1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "ABIInfo.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Attributes.h"
27 #include "llvm/Support/CallSite.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/InlineAsm.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 using namespace clang;
32 using namespace CodeGen;
33 
34 /***/
35 
36 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
37   switch (CC) {
38   default: return llvm::CallingConv::C;
39   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
40   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
41   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
42   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
43   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
44   // TODO: add support for CC_X86Pascal to llvm
45   }
46 }
47 
48 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
49 /// qualification.
50 /// FIXME: address space qualification?
51 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
52   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
53   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
54 }
55 
56 /// Returns the canonical formal type of the given C++ method.
57 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
58   return MD->getType()->getCanonicalTypeUnqualified()
59            .getAs<FunctionProtoType>();
60 }
61 
62 /// Returns the "extra-canonicalized" return type, which discards
63 /// qualifiers on the return type.  Codegen doesn't care about them,
64 /// and it makes ABI code a little easier to be able to assume that
65 /// all parameter and return types are top-level unqualified.
66 static CanQualType GetReturnType(QualType RetTy) {
67   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
68 }
69 
70 /// Arrange the argument and result information for a value of the given
71 /// unprototyped freestanding function type.
72 const CGFunctionInfo &
73 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
74   // When translating an unprototyped function type, always use a
75   // variadic type.
76   return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
77                                  ArrayRef<CanQualType>(),
78                                  FTNP->getExtInfo(),
79                                  RequiredArgs(0));
80 }
81 
82 /// Arrange the LLVM function layout for a value of the given function
83 /// type, on top of any implicit parameters already stored.  Use the
84 /// given ExtInfo instead of the ExtInfo from the function type.
85 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
86                                        SmallVectorImpl<CanQualType> &prefix,
87                                              CanQual<FunctionProtoType> FTP,
88                                               FunctionType::ExtInfo extInfo) {
89   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
90   // FIXME: Kill copy.
91   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
92     prefix.push_back(FTP->getArgType(i));
93   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
94   return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
95 }
96 
97 /// Arrange the argument and result information for a free function (i.e.
98 /// not a C++ or ObjC instance method) of the given type.
99 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
100                                       SmallVectorImpl<CanQualType> &prefix,
101                                             CanQual<FunctionProtoType> FTP) {
102   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
103 }
104 
105 /// Given the formal ext-info of a C++ instance method, adjust it
106 /// according to the C++ ABI in effect.
107 static void adjustCXXMethodInfo(CodeGenTypes &CGT,
108                                 FunctionType::ExtInfo &extInfo) {
109   // FIXME: thiscall on Microsoft
110 }
111 
112 /// Arrange the argument and result information for a free function (i.e.
113 /// not a C++ or ObjC instance method) of the given type.
114 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
115                                       SmallVectorImpl<CanQualType> &prefix,
116                                             CanQual<FunctionProtoType> FTP) {
117   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
118   adjustCXXMethodInfo(CGT, extInfo);
119   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
120 }
121 
122 /// Arrange the argument and result information for a value of the
123 /// given freestanding function type.
124 const CGFunctionInfo &
125 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
126   SmallVector<CanQualType, 16> argTypes;
127   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
128 }
129 
130 static CallingConv getCallingConventionForDecl(const Decl *D) {
131   // Set the appropriate calling convention for the Function.
132   if (D->hasAttr<StdCallAttr>())
133     return CC_X86StdCall;
134 
135   if (D->hasAttr<FastCallAttr>())
136     return CC_X86FastCall;
137 
138   if (D->hasAttr<ThisCallAttr>())
139     return CC_X86ThisCall;
140 
141   if (D->hasAttr<PascalAttr>())
142     return CC_X86Pascal;
143 
144   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
145     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
146 
147   return CC_C;
148 }
149 
150 /// Arrange the argument and result information for a call to an
151 /// unknown C++ non-static member function of the given abstract type.
152 /// The member function must be an ordinary function, i.e. not a
153 /// constructor or destructor.
154 const CGFunctionInfo &
155 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
156                                    const FunctionProtoType *FTP) {
157   SmallVector<CanQualType, 16> argTypes;
158 
159   // Add the 'this' pointer.
160   argTypes.push_back(GetThisType(Context, RD));
161 
162   return ::arrangeCXXMethodType(*this, argTypes,
163               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
164 }
165 
166 /// Arrange the argument and result information for a declaration or
167 /// definition of the given C++ non-static member function.  The
168 /// member function must be an ordinary function, i.e. not a
169 /// constructor or destructor.
170 const CGFunctionInfo &
171 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
172   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
173   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
174 
175   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
176 
177   if (MD->isInstance()) {
178     // The abstract case is perfectly fine.
179     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
180   }
181 
182   return arrangeFreeFunctionType(prototype);
183 }
184 
185 /// Arrange the argument and result information for a declaration
186 /// or definition to the given constructor variant.
187 const CGFunctionInfo &
188 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
189                                                CXXCtorType ctorKind) {
190   SmallVector<CanQualType, 16> argTypes;
191   argTypes.push_back(GetThisType(Context, D->getParent()));
192   CanQualType resultType = Context.VoidTy;
193 
194   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
195 
196   CanQual<FunctionProtoType> FTP = GetFormalType(D);
197 
198   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
199 
200   // Add the formal parameters.
201   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
202     argTypes.push_back(FTP->getArgType(i));
203 
204   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
205   adjustCXXMethodInfo(*this, extInfo);
206   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
207 }
208 
209 /// Arrange the argument and result information for a declaration,
210 /// definition, or call to the given destructor variant.  It so
211 /// happens that all three cases produce the same information.
212 const CGFunctionInfo &
213 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
214                                    CXXDtorType dtorKind) {
215   SmallVector<CanQualType, 2> argTypes;
216   argTypes.push_back(GetThisType(Context, D->getParent()));
217   CanQualType resultType = Context.VoidTy;
218 
219   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
220 
221   CanQual<FunctionProtoType> FTP = GetFormalType(D);
222   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
223 
224   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
225   adjustCXXMethodInfo(*this, extInfo);
226   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
227                                  RequiredArgs::All);
228 }
229 
230 /// Arrange the argument and result information for the declaration or
231 /// definition of the given function.
232 const CGFunctionInfo &
233 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
234   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
235     if (MD->isInstance())
236       return arrangeCXXMethodDeclaration(MD);
237 
238   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
239 
240   assert(isa<FunctionType>(FTy));
241 
242   // When declaring a function without a prototype, always use a
243   // non-variadic type.
244   if (isa<FunctionNoProtoType>(FTy)) {
245     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
246     return arrangeLLVMFunctionInfo(noProto->getResultType(),
247                                    ArrayRef<CanQualType>(),
248                                    noProto->getExtInfo(),
249                                    RequiredArgs::All);
250   }
251 
252   assert(isa<FunctionProtoType>(FTy));
253   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
254 }
255 
256 /// Arrange the argument and result information for the declaration or
257 /// definition of an Objective-C method.
258 const CGFunctionInfo &
259 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
260   // It happens that this is the same as a call with no optional
261   // arguments, except also using the formal 'self' type.
262   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
263 }
264 
265 /// Arrange the argument and result information for the function type
266 /// through which to perform a send to the given Objective-C method,
267 /// using the given receiver type.  The receiver type is not always
268 /// the 'self' type of the method or even an Objective-C pointer type.
269 /// This is *not* the right method for actually performing such a
270 /// message send, due to the possibility of optional arguments.
271 const CGFunctionInfo &
272 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
273                                               QualType receiverType) {
274   SmallVector<CanQualType, 16> argTys;
275   argTys.push_back(Context.getCanonicalParamType(receiverType));
276   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
277   // FIXME: Kill copy?
278   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
279          e = MD->param_end(); i != e; ++i) {
280     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
281   }
282 
283   FunctionType::ExtInfo einfo;
284   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
285 
286   if (getContext().getLangOpts().ObjCAutoRefCount &&
287       MD->hasAttr<NSReturnsRetainedAttr>())
288     einfo = einfo.withProducesResult(true);
289 
290   RequiredArgs required =
291     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
292 
293   return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
294                                  einfo, required);
295 }
296 
297 const CGFunctionInfo &
298 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
299   // FIXME: Do we need to handle ObjCMethodDecl?
300   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
301 
302   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
303     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
304 
305   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
306     return arrangeCXXDestructor(DD, GD.getDtorType());
307 
308   return arrangeFunctionDeclaration(FD);
309 }
310 
311 /// Figure out the rules for calling a function with the given formal
312 /// type using the given arguments.  The arguments are necessary
313 /// because the function might be unprototyped, in which case it's
314 /// target-dependent in crazy ways.
