1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 using namespace clang;
36 using namespace CodeGen;
37 
38 /***/
39 
40 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
41   switch (CC) {
42   default: return llvm::CallingConv::C;
43   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
44   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
45   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
46   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
47   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
48   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
49   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
50   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
51   // TODO: Add support for __pascal to LLVM.
52   case CC_X86Pascal: return llvm::CallingConv::C;
53   // TODO: Add support for __vectorcall to LLVM.
54   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
55   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
56   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
57   }
58 }
59 
60 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
61 /// qualification.
62 /// FIXME: address space qualification?
63 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
64   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
65   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
66 }
67 
68 /// Returns the canonical formal type of the given C++ method.
69 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
70   return MD->getType()->getCanonicalTypeUnqualified()
71            .getAs<FunctionProtoType>();
72 }
73 
74 /// Returns the "extra-canonicalized" return type, which discards
75 /// qualifiers on the return type.  Codegen doesn't care about them,
76 /// and it makes ABI code a little easier to be able to assume that
77 /// all parameter and return types are top-level unqualified.
78 static CanQualType GetReturnType(QualType RetTy) {
79   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
80 }
81 
82 /// Arrange the argument and result information for a value of the given
83 /// unprototyped freestanding function type.
84 const CGFunctionInfo &
85 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
86   // When translating an unprototyped function type, always use a
87   // variadic type.
88   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
89                                  /*instanceMethod=*/false,
90                                  /*chainCall=*/false, None,
91                                  FTNP->getExtInfo(), RequiredArgs(0));
92 }
93 
94 /// Arrange the LLVM function layout for a value of the given function
95 /// type, on top of any implicit parameters already stored.
96 static const CGFunctionInfo &
97 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
98                         SmallVectorImpl<CanQualType> &prefix,
99                         CanQual<FunctionProtoType> FTP) {
100   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
101   // FIXME: Kill copy.
102   prefix.append(FTP->param_type_begin(), FTP->param_type_end());
103   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
104   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
105                                      /*chainCall=*/false, prefix,
106                                      FTP->getExtInfo(), required);
107 }
108 
109 /// Arrange the argument and result information for a value of the
110 /// given freestanding function type.
111 const CGFunctionInfo &
112 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
113   SmallVector<CanQualType, 16> argTypes;
114   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
115                                    FTP);
116 }
117 
118 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
119   // Set the appropriate calling convention for the Function.
120   if (D->hasAttr<StdCallAttr>())
121     return CC_X86StdCall;
122 
123   if (D->hasAttr<FastCallAttr>())
124     return CC_X86FastCall;
125 
126   if (D->hasAttr<ThisCallAttr>())
127     return CC_X86ThisCall;
128 
129   if (D->hasAttr<VectorCallAttr>())
130     return CC_X86VectorCall;
131 
132   if (D->hasAttr<PascalAttr>())
133     return CC_X86Pascal;
134 
135   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
136     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
137 
138   if (D->hasAttr<IntelOclBiccAttr>())
139     return CC_IntelOclBicc;
140 
141   if (D->hasAttr<MSABIAttr>())
142     return IsWindows ? CC_C : CC_X86_64Win64;
143 
144   if (D->hasAttr<SysVABIAttr>())
145     return IsWindows ? CC_X86_64SysV : CC_C;
146 
147   return CC_C;
148 }
149 
150 /// Arrange the argument and result information for a call to an
151 /// unknown C++ non-static member function of the given abstract type.
152 /// (Zero value of RD means we don't have any meaningful "this" argument type,
153 ///  so fall back to a generic pointer type).
154 /// The member function must be an ordinary function, i.e. not a
155 /// constructor or destructor.
156 const CGFunctionInfo &
157 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
158                                    const FunctionProtoType *FTP) {
159   SmallVector<CanQualType, 16> argTypes;
160 
161   // Add the 'this' pointer.
162   if (RD)
163     argTypes.push_back(GetThisType(Context, RD));
164   else
165     argTypes.push_back(Context.VoidPtrTy);
166 
167   return ::arrangeLLVMFunctionInfo(
168       *this, true, argTypes,
169       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
170 }
171 
172 /// Arrange the argument and result information for a declaration or
173 /// definition of the given C++ non-static member function.  The
174 /// member function must be an ordinary function, i.e. not a
175 /// constructor or destructor.
176 const CGFunctionInfo &
177 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
178   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
179   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
180 
181   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
182 
183   if (MD->isInstance()) {
184     // The abstract case is perfectly fine.
185     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
186     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
187   }
188 
189   return arrangeFreeFunctionType(prototype);
190 }
191 
192 const CGFunctionInfo &
193 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
194                                             StructorType Type) {
195 
196   SmallVector<CanQualType, 16> argTypes;
197   argTypes.push_back(GetThisType(Context, MD->getParent()));
198 
199   GlobalDecl GD;
200   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
201     GD = GlobalDecl(CD, toCXXCtorType(Type));
202   } else {
203     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
204     GD = GlobalDecl(DD, toCXXDtorType(Type));
205   }
206 
207   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
208 
209   // Add the formal parameters.
210   argTypes.append(FTP->param_type_begin(), FTP->param_type_end());
211 
212   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
213 
214   RequiredArgs required =
215       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
216 
217   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
218   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
219                                ? argTypes.front()
220                                : TheCXXABI.hasMostDerivedReturn(GD)
221                                      ? CGM.getContext().VoidPtrTy
222                                      : Context.VoidTy;
223   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
224                                  /*chainCall=*/false, argTypes, extInfo,
225                                  required);
226 }
227 
228 /// Arrange a call to a C++ method, passing the given arguments.
229 const CGFunctionInfo &
230 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
231                                         const CXXConstructorDecl *D,
232                                         CXXCtorType CtorKind,
233                                         unsigned ExtraArgs) {
234   // FIXME: Kill copy.
235   SmallVector<CanQualType, 16> ArgTypes;
236   for (const auto &Arg : args)
237     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
238 
239   CanQual<FunctionProtoType> FPT = GetFormalType(D);
240   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
241   GlobalDecl GD(D, CtorKind);
242   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
243                                ? ArgTypes.front()
244                                : TheCXXABI.hasMostDerivedReturn(GD)
245                                      ? CGM.getContext().VoidPtrTy
246                                      : Context.VoidTy;
247 
248   FunctionType::ExtInfo Info = FPT->getExtInfo();
249   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
250                                  /*chainCall=*/false, ArgTypes, Info,
251                                  Required);
252 }
253 
254 /// Arrange the argument and result information for the declaration or
255 /// definition of the given function.
256 const CGFunctionInfo &
257 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
258   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
259     if (MD->isInstance())
260       return arrangeCXXMethodDeclaration(MD);
261 
262   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
263 
264   assert(isa<FunctionType>(FTy));
265 
266   // When declaring a function without a prototype, always use a
267   // non-variadic type.
268   if (isa<FunctionNoProtoType>(FTy)) {
269     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
270     return arrangeLLVMFunctionInfo(
271         noProto->getReturnType(), /*instanceMethod=*/false,
272         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
273   }
274 
275   assert(isa<FunctionProtoType>(FTy));
276   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
277 }
278 
279 /// Arrange the argument and result information for the declaration or
280 /// definition of an Objective-C method.
281 const CGFunctionInfo &
282 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
283   // It happens that this is the same as a call with no optional
284   // arguments, except also using the formal 'self' type.
285   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
286 }
287 
288 /// Arrange the argument and result information for the function type
289 /// through which to perform a send to the given Objective-C method,
290 /// using the given receiver type.  The receiver type is not always
291 /// the 'self' type of the method or even an Objective-C pointer type.
292 /// This is *not* the right method for actually performing such a
293 /// message send, due to the possibility of optional arguments.
294 const CGFunctionInfo &
295 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
296                                               QualType receiverType) {
297   SmallVector<CanQualType, 16> argTys;
298   argTys.push_back(Context.getCanonicalParamType(receiverType));
299   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
300   // FIXME: Kill copy?
301   for (const auto *I : MD->params()) {
302     argTys.push_back(Context.getCanonicalParamType(I->getType()));
303   }
304 
305   FunctionType::ExtInfo einfo;
306   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
307   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
308 
309   if (getContext().getLangOpts().ObjCAutoRefCount &&
310       MD->hasAttr<NSReturnsRetainedAttr>())
311     einfo = einfo.withProducesResult(true);
312 
313   RequiredArgs required =
314     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
315 
316   return arrangeLLVMFunctionInfo(
317       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
318       /*chainCall=*/false, argTys, einfo, required);
319 }
320 
321 const CGFunctionInfo &
322 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
323   // FIXME: Do we need to handle ObjCMethodDecl?
324   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
325 
326   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
327     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
328 
329   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
330     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
331 
332   return arrangeFunctionDeclaration(FD);
333 }
334 
335 /// Arrange a thunk that takes 'this' as the first parameter followed by
336 /// varargs.  Return a void pointer, regardless of the actual return type.
337 /// The body of the thunk will end in a musttail call to a function of the
338 /// correct type, and the caller will bitcast the function to the correct
339 /// prototype.
340 const CGFunctionInfo &
341 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
342   assert(MD->isVirtual() && "only virtual memptrs have thunks");
343   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
344   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
345   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
346                                  /*chainCall=*/false, ArgTys,
347                                  FTP->getExtInfo(), RequiredArgs(1));
348 }
349 
350 const CGFunctionInfo &
351 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
352                                    CXXCtorType CT) {
353   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
354 
355   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
356   SmallVector<CanQualType, 2> ArgTys;
357   const CXXRecordDecl *RD = CD->getParent();
358   ArgTys.push_back(GetThisType(Context, RD));
359   if (CT == Ctor_CopyingClosure)
360     ArgTys.push_back(*FTP->param_type_begin());
361   if (RD->getNumVBases() > 0)
362     ArgTys.push_back(Context.IntTy);
363   CallingConv CC = Context.getDefaultCallingConvention(
364       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
365   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
366                                  /*chainCall=*/false, ArgTys,
367                                  FunctionType::ExtInfo(CC), RequiredArgs::All);
368 }
369 
370 /// Arrange a call as unto a free function, except possibly with an
371 /// additional number of formal parameters considered required.
372 static const CGFunctionInfo &
373 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
374                             CodeGenModule &CGM,
375                             const CallArgList &args,
376                             const FunctionType *fnType,
377                             unsigned numExtraRequiredArgs,
378                             bool chainCall) {
379   assert(args.size() >= numExtraRequiredArgs);
380 
381   // In most cases, there are no optional arguments.
382   RequiredArgs required = RequiredArgs::All;
383 
384   // If we have a variadic prototype, the required arguments are the
385   // extra prefix plus the arguments in the prototype.
386   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
387     if (proto->isVariadic())
388       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
389 
390   // If we don't have a prototype at all, but we're supposed to
391   // explicitly use the variadic convention for unprototyped calls,
392   // treat all of the arguments as required but preserve the nominal
393   // possibility of variadics.
394   } else if (CGM.getTargetCodeGenInfo()
395                 .isNoProtoCallVariadic(args,
396                                        cast<FunctionNoProtoType>(fnType))) {
397     required = RequiredArgs(args.size());
398   }
399 
400   // FIXME: Kill copy.
401   SmallVector<CanQualType, 16> argTypes;
402   for (const auto &arg : args)
403     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
404   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
405                                      /*instanceMethod=*/false, chainCall,
406                                      argTypes, fnType->getExtInfo(), required);
407 }
408 
409 /// Figure out the rules for calling a function with the given formal
410 /// type using the given arguments.  The arguments are necessary
411 /// because the function might be unprototyped, in which case it's
412 /// target-dependent in crazy ways.
413 const CGFunctionInfo &
414 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
415                                       const FunctionType *fnType,
416                                       bool chainCall) {
417   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
418                                      chainCall ? 1 : 0, chainCall);
419 }
420 
421 /// A block function call is essentially a free-function call with an
422 /// extra implicit argument.
423 const CGFunctionInfo &
424 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
425                                        const FunctionType *fnType) {
426   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
427                                      /*chainCall=*/false);
428 }
429 
430 const CGFunctionInfo &
431 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
432                                       const CallArgList &args,
433                                       FunctionType::ExtInfo info,
434                                       RequiredArgs required) {
435   // FIXME: Kill copy.
436   SmallVector<CanQualType, 16> argTypes;
437   for (const auto &Arg : args)
438     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
439   return arrangeLLVMFunctionInfo(
440       GetReturnType(resultType), /*instanceMethod=*/false,
441       /*chainCall=*/false, argTypes, info, required);
442 }
443 
444 /// Arrange a call to a C++ method, passing the given arguments.
445 const CGFunctionInfo &
446 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
447                                    const FunctionProtoType *FPT,
448                                    RequiredArgs required) {
449   // FIXME: Kill copy.
450   SmallVector<CanQualType, 16> argTypes;
451   for (const auto &Arg : args)
452     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
453 
454   FunctionType::ExtInfo info = FPT->getExtInfo();
455   return arrangeLLVMFunctionInfo(
456       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
457       /*chainCall=*/false, argTypes, info, required);
458 }
459 
460 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
461     QualType resultType, const FunctionArgList &args,
462     const FunctionType::ExtInfo &info, bool isVariadic) {
463   // FIXME: Kill copy.
464   SmallVector<CanQualType, 16> argTypes;
465   for (auto Arg : args)
466     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
467 
468   RequiredArgs required =
469     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
470   return arrangeLLVMFunctionInfo(
471       GetReturnType(resultType), /*instanceMethod=*/false,
472       /*chainCall=*/false, argTypes, info, required);
473 }
474 
475 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
476   return arrangeLLVMFunctionInfo(
477       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
478       None, FunctionType::ExtInfo(), RequiredArgs::All);
479 }
480 
481 /// Arrange the argument and result information for an abstract value
482 /// of a given function type.  This is the method which all of the
483 /// above functions ultimately defer to.
484 const CGFunctionInfo &
485 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
486                                       bool instanceMethod,
487                                       bool chainCall,
488                                       ArrayRef<CanQualType> argTypes,
489                                       FunctionType::ExtInfo info,
490                                       RequiredArgs required) {
491   assert(std::all_of(argTypes.begin(), argTypes.end(),
492                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
493 
494   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
495 
496   // Lookup or create unique function info.
