EltTy;
998   } else {
999     assert(isa<NoExpansion>(Exp.get()));
1000     *TI++ = ConvertType(Ty);
1001   }
1002 }
1003 
1004 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1005                                       ConstantArrayExpansion *CAE,
1006                                       Address BaseAddr,
1007                                       llvm::function_ref<void(Address)> Fn) {
1008   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1009   CharUnits EltAlign =
1010     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1011 
1012   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1013     llvm::Value *EltAddr =
1014       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1015     Fn(Address(EltAddr, EltAlign));
1016   }
1017 }
1018 
1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1020                                          llvm::Function::arg_iterator &AI) {
1021   assert(LV.isSimple() &&
1022          "Unexpected non-simple lvalue during struct expansion.");
1023 
1024   auto Exp = getTypeExpansion(Ty, getContext());
1025   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1026     forConstantArrayExpansion(
1027         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1028           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1029           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1030         });
1031   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1032     Address This = LV.getAddress(*this);
1033     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1034       // Perform a single step derived-to-base conversion.
1035       Address Base =
1036           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1037                                 /*NullCheckValue=*/false, SourceLocation());
1038       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1039 
1040       // Recurse onto bases.
1041       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1042     }
1043     for (auto FD : RExp->Fields) {
1044       // FIXME: What are the right qualifiers here?
1045       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1046       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1047     }
1048   } else if (isa<ComplexExpansion>(Exp.get())) {
1049     auto realValue = &*AI++;
1050     auto imagValue = &*AI++;
1051     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1052   } else {
1053     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1054     // primitive store.
1055     assert(isa<NoExpansion>(Exp.get()));
1056     if (LV.isBitField())
1057       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1058     else
1059       EmitStoreOfScalar(&*AI++, LV);
1060   }
1061 }
1062 
1063 void CodeGenFunction::ExpandTypeToArgs(
1064     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1065     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1066   auto Exp = getTypeExpansion(Ty, getContext());
1067   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1068     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1069                                    : Arg.getKnownRValue().getAggregateAddress();
1070     forConstantArrayExpansion(
1071         *this, CAExp, Addr, [&](Address EltAddr) {
1072           CallArg EltArg = CallArg(
1073               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1074               CAExp->EltTy);
1075           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1076                            IRCallArgPos);
1077         });
1078   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1079     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1080                                    : Arg.getKnownRValue().getAggregateAddress();
1081     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1082       // Perform a single step derived-to-base conversion.
1083       Address Base =
1084           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1085                                 /*NullCheckValue=*/false, SourceLocation());
1086       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1087 
1088       // Recurse onto bases.
1089       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1090                        IRCallArgPos);
1091     }
1092 
1093     LValue LV = MakeAddrLValue(This, Ty);
1094     for (auto FD : RExp->Fields) {
1095       CallArg FldArg =
1096           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1097       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1098                        IRCallArgPos);
1099     }
1100   } else if (isa<ComplexExpansion>(Exp.get())) {
1101     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1102     IRCallArgs[IRCallArgPos++] = CV.first;
1103     IRCallArgs[IRCallArgPos++] = CV.second;
1104   } else {
1105     assert(isa<NoExpansion>(Exp.get()));
1106     auto RV = Arg.getKnownRValue();
1107     assert(RV.isScalar() &&
1108            "Unexpected non-scalar rvalue during struct expansion.");
1109 
1110     // Insert a bitcast as needed.
1111     llvm::Value *V = RV.getScalarVal();
1112     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1113         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1114       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1115 
1116     IRCallArgs[IRCallArgPos++] = V;
1117   }
1118 }
1119 
1120 /// Create a temporary allocation for the purposes of coercion.
1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1122                                            CharUnits MinAlign) {
1123   // Don't use an alignment that's worse than what LLVM would prefer.
1124   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1125   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1126 
1127   return CGF.CreateTempAlloca(Ty, Align);
1128 }
1129 
1130 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1131 /// accessing some number of bytes out of it, try to gep into the struct to get
1132 /// at its inner goodness.  Dive as deep as possible without entering an element
1133 /// with an in-memory size smaller than DstSize.
1134 static Address
1135 EnterStructPointerForCoercedAccess(Address SrcPtr,
1136                                    llvm::StructType *SrcSTy,
1137                                    uint64_t DstSize, CodeGenFunction &CGF) {
1138   // We can't dive into a zero-element struct.
1139   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1140 
1141   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1142 
1143   // If the first elt is at least as large as what we're looking for, or if the
1144   // first element is the same size as the whole struct, we can enter it. The
1145   // comparison must be made on the store size and not the alloca size. Using
1146   // the alloca size may overstate the size of the load.
1147   uint64_t FirstEltSize =
1148     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1149   if (FirstEltSize < DstSize &&
1150       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1151     return SrcPtr;
1152 
1153   // GEP into the first element.
1154   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1155 
1156   // If the first element is a struct, recurse.
1157   llvm::Type *SrcTy = SrcPtr.getElementType();
1158   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1159     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1160 
1161   return SrcPtr;
1162 }
1163 
1164 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1165 /// are either integers or pointers.  This does a truncation of the value if it
1166 /// is too large or a zero extension if it is too small.
1167 ///
1168 /// This behaves as if the value were coerced through memory, so on big-endian
1169 /// targets the high bits are preserved in a truncation, while little-endian
1170 /// targets preserve the low bits.
1171 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1172                                              llvm::Type *Ty,
1173                                              CodeGenFunction &CGF) {
1174   if (Val->getType() == Ty)
1175     return Val;
1176 
1177   if (isa<llvm::PointerType>(Val->getType())) {
1178     // If this is Pointer->Pointer avoid conversion to and from int.
1179     if (isa<llvm::PointerType>(Ty))
1180       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1181 
1182     // Convert the pointer to an integer so we can play with its width.
1183     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1184   }
1185 
1186   llvm::Type *DestIntTy = Ty;
1187   if (isa<llvm::PointerType>(DestIntTy))
1188     DestIntTy = CGF.IntPtrTy;
1189 
1190   if (Val->getType() != DestIntTy) {
1191     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1192     if (DL.isBigEndian()) {
1193       // Preserve the high bits on big-endian targets.
1194       // That is what memory coercion does.
1195       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1196       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1197 
1198       if (SrcSize > DstSize) {
1199         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1200         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1201       } else {
1202         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1203         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1204       }
1205     } else {
1206       // Little-endian targets preserve the low bits. No shifts required.
1207       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1208     }
1209   }
1210 
1211   if (isa<llvm::PointerType>(Ty))
1212     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1213   return Val;
1214 }
1215 
1216 
1217 
1218 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1219 /// a pointer to an object of type \arg Ty, known to be aligned to
1220 /// \arg SrcAlign bytes.
1221 ///
1222 /// This safely handles the case when the src type is smaller than the
1223 /// destination type; in this situation the values of bits which not
1224 /// present in the src are undefined.
1225 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1226                                       CodeGenFunction &CGF) {
1227   llvm::Type *SrcTy = Src.getElementType();
1228 
1229   // If SrcTy and Ty are the same, just do a load.
1230   if (SrcTy == Ty)
1231     return CGF.Builder.CreateLoad(Src);
1232 
1233   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1234 
1235   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1236     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1237     SrcTy = Src.getElementType();
1238   }
1239 
1240   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1241 
1242   // If the source and destination are integer or pointer types, just do an
1243   // extension or truncation to the desired type.
1244   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1245       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1246     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1247     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1248   }
1249 
1250   // If load is legal, just bitcast the src pointer.
1251   if (SrcSize >= DstSize) {
1252     // Generally SrcSize is never greater than DstSize, since this means we are
1253     // losing bits. However, this can happen in cases where the structure has
1254     // additional padding, for example due to a user specified alignment.
1255     //
1256     // FIXME: Assert that we aren't truncating non-padding bits when have access
1257     // to that information.
1258     Src = CGF.Builder.CreateBitCast(Src,
1259                                     Ty->getPointerTo(Src.getAddressSpace()));
1260     return CGF.Builder.CreateLoad(Src);
1261   }
1262 
1263   // Otherwise do coercion through memory. This is stupid, but simple.
1264   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1265   CGF.Builder.CreateMemCpy(Tmp.getPointer(), Tmp.getAlignment().getAsAlign(),
1266                            Src.getPointer(), Src.getAlignment().getAsAlign(),
1267                            llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize));
1268   return CGF.Builder.CreateLoad(Tmp);
1269 }
1270 
1271 // Function to store a first-class aggregate into memory.  We prefer to
1272 // store the elements rather than the aggregate to be more friendly to
1273 // fast-isel.
1274 // FIXME: Do we need to recurse here?
1275 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1276                                          bool DestIsVolatile) {
1277   // Prefer scalar stores to first-class aggregate stores.
1278   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1279     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1280       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1281       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1282       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1283     }
1284   } else {
1285     Builder.CreateStore(Val, Dest, DestIsVolatile);
1286   }
1287 }
1288 
1289 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1290 /// where the source and destination may have different types.  The
1291 /// destination is known to be aligned to \arg DstAlign bytes.
1292 ///
1293 /// This safely handles the case when the src type is larger than the
1294 /// destination type; the upper bits of the src will be lost.
1295 static void CreateCoercedStore(llvm::Value *Src,
1296                                Address Dst,
1297                                bool DstIsVolatile,
1298                                CodeGenFunction &CGF) {
1299   llvm::Type *SrcTy = Src->getType();
1300   llvm::Type *DstTy = Dst.getElementType();
1301   if (SrcTy == DstTy) {
1302     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1303     return;
1304   }
1305 
1306   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1307 
1308   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1309     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1310     DstTy = Dst.getElementType();
1311   }
1312 
1313   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1314   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1315   if (SrcPtrTy && DstPtrTy &&
1316       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1317     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1318     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1319     return;
1320   }
1321 
1322   // If the source and destination are integer or pointer types, just do an
1323   // extension or truncation to the desired type.
1324   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1325       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1326     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1327     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1328     return;
1329   }
1330 
1331   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1332 
1333   // If store is legal, just bitcast the src pointer.
1334   if (SrcSize <= DstSize) {
1335     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1336     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1337   } else {
1338     // Otherwise do coercion through memory. This is stupid, but
1339     // simple.
1340 
1341     // Generally SrcSize is never greater than DstSize, since this means we are
1342     // losing bits. However, this can happen in cases where the structure has
1343     // additional padding, for example due to a user specified alignment.
1344     //
1345     // FIXME: Assert that we aren't truncating non-padding bits when have access
1346     // to that information.
1347     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1348     CGF.Builder.CreateStore(Src, Tmp);
1349     CGF.Builder.CreateMemCpy(Dst.getPointer(), Dst.getAlignment().getAsAlign(),
1350                              Tmp.getPointer(), Tmp.getAlignment().getAsAlign(),
1351                              llvm::ConstantInt::get(CGF.IntPtrTy, DstSize));
1352   }
1353 }
1354 
1355 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1356                                    const ABIArgInfo &info) {
1357   if (unsigned offset = info.getDirectOffset()) {
1358     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1359     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1360                                              CharUnits::fromQuantity(offset));
1361     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1362   }
1363   return addr;
1364 }
1365 
1366 namespace {
1367 
1368 /// Encapsulates information about the way function arguments from
1369 /// CGFunctionInfo should be passed to actual LLVM IR function.
1370 class ClangToLLVMArgMapping {
1371   static const unsigned InvalidIndex = ~0U;
1372   unsigned InallocaArgNo;
1373   unsigned SRetArgNo;
1374   unsigned TotalIRArgs;
1375 
1376   /// Arguments of LLVM IR function corresponding to single Clang argument.
1377   struct IRArgs {
1378     unsigned PaddingArgIndex;
1379     // Argument is expanded to IR arguments at positions
1380     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1381     unsigned FirstArgIndex;
1382     unsigned NumberOfArgs;
1383 
1384     IRArgs()
1385         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1386           NumberOfArgs(0) {}
1387   };
1388 
1389   SmallVector<IRArgs, 8> ArgInfo;
1390 
1391 public:
1392   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1393                         bool OnlyRequiredArgs = false)
1394       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1395         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1396     construct(Context, FI, OnlyRequiredArgs);
1397   }
1398 
1399   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1400   unsigned getInallocaArgNo() const {
1401     assert(hasInallocaArg());
1402     return InallocaArgNo;
1403   }
1404 
1405   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1406   unsigned getSRetArgNo() const {
1407     assert(hasSRetArg());
1408     return SRetArgNo;
1409   }
1410 
1411   unsigned totalIRArgs() const { return TotalIRArgs; }
1412 
1413   bool hasPaddingArg(unsigned ArgNo) const {
1414     assert(ArgNo < ArgInfo.size());
1415     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1416   }
1417   unsigned getPaddingArgNo(unsigned ArgNo) const {
1418     assert(hasPaddingArg(ArgNo));
1419     return ArgInfo[ArgNo].PaddingArgIndex;
1420   }
1421 
1422   /// Returns index of first IR argument corresponding to ArgNo, and their
1423   /// quantity.
1424   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1425     assert(ArgNo < ArgInfo.size());
1426     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1427                           ArgInfo[ArgNo].NumberOfArgs);
1428   }
1429 
1430 private:
1431   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1432                  bool OnlyRequiredArgs);
1433 };
1434 
1435 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1436                                       const CGFunctionInfo &FI,
1437                                       bool OnlyRequiredArgs) {
1438   unsigned IRArgNo = 0;
1439   bool SwapThisWithSRet = false;
1440   const ABIArgInfo &RetAI = FI.getReturnInfo();
1441 
1442   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1443     SwapThisWithSRet = RetAI.isSRetAfterThis();
1444     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1445   }
1446 
1447   unsigned ArgNo = 0;
1448   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1449   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1450        ++I, ++ArgNo) {
1451     assert(I != FI.arg_end());
1452     QualType ArgType = I->type;
1453     const ABIArgInfo &AI = I->info;
1454     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1455     auto &IRArgs = ArgInfo[ArgNo];
1456 
1457     if (AI.getPaddingType())
1458       IRArgs.PaddingArgIndex = IRArgNo++;
1459 
1460     switch (AI.getKind()) {
1461     case ABIArgInfo::Extend:
1462     case ABIArgInfo::Direct: {
1463       // FIXME: handle sseregparm someday...
1464       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1465       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1466         IRArgs.NumberOfArgs = STy->getNumElements();
1467       } else {
1468         IRArgs.NumberOfArgs = 1;
1469       }
1470       break;
1471     }
1472     case ABIArgInfo::Indirect:
1473     case ABIArgInfo::IndirectAliased:
1474       IRArgs.NumberOfArgs = 1;
1475       break;
1476     case ABIArgInfo::Ignore:
1477     case ABIArgInfo::InAlloca:
1478       // ignore and inalloca doesn't have matching LLVM parameters.
1479       IRArgs.NumberOfArgs = 0;
1480       break;
1481     case ABIArgInfo::CoerceAndExpand:
1482       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1483       break;
1484     case ABIArgInfo::Expand:
1485       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1486       break;
1487     }
1488 
1489     if (IRArgs.NumberOfArgs > 0) {
1490       IRArgs.FirstArgIndex = IRArgNo;
1491       IRArgNo += IRArgs.NumberOfArgs;
1492     }
1493 
1494     // Skip over the sret parameter when it comes second.  We already handled it
1495     // above.
1496     if (IRArgNo == 1 && SwapThisWithSRet)
1497       IRArgNo++;
1498   }
1499   assert(ArgNo == ArgInfo.size());
1500 
1501   if (FI.usesInAlloca())
1502     InallocaArgNo = IRArgNo++;
1503 
1504   TotalIRArgs = IRArgNo;
1505 }
1506 }  // namespace
1507 
1508 /***/
1509 
1510 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1511   const auto &RI = FI.getReturnInfo();
1512   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1513 }
1514 
1515 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1516   return ReturnTypeUsesSRet(FI) &&
1517          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1518 }
1519 
1520 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1521   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1522     switch (BT->getKind()) {
1523     default:
1524       return false;
1525     case BuiltinType::Float:
1526       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1527     case BuiltinType::Double:
1528       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1529     case BuiltinType::LongDouble:
1530       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1531     }
1532   }
1533 
1534   return false;
1535 }
1536 
1537 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1538   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1539     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1540       if (BT->getKind() == BuiltinType::LongDouble)
1541         return getTarget().useObjCFP2RetForComplexLongDouble();
1542     }
1543   }
1544 
1545   return false;
1546 }
1547 
1548 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1549   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1550   return GetFunctionType(FI);
1551 }
1552 
1553 llvm::FunctionType *
1554 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1555 
1556   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1557   (void)Inserted;
1558   assert(Inserted && "Recursively being processed?");
1559 
1560   llvm::Type *resultType = nullptr;
1561   const ABIArgInfo &retAI = FI.getReturnInfo();
1562   switch (retAI.getKind()) {
1563   case ABIArgInfo::Expand:
1564   case ABIArgInfo::IndirectAliased:
1565     llvm_unreachable("Invalid ABI kind for return argument");
1566 
1567   case ABIArgInfo::Extend:
1568   case ABIArgInfo::Direct:
1569     resultType = retAI.getCoerceToType();
1570     break;
1571 
1572   case ABIArgInfo::InAlloca:
1573     if (retAI.getInAllocaSRet()) {
1574       // sret things on win32 aren't void, they return the sret pointer.