315 const CGFunctionInfo &
316 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
317                                       const FunctionType *fnType) {
318   RequiredArgs required = RequiredArgs::All;
319   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
320     if (proto->isVariadic())
321       required = RequiredArgs(proto->getNumArgs());
322   } else if (CGM.getTargetCodeGenInfo()
323                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
324     required = RequiredArgs(0);
325   }
326 
327   return arrangeFreeFunctionCall(fnType->getResultType(), args,
328                                  fnType->getExtInfo(), required);
329 }
330 
331 const CGFunctionInfo &
332 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
333                                       const CallArgList &args,
334                                       FunctionType::ExtInfo info,
335                                       RequiredArgs required) {
336   // FIXME: Kill copy.
337   SmallVector<CanQualType, 16> argTypes;
338   for (CallArgList::const_iterator i = args.begin(), e = args.end();
339        i != e; ++i)
340     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
341   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
342                                  required);
343 }
344 
345 /// Arrange a call to a C++ method, passing the given arguments.
346 const CGFunctionInfo &
347 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
348                                    const FunctionProtoType *FPT,
349                                    RequiredArgs required) {
350   // FIXME: Kill copy.
351   SmallVector<CanQualType, 16> argTypes;
352   for (CallArgList::const_iterator i = args.begin(), e = args.end();
353        i != e; ++i)
354     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
355 
356   FunctionType::ExtInfo info = FPT->getExtInfo();
357   adjustCXXMethodInfo(*this, info);
358   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
359                                  argTypes, info, required);
360 }
361 
362 const CGFunctionInfo &
363 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
364                                          const FunctionArgList &args,
365                                          const FunctionType::ExtInfo &info,
366                                          bool isVariadic) {
367   // FIXME: Kill copy.
368   SmallVector<CanQualType, 16> argTypes;
369   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
370        i != e; ++i)
371     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
372 
373   RequiredArgs required =
374     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
375   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
376                                  required);
377 }
378 
379 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
380   return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(),
381                                  FunctionType::ExtInfo(), RequiredArgs::All);
382 }
383 
384 /// Arrange the argument and result information for an abstract value
385 /// of a given function type.  This is the method which all of the
386 /// above functions ultimately defer to.
387 const CGFunctionInfo &
388 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
389                                       ArrayRef<CanQualType> argTypes,
390                                       FunctionType::ExtInfo info,
391                                       RequiredArgs required) {
392 #ifndef NDEBUG
393   for (ArrayRef<CanQualType>::const_iterator
394          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
395     assert(I->isCanonicalAsParam());
396 #endif
397 
398   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
399 
400   // Lookup or create unique function info.
401   llvm::FoldingSetNodeID ID;
402   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
403 
404   void *insertPos = 0;
405   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
406   if (FI)
407     return *FI;
408 
409   // Construct the function info.  We co-allocate the ArgInfos.
410   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
411   FunctionInfos.InsertNode(FI, insertPos);
412 
413   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
414   assert(inserted && "Recursively being processed?");
415 
416   // Compute ABI information.
417   getABIInfo().computeInfo(*FI);
418 
419   // Loop over all of the computed argument and return value info.  If any of
420   // them are direct or extend without a specified coerce type, specify the
421   // default now.
422   ABIArgInfo &retInfo = FI->getReturnInfo();
423   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
424     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
425 
426   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
427        I != E; ++I)
428     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
429       I->info.setCoerceToType(ConvertType(I->type));
430 
431   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
432   assert(erased && "Not in set?");
433 
434   return *FI;
435 }
436 
437 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
438                                        const FunctionType::ExtInfo &info,
439                                        CanQualType resultType,
440                                        ArrayRef<CanQualType> argTypes,
441                                        RequiredArgs required) {
442   void *buffer = operator new(sizeof(CGFunctionInfo) +
443                               sizeof(ArgInfo) * (argTypes.size() + 1));
444   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
445   FI->CallingConvention = llvmCC;
446   FI->EffectiveCallingConvention = llvmCC;
447   FI->ASTCallingConvention = info.getCC();
448   FI->NoReturn = info.getNoReturn();
449   FI->ReturnsRetained = info.getProducesResult();
450   FI->Required = required;
451   FI->HasRegParm = info.getHasRegParm();
452   FI->RegParm = info.getRegParm();
453   FI->NumArgs = argTypes.size();
454   FI->getArgsBuffer()[0].type = resultType;
455   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
456     FI->getArgsBuffer()[i + 1].type = argTypes[i];
457   return FI;
458 }
459 
460 /***/
461 
462 void CodeGenTypes::GetExpandedTypes(QualType type,
463                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
464   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
465     uint64_t NumElts = AT->getSize().getZExtValue();
466     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
467       GetExpandedTypes(AT->getElementType(), expandedTypes);
468   } else if (const RecordType *RT = type->getAs<RecordType>()) {
469     const RecordDecl *RD = RT->getDecl();
470     assert(!RD->hasFlexibleArrayMember() &&
471            "Cannot expand structure with flexible array.");
472     if (RD->isUnion()) {
473       // Unions can be here only in degenerative cases - all the fields are same
474       // after flattening. Thus we have to use the "largest" field.
475       const FieldDecl *LargestFD = 0;
476       CharUnits UnionSize = CharUnits::Zero();
477 
478       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
479            i != e; ++i) {
480         const FieldDecl *FD = *i;
481         assert(!FD->isBitField() &&
482                "Cannot expand structure with bit-field members.");
483         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
484         if (UnionSize < FieldSize) {
485           UnionSize = FieldSize;
486           LargestFD = FD;
487         }
488       }
489       if (LargestFD)
490         GetExpandedTypes(LargestFD->getType(), expandedTypes);
491     } else {
492       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
493            i != e; ++i) {
494         assert(!i->isBitField() &&
495                "Cannot expand structure with bit-field members.");
496         GetExpandedTypes(i->getType(), expandedTypes);
497       }
498     }
499   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
500     llvm::Type *EltTy = ConvertType(CT->getElementType());
501     expandedTypes.push_back(EltTy);
502     expandedTypes.push_back(EltTy);
503   } else
504     expandedTypes.push_back(ConvertType(type));
505 }
506 
507 llvm::Function::arg_iterator
508 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
509                                     llvm::Function::arg_iterator AI) {
510   assert(LV.isSimple() &&
511          "Unexpected non-simple lvalue during struct expansion.");
512 
513   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
514     unsigned NumElts = AT->getSize().getZExtValue();
515     QualType EltTy = AT->getElementType();
516     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
517       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
518       LValue LV = MakeAddrLValue(EltAddr, EltTy);
519       AI = ExpandTypeFromArgs(EltTy, LV, AI);
520     }
521   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
522     RecordDecl *RD = RT->getDecl();
523     if (RD->isUnion()) {
524       // Unions can be here only in degenerative cases - all the fields are same
525       // after flattening. Thus we have to use the "largest" field.
526       const FieldDecl *LargestFD = 0;
527       CharUnits UnionSize = CharUnits::Zero();
528 
529       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
530            i != e; ++i) {
531         const FieldDecl *FD = *i;
532         assert(!FD->isBitField() &&
533                "Cannot expand structure with bit-field members.");
534         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
535         if (UnionSize < FieldSize) {
536           UnionSize = FieldSize;
537           LargestFD = FD;
538         }
539       }
540       if (LargestFD) {
541         // FIXME: What are the right qualifiers here?
542         LValue SubLV = EmitLValueForField(LV, LargestFD);
543         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
544       }
545     } else {
546       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
547            i != e; ++i) {
548         FieldDecl *FD = *i;
549         QualType FT = FD->getType();
550 
551         // FIXME: What are the right qualifiers here?
552         LValue SubLV = EmitLValueForField(LV, FD);
553         AI = ExpandTypeFromArgs(FT, SubLV, AI);
554       }
555     }
556   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
557     QualType EltTy = CT->getElementType();
558     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
559     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
560     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
561     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
562   } else {
563     EmitStoreThroughLValue(RValue::get(AI), LV);
564     ++AI;
565   }
566 
567   return AI;
568 }
569 
570 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
571 /// accessing some number of bytes out of it, try to gep into the struct to get
572 /// at its inner goodness.  Dive as deep as possible without entering an element
573 /// with an in-memory size smaller than DstSize.
574 static llvm::Value *
575 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
576                                    llvm::StructType *SrcSTy,
577                                    uint64_t DstSize, CodeGenFunction &CGF) {
578   // We can't dive into a zero-element struct.
579   if (SrcSTy->getNumElements() == 0) return SrcPtr;
580 
581   llvm::Type *FirstElt = SrcSTy->getElementType(0);
582 
583   // If the first elt is at least as large as what we're looking for, or if the
584   // first element is the same size as the whole struct, we can enter it.
585   uint64_t FirstEltSize =
586     CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
587   if (FirstEltSize < DstSize &&
588       FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
589     return SrcPtr;
590 
591   // GEP into the first element.
592   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
593 
594   // If the first element is a struct, recurse.