497   llvm::FoldingSetNodeID ID;
498   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
499                           resultType, argTypes);
500 
501   void *insertPos = nullptr;
502   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
503   if (FI)
504     return *FI;
505 
506   // Construct the function info.  We co-allocate the ArgInfos.
507   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
508                               resultType, argTypes, required);
509   FunctionInfos.InsertNode(FI, insertPos);
510 
511   bool inserted = FunctionsBeingProcessed.insert(FI).second;
512   (void)inserted;
513   assert(inserted && "Recursively being processed?");
514 
515   // Compute ABI information.
516   getABIInfo().computeInfo(*FI);
517 
518   // Loop over all of the computed argument and return value info.  If any of
519   // them are direct or extend without a specified coerce type, specify the
520   // default now.
521   ABIArgInfo &retInfo = FI->getReturnInfo();
522   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
523     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
524 
525   for (auto &I : FI->arguments())
526     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
527       I.info.setCoerceToType(ConvertType(I.type));
528 
529   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
530   assert(erased && "Not in set?");
531 
532   return *FI;
533 }
534 
535 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
536                                        bool instanceMethod,
537                                        bool chainCall,
538                                        const FunctionType::ExtInfo &info,
539                                        CanQualType resultType,
540                                        ArrayRef<CanQualType> argTypes,
541                                        RequiredArgs required) {
542   void *buffer = operator new(sizeof(CGFunctionInfo) +
543                               sizeof(ArgInfo) * (argTypes.size() + 1));
544   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
545   FI->CallingConvention = llvmCC;
546   FI->EffectiveCallingConvention = llvmCC;
547   FI->ASTCallingConvention = info.getCC();
548   FI->InstanceMethod = instanceMethod;
549   FI->ChainCall = chainCall;
550   FI->NoReturn = info.getNoReturn();
551   FI->ReturnsRetained = info.getProducesResult();
552   FI->Required = required;
553   FI->HasRegParm = info.getHasRegParm();
554   FI->RegParm = info.getRegParm();
555   FI->ArgStruct = nullptr;
556   FI->ArgStructAlign = 0;
557   FI->NumArgs = argTypes.size();
558   FI->getArgsBuffer()[0].type = resultType;
559   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
560     FI->getArgsBuffer()[i + 1].type = argTypes[i];
561   return FI;
562 }
563 
564 /***/
565 
566 namespace {
567 // ABIArgInfo::Expand implementation.
568 
569 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
570 struct TypeExpansion {
571   enum TypeExpansionKind {
572     // Elements of constant arrays are expanded recursively.
573     TEK_ConstantArray,
574     // Record fields are expanded recursively (but if record is a union, only
575     // the field with the largest size is expanded).
576     TEK_Record,
577     // For complex types, real and imaginary parts are expanded recursively.
578     TEK_Complex,
579     // All other types are not expandable.
580     TEK_None
581   };
582 
583   const TypeExpansionKind Kind;
584 
585   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
586   virtual ~TypeExpansion() {}
587 };
588 
589 struct ConstantArrayExpansion : TypeExpansion {
590   QualType EltTy;
591   uint64_t NumElts;
592 
593   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
594       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
595   static bool classof(const TypeExpansion *TE) {
596     return TE->Kind == TEK_ConstantArray;
597   }
598 };
599 
600 struct RecordExpansion : TypeExpansion {
601   SmallVector<const CXXBaseSpecifier *, 1> Bases;
602 
603   SmallVector<const FieldDecl *, 1> Fields;
604 
605   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
606                   SmallVector<const FieldDecl *, 1> &&Fields)
607       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
608   static bool classof(const TypeExpansion *TE) {
609     return TE->Kind == TEK_Record;
610   }
611 };
612 
613 struct ComplexExpansion : TypeExpansion {
614   QualType EltTy;
615 
616   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
617   static bool classof(const TypeExpansion *TE) {
618     return TE->Kind == TEK_Complex;
619   }
620 };
621 
622 struct NoExpansion : TypeExpansion {
623   NoExpansion() : TypeExpansion(TEK_None) {}
624   static bool classof(const TypeExpansion *TE) {
625     return TE->Kind == TEK_None;
626   }
627 };
628 }  // namespace
629 
630 static std::unique_ptr<TypeExpansion>
631 getTypeExpansion(QualType Ty, const ASTContext &Context) {
632   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
633     return llvm::make_unique<ConstantArrayExpansion>(
634         AT->getElementType(), AT->getSize().getZExtValue());
635   }
636   if (const RecordType *RT = Ty->getAs<RecordType>()) {
637     SmallVector<const CXXBaseSpecifier *, 1> Bases;
638     SmallVector<const FieldDecl *, 1> Fields;
639     const RecordDecl *RD = RT->getDecl();
640     assert(!RD->hasFlexibleArrayMember() &&
641            "Cannot expand structure with flexible array.");
642     if (RD->isUnion()) {
643       // Unions can be here only in degenerative cases - all the fields are same
644       // after flattening. Thus we have to use the "largest" field.
645       const FieldDecl *LargestFD = nullptr;
646       CharUnits UnionSize = CharUnits::Zero();
647 
648       for (const auto *FD : RD->fields()) {
649         // Skip zero length bitfields.
650         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
651           continue;
652         assert(!FD->isBitField() &&
653                "Cannot expand structure with bit-field members.");
654         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
655         if (UnionSize < FieldSize) {
656           UnionSize = FieldSize;
657           LargestFD = FD;
658         }
659       }
660       if (LargestFD)
661         Fields.push_back(LargestFD);
662     } else {
663       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
664         assert(!CXXRD->isDynamicClass() &&
665                "cannot expand vtable pointers in dynamic classes");
666         for (const CXXBaseSpecifier &BS : CXXRD->bases())
667           Bases.push_back(&BS);
668       }
669 
670       for (const auto *FD : RD->fields()) {
671         // Skip zero length bitfields.
672         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
673           continue;
674         assert(!FD->isBitField() &&
675                "Cannot expand structure with bit-field members.");
676         Fields.push_back(FD);
677       }
678     }
679     return llvm::make_unique<RecordExpansion>(std::move(Bases),
680                                               std::move(Fields));
681   }
682   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
683     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
684   }
685   return llvm::make_unique<NoExpansion>();
686 }
687 
688 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
689   auto Exp = getTypeExpansion(Ty, Context);
690   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
691     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
692   }
693   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
694     int Res = 0;
695     for (auto BS : RExp->Bases)
696       Res += getExpansionSize(BS->getType(), Context);
697     for (auto FD : RExp->Fields)
698       Res += getExpansionSize(FD->getType(), Context);
699     return Res;
700   }
701   if (isa<ComplexExpansion>(Exp.get()))
702     return 2;
703   assert(isa<NoExpansion>(Exp.get()));
704   return 1;
705 }
706 
707 void
708 CodeGenTypes::getExpandedTypes(QualType Ty,
709                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
710   auto Exp = getTypeExpansion(Ty, Context);
711   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
712     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
713       getExpandedTypes(CAExp->EltTy, TI);
714     }
715   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
716     for (auto BS : RExp->Bases)
717       getExpandedTypes(BS->getType(), TI);
718     for (auto FD : RExp->Fields)
719       getExpandedTypes(FD->getType(), TI);
720   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
721     llvm::Type *EltTy = ConvertType(CExp->EltTy);
722     *TI++ = EltTy;
723     *TI++ = EltTy;
724   } else {
725     assert(isa<NoExpansion>(Exp.get()));
726     *TI++ = ConvertType(Ty);
727   }
728 }
729 
730 static void forConstantArrayExpansion(CodeGenFunction &CGF,
731                                       ConstantArrayExpansion *CAE,
732                                       Address BaseAddr,
733                                       llvm::function_ref<void(Address)> Fn) {
734   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
735   CharUnits EltAlign =
736     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
737 
738   for (int i = 0, n = CAE->NumElts; i < n; i++) {
739     llvm::Value *EltAddr =
740       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
741     Fn(Address(EltAddr, EltAlign));
742   }
743 }
744 
745 void CodeGenFunction::ExpandTypeFromArgs(
746     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
747   assert(LV.isSimple() &&
748          "Unexpected non-simple lvalue during struct expansion.");
749 
750   auto Exp = getTypeExpansion(Ty, getContext());
751   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
752     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
753                               [&](Address EltAddr) {
754       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
755       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
756     });
757   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
758     Address This = LV.getAddress();
759     for (const CXXBaseSpecifier *BS : RExp->Bases) {
760       // Perform a single step derived-to-base conversion.
761       Address Base =
762           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
763                                 /*NullCheckValue=*/false, SourceLocation());
764       LValue SubLV = MakeAddrLValue(Base, BS->getType());
765 
766       // Recurse onto bases.
767       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
768     }
769     for (auto FD : RExp->Fields) {
770       // FIXME: What are the right qualifiers here?
771       LValue SubLV = EmitLValueForField(LV, FD);
772       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
773     }
774   } else if (isa<ComplexExpansion>(Exp.get())) {
775     auto realValue = *AI++;
776     auto imagValue = *AI++;
777     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
778   } else {
779     assert(isa<NoExpansion>(Exp.get()));
780     EmitStoreThroughLValue(RValue::get(*AI++), LV);
781   }
782 }
783 
784 void CodeGenFunction::ExpandTypeToArgs(
785     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
786     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
787   auto Exp = getTypeExpansion(Ty, getContext());
788   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
789     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
790                               [&](Address EltAddr) {
791       RValue EltRV =
792           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
793       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
794     });
795   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
796     Address This = RV.getAggregateAddress();
797     for (const CXXBaseSpecifier *BS : RExp->Bases) {
798       // Perform a single step derived-to-base conversion.
799       Address Base =
800           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
801                                 /*NullCheckValue=*/false, SourceLocation());
802       RValue BaseRV = RValue::getAggregate(Base);
803 
804       // Recurse onto bases.
805       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
806                        IRCallArgPos);
807     }
808 
809     LValue LV = MakeAddrLValue(This, Ty);
810     for (auto FD : RExp->Fields) {
811       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
812       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
813                        IRCallArgPos);
814     }
815   } else if (isa<ComplexExpansion>(Exp.get())) {
816     ComplexPairTy CV = RV.getComplexVal();
817     IRCallArgs[IRCallArgPos++] = CV.first;
818     IRCallArgs[IRCallArgPos++] = CV.second;
819   } else {
820     assert(isa<NoExpansion>(Exp.get()));
821     assert(RV.isScalar() &&
822            "Unexpected non-scalar rvalue during struct expansion.");
823 
824     // Insert a bitcast as needed.
825     llvm::Value *V = RV.getScalarVal();
826     if (IRCallArgPos < IRFuncTy->getNumParams() &&
827         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
828       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
829 
830     IRCallArgs[IRCallArgPos++] = V;
831   }
832 }
833 
834 /// Create a temporary allocation for the purposes of coercion.
835 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
836                                            CharUnits MinAlign) {
837   // Don't use an alignment that's worse than what LLVM would prefer.
838   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
839   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
840 
841   return CGF.CreateTempAlloca(Ty, Align);
842 }
843 
844 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
845 /// accessing some number of bytes out of it, try to gep into the struct to get
846 /// at its inner goodness.  Dive as deep as possible without entering an element
847 /// with an in-memory size smaller than DstSize.
848 static Address
849 EnterStructPointerForCoercedAccess(Address SrcPtr,
850                                    llvm::StructType *SrcSTy,
851                                    uint64_t DstSize, CodeGenFunction &CGF) {
852   // We can't dive into a zero-element struct.
853   if (SrcSTy->getNumElements() == 0) return SrcPtr;
854 
855   llvm::Type *FirstElt = SrcSTy->getElementType(0);
856 
857   // If the first elt is at least as large as what we're looking for, or if the
858   // first element is the same size as the whole struct, we can enter it. The
859   // comparison must be made on the store size and not the alloca size. Using
860   // the alloca size may overstate the size of the load.
861   uint64_t FirstEltSize =
862     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
863   if (FirstEltSize < DstSize &&
864       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
865     return SrcPtr;
866 
867   // GEP into the first element.
868   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
869 
870   // If the first element is a struct, recurse.
871   llvm::Type *SrcTy = SrcPtr.getElementType();
872   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
873     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
874 
875   return SrcPtr;
876 }
877 
878 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
879 /// are either integers or pointers.  This does a truncation of the value if it
880 /// is too large or a zero extension if it is too small.
881 ///
882 /// This behaves as if the value were coerced through memory, so on big-endian
883 /// targets the high bits are preserved in a truncation, while little-endian
884 /// targets preserve the low bits.
885 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
886                                              llvm::Type *Ty,
887                                              CodeGenFunction &CGF) {
888   if (Val->getType() == Ty)
889     return Val;
890 
891   if (isa<llvm::PointerType>(Val->getType())) {
892     // If this is Pointer->Pointer avoid conversion to and from int.
893     if (isa<llvm::PointerType>(Ty))
894       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
895 
896     // Convert the pointer to an integer so we can play with its width.
897     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
898   }
899 
900   llvm::Type *DestIntTy = Ty;
901   if (isa<llvm::PointerType>(DestIntTy))
902     DestIntTy = CGF.IntPtrTy;
903 
904   if (Val->getType() != DestIntTy) {
905     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
906     if (DL.isBigEndian()) {
907       // Preserve the high bits on big-endian targets.
908       // That is what memory coercion does.
909       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
910       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
911 
912       if (SrcSize > DstSize) {
913         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
914         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
915       } else {
916         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
917         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
918       }
919     } else {
920       // Little-endian targets preserve the low bits. No shifts required.
921       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
922     }
923   }
924 
925   if (isa<llvm::PointerType>(Ty))
926     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
927   return Val;
928 }
929 
930 
931 
932 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
933 /// a pointer to an object of type \arg Ty, known to be aligned to
934 /// \arg SrcAlign bytes.
935 ///
936 /// This safely handles the case when the src type is smaller than the
937 /// destination type; in this situation the values of bits which not
938 /// present in the src are undefined.