1575       QualType ret = FI.getReturnType();
1576       llvm::Type *ty = ConvertType(ret);
1577       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1578       resultType = llvm::PointerType::get(ty, addressSpace);
1579     } else {
1580       resultType = llvm::Type::getVoidTy(getLLVMContext());
1581     }
1582     break;
1583 
1584   case ABIArgInfo::Indirect:
1585   case ABIArgInfo::Ignore:
1586     resultType = llvm::Type::getVoidTy(getLLVMContext());
1587     break;
1588 
1589   case ABIArgInfo::CoerceAndExpand:
1590     resultType = retAI.getUnpaddedCoerceAndExpandType();
1591     break;
1592   }
1593 
1594   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1595   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1596 
1597   // Add type for sret argument.
1598   if (IRFunctionArgs.hasSRetArg()) {
1599     QualType Ret = FI.getReturnType();
1600     llvm::Type *Ty = ConvertType(Ret);
1601     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1602     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1603         llvm::PointerType::get(Ty, AddressSpace);
1604   }
1605 
1606   // Add type for inalloca argument.
1607   if (IRFunctionArgs.hasInallocaArg()) {
1608     auto ArgStruct = FI.getArgStruct();
1609     assert(ArgStruct);
1610     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1611   }
1612 
1613   // Add in all of the required arguments.
1614   unsigned ArgNo = 0;
1615   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1616                                      ie = it + FI.getNumRequiredArgs();
1617   for (; it != ie; ++it, ++ArgNo) {
1618     const ABIArgInfo &ArgInfo = it->info;
1619 
1620     // Insert a padding type to ensure proper alignment.
1621     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1622       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1623           ArgInfo.getPaddingType();
1624 
1625     unsigned FirstIRArg, NumIRArgs;
1626     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1627 
1628     switch (ArgInfo.getKind()) {
1629     case ABIArgInfo::Ignore:
1630     case ABIArgInfo::InAlloca:
1631       assert(NumIRArgs == 0);
1632       break;
1633 
1634     case ABIArgInfo::Indirect: {
1635       assert(NumIRArgs == 1);
1636       // indirect arguments are always on the stack, which is alloca addr space.
1637       llvm::Type *LTy = ConvertTypeForMem(it->type);
1638       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1639           CGM.getDataLayout().getAllocaAddrSpace());
1640       break;
1641     }
1642     case ABIArgInfo::IndirectAliased: {
1643       assert(NumIRArgs == 1);
1644       llvm::Type *LTy = ConvertTypeForMem(it->type);
1645       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1646       break;
1647     }
1648     case ABIArgInfo::Extend:
1649     case ABIArgInfo::Direct: {
1650       // Fast-isel and the optimizer generally like scalar values better than
1651       // FCAs, so we flatten them if this is safe to do for this argument.
1652       llvm::Type *argType = ArgInfo.getCoerceToType();
1653       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1654       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1655         assert(NumIRArgs == st->getNumElements());
1656         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1657           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1658       } else {
1659         assert(NumIRArgs == 1);
1660         ArgTypes[FirstIRArg] = argType;
1661       }
1662       break;
1663     }
1664 
1665     case ABIArgInfo::CoerceAndExpand: {
1666       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1667       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1668         *ArgTypesIter++ = EltTy;
1669       }
1670       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1671       break;
1672     }
1673 
1674     case ABIArgInfo::Expand:
1675       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1676       getExpandedTypes(it->type, ArgTypesIter);
1677       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1678       break;
1679     }
1680   }
1681 
1682   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1683   assert(Erased && "Not in set?");
1684 
1685   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1686 }
1687 
1688 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1689   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1690   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1691 
1692   if (!isFuncTypeConvertible(FPT))
1693     return llvm::StructType::get(getLLVMContext());
1694 
1695   return GetFunctionType(GD);
1696 }
1697 
1698 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1699                                                llvm::AttrBuilder &FuncAttrs,
1700                                                const FunctionProtoType *FPT) {
1701   if (!FPT)
1702     return;
1703 
1704   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1705       FPT->isNothrow())
1706     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1707 }
1708 
1709 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1710                                                  bool HasOptnone,
1711                                                  bool AttrOnCallSite,
1712                                                llvm::AttrBuilder &FuncAttrs) {
1713   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1714   if (!HasOptnone) {
1715     if (CodeGenOpts.OptimizeSize)
1716       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1717     if (CodeGenOpts.OptimizeSize == 2)
1718       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1719   }
1720 
1721   if (CodeGenOpts.DisableRedZone)
1722     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1723   if (CodeGenOpts.IndirectTlsSegRefs)
1724     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1725   if (CodeGenOpts.NoImplicitFloat)
1726     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1727 
1728   if (AttrOnCallSite) {
1729     // Attributes that should go on the call site only.
1730     if (!CodeGenOpts.SimplifyLibCalls ||
1731         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1732       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1733     if (!CodeGenOpts.TrapFuncName.empty())
1734       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1735   } else {
1736     StringRef FpKind;
1737     switch (CodeGenOpts.getFramePointer()) {
1738     case CodeGenOptions::FramePointerKind::None:
1739       FpKind = "none";
1740       break;
1741     case CodeGenOptions::FramePointerKind::NonLeaf:
1742       FpKind = "non-leaf";
1743       break;
1744     case CodeGenOptions::FramePointerKind::All:
1745       FpKind = "all";
1746       break;
1747     }
1748     FuncAttrs.addAttribute("frame-pointer", FpKind);
1749 
1750     FuncAttrs.addAttribute("less-precise-fpmad",
1751                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1752 
1753     if (CodeGenOpts.NullPointerIsValid)
1754       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1755 
1756     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1757       FuncAttrs.addAttribute("denormal-fp-math",
1758                              CodeGenOpts.FPDenormalMode.str());
1759     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1760       FuncAttrs.addAttribute(
1761           "denormal-fp-math-f32",
1762           CodeGenOpts.FP32DenormalMode.str());
1763     }
1764 
1765     FuncAttrs.addAttribute("no-trapping-math",
1766                            llvm::toStringRef(LangOpts.getFPExceptionMode() ==
1767                                              LangOptions::FPE_Ignore));
1768 
1769     // Strict (compliant) code is the default, so only add this attribute to
1770     // indicate that we are trying to workaround a problem case.
1771     if (!CodeGenOpts.StrictFloatCastOverflow)
1772       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1773 
1774     // TODO: Are these all needed?
1775     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1776     FuncAttrs.addAttribute("no-infs-fp-math",
1777                            llvm::toStringRef(LangOpts.NoHonorInfs));
1778     FuncAttrs.addAttribute("no-nans-fp-math",
1779                            llvm::toStringRef(LangOpts.NoHonorNaNs));
1780     FuncAttrs.addAttribute("unsafe-fp-math",
1781                            llvm::toStringRef(LangOpts.UnsafeFPMath));
1782     FuncAttrs.addAttribute("use-soft-float",
1783                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1784     FuncAttrs.addAttribute("stack-protector-buffer-size",
1785                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1786     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1787                            llvm::toStringRef(LangOpts.NoSignedZero));
1788     FuncAttrs.addAttribute(
1789         "correctly-rounded-divide-sqrt-fp-math",
1790         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1791 
1792     // TODO: Reciprocal estimate codegen options should apply to instructions?
1793     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1794     if (!Recips.empty())
1795       FuncAttrs.addAttribute("reciprocal-estimates",
1796                              llvm::join(Recips, ","));
1797 
1798     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1799         CodeGenOpts.PreferVectorWidth != "none")
1800       FuncAttrs.addAttribute("prefer-vector-width",
1801                              CodeGenOpts.PreferVectorWidth);
1802 
1803     if (CodeGenOpts.StackRealignment)
1804       FuncAttrs.addAttribute("stackrealign");
1805     if (CodeGenOpts.Backchain)
1806       FuncAttrs.addAttribute("backchain");
1807     if (CodeGenOpts.EnableSegmentedStacks)
1808       FuncAttrs.addAttribute("split-stack");
1809 
1810     if (CodeGenOpts.SpeculativeLoadHardening)
1811       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1812   }
1813 
1814   if (getLangOpts().assumeFunctionsAreConvergent()) {
1815     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1816     // convergent (meaning, they may call an intrinsically convergent op, such
1817     // as __syncthreads() / barrier(), and so can't have certain optimizations
1818     // applied around them).  LLVM will remove this attribute where it safely
1819     // can.
1820     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1821   }
1822 
1823   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1824     // Exceptions aren't supported in CUDA device code.
1825     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1826   }
1827 
1828   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1829     StringRef Var, Value;
1830     std::tie(Var, Value) = Attr.split('=');
1831     FuncAttrs.addAttribute(Var, Value);
1832   }
1833 }
1834 
1835 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1836   llvm::AttrBuilder FuncAttrs;
1837   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1838                                /* AttrOnCallSite = */ false, FuncAttrs);
1839   // TODO: call GetCPUAndFeaturesAttributes?
1840   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1841 }
1842 
1843 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1844                                                    llvm::AttrBuilder &attrs) {
1845   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1846                                /*for call*/ false, attrs);
1847   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1848 }
1849 
1850 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1851                                    const LangOptions &LangOpts,
1852                                    const NoBuiltinAttr *NBA = nullptr) {
1853   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1854     SmallString<32> AttributeName;
1855     AttributeName += "no-builtin-";
1856     AttributeName += BuiltinName;
1857     FuncAttrs.addAttribute(AttributeName);
1858   };
1859 
1860   // First, handle the language options passed through -fno-builtin.
1861   if (LangOpts.NoBuiltin) {
1862     // -fno-builtin disables them all.
1863     FuncAttrs.addAttribute("no-builtins");
1864     return;
1865   }
1866 
1867   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1868   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1869 
1870   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1871   // the source.
1872   if (!NBA)
1873     return;
1874 
1875   // If there is a wildcard in the builtin names specified through the
1876   // attribute, disable them all.
1877   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1878     FuncAttrs.addAttribute("no-builtins");
1879     return;
1880   }
1881 
1882   // And last, add the rest of the builtin names.
1883   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1884 }
1885 
1886 /// Construct the IR attribute list of a function or call.
1887 ///
1888 /// When adding an attribute, please consider where it should be handled:
1889 ///
1890 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1891 ///     part of the global target configuration (but perhaps can be
1892 ///     overridden on a per-function basis).  Adding attributes there
1893 ///     will cause them to also be set in frontends that build on Clang's
1894 ///     target-configuration logic, as well as for code defined in library
1895 ///     modules such as CUDA's libdevice.
1896 ///
1897 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1898 ///     and adds declaration-specific, convention-specific, and
1899 ///     frontend-specific logic.  The last is of particular importance:
1900 ///     attributes that restrict how the frontend generates code must be
1901 ///     added here rather than getDefaultFunctionAttributes.
1902 ///
1903 void CodeGenModule::ConstructAttributeList(
1904     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1905     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1906   llvm::AttrBuilder FuncAttrs;
1907   llvm::AttrBuilder RetAttrs;
1908 
1909   // Collect function IR attributes from the CC lowering.
1910   // We'll collect the paramete and result attributes later.
1911   CallingConv = FI.getEffectiveCallingConvention();
1912   if (FI.isNoReturn())
1913     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1914   if (FI.isCmseNSCall())
1915     FuncAttrs.addAttribute("cmse_nonsecure_call");
1916 
1917   // Collect function IR attributes from the callee prototype if we have one.
1918   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1919                                      CalleeInfo.getCalleeFunctionProtoType());
1920 
1921   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1922 
1923   bool HasOptnone = false;
1924   // The NoBuiltinAttr attached to the target FunctionDecl.
1925   const NoBuiltinAttr *NBA = nullptr;
1926 
1927   // Collect function IR attributes based on declaration-specific
1928   // information.
1929   // FIXME: handle sseregparm someday...
1930   if (TargetDecl) {
1931     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1932       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1933     if (TargetDecl->hasAttr<NoThrowAttr>())
1934       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1935     if (TargetDecl->hasAttr<NoReturnAttr>())
1936       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1937     if (TargetDecl->hasAttr<ColdAttr>())
1938       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1939     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1940       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1941     if (TargetDecl->hasAttr<ConvergentAttr>())
1942       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1943 
1944     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1945       AddAttributesFromFunctionProtoType(
1946           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1947       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1948         // A sane operator new returns a non-aliasing pointer.
1949         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1950         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1951             (Kind == OO_New || Kind == OO_Array_New))
1952           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1953       }
1954       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1955       const bool IsVirtualCall = MD && MD->isVirtual();
1956       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1957       // virtual function. These attributes are not inherited by overloads.
1958       if (!(AttrOnCallSite && IsVirtualCall)) {
1959         if (Fn->isNoReturn())
1960           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1961         NBA = Fn->getAttr<NoBuiltinAttr>();
1962       }
1963     }
1964 
1965     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1966     if (TargetDecl->hasAttr<ConstAttr>()) {
1967       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1968       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1969     } else if (TargetDecl->hasAttr<PureAttr>()) {
1970       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1971       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1972     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1973       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1974       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1975     }
1976     if (TargetDecl->hasAttr<RestrictAttr>())
1977       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1978     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1979         !CodeGenOpts.NullPointerIsValid)
1980       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1981     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1982       FuncAttrs.addAttribute("no_caller_saved_registers");
1983     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1984       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1985 
1986     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1987     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1988       Optional<unsigned> NumElemsParam;
1989       if (AllocSize->getNumElemsParam().isValid())
1990         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1991       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1992                                  NumElemsParam);
1993     }
1994 
1995     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1996       if (getLangOpts().OpenCLVersion <= 120) {
1997         // OpenCL v1.2 Work groups are always uniform
1998         FuncAttrs.addAttribute("uniform-work-group-size", "true");
1999       } else {
2000         // OpenCL v2.0 Work groups may be whether uniform or not.
2001         // '-cl-uniform-work-group-size' compile option gets a hint
2002         // to the compiler that the global work-size be a multiple of
2003         // the work-group size specified to clEnqueueNDRangeKernel
2004         // (i.e. work groups are uniform).
2005         FuncAttrs.addAttribute("uniform-work-group-size",
2006                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2007       }
2008     }
2009   }
2010 
2011   // Attach "no-builtins" attributes to:
2012   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2013   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2014   // The attributes can come from:
2015   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2016   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2017   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2018 
2019   // Collect function IR attributes based on global settiings.
2020   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2021 
2022   // Override some default IR attributes based on declaration-specific
2023   // information.
2024   if (TargetDecl) {
2025     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2026       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2027     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2028       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2029     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2030       FuncAttrs.removeAttribute("split-stack");
2031 
2032     // Add NonLazyBind attribute to function declarations when -fno-plt
2033     // is used.
2034     // FIXME: what if we just haven't processed the function definition
2035     // yet, or if it's an external definition like C99 inline?
2036     if (CodeGenOpts.NoPLT) {
2037       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2038         if (!Fn->isDefined() && !AttrOnCallSite) {
2039           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2040         }
2041       }
2042     }
2043   }
2044 
2045   // Collect non-call-site function IR attributes from declaration-specific
2046   // information.
2047   if (!AttrOnCallSite) {
2048     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2049       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2050 
2051     // Whether tail calls are enabled.
2052     auto shouldDisableTailCalls = [&] {
2053       // Should this be honored in getDefaultFunctionAttributes?
2054       if (CodeGenOpts.DisableTailCalls)
2055         return true;
2056 
2057       if (!TargetDecl)
2058         return false;
2059 
2060       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2061           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2062         return true;
2063 
2064       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2065         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2066           if (!BD->doesNotEscape())
2067             return true;
2068       }
2069 
2070       return false;
2071     };
2072     FuncAttrs.addAttribute("disable-tail-calls",
2073                            llvm::toStringRef(shouldDisableTailCalls()));
2074 
2075     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2076     // handles these separately to set them based on the global defaults.