595   llvm::Type *SrcTy =
596     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
597   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
598     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
599 
600   return SrcPtr;
601 }
602 
603 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
604 /// are either integers or pointers.  This does a truncation of the value if it
605 /// is too large or a zero extension if it is too small.
606 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
607                                              llvm::Type *Ty,
608                                              CodeGenFunction &CGF) {
609   if (Val->getType() == Ty)
610     return Val;
611 
612   if (isa<llvm::PointerType>(Val->getType())) {
613     // If this is Pointer->Pointer avoid conversion to and from int.
614     if (isa<llvm::PointerType>(Ty))
615       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
616 
617     // Convert the pointer to an integer so we can play with its width.
618     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
619   }
620 
621   llvm::Type *DestIntTy = Ty;
622   if (isa<llvm::PointerType>(DestIntTy))
623     DestIntTy = CGF.IntPtrTy;
624 
625   if (Val->getType() != DestIntTy)
626     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
627 
628   if (isa<llvm::PointerType>(Ty))
629     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
630   return Val;
631 }
632 
633 
634 
635 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
636 /// a pointer to an object of type \arg Ty.
637 ///
638 /// This safely handles the case when the src type is smaller than the
639 /// destination type; in this situation the values of bits which not
640 /// present in the src are undefined.
641 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
642                                       llvm::Type *Ty,
643                                       CodeGenFunction &CGF) {
644   llvm::Type *SrcTy =
645     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
646 
647   // If SrcTy and Ty are the same, just do a load.
648   if (SrcTy == Ty)
649     return CGF.Builder.CreateLoad(SrcPtr);
650 
651   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
652 
653   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
654     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
655     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
656   }
657 
658   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
659 
660   // If the source and destination are integer or pointer types, just do an
661   // extension or truncation to the desired type.
662   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
663       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
664     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
665     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
666   }
667 
668   // If load is legal, just bitcast the src pointer.
669   if (SrcSize >= DstSize) {
670     // Generally SrcSize is never greater than DstSize, since this means we are
671     // losing bits. However, this can happen in cases where the structure has
672     // additional padding, for example due to a user specified alignment.
673     //
674     // FIXME: Assert that we aren't truncating non-padding bits when have access
675     // to that information.
676     llvm::Value *Casted =
677       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
678     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
679     // FIXME: Use better alignment / avoid requiring aligned load.
680     Load->setAlignment(1);
681     return Load;
682   }
683 
684   // Otherwise do coercion through memory. This is stupid, but
685   // simple.
686   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
687   llvm::Value *Casted =
688     CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
689   llvm::StoreInst *Store =
690     CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
691   // FIXME: Use better alignment / avoid requiring aligned store.
692   Store->setAlignment(1);
693   return CGF.Builder.CreateLoad(Tmp);
694 }
695 
696 // Function to store a first-class aggregate into memory.  We prefer to
697 // store the elements rather than the aggregate to be more friendly to
698 // fast-isel.
699 // FIXME: Do we need to recurse here?
700 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
701                           llvm::Value *DestPtr, bool DestIsVolatile,
702                           bool LowAlignment) {
703   // Prefer scalar stores to first-class aggregate stores.
704   if (llvm::StructType *STy =
705         dyn_cast<llvm::StructType>(Val->getType())) {
706     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
707       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
708       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
709       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
710                                                     DestIsVolatile);
711       if (LowAlignment)
712         SI->setAlignment(1);
713     }
714   } else {
715     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
716     if (LowAlignment)
717       SI->setAlignment(1);
718   }
719 }
720 
721 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
722 /// where the source and destination may have different types.
723 ///
724 /// This safely handles the case when the src type is larger than the
725 /// destination type; the upper bits of the src will be lost.
726 static void CreateCoercedStore(llvm::Value *Src,
727                                llvm::Value *DstPtr,
728                                bool DstIsVolatile,
729                                CodeGenFunction &CGF) {
730   llvm::Type *SrcTy = Src->getType();
731   llvm::Type *DstTy =
732     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
733   if (SrcTy == DstTy) {
734     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
735     return;
736   }
737 
738   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
739 
740   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
741     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
742     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
743   }
744 
745   // If the source and destination are integer or pointer types, just do an
746   // extension or truncation to the desired type.
747   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
748       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
749     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
750     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
751     return;
752   }
753 
754   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
755 
756   // If store is legal, just bitcast the src pointer.
757   if (SrcSize <= DstSize) {
758     llvm::Value *Casted =
759       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
760     // FIXME: Use better alignment / avoid requiring aligned store.
761     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
762   } else {
763     // Otherwise do coercion through memory. This is stupid, but
764     // simple.
765 
766     // Generally SrcSize is never greater than DstSize, since this means we are
767     // losing bits. However, this can happen in cases where the structure has
768     // additional padding, for example due to a user specified alignment.
769     //
770     // FIXME: Assert that we aren't truncating non-padding bits when have access
771     // to that information.
772     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
773     CGF.Builder.CreateStore(Src, Tmp);
774     llvm::Value *Casted =
775       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
776     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
777     // FIXME: Use better alignment / avoid requiring aligned load.
778     Load->setAlignment(1);
779     CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
780   }
781 }
782 
783 /***/
784 
785 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
786   return FI.getReturnInfo().isIndirect();
787 }
788 
789 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
790   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
791     switch (BT->getKind()) {
792     default:
793       return false;
794     case BuiltinType::Float:
795       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
796     case BuiltinType::Double:
797       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
798     case BuiltinType::LongDouble:
799       return getContext().getTargetInfo().useObjCFPRetForRealType(
800         TargetInfo::LongDouble);
801     }
802   }
803 
804   return false;
805 }
806 
807 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
808   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
809     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
810       if (BT->getKind() == BuiltinType::LongDouble)
811         return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
812     }
813   }
814 
815   return false;
816 }
817 
818 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
819   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
820   return GetFunctionType(FI);
821 }
822 
823 llvm::FunctionType *
824 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
825 
826   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
827   assert(Inserted && "Recursively being processed?");
828 
829   SmallVector<llvm::Type*, 8> argTypes;
830   llvm::Type *resultType = 0;
831 
832   const ABIArgInfo &retAI = FI.getReturnInfo();
833   switch (retAI.getKind()) {
834   case ABIArgInfo::Expand:
835     llvm_unreachable("Invalid ABI kind for return argument");
836 
837   case ABIArgInfo::Extend:
838   case ABIArgInfo::Direct:
839     resultType = retAI.getCoerceToType();
840     break;
841 
842   case ABIArgInfo::Indirect: {
843     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
844     resultType = llvm::Type::getVoidTy(getLLVMContext());
845 
846     QualType ret = FI.getReturnType();
847     llvm::Type *ty = ConvertType(ret);
848     unsigned addressSpace = Context.getTargetAddressSpace(ret);
849     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
850     break;
851   }
852 
853   case ABIArgInfo::Ignore:
854     resultType = llvm::Type::getVoidTy(getLLVMContext());
855     break;
856   }
857 
858   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
859          ie = FI.arg_end(); it != ie; ++it) {
860     const ABIArgInfo &argAI = it->info;
861 
862     switch (argAI.getKind()) {
863     case ABIArgInfo::Ignore:
864       break;
865 
866     case ABIArgInfo::Indirect: {
867       // indirect arguments are always on the stack, which is addr space #0.
868       llvm::Type *LTy = ConvertTypeForMem(it->type);
869       argTypes.push_back(LTy->getPointerTo());
870       break;
871     }
872 
873     case ABIArgInfo::Extend:
874     case ABIArgInfo::Direct: {
875       // Insert a padding type to ensure proper alignment.
876       if (llvm::Type *PaddingType = argAI.getPaddingType())
877         argTypes.push_back(PaddingType);
878       // If the coerce-to type is a first class aggregate, flatten it.  Either
879       // way is semantically identical, but fast-isel and the optimizer
880       // generally likes scalar values better than FCAs.
881       llvm::Type *argType = argAI.getCoerceToType();
882       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
883         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
884           argTypes.push_back(st->getElementType(i));
885       } else {
886         argTypes.push_back(argType);
887       }
888       break;
889     }
890 
891     case ABIArgInfo::Expand:
892       GetExpandedTypes(it->type, argTypes);
893       break;
894     }
895   }
896 
897   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
898   assert(Erased && "Not in set?");
899 
900   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
901 }
902 
903 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
904   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
905   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
906 
907   if (!isFuncTypeConvertible(FPT))
908     return llvm::StructType::get(getLLVMContext());
909 
910   const CGFunctionInfo *Info;
911   if (isa<CXXDestructorDecl>(MD))
912     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
913   else
914     Info = &arrangeCXXMethodDeclaration(MD);
915   return GetFunctionType(*Info);
916 }
917 
918 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
919                                            const Decl *TargetDecl,
920                                            AttributeListType &PAL,
921                                            unsigned &CallingConv) {
922   llvm::Attributes FuncAttrs;
923   llvm::Attributes RetAttrs;
924 
925   CallingConv = FI.getEffectiveCallingConvention();
926 
927   if (FI.isNoReturn())
928     FuncAttrs |= llvm::Attribute::NoReturn;
929 
930   // FIXME: handle sseregparm someday...