939 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
940                                       CodeGenFunction &CGF) {
941   llvm::Type *SrcTy = Src.getElementType();
942 
943   // If SrcTy and Ty are the same, just do a load.
944   if (SrcTy == Ty)
945     return CGF.Builder.CreateLoad(Src);
946 
947   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
948 
949   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
950     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
951     SrcTy = Src.getType()->getElementType();
952   }
953 
954   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
955 
956   // If the source and destination are integer or pointer types, just do an
957   // extension or truncation to the desired type.
958   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
959       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
960     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
961     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
962   }
963 
964   // If load is legal, just bitcast the src pointer.
965   if (SrcSize >= DstSize) {
966     // Generally SrcSize is never greater than DstSize, since this means we are
967     // losing bits. However, this can happen in cases where the structure has
968     // additional padding, for example due to a user specified alignment.
969     //
970     // FIXME: Assert that we aren't truncating non-padding bits when have access
971     // to that information.
972     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
973     return CGF.Builder.CreateLoad(Src);
974   }
975 
976   // Otherwise do coercion through memory. This is stupid, but simple.
977   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
978   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
979   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
980   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
981       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
982       false);
983   return CGF.Builder.CreateLoad(Tmp);
984 }
985 
986 // Function to store a first-class aggregate into memory.  We prefer to
987 // store the elements rather than the aggregate to be more friendly to
988 // fast-isel.
989 // FIXME: Do we need to recurse here?
990 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
991                           Address Dest, bool DestIsVolatile) {
992   // Prefer scalar stores to first-class aggregate stores.
993   if (llvm::StructType *STy =
994         dyn_cast<llvm::StructType>(Val->getType())) {
995     const llvm::StructLayout *Layout =
996       CGF.CGM.getDataLayout().getStructLayout(STy);
997 
998     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
999       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1000       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1001       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1002       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1003     }
1004   } else {
1005     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1006   }
1007 }
1008 
1009 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1010 /// where the source and destination may have different types.  The
1011 /// destination is known to be aligned to \arg DstAlign bytes.
1012 ///
1013 /// This safely handles the case when the src type is larger than the
1014 /// destination type; the upper bits of the src will be lost.
1015 static void CreateCoercedStore(llvm::Value *Src,
1016                                Address Dst,
1017                                bool DstIsVolatile,
1018                                CodeGenFunction &CGF) {
1019   llvm::Type *SrcTy = Src->getType();
1020   llvm::Type *DstTy = Dst.getType()->getElementType();
1021   if (SrcTy == DstTy) {
1022     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1023     return;
1024   }
1025 
1026   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1027 
1028   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1029     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1030     DstTy = Dst.getType()->getElementType();
1031   }
1032 
1033   // If the source and destination are integer or pointer types, just do an
1034   // extension or truncation to the desired type.
1035   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1036       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1037     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1038     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1039     return;
1040   }
1041 
1042   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1043 
1044   // If store is legal, just bitcast the src pointer.
1045   if (SrcSize <= DstSize) {
1046     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1047     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1048   } else {
1049     // Otherwise do coercion through memory. This is stupid, but
1050     // simple.
1051 
1052     // Generally SrcSize is never greater than DstSize, since this means we are
1053     // losing bits. However, this can happen in cases where the structure has
1054     // additional padding, for example due to a user specified alignment.
1055     //
1056     // FIXME: Assert that we aren't truncating non-padding bits when have access
1057     // to that information.
1058     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1059     CGF.Builder.CreateStore(Src, Tmp);
1060     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1061     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1062     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1063         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1064         false);
1065   }
1066 }
1067 
1068 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1069                                    const ABIArgInfo &info) {
1070   if (unsigned offset = info.getDirectOffset()) {
1071     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1072     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1073                                              CharUnits::fromQuantity(offset));
1074     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1075   }
1076   return addr;
1077 }
1078 
1079 namespace {
1080 
1081 /// Encapsulates information about the way function arguments from
1082 /// CGFunctionInfo should be passed to actual LLVM IR function.
1083 class ClangToLLVMArgMapping {
1084   static const unsigned InvalidIndex = ~0U;
1085   unsigned InallocaArgNo;
1086   unsigned SRetArgNo;
1087   unsigned TotalIRArgs;
1088 
1089   /// Arguments of LLVM IR function corresponding to single Clang argument.
1090   struct IRArgs {
1091     unsigned PaddingArgIndex;
1092     // Argument is expanded to IR arguments at positions
1093     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1094     unsigned FirstArgIndex;
1095     unsigned NumberOfArgs;
1096 
1097     IRArgs()
1098         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1099           NumberOfArgs(0) {}
1100   };
1101 
1102   SmallVector<IRArgs, 8> ArgInfo;
1103 
1104 public:
1105   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1106                         bool OnlyRequiredArgs = false)
1107       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1108         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1109     construct(Context, FI, OnlyRequiredArgs);
1110   }
1111 
1112   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1113   unsigned getInallocaArgNo() const {
1114     assert(hasInallocaArg());
1115     return InallocaArgNo;
1116   }
1117 
1118   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1119   unsigned getSRetArgNo() const {
1120     assert(hasSRetArg());
1121     return SRetArgNo;
1122   }
1123 
1124   unsigned totalIRArgs() const { return TotalIRArgs; }
1125 
1126   bool hasPaddingArg(unsigned ArgNo) const {
1127     assert(ArgNo < ArgInfo.size());
1128     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1129   }
1130   unsigned getPaddingArgNo(unsigned ArgNo) const {
1131     assert(hasPaddingArg(ArgNo));
1132     return ArgInfo[ArgNo].PaddingArgIndex;
1133   }
1134 
1135   /// Returns index of first IR argument corresponding to ArgNo, and their
1136   /// quantity.
1137   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1138     assert(ArgNo < ArgInfo.size());
1139     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1140                           ArgInfo[ArgNo].NumberOfArgs);
1141   }
1142 
1143 private:
1144   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1145                  bool OnlyRequiredArgs);
1146 };
1147 
1148 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1149                                       const CGFunctionInfo &FI,
1150                                       bool OnlyRequiredArgs) {
1151   unsigned IRArgNo = 0;
1152   bool SwapThisWithSRet = false;
1153   const ABIArgInfo &RetAI = FI.getReturnInfo();
1154 
1155   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1156     SwapThisWithSRet = RetAI.isSRetAfterThis();
1157     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1158   }
1159 
1160   unsigned ArgNo = 0;
1161   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1162   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1163        ++I, ++ArgNo) {
1164     assert(I != FI.arg_end());
1165     QualType ArgType = I->type;
1166     const ABIArgInfo &AI = I->info;
1167     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1168     auto &IRArgs = ArgInfo[ArgNo];
1169 
1170     if (AI.getPaddingType())
1171       IRArgs.PaddingArgIndex = IRArgNo++;
1172 
1173     switch (AI.getKind()) {
1174     case ABIArgInfo::Extend:
1175     case ABIArgInfo::Direct: {
1176       // FIXME: handle sseregparm someday...
1177       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1178       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1179         IRArgs.NumberOfArgs = STy->getNumElements();
1180       } else {
1181         IRArgs.NumberOfArgs = 1;
1182       }
1183       break;
1184     }
1185     case ABIArgInfo::Indirect:
1186       IRArgs.NumberOfArgs = 1;
1187       break;
1188     case ABIArgInfo::Ignore:
1189     case ABIArgInfo::InAlloca:
1190       // ignore and inalloca doesn't have matching LLVM parameters.
1191       IRArgs.NumberOfArgs = 0;
1192       break;
1193     case ABIArgInfo::Expand: {
1194       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1195       break;
1196     }
1197     }
1198 
1199     if (IRArgs.NumberOfArgs > 0) {
1200       IRArgs.FirstArgIndex = IRArgNo;
1201       IRArgNo += IRArgs.NumberOfArgs;
1202     }
1203 
1204     // Skip over the sret parameter when it comes second.  We already handled it
1205     // above.
1206     if (IRArgNo == 1 && SwapThisWithSRet)
1207       IRArgNo++;
1208   }
1209   assert(ArgNo == ArgInfo.size());
1210 
1211   if (FI.usesInAlloca())
1212     InallocaArgNo = IRArgNo++;
1213 
1214   TotalIRArgs = IRArgNo;
1215 }
1216 }  // namespace
1217 
1218 /***/
1219 
1220 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1221   return FI.getReturnInfo().isIndirect();
1222 }
1223 
1224 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1225   return ReturnTypeUsesSRet(FI) &&
1226          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1227 }
1228 
1229 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1230   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1231     switch (BT->getKind()) {
1232     default:
1233       return false;
1234     case BuiltinType::Float:
1235       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1236     case BuiltinType::Double:
1237       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1238     case BuiltinType::LongDouble:
1239       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1240     }
1241   }
1242 
1243   return false;
1244 }
1245 
1246 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1247   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1248     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1249       if (BT->getKind() == BuiltinType::LongDouble)
1250         return getTarget().useObjCFP2RetForComplexLongDouble();
1251     }
1252   }
1253 
1254   return false;
1255 }
1256 
1257 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1258   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1259   return GetFunctionType(FI);
1260 }
1261 
1262 llvm::FunctionType *
1263 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1264 
1265   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1266   (void)Inserted;
1267   assert(Inserted && "Recursively being processed?");
1268 
1269   llvm::Type *resultType = nullptr;
1270   const ABIArgInfo &retAI = FI.getReturnInfo();
1271   switch (retAI.getKind()) {
1272   case ABIArgInfo::Expand:
1273     llvm_unreachable("Invalid ABI kind for return argument");
1274 
1275   case ABIArgInfo::Extend:
1276   case ABIArgInfo::Direct:
1277     resultType = retAI.getCoerceToType();
1278     break;
1279 
1280   case ABIArgInfo::InAlloca:
1281     if (retAI.getInAllocaSRet()) {
1282       // sret things on win32 aren't void, they return the sret pointer.
1283       QualType ret = FI.getReturnType();
1284       llvm::Type *ty = ConvertType(ret);
1285       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1286       resultType = llvm::PointerType::get(ty, addressSpace);
1287     } else {
1288       resultType = llvm::Type::getVoidTy(getLLVMContext());
1289     }
1290     break;
1291 
1292   case ABIArgInfo::Indirect:
1293   case ABIArgInfo::Ignore:
1294     resultType = llvm::Type::getVoidTy(getLLVMContext());
1295     break;
1296   }
1297 
1298   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1299   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1300 
1301   // Add type for sret argument.
1302   if (IRFunctionArgs.hasSRetArg()) {
1303     QualType Ret = FI.getReturnType();
1304     llvm::Type *Ty = ConvertType(Ret);
1305     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1306     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1307         llvm::PointerType::get(Ty, AddressSpace);
1308   }
1309 
1310   // Add type for inalloca argument.
1311   if (IRFunctionArgs.hasInallocaArg()) {
1312     auto ArgStruct = FI.getArgStruct();
1313     assert(ArgStruct);
1314     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1315   }
1316 
1317   // Add in all of the required arguments.
1318   unsigned ArgNo = 0;
1319   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1320                                      ie = it + FI.getNumRequiredArgs();
1321   for (; it != ie; ++it, ++ArgNo) {
1322     const ABIArgInfo &ArgInfo = it->info;
1323 
1324     // Insert a padding type to ensure proper alignment.
1325     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1326       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1327           ArgInfo.getPaddingType();
1328 
1329     unsigned FirstIRArg, NumIRArgs;
1330     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1331 
1332     switch (ArgInfo.getKind()) {
1333     case ABIArgInfo::Ignore:
1334     case ABIArgInfo::InAlloca:
1335       assert(NumIRArgs == 0);
1336       break;
1337 
1338     case ABIArgInfo::Indirect: {
1339       assert(NumIRArgs == 1);
1340       // indirect arguments are always on the stack, which is addr space #0.
1341       llvm::Type *LTy = ConvertTypeForMem(it->type);
1342       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1343       break;
1344     }
1345 
1346     case ABIArgInfo::Extend:
1347     case ABIArgInfo::Direct: {
1348       // Fast-isel and the optimizer generally like scalar values better than
1349       // FCAs, so we flatten them if this is safe to do for this argument.
1350       llvm::Type *argType = ArgInfo.getCoerceToType();
1351       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1352       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1353         assert(NumIRArgs == st->getNumElements());
1354         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1355           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1356       } else {
1357         assert(NumIRArgs == 1);
1358         ArgTypes[FirstIRArg] = argType;
1359       }
1360       break;
1361     }
1362 
1363     case ABIArgInfo::Expand:
1364       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1365       getExpandedTypes(it->type, ArgTypesIter);
1366       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1367       break;
1368     }
1369   }
1370 
1371   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1372   assert(Erased && "Not in set?");
1373 
1374   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1375 }
1376 
1377 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1378   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1379   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1380 
1381   if (!isFuncTypeConvertible(FPT))
1382     return llvm::StructType::get(getLLVMContext());
1383 
1384   const CGFunctionInfo *Info;
1385   if (isa<CXXDestructorDecl>(MD))
1386     Info =
1387         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1388   else
1389     Info = &arrangeCXXMethodDeclaration(MD);
1390   return GetFunctionType(*Info);
1391 }
1392 
1393 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1394                                            const Decl *TargetDecl,
1395                                            AttributeListType &PAL,
1396                                            unsigned &CallingConv,
1397                                            bool AttrOnCallSite) {
1398   llvm::AttrBuilder FuncAttrs;
1399   llvm::AttrBuilder RetAttrs;
1400   bool HasOptnone = false;
1401 
1402   CallingConv = FI.getEffectiveCallingConvention();
1403 
1404   if (FI.isNoReturn())
1405     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1406 
1407   // FIXME: handle sseregparm someday...
1408   if (TargetDecl) {
1409     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1410       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1411     if (TargetDecl->hasAttr<NoThrowAttr>())
1412       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1413     if (TargetDecl->hasAttr<NoReturnAttr>())
1414       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1415     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1416       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1417 
1418     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1419       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1420       if (FPT && !isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1421           FPT->isNothrow(getContext()))
1422         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1423       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1424       // These attributes are not inherited by overloads.
