1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "CGCXXABI.h" 17 #include "ABIInfo.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Attributes.h" 27 #include "llvm/Support/CallSite.h" 28 #include "llvm/Target/TargetData.h" 29 #include "llvm/InlineAsm.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 using namespace clang; 32 using namespace CodeGen; 33 34 /***/ 35 36 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 37 switch (CC) { 38 default: return llvm::CallingConv::C; 39 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 40 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 41 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 42 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 43 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 44 // TODO: add support for CC_X86Pascal to llvm 45 } 46 } 47 48 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 49 /// qualification. 50 /// FIXME: address space qualification? 51 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 52 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 53 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 54 } 55 56 /// Returns the canonical formal type of the given C++ method. 57 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 58 return MD->getType()->getCanonicalTypeUnqualified() 59 .getAs<FunctionProtoType>(); 60 } 61 62 /// Returns the "extra-canonicalized" return type, which discards 63 /// qualifiers on the return type. Codegen doesn't care about them, 64 /// and it makes ABI code a little easier to be able to assume that 65 /// all parameter and return types are top-level unqualified. 66 static CanQualType GetReturnType(QualType RetTy) { 67 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 68 } 69 70 /// Arrange the argument and result information for a value of the given 71 /// unprototyped freestanding function type. 72 const CGFunctionInfo & 73 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 74 // When translating an unprototyped function type, always use a 75 // variadic type. 76 return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(), 77 ArrayRef<CanQualType>(), 78 FTNP->getExtInfo(), 79 RequiredArgs(0)); 80 } 81 82 /// Arrange the LLVM function layout for a value of the given function 83 /// type, on top of any implicit parameters already stored. Use the 84 /// given ExtInfo instead of the ExtInfo from the function type. 85 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT, 86 SmallVectorImpl<CanQualType> &prefix, 87 CanQual<FunctionProtoType> FTP, 88 FunctionType::ExtInfo extInfo) { 89 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 90 // FIXME: Kill copy. 91 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 92 prefix.push_back(FTP->getArgType(i)); 93 CanQualType resultType = FTP->getResultType().getUnqualifiedType(); 94 return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required); 95 } 96 97 /// Arrange the argument and result information for a free function (i.e. 98 /// not a C++ or ObjC instance method) of the given type. 99 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT, 100 SmallVectorImpl<CanQualType> &prefix, 101 CanQual<FunctionProtoType> FTP) { 102 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo()); 103 } 104 105 /// Given the formal ext-info of a C++ instance method, adjust it 106 /// according to the C++ ABI in effect. 107 static void adjustCXXMethodInfo(CodeGenTypes &CGT, 108 FunctionType::ExtInfo &extInfo) { 109 // FIXME: thiscall on Microsoft 110 } 111 112 /// Arrange the argument and result information for a free function (i.e. 113 /// not a C++ or ObjC instance method) of the given type. 114 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT, 115 SmallVectorImpl<CanQualType> &prefix, 116 CanQual<FunctionProtoType> FTP) { 117 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 118 adjustCXXMethodInfo(CGT, extInfo); 119 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo); 120 } 121 122 /// Arrange the argument and result information for a value of the 123 /// given freestanding function type. 124 const CGFunctionInfo & 125 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 126 SmallVector<CanQualType, 16> argTypes; 127 return ::arrangeFreeFunctionType(*this, argTypes, FTP); 128 } 129 130 static CallingConv getCallingConventionForDecl(const Decl *D) { 131 // Set the appropriate calling convention for the Function. 132 if (D->hasAttr<StdCallAttr>()) 133 return CC_X86StdCall; 134 135 if (D->hasAttr<FastCallAttr>()) 136 return CC_X86FastCall; 137 138 if (D->hasAttr<ThisCallAttr>()) 139 return CC_X86ThisCall; 140 141 if (D->hasAttr<PascalAttr>()) 142 return CC_X86Pascal; 143 144 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 145 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 146 147 return CC_C; 148 } 149 150 /// Arrange the argument and result information for a call to an 151 /// unknown C++ non-static member function of the given abstract type. 152 /// The member function must be an ordinary function, i.e. not a 153 /// constructor or destructor. 154 const CGFunctionInfo & 155 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 156 const FunctionProtoType *FTP) { 157 SmallVector<CanQualType, 16> argTypes; 158 159 // Add the 'this' pointer. 160 argTypes.push_back(GetThisType(Context, RD)); 161 162 return ::arrangeCXXMethodType(*this, argTypes, 163 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 164 } 165 166 /// Arrange the argument and result information for a declaration or 167 /// definition of the given C++ non-static member function. The 168 /// member function must be an ordinary function, i.e. not a 169 /// constructor or destructor. 