931   if (TargetDecl) {
932     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
933       FuncAttrs |= llvm::Attribute::ReturnsTwice;
934     if (TargetDecl->hasAttr<NoThrowAttr>())
935       FuncAttrs |= llvm::Attribute::NoUnwind;
936     else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
937       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
938       if (FPT && FPT->isNothrow(getContext()))
939         FuncAttrs |= llvm::Attribute::NoUnwind;
940     }
941 
942     if (TargetDecl->hasAttr<NoReturnAttr>())
943       FuncAttrs |= llvm::Attribute::NoReturn;
944 
945     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
946       FuncAttrs |= llvm::Attribute::ReturnsTwice;
947 
948     // 'const' and 'pure' attribute functions are also nounwind.
949     if (TargetDecl->hasAttr<ConstAttr>()) {
950       FuncAttrs |= llvm::Attribute::ReadNone;
951       FuncAttrs |= llvm::Attribute::NoUnwind;
952     } else if (TargetDecl->hasAttr<PureAttr>()) {
953       FuncAttrs |= llvm::Attribute::ReadOnly;
954       FuncAttrs |= llvm::Attribute::NoUnwind;
955     }
956     if (TargetDecl->hasAttr<MallocAttr>())
957       RetAttrs |= llvm::Attribute::NoAlias;
958   }
959 
960   if (CodeGenOpts.OptimizeSize)
961     FuncAttrs |= llvm::Attribute::OptimizeForSize;
962   if (CodeGenOpts.DisableRedZone)
963     FuncAttrs |= llvm::Attribute::NoRedZone;
964   if (CodeGenOpts.NoImplicitFloat)
965     FuncAttrs |= llvm::Attribute::NoImplicitFloat;
966 
967   QualType RetTy = FI.getReturnType();
968   unsigned Index = 1;
969   const ABIArgInfo &RetAI = FI.getReturnInfo();
970   switch (RetAI.getKind()) {
971   case ABIArgInfo::Extend:
972    if (RetTy->hasSignedIntegerRepresentation())
973      RetAttrs |= llvm::Attribute::SExt;
974    else if (RetTy->hasUnsignedIntegerRepresentation())
975      RetAttrs |= llvm::Attribute::ZExt;
976     break;
977   case ABIArgInfo::Direct:
978   case ABIArgInfo::Ignore:
979     break;
980 
981   case ABIArgInfo::Indirect:
982     PAL.push_back(llvm::AttributeWithIndex::get(Index,
983                                                 llvm::Attribute::StructRet));
984     ++Index;
985     // sret disables readnone and readonly
986     FuncAttrs &= ~(llvm::Attribute::ReadOnly |
987                    llvm::Attribute::ReadNone);
988     break;
989 
990   case ABIArgInfo::Expand:
991     llvm_unreachable("Invalid ABI kind for return argument");
992   }
993 
994   if (RetAttrs)
995     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
996 
997   // FIXME: RegParm should be reduced in case of global register variable.
998   signed RegParm;
999   if (FI.getHasRegParm())
1000     RegParm = FI.getRegParm();
1001   else
1002     RegParm = CodeGenOpts.NumRegisterParameters;
1003 
1004   unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0);
1005   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1006          ie = FI.arg_end(); it != ie; ++it) {
1007     QualType ParamType = it->type;
1008     const ABIArgInfo &AI = it->info;
1009     llvm::Attributes Attrs;
1010 
1011     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1012     // have the corresponding parameter variable.  It doesn't make
1013     // sense to do it here because parameters are so messed up.
1014     switch (AI.getKind()) {
1015     case ABIArgInfo::Extend:
1016       if (ParamType->isSignedIntegerOrEnumerationType())
1017         Attrs |= llvm::Attribute::SExt;
1018       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1019         Attrs |= llvm::Attribute::ZExt;
1020       // FALL THROUGH
1021     case ABIArgInfo::Direct:
1022       if (RegParm > 0 &&
1023           (ParamType->isIntegerType() || ParamType->isPointerType() ||
1024            ParamType->isReferenceType())) {
1025         RegParm -=
1026         (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
1027         if (RegParm >= 0)
1028           Attrs |= llvm::Attribute::InReg;
1029       }
1030       // FIXME: handle sseregparm someday...
1031 
1032       // Increment Index if there is padding.
1033       Index += (AI.getPaddingType() != 0);
1034 
1035       if (llvm::StructType *STy =
1036             dyn_cast<llvm::StructType>(AI.getCoerceToType()))
1037         Index += STy->getNumElements()-1;  // 1 will be added below.
1038       break;
1039 
1040     case ABIArgInfo::Indirect:
1041       if (AI.getIndirectByVal())
1042         Attrs |= llvm::Attribute::ByVal;
1043 
1044       Attrs |=
1045         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
1046       // byval disables readnone and readonly.
1047       FuncAttrs &= ~(llvm::Attribute::ReadOnly |
1048                      llvm::Attribute::ReadNone);
1049       break;
1050 
1051     case ABIArgInfo::Ignore:
1052       // Skip increment, no matching LLVM parameter.
1053       continue;
1054 
1055     case ABIArgInfo::Expand: {
1056       SmallVector<llvm::Type*, 8> types;
1057       // FIXME: This is rather inefficient. Do we ever actually need to do
1058       // anything here? The result should be just reconstructed on the other
1059       // side, so extension should be a non-issue.
1060       getTypes().GetExpandedTypes(ParamType, types);
1061       Index += types.size();
1062       continue;
1063     }
1064     }
1065 
1066     if (Attrs)
1067       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs));
1068     ++Index;
1069   }
1070   if (FuncAttrs)
1071     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
1072 }
1073 
1074 /// An argument came in as a promoted argument; demote it back to its
1075 /// declared type.
1076 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1077                                          const VarDecl *var,
1078                                          llvm::Value *value) {
1079   llvm::Type *varType = CGF.ConvertType(var->getType());
1080 
1081   // This can happen with promotions that actually don't change the
1082   // underlying type, like the enum promotions.
1083   if (value->getType() == varType) return value;
1084 
1085   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1086          && "unexpected promotion type");
1087 
1088   if (isa<llvm::IntegerType>(varType))
1089     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1090 
1091   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1092 }
1093 
1094 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1095                                          llvm::Function *Fn,
1096                                          const FunctionArgList &Args) {
1097   // If this is an implicit-return-zero function, go ahead and
1098   // initialize the return value.  TODO: it might be nice to have
1099   // a more general mechanism for this that didn't require synthesized
1100   // return statements.
1101   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
1102     if (FD->hasImplicitReturnZero()) {
1103       QualType RetTy = FD->getResultType().getUnqualifiedType();
1104       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1105       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1106       Builder.CreateStore(Zero, ReturnValue);
1107     }
1108   }
1109 
1110   // FIXME: We no longer need the types from FunctionArgList; lift up and
1111   // simplify.
1112 
1113   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1114   llvm::Function::arg_iterator AI = Fn->arg_begin();
1115 
1116   // Name the struct return argument.
1117   if (CGM.ReturnTypeUsesSRet(FI)) {
1118     AI->setName("agg.result");
1119     AI->addAttr(llvm::Attribute::NoAlias);
1120     ++AI;
1121   }
1122 
1123   assert(FI.arg_size() == Args.size() &&
1124          "Mismatch between function signature & arguments.");
1125   unsigned ArgNo = 1;
1126   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1127   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1128        i != e; ++i, ++info_it, ++ArgNo) {
1129     const VarDecl *Arg = *i;
1130     QualType Ty = info_it->type;
1131     const ABIArgInfo &ArgI = info_it->info;
1132 
1133     bool isPromoted =
1134       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1135 
1136     switch (ArgI.getKind()) {
1137     case ABIArgInfo::Indirect: {
1138       llvm::Value *V = AI;
1139 
1140       if (hasAggregateLLVMType(Ty)) {
1141         // Aggregates and complex variables are accessed by reference.  All we
1142         // need to do is realign the value, if requested
1143         if (ArgI.getIndirectRealign()) {
1144           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1145 
1146           // Copy from the incoming argument pointer to the temporary with the
1147           // appropriate alignment.
1148           //
1149           // FIXME: We should have a common utility for generating an aggregate
1150           // copy.
1151           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1152           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1153           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1154           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1155           Builder.CreateMemCpy(Dst,
1156                                Src,
1157                                llvm::ConstantInt::get(IntPtrTy,
1158                                                       Size.getQuantity()),
1159                                ArgI.getIndirectAlign(),
1160                                false);
1161           V = AlignedTemp;
1162         }
1163       } else {
1164         // Load scalar value from indirect argument.