1425       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1426       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1427         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1428     }
1429 
1430     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1431     if (TargetDecl->hasAttr<ConstAttr>()) {
1432       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1433       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1434     } else if (TargetDecl->hasAttr<PureAttr>()) {
1435       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1436       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1437     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1438       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1439       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1440     }
1441     if (TargetDecl->hasAttr<RestrictAttr>())
1442       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1443     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1444       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1445 
1446     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1447   }
1448 
1449   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1450   if (!HasOptnone) {
1451     if (CodeGenOpts.OptimizeSize)
1452       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1453     if (CodeGenOpts.OptimizeSize == 2)
1454       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1455   }
1456 
1457   if (CodeGenOpts.DisableRedZone)
1458     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1459   if (CodeGenOpts.NoImplicitFloat)
1460     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1461   if (CodeGenOpts.EnableSegmentedStacks &&
1462       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1463     FuncAttrs.addAttribute("split-stack");
1464 
1465   if (AttrOnCallSite) {
1466     // Attributes that should go on the call site only.
1467     if (!CodeGenOpts.SimplifyLibCalls)
1468       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1469     if (!CodeGenOpts.TrapFuncName.empty())
1470       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1471   } else {
1472     // Attributes that should go on the function, but not the call site.
1473     if (!CodeGenOpts.DisableFPElim) {
1474       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1475     } else if (CodeGenOpts.OmitLeafFramePointer) {
1476       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1477       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1478     } else {
1479       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1480       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1481     }
1482 
1483     FuncAttrs.addAttribute("disable-tail-calls",
1484                            llvm::toStringRef(CodeGenOpts.DisableTailCalls));
1485     FuncAttrs.addAttribute("less-precise-fpmad",
1486                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1487     FuncAttrs.addAttribute("no-infs-fp-math",
1488                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1489     FuncAttrs.addAttribute("no-nans-fp-math",
1490                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1491     FuncAttrs.addAttribute("unsafe-fp-math",
1492                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1493     FuncAttrs.addAttribute("use-soft-float",
1494                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1495     FuncAttrs.addAttribute("stack-protector-buffer-size",
1496                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1497 
1498     if (CodeGenOpts.StackRealignment)
1499       FuncAttrs.addAttribute("stackrealign");
1500 
1501     // Add target-cpu and target-features attributes to functions. If
1502     // we have a decl for the function and it has a target attribute then
1503     // parse that and add it to the feature set.
1504     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1505     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1506     if (FD && FD->hasAttr<TargetAttr>()) {
1507       llvm::StringMap<bool> FeatureMap;
1508       const auto *TD = FD->getAttr<TargetAttr>();
1509       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1510 
1511       // Make a copy of the features as passed on the command line into the
1512       // beginning of the additional features from the function to override.
1513       ParsedAttr.first.insert(
1514           ParsedAttr.first.begin(),
1515           getTarget().getTargetOpts().FeaturesAsWritten.begin(),
1516           getTarget().getTargetOpts().FeaturesAsWritten.end());
1517 
1518       if (ParsedAttr.second != "")
1519 	TargetCPU = ParsedAttr.second;
1520 
1521       // Now populate the feature map, first with the TargetCPU which is either
1522       // the default or a new one from the target attribute string. Then we'll
1523       // use the passed in features (FeaturesAsWritten) along with the new ones
1524       // from the attribute.
1525       getTarget().initFeatureMap(FeatureMap, Diags, TargetCPU, ParsedAttr.first);
1526 
1527       // Produce the canonical string for this set of features.
1528       std::vector<std::string> Features;
1529       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1530                                                  ie = FeatureMap.end();
1531            it != ie; ++it)
1532         Features.push_back((it->second ? "+" : "-") + it->first().str());
1533 
1534       // Now add the target-cpu and target-features to the function.
1535       if (TargetCPU != "")
1536         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1537       if (!Features.empty()) {
1538         std::sort(Features.begin(), Features.end());
1539         FuncAttrs.addAttribute(
1540             "target-features",
1541             llvm::join(Features.begin(), Features.end(), ","));
1542       }
1543     } else {
1544       // Otherwise just add the existing target cpu and target features to the
1545       // function.
1546       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1547       if (TargetCPU != "")
1548         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1549       if (!Features.empty()) {
1550         std::sort(Features.begin(), Features.end());
1551         FuncAttrs.addAttribute(
1552             "target-features",
1553             llvm::join(Features.begin(), Features.end(), ","));
1554       }
1555     }
1556   }
1557 
1558   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1559 
1560   QualType RetTy = FI.getReturnType();
1561   const ABIArgInfo &RetAI = FI.getReturnInfo();
1562   switch (RetAI.getKind()) {
1563   case ABIArgInfo::Extend:
1564     if (RetTy->hasSignedIntegerRepresentation())
1565       RetAttrs.addAttribute(llvm::Attribute::SExt);
1566     else if (RetTy->hasUnsignedIntegerRepresentation())
1567       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1568     // FALL THROUGH
1569   case ABIArgInfo::Direct:
1570     if (RetAI.getInReg())
1571       RetAttrs.addAttribute(llvm::Attribute::InReg);
1572     break;
1573   case ABIArgInfo::Ignore:
1574     break;
1575 
1576   case ABIArgInfo::InAlloca:
1577   case ABIArgInfo::Indirect: {
1578     // inalloca and sret disable readnone and readonly
1579     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1580       .removeAttribute(llvm::Attribute::ReadNone);
1581     break;
1582   }
1583 
1584   case ABIArgInfo::Expand:
1585     llvm_unreachable("Invalid ABI kind for return argument");
1586   }
1587 
1588   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1589     QualType PTy = RefTy->getPointeeType();
1590     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1591       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1592                                         .getQuantity());
1593     else if (getContext().getTargetAddressSpace(PTy) == 0)
1594       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1595   }
1596 
1597   // Attach return attributes.
1598   if (RetAttrs.hasAttributes()) {
1599     PAL.push_back(llvm::AttributeSet::get(
1600         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1601   }
1602 
1603   // Attach attributes to sret.
1604   if (IRFunctionArgs.hasSRetArg()) {
1605     llvm::AttrBuilder SRETAttrs;
1606     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1607     if (RetAI.getInReg())
1608       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1609     PAL.push_back(llvm::AttributeSet::get(
1610         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1611   }
1612 
1613   // Attach attributes to inalloca argument.
1614   if (IRFunctionArgs.hasInallocaArg()) {
1615     llvm::AttrBuilder Attrs;
1616     Attrs.addAttribute(llvm::Attribute::InAlloca);
1617     PAL.push_back(llvm::AttributeSet::get(
1618         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1619   }
1620 
1621   unsigned ArgNo = 0;
1622   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1623                                           E = FI.arg_end();
1624        I != E; ++I, ++ArgNo) {
1625     QualType ParamType = I->type;
1626     const ABIArgInfo &AI = I->info;
1627     llvm::AttrBuilder Attrs;
1628 
1629     // Add attribute for padding argument, if necessary.
1630     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1631       if (AI.getPaddingInReg())
1632         PAL.push_back(llvm::AttributeSet::get(
1633             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1634             llvm::Attribute::InReg));
1635     }
1636 
1637     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1638     // have the corresponding parameter variable.  It doesn't make
1639     // sense to do it here because parameters are so messed up.
1640     switch (AI.getKind()) {
1641     case ABIArgInfo::Extend:
1642       if (ParamType->isSignedIntegerOrEnumerationType())
1643         Attrs.addAttribute(llvm::Attribute::SExt);
1644       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1645         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1646           Attrs.addAttribute(llvm::Attribute::SExt);
1647         else
1648           Attrs.addAttribute(llvm::Attribute::ZExt);
1649       }
1650       // FALL THROUGH
1651     case ABIArgInfo::Direct:
1652       if (ArgNo == 0 && FI.isChainCall())
1653         Attrs.addAttribute(llvm::Attribute::Nest);
1654       else if (AI.getInReg())
1655         Attrs.addAttribute(llvm::Attribute::InReg);
1656       break;
1657 
1658     case ABIArgInfo::Indirect: {
1659       if (AI.getInReg())
1660         Attrs.addAttribute(llvm::Attribute::InReg);
1661 
1662       if (AI.getIndirectByVal())
1663         Attrs.addAttribute(llvm::Attribute::ByVal);
1664 
1665       CharUnits Align = AI.getIndirectAlign();
1666 
1667       // In a byval argument, it is important that the required
1668       // alignment of the type is honored, as LLVM might be creating a
1669       // *new* stack object, and needs to know what alignment to give
1670       // it. (Sometimes it can deduce a sensible alignment on its own,
1671       // but not if clang decides it must emit a packed struct, or the
1672       // user specifies increased alignment requirements.)
1673       //
1674       // This is different from indirect *not* byval, where the object
1675       // exists already, and the align attribute is purely
1676       // informative.
1677       assert(!Align.isZero());
1678 
1679       // For now, only add this when we have a byval argument.
1680       // TODO: be less lazy about updating test cases.
1681       if (AI.getIndirectByVal())
1682         Attrs.addAlignmentAttr(Align.getQuantity());
1683 
1684       // byval disables readnone and readonly.
1685       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1686         .removeAttribute(llvm::Attribute::ReadNone);
1687       break;
1688     }
1689     case ABIArgInfo::Ignore:
1690     case ABIArgInfo::Expand:
1691       continue;
1692 
1693     case ABIArgInfo::InAlloca:
1694       // inalloca disables readnone and readonly.
1695       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1696           .removeAttribute(llvm::Attribute::ReadNone);
1697       continue;
1698     }
1699 
1700     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1701       QualType PTy = RefTy->getPointeeType();
1702       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1703         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1704                                        .getQuantity());
1705       else if (getContext().getTargetAddressSpace(PTy) == 0)
1706         Attrs.addAttribute(llvm::Attribute::NonNull);
1707     }
1708 
1709     if (Attrs.hasAttributes()) {
1710       unsigned FirstIRArg, NumIRArgs;
1711       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1712       for (unsigned i = 0; i < NumIRArgs; i++)
1713         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1714                                               FirstIRArg + i + 1, Attrs));
1715     }
1716   }
1717   assert(ArgNo == FI.arg_size());
1718 
1719   if (FuncAttrs.hasAttributes())
1720     PAL.push_back(llvm::
1721                   AttributeSet::get(getLLVMContext(),
1722                                     llvm::AttributeSet::FunctionIndex,
1723                                     FuncAttrs));
1724 }
1725 
1726 /// An argument came in as a promoted argument; demote it back to its
1727 /// declared type.
1728 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1729                                          const VarDecl *var,
1730                                          llvm::Value *value) {
1731   llvm::Type *varType = CGF.ConvertType(var->getType());
1732 
1733   // This can happen with promotions that actually don't change the
1734   // underlying type, like the enum promotions.
1735   if (value->getType() == varType) return value;
1736 
1737   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1738          && "unexpected promotion type");
1739 
1740   if (isa<llvm::IntegerType>(varType))
1741     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1742 
1743   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1744 }
1745 
1746 /// Returns the attribute (either parameter attribute, or function
1747 /// attribute), which declares argument ArgNo to be non-null.
1748 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1749                                          QualType ArgType, unsigned ArgNo) {
1750   // FIXME: __attribute__((nonnull)) can also be applied to:
1751   //   - references to pointers, where the pointee is known to be
1752   //     nonnull (apparently a Clang extension)
1753   //   - transparent unions containing pointers
1754   // In the former case, LLVM IR cannot represent the constraint. In
1755   // the latter case, we have no guarantee that the transparent union
1756   // is in fact passed as a pointer.
1757   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1758     return nullptr;
1759   // First, check attribute on parameter itself.
1760   if (PVD) {
1761     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1762       return ParmNNAttr;
1763   }
1764   // Check function attributes.
1765   if (!FD)
1766     return nullptr;
1767   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1768     if (NNAttr->isNonNull(ArgNo))
1769       return NNAttr;
1770   }
1771   return nullptr;
1772 }
1773 
1774 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1775                                          llvm::Function *Fn,
1776                                          const FunctionArgList &Args) {
1777   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1778     // Naked functions don't have prologues.
1779     return;
1780 
1781   // If this is an implicit-return-zero function, go ahead and
1782   // initialize the return value.  TODO: it might be nice to have
1783   // a more general mechanism for this that didn't require synthesized
1784   // return statements.
1785   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1786     if (FD->hasImplicitReturnZero()) {
1787       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1788       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1789       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1790       Builder.CreateStore(Zero, ReturnValue);
1791     }
1792   }
1793 
1794   // FIXME: We no longer need the types from FunctionArgList; lift up and
1795   // simplify.
1796 
1797   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1798   // Flattened function arguments.
1799   SmallVector<llvm::Argument *, 16> FnArgs;
1800   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1801   for (auto &Arg : Fn->args()) {
1802     FnArgs.push_back(&Arg);
1803   }
1804   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1805 
1806   // If we're using inalloca, all the memory arguments are GEPs off of the last
1807   // parameter, which is a pointer to the complete memory area.
1808   Address ArgStruct = Address::invalid();
1809   const llvm::StructLayout *ArgStructLayout = nullptr;
1810   if (IRFunctionArgs.hasInallocaArg()) {
1811     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
1812     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
1813                         FI.getArgStructAlignment());
1814 
1815     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
1816   }
1817 
1818   // Name the struct return parameter.
1819   if (IRFunctionArgs.hasSRetArg()) {
1820     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1821     AI->setName("agg.result");
1822     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1823                                         llvm::Attribute::NoAlias));
1824   }
1825 
1826   // Track if we received the parameter as a pointer (indirect, byval, or
1827   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1828   // into a local alloca for us.
1829   SmallVector<ParamValue, 16> ArgVals;
1830   ArgVals.reserve(Args.size());
1831 
1832   // Create a pointer value for every parameter declaration.  This usually
1833   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1834   // any cleanups or do anything that might unwind.  We do that separately, so
1835   // we can push the cleanups in the correct order for the ABI.