2077     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2078   }
2079 
2080   // Collect attributes from arguments and return values.
2081   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2082 
2083   QualType RetTy = FI.getReturnType();
2084   const ABIArgInfo &RetAI = FI.getReturnInfo();
2085   switch (RetAI.getKind()) {
2086   case ABIArgInfo::Extend:
2087     if (RetAI.isSignExt())
2088       RetAttrs.addAttribute(llvm::Attribute::SExt);
2089     else
2090       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2091     LLVM_FALLTHROUGH;
2092   case ABIArgInfo::Direct:
2093     if (RetAI.getInReg())
2094       RetAttrs.addAttribute(llvm::Attribute::InReg);
2095     break;
2096   case ABIArgInfo::Ignore:
2097     break;
2098 
2099   case ABIArgInfo::InAlloca:
2100   case ABIArgInfo::Indirect: {
2101     // inalloca and sret disable readnone and readonly
2102     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2103       .removeAttribute(llvm::Attribute::ReadNone);
2104     break;
2105   }
2106 
2107   case ABIArgInfo::CoerceAndExpand:
2108     break;
2109 
2110   case ABIArgInfo::Expand:
2111   case ABIArgInfo::IndirectAliased:
2112     llvm_unreachable("Invalid ABI kind for return argument");
2113   }
2114 
2115   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2116     QualType PTy = RefTy->getPointeeType();
2117     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2118       RetAttrs.addDereferenceableAttr(
2119           getMinimumObjectSize(PTy).getQuantity());
2120     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2121         !CodeGenOpts.NullPointerIsValid)
2122       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2123     if (PTy->isObjectType()) {
2124       llvm::Align Alignment =
2125           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2126       RetAttrs.addAlignmentAttr(Alignment);
2127     }
2128   }
2129 
2130   bool hasUsedSRet = false;
2131   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2132 
2133   // Attach attributes to sret.
2134   if (IRFunctionArgs.hasSRetArg()) {
2135     llvm::AttrBuilder SRETAttrs;
2136     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2137     hasUsedSRet = true;
2138     if (RetAI.getInReg())
2139       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2140     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2141     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2142         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2143   }
2144 
2145   // Attach attributes to inalloca argument.
2146   if (IRFunctionArgs.hasInallocaArg()) {
2147     llvm::AttrBuilder Attrs;
2148     Attrs.addAttribute(llvm::Attribute::InAlloca);
2149     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2150         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2151   }
2152 
2153   unsigned ArgNo = 0;
2154   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2155                                           E = FI.arg_end();
2156        I != E; ++I, ++ArgNo) {
2157     QualType ParamType = I->type;
2158     const ABIArgInfo &AI = I->info;
2159     llvm::AttrBuilder Attrs;
2160 
2161     // Add attribute for padding argument, if necessary.
2162     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2163       if (AI.getPaddingInReg()) {
2164         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2165             llvm::AttributeSet::get(
2166                 getLLVMContext(),
2167                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2168       }
2169     }
2170 
2171     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2172     // have the corresponding parameter variable.  It doesn't make
2173     // sense to do it here because parameters are so messed up.
2174     switch (AI.getKind()) {
2175     case ABIArgInfo::Extend:
2176       if (AI.isSignExt())
2177         Attrs.addAttribute(llvm::Attribute::SExt);
2178       else
2179         Attrs.addAttribute(llvm::Attribute::ZExt);
2180       LLVM_FALLTHROUGH;
2181     case ABIArgInfo::Direct:
2182       if (ArgNo == 0 && FI.isChainCall())
2183         Attrs.addAttribute(llvm::Attribute::Nest);
2184       else if (AI.getInReg())
2185         Attrs.addAttribute(llvm::Attribute::InReg);
2186       break;
2187 
2188     case ABIArgInfo::Indirect: {
2189       if (AI.getInReg())
2190         Attrs.addAttribute(llvm::Attribute::InReg);
2191 
2192       if (AI.getIndirectByVal())
2193         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2194 
2195       // TODO: We could add the byref attribute if not byval, but it would
2196       // require updating many testcases.
2197 
2198       CharUnits Align = AI.getIndirectAlign();
2199 
2200       // In a byval argument, it is important that the required
2201       // alignment of the type is honored, as LLVM might be creating a
2202       // *new* stack object, and needs to know what alignment to give
2203       // it. (Sometimes it can deduce a sensible alignment on its own,
2204       // but not if clang decides it must emit a packed struct, or the
2205       // user specifies increased alignment requirements.)
2206       //
2207       // This is different from indirect *not* byval, where the object
2208       // exists already, and the align attribute is purely
2209       // informative.
2210       assert(!Align.isZero());
2211 
2212       // For now, only add this when we have a byval argument.
2213       // TODO: be less lazy about updating test cases.
2214       if (AI.getIndirectByVal())
2215         Attrs.addAlignmentAttr(Align.getQuantity());
2216 
2217       // byval disables readnone and readonly.
2218       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2219         .removeAttribute(llvm::Attribute::ReadNone);
2220 
2221       break;
2222     }
2223     case ABIArgInfo::IndirectAliased: {
2224       CharUnits Align = AI.getIndirectAlign();
2225       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2226       Attrs.addAlignmentAttr(Align.getQuantity());
2227       break;
2228     }
2229     case ABIArgInfo::Ignore:
2230     case ABIArgInfo::Expand:
2231     case ABIArgInfo::CoerceAndExpand:
2232       break;
2233 
2234     case ABIArgInfo::InAlloca:
2235       // inalloca disables readnone and readonly.
2236       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2237           .removeAttribute(llvm::Attribute::ReadNone);
2238       continue;
2239     }
2240 
2241     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2242       QualType PTy = RefTy->getPointeeType();
2243       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2244         Attrs.addDereferenceableAttr(
2245             getMinimumObjectSize(PTy).getQuantity());
2246       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2247           !CodeGenOpts.NullPointerIsValid)
2248         Attrs.addAttribute(llvm::Attribute::NonNull);
2249       if (PTy->isObjectType()) {
2250         llvm::Align Alignment =
2251             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2252         Attrs.addAlignmentAttr(Alignment);
2253       }
2254     }
2255 
2256     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2257     case ParameterABI::Ordinary:
2258       break;
2259 
2260     case ParameterABI::SwiftIndirectResult: {
2261       // Add 'sret' if we haven't already used it for something, but
2262       // only if the result is void.
2263       if (!hasUsedSRet && RetTy->isVoidType()) {
2264         Attrs.addAttribute(llvm::Attribute::StructRet);
2265         hasUsedSRet = true;
2266       }
2267 
2268       // Add 'noalias' in either case.
2269       Attrs.addAttribute(llvm::Attribute::NoAlias);
2270 
2271       // Add 'dereferenceable' and 'alignment'.
2272       auto PTy = ParamType->getPointeeType();
2273       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2274         auto info = getContext().getTypeInfoInChars(PTy);
2275         Attrs.addDereferenceableAttr(info.first.getQuantity());
2276         Attrs.addAlignmentAttr(info.second.getAsAlign());
2277       }
2278       break;
2279     }
2280 
2281     case ParameterABI::SwiftErrorResult:
2282       Attrs.addAttribute(llvm::Attribute::SwiftError);
2283       break;
2284 
2285     case ParameterABI::SwiftContext:
2286       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2287       break;
2288     }
2289 
2290     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2291       Attrs.addAttribute(llvm::Attribute::NoCapture);
2292 
2293     if (Attrs.hasAttributes()) {
2294       unsigned FirstIRArg, NumIRArgs;
2295       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2296       for (unsigned i = 0; i < NumIRArgs; i++)
2297         ArgAttrs[FirstIRArg + i] =
2298             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2299     }
2300   }
2301   assert(ArgNo == FI.arg_size());
2302 
2303   AttrList = llvm::AttributeList::get(
2304       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2305       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2306 }
2307 
2308 /// An argument came in as a promoted argument; demote it back to its
2309 /// declared type.
2310 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2311                                          const VarDecl *var,
2312                                          llvm::Value *value) {
2313   llvm::Type *varType = CGF.ConvertType(var->getType());
2314 
2315   // This can happen with promotions that actually don't change the
2316   // underlying type, like the enum promotions.
2317   if (value->getType() == varType) return value;
2318 
2319   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2320          && "unexpected promotion type");
2321 
2322   if (isa<llvm::IntegerType>(varType))
2323     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2324 
2325   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2326 }
2327 
2328 /// Returns the attribute (either parameter attribute, or function
2329 /// attribute), which declares argument ArgNo to be non-null.
2330 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2331                                          QualType ArgType, unsigned ArgNo) {
2332   // FIXME: __attribute__((nonnull)) can also be applied to:
2333   //   - references to pointers, where the pointee is known to be
2334   //     nonnull (apparently a Clang extension)
2335   //   - transparent unions containing pointers
2336   // In the former case, LLVM IR cannot represent the constraint. In
2337   // the latter case, we have no guarantee that the transparent union
2338   // is in fact passed as a pointer.
2339   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2340     return nullptr;
2341   // First, check attribute on parameter itself.
2342   if (PVD) {
2343     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2344       return ParmNNAttr;
2345   }
2346   // Check function attributes.
2347   if (!FD)
2348     return nullptr;
2349   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2350     if (NNAttr->isNonNull(ArgNo))
2351       return NNAttr;
2352   }
2353   return nullptr;
2354 }
2355 
2356 namespace {
2357   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2358     Address Temp;
2359     Address Arg;
2360     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2361     void Emit(CodeGenFunction &CGF, Flags flags) override {
2362       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2363       CGF.Builder.CreateStore(errorValue, Arg);
2364     }
2365   };
2366 }
2367 
2368 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2369                                          llvm::Function *Fn,
2370                                          const FunctionArgList &Args) {
2371   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2372     // Naked functions don't have prologues.
2373     return;
2374 
2375   // If this is an implicit-return-zero function, go ahead and
2376   // initialize the return value.  TODO: it might be nice to have
2377   // a more general mechanism for this that didn't require synthesized
2378   // return statements.
2379   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2380     if (FD->hasImplicitReturnZero()) {
2381       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2382       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2383       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2384       Builder.CreateStore(Zero, ReturnValue);
2385     }
2386   }
2387 
2388   // FIXME: We no longer need the types from FunctionArgList; lift up and
2389   // simplify.
2390 
2391   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2392   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2393 
2394   // If we're using inalloca, all the memory arguments are GEPs off of the last
2395   // parameter, which is a pointer to the complete memory area.
2396   Address ArgStruct = Address::invalid();
2397   if (IRFunctionArgs.hasInallocaArg()) {
2398     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2399                         FI.getArgStructAlignment());
2400 
2401     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2402   }
2403 
2404   // Name the struct return parameter.
2405   if (IRFunctionArgs.hasSRetArg()) {
2406     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2407     AI->setName("agg.result");
2408     AI->addAttr(llvm::Attribute::NoAlias);
2409   }
2410 
2411   // Track if we received the parameter as a pointer (indirect, byval, or
2412   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2413   // into a local alloca for us.
2414   SmallVector<ParamValue, 16> ArgVals;
2415   ArgVals.reserve(Args.size());
2416 
2417   // Create a pointer value for every parameter declaration.  This usually
2418   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2419   // any cleanups or do anything that might unwind.  We do that separately, so
2420   // we can push the cleanups in the correct order for the ABI.
2421   assert(FI.arg_size() == Args.size() &&
2422          "Mismatch between function signature & arguments.");
2423   unsigned ArgNo = 0;
2424   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2425   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2426        i != e; ++i, ++info_it, ++ArgNo) {
2427     const VarDecl *Arg = *i;
2428     const ABIArgInfo &ArgI = info_it->info;
2429 
2430     bool isPromoted =
2431       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2432     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2433     // the parameter is promoted. In this case we convert to
2434     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2435     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2436     assert(hasScalarEvaluationKind(Ty) ==
2437            hasScalarEvaluationKind(Arg->getType()));
2438 
2439     unsigned FirstIRArg, NumIRArgs;
2440     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2441 
2442     switch (ArgI.getKind()) {
2443     case ABIArgInfo::InAlloca: {
2444       assert(NumIRArgs == 0);
2445       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2446       Address V =
2447           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2448       if (ArgI.getInAllocaIndirect())
2449         V = Address(Builder.CreateLoad(V),
2450                     getContext().getTypeAlignInChars(Ty));
2451       ArgVals.push_back(ParamValue::forIndirect(V));
2452       break;
2453     }
2454 
2455     case ABIArgInfo::Indirect:
2456     case ABIArgInfo::IndirectAliased: {
2457       assert(NumIRArgs == 1);
2458       Address ParamAddr =
2459           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2460 
2461       if (!hasScalarEvaluationKind(Ty)) {
2462         // Aggregates and complex variables are accessed by reference. All we
2463         // need to do is realign the value, if requested. Also, if the address
2464         // may be aliased, copy it to ensure that the parameter variable is
2465         // mutable and has a unique adress, as C requires.
2466         Address V = ParamAddr;
2467         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2468           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2469 
2470           // Copy from the incoming argument pointer to the temporary with the
2471           // appropriate alignment.
2472           //
2473           // FIXME: We should have a common utility for generating an aggregate
2474           // copy.
2475           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2476           Builder.CreateMemCpy(
2477               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2478               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2479               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2480           V = AlignedTemp;
2481         }
2482         ArgVals.push_back(ParamValue::forIndirect(V));
2483       } else {
2484         // Load scalar value from indirect argument.
2485         llvm::Value *V =
2486             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2487 
2488         if (isPromoted)
2489           V = emitArgumentDemotion(*this, Arg, V);
2490         ArgVals.push_back(ParamValue::forDirect(V));
2491       }
2492       break;
2493     }
2494 
2495     case ABIArgInfo::Extend:
2496     case ABIArgInfo::Direct: {
2497       auto AI = Fn->getArg(FirstIRArg);
2498       llvm::Type *LTy = ConvertType(Arg->getType());
2499 
2500       // Prepare parameter attributes. So far, only attributes for pointer
2501       // parameters are prepared. See
2502       // http://llvm.org/docs/LangRef.html#paramattrs.
2503       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2504           ArgI.getCoerceToType()->isPointerTy()) {
2505         assert(NumIRArgs == 1);
2506 
2507         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2508           // Set `nonnull` attribute if any.
2509           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2510                              PVD->getFunctionScopeIndex()) &&
2511               !CGM.getCodeGenOpts().NullPointerIsValid)
2512             AI->addAttr(llvm::Attribute::NonNull);
2513 
2514           QualType OTy = PVD->getOriginalType();
2515           if (const auto *ArrTy =
2516               getContext().getAsConstantArrayType(OTy)) {
2517             // A C99 array parameter declaration with the static keyword also
2518             // indicates dereferenceability, and if the size is constant we can
2519             // use the dereferenceable attribute (which requires the size in
2520             // bytes).
2521             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2522               QualType ETy = ArrTy->getElementType();
2523               llvm::Align Alignment =
2524                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2525               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2526               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2527               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2528                   ArrSize) {
2529                 llvm::AttrBuilder Attrs;
2530                 Attrs.addDereferenceableAttr(
2531                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2532                     ArrSize);
2533                 AI->addAttrs(Attrs);
2534               } else if (getContext().getTargetInfo().getNullPointerValue(
2535                              ETy.getAddressSpace()) == 0 &&
2536                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2537                 AI->addAttr(llvm::Attribute::NonNull);
2538               }
2539             }
2540           } else if (const auto *ArrTy =
2541                      getContext().getAsVariableArrayType(OTy)) {
2542             // For C99 VLAs with the static keyword, we don't know the size so
2543             // we can't use the dereferenceable attribute, but in addrspace(0)
2544             // we know that it must be nonnull.
2545             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2546               QualType ETy = ArrTy->getElementType();
2547               llvm::Align Alignment =
2548                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2549               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2550               if (!getContext().getTargetAddressSpace(ETy) &&
2551                   !CGM.getCodeGenOpts().NullPointerIsValid)
2552                 AI->addAttr(llvm::Attribute::NonNull);
2553             }
2554           }
2555 
2556           // Set `align` attribute if any.
2557           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2558           if (!AVAttr)
2559             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2560               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2561           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2562             // If alignment-assumption sanitizer is enabled, we do *not* add
2563             // alignment attribute here, but emit normal alignment assumption,
2564             // so the UBSAN check could function.