1165         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1166         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1167 
1168         if (isPromoted)
1169           V = emitArgumentDemotion(*this, Arg, V);
1170       }
1171       EmitParmDecl(*Arg, V, ArgNo);
1172       break;
1173     }
1174 
1175     case ABIArgInfo::Extend:
1176     case ABIArgInfo::Direct: {
1177       // Skip the dummy padding argument.
1178       if (ArgI.getPaddingType())
1179         ++AI;
1180 
1181       // If we have the trivial case, handle it with no muss and fuss.
1182       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1183           ArgI.getCoerceToType() == ConvertType(Ty) &&
1184           ArgI.getDirectOffset() == 0) {
1185         assert(AI != Fn->arg_end() && "Argument mismatch!");
1186         llvm::Value *V = AI;
1187 
1188         if (Arg->getType().isRestrictQualified())
1189           AI->addAttr(llvm::Attribute::NoAlias);
1190 
1191         // Ensure the argument is the correct type.
1192         if (V->getType() != ArgI.getCoerceToType())
1193           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1194 
1195         if (isPromoted)
1196           V = emitArgumentDemotion(*this, Arg, V);
1197 
1198         EmitParmDecl(*Arg, V, ArgNo);
1199         break;
1200       }
1201 
1202       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1203 
1204       // The alignment we need to use is the max of the requested alignment for
1205       // the argument plus the alignment required by our access code below.
1206       unsigned AlignmentToUse =
1207         CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
1208       AlignmentToUse = std::max(AlignmentToUse,
1209                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1210 
1211       Alloca->setAlignment(AlignmentToUse);
1212       llvm::Value *V = Alloca;
1213       llvm::Value *Ptr = V;    // Pointer to store into.
1214 
1215       // If the value is offset in memory, apply the offset now.
1216       if (unsigned Offs = ArgI.getDirectOffset()) {
1217         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1218         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1219         Ptr = Builder.CreateBitCast(Ptr,
1220                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1221       }
1222 
1223       // If the coerce-to type is a first class aggregate, we flatten it and
1224       // pass the elements. Either way is semantically identical, but fast-isel
1225       // and the optimizer generally likes scalar values better than FCAs.
1226       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1227       if (STy && STy->getNumElements() > 1) {
1228         uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy);
1229         llvm::Type *DstTy =
1230           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1231         uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy);
1232 
1233         if (SrcSize <= DstSize) {
1234           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1235 
1236           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1237             assert(AI != Fn->arg_end() && "Argument mismatch!");
1238             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1239             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1240             Builder.CreateStore(AI++, EltPtr);
1241           }
1242         } else {
1243           llvm::AllocaInst *TempAlloca =
1244             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1245           TempAlloca->setAlignment(AlignmentToUse);
1246           llvm::Value *TempV = TempAlloca;
1247 
1248           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1249             assert(AI != Fn->arg_end() && "Argument mismatch!");
1250             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1251             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1252             Builder.CreateStore(AI++, EltPtr);
1253           }
1254 
1255           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1256         }
1257       } else {
1258         // Simple case, just do a coerced store of the argument into the alloca.
1259         assert(AI != Fn->arg_end() && "Argument mismatch!");
1260         AI->setName(Arg->getName() + ".coerce");
1261         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1262       }
1263 
1264 
1265       // Match to what EmitParmDecl is expecting for this type.
1266       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1267         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1268         if (isPromoted)
1269           V = emitArgumentDemotion(*this, Arg, V);
1270       }
1271       EmitParmDecl(*Arg, V, ArgNo);
1272       continue;  // Skip ++AI increment, already done.
1273     }
1274 
1275     case ABIArgInfo::Expand: {
1276       // If this structure was expanded into multiple arguments then
1277       // we need to create a temporary and reconstruct it from the
1278       // arguments.
1279       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1280       CharUnits Align = getContext().getDeclAlign(Arg);
1281       Alloca->setAlignment(Align.getQuantity());
1282       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1283       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1284       EmitParmDecl(*Arg, Alloca, ArgNo);
1285 
1286       // Name the arguments used in expansion and increment AI.
1287       unsigned Index = 0;
1288       for (; AI != End; ++AI, ++Index)
1289         AI->setName(Arg->getName() + "." + Twine(Index));
1290       continue;
1291     }
1292 
1293     case ABIArgInfo::Ignore:
1294       // Initialize the local variable appropriately.
1295       if (hasAggregateLLVMType(Ty))
1296         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1297       else
1298         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1299                      ArgNo);
1300 
1301       // Skip increment, no matching LLVM parameter.
1302       continue;
1303     }
1304 
1305     ++AI;
1306   }
1307   assert(AI == Fn->arg_end() && "Argument mismatch!");
1308 }
1309 
1310 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1311   while (insn->use_empty()) {
1312     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1313     if (!bitcast) return;
1314 
1315     // This is "safe" because we would have used a ConstantExpr otherwise.
1316     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1317     bitcast->eraseFromParent();
1318   }
1319 }
1320 
1321 /// Try to emit a fused autorelease of a return result.
1322 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1323                                                     llvm::Value *result) {
1324   // We must be immediately followed the cast.
1325   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1326   if (BB->empty()) return 0;
1327   if (&BB->back() != result) return 0;
1328 
1329   llvm::Type *resultType = result->getType();
1330 
1331   // result is in a BasicBlock and is therefore an Instruction.
1332   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1333 
1334   SmallVector<llvm::Instruction*,4> insnsToKill;
1335 
1336   // Look for:
1337   //  %generator = bitcast %type1* %generator2 to %type2*
1338   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1339     // We would have emitted this as a constant if the operand weren't
1340     // an Instruction.
1341     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1342 
1343     // Require the generator to be immediately followed by the cast.
1344     if (generator->getNextNode() != bitcast)
1345       return 0;
1346 
1347     insnsToKill.push_back(bitcast);
1348   }
1349 
1350   // Look for:
1351   //   %generator = call i8* @objc_retain(i8* %originalResult)
1352   // or
1353   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1354   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1355   if (!call) return 0;
1356 
1357   bool doRetainAutorelease;
1358 
1359   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1360     doRetainAutorelease = true;
1361   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1362                                           .objc_retainAutoreleasedReturnValue) {
1363     doRetainAutorelease = false;
1364 
1365     // Look for an inline asm immediately preceding the call and kill it, too.
1366     llvm::Instruction *prev = call->getPrevNode();
1367     if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev))
1368       if (asmCall->getCalledValue()
1369             == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker)
1370         insnsToKill.push_back(prev);
1371   } else {
1372     return 0;
1373   }
1374 
1375   result = call->getArgOperand(0);
1376   insnsToKill.push_back(call);
1377 
1378   // Keep killing bitcasts, for sanity.  Note that we no longer care
1379   // about precise ordering as long as there's exactly one use.
1380   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1381     if (!bitcast->hasOneUse()) break;
1382     insnsToKill.push_back(bitcast);
1383     result = bitcast->getOperand(0);
1384   }
1385 
1386   // Delete all the unnecessary instructions, from latest to earliest.
1387   for (SmallVectorImpl<llvm::Instruction*>::iterator
1388          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1389     (*i)->eraseFromParent();
1390 
1391   // Do the fused retain/autorelease if we were asked to.
1392   if (doRetainAutorelease)
1393     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1394 
1395   // Cast back to the result type.
1396   return CGF.Builder.CreateBitCast(result, resultType);
1397 }
1398 
1399 /// If this is a +1 of the value of an immutable 'self', remove it.
1400 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1401                                           llvm::Value *result) {
1402   // This is only applicable to a method with an immutable 'self'.
1403   const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl);
1404   if (!method) return 0;
1405   const VarDecl *self = method->getSelfDecl();
1406   if (!self->getType().isConstQualified()) return 0;
1407 
1408   // Look for a retain call.
1409   llvm::CallInst *retainCall =
1410     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1411   if (!retainCall ||
1412       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1413     return 0;
1414 
1415   // Look for an ordinary load of 'self'.
1416   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1417   llvm::LoadInst *load =
1418     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1419   if (!load || load->isAtomic() || load->isVolatile() ||
1420       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1421     return 0;
1422 
1423   // Okay!  Burn it all down.  This relies for correctness on the
1424   // assumption that the retain is emitted as part of the return and
1425   // that thereafter everything is used "linearly".
1426   llvm::Type *resultType = result->getType();
1427   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1428   assert(retainCall->use_empty());
1429   retainCall->eraseFromParent();
1430   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1431 
1432   return CGF.Builder.CreateBitCast(load, resultType);
1433 }
1434 
1435 /// Emit an ARC autorelease of the result of a function.