1836   assert(FI.arg_size() == Args.size() &&
1837          "Mismatch between function signature & arguments.");
1838   unsigned ArgNo = 0;
1839   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1840   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1841        i != e; ++i, ++info_it, ++ArgNo) {
1842     const VarDecl *Arg = *i;
1843     QualType Ty = info_it->type;
1844     const ABIArgInfo &ArgI = info_it->info;
1845 
1846     bool isPromoted =
1847       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1848 
1849     unsigned FirstIRArg, NumIRArgs;
1850     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1851 
1852     switch (ArgI.getKind()) {
1853     case ABIArgInfo::InAlloca: {
1854       assert(NumIRArgs == 0);
1855       auto FieldIndex = ArgI.getInAllocaFieldIndex();
1856       CharUnits FieldOffset =
1857         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
1858       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
1859                                           Arg->getName());
1860       ArgVals.push_back(ParamValue::forIndirect(V));
1861       break;
1862     }
1863 
1864     case ABIArgInfo::Indirect: {
1865       assert(NumIRArgs == 1);
1866       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
1867 
1868       if (!hasScalarEvaluationKind(Ty)) {
1869         // Aggregates and complex variables are accessed by reference.  All we
1870         // need to do is realign the value, if requested.
1871         Address V = ParamAddr;
1872         if (ArgI.getIndirectRealign()) {
1873           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
1874 
1875           // Copy from the incoming argument pointer to the temporary with the
1876           // appropriate alignment.
1877           //
1878           // FIXME: We should have a common utility for generating an aggregate
1879           // copy.
1880           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1881           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
1882           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
1883           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
1884           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
1885           V = AlignedTemp;
1886         }
1887         ArgVals.push_back(ParamValue::forIndirect(V));
1888       } else {
1889         // Load scalar value from indirect argument.
1890         llvm::Value *V =
1891           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
1892 
1893         if (isPromoted)
1894           V = emitArgumentDemotion(*this, Arg, V);
1895         ArgVals.push_back(ParamValue::forDirect(V));
1896       }
1897       break;
1898     }
1899 
1900     case ABIArgInfo::Extend:
1901     case ABIArgInfo::Direct: {
1902 
1903       // If we have the trivial case, handle it with no muss and fuss.
1904       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1905           ArgI.getCoerceToType() == ConvertType(Ty) &&
1906           ArgI.getDirectOffset() == 0) {
1907         assert(NumIRArgs == 1);
1908         auto AI = FnArgs[FirstIRArg];
1909         llvm::Value *V = AI;
1910 
1911         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1912           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1913                              PVD->getFunctionScopeIndex()))
1914             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1915                                                 AI->getArgNo() + 1,
1916                                                 llvm::Attribute::NonNull));
1917 
1918           QualType OTy = PVD->getOriginalType();
1919           if (const auto *ArrTy =
1920               getContext().getAsConstantArrayType(OTy)) {
1921             // A C99 array parameter declaration with the static keyword also
1922             // indicates dereferenceability, and if the size is constant we can
1923             // use the dereferenceable attribute (which requires the size in
1924             // bytes).
1925             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1926               QualType ETy = ArrTy->getElementType();
1927               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1928               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1929                   ArrSize) {
1930                 llvm::AttrBuilder Attrs;
1931                 Attrs.addDereferenceableAttr(
1932                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1933                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1934                                                     AI->getArgNo() + 1, Attrs));
1935               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1936                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1937                                                     AI->getArgNo() + 1,
1938                                                     llvm::Attribute::NonNull));
1939               }
1940             }
1941           } else if (const auto *ArrTy =
1942                      getContext().getAsVariableArrayType(OTy)) {
1943             // For C99 VLAs with the static keyword, we don't know the size so
1944             // we can't use the dereferenceable attribute, but in addrspace(0)
1945             // we know that it must be nonnull.
1946             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1947                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1948               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1949                                                   AI->getArgNo() + 1,
1950                                                   llvm::Attribute::NonNull));
1951           }
1952 
1953           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1954           if (!AVAttr)
1955             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1956               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1957           if (AVAttr) {
1958             llvm::Value *AlignmentValue =
1959               EmitScalarExpr(AVAttr->getAlignment());
1960             llvm::ConstantInt *AlignmentCI =
1961               cast<llvm::ConstantInt>(AlignmentValue);
1962             unsigned Alignment =
1963               std::min((unsigned) AlignmentCI->getZExtValue(),
1964                        +llvm::Value::MaximumAlignment);
1965 
1966             llvm::AttrBuilder Attrs;
1967             Attrs.addAlignmentAttr(Alignment);
1968             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1969                                                 AI->getArgNo() + 1, Attrs));
1970           }
1971         }
1972 
1973         if (Arg->getType().isRestrictQualified())
1974           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1975                                               AI->getArgNo() + 1,
1976                                               llvm::Attribute::NoAlias));
1977 
1978         // Ensure the argument is the correct type.
1979         if (V->getType() != ArgI.getCoerceToType())
1980           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1981 
1982         if (isPromoted)
1983           V = emitArgumentDemotion(*this, Arg, V);
1984 
1985         if (const CXXMethodDecl *MD =
1986             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1987           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1988             V = CGM.getCXXABI().
1989                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1990         }
1991 
1992         // Because of merging of function types from multiple decls it is
1993         // possible for the type of an argument to not match the corresponding
1994         // type in the function type. Since we are codegening the callee
1995         // in here, add a cast to the argument type.
1996         llvm::Type *LTy = ConvertType(Arg->getType());
1997         if (V->getType() != LTy)
1998           V = Builder.CreateBitCast(V, LTy);
1999 
2000         ArgVals.push_back(ParamValue::forDirect(V));
2001         break;
2002       }
2003 
2004       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2005                                      Arg->getName());
2006 
2007       // Pointer to store into.
2008       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2009 
2010       // Fast-isel and the optimizer generally like scalar values better than
2011       // FCAs, so we flatten them if this is safe to do for this argument.
2012       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2013       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2014           STy->getNumElements() > 1) {
2015         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2016         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2017         llvm::Type *DstTy = Ptr.getElementType();
2018         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2019 
2020         Address AddrToStoreInto = Address::invalid();
2021         if (SrcSize <= DstSize) {
2022           AddrToStoreInto =
2023             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2024         } else {
2025           AddrToStoreInto =
2026             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2027         }
2028 
2029         assert(STy->getNumElements() == NumIRArgs);
2030         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2031           auto AI = FnArgs[FirstIRArg + i];
2032           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2033           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2034           Address EltPtr =
2035             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2036           Builder.CreateStore(AI, EltPtr);
2037         }
2038 
2039         if (SrcSize > DstSize) {
2040           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2041         }
2042 
2043       } else {
2044         // Simple case, just do a coerced store of the argument into the alloca.
2045         assert(NumIRArgs == 1);
2046         auto AI = FnArgs[FirstIRArg];
2047         AI->setName(Arg->getName() + ".coerce");
2048         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2049       }
2050 
2051       // Match to what EmitParmDecl is expecting for this type.
2052       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2053         llvm::Value *V =
2054           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2055         if (isPromoted)
2056           V = emitArgumentDemotion(*this, Arg, V);
2057         ArgVals.push_back(ParamValue::forDirect(V));
2058       } else {
2059         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2060       }
2061       break;
2062     }
2063 
2064     case ABIArgInfo::Expand: {
2065       // If this structure was expanded into multiple arguments then
2066       // we need to create a temporary and reconstruct it from the
2067       // arguments.
2068       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2069       LValue LV = MakeAddrLValue(Alloca, Ty);
2070       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2071 
2072       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2073       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2074       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2075       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2076         auto AI = FnArgs[FirstIRArg + i];
2077         AI->setName(Arg->getName() + "." + Twine(i));
2078       }
2079       break;
2080     }
2081 
2082     case ABIArgInfo::Ignore:
2083       assert(NumIRArgs == 0);
2084       // Initialize the local variable appropriately.
2085       if (!hasScalarEvaluationKind(Ty)) {
2086         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2087       } else {
2088         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2089         ArgVals.push_back(ParamValue::forDirect(U));
2090       }
2091       break;
2092     }
2093   }
2094 
2095   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2096     for (int I = Args.size() - 1; I >= 0; --I)
2097       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2098   } else {
2099     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2100       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2101   }
2102 }
2103 
2104 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2105   while (insn->use_empty()) {
2106     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2107     if (!bitcast) return;
2108 
2109     // This is "safe" because we would have used a ConstantExpr otherwise.
2110     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2111     bitcast->eraseFromParent();
2112   }
2113 }
2114 
2115 /// Try to emit a fused autorelease of a return result.
2116 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2117                                                     llvm::Value *result) {
2118   // We must be immediately followed the cast.
2119   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2120   if (BB->empty()) return nullptr;
2121   if (&BB->back() != result) return nullptr;
2122 
2123   llvm::Type *resultType = result->getType();
2124 
2125   // result is in a BasicBlock and is therefore an Instruction.
2126   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2127 
2128   SmallVector<llvm::Instruction*,4> insnsToKill;
2129 
2130   // Look for:
2131   //  %generator = bitcast %type1* %generator2 to %type2*
2132   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2133     // We would have emitted this as a constant if the operand weren't
2134     // an Instruction.
2135     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2136 
2137     // Require the generator to be immediately followed by the cast.
2138     if (generator->getNextNode() != bitcast)
2139       return nullptr;
2140 
2141     insnsToKill.push_back(bitcast);
2142   }
2143 
2144   // Look for:
2145   //   %generator = call i8* @objc_retain(i8* %originalResult)
2146   // or
2147   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2148   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2149   if (!call) return nullptr;
2150 
2151   bool doRetainAutorelease;
2152 
2153   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
2154     doRetainAutorelease = true;
2155   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
2156                                           .objc_retainAutoreleasedReturnValue) {
2157     doRetainAutorelease = false;
2158 
2159     // If we emitted an assembly marker for this call (and the
2160     // ARCEntrypoints field should have been set if so), go looking
2161     // for that call.  If we can't find it, we can't do this
2162     // optimization.  But it should always be the immediately previous
2163     // instruction, unless we needed bitcasts around the call.
2164     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
2165       llvm::Instruction *prev = call->getPrevNode();
2166       assert(prev);
2167       if (isa<llvm::BitCastInst>(prev)) {
2168         prev = prev->getPrevNode();
2169         assert(prev);
2170       }
2171       assert(isa<llvm::CallInst>(prev));
2172       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2173                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
2174       insnsToKill.push_back(prev);
2175     }
2176   } else {
2177     return nullptr;
2178   }
2179 
2180   result = call->getArgOperand(0);
2181   insnsToKill.push_back(call);
2182 
2183   // Keep killing bitcasts, for sanity.  Note that we no longer care
2184   // about precise ordering as long as there's exactly one use.
2185   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2186     if (!bitcast->hasOneUse()) break;
2187     insnsToKill.push_back(bitcast);
2188     result = bitcast->getOperand(0);
2189   }
2190 
2191   // Delete all the unnecessary instructions, from latest to earliest.
2192   for (SmallVectorImpl<llvm::Instruction*>::iterator
2193          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2194     (*i)->eraseFromParent();
2195 
2196   // Do the fused retain/autorelease if we were asked to.
2197   if (doRetainAutorelease)
2198     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2199 
2200   // Cast back to the result type.
2201   return CGF.Builder.CreateBitCast(result, resultType);
2202 }
2203 
2204 /// If this is a +1 of the value of an immutable 'self', remove it.
2205 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2206                                           llvm::Value *result) {
2207   // This is only applicable to a method with an immutable 'self'.
2208   const ObjCMethodDecl *method =
2209     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2210   if (!method) return nullptr;
2211   const VarDecl *self = method->getSelfDecl();
2212   if (!self->getType().isConstQualified()) return nullptr;
2213 
2214   // Look for a retain call.
2215   llvm::CallInst *retainCall =
2216     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2217   if (!retainCall ||
2218       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
2219     return nullptr;
2220 
2221   // Look for an ordinary load of 'self'.
2222   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2223   llvm::LoadInst *load =
2224     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2225   if (!load || load->isAtomic() || load->isVolatile() ||
2226       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2227     return nullptr;
2228 
2229   // Okay!  Burn it all down.  This relies for correctness on the
2230   // assumption that the retain is emitted as part of the return and
2231   // that thereafter everything is used "linearly".
2232   llvm::Type *resultType = result->getType();
2233   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2234   assert(retainCall->use_empty());
2235   retainCall->eraseFromParent();
2236   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2237 
2238   return CGF.Builder.CreateBitCast(load, resultType);
2239 }
2240 
2241 /// Emit an ARC autorelease of the result of a function.
2242 ///
2243 /// \return the value to actually return from the function
2244 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2245                                             llvm::Value *result) {
2246   // If we're returning 'self', kill the initial retain.  This is a
2247   // heuristic attempt to "encourage correctness" in the really unfortunate
2248   // case where we have a return of self during a dealloc and we desperately
2249   // need to avoid the possible autorelease.
2250   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2251     return self;
2252 
2253   // At -O0, try to emit a fused retain/autorelease.
2254   if (CGF.shouldUseFusedARCCalls())
2255     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2256       return fused;
2257 
2258   return CGF.EmitARCAutoreleaseReturnValue(result);
2259 }
2260 
2261 /// Heuristically search for a dominating store to the return-value slot.
2262 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2263   // Check if a User is a store which pointerOperand is the ReturnValue.
2264   // We are looking for stores to the ReturnValue, not for stores of the
2265   // ReturnValue to some other location.
2266   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2267     auto *SI = dyn_cast<llvm::StoreInst>(U);
2268     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2269       return nullptr;
2270     // These aren't actually possible for non-coerced returns, and we
2271     // only care about non-coerced returns on this code path.
2272     assert(!SI->isAtomic() && !SI->isVolatile());
2273     return SI;
2274   };
2275   // If there are multiple uses of the return-value slot, just check
2276   // for something immediately preceding the IP.  Sometimes this can
2277   // happen with how we generate implicit-returns; it can also happen
2278   // with noreturn cleanups.