2565             llvm::ConstantInt *AlignmentCI =
2566                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2567             unsigned AlignmentInt =
2568                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2569             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2570               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2571               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2572                   llvm::Align(AlignmentInt)));
2573             }
2574           }
2575         }
2576 
2577         // Set 'noalias' if an argument type has the `restrict` qualifier.
2578         if (Arg->getType().isRestrictQualified())
2579           AI->addAttr(llvm::Attribute::NoAlias);
2580       }
2581 
2582       // Prepare the argument value. If we have the trivial case, handle it
2583       // with no muss and fuss.
2584       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2585           ArgI.getCoerceToType() == ConvertType(Ty) &&
2586           ArgI.getDirectOffset() == 0) {
2587         assert(NumIRArgs == 1);
2588 
2589         // LLVM expects swifterror parameters to be used in very restricted
2590         // ways.  Copy the value into a less-restricted temporary.
2591         llvm::Value *V = AI;
2592         if (FI.getExtParameterInfo(ArgNo).getABI()
2593               == ParameterABI::SwiftErrorResult) {
2594           QualType pointeeTy = Ty->getPointeeType();
2595           assert(pointeeTy->isPointerType());
2596           Address temp =
2597             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2598           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2599           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2600           Builder.CreateStore(incomingErrorValue, temp);
2601           V = temp.getPointer();
2602 
2603           // Push a cleanup to copy the value back at the end of the function.
2604           // The convention does not guarantee that the value will be written
2605           // back if the function exits with an unwind exception.
2606           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2607         }
2608 
2609         // Ensure the argument is the correct type.
2610         if (V->getType() != ArgI.getCoerceToType())
2611           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2612 
2613         if (isPromoted)
2614           V = emitArgumentDemotion(*this, Arg, V);
2615 
2616         // Because of merging of function types from multiple decls it is
2617         // possible for the type of an argument to not match the corresponding
2618         // type in the function type. Since we are codegening the callee
2619         // in here, add a cast to the argument type.
2620         llvm::Type *LTy = ConvertType(Arg->getType());
2621         if (V->getType() != LTy)
2622           V = Builder.CreateBitCast(V, LTy);
2623 
2624         ArgVals.push_back(ParamValue::forDirect(V));
2625         break;
2626       }
2627 
2628       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2629                                      Arg->getName());
2630 
2631       // Pointer to store into.
2632       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2633 
2634       // Fast-isel and the optimizer generally like scalar values better than
2635       // FCAs, so we flatten them if this is safe to do for this argument.
2636       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2637       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2638           STy->getNumElements() > 1) {
2639         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2640         llvm::Type *DstTy = Ptr.getElementType();
2641         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2642 
2643         Address AddrToStoreInto = Address::invalid();
2644         if (SrcSize <= DstSize) {
2645           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2646         } else {
2647           AddrToStoreInto =
2648             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2649         }
2650 
2651         assert(STy->getNumElements() == NumIRArgs);
2652         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2653           auto AI = Fn->getArg(FirstIRArg + i);
2654           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2655           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2656           Builder.CreateStore(AI, EltPtr);
2657         }
2658 
2659         if (SrcSize > DstSize) {
2660           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2661         }
2662 
2663       } else {
2664         // Simple case, just do a coerced store of the argument into the alloca.
2665         assert(NumIRArgs == 1);
2666         auto AI = Fn->getArg(FirstIRArg);
2667         AI->setName(Arg->getName() + ".coerce");
2668         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2669       }
2670 
2671       // Match to what EmitParmDecl is expecting for this type.
2672       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2673         llvm::Value *V =
2674             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2675         if (isPromoted)
2676           V = emitArgumentDemotion(*this, Arg, V);
2677         ArgVals.push_back(ParamValue::forDirect(V));
2678       } else {
2679         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2680       }
2681       break;
2682     }
2683 
2684     case ABIArgInfo::CoerceAndExpand: {
2685       // Reconstruct into a temporary.
2686       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2687       ArgVals.push_back(ParamValue::forIndirect(alloca));
2688 
2689       auto coercionType = ArgI.getCoerceAndExpandType();
2690       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2691 
2692       unsigned argIndex = FirstIRArg;
2693       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2694         llvm::Type *eltType = coercionType->getElementType(i);
2695         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2696           continue;
2697 
2698         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2699         auto elt = Fn->getArg(argIndex++);
2700         Builder.CreateStore(elt, eltAddr);
2701       }
2702       assert(argIndex == FirstIRArg + NumIRArgs);
2703       break;
2704     }
2705 
2706     case ABIArgInfo::Expand: {
2707       // If this structure was expanded into multiple arguments then
2708       // we need to create a temporary and reconstruct it from the
2709       // arguments.
2710       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2711       LValue LV = MakeAddrLValue(Alloca, Ty);
2712       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2713 
2714       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2715       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2716       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2717       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2718         auto AI = Fn->getArg(FirstIRArg + i);
2719         AI->setName(Arg->getName() + "." + Twine(i));
2720       }
2721       break;
2722     }
2723 
2724     case ABIArgInfo::Ignore:
2725       assert(NumIRArgs == 0);
2726       // Initialize the local variable appropriately.
2727       if (!hasScalarEvaluationKind(Ty)) {
2728         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2729       } else {
2730         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2731         ArgVals.push_back(ParamValue::forDirect(U));
2732       }
2733       break;
2734     }
2735   }
2736 
2737   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2738     for (int I = Args.size() - 1; I >= 0; --I)
2739       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2740   } else {
2741     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2742       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2743   }
2744 }
2745 
2746 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2747   while (insn->use_empty()) {
2748     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2749     if (!bitcast) return;
2750 
2751     // This is "safe" because we would have used a ConstantExpr otherwise.
2752     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2753     bitcast->eraseFromParent();
2754   }
2755 }
2756 
2757 /// Try to emit a fused autorelease of a return result.
2758 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2759                                                     llvm::Value *result) {
2760   // We must be immediately followed the cast.
2761   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2762   if (BB->empty()) return nullptr;
2763   if (&BB->back() != result) return nullptr;
2764 
2765   llvm::Type *resultType = result->getType();
2766 
2767   // result is in a BasicBlock and is therefore an Instruction.
2768   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2769 
2770   SmallVector<llvm::Instruction *, 4> InstsToKill;
2771 
2772   // Look for:
2773   //  %generator = bitcast %type1* %generator2 to %type2*
2774   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2775     // We would have emitted this as a constant if the operand weren't
2776     // an Instruction.
2777     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2778 
2779     // Require the generator to be immediately followed by the cast.
2780     if (generator->getNextNode() != bitcast)
2781       return nullptr;
2782 
2783     InstsToKill.push_back(bitcast);
2784   }
2785 
2786   // Look for:
2787   //   %generator = call i8* @objc_retain(i8* %originalResult)
2788   // or
2789   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2790   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2791   if (!call) return nullptr;
2792 
2793   bool doRetainAutorelease;
2794 
2795   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2796     doRetainAutorelease = true;
2797   } else if (call->getCalledOperand() ==
2798              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
2799     doRetainAutorelease = false;
2800 
2801     // If we emitted an assembly marker for this call (and the
2802     // ARCEntrypoints field should have been set if so), go looking
2803     // for that call.  If we can't find it, we can't do this
2804     // optimization.  But it should always be the immediately previous
2805     // instruction, unless we needed bitcasts around the call.
2806     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2807       llvm::Instruction *prev = call->getPrevNode();
2808       assert(prev);
2809       if (isa<llvm::BitCastInst>(prev)) {
2810         prev = prev->getPrevNode();
2811         assert(prev);
2812       }
2813       assert(isa<llvm::CallInst>(prev));
2814       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
2815              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2816       InstsToKill.push_back(prev);
2817     }
2818   } else {
2819     return nullptr;
2820   }
2821 
2822   result = call->getArgOperand(0);
2823   InstsToKill.push_back(call);
2824 
2825   // Keep killing bitcasts, for sanity.  Note that we no longer care
2826   // about precise ordering as long as there's exactly one use.
2827   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2828     if (!bitcast->hasOneUse()) break;
2829     InstsToKill.push_back(bitcast);
2830     result = bitcast->getOperand(0);
2831   }
2832 
2833   // Delete all the unnecessary instructions, from latest to earliest.
2834   for (auto *I : InstsToKill)
2835     I->eraseFromParent();
2836 
2837   // Do the fused retain/autorelease if we were asked to.
2838   if (doRetainAutorelease)
2839     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2840 
2841   // Cast back to the result type.
2842   return CGF.Builder.CreateBitCast(result, resultType);
2843 }
2844 
2845 /// If this is a +1 of the value of an immutable 'self', remove it.
2846 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2847                                           llvm::Value *result) {
2848   // This is only applicable to a method with an immutable 'self'.
2849   const ObjCMethodDecl *method =
2850     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2851   if (!method) return nullptr;
2852   const VarDecl *self = method->getSelfDecl();
2853   if (!self->getType().isConstQualified()) return nullptr;
2854 
2855   // Look for a retain call.
2856   llvm::CallInst *retainCall =
2857     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2858   if (!retainCall || retainCall->getCalledOperand() !=
2859                          CGF.CGM.getObjCEntrypoints().objc_retain)
2860     return nullptr;
2861 
2862   // Look for an ordinary load of 'self'.
2863   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2864   llvm::LoadInst *load =
2865     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2866   if (!load || load->isAtomic() || load->isVolatile() ||
2867       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2868     return nullptr;
2869 
2870   // Okay!  Burn it all down.  This relies for correctness on the
2871   // assumption that the retain is emitted as part of the return and
2872   // that thereafter everything is used "linearly".
2873   llvm::Type *resultType = result->getType();
2874   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2875   assert(retainCall->use_empty());
2876   retainCall->eraseFromParent();
2877   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2878 
2879   return CGF.Builder.CreateBitCast(load, resultType);
2880 }
2881 
2882 /// Emit an ARC autorelease of the result of a function.
2883 ///
2884 /// \return the value to actually return from the function
2885 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2886                                             llvm::Value *result) {
2887   // If we're returning 'self', kill the initial retain.  This is a
2888   // heuristic attempt to "encourage correctness" in the really unfortunate
2889   // case where we have a return of self during a dealloc and we desperately
2890   // need to avoid the possible autorelease.
2891   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2892     return self;
2893 
2894   // At -O0, try to emit a fused retain/autorelease.
2895   if (CGF.shouldUseFusedARCCalls())
2896     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2897       return fused;
2898 
2899   return CGF.EmitARCAutoreleaseReturnValue(result);
2900 }
2901 
2902 /// Heuristically search for a dominating store to the return-value slot.
2903 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2904   // Check if a User is a store which pointerOperand is the ReturnValue.
2905   // We are looking for stores to the ReturnValue, not for stores of the
2906   // ReturnValue to some other location.
2907   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2908     auto *SI = dyn_cast<llvm::StoreInst>(U);
2909     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2910       return nullptr;
2911     // These aren't actually possible for non-coerced returns, and we
2912     // only care about non-coerced returns on this code path.
2913     assert(!SI->isAtomic() && !SI->isVolatile());
2914     return SI;
2915   };
2916   // If there are multiple uses of the return-value slot, just check
2917   // for something immediately preceding the IP.  Sometimes this can
2918   // happen with how we generate implicit-returns; it can also happen
2919   // with noreturn cleanups.
2920   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2921     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2922     if (IP->empty()) return nullptr;
2923     llvm::Instruction *I = &IP->back();
2924 
2925     // Skip lifetime markers
2926     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2927                                             IE = IP->rend();
2928          II != IE; ++II) {
2929       if (llvm::IntrinsicInst *Intrinsic =
2930               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2931         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2932           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2933           ++II;
2934           if (II == IE)
2935             break;
2936           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2937             continue;
2938         }
2939       }
2940       I = &*II;
2941       break;
2942     }
2943 
2944     return GetStoreIfValid(I);
2945   }
2946 
2947   llvm::StoreInst *store =
2948       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2949   if (!store) return nullptr;
2950 
2951   // Now do a first-and-dirty dominance check: just walk up the
2952   // single-predecessors chain from the current insertion point.
2953   llvm::BasicBlock *StoreBB = store->getParent();
2954   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2955   while (IP != StoreBB) {
2956     if (!(IP = IP->getSinglePredecessor()))
2957       return nullptr;
2958   }
2959 
2960   // Okay, the store's basic block dominates the insertion point; we
2961   // can do our thing.
2962   return store;
2963 }
2964 
2965 // Helper functions for EmitCMSEClearRecord
2966 
2967 // Set the bits corresponding to a field having width `BitWidth` and located at
2968 // offset `BitOffset` (from the least significant bit) within a storage unit of
2969 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
2970 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
2971 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
2972                         int BitWidth, int CharWidth) {
2973   assert(CharWidth <= 64);
2974   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
2975 
2976   int Pos = 0;
2977   if (BitOffset >= CharWidth) {
2978     Pos += BitOffset / CharWidth;
2979     BitOffset = BitOffset % CharWidth;
2980   }
2981 
2982   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
2983   if (BitOffset + BitWidth >= CharWidth) {
2984     Bits[Pos++] |= (Used << BitOffset) & Used;
2985     BitWidth -= CharWidth - BitOffset;
2986     BitOffset = 0;
2987   }
2988 
2989   while (BitWidth >= CharWidth) {
2990     Bits[Pos++] = Used;
2991     BitWidth -= CharWidth;
2992   }
2993 
2994   if (BitWidth > 0)
2995     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
2996 }
2997 
2998 // Set the bits corresponding to a field having width `BitWidth` and located at
2999 // offset `BitOffset` (from the least significant bit) within a storage unit of
3000 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3001 // `Bits` corresponds to one target byte. Use target endian layout.
3002 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3003                         int StorageSize, int BitOffset, int BitWidth,
3004                         int CharWidth, bool BigEndian) {
3005 
3006   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3007   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3008 
3009   if (BigEndian)
3010     std::reverse(TmpBits.begin(), TmpBits.end());
3011 
3012   for (uint64_t V : TmpBits)
3013     Bits[StorageOffset++] |= V;
3014 }
3015 
3016 static void setUsedBits(CodeGenModule &, QualType, int,
3017                         SmallVectorImpl<uint64_t> &);
3018 
3019 // Set the bits in `Bits`, which correspond to the value representations of
3020 // the actual members of the record type `RTy`. Note that this function does
3021 // not handle base classes, virtual tables, etc, since they cannot happen in
3022 // CMSE function arguments or return. The bit mask corresponds to the target
3023 // memory layout, i.e. it's endian dependent.
3024 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3025                         SmallVectorImpl<uint64_t> &Bits) {
3026   ASTContext &Context = CGM.getContext();
3027   int CharWidth = Context.getCharWidth();
3028   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3029   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3030   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3031 
3032   int Idx = 0;
3033   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3034     const FieldDecl *F = *I;
3035 
3036     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3037         F->getType()->isIncompleteArrayType())
3038       continue;
3039 
3040     if (F->isBitField()) {
3041       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3042       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3043                   BFI.StorageSize / CharWidth, BFI.Offset,
3044                   BFI.Size, CharWidth,
3045                   CGM.getDataLayout().isBigEndian());
3046       continue;
3047     }
3048 
3049     setUsedBits(CGM, F->getType(),
3050                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3051   }
3052 }
3053 
3054 // Set the bits in `Bits`, which correspond to the value representations of
3055 // the elements of an array type `ATy`.
3056 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3057                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3058   const ASTContext &Context = CGM.getContext();
3059 
3060   QualType ETy = Context.getBaseElementType(ATy);
3061   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3062   SmallVector<uint64_t, 4> TmpBits(Size);
3063   setUsedBits(CGM, ETy, 0, TmpBits);
3064 
3065   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3066     auto Src = TmpBits.begin();
3067     auto Dst = Bits.begin() + Offset + I * Size;
3068     for (int J = 0; J < Size; ++J)
3069       *Dst++ |= *Src++;
3070   }
3071 }
3072 
3073 // Set the bits in `Bits`, which correspond to the value representations of
3074 // the type `QTy`.
3075 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3076                         SmallVectorImpl<uint64_t> &Bits) {
3077   if (const auto *RTy = QTy->getAs<RecordType>())
3078     return setUsedBits(CGM, RTy, Offset, Bits);
3079 
3080   ASTContext &Context = CGM.getContext();
3081   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3082     return setUsedBits(CGM, ATy, Offset, Bits);
3083 
3084   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3085   if (Size <= 0)
3086     return;
3087 
3088   std::fill_n(Bits.begin() + Offset, Size,
3089               (uint64_t(1) << Context.getCharWidth()) - 1);
3090 }
3091 
3092 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3093                                    int Pos, int Size, int CharWidth,
3094                                    bool BigEndian) {
3095   assert(Size > 0);
3096   uint64_t Mask = 0;
3097   if (BigEndian) {
3098     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3099          ++P)
3100       Mask = (Mask << CharWidth) | *P;
3101   } else {
3102     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3103     do
3104       Mask = (Mask << CharWidth) | *--P;
3105     while (P != End);
3106   }
3107   return Mask;
3108 }
3109 
3110 // Emit code to clear the bits in a record, which aren't a part of any user
3111 // declared member, when the record is a function return.