1436 ///
1437 /// \return the value to actually return from the function
1438 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1439                                             llvm::Value *result) {
1440   // If we're returning 'self', kill the initial retain.  This is a
1441   // heuristic attempt to "encourage correctness" in the really unfortunate
1442   // case where we have a return of self during a dealloc and we desperately
1443   // need to avoid the possible autorelease.
1444   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1445     return self;
1446 
1447   // At -O0, try to emit a fused retain/autorelease.
1448   if (CGF.shouldUseFusedARCCalls())
1449     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1450       return fused;
1451 
1452   return CGF.EmitARCAutoreleaseReturnValue(result);
1453 }
1454 
1455 /// Heuristically search for a dominating store to the return-value slot.
1456 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1457   // If there are multiple uses of the return-value slot, just check
1458   // for something immediately preceding the IP.  Sometimes this can
1459   // happen with how we generate implicit-returns; it can also happen
1460   // with noreturn cleanups.
1461   if (!CGF.ReturnValue->hasOneUse()) {
1462     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1463     if (IP->empty()) return 0;
1464     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1465     if (!store) return 0;
1466     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1467     assert(!store->isAtomic() && !store->isVolatile()); // see below
1468     return store;
1469   }
1470 
1471   llvm::StoreInst *store =
1472     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1473   if (!store) return 0;
1474 
1475   // These aren't actually possible for non-coerced returns, and we
1476   // only care about non-coerced returns on this code path.
1477   assert(!store->isAtomic() && !store->isVolatile());
1478 
1479   // Now do a first-and-dirty dominance check: just walk up the
1480   // single-predecessors chain from the current insertion point.
1481   llvm::BasicBlock *StoreBB = store->getParent();
1482   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1483   while (IP != StoreBB) {
1484     if (!(IP = IP->getSinglePredecessor()))
1485       return 0;
1486   }
1487 
1488   // Okay, the store's basic block dominates the insertion point; we
1489   // can do our thing.
1490   return store;
1491 }
1492 
1493 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1494   // Functions with no result always return void.
1495   if (ReturnValue == 0) {
1496     Builder.CreateRetVoid();
1497     return;
1498   }
1499 
1500   llvm::DebugLoc RetDbgLoc;
1501   llvm::Value *RV = 0;
1502   QualType RetTy = FI.getReturnType();
1503   const ABIArgInfo &RetAI = FI.getReturnInfo();
1504 
1505   switch (RetAI.getKind()) {
1506   case ABIArgInfo::Indirect: {
1507     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1508     if (RetTy->isAnyComplexType()) {
1509       ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1510       StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1511     } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1512       // Do nothing; aggregrates get evaluated directly into the destination.
1513     } else {
1514       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1515                         false, Alignment, RetTy);
1516     }
1517     break;
1518   }
1519 
1520   case ABIArgInfo::Extend:
1521   case ABIArgInfo::Direct:
1522     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1523         RetAI.getDirectOffset() == 0) {
1524       // The internal return value temp always will have pointer-to-return-type
1525       // type, just do a load.
1526 
1527       // If there is a dominating store to ReturnValue, we can elide
1528       // the load, zap the store, and usually zap the alloca.
1529       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1530         // Get the stored value and nuke the now-dead store.
1531         RetDbgLoc = SI->getDebugLoc();
1532         RV = SI->getValueOperand();
1533         SI->eraseFromParent();
1534 
1535         // If that was the only use of the return value, nuke it as well now.
1536         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1537           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1538           ReturnValue = 0;
1539         }
1540 
1541       // Otherwise, we have to do a simple load.
1542       } else {
1543         RV = Builder.CreateLoad(ReturnValue);
1544       }
1545     } else {
1546       llvm::Value *V = ReturnValue;
1547       // If the value is offset in memory, apply the offset now.
1548       if (unsigned Offs = RetAI.getDirectOffset()) {
1549         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1550         V = Builder.CreateConstGEP1_32(V, Offs);
1551         V = Builder.CreateBitCast(V,
1552                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1553       }
1554 
1555       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1556     }
1557 
1558     // In ARC, end functions that return a retainable type with a call
1559     // to objc_autoreleaseReturnValue.
1560     if (AutoreleaseResult) {
1561       assert(getLangOpts().ObjCAutoRefCount &&
1562              !FI.isReturnsRetained() &&
1563              RetTy->isObjCRetainableType());
1564       RV = emitAutoreleaseOfResult(*this, RV);
1565     }
1566 
1567     break;
1568 
1569   case ABIArgInfo::Ignore:
1570     break;
1571 
1572   case ABIArgInfo::Expand:
1573     llvm_unreachable("Invalid ABI kind for return argument");
1574   }
1575 
1576   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1577   if (!RetDbgLoc.isUnknown())
1578     Ret->setDebugLoc(RetDbgLoc);
1579 }
1580 
1581 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1582                                           const VarDecl *param) {
1583   // StartFunction converted the ABI-lowered parameter(s) into a
1584   // local alloca.  We need to turn that into an r-value suitable
1585   // for EmitCall.
1586   llvm::Value *local = GetAddrOfLocalVar(param);
1587 
1588   QualType type = param->getType();
1589 
1590   // For the most part, we just need to load the alloca, except:
1591   // 1) aggregate r-values are actually pointers to temporaries, and
1592   // 2) references to aggregates are pointers directly to the aggregate.
1593   // I don't know why references to non-aggregates are different here.
1594   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1595     if (hasAggregateLLVMType(ref->getPointeeType()))
1596       return args.add(RValue::getAggregate(local), type);
1597 
1598     // Locals which are references to scalars are represented
1599     // with allocas holding the pointer.
1600     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1601   }
1602 
1603   if (type->isAnyComplexType()) {
1604     ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1605     return args.add(RValue::getComplex(complex), type);
1606   }
1607 
1608   if (hasAggregateLLVMType(type))
1609     return args.add(RValue::getAggregate(local), type);
1610 
1611   unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1612   llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1613   return args.add(RValue::get(value), type);
1614 }
1615 
1616 static bool isProvablyNull(llvm::Value *addr) {
1617   return isa<llvm::ConstantPointerNull>(addr);
1618 }
1619 
1620 static bool isProvablyNonNull(llvm::Value *addr) {
1621   return isa<llvm::AllocaInst>(addr);
1622 }
1623 
1624 /// Emit the actual writing-back of a writeback.
1625 static void emitWriteback(CodeGenFunction &CGF,
1626                           const CallArgList::Writeback &writeback) {
1627   llvm::Value *srcAddr = writeback.Address;
1628   assert(!isProvablyNull(srcAddr) &&
1629          "shouldn't have writeback for provably null argument");
1630 
1631   llvm::BasicBlock *contBB = 0;
1632 
1633   // If the argument wasn't provably non-null, we need to null check
1634   // before doing the store.
1635   bool provablyNonNull = isProvablyNonNull(srcAddr);
1636   if (!provablyNonNull) {
1637     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1638     contBB = CGF.createBasicBlock("icr.done");
1639 
1640     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1641     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1642     CGF.EmitBlock(writebackBB);
1643   }
1644 
1645   // Load the value to writeback.
1646   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1647 
1648   // Cast it back, in case we're writing an id to a Foo* or something.
1649   value = CGF.Builder.CreateBitCast(value,
1650                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1651                             "icr.writeback-cast");
1652 
1653   // Perform the writeback.
1654   QualType srcAddrType = writeback.AddressType;
1655   CGF.EmitStoreThroughLValue(RValue::get(value),
1656                              CGF.MakeAddrLValue(srcAddr, srcAddrType));
1657 
1658   // Jump to the continuation block.
1659   if (!provablyNonNull)
1660     CGF.EmitBlock(contBB);
1661 }
1662 
1663 static void emitWritebacks(CodeGenFunction &CGF,
1664                            const CallArgList &args) {
1665   for (CallArgList::writeback_iterator
1666          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1667     emitWriteback(CGF, *i);
1668 }
1669 
1670 /// Emit an argument that's being passed call-by-writeback.  That is,
1671 /// we are passing the address of
1672 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1673                              const ObjCIndirectCopyRestoreExpr *CRE) {
1674   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1675 
1676   // The dest and src types don't necessarily match in LLVM terms
1677   // because of the crazy ObjC compatibility rules.
1678 
1679   llvm::PointerType *destType =
1680     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1681 
1682   // If the address is a constant null, just pass the appropriate null.
1683   if (isProvablyNull(srcAddr)) {
1684     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1685              CRE->getType());
1686     return;
1687   }
1688 
1689   QualType srcAddrType =
1690     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1691 
1692   // Create the temporary.
1693   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1694                                            "icr.temp");
1695 
1696   // Zero-initialize it if we're not doing a copy-initialization.