2279   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2280     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2281     if (IP->empty()) return nullptr;
2282     llvm::Instruction *I = &IP->back();
2283 
2284     // Skip lifetime markers
2285     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2286                                             IE = IP->rend();
2287          II != IE; ++II) {
2288       if (llvm::IntrinsicInst *Intrinsic =
2289               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2290         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2291           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2292           ++II;
2293           if (II == IE)
2294             break;
2295           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2296             continue;
2297         }
2298       }
2299       I = &*II;
2300       break;
2301     }
2302 
2303     return GetStoreIfValid(I);
2304   }
2305 
2306   llvm::StoreInst *store =
2307       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2308   if (!store) return nullptr;
2309 
2310   // Now do a first-and-dirty dominance check: just walk up the
2311   // single-predecessors chain from the current insertion point.
2312   llvm::BasicBlock *StoreBB = store->getParent();
2313   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2314   while (IP != StoreBB) {
2315     if (!(IP = IP->getSinglePredecessor()))
2316       return nullptr;
2317   }
2318 
2319   // Okay, the store's basic block dominates the insertion point; we
2320   // can do our thing.
2321   return store;
2322 }
2323 
2324 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2325                                          bool EmitRetDbgLoc,
2326                                          SourceLocation EndLoc) {
2327   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2328     // Naked functions don't have epilogues.
2329     Builder.CreateUnreachable();
2330     return;
2331   }
2332 
2333   // Functions with no result always return void.
2334   if (!ReturnValue.isValid()) {
2335     Builder.CreateRetVoid();
2336     return;
2337   }
2338 
2339   llvm::DebugLoc RetDbgLoc;
2340   llvm::Value *RV = nullptr;
2341   QualType RetTy = FI.getReturnType();
2342   const ABIArgInfo &RetAI = FI.getReturnInfo();
2343 
2344   switch (RetAI.getKind()) {
2345   case ABIArgInfo::InAlloca:
2346     // Aggregrates get evaluated directly into the destination.  Sometimes we
2347     // need to return the sret value in a register, though.
2348     assert(hasAggregateEvaluationKind(RetTy));
2349     if (RetAI.getInAllocaSRet()) {
2350       llvm::Function::arg_iterator EI = CurFn->arg_end();
2351       --EI;
2352       llvm::Value *ArgStruct = EI;
2353       llvm::Value *SRet = Builder.CreateStructGEP(
2354           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2355       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2356     }
2357     break;
2358 
2359   case ABIArgInfo::Indirect: {
2360     auto AI = CurFn->arg_begin();
2361     if (RetAI.isSRetAfterThis())
2362       ++AI;
2363     switch (getEvaluationKind(RetTy)) {
2364     case TEK_Complex: {
2365       ComplexPairTy RT =
2366         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2367       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
2368                          /*isInit*/ true);
2369       break;
2370     }
2371     case TEK_Aggregate:
2372       // Do nothing; aggregrates get evaluated directly into the destination.
2373       break;
2374     case TEK_Scalar:
2375       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2376                         MakeNaturalAlignAddrLValue(AI, RetTy),
2377                         /*isInit*/ true);
2378       break;
2379     }
2380     break;
2381   }
2382 
2383   case ABIArgInfo::Extend:
2384   case ABIArgInfo::Direct:
2385     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2386         RetAI.getDirectOffset() == 0) {
2387       // The internal return value temp always will have pointer-to-return-type
2388       // type, just do a load.
2389 
2390       // If there is a dominating store to ReturnValue, we can elide
2391       // the load, zap the store, and usually zap the alloca.
2392       if (llvm::StoreInst *SI =
2393               findDominatingStoreToReturnValue(*this)) {
2394         // Reuse the debug location from the store unless there is
2395         // cleanup code to be emitted between the store and return
2396         // instruction.
2397         if (EmitRetDbgLoc && !AutoreleaseResult)
2398           RetDbgLoc = SI->getDebugLoc();
2399         // Get the stored value and nuke the now-dead store.
2400         RV = SI->getValueOperand();
2401         SI->eraseFromParent();
2402 
2403         // If that was the only use of the return value, nuke it as well now.
2404         auto returnValueInst = ReturnValue.getPointer();
2405         if (returnValueInst->use_empty()) {
2406           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2407             alloca->eraseFromParent();
2408             ReturnValue = Address::invalid();
2409           }
2410         }
2411 
2412       // Otherwise, we have to do a simple load.
2413       } else {
2414         RV = Builder.CreateLoad(ReturnValue);
2415       }
2416     } else {
2417       // If the value is offset in memory, apply the offset now.
2418       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2419 
2420       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2421     }
2422 
2423     // In ARC, end functions that return a retainable type with a call
2424     // to objc_autoreleaseReturnValue.
2425     if (AutoreleaseResult) {
2426       assert(getLangOpts().ObjCAutoRefCount &&
2427              !FI.isReturnsRetained() &&
2428              RetTy->isObjCRetainableType());
2429       RV = emitAutoreleaseOfResult(*this, RV);
2430     }
2431 
2432     break;
2433 
2434   case ABIArgInfo::Ignore:
2435     break;
2436 
2437   case ABIArgInfo::Expand:
2438     llvm_unreachable("Invalid ABI kind for return argument");
2439   }
2440 
2441   llvm::Instruction *Ret;
2442   if (RV) {
2443     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2444       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
2445         SanitizerScope SanScope(this);
2446         llvm::Value *Cond = Builder.CreateICmpNE(
2447             RV, llvm::Constant::getNullValue(RV->getType()));
2448         llvm::Constant *StaticData[] = {
2449             EmitCheckSourceLocation(EndLoc),
2450             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2451         };
2452         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2453                   "nonnull_return", StaticData, None);
2454       }
2455     }
2456     Ret = Builder.CreateRet(RV);
2457   } else {
2458     Ret = Builder.CreateRetVoid();
2459   }
2460 
2461   if (RetDbgLoc)
2462     Ret->setDebugLoc(std::move(RetDbgLoc));
2463 }
2464 
2465 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2466   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2467   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2468 }
2469 
2470 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2471                                           QualType Ty) {
2472   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2473   // placeholders.
2474   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2475   llvm::Value *Placeholder =
2476     llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2477   Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder);
2478 
2479   // FIXME: When we generate this IR in one pass, we shouldn't need
2480   // this win32-specific alignment hack.
2481   CharUnits Align = CharUnits::fromQuantity(4);
2482 
2483   return AggValueSlot::forAddr(Address(Placeholder, Align),
2484                                Ty.getQualifiers(),
2485                                AggValueSlot::IsNotDestructed,
2486                                AggValueSlot::DoesNotNeedGCBarriers,
2487                                AggValueSlot::IsNotAliased);
2488 }
2489 
2490 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2491                                           const VarDecl *param,
2492                                           SourceLocation loc) {
2493   // StartFunction converted the ABI-lowered parameter(s) into a
2494   // local alloca.  We need to turn that into an r-value suitable
2495   // for EmitCall.
2496   Address local = GetAddrOfLocalVar(param);
2497 
2498   QualType type = param->getType();
2499 
2500   // For the most part, we just need to load the alloca, except:
2501   // 1) aggregate r-values are actually pointers to temporaries, and
2502   // 2) references to non-scalars are pointers directly to the aggregate.
2503   // I don't know why references to scalars are different here.
2504   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2505     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2506       return args.add(RValue::getAggregate(local), type);
2507 
2508     // Locals which are references to scalars are represented
2509     // with allocas holding the pointer.
2510     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2511   }
2512 
2513   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2514          "cannot emit delegate call arguments for inalloca arguments!");
2515 
2516   args.add(convertTempToRValue(local, type, loc), type);
2517 }
2518 
2519 static bool isProvablyNull(llvm::Value *addr) {
2520   return isa<llvm::ConstantPointerNull>(addr);
2521 }
2522 
2523 static bool isProvablyNonNull(llvm::Value *addr) {
2524   return isa<llvm::AllocaInst>(addr);
2525 }
2526 
2527 /// Emit the actual writing-back of a writeback.
2528 static void emitWriteback(CodeGenFunction &CGF,
2529                           const CallArgList::Writeback &writeback) {
2530   const LValue &srcLV = writeback.Source;
2531   Address srcAddr = srcLV.getAddress();
2532   assert(!isProvablyNull(srcAddr.getPointer()) &&
2533          "shouldn't have writeback for provably null argument");
2534 
2535   llvm::BasicBlock *contBB = nullptr;
2536 
2537   // If the argument wasn't provably non-null, we need to null check
2538   // before doing the store.
2539   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2540   if (!provablyNonNull) {
2541     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2542     contBB = CGF.createBasicBlock("icr.done");
2543 
2544     llvm::Value *isNull =
2545       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2546     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2547     CGF.EmitBlock(writebackBB);
2548   }
2549 
2550   // Load the value to writeback.
2551   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2552 
2553   // Cast it back, in case we're writing an id to a Foo* or something.
2554   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
2555                                     "icr.writeback-cast");
2556 
2557   // Perform the writeback.
2558 
2559   // If we have a "to use" value, it's something we need to emit a use
2560   // of.  This has to be carefully threaded in: if it's done after the
2561   // release it's potentially undefined behavior (and the optimizer
2562   // will ignore it), and if it happens before the retain then the
2563   // optimizer could move the release there.
2564   if (writeback.ToUse) {
2565     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2566 
2567     // Retain the new value.  No need to block-copy here:  the block's
2568     // being passed up the stack.
2569     value = CGF.EmitARCRetainNonBlock(value);
2570 
2571     // Emit the intrinsic use here.
2572     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2573 
2574     // Load the old value (primitively).
2575     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2576 
2577     // Put the new value in place (primitively).
2578     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2579 
2580     // Release the old value.
2581     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2582 
2583   // Otherwise, we can just do a normal lvalue store.
2584   } else {
2585     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2586   }
2587 
2588   // Jump to the continuation block.
2589   if (!provablyNonNull)
2590     CGF.EmitBlock(contBB);
2591 }
2592 
2593 static void emitWritebacks(CodeGenFunction &CGF,
2594                            const CallArgList &args) {
2595   for (const auto &I : args.writebacks())
2596     emitWriteback(CGF, I);
2597 }
2598 
2599 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2600                                             const CallArgList &CallArgs) {
2601   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2602   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2603     CallArgs.getCleanupsToDeactivate();
2604   // Iterate in reverse to increase the likelihood of popping the cleanup.
2605   for (const auto &I : llvm::reverse(Cleanups)) {
2606     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
2607     I.IsActiveIP->eraseFromParent();
2608   }
2609 }
2610 
2611 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2612   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2613     if (uop->getOpcode() == UO_AddrOf)
2614       return uop->getSubExpr();
2615   return nullptr;
2616 }
2617 
2618 /// Emit an argument that's being passed call-by-writeback.  That is,
2619 /// we are passing the address of an __autoreleased temporary; it
2620 /// might be copy-initialized with the current value of the given
2621 /// address, but it will definitely be copied out of after the call.
2622 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2623                              const ObjCIndirectCopyRestoreExpr *CRE) {
2624   LValue srcLV;
2625 
2626   // Make an optimistic effort to emit the address as an l-value.
2627   // This can fail if the argument expression is more complicated.
2628   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2629     srcLV = CGF.EmitLValue(lvExpr);
2630 
2631   // Otherwise, just emit it as a scalar.
2632   } else {
2633     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
2634 
2635     QualType srcAddrType =
2636       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2637     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
2638   }
2639   Address srcAddr = srcLV.getAddress();
2640 
2641   // The dest and src types don't necessarily match in LLVM terms
2642   // because of the crazy ObjC compatibility rules.
2643 
2644   llvm::PointerType *destType =
2645     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2646 
2647   // If the address is a constant null, just pass the appropriate null.
2648   if (isProvablyNull(srcAddr.getPointer())) {
2649     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2650              CRE->getType());
2651     return;
2652   }
2653 
2654   // Create the temporary.
2655   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
2656                                       CGF.getPointerAlign(),
2657                                       "icr.temp");
2658   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2659   // and that cleanup will be conditional if we can't prove that the l-value
2660   // isn't null, so we need to register a dominating point so that the cleanups
2661   // system will make valid IR.
2662   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2663 
2664   // Zero-initialize it if we're not doing a copy-initialization.
2665   bool shouldCopy = CRE->shouldCopy();
2666   if (!shouldCopy) {
2667     llvm::Value *null =
2668       llvm::ConstantPointerNull::get(
2669         cast<llvm::PointerType>(destType->getElementType()));
2670     CGF.Builder.CreateStore(null, temp);
2671   }
2672 
2673   llvm::BasicBlock *contBB = nullptr;
2674   llvm::BasicBlock *originBB = nullptr;
2675 
2676   // If the address is *not* known to be non-null, we need to switch.
2677   llvm::Value *finalArgument;
2678 
2679   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2680   if (provablyNonNull) {
2681     finalArgument = temp.getPointer();
2682   } else {
2683     llvm::Value *isNull =
2684       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2685 
2686     finalArgument = CGF.Builder.CreateSelect(isNull,
2687                                    llvm::ConstantPointerNull::get(destType),
2688                                              temp.getPointer(), "icr.argument");
2689 
2690     // If we need to copy, then the load has to be conditional, which
2691     // means we need control flow.
2692     if (shouldCopy) {
2693       originBB = CGF.Builder.GetInsertBlock();
2694       contBB = CGF.createBasicBlock("icr.cont");
2695       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2696       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2697       CGF.EmitBlock(copyBB);
2698       condEval.begin(CGF);
2699     }
2700   }
2701 
2702   llvm::Value *valueToUse = nullptr;
2703 
2704   // Perform a copy if necessary.
2705   if (shouldCopy) {
2706     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2707     assert(srcRV.isScalar());
2708 
2709     llvm::Value *src = srcRV.getScalarVal();
2710     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2711                                     "icr.cast");
2712 
2713     // Use an ordinary store, not a store-to-lvalue.
2714     CGF.Builder.CreateStore(src, temp);
2715 
2716     // If optimization is enabled, and the value was held in a
2717     // __strong variable, we need to tell the optimizer that this
2718     // value has to stay alive until we're doing the store back.