3112 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3113                                                   llvm::IntegerType *ITy,
3114                                                   QualType QTy) {
3115   assert(Src->getType() == ITy);
3116   assert(ITy->getScalarSizeInBits() <= 64);
3117 
3118   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3119   int Size = DataLayout.getTypeStoreSize(ITy);
3120   SmallVector<uint64_t, 4> Bits(Size);
3121   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3122 
3123   int CharWidth = CGM.getContext().getCharWidth();
3124   uint64_t Mask =
3125       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3126 
3127   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3128 }
3129 
3130 // Emit code to clear the bits in a record, which aren't a part of any user
3131 // declared member, when the record is a function argument.
3132 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3133                                                   llvm::ArrayType *ATy,
3134                                                   QualType QTy) {
3135   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3136   int Size = DataLayout.getTypeStoreSize(ATy);
3137   SmallVector<uint64_t, 16> Bits(Size);
3138   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3139 
3140   // Clear each element of the LLVM array.
3141   int CharWidth = CGM.getContext().getCharWidth();
3142   int CharsPerElt =
3143       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3144   int MaskIndex = 0;
3145   llvm::Value *R = llvm::UndefValue::get(ATy);
3146   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3147     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3148                                        DataLayout.isBigEndian());
3149     MaskIndex += CharsPerElt;
3150     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3151     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3152     R = Builder.CreateInsertValue(R, T1, I);
3153   }
3154 
3155   return R;
3156 }
3157 
3158 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3159                                          bool EmitRetDbgLoc,
3160                                          SourceLocation EndLoc) {
3161   if (FI.isNoReturn()) {
3162     // Noreturn functions don't return.
3163     EmitUnreachable(EndLoc);
3164     return;
3165   }
3166 
3167   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3168     // Naked functions don't have epilogues.
3169     Builder.CreateUnreachable();
3170     return;
3171   }
3172 
3173   // Functions with no result always return void.
3174   if (!ReturnValue.isValid()) {
3175     Builder.CreateRetVoid();
3176     return;
3177   }
3178 
3179   llvm::DebugLoc RetDbgLoc;
3180   llvm::Value *RV = nullptr;
3181   QualType RetTy = FI.getReturnType();
3182   const ABIArgInfo &RetAI = FI.getReturnInfo();
3183 
3184   switch (RetAI.getKind()) {
3185   case ABIArgInfo::InAlloca:
3186     // Aggregrates get evaluated directly into the destination.  Sometimes we
3187     // need to return the sret value in a register, though.
3188     assert(hasAggregateEvaluationKind(RetTy));
3189     if (RetAI.getInAllocaSRet()) {
3190       llvm::Function::arg_iterator EI = CurFn->arg_end();
3191       --EI;
3192       llvm::Value *ArgStruct = &*EI;
3193       llvm::Value *SRet = Builder.CreateStructGEP(
3194           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3195       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3196     }
3197     break;
3198 
3199   case ABIArgInfo::Indirect: {
3200     auto AI = CurFn->arg_begin();
3201     if (RetAI.isSRetAfterThis())
3202       ++AI;
3203     switch (getEvaluationKind(RetTy)) {
3204     case TEK_Complex: {
3205       ComplexPairTy RT =
3206         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3207       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3208                          /*isInit*/ true);
3209       break;
3210     }
3211     case TEK_Aggregate:
3212       // Do nothing; aggregrates get evaluated directly into the destination.
3213       break;
3214     case TEK_Scalar:
3215       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3216                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3217                         /*isInit*/ true);
3218       break;
3219     }
3220     break;
3221   }
3222 
3223   case ABIArgInfo::Extend:
3224   case ABIArgInfo::Direct:
3225     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3226         RetAI.getDirectOffset() == 0) {
3227       // The internal return value temp always will have pointer-to-return-type
3228       // type, just do a load.
3229 
3230       // If there is a dominating store to ReturnValue, we can elide
3231       // the load, zap the store, and usually zap the alloca.
3232       if (llvm::StoreInst *SI =
3233               findDominatingStoreToReturnValue(*this)) {
3234         // Reuse the debug location from the store unless there is
3235         // cleanup code to be emitted between the store and return
3236         // instruction.
3237         if (EmitRetDbgLoc && !AutoreleaseResult)
3238           RetDbgLoc = SI->getDebugLoc();
3239         // Get the stored value and nuke the now-dead store.
3240         RV = SI->getValueOperand();
3241         SI->eraseFromParent();
3242 
3243       // Otherwise, we have to do a simple load.
3244       } else {
3245         RV = Builder.CreateLoad(ReturnValue);
3246       }
3247     } else {
3248       // If the value is offset in memory, apply the offset now.
3249       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3250 
3251       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3252     }
3253 
3254     // In ARC, end functions that return a retainable type with a call
3255     // to objc_autoreleaseReturnValue.
3256     if (AutoreleaseResult) {
3257 #ifndef NDEBUG
3258       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3259       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3260       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3261       // CurCodeDecl or BlockInfo.
3262       QualType RT;
3263 
3264       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3265         RT = FD->getReturnType();
3266       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3267         RT = MD->getReturnType();
3268       else if (isa<BlockDecl>(CurCodeDecl))
3269         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3270       else
3271         llvm_unreachable("Unexpected function/method type");
3272 
3273       assert(getLangOpts().ObjCAutoRefCount &&
3274              !FI.isReturnsRetained() &&
3275              RT->isObjCRetainableType());
3276 #endif
3277       RV = emitAutoreleaseOfResult(*this, RV);
3278     }
3279 
3280     break;
3281 
3282   case ABIArgInfo::Ignore:
3283     break;
3284 
3285   case ABIArgInfo::CoerceAndExpand: {
3286     auto coercionType = RetAI.getCoerceAndExpandType();
3287 
3288     // Load all of the coerced elements out into results.
3289     llvm::SmallVector<llvm::Value*, 4> results;
3290     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3291     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3292       auto coercedEltType = coercionType->getElementType(i);
3293       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3294         continue;
3295 
3296       auto eltAddr = Builder.CreateStructGEP(addr, i);
3297       auto elt = Builder.CreateLoad(eltAddr);
3298       results.push_back(elt);
3299     }
3300 
3301     // If we have one result, it's the single direct result type.
3302     if (results.size() == 1) {
3303       RV = results[0];
3304 
3305     // Otherwise, we need to make a first-class aggregate.
3306     } else {
3307       // Construct a return type that lacks padding elements.
3308       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3309 
3310       RV = llvm::UndefValue::get(returnType);
3311       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3312         RV = Builder.CreateInsertValue(RV, results[i], i);
3313       }
3314     }
3315     break;
3316   }
3317   case ABIArgInfo::Expand:
3318   case ABIArgInfo::IndirectAliased:
3319     llvm_unreachable("Invalid ABI kind for return argument");
3320   }
3321 
3322   llvm::Instruction *Ret;
3323   if (RV) {
3324     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3325       // For certain return types, clear padding bits, as they may reveal
3326       // sensitive information.
3327       // Small struct/union types are passed as integers.
3328       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3329       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3330         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3331     }
3332     EmitReturnValueCheck(RV);
3333     Ret = Builder.CreateRet(RV);
3334   } else {
3335     Ret = Builder.CreateRetVoid();
3336   }
3337 
3338   if (RetDbgLoc)
3339     Ret->setDebugLoc(std::move(RetDbgLoc));
3340 }
3341 
3342 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3343   // A current decl may not be available when emitting vtable thunks.
3344   if (!CurCodeDecl)
3345     return;
3346 
3347   // If the return block isn't reachable, neither is this check, so don't emit
3348   // it.
3349   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3350     return;
3351 
3352   ReturnsNonNullAttr *RetNNAttr = nullptr;
3353   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3354     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3355 
3356   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3357     return;
3358 
3359   // Prefer the returns_nonnull attribute if it's present.
3360   SourceLocation AttrLoc;
3361   SanitizerMask CheckKind;
3362   SanitizerHandler Handler;
3363   if (RetNNAttr) {
3364     assert(!requiresReturnValueNullabilityCheck() &&
3365            "Cannot check nullability and the nonnull attribute");
3366     AttrLoc = RetNNAttr->getLocation();
3367     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3368     Handler = SanitizerHandler::NonnullReturn;
3369   } else {
3370     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3371       if (auto *TSI = DD->getTypeSourceInfo())
3372         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3373           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3374     CheckKind = SanitizerKind::NullabilityReturn;
3375     Handler = SanitizerHandler::NullabilityReturn;
3376   }
3377 
3378   SanitizerScope SanScope(this);
3379 
3380   // Make sure the "return" source location is valid. If we're checking a
3381   // nullability annotation, make sure the preconditions for the check are met.
3382   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3383   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3384   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3385   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3386   if (requiresReturnValueNullabilityCheck())
3387     CanNullCheck =
3388         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3389   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3390   EmitBlock(Check);
3391 
3392   // Now do the null check.
3393   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3394   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3395   llvm::Value *DynamicData[] = {SLocPtr};
3396   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3397 
3398   EmitBlock(NoCheck);
3399 
3400 #ifndef NDEBUG
3401   // The return location should not be used after the check has been emitted.
3402   ReturnLocation = Address::invalid();
3403 #endif
3404 }
3405 
3406 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3407   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3408   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3409 }
3410 
3411 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3412                                           QualType Ty) {
3413   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3414   // placeholders.
3415   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3416   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3417   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3418 
3419   // FIXME: When we generate this IR in one pass, we shouldn't need
3420   // this win32-specific alignment hack.
3421   CharUnits Align = CharUnits::fromQuantity(4);
3422   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3423 
3424   return AggValueSlot::forAddr(Address(Placeholder, Align),
3425                                Ty.getQualifiers(),
3426                                AggValueSlot::IsNotDestructed,
3427                                AggValueSlot::DoesNotNeedGCBarriers,
3428                                AggValueSlot::IsNotAliased,
3429                                AggValueSlot::DoesNotOverlap);
3430 }
3431 
3432 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3433                                           const VarDecl *param,
3434                                           SourceLocation loc) {
3435   // StartFunction converted the ABI-lowered parameter(s) into a
3436   // local alloca.  We need to turn that into an r-value suitable
3437   // for EmitCall.
3438   Address local = GetAddrOfLocalVar(param);
3439 
3440   QualType type = param->getType();
3441 
3442   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3443     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3444   }
3445 
3446   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3447   // but the argument needs to be the original pointer.
3448   if (type->isReferenceType()) {
3449     args.add(RValue::get(Builder.CreateLoad(local)), type);
3450 
3451   // In ARC, move out of consumed arguments so that the release cleanup
3452   // entered by StartFunction doesn't cause an over-release.  This isn't
3453   // optimal -O0 code generation, but it should get cleaned up when
3454   // optimization is enabled.  This also assumes that delegate calls are
3455   // performed exactly once for a set of arguments, but that should be safe.
3456   } else if (getLangOpts().ObjCAutoRefCount &&
3457              param->hasAttr<NSConsumedAttr>() &&
3458              type->isObjCRetainableType()) {
3459     llvm::Value *ptr = Builder.CreateLoad(local);
3460     auto null =
3461       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3462     Builder.CreateStore(null, local);
3463     args.add(RValue::get(ptr), type);
3464 
3465   // For the most part, we just need to load the alloca, except that
3466   // aggregate r-values are actually pointers to temporaries.
3467   } else {
3468     args.add(convertTempToRValue(local, type, loc), type);
3469   }
3470 
3471   // Deactivate the cleanup for the callee-destructed param that was pushed.
3472   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3473       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3474       param->needsDestruction(getContext())) {
3475     EHScopeStack::stable_iterator cleanup =
3476         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3477     assert(cleanup.isValid() &&
3478            "cleanup for callee-destructed param not recorded");
3479     // This unreachable is a temporary marker which will be removed later.
3480     llvm::Instruction *isActive = Builder.CreateUnreachable();
3481     args.addArgCleanupDeactivation(cleanup, isActive);
3482   }
3483 }
3484 
3485 static bool isProvablyNull(llvm::Value *addr) {
3486   return isa<llvm::ConstantPointerNull>(addr);
3487 }
3488 
3489 /// Emit the actual writing-back of a writeback.
3490 static void emitWriteback(CodeGenFunction &CGF,
3491                           const CallArgList::Writeback &writeback) {
3492   const LValue &srcLV = writeback.Source;
3493   Address srcAddr = srcLV.getAddress(CGF);
3494   assert(!isProvablyNull(srcAddr.getPointer()) &&
3495          "shouldn't have writeback for provably null argument");
3496 
3497   llvm::BasicBlock *contBB = nullptr;
3498 
3499   // If the argument wasn't provably non-null, we need to null check
3500   // before doing the store.
3501   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3502                                               CGF.CGM.getDataLayout());
3503   if (!provablyNonNull) {
3504     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3505     contBB = CGF.createBasicBlock("icr.done");
3506 
3507     llvm::Value *isNull =
3508       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3509     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3510     CGF.EmitBlock(writebackBB);
3511   }
3512 
3513   // Load the value to writeback.
3514   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3515 
3516   // Cast it back, in case we're writing an id to a Foo* or something.
3517   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3518                                     "icr.writeback-cast");
3519 
3520   // Perform the writeback.
3521 
3522   // If we have a "to use" value, it's something we need to emit a use
3523   // of.  This has to be carefully threaded in: if it's done after the
3524   // release it's potentially undefined behavior (and the optimizer
3525   // will ignore it), and if it happens before the retain then the
3526   // optimizer could move the release there.
3527   if (writeback.ToUse) {
3528     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3529 
3530     // Retain the new value.  No need to block-copy here:  the block's
3531     // being passed up the stack.
3532     value = CGF.EmitARCRetainNonBlock(value);
3533 
3534     // Emit the intrinsic use here.
3535     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3536 
3537     // Load the old value (primitively).
3538     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3539 
3540     // Put the new value in place (primitively).
3541     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3542 
3543     // Release the old value.
3544     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3545 
3546   // Otherwise, we can just do a normal lvalue store.
3547   } else {
3548     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3549   }
3550 
3551   // Jump to the continuation block.
3552   if (!provablyNonNull)
3553     CGF.EmitBlock(contBB);
3554 }
3555 
3556 static void emitWritebacks(CodeGenFunction &CGF,
3557                            const CallArgList &args) {
3558   for (const auto &I : args.writebacks())
3559     emitWriteback(CGF, I);
3560 }
3561 
3562 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3563                                             const CallArgList &CallArgs) {
3564   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3565     CallArgs.getCleanupsToDeactivate();
3566   // Iterate in reverse to increase the likelihood of popping the cleanup.
3567   for (const auto &I : llvm::reverse(Cleanups)) {
3568     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3569     I.IsActiveIP->eraseFromParent();
3570   }
3571 }
3572 
3573 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3574   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3575     if (uop->getOpcode() == UO_AddrOf)
3576       return uop->getSubExpr();
3577   return nullptr;
3578 }
3579 
3580 /// Emit an argument that's being passed call-by-writeback.  That is,
3581 /// we are passing the address of an __autoreleased temporary; it
3582 /// might be copy-initialized with the current value of the given
3583 /// address, but it will definitely be copied out of after the call.
3584 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3585                              const ObjCIndirectCopyRestoreExpr *CRE) {
3586   LValue srcLV;
3587 
3588   // Make an optimistic effort to emit the address as an l-value.
3589   // This can fail if the argument expression is more complicated.
3590   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3591     srcLV = CGF.EmitLValue(lvExpr);
3592 
3593   // Otherwise, just emit it as a scalar.
3594   } else {
3595     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3596 
3597     QualType srcAddrType =
3598       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3599     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3600   }
3601   Address srcAddr = srcLV.getAddress(CGF);
3602 
3603   // The dest and src types don't necessarily match in LLVM terms
3604   // because of the crazy ObjC compatibility rules.
3605 
3606   llvm::PointerType *destType =
3607     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3608 
3609   // If the address is a constant null, just pass the appropriate null.
3610   if (isProvablyNull(srcAddr.getPointer())) {
3611     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3612              CRE->getType());
3613     return;
3614   }
3615 
3616   // Create the temporary.