1697   bool shouldCopy = CRE->shouldCopy();
1698   if (!shouldCopy) {
1699     llvm::Value *null =
1700       llvm::ConstantPointerNull::get(
1701         cast<llvm::PointerType>(destType->getElementType()));
1702     CGF.Builder.CreateStore(null, temp);
1703   }
1704 
1705   llvm::BasicBlock *contBB = 0;
1706 
1707   // If the address is *not* known to be non-null, we need to switch.
1708   llvm::Value *finalArgument;
1709 
1710   bool provablyNonNull = isProvablyNonNull(srcAddr);
1711   if (provablyNonNull) {
1712     finalArgument = temp;
1713   } else {
1714     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1715 
1716     finalArgument = CGF.Builder.CreateSelect(isNull,
1717                                    llvm::ConstantPointerNull::get(destType),
1718                                              temp, "icr.argument");
1719 
1720     // If we need to copy, then the load has to be conditional, which
1721     // means we need control flow.
1722     if (shouldCopy) {
1723       contBB = CGF.createBasicBlock("icr.cont");
1724       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1725       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1726       CGF.EmitBlock(copyBB);
1727     }
1728   }
1729 
1730   // Perform a copy if necessary.
1731   if (shouldCopy) {
1732     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1733     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1734     assert(srcRV.isScalar());
1735 
1736     llvm::Value *src = srcRV.getScalarVal();
1737     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1738                                     "icr.cast");
1739 
1740     // Use an ordinary store, not a store-to-lvalue.
1741     CGF.Builder.CreateStore(src, temp);
1742   }
1743 
1744   // Finish the control flow if we needed it.
1745   if (shouldCopy && !provablyNonNull)
1746     CGF.EmitBlock(contBB);
1747 
1748   args.addWriteback(srcAddr, srcAddrType, temp);
1749   args.add(RValue::get(finalArgument), CRE->getType());
1750 }
1751 
1752 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1753                                   QualType type) {
1754   if (const ObjCIndirectCopyRestoreExpr *CRE
1755         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1756     assert(getContext().getLangOpts().ObjCAutoRefCount);
1757     assert(getContext().hasSameType(E->getType(), type));
1758     return emitWritebackArg(*this, args, CRE);
1759   }
1760 
1761   assert(type->isReferenceType() == E->isGLValue() &&
1762          "reference binding to unmaterialized r-value!");
1763 
1764   if (E->isGLValue()) {
1765     assert(E->getObjectKind() == OK_Ordinary);
1766     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1767                     type);
1768   }
1769 
1770   if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1771       isa<ImplicitCastExpr>(E) &&
1772       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1773     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1774     assert(L.isSimple());
1775     args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1776     return;
1777   }
1778 
1779   args.add(EmitAnyExprToTemp(E), type);
1780 }
1781 
1782 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1783 // optimizer it can aggressively ignore unwind edges.
1784 void
1785 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
1786   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1787       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1788     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
1789                       CGM.getNoObjCARCExceptionsMetadata());
1790 }
1791 
1792 /// Emits a call or invoke instruction to the given function, depending
1793 /// on the current state of the EH stack.
1794 llvm::CallSite
1795 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1796                                   ArrayRef<llvm::Value *> Args,
1797                                   const Twine &Name) {
1798   llvm::BasicBlock *InvokeDest = getInvokeDest();
1799 
1800   llvm::Instruction *Inst;
1801   if (!InvokeDest)
1802     Inst = Builder.CreateCall(Callee, Args, Name);
1803   else {
1804     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1805     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
1806     EmitBlock(ContBB);
1807   }
1808 
1809   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1810   // optimizer it can aggressively ignore unwind edges.
1811   if (CGM.getLangOpts().ObjCAutoRefCount)
1812     AddObjCARCExceptionMetadata(Inst);
1813 
1814   return Inst;
1815 }
1816 
1817 llvm::CallSite
1818 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1819                                   const Twine &Name) {
1820   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1821 }
1822 
1823 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1824                             llvm::FunctionType *FTy) {
1825   if (ArgNo < FTy->getNumParams())
1826     assert(Elt->getType() == FTy->getParamType(ArgNo));
1827   else
1828     assert(FTy->isVarArg());
1829   ++ArgNo;
1830 }
1831 
1832 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1833                                        SmallVector<llvm::Value*,16> &Args,
1834                                        llvm::FunctionType *IRFuncTy) {
1835   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1836     unsigned NumElts = AT->getSize().getZExtValue();
1837     QualType EltTy = AT->getElementType();
1838     llvm::Value *Addr = RV.getAggregateAddr();
1839     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1840       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1841       LValue LV = MakeAddrLValue(EltAddr, EltTy);
1842       RValue EltRV;
1843       if (EltTy->isAnyComplexType())
1844         // FIXME: Volatile?
1845         EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1846       else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1847         EltRV = LV.asAggregateRValue();
1848       else
1849         EltRV = EmitLoadOfLValue(LV);
1850       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1851     }
1852   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1853     RecordDecl *RD = RT->getDecl();
1854     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1855     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
1856 
1857     if (RD->isUnion()) {
1858       const FieldDecl *LargestFD = 0;
1859       CharUnits UnionSize = CharUnits::Zero();
1860 
1861       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1862            i != e; ++i) {
1863         const FieldDecl *FD = *i;
1864         assert(!FD->isBitField() &&
1865                "Cannot expand structure with bit-field members.");
1866         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
1867         if (UnionSize < FieldSize) {
1868           UnionSize = FieldSize;
1869           LargestFD = FD;
1870         }
1871       }
1872       if (LargestFD) {
1873         RValue FldRV = EmitRValueForField(LV, LargestFD);
1874         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
1875       }
1876     } else {
1877       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1878            i != e; ++i) {
1879         FieldDecl *FD = *i;
1880 
1881         RValue FldRV = EmitRValueForField(LV, FD);
1882         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
1883       }
1884     }
1885   } else if (Ty->isAnyComplexType()) {
1886     ComplexPairTy CV = RV.getComplexVal();
1887     Args.push_back(CV.first);
1888     Args.push_back(CV.second);
1889   } else {
1890     assert(RV.isScalar() &&
1891            "Unexpected non-scalar rvalue during struct expansion.");
1892 
1893     // Insert a bitcast as needed.
1894     llvm::Value *V = RV.getScalarVal();
1895     if (Args.size() < IRFuncTy->getNumParams() &&
1896         V->getType() != IRFuncTy->getParamType(Args.size()))
1897       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1898 
1899     Args.push_back(V);
1900   }
1901 }
1902 
1903 
1904 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1905                                  llvm::Value *Callee,
1906                                  ReturnValueSlot ReturnValue,
1907                                  const CallArgList &CallArgs,
1908                                  const Decl *TargetDecl,
1909                                  llvm::Instruction **callOrInvoke) {
1910   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1911   SmallVector<llvm::Value*, 16> Args;
1912 
1913   // Handle struct-return functions by passing a pointer to the
1914   // location that we would like to return into.
1915   QualType RetTy = CallInfo.getReturnType();
1916   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1917 
1918   // IRArgNo - Keep track of the argument number in the callee we're looking at.
1919   unsigned IRArgNo = 0;
1920   llvm::FunctionType *IRFuncTy =
1921     cast<llvm::FunctionType>(
1922                   cast<llvm::PointerType>(Callee->getType())->getElementType());
1923 
1924   // If the call returns a temporary with struct return, create a temporary
1925   // alloca to hold the result, unless one is given to us.
1926   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1927     llvm::Value *Value = ReturnValue.getValue();
1928     if (!Value)
1929       Value = CreateMemTemp(RetTy);
1930     Args.push_back(Value);
1931     checkArgMatches(Value, IRArgNo, IRFuncTy);
1932   }
1933 
1934   assert(CallInfo.arg_size() == CallArgs.size() &&
1935          "Mismatch between function signature & arguments.");
1936   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1937   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1938        I != E; ++I, ++info_it) {
1939     const ABIArgInfo &ArgInfo = info_it->info;
1940     RValue RV = I->RV;
1941 
1942     unsigned TypeAlign =
1943       getContext().getTypeAlignInChars(I->Ty).getQuantity();
1944     switch (ArgInfo.getKind()) {
1945     case ABIArgInfo::Indirect: {
1946       if (RV.isScalar() || RV.isComplex()) {
1947         // Make a temporary alloca to pass the argument.
1948         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1949         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1950           AI->setAlignment(ArgInfo.getIndirectAlign());
1951         Args.push_back(AI);
1952 
1953         if (RV.isScalar())
1954           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1955                             TypeAlign, I->Ty);
1956         else
1957           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1958 
1959         // Validate argument match.
1960         checkArgMatches(AI, IRArgNo, IRFuncTy);
1961       } else {
1962         // We want to avoid creating an unnecessary temporary+copy here;
1963         // however, we need one in two cases:
1964         // 1. If the argument is not byval, and we are required to copy the
1965         //    source.  (This case doesn't occur on any common architecture.)