2719     // This is because the temporary is effectively unretained,
2720     // and so otherwise we can violate the high-level semantics.
2721     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2722         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2723       valueToUse = src;
2724     }
2725   }
2726 
2727   // Finish the control flow if we needed it.
2728   if (shouldCopy && !provablyNonNull) {
2729     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2730     CGF.EmitBlock(contBB);
2731 
2732     // Make a phi for the value to intrinsically use.
2733     if (valueToUse) {
2734       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2735                                                       "icr.to-use");
2736       phiToUse->addIncoming(valueToUse, copyBB);
2737       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2738                             originBB);
2739       valueToUse = phiToUse;
2740     }
2741 
2742     condEval.end(CGF);
2743   }
2744 
2745   args.addWriteback(srcLV, temp, valueToUse);
2746   args.add(RValue::get(finalArgument), CRE->getType());
2747 }
2748 
2749 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2750   assert(!StackBase && !StackCleanup.isValid());
2751 
2752   // Save the stack.
2753   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2754   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
2755 
2756   // Control gets really tied up in landing pads, so we have to spill the
2757   // stacksave to an alloca to avoid violating SSA form.
2758   // TODO: This is dead if we never emit the cleanup.  We should create the
2759   // alloca and store lazily on the first cleanup emission.
2760   StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, CGF.getPointerAlign(),
2761                                       "inalloca.spmem");
2762   CGF.Builder.CreateStore(StackBase, StackBaseMem);
2763   CGF.pushStackRestore(EHCleanup, StackBaseMem);
2764   StackCleanup = CGF.EHStack.getInnermostEHScope();
2765   assert(StackCleanup.isValid());
2766 }
2767 
2768 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2769   if (StackBase) {
2770     CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2771     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2772     // We could load StackBase from StackBaseMem, but in the non-exceptional
2773     // case we can skip it.
2774     CGF.Builder.CreateCall(F, StackBase);
2775   }
2776 }
2777 
2778 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
2779                                           SourceLocation ArgLoc,
2780                                           const FunctionDecl *FD,
2781                                           unsigned ParmNum) {
2782   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2783     return;
2784   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2785   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2786   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2787   if (!NNAttr)
2788     return;
2789   SanitizerScope SanScope(this);
2790   assert(RV.isScalar());
2791   llvm::Value *V = RV.getScalarVal();
2792   llvm::Value *Cond =
2793       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2794   llvm::Constant *StaticData[] = {
2795       EmitCheckSourceLocation(ArgLoc),
2796       EmitCheckSourceLocation(NNAttr->getLocation()),
2797       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
2798   };
2799   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2800                 "nonnull_arg", StaticData, None);
2801 }
2802 
2803 void CodeGenFunction::EmitCallArgs(
2804     CallArgList &Args, ArrayRef<QualType> ArgTypes,
2805     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
2806     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) {
2807   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
2808   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2809   // because arguments are destroyed left to right in the callee.
2810   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2811     // Insert a stack save if we're going to need any inalloca args.
2812     bool HasInAllocaArgs = false;
2813     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2814          I != E && !HasInAllocaArgs; ++I)
2815       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2816     if (HasInAllocaArgs) {
2817       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2818       Args.allocateArgumentMemory(*this);
2819     }
2820 
2821     // Evaluate each argument.
2822     size_t CallArgsStart = Args.size();
2823     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2824       CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2825       EmitCallArg(Args, *Arg, ArgTypes[I]);
2826       EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2827                           CalleeDecl, ParamsToSkip + I);
2828     }
2829 
2830     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2831     // IR function.
2832     std::reverse(Args.begin() + CallArgsStart, Args.end());
2833     return;
2834   }
2835 
2836   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2837     CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2838     assert(Arg != ArgRange.end());
2839     EmitCallArg(Args, *Arg, ArgTypes[I]);
2840     EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2841                         CalleeDecl, ParamsToSkip + I);
2842   }
2843 }
2844 
2845 namespace {
2846 
2847 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
2848   DestroyUnpassedArg(Address Addr, QualType Ty)
2849       : Addr(Addr), Ty(Ty) {}
2850 
2851   Address Addr;
2852   QualType Ty;
2853 
2854   void Emit(CodeGenFunction &CGF, Flags flags) override {
2855     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2856     assert(!Dtor->isTrivial());
2857     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2858                               /*Delegating=*/false, Addr);
2859   }
2860 };
2861 
2862 }
2863 
2864 struct DisableDebugLocationUpdates {
2865   CodeGenFunction &CGF;
2866   bool disabledDebugInfo;
2867   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2868     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2869       CGF.disableDebugInfo();
2870   }
2871   ~DisableDebugLocationUpdates() {
2872     if (disabledDebugInfo)
2873       CGF.enableDebugInfo();
2874   }
2875 };
2876 
2877 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2878                                   QualType type) {
2879   DisableDebugLocationUpdates Dis(*this, E);
2880   if (const ObjCIndirectCopyRestoreExpr *CRE
2881         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2882     assert(getLangOpts().ObjCAutoRefCount);
2883     assert(getContext().hasSameType(E->getType(), type));
2884     return emitWritebackArg(*this, args, CRE);
2885   }
2886 
2887   assert(type->isReferenceType() == E->isGLValue() &&
2888          "reference binding to unmaterialized r-value!");
2889 
2890   if (E->isGLValue()) {
2891     assert(E->getObjectKind() == OK_Ordinary);
2892     return args.add(EmitReferenceBindingToExpr(E), type);
2893   }
2894 
2895   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2896 
2897   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2898   // However, we still have to push an EH-only cleanup in case we unwind before
2899   // we make it to the call.
2900   if (HasAggregateEvalKind &&
2901       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2902     // If we're using inalloca, use the argument memory.  Otherwise, use a
2903     // temporary.
2904     AggValueSlot Slot;
2905     if (args.isUsingInAlloca())
2906       Slot = createPlaceholderSlot(*this, type);
2907     else
2908       Slot = CreateAggTemp(type, "agg.tmp");
2909 
2910     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2911     bool DestroyedInCallee =
2912         RD && RD->hasNonTrivialDestructor() &&
2913         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2914     if (DestroyedInCallee)
2915       Slot.setExternallyDestructed();
2916 
2917     EmitAggExpr(E, Slot);
2918     RValue RV = Slot.asRValue();
2919     args.add(RV, type);
2920 
2921     if (DestroyedInCallee) {
2922       // Create a no-op GEP between the placeholder and the cleanup so we can
2923       // RAUW it successfully.  It also serves as a marker of the first
2924       // instruction where the cleanup is active.
2925       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
2926                                               type);
2927       // This unreachable is a temporary marker which will be removed later.
2928       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2929       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2930     }
2931     return;
2932   }
2933 
2934   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2935       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2936     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2937     assert(L.isSimple());
2938     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2939       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2940     } else {
2941       // We can't represent a misaligned lvalue in the CallArgList, so copy
2942       // to an aligned temporary now.
2943       Address tmp = CreateMemTemp(type);
2944       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
2945       args.add(RValue::getAggregate(tmp), type);
2946     }
2947     return;
2948   }
2949 
2950   args.add(EmitAnyExprToTemp(E), type);
2951 }
2952 
2953 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2954   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2955   // implicitly widens null pointer constants that are arguments to varargs
2956   // functions to pointer-sized ints.
2957   if (!getTarget().getTriple().isOSWindows())
2958     return Arg->getType();
2959 
2960   if (Arg->getType()->isIntegerType() &&
2961       getContext().getTypeSize(Arg->getType()) <
2962           getContext().getTargetInfo().getPointerWidth(0) &&
2963       Arg->isNullPointerConstant(getContext(),
2964                                  Expr::NPC_ValueDependentIsNotNull)) {
2965     return getContext().getIntPtrType();
2966   }
2967 
2968   return Arg->getType();
2969 }
2970 
2971 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2972 // optimizer it can aggressively ignore unwind edges.
2973 void
2974 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2975   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2976       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2977     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2978                       CGM.getNoObjCARCExceptionsMetadata());
2979 }
2980 
2981 /// Emits a call to the given no-arguments nounwind runtime function.
2982 llvm::CallInst *
2983 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2984                                          const llvm::Twine &name) {
2985   return EmitNounwindRuntimeCall(callee, None, name);
2986 }
2987 
2988 /// Emits a call to the given nounwind runtime function.
2989 llvm::CallInst *
2990 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2991                                          ArrayRef<llvm::Value*> args,
2992                                          const llvm::Twine &name) {
2993   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2994   call->setDoesNotThrow();
2995   return call;
2996 }
2997 
2998 /// Emits a simple call (never an invoke) to the given no-arguments
2999 /// runtime function.
3000 llvm::CallInst *
3001 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3002                                  const llvm::Twine &name) {
3003   return EmitRuntimeCall(callee, None, name);
3004 }
3005 
3006 /// Emits a simple call (never an invoke) to the given runtime
3007 /// function.
3008 llvm::CallInst *
3009 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3010                                  ArrayRef<llvm::Value*> args,
3011                                  const llvm::Twine &name) {
3012   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
3013   call->setCallingConv(getRuntimeCC());
3014   return call;
3015 }
3016 
3017 /// Emits a call or invoke to the given noreturn runtime function.
3018 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3019                                                ArrayRef<llvm::Value*> args) {
3020   if (getInvokeDest()) {
3021     llvm::InvokeInst *invoke =
3022       Builder.CreateInvoke(callee,
3023                            getUnreachableBlock(),
3024                            getInvokeDest(),
3025                            args);
3026     invoke->setDoesNotReturn();
3027     invoke->setCallingConv(getRuntimeCC());
3028   } else {
3029     llvm::CallInst *call = Builder.CreateCall(callee, args);
3030     call->setDoesNotReturn();
3031     call->setCallingConv(getRuntimeCC());
3032     Builder.CreateUnreachable();
3033   }
3034 }
3035 
3036 /// Emits a call or invoke instruction to the given nullary runtime
3037 /// function.
3038 llvm::CallSite
3039 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3040                                          const Twine &name) {
3041   return EmitRuntimeCallOrInvoke(callee, None, name);
3042 }
3043 
3044 /// Emits a call or invoke instruction to the given runtime function.
3045 llvm::CallSite
3046 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3047                                          ArrayRef<llvm::Value*> args,
3048                                          const Twine &name) {
3049   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3050   callSite.setCallingConv(getRuntimeCC());
3051   return callSite;
3052 }
3053 
3054 llvm::CallSite
3055 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3056                                   const Twine &Name) {
3057   return EmitCallOrInvoke(Callee, None, Name);
3058 }
3059 
3060 /// Emits a call or invoke instruction to the given function, depending
3061 /// on the current state of the EH stack.
3062 llvm::CallSite
3063 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3064                                   ArrayRef<llvm::Value *> Args,
3065                                   const Twine &Name) {
3066   llvm::BasicBlock *InvokeDest = getInvokeDest();
3067 
3068   llvm::Instruction *Inst;
3069   if (!InvokeDest)
3070     Inst = Builder.CreateCall(Callee, Args, Name);
3071   else {
3072     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3073     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
3074     EmitBlock(ContBB);
3075   }
3076 
3077   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3078   // optimizer it can aggressively ignore unwind edges.
3079   if (CGM.getLangOpts().ObjCAutoRefCount)
3080     AddObjCARCExceptionMetadata(Inst);
3081 
3082   return llvm::CallSite(Inst);
3083 }
3084 
3085 /// \brief Store a non-aggregate value to an address to initialize it.  For
3086 /// initialization, a non-atomic store will be used.
3087 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3088                                         LValue Dst) {
3089   if (Src.isScalar())
3090     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3091   else
3092     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3093 }
3094 
3095 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3096                                                   llvm::Value *New) {
3097   DeferredReplacements.push_back(std::make_pair(Old, New));
3098 }
3099 
3100 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3101                                  llvm::Value *Callee,
3102                                  ReturnValueSlot ReturnValue,
3103                                  const CallArgList &CallArgs,
3104                                  const Decl *TargetDecl,
3105                                  llvm::Instruction **callOrInvoke) {
3106   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3107 
3108   // Handle struct-return functions by passing a pointer to the
3109   // location that we would like to return into.
3110   QualType RetTy = CallInfo.getReturnType();
3111   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3112 
3113   llvm::FunctionType *IRFuncTy =
3114     cast<llvm::FunctionType>(
3115                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3116 
3117   // If we're using inalloca, insert the allocation after the stack save.
3118   // FIXME: Do this earlier rather than hacking it in here!
3119   Address ArgMemory = Address::invalid();
3120   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3121   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3122     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
3123     llvm::Instruction *IP = CallArgs.getStackBase();
3124     llvm::AllocaInst *AI;
3125     if (IP) {
3126       IP = IP->getNextNode();
3127       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3128     } else {
3129       AI = CreateTempAlloca(ArgStruct, "argmem");
3130     }
3131     auto Align = CallInfo.getArgStructAlignment();
3132     AI->setAlignment(Align.getQuantity());
3133     AI->setUsedWithInAlloca(true);
3134     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3135     ArgMemory = Address(AI, Align);
3136   }
3137 
3138   // Helper function to drill into the inalloca allocation.
3139   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3140     auto FieldOffset =
3141       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3142     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3143   };
3144 
3145   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3146   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3147 
3148   // If the call returns a temporary with struct return, create a temporary
3149   // alloca to hold the result, unless one is given to us.
3150   Address SRetPtr = Address::invalid();
3151   size_t UnusedReturnSize = 0;
3152   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3153     if (!ReturnValue.isNull()) {
3154       SRetPtr = ReturnValue.getValue();
3155     } else {
3156       SRetPtr = CreateMemTemp(RetTy);
3157       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3158         uint64_t size =
3159             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3160         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3161           UnusedReturnSize = size;
3162       }
3163     }
3164     if (IRFunctionArgs.hasSRetArg()) {
3165       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3166     } else {
3167       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3168       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3169     }
3170   }
3171 
3172   assert(CallInfo.arg_size() == CallArgs.size() &&
3173          "Mismatch between function signature & arguments.");
3174   unsigned ArgNo = 0;
3175   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3176   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3177        I != E; ++I, ++info_it, ++ArgNo) {
3178     const ABIArgInfo &ArgInfo = info_it->info;
3179     RValue RV = I->RV;
3180 
3181     // Insert a padding argument to ensure proper alignment.