3617   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3618                                       CGF.getPointerAlign(),
3619                                       "icr.temp");
3620   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3621   // and that cleanup will be conditional if we can't prove that the l-value
3622   // isn't null, so we need to register a dominating point so that the cleanups
3623   // system will make valid IR.
3624   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3625 
3626   // Zero-initialize it if we're not doing a copy-initialization.
3627   bool shouldCopy = CRE->shouldCopy();
3628   if (!shouldCopy) {
3629     llvm::Value *null =
3630       llvm::ConstantPointerNull::get(
3631         cast<llvm::PointerType>(destType->getElementType()));
3632     CGF.Builder.CreateStore(null, temp);
3633   }
3634 
3635   llvm::BasicBlock *contBB = nullptr;
3636   llvm::BasicBlock *originBB = nullptr;
3637 
3638   // If the address is *not* known to be non-null, we need to switch.
3639   llvm::Value *finalArgument;
3640 
3641   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3642                                               CGF.CGM.getDataLayout());
3643   if (provablyNonNull) {
3644     finalArgument = temp.getPointer();
3645   } else {
3646     llvm::Value *isNull =
3647       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3648 
3649     finalArgument = CGF.Builder.CreateSelect(isNull,
3650                                    llvm::ConstantPointerNull::get(destType),
3651                                              temp.getPointer(), "icr.argument");
3652 
3653     // If we need to copy, then the load has to be conditional, which
3654     // means we need control flow.
3655     if (shouldCopy) {
3656       originBB = CGF.Builder.GetInsertBlock();
3657       contBB = CGF.createBasicBlock("icr.cont");
3658       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3659       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3660       CGF.EmitBlock(copyBB);
3661       condEval.begin(CGF);
3662     }
3663   }
3664 
3665   llvm::Value *valueToUse = nullptr;
3666 
3667   // Perform a copy if necessary.
3668   if (shouldCopy) {
3669     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3670     assert(srcRV.isScalar());
3671 
3672     llvm::Value *src = srcRV.getScalarVal();
3673     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3674                                     "icr.cast");
3675 
3676     // Use an ordinary store, not a store-to-lvalue.
3677     CGF.Builder.CreateStore(src, temp);
3678 
3679     // If optimization is enabled, and the value was held in a
3680     // __strong variable, we need to tell the optimizer that this
3681     // value has to stay alive until we're doing the store back.
3682     // This is because the temporary is effectively unretained,
3683     // and so otherwise we can violate the high-level semantics.
3684     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3685         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3686       valueToUse = src;
3687     }
3688   }
3689 
3690   // Finish the control flow if we needed it.
3691   if (shouldCopy && !provablyNonNull) {
3692     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3693     CGF.EmitBlock(contBB);
3694 
3695     // Make a phi for the value to intrinsically use.
3696     if (valueToUse) {
3697       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3698                                                       "icr.to-use");
3699       phiToUse->addIncoming(valueToUse, copyBB);
3700       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3701                             originBB);
3702       valueToUse = phiToUse;
3703     }
3704 
3705     condEval.end(CGF);
3706   }
3707 
3708   args.addWriteback(srcLV, temp, valueToUse);
3709   args.add(RValue::get(finalArgument), CRE->getType());
3710 }
3711 
3712 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3713   assert(!StackBase);
3714 
3715   // Save the stack.
3716   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3717   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3718 }
3719 
3720 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3721   if (StackBase) {
3722     // Restore the stack after the call.
3723     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3724     CGF.Builder.CreateCall(F, StackBase);
3725   }
3726 }
3727 
3728 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3729                                           SourceLocation ArgLoc,
3730                                           AbstractCallee AC,
3731                                           unsigned ParmNum) {
3732   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3733                          SanOpts.has(SanitizerKind::NullabilityArg)))
3734     return;
3735 
3736   // The param decl may be missing in a variadic function.
3737   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3738   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3739 
3740   // Prefer the nonnull attribute if it's present.
3741   const NonNullAttr *NNAttr = nullptr;
3742   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3743     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3744 
3745   bool CanCheckNullability = false;
3746   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3747     auto Nullability = PVD->getType()->getNullability(getContext());
3748     CanCheckNullability = Nullability &&
3749                           *Nullability == NullabilityKind::NonNull &&
3750                           PVD->getTypeSourceInfo();
3751   }
3752 
3753   if (!NNAttr && !CanCheckNullability)
3754     return;
3755 
3756   SourceLocation AttrLoc;
3757   SanitizerMask CheckKind;
3758   SanitizerHandler Handler;
3759   if (NNAttr) {
3760     AttrLoc = NNAttr->getLocation();
3761     CheckKind = SanitizerKind::NonnullAttribute;
3762     Handler = SanitizerHandler::NonnullArg;
3763   } else {
3764     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3765     CheckKind = SanitizerKind::NullabilityArg;
3766     Handler = SanitizerHandler::NullabilityArg;
3767   }
3768 
3769   SanitizerScope SanScope(this);
3770   assert(RV.isScalar());
3771   llvm::Value *V = RV.getScalarVal();
3772   llvm::Value *Cond =
3773       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3774   llvm::Constant *StaticData[] = {
3775       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3776       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3777   };
3778   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3779 }
3780 
3781 void CodeGenFunction::EmitCallArgs(
3782     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3783     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3784     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3785   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3786 
3787   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3788   // because arguments are destroyed left to right in the callee. As a special
3789   // case, there are certain language constructs that require left-to-right
3790   // evaluation, and in those cases we consider the evaluation order requirement
3791   // to trump the "destruction order is reverse construction order" guarantee.
3792   bool LeftToRight =
3793       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3794           ? Order == EvaluationOrder::ForceLeftToRight
3795           : Order != EvaluationOrder::ForceRightToLeft;
3796 
3797   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3798                                          RValue EmittedArg) {
3799     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3800       return;
3801     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3802     if (PS == nullptr)
3803       return;
3804 
3805     const auto &Context = getContext();
3806     auto SizeTy = Context.getSizeType();
3807     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3808     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3809     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3810                                                      EmittedArg.getScalarVal(),
3811                                                      PS->isDynamic());
3812     Args.add(RValue::get(V), SizeTy);
3813     // If we're emitting args in reverse, be sure to do so with
3814     // pass_object_size, as well.
3815     if (!LeftToRight)
3816       std::swap(Args.back(), *(&Args.back() - 1));
3817   };
3818 
3819   // Insert a stack save if we're going to need any inalloca args.
3820   bool HasInAllocaArgs = false;
3821   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3822     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3823          I != E && !HasInAllocaArgs; ++I)
3824       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3825     if (HasInAllocaArgs) {
3826       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3827       Args.allocateArgumentMemory(*this);
3828     }
3829   }
3830 
3831   // Evaluate each argument in the appropriate order.
3832   size_t CallArgsStart = Args.size();
3833   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3834     unsigned Idx = LeftToRight ? I : E - I - 1;
3835     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3836     unsigned InitialArgSize = Args.size();
3837     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3838     // the argument and parameter match or the objc method is parameterized.
3839     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3840             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3841                                                 ArgTypes[Idx]) ||
3842             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3843              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3844            "Argument and parameter types don't match");
3845     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3846     // In particular, we depend on it being the last arg in Args, and the
3847     // objectsize bits depend on there only being one arg if !LeftToRight.
3848     assert(InitialArgSize + 1 == Args.size() &&
3849            "The code below depends on only adding one arg per EmitCallArg");
3850     (void)InitialArgSize;
3851     // Since pointer argument are never emitted as LValue, it is safe to emit
3852     // non-null argument check for r-value only.
3853     if (!Args.back().hasLValue()) {
3854       RValue RVArg = Args.back().getKnownRValue();
3855       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3856                           ParamsToSkip + Idx);
3857       // @llvm.objectsize should never have side-effects and shouldn't need
3858       // destruction/cleanups, so we can safely "emit" it after its arg,
3859       // regardless of right-to-leftness
3860       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3861     }
3862   }
3863 
3864   if (!LeftToRight) {
3865     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3866     // IR function.
3867     std::reverse(Args.begin() + CallArgsStart, Args.end());
3868   }
3869 }
3870 
3871 namespace {
3872 
3873 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3874   DestroyUnpassedArg(Address Addr, QualType Ty)
3875       : Addr(Addr), Ty(Ty) {}
3876 
3877   Address Addr;
3878   QualType Ty;
3879 
3880   void Emit(CodeGenFunction &CGF, Flags flags) override {
3881     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3882     if (DtorKind == QualType::DK_cxx_destructor) {
3883       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3884       assert(!Dtor->isTrivial());
3885       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3886                                 /*Delegating=*/false, Addr, Ty);
3887     } else {
3888       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3889     }
3890   }
3891 };
3892 
3893 struct DisableDebugLocationUpdates {
3894   CodeGenFunction &CGF;
3895   bool disabledDebugInfo;
3896   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3897     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3898       CGF.disableDebugInfo();
3899   }
3900   ~DisableDebugLocationUpdates() {
3901     if (disabledDebugInfo)
3902       CGF.enableDebugInfo();
3903   }
3904 };
3905 
3906 } // end anonymous namespace
3907 
3908 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3909   if (!HasLV)
3910     return RV;
3911   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3912   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3913                         LV.isVolatile());
3914   IsUsed = true;
3915   return RValue::getAggregate(Copy.getAddress(CGF));
3916 }
3917 
3918 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3919   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3920   if (!HasLV && RV.isScalar())
3921     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3922   else if (!HasLV && RV.isComplex())
3923     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3924   else {
3925     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3926     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3927     // We assume that call args are never copied into subobjects.
3928     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3929                           HasLV ? LV.isVolatileQualified()
3930                                 : RV.isVolatileQualified());
3931   }
3932   IsUsed = true;
3933 }
3934 
3935 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3936                                   QualType type) {
3937   DisableDebugLocationUpdates Dis(*this, E);
3938   if (const ObjCIndirectCopyRestoreExpr *CRE
3939         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3940     assert(getLangOpts().ObjCAutoRefCount);
3941     return emitWritebackArg(*this, args, CRE);
3942   }
3943 
3944   assert(type->isReferenceType() == E->isGLValue() &&
3945          "reference binding to unmaterialized r-value!");
3946 
3947   if (E->isGLValue()) {
3948     assert(E->getObjectKind() == OK_Ordinary);
3949     return args.add(EmitReferenceBindingToExpr(E), type);
3950   }
3951 
3952   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3953 
3954   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3955   // However, we still have to push an EH-only cleanup in case we unwind before
3956   // we make it to the call.
3957   if (HasAggregateEvalKind &&
3958       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3959     // If we're using inalloca, use the argument memory.  Otherwise, use a
3960     // temporary.
3961     AggValueSlot Slot;
3962     if (args.isUsingInAlloca())
3963       Slot = createPlaceholderSlot(*this, type);
3964     else
3965       Slot = CreateAggTemp(type, "agg.tmp");
3966 
3967     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3968     if (const auto *RD = type->getAsCXXRecordDecl())
3969       DestroyedInCallee = RD->hasNonTrivialDestructor();
3970     else
3971       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3972 
3973     if (DestroyedInCallee)
3974       Slot.setExternallyDestructed();
3975 
3976     EmitAggExpr(E, Slot);
3977     RValue RV = Slot.asRValue();
3978     args.add(RV, type);
3979 
3980     if (DestroyedInCallee && NeedsEHCleanup) {
3981       // Create a no-op GEP between the placeholder and the cleanup so we can
3982       // RAUW it successfully.  It also serves as a marker of the first
3983       // instruction where the cleanup is active.
3984       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3985                                               type);
3986       // This unreachable is a temporary marker which will be removed later.
3987       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3988       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3989     }
3990     return;
3991   }
3992 
3993   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3994       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3995     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3996     assert(L.isSimple());
3997     args.addUncopiedAggregate(L, type);
3998     return;
3999   }
4000 
4001   args.add(EmitAnyExprToTemp(E), type);
4002 }
4003 
4004 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4005   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4006   // implicitly widens null pointer constants that are arguments to varargs
4007   // functions to pointer-sized ints.
4008   if (!getTarget().getTriple().isOSWindows())
4009     return Arg->getType();
4010 
4011   if (Arg->getType()->isIntegerType() &&
4012       getContext().getTypeSize(Arg->getType()) <
4013           getContext().getTargetInfo().getPointerWidth(0) &&
4014       Arg->isNullPointerConstant(getContext(),
4015                                  Expr::NPC_ValueDependentIsNotNull)) {
4016     return getContext().getIntPtrType();
4017   }
4018 
4019   return Arg->getType();
4020 }
4021 
4022 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4023 // optimizer it can aggressively ignore unwind edges.
4024 void
4025 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4026   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4027       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4028     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4029                       CGM.getNoObjCARCExceptionsMetadata());
4030 }
4031 
4032 /// Emits a call to the given no-arguments nounwind runtime function.
4033 llvm::CallInst *
4034 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4035                                          const llvm::Twine &name) {
4036   return EmitNounwindRuntimeCall(callee, None, name);
4037 }
4038 
4039 /// Emits a call to the given nounwind runtime function.
4040 llvm::CallInst *
4041 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4042                                          ArrayRef<llvm::Value *> args,
4043                                          const llvm::Twine &name) {
4044   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4045   call->setDoesNotThrow();
4046   return call;
4047 }
4048 
4049 /// Emits a simple call (never an invoke) to the given no-arguments
4050 /// runtime function.
4051 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4052                                                  const llvm::Twine &name) {
4053   return EmitRuntimeCall(callee, None, name);
4054 }
4055 
4056 // Calls which may throw must have operand bundles indicating which funclet
4057 // they are nested within.
4058 SmallVector<llvm::OperandBundleDef, 1>
4059 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4060   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4061   // There is no need for a funclet operand bundle if we aren't inside a
4062   // funclet.
4063   if (!CurrentFuncletPad)
4064     return BundleList;
4065 
4066   // Skip intrinsics which cannot throw.
4067   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4068   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4069     return BundleList;
4070 
4071   BundleList.emplace_back("funclet", CurrentFuncletPad);
4072   return BundleList;
4073 }
4074 
4075 /// Emits a simple call (never an invoke) to the given runtime function.
4076 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4077                                                  ArrayRef<llvm::Value *> args,
4078                                                  const llvm::Twine &name) {
4079   llvm::CallInst *call = Builder.CreateCall(
4080       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4081   call->setCallingConv(getRuntimeCC());
4082   return call;
4083 }
4084 
4085 /// Emits a call or invoke to the given noreturn runtime function.
4086 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4087     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4088   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4089       getBundlesForFunclet(callee.getCallee());
4090 
4091   if (getInvokeDest()) {
4092     llvm::InvokeInst *invoke =
4093       Builder.CreateInvoke(callee,
4094                            getUnreachableBlock(),
4095                            getInvokeDest(),
4096                            args,
4097                            BundleList);
4098     invoke->setDoesNotReturn();
4099     invoke->setCallingConv(getRuntimeCC());
4100   } else {
4101     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4102     call->setDoesNotReturn();
4103     call->setCallingConv(getRuntimeCC());
4104     Builder.CreateUnreachable();
4105   }
4106 }
4107 
4108 /// Emits a call or invoke instruction to the given nullary runtime function.
4109 llvm::CallBase *
4110 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4111                                          const Twine &name) {
4112   return EmitRuntimeCallOrInvoke(callee, None, name);
4113 }
4114 
4115 /// Emits a call or invoke instruction to the given runtime function.
4116 llvm::CallBase *
4117 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4118                                          ArrayRef<llvm::Value *> args,
4119                                          const Twine &name) {
4120   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4121   call->setCallingConv(getRuntimeCC());
4122   return call;
4123 }
4124 
4125 /// Emits a call or invoke instruction to the given function, depending
4126 /// on the current state of the EH stack.
4127 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4128                                                   ArrayRef<llvm::Value *> Args,
4129                                                   const Twine &Name) {
4130   llvm::BasicBlock *InvokeDest = getInvokeDest();
4131   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4132       getBundlesForFunclet(Callee.getCallee());
4133 
4134   llvm::CallBase *Inst;
4135   if (!InvokeDest)
4136     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4137   else {
4138     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4139     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4140                                 Name);
4141     EmitBlock(ContBB);
4142   }
4143 
4144   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4145   // optimizer it can aggressively ignore unwind edges.