1966         // 2. If the argument is byval, RV is not sufficiently aligned, and
1967         //    we cannot force it to be sufficiently aligned.
1968         llvm::Value *Addr = RV.getAggregateAddr();
1969         unsigned Align = ArgInfo.getIndirectAlign();
1970         const llvm::TargetData *TD = &CGM.getTargetData();
1971         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
1972             (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
1973              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
1974           // Create an aligned temporary, and copy to it.
1975           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1976           if (Align > AI->getAlignment())
1977             AI->setAlignment(Align);
1978           Args.push_back(AI);
1979           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
1980 
1981           // Validate argument match.
1982           checkArgMatches(AI, IRArgNo, IRFuncTy);
1983         } else {
1984           // Skip the extra memcpy call.
1985           Args.push_back(Addr);
1986 
1987           // Validate argument match.
1988           checkArgMatches(Addr, IRArgNo, IRFuncTy);
1989         }
1990       }
1991       break;
1992     }
1993 
1994     case ABIArgInfo::Ignore:
1995       break;
1996 
1997     case ABIArgInfo::Extend:
1998     case ABIArgInfo::Direct: {
1999       // Insert a padding argument to ensure proper alignment.
2000       if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2001         Args.push_back(llvm::UndefValue::get(PaddingType));
2002         ++IRArgNo;
2003       }
2004 
2005       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2006           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2007           ArgInfo.getDirectOffset() == 0) {
2008         llvm::Value *V;
2009         if (RV.isScalar())
2010           V = RV.getScalarVal();
2011         else
2012           V = Builder.CreateLoad(RV.getAggregateAddr());
2013 
2014         // If the argument doesn't match, perform a bitcast to coerce it.  This
2015         // can happen due to trivial type mismatches.
2016         if (IRArgNo < IRFuncTy->getNumParams() &&
2017             V->getType() != IRFuncTy->getParamType(IRArgNo))
2018           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2019         Args.push_back(V);
2020 
2021         checkArgMatches(V, IRArgNo, IRFuncTy);
2022         break;
2023       }
2024 
2025       // FIXME: Avoid the conversion through memory if possible.
2026       llvm::Value *SrcPtr;
2027       if (RV.isScalar()) {
2028         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2029         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
2030       } else if (RV.isComplex()) {
2031         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2032         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
2033       } else
2034         SrcPtr = RV.getAggregateAddr();
2035 
2036       // If the value is offset in memory, apply the offset now.
2037       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2038         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2039         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2040         SrcPtr = Builder.CreateBitCast(SrcPtr,
2041                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2042 
2043       }
2044 
2045       // If the coerce-to type is a first class aggregate, we flatten it and
2046       // pass the elements. Either way is semantically identical, but fast-isel
2047       // and the optimizer generally likes scalar values better than FCAs.
2048       if (llvm::StructType *STy =
2049             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2050         SrcPtr = Builder.CreateBitCast(SrcPtr,
2051                                        llvm::PointerType::getUnqual(STy));
2052         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2053           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2054           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2055           // We don't know what we're loading from.
2056           LI->setAlignment(1);
2057           Args.push_back(LI);
2058 
2059           // Validate argument match.
2060           checkArgMatches(LI, IRArgNo, IRFuncTy);
2061         }
2062       } else {
2063         // In the simple case, just pass the coerced loaded value.
2064         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2065                                          *this));
2066 
2067         // Validate argument match.
2068         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2069       }
2070 
2071       break;
2072     }
2073 
2074     case ABIArgInfo::Expand:
2075       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2076       IRArgNo = Args.size();
2077       break;
2078     }
2079   }
2080 
2081   // If the callee is a bitcast of a function to a varargs pointer to function
2082   // type, check to see if we can remove the bitcast.  This handles some cases
2083   // with unprototyped functions.
2084   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2085     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2086       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2087       llvm::FunctionType *CurFT =
2088         cast<llvm::FunctionType>(CurPT->getElementType());
2089       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2090 
2091       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2092           ActualFT->getReturnType() == CurFT->getReturnType() &&
2093           ActualFT->getNumParams() == CurFT->getNumParams() &&
2094           ActualFT->getNumParams() == Args.size() &&
2095           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2096         bool ArgsMatch = true;
2097         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2098           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2099             ArgsMatch = false;
2100             break;
2101           }
2102 
2103         // Strip the cast if we can get away with it.  This is a nice cleanup,
2104         // but also allows us to inline the function at -O0 if it is marked
2105         // always_inline.
2106         if (ArgsMatch)
2107           Callee = CalleeF;
2108       }
2109     }
2110 
2111   unsigned CallingConv;
2112   CodeGen::AttributeListType AttributeList;
2113   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
2114   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList);
2115 
2116   llvm::BasicBlock *InvokeDest = 0;
2117   if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
2118     InvokeDest = getInvokeDest();
2119 
2120   llvm::CallSite CS;
2121   if (!InvokeDest) {
2122     CS = Builder.CreateCall(Callee, Args);
2123   } else {
2124     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2125     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2126     EmitBlock(Cont);
2127   }
2128   if (callOrInvoke)
2129     *callOrInvoke = CS.getInstruction();
2130 
2131   CS.setAttributes(Attrs);
2132   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2133 
2134   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2135   // optimizer it can aggressively ignore unwind edges.
2136   if (CGM.getLangOpts().ObjCAutoRefCount)
2137     AddObjCARCExceptionMetadata(CS.getInstruction());
2138 
2139   // If the call doesn't return, finish the basic block and clear the
2140   // insertion point; this allows the rest of IRgen to discard
2141   // unreachable code.
2142   if (CS.doesNotReturn()) {
2143     Builder.CreateUnreachable();
2144     Builder.ClearInsertionPoint();
2145 
2146     // FIXME: For now, emit a dummy basic block because expr emitters in
2147     // generally are not ready to handle emitting expressions at unreachable
2148     // points.
2149     EnsureInsertPoint();
2150 
2151     // Return a reasonable RValue.
2152     return GetUndefRValue(RetTy);
2153   }
2154 
2155   llvm::Instruction *CI = CS.getInstruction();
2156   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2157     CI->setName("call");
2158 
2159   // Emit any writebacks immediately.  Arguably this should happen
2160   // after any return-value munging.
2161   if (CallArgs.hasWritebacks())
2162     emitWritebacks(*this, CallArgs);
2163 
2164   switch (RetAI.getKind()) {
2165   case ABIArgInfo::Indirect: {
2166     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2167     if (RetTy->isAnyComplexType())
2168       return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2169     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2170       return RValue::getAggregate(Args[0]);
2171     return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
2172   }
2173 
2174   case ABIArgInfo::Ignore:
2175     // If we are ignoring an argument that had a result, make sure to
2176     // construct the appropriate return value for our caller.
2177     return GetUndefRValue(RetTy);
2178 
2179   case ABIArgInfo::Extend:
2180   case ABIArgInfo::Direct: {
2181     llvm::Type *RetIRTy = ConvertType(RetTy);
2182     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2183       if (RetTy->isAnyComplexType()) {
2184         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2185         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2186         return RValue::getComplex(std::make_pair(Real, Imag));
2187       }
2188       if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2189         llvm::Value *DestPtr = ReturnValue.getValue();
2190         bool DestIsVolatile = ReturnValue.isVolatile();
2191 
2192         if (!DestPtr) {
2193           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2194           DestIsVolatile = false;
2195         }
2196         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2197         return RValue::getAggregate(DestPtr);
2198       }
2199 
2200       // If the argument doesn't match, perform a bitcast to coerce it.  This
2201       // can happen due to trivial type mismatches.
2202       llvm::Value *V = CI;
2203       if (V->getType() != RetIRTy)
2204         V = Builder.CreateBitCast(V, RetIRTy);
2205       return RValue::get(V);
2206     }
2207 
2208     llvm::Value *DestPtr = ReturnValue.getValue();
2209     bool DestIsVolatile = ReturnValue.isVolatile();
2210 
2211     if (!DestPtr) {
2212       DestPtr = CreateMemTemp(RetTy, "coerce");
2213       DestIsVolatile = false;
2214     }
2215 
2216     // If the value is offset in memory, apply the offset now.
2217     llvm::Value *StorePtr = DestPtr;
2218     if (unsigned Offs = RetAI.getDirectOffset()) {
2219       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2220       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2221       StorePtr = Builder.CreateBitCast(StorePtr,
2222                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2223     }
2224     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2225 
2226     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2227     if (RetTy->isAnyComplexType())
2228       return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
2229     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2230       return RValue::getAggregate(DestPtr);
2231     return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
2232   }
2233 
2234   case ABIArgInfo::Expand:
2235     llvm_unreachable("Invalid ABI kind for return argument");
2236   }
2237 
2238   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2239 }
2240 
2241 /* VarArg handling */
2242 
2243 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2244   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2245 }
2246