3182     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3183       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3184           llvm::UndefValue::get(ArgInfo.getPaddingType());
3185 
3186     unsigned FirstIRArg, NumIRArgs;
3187     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3188 
3189     switch (ArgInfo.getKind()) {
3190     case ABIArgInfo::InAlloca: {
3191       assert(NumIRArgs == 0);
3192       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3193       if (RV.isAggregate()) {
3194         // Replace the placeholder with the appropriate argument slot GEP.
3195         llvm::Instruction *Placeholder =
3196             cast<llvm::Instruction>(RV.getAggregatePointer());
3197         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3198         Builder.SetInsertPoint(Placeholder);
3199         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3200         Builder.restoreIP(IP);
3201         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3202       } else {
3203         // Store the RValue into the argument struct.
3204         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3205         unsigned AS = Addr.getType()->getPointerAddressSpace();
3206         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3207         // There are some cases where a trivial bitcast is not avoidable.  The
3208         // definition of a type later in a translation unit may change it's type
3209         // from {}* to (%struct.foo*)*.
3210         if (Addr.getType() != MemType)
3211           Addr = Builder.CreateBitCast(Addr, MemType);
3212         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3213         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3214       }
3215       break;
3216     }
3217 
3218     case ABIArgInfo::Indirect: {
3219       assert(NumIRArgs == 1);
3220       if (RV.isScalar() || RV.isComplex()) {
3221         // Make a temporary alloca to pass the argument.
3222         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3223         IRCallArgs[FirstIRArg] = Addr.getPointer();
3224 
3225         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3226         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3227       } else {
3228         // We want to avoid creating an unnecessary temporary+copy here;
3229         // however, we need one in three cases:
3230         // 1. If the argument is not byval, and we are required to copy the
3231         //    source.  (This case doesn't occur on any common architecture.)
3232         // 2. If the argument is byval, RV is not sufficiently aligned, and
3233         //    we cannot force it to be sufficiently aligned.
3234         // 3. If the argument is byval, but RV is located in an address space
3235         //    different than that of the argument (0).
3236         Address Addr = RV.getAggregateAddress();
3237         CharUnits Align = ArgInfo.getIndirectAlign();
3238         const llvm::DataLayout *TD = &CGM.getDataLayout();
3239         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3240         const unsigned ArgAddrSpace =
3241             (FirstIRArg < IRFuncTy->getNumParams()
3242                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3243                  : 0);
3244         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3245             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3246              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3247                                               Align.getQuantity(), *TD)
3248                < Align.getQuantity()) ||
3249             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3250           // Create an aligned temporary, and copy to it.
3251           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3252           IRCallArgs[FirstIRArg] = AI.getPointer();
3253           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3254         } else {
3255           // Skip the extra memcpy call.
3256           IRCallArgs[FirstIRArg] = Addr.getPointer();
3257         }
3258       }
3259       break;
3260     }
3261 
3262     case ABIArgInfo::Ignore:
3263       assert(NumIRArgs == 0);
3264       break;
3265 
3266     case ABIArgInfo::Extend:
3267     case ABIArgInfo::Direct: {
3268       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3269           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3270           ArgInfo.getDirectOffset() == 0) {
3271         assert(NumIRArgs == 1);
3272         llvm::Value *V;
3273         if (RV.isScalar())
3274           V = RV.getScalarVal();
3275         else
3276           V = Builder.CreateLoad(RV.getAggregateAddress());
3277 
3278         // We might have to widen integers, but we should never truncate.
3279         if (ArgInfo.getCoerceToType() != V->getType() &&
3280             V->getType()->isIntegerTy())
3281           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3282 
3283         // If the argument doesn't match, perform a bitcast to coerce it.  This
3284         // can happen due to trivial type mismatches.
3285         if (FirstIRArg < IRFuncTy->getNumParams() &&
3286             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3287           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3288         IRCallArgs[FirstIRArg] = V;
3289         break;
3290       }
3291 
3292       // FIXME: Avoid the conversion through memory if possible.
3293       Address Src = Address::invalid();
3294       if (RV.isScalar() || RV.isComplex()) {
3295         Src = CreateMemTemp(I->Ty, "coerce");
3296         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3297         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3298       } else {
3299         Src = RV.getAggregateAddress();
3300       }
3301 
3302       // If the value is offset in memory, apply the offset now.
3303       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3304 
3305       // Fast-isel and the optimizer generally like scalar values better than
3306       // FCAs, so we flatten them if this is safe to do for this argument.
3307       llvm::StructType *STy =
3308             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3309       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3310         llvm::Type *SrcTy = Src.getType()->getElementType();
3311         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3312         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3313 
3314         // If the source type is smaller than the destination type of the
3315         // coerce-to logic, copy the source value into a temp alloca the size
3316         // of the destination type to allow loading all of it. The bits past
3317         // the source value are left undef.
3318         if (SrcSize < DstSize) {
3319           Address TempAlloca
3320             = CreateTempAlloca(STy, Src.getAlignment(),
3321                                Src.getName() + ".coerce");
3322           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3323           Src = TempAlloca;
3324         } else {
3325           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3326         }
3327 
3328         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3329         assert(NumIRArgs == STy->getNumElements());
3330         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3331           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3332           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3333           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3334           IRCallArgs[FirstIRArg + i] = LI;
3335         }
3336       } else {
3337         // In the simple case, just pass the coerced loaded value.
3338         assert(NumIRArgs == 1);
3339         IRCallArgs[FirstIRArg] =
3340           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3341       }
3342 
3343       break;
3344     }
3345 
3346     case ABIArgInfo::Expand:
3347       unsigned IRArgPos = FirstIRArg;
3348       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3349       assert(IRArgPos == FirstIRArg + NumIRArgs);
3350       break;
3351     }
3352   }
3353 
3354   if (ArgMemory.isValid()) {
3355     llvm::Value *Arg = ArgMemory.getPointer();
3356     if (CallInfo.isVariadic()) {
3357       // When passing non-POD arguments by value to variadic functions, we will
3358       // end up with a variadic prototype and an inalloca call site.  In such
3359       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3360       // the callee.
3361       unsigned CalleeAS =
3362           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3363       Callee = Builder.CreateBitCast(
3364           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3365     } else {
3366       llvm::Type *LastParamTy =
3367           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3368       if (Arg->getType() != LastParamTy) {
3369 #ifndef NDEBUG
3370         // Assert that these structs have equivalent element types.
3371         llvm::StructType *FullTy = CallInfo.getArgStruct();
3372         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3373             cast<llvm::PointerType>(LastParamTy)->getElementType());
3374         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3375         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3376                                                 DE = DeclaredTy->element_end(),
3377                                                 FI = FullTy->element_begin();
3378              DI != DE; ++DI, ++FI)
3379           assert(*DI == *FI);
3380 #endif
3381         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3382       }
3383     }
3384     assert(IRFunctionArgs.hasInallocaArg());
3385     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3386   }
3387 
3388   if (!CallArgs.getCleanupsToDeactivate().empty())
3389     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3390 
3391   // If the callee is a bitcast of a function to a varargs pointer to function
3392   // type, check to see if we can remove the bitcast.  This handles some cases
3393   // with unprototyped functions.
3394   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3395     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3396       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3397       llvm::FunctionType *CurFT =
3398         cast<llvm::FunctionType>(CurPT->getElementType());
3399       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3400 
3401       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3402           ActualFT->getReturnType() == CurFT->getReturnType() &&
3403           ActualFT->getNumParams() == CurFT->getNumParams() &&
3404           ActualFT->getNumParams() == IRCallArgs.size() &&
3405           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3406         bool ArgsMatch = true;
3407         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3408           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3409             ArgsMatch = false;
3410             break;
3411           }
3412 
3413         // Strip the cast if we can get away with it.  This is a nice cleanup,
3414         // but also allows us to inline the function at -O0 if it is marked
3415         // always_inline.
3416         if (ArgsMatch)
3417           Callee = CalleeF;
3418       }
3419     }
3420 
3421   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3422   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3423     // Inalloca argument can have different type.
3424     if (IRFunctionArgs.hasInallocaArg() &&
3425         i == IRFunctionArgs.getInallocaArgNo())
3426       continue;
3427     if (i < IRFuncTy->getNumParams())
3428       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3429   }
3430 
3431   unsigned CallingConv;
3432   CodeGen::AttributeListType AttributeList;
3433   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
3434                              CallingConv, true);
3435   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3436                                                      AttributeList);
3437 
3438   llvm::BasicBlock *InvokeDest = nullptr;
3439   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3440                           llvm::Attribute::NoUnwind) ||
3441       currentFunctionUsesSEHTry())
3442     InvokeDest = getInvokeDest();
3443 
3444   llvm::CallSite CS;
3445   if (!InvokeDest) {
3446     CS = Builder.CreateCall(Callee, IRCallArgs);
3447   } else {
3448     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3449     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
3450     EmitBlock(Cont);
3451   }
3452   if (callOrInvoke)
3453     *callOrInvoke = CS.getInstruction();
3454 
3455   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3456       !CS.hasFnAttr(llvm::Attribute::NoInline))
3457     Attrs =
3458         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3459                            llvm::Attribute::AlwaysInline);
3460 
3461   // Disable inlining inside SEH __try blocks.
3462   if (isSEHTryScope())
3463     Attrs =
3464         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3465                            llvm::Attribute::NoInline);
3466 
3467   CS.setAttributes(Attrs);
3468   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3469 
3470   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3471   // optimizer it can aggressively ignore unwind edges.
3472   if (CGM.getLangOpts().ObjCAutoRefCount)
3473     AddObjCARCExceptionMetadata(CS.getInstruction());
3474 
3475   // If the call doesn't return, finish the basic block and clear the
3476   // insertion point; this allows the rest of IRgen to discard
3477   // unreachable code.
3478   if (CS.doesNotReturn()) {
3479     if (UnusedReturnSize)
3480       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3481                       SRetPtr.getPointer());
3482 
3483     Builder.CreateUnreachable();
3484     Builder.ClearInsertionPoint();
3485 
3486     // FIXME: For now, emit a dummy basic block because expr emitters in
3487     // generally are not ready to handle emitting expressions at unreachable
3488     // points.
3489     EnsureInsertPoint();
3490 
3491     // Return a reasonable RValue.
3492     return GetUndefRValue(RetTy);
3493   }
3494 
3495   llvm::Instruction *CI = CS.getInstruction();
3496   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3497     CI->setName("call");
3498 
3499   // Emit any writebacks immediately.  Arguably this should happen
3500   // after any return-value munging.
3501   if (CallArgs.hasWritebacks())
3502     emitWritebacks(*this, CallArgs);
3503 
3504   // The stack cleanup for inalloca arguments has to run out of the normal
3505   // lexical order, so deactivate it and run it manually here.
3506   CallArgs.freeArgumentMemory(*this);
3507 
3508   RValue Ret = [&] {
3509     switch (RetAI.getKind()) {
3510     case ABIArgInfo::InAlloca:
3511     case ABIArgInfo::Indirect: {
3512       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3513       if (UnusedReturnSize)
3514         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3515                         SRetPtr.getPointer());
3516       return ret;
3517     }
3518 
3519     case ABIArgInfo::Ignore:
3520       // If we are ignoring an argument that had a result, make sure to
3521       // construct the appropriate return value for our caller.
3522       return GetUndefRValue(RetTy);
3523 
3524     case ABIArgInfo::Extend:
3525     case ABIArgInfo::Direct: {
3526       llvm::Type *RetIRTy = ConvertType(RetTy);
3527       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3528         switch (getEvaluationKind(RetTy)) {
3529         case TEK_Complex: {
3530           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3531           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3532           return RValue::getComplex(std::make_pair(Real, Imag));
3533         }
3534         case TEK_Aggregate: {
3535           Address DestPtr = ReturnValue.getValue();
3536           bool DestIsVolatile = ReturnValue.isVolatile();
3537 
3538           if (!DestPtr.isValid()) {
3539             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3540             DestIsVolatile = false;
3541           }
3542           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
3543           return RValue::getAggregate(DestPtr);
3544         }
3545         case TEK_Scalar: {
3546           // If the argument doesn't match, perform a bitcast to coerce it.  This
3547           // can happen due to trivial type mismatches.
3548           llvm::Value *V = CI;
3549           if (V->getType() != RetIRTy)
3550             V = Builder.CreateBitCast(V, RetIRTy);
3551           return RValue::get(V);
3552         }
3553         }
3554         llvm_unreachable("bad evaluation kind");
3555       }
3556 
3557       Address DestPtr = ReturnValue.getValue();
3558       bool DestIsVolatile = ReturnValue.isVolatile();
3559 
3560       if (!DestPtr.isValid()) {
3561         DestPtr = CreateMemTemp(RetTy, "coerce");
3562         DestIsVolatile = false;
3563       }
3564 
3565       // If the value is offset in memory, apply the offset now.
3566       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
3567       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3568 
3569       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3570     }
3571 
3572     case ABIArgInfo::Expand:
3573       llvm_unreachable("Invalid ABI kind for return argument");
3574     }
3575 
3576     llvm_unreachable("Unhandled ABIArgInfo::Kind");
3577   } ();
3578 
3579   if (Ret.isScalar() && TargetDecl) {
3580     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3581       llvm::Value *OffsetValue = nullptr;
3582       if (const auto *Offset = AA->getOffset())
3583         OffsetValue = EmitScalarExpr(Offset);
3584 
3585       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3586       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3587       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3588                               OffsetValue);
3589     }
3590   }
3591 
3592   return Ret;
3593 }
3594 
3595 /* VarArg handling */
3596 
3597 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
3598   VAListAddr = VE->isMicrosoftABI()
3599                  ? EmitMSVAListRef(VE->getSubExpr())
3600                  : EmitVAListRef(VE->getSubExpr());
3601   QualType Ty = VE->getType();
3602   if (VE->isMicrosoftABI())
3603     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
3604   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
3605 }
3606