4146   if (CGM.getLangOpts().ObjCAutoRefCount)
4147     AddObjCARCExceptionMetadata(Inst);
4148 
4149   return Inst;
4150 }
4151 
4152 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4153                                                   llvm::Value *New) {
4154   DeferredReplacements.push_back(std::make_pair(Old, New));
4155 }
4156 
4157 namespace {
4158 
4159 /// Specify given \p NewAlign as the alignment of return value attribute. If
4160 /// such attribute already exists, re-set it to the maximal one of two options.
4161 LLVM_NODISCARD llvm::AttributeList
4162 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4163                                 const llvm::AttributeList &Attrs,
4164                                 llvm::Align NewAlign) {
4165   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4166   if (CurAlign >= NewAlign)
4167     return Attrs;
4168   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4169   return Attrs
4170       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4171                        llvm::Attribute::AttrKind::Alignment)
4172       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4173 }
4174 
4175 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4176 protected:
4177   CodeGenFunction &CGF;
4178 
4179   /// We do nothing if this is, or becomes, nullptr.
4180   const AlignedAttrTy *AA = nullptr;
4181 
4182   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4183   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4184 
4185   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4186       : CGF(CGF_) {
4187     if (!FuncDecl)
4188       return;
4189     AA = FuncDecl->getAttr<AlignedAttrTy>();
4190   }
4191 
4192 public:
4193   /// If we can, materialize the alignment as an attribute on return value.
4194   LLVM_NODISCARD llvm::AttributeList
4195   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4196     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4197       return Attrs;
4198     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4199     if (!AlignmentCI)
4200       return Attrs;
4201     // We may legitimately have non-power-of-2 alignment here.
4202     // If so, this is UB land, emit it via `@llvm.assume` instead.
4203     if (!AlignmentCI->getValue().isPowerOf2())
4204       return Attrs;
4205     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4206         CGF.getLLVMContext(), Attrs,
4207         llvm::Align(
4208             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4209     AA = nullptr; // We're done. Disallow doing anything else.
4210     return NewAttrs;
4211   }
4212 
4213   /// Emit alignment assumption.
4214   /// This is a general fallback that we take if either there is an offset,
4215   /// or the alignment is variable or we are sanitizing for alignment.
4216   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4217     if (!AA)
4218       return;
4219     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4220                                 AA->getLocation(), Alignment, OffsetCI);
4221     AA = nullptr; // We're done. Disallow doing anything else.
4222   }
4223 };
4224 
4225 /// Helper data structure to emit `AssumeAlignedAttr`.
4226 class AssumeAlignedAttrEmitter final
4227     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4228 public:
4229   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4230       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4231     if (!AA)
4232       return;
4233     // It is guaranteed that the alignment/offset are constants.
4234     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4235     if (Expr *Offset = AA->getOffset()) {
4236       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4237       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4238         OffsetCI = nullptr;
4239     }
4240   }
4241 };
4242 
4243 /// Helper data structure to emit `AllocAlignAttr`.
4244 class AllocAlignAttrEmitter final
4245     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4246 public:
4247   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4248                         const CallArgList &CallArgs)
4249       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4250     if (!AA)
4251       return;
4252     // Alignment may or may not be a constant, and that is okay.
4253     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4254                     .getRValue(CGF)
4255                     .getScalarVal();
4256   }
4257 };
4258 
4259 } // namespace
4260 
4261 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4262                                  const CGCallee &Callee,
4263                                  ReturnValueSlot ReturnValue,
4264                                  const CallArgList &CallArgs,
4265                                  llvm::CallBase **callOrInvoke,
4266                                  SourceLocation Loc) {
4267   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4268 
4269   assert(Callee.isOrdinary() || Callee.isVirtual());
4270 
4271   // Handle struct-return functions by passing a pointer to the
4272   // location that we would like to return into.
4273   QualType RetTy = CallInfo.getReturnType();
4274   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4275 
4276   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4277 
4278   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4279   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4280     // We can only guarantee that a function is called from the correct
4281     // context/function based on the appropriate target attributes,
4282     // so only check in the case where we have both always_inline and target
4283     // since otherwise we could be making a conditional call after a check for
4284     // the proper cpu features (and it won't cause code generation issues due to
4285     // function based code generation).
4286     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4287         TargetDecl->hasAttr<TargetAttr>())
4288       checkTargetFeatures(Loc, FD);
4289 
4290     // Some architectures (such as x86-64) have the ABI changed based on
4291     // attribute-target/features. Give them a chance to diagnose.
4292     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4293         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4294   }
4295 
4296 #ifndef NDEBUG
4297   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4298     // For an inalloca varargs function, we don't expect CallInfo to match the
4299     // function pointer's type, because the inalloca struct a will have extra
4300     // fields in it for the varargs parameters.  Code later in this function
4301     // bitcasts the function pointer to the type derived from CallInfo.
4302     //
4303     // In other cases, we assert that the types match up (until pointers stop
4304     // having pointee types).
4305     llvm::Type *TypeFromVal;
4306     if (Callee.isVirtual())
4307       TypeFromVal = Callee.getVirtualFunctionType();
4308     else
4309       TypeFromVal =
4310           Callee.getFunctionPointer()->getType()->getPointerElementType();
4311     assert(IRFuncTy == TypeFromVal);
4312   }
4313 #endif
4314 
4315   // 1. Set up the arguments.
4316 
4317   // If we're using inalloca, insert the allocation after the stack save.
4318   // FIXME: Do this earlier rather than hacking it in here!
4319   Address ArgMemory = Address::invalid();
4320   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4321     const llvm::DataLayout &DL = CGM.getDataLayout();
4322     llvm::Instruction *IP = CallArgs.getStackBase();
4323     llvm::AllocaInst *AI;
4324     if (IP) {
4325       IP = IP->getNextNode();
4326       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4327                                 "argmem", IP);
4328     } else {
4329       AI = CreateTempAlloca(ArgStruct, "argmem");
4330     }
4331     auto Align = CallInfo.getArgStructAlignment();
4332     AI->setAlignment(Align.getAsAlign());
4333     AI->setUsedWithInAlloca(true);
4334     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4335     ArgMemory = Address(AI, Align);
4336   }
4337 
4338   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4339   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4340 
4341   // If the call returns a temporary with struct return, create a temporary
4342   // alloca to hold the result, unless one is given to us.
4343   Address SRetPtr = Address::invalid();
4344   Address SRetAlloca = Address::invalid();
4345   llvm::Value *UnusedReturnSizePtr = nullptr;
4346   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4347     if (!ReturnValue.isNull()) {
4348       SRetPtr = ReturnValue.getValue();
4349     } else {
4350       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4351       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4352         uint64_t size =
4353             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4354         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4355       }
4356     }
4357     if (IRFunctionArgs.hasSRetArg()) {
4358       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4359     } else if (RetAI.isInAlloca()) {
4360       Address Addr =
4361           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4362       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4363     }
4364   }
4365 
4366   Address swiftErrorTemp = Address::invalid();
4367   Address swiftErrorArg = Address::invalid();
4368 
4369   // When passing arguments using temporary allocas, we need to add the
4370   // appropriate lifetime markers. This vector keeps track of all the lifetime
4371   // markers that need to be ended right after the call.
4372   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4373 
4374   // Translate all of the arguments as necessary to match the IR lowering.
4375   assert(CallInfo.arg_size() == CallArgs.size() &&
4376          "Mismatch between function signature & arguments.");
4377   unsigned ArgNo = 0;
4378   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4379   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4380        I != E; ++I, ++info_it, ++ArgNo) {
4381     const ABIArgInfo &ArgInfo = info_it->info;
4382 
4383     // Insert a padding argument to ensure proper alignment.
4384     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4385       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4386           llvm::UndefValue::get(ArgInfo.getPaddingType());
4387 
4388     unsigned FirstIRArg, NumIRArgs;
4389     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4390 
4391     switch (ArgInfo.getKind()) {
4392     case ABIArgInfo::InAlloca: {
4393       assert(NumIRArgs == 0);
4394       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4395       if (I->isAggregate()) {
4396         Address Addr = I->hasLValue()
4397                            ? I->getKnownLValue().getAddress(*this)
4398                            : I->getKnownRValue().getAggregateAddress();
4399         llvm::Instruction *Placeholder =
4400             cast<llvm::Instruction>(Addr.getPointer());
4401 
4402         if (!ArgInfo.getInAllocaIndirect()) {
4403           // Replace the placeholder with the appropriate argument slot GEP.
4404           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4405           Builder.SetInsertPoint(Placeholder);
4406           Addr = Builder.CreateStructGEP(ArgMemory,
4407                                          ArgInfo.getInAllocaFieldIndex());
4408           Builder.restoreIP(IP);
4409         } else {
4410           // For indirect things such as overaligned structs, replace the
4411           // placeholder with a regular aggregate temporary alloca. Store the
4412           // address of this alloca into the struct.
4413           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4414           Address ArgSlot = Builder.CreateStructGEP(
4415               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4416           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4417         }
4418         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4419       } else if (ArgInfo.getInAllocaIndirect()) {
4420         // Make a temporary alloca and store the address of it into the argument
4421         // struct.
4422         Address Addr = CreateMemTempWithoutCast(
4423             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4424             "indirect-arg-temp");
4425         I->copyInto(*this, Addr);
4426         Address ArgSlot =
4427             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4428         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4429       } else {
4430         // Store the RValue into the argument struct.
4431         Address Addr =
4432             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4433         unsigned AS = Addr.getType()->getPointerAddressSpace();
4434         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4435         // There are some cases where a trivial bitcast is not avoidable.  The
4436         // definition of a type later in a translation unit may change it's type
4437         // from {}* to (%struct.foo*)*.
4438         if (Addr.getType() != MemType)
4439           Addr = Builder.CreateBitCast(Addr, MemType);
4440         I->copyInto(*this, Addr);
4441       }
4442       break;
4443     }
4444 
4445     case ABIArgInfo::Indirect:
4446     case ABIArgInfo::IndirectAliased: {
4447       assert(NumIRArgs == 1);
4448       if (!I->isAggregate()) {
4449         // Make a temporary alloca to pass the argument.
4450         Address Addr = CreateMemTempWithoutCast(
4451             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4452         IRCallArgs[FirstIRArg] = Addr.getPointer();
4453 
4454         I->copyInto(*this, Addr);
4455       } else {
4456         // We want to avoid creating an unnecessary temporary+copy here;
4457         // however, we need one in three cases:
4458         // 1. If the argument is not byval, and we are required to copy the
4459         //    source.  (This case doesn't occur on any common architecture.)
4460         // 2. If the argument is byval, RV is not sufficiently aligned, and
4461         //    we cannot force it to be sufficiently aligned.
4462         // 3. If the argument is byval, but RV is not located in default
4463         //    or alloca address space.
4464         Address Addr = I->hasLValue()
4465                            ? I->getKnownLValue().getAddress(*this)
4466                            : I->getKnownRValue().getAggregateAddress();
4467         llvm::Value *V = Addr.getPointer();
4468         CharUnits Align = ArgInfo.getIndirectAlign();
4469         const llvm::DataLayout *TD = &CGM.getDataLayout();
4470 
4471         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4472                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4473                     TD->getAllocaAddrSpace()) &&
4474                "indirect argument must be in alloca address space");
4475 
4476         bool NeedCopy = false;
4477 
4478         if (Addr.getAlignment() < Align &&
4479             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4480                 Align.getAsAlign()) {
4481           NeedCopy = true;
4482         } else if (I->hasLValue()) {
4483           auto LV = I->getKnownLValue();
4484           auto AS = LV.getAddressSpace();
4485 
4486           if (!ArgInfo.getIndirectByVal() ||
4487               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4488             NeedCopy = true;
4489           }
4490           if (!getLangOpts().OpenCL) {
4491             if ((ArgInfo.getIndirectByVal() &&
4492                 (AS != LangAS::Default &&
4493                  AS != CGM.getASTAllocaAddressSpace()))) {
4494               NeedCopy = true;
4495             }
4496           }
4497           // For OpenCL even if RV is located in default or alloca address space
4498           // we don't want to perform address space cast for it.
4499           else if ((ArgInfo.getIndirectByVal() &&
4500                     Addr.getType()->getAddressSpace() != IRFuncTy->
4501                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4502             NeedCopy = true;
4503           }
4504         }
4505 
4506         if (NeedCopy) {
4507           // Create an aligned temporary, and copy to it.
4508           Address AI = CreateMemTempWithoutCast(
4509               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4510           IRCallArgs[FirstIRArg] = AI.getPointer();
4511 
4512           // Emit lifetime markers for the temporary alloca.
4513           uint64_t ByvalTempElementSize =
4514               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4515           llvm::Value *LifetimeSize =
4516               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4517 
4518           // Add cleanup code to emit the end lifetime marker after the call.
4519           if (LifetimeSize) // In case we disabled lifetime markers.
4520             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4521 
4522           // Generate the copy.
4523           I->copyInto(*this, AI);
4524         } else {
4525           // Skip the extra memcpy call.
4526           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4527               CGM.getDataLayout().getAllocaAddrSpace());
4528           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4529               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4530               true);
4531         }
4532       }
4533       break;
4534     }
4535 
4536     case ABIArgInfo::Ignore:
4537       assert(NumIRArgs == 0);
4538       break;
4539 
4540     case ABIArgInfo::Extend:
4541     case ABIArgInfo::Direct: {
4542       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4543           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4544           ArgInfo.getDirectOffset() == 0) {
4545         assert(NumIRArgs == 1);
4546         llvm::Value *V;
4547         if (!I->isAggregate())
4548           V = I->getKnownRValue().getScalarVal();
4549         else
4550           V = Builder.CreateLoad(
4551               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4552                              : I->getKnownRValue().getAggregateAddress());
4553 
4554         // Implement swifterror by copying into a new swifterror argument.
4555         // We'll write back in the normal path out of the call.
4556         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4557               == ParameterABI::SwiftErrorResult) {
4558           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4559 
4560           QualType pointeeTy = I->Ty->getPointeeType();
4561           swiftErrorArg =
4562             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4563 
4564           swiftErrorTemp =
4565             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4566           V = swiftErrorTemp.getPointer();
4567           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4568 
4569           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4570           Builder.CreateStore(errorValue, swiftErrorTemp);
4571         }
4572 
4573         // We might have to widen integers, but we should never truncate.
4574         if (ArgInfo.getCoerceToType() != V->getType() &&
4575             V->getType()->isIntegerTy())
4576           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4577 
4578         // If the argument doesn't match, perform a bitcast to coerce it.  This
4579         // can happen due to trivial type mismatches.
4580         if (FirstIRArg < IRFuncTy->getNumParams() &&
4581             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4582           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4583 
4584         IRCallArgs[FirstIRArg] = V;
4585         break;
4586       }
4587 
4588       // FIXME: Avoid the conversion through memory if possible.
4589       Address Src = Address::invalid();
4590       if (!I->isAggregate()) {
4591         Src = CreateMemTemp(I->Ty, "coerce");
4592         I->copyInto(*this, Src);
4593       } else {
4594         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4595                              : I->getKnownRValue().getAggregateAddress();
4596       }
4597 
4598       // If the value is offset in memory, apply the offset now.
4599       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4600 
4601       // Fast-isel and the optimizer generally like scalar values better than
4602       // FCAs, so we flatten them if this is safe to do for this argument.
4603       llvm::StructType *STy =
4604             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4605       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4606         llvm::Type *SrcTy = Src.getElementType();
4607         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4608         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4609 
4610         // If the source type is smaller than the destination type of the
4611         // coerce-to logic, copy the source value into a temp alloca the size
4612         // of the destination type to allow loading all of it. The bits past
4613         // the source value are left undef.
4614         if (SrcSize < DstSize) {
4615           Address TempAlloca
4616             = CreateTempAlloca(STy, Src.getAlignment(),
4617                                Src.getName() + ".coerce");
4618           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4619           Src = TempAlloca;
4620         } else {
4621           Src = Builder.CreateBitCast(Src,
4622                                       STy->getPointerTo(Src.getAddressSpace()));
4623         }
4624 
4625         assert(NumIRArgs == STy->getNumElements());
4626         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4627           Address EltPtr = Builder.CreateStructGEP(Src, i);
4628           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4629           IRCallArgs[FirstIRArg + i] = LI;
4630         }
4631       } else {
4632         // In the simple case, just pass the coerced loaded value.
4633         assert(NumIRArgs == 1);
4634         llvm::Value *Load =
4635             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4636 
4637         if (CallInfo.isCmseNSCall()) {
4638           // For certain parameter types, clear padding bits, as they may reveal
4639           // sensitive information.
4640           // Small struct/union types are passed as integer arrays.
4641           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4642           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4643             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4644         }
4645         IRCallArgs[FirstIRArg] = Load;
4646       }
4647 
4648       break;
4649     }
4650 
4651     case ABIArgInfo::CoerceAndExpand: {
4652       auto coercionType = ArgInfo.getCoerceAndExpandType();
4653       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4654 
4655       llvm::Value *tempSize = nullptr;
4656       Address addr = Address::invalid();
4657       Address AllocaAddr = Address::invalid();
4658       if (I->isAggregate()) {
4659         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4660                               : I->getKnownRValue().getAggregateAddress();
4661 
4662       } else {
4663         RValue RV = I->getKnownRValue();
4664         assert(RV.isScalar()); // complex should always just be direct
4665 
4666         llvm::Type *scalarType = RV.getScalarVal()->getType();
4667         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4668         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4669 
4670         // Materialize to a temporary.
4671         addr = CreateTempAlloca(
4672             RV.getScalarVal()->getType(),
4673             CharUnits::fromQuantity(std::max(
4674                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4675             "tmp",
4676             /*ArraySize=*/nullptr, &AllocaAddr);
4677         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4678 
4679         Builder.CreateStore(RV.getScalarVal(), addr);
4680       }
4681 
4682       addr = Builder.CreateElementBitCast(addr, coercionType);
4683 
4684       unsigned IRArgPos = FirstIRArg;
4685       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4686         llvm::Type *eltType = coercionType->getElementType(i);
4687         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4688         Address eltAddr = Builder.CreateStructGEP(addr, i);
4689         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4690         IRCallArgs[IRArgPos++] = elt;
4691       }
4692       assert(IRArgPos == FirstIRArg + NumIRArgs);
4693 
4694       if (tempSize) {
4695         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4696       }
4697 
4698       break;
4699     }
4700 
4701     case ABIArgInfo::Expand: {
4702       unsigned IRArgPos = FirstIRArg;
4703       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4704       assert(IRArgPos == FirstIRArg + NumIRArgs);
4705       break;
4706     }
4707     }
4708   }
4709 
4710   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4711   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4712 
4713   // If we're using inalloca, set up that argument.
4714   if (ArgMemory.isValid()) {
4715     llvm::Value *Arg = ArgMemory.getPointer();
4716     if (CallInfo.isVariadic()) {
4717       // When passing non-POD arguments by value to variadic functions, we will
4718       // end up with a variadic prototype and an inalloca call site.  In such
4719       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4720       // the callee.
4721       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4722       CalleePtr =
4723           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4724     } else {
4725       llvm::Type *LastParamTy =
4726           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4727       if (Arg->getType() != LastParamTy) {
4728 #ifndef NDEBUG
4729         // Assert that these structs have equivalent element types.
4730         llvm::StructType *FullTy = CallInfo.getArgStruct();
4731         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4732             cast<llvm::PointerType>(LastParamTy)->getElementType());
4733         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4734         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4735                                                 DE = DeclaredTy->element_end(),
4736                                                 FI = FullTy->element_begin();
4737              DI != DE; ++DI, ++FI)
4738           assert(*DI == *FI);
4739 #endif
4740         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4741       }
4742     }
4743     assert(IRFunctionArgs.hasInallocaArg());
4744     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4745   }
4746 
4747   // 2. Prepare the function pointer.
4748 
4749   // If the callee is a bitcast of a non-variadic function to have a
4750   // variadic function pointer type, check to see if we can remove the
4751   // bitcast.  This comes up with unprototyped functions.
4752   //
4753   // This makes the IR nicer, but more importantly it ensures that we
4754   // can inline the function at -O0 if it is marked always_inline.
4755   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4756                                    llvm::Value *Ptr) -> llvm::Function * {
4757     if (!CalleeFT->isVarArg())
4758       return nullptr;
4759 
4760     // Get underlying value if it's a bitcast
4761     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4762       if (CE->getOpcode() == llvm::Instruction::BitCast)
4763         Ptr = CE->getOperand(0);
4764     }
4765 
4766     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4767     if (!OrigFn)
4768       return nullptr;
4769 
4770     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4771 
4772     // If the original type is variadic, or if any of the component types
4773     // disagree, we cannot remove the cast.
4774     if (OrigFT->isVarArg() ||
4775         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4776         OrigFT->getReturnType() != CalleeFT->getReturnType())
4777       return nullptr;
4778 
4779     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4780       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4781         return nullptr;
4782 
4783     return OrigFn;
4784   };
4785 
4786   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4787     CalleePtr = OrigFn;
4788     IRFuncTy = OrigFn->getFunctionType();
4789   }
4790 
4791   // 3. Perform the actual call.
4792 
4793   // Deactivate any cleanups that we're supposed to do immediately before
4794   // the call.
4795   if (!CallArgs.getCleanupsToDeactivate().empty())
4796     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4797 
4798   // Assert that the arguments we computed match up.  The IR verifier
4799   // will catch this, but this is a common enough source of problems
4800   // during IRGen changes that it's way better for debugging to catch
4801   // it ourselves here.
4802 #ifndef NDEBUG
4803   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4804   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4805     // Inalloca argument can have different type.
4806     if (IRFunctionArgs.hasInallocaArg() &&
4807         i == IRFunctionArgs.getInallocaArgNo())
4808       continue;
4809     if (i < IRFuncTy->getNumParams())
4810       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4811   }
4812 #endif
4813 
4814   // Update the largest vector width if any arguments have vector types.
4815   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4816     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4817       LargestVectorWidth =
4818           std::max((uint64_t)LargestVectorWidth,
4819                    VT->getPrimitiveSizeInBits().getKnownMinSize());
4820   }
4821 
4822   // Compute the calling convention and attributes.
4823   unsigned CallingConv;
4824   llvm::AttributeList Attrs;
4825   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4826                              Callee.getAbstractInfo(), Attrs, CallingConv,
4827                              /*AttrOnCallSite=*/true);
4828 
4829   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4830     if (FD->usesFPIntrin())
4831       // All calls within a strictfp function are marked strictfp
4832       Attrs =
4833         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4834                            llvm::Attribute::StrictFP);
4835 
4836   // Add call-site nomerge attribute if exists.
4837   if (InNoMergeAttributedStmt)
4838     Attrs =
4839       Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4840                          llvm::Attribute::NoMerge);
4841 
4842   // Apply some call-site-specific attributes.
4843   // TODO: work this into building the attribute set.
4844 
4845   // Apply always_inline to all calls within flatten functions.
4846   // FIXME: should this really take priority over __try, below?
4847   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4848       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4849     Attrs =
4850         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4851                            llvm::Attribute::AlwaysInline);
4852   }
4853 
4854   // Disable inlining inside SEH __try blocks.
4855   if (isSEHTryScope()) {
4856     Attrs =
4857         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4858                            llvm::Attribute::NoInline);
4859   }
4860 
4861   // Decide whether to use a call or an invoke.
4862   bool CannotThrow;
4863   if (currentFunctionUsesSEHTry()) {
4864     // SEH cares about asynchronous exceptions, so everything can "throw."
4865     CannotThrow = false;
4866   } else if (isCleanupPadScope() &&
4867              EHPersonality::get(*this).isMSVCXXPersonality()) {
4868     // The MSVC++ personality will implicitly terminate the program if an
4869     // exception is thrown during a cleanup outside of a try/catch.
4870     // We don't need to model anything in IR to get this behavior.
4871     CannotThrow = true;
4872   } else {
4873     // Otherwise, nounwind call sites will never throw.
4874     CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
4875 
4876     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
4877       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
4878         CannotThrow = true;
4879   }
4880 
4881   // If we made a temporary, be sure to clean up after ourselves. Note that we
4882   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4883   // pop this cleanup later on. Being eager about this is OK, since this
4884   // temporary is 'invisible' outside of the callee.
4885   if (UnusedReturnSizePtr)
4886     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4887                                          UnusedReturnSizePtr);
4888 
4889   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4890 
4891   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4892       getBundlesForFunclet(CalleePtr);
4893 
4894   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4895     if (FD->usesFPIntrin())
4896       // All calls within a strictfp function are marked strictfp
4897       Attrs =
4898         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4899                            llvm::Attribute::StrictFP);
4900 
4901   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
4902   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4903 
4904   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
4905   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4906 
4907   // Emit the actual call/invoke instruction.
4908   llvm::CallBase *CI;
4909   if (!InvokeDest) {
4910     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4911   } else {
4912     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4913     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4914                               BundleList);
4915     EmitBlock(Cont);
4916   }
4917   if (callOrInvoke)
4918     *callOrInvoke = CI;
4919 
4920   // If this is within a function that has the guard(nocf) attribute and is an
4921   // indirect call, add the "guard_nocf" attribute to this call to indicate that
4922   // Control Flow Guard checks should not be added, even if the call is inlined.
4923   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4924     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4925       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4926         Attrs = Attrs.addAttribute(
4927             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4928     }
4929   }
4930 
4931   // Apply the attributes and calling convention.
4932   CI->setAttributes(Attrs);
4933   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4934 
4935   // Apply various metadata.
4936 
4937   if (!CI->getType()->isVoidTy())
4938     CI->setName("call");
4939 
4940   // Update largest vector width from the return type.
4941   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4942     LargestVectorWidth =
4943         std::max((uint64_t)LargestVectorWidth,
4944                  VT->getPrimitiveSizeInBits().getKnownMinSize());
4945 
4946   // Insert instrumentation or attach profile metadata at indirect call sites.
4947   // For more details, see the comment before the definition of
4948   // IPVK_IndirectCallTarget in InstrProfData.inc.
4949   if (!CI->getCalledFunction())
4950     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4951                      CI, CalleePtr);
4952 
4953   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4954   // optimizer it can aggressively ignore unwind edges.
4955   if (CGM.getLangOpts().ObjCAutoRefCount)
4956     AddObjCARCExceptionMetadata(CI);
4957 
4958   // Suppress tail calls if requested.
4959   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4960     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4961       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4962   }
4963 
4964   // Add metadata for calls to MSAllocator functions
4965   if (getDebugInfo() && TargetDecl &&
4966       TargetDecl->hasAttr<MSAllocatorAttr>())
4967     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
4968 
4969   // 4. Finish the call.
4970 
4971   // If the call doesn't return, finish the basic block and clear the
4972   // insertion point; this allows the rest of IRGen to discard
4973   // unreachable code.
4974   if (CI->doesNotReturn()) {
4975     if (UnusedReturnSizePtr)
4976       PopCleanupBlock();
4977 
4978     // Strip away the noreturn attribute to better diagnose unreachable UB.
4979     if (SanOpts.has(SanitizerKind::Unreachable)) {
4980       // Also remove from function since CallBase::hasFnAttr additionally checks
4981       // attributes of the called function.
4982       if (auto *F = CI->getCalledFunction())
4983         F->removeFnAttr(llvm::Attribute::NoReturn);
4984       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4985                           llvm::Attribute::NoReturn);
4986 
4987       // Avoid incompatibility with ASan which relies on the `noreturn`
4988       // attribute to insert handler calls.
4989       if (SanOpts.hasOneOf(SanitizerKind::Address |
4990                            SanitizerKind::KernelAddress)) {
4991         SanitizerScope SanScope(this);
4992         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4993         Builder.SetInsertPoint(CI);
4994         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4995         llvm::FunctionCallee Fn =
4996             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4997         EmitNounwindRuntimeCall(Fn);
4998       }
4999     }
5000 
5001     EmitUnreachable(Loc);
5002     Builder.ClearInsertionPoint();
5003 
5004     // FIXME: For now, emit a dummy basic block because expr emitters in
5005     // generally are not ready to handle emitting expressions at unreachable
5006     // points.
5007     EnsureInsertPoint();
5008 
5009     // Return a reasonable RValue.
5010     return GetUndefRValue(RetTy);
5011   }
5012 
5013   // Perform the swifterror writeback.
5014   if (swiftErrorTemp.isValid()) {
5015     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5016     Builder.CreateStore(errorResult, swiftErrorArg);
5017   }
5018 
5019   // Emit any call-associated writebacks immediately.  Arguably this
5020   // should happen after any return-value munging.
5021   if (CallArgs.hasWritebacks())
5022     emitWritebacks(*this, CallArgs);
5023 
5024   // The stack cleanup for inalloca arguments has to run out of the normal
5025   // lexical order, so deactivate it and run it manually here.
5026   CallArgs.freeArgumentMemory(*this);
5027 
5028   // Extract the return value.
5029   RValue Ret = [&] {
5030     switch (RetAI.getKind()) {
5031     case ABIArgInfo::CoerceAndExpand: {
5032       auto coercionType = RetAI.getCoerceAndExpandType();
5033 
5034       Address addr = SRetPtr;
5035       addr = Builder.CreateElementBitCast(addr, coercionType);
5036 
5037       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5038       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5039 
5040       unsigned unpaddedIndex = 0;
5041       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5042         llvm::Type *eltType = coercionType->getElementType(i);
5043         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5044         Address eltAddr = Builder.CreateStructGEP(addr, i);
5045         llvm::Value *elt = CI;
5046         if (requiresExtract)
5047           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5048         else
5049           assert(unpaddedIndex == 0);
5050         Builder.CreateStore(elt, eltAddr);
5051       }
5052       // FALLTHROUGH
5053       LLVM_FALLTHROUGH;
5054     }
5055 
5056     case ABIArgInfo::InAlloca:
5057     case ABIArgInfo::Indirect: {
5058       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5059       if (UnusedReturnSizePtr)
5060         PopCleanupBlock();
5061       return ret;
5062     }
5063 
5064     case ABIArgInfo::Ignore:
5065       // If we are ignoring an argument that had a result, make sure to
5066       // construct the appropriate return value for our caller.
5067       return GetUndefRValue(RetTy);
5068 
5069     case ABIArgInfo::Extend:
5070     case ABIArgInfo::Direct: {
5071       llvm::Type *RetIRTy = ConvertType(RetTy);
5072       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5073         switch (getEvaluationKind(RetTy)) {
5074         case TEK_Complex: {
5075           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5076           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5077           return RValue::getComplex(std::make_pair(Real, Imag));
5078         }
5079         case TEK_Aggregate: {
5080           Address DestPtr = ReturnValue.getValue();
5081           bool DestIsVolatile = ReturnValue.isVolatile();
5082 
5083           if (!DestPtr.isValid()) {
5084             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5085             DestIsVolatile = false;
5086           }
5087           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5088           return RValue::getAggregate(DestPtr);
5089         }
5090         case TEK_Scalar: {
5091           // If the argument doesn't match, perform a bitcast to coerce it.  This
5092           // can happen due to trivial type mismatches.
5093           llvm::Value *V = CI;
5094           if (V->getType() != RetIRTy)
5095             V = Builder.CreateBitCast(V, RetIRTy);
5096           return RValue::get(V);
5097         }
5098         }
5099         llvm_unreachable("bad evaluation kind");
5100       }
5101 
5102       Address DestPtr = ReturnValue.getValue();
5103       bool DestIsVolatile = ReturnValue.isVolatile();
5104 
5105       if (!DestPtr.isValid()) {
5106         DestPtr = CreateMemTemp(RetTy, "coerce");
5107         DestIsVolatile = false;
5108       }
5109 
5110       // If the value is offset in memory, apply the offset now.
5111       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5112       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5113 
5114       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5115     }
5116 
5117     case ABIArgInfo::Expand:
5118     case ABIArgInfo::IndirectAliased:
5119       llvm_unreachable("Invalid ABI kind for return argument");
5120     }
5121 
5122     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5123   } ();
5124 
5125   // Emit the assume_aligned check on the return value.
5126   if (Ret.isScalar() && TargetDecl) {
5127     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5128     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5129   }
5130 
5131   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5132   // we can't use the full cleanup mechanism.
5133   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5134     LifetimeEnd.Emit(*this, /*Flags=*/{});
5135 
5136   if (!ReturnValue.isExternallyDestructed() &&
5137       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5138     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5139                 RetTy);
5140 
5141   return Ret;
5142 }
5143 
5144 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5145   if (isVirtual()) {
5146     const CallExpr *CE = getVirtualCallExpr();
5147     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5148         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5149         CE ? CE->getBeginLoc() : SourceLocation());
5150   }
5151 
5152   return *this;
5153 }
5154 
5155 /* VarArg handling */
5156 
5157 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5158   VAListAddr = VE->isMicrosoftABI()
5159                  ? EmitMSVAListRef(VE->getSubExpr())
5160                  : EmitVAListRef(VE->getSubExpr());
5161   QualType Ty = VE->getType();
5162   if (VE->isMicrosoftABI())
5163     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5164   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5165 }
5166