170 const CGFunctionInfo & 171 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 172 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); 173 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 174 175 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 176 177 if (MD->isInstance()) { 178 // The abstract case is perfectly fine. 179 return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr()); 180 } 181 182 return arrangeFreeFunctionType(prototype); 183 } 184 185 /// Arrange the argument and result information for a declaration 186 /// or definition to the given constructor variant. 187 const CGFunctionInfo & 188 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D, 189 CXXCtorType ctorKind) { 190 SmallVector<CanQualType, 16> argTypes; 191 argTypes.push_back(GetThisType(Context, D->getParent())); 192 CanQualType resultType = Context.VoidTy; 193 194 TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes); 195 196 CanQual<FunctionProtoType> FTP = GetFormalType(D); 197 198 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size()); 199 200 // Add the formal parameters. 201 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 202 argTypes.push_back(FTP->getArgType(i)); 203 204 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 205 adjustCXXMethodInfo(*this, extInfo); 206 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required); 207 } 208 209 /// Arrange the argument and result information for a declaration, 210 /// definition, or call to the given destructor variant. It so 211 /// happens that all three cases produce the same information. 212 const CGFunctionInfo & 213 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D, 214 CXXDtorType dtorKind) { 215 SmallVector<CanQualType, 2> argTypes; 216 argTypes.push_back(GetThisType(Context, D->getParent())); 217 CanQualType resultType = Context.VoidTy; 218 219 TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes); 220 221 CanQual<FunctionProtoType> FTP = GetFormalType(D); 222 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); 223 224 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 225 adjustCXXMethodInfo(*this, extInfo); 226 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, 227 RequiredArgs::All); 228 } 229 230 /// Arrange the argument and result information for the declaration or 231 /// definition of the given function. 232 const CGFunctionInfo & 233 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 234 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 235 if (MD->isInstance()) 236 return arrangeCXXMethodDeclaration(MD); 237 238 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 239 240 assert(isa<FunctionType>(FTy)); 241 242 // When declaring a function without a prototype, always use a 243 // non-variadic type. 244 if (isa<FunctionNoProtoType>(FTy)) { 245 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 246 return arrangeLLVMFunctionInfo(noProto->getResultType(), 247 ArrayRef<CanQualType>(), 248 noProto->getExtInfo(), 249 RequiredArgs::All); 250 } 251 252 assert(isa<FunctionProtoType>(FTy)); 253 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 254 } 255 256 /// Arrange the argument and result information for the declaration or 257 /// definition of an Objective-C method. 258 const CGFunctionInfo & 259 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 260 // It happens that this is the same as a call with no optional 261 // arguments, except also using the formal 'self' type. 262 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 263 } 264 265 /// Arrange the argument and result information for the function type 266 /// through which to perform a send to the given Objective-C method, 267 /// using the given receiver type. The receiver type is not always 268 /// the 'self' type of the method or even an Objective-C pointer type. 269 /// This is *not* the right method for actually performing such a 270 /// message send, due to the possibility of optional arguments. 271 const CGFunctionInfo & 272 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 273 QualType receiverType) { 274 SmallVector<CanQualType, 16> argTys; 275 argTys.push_back(Context.getCanonicalParamType(receiverType)); 276 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 277 // FIXME: Kill copy? 278 for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), 279 e = MD->param_end(); i != e; ++i) { 280 argTys.push_back(Context.getCanonicalParamType((*i)->getType())); 281 } 282 283 FunctionType::ExtInfo einfo; 284 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); 285 286 if (getContext().getLangOpts().ObjCAutoRefCount && 287 MD->hasAttr<NSReturnsRetainedAttr>()) 288 einfo = einfo.withProducesResult(true); 289 290 RequiredArgs required = 291 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 292 293 return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys, 294 einfo, required); 295 } 296 297 const CGFunctionInfo & 298 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 299 // FIXME: Do we need to handle ObjCMethodDecl? 300 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 301 302 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 303 return arrangeCXXConstructorDeclaration(CD, GD.getCtorType()); 304 305 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 306 return arrangeCXXDestructor(DD, GD.getDtorType()); 307 308 return arrangeFunctionDeclaration(FD); 309 } 310 311 /// Figure out the rules for calling a function with the given formal 312 /// type using the given arguments. The arguments are necessary 313 /// because the function might be unprototyped, in which case it's 314 /// target-dependent in crazy ways. 315 const CGFunctionInfo & 316 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 317 const FunctionType *fnType) { 318 RequiredArgs required = RequiredArgs::All; 319 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 320 if (proto->isVariadic()) 321 required = RequiredArgs(proto->getNumArgs()); 322 } else if (CGM.getTargetCodeGenInfo() 323 .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) { 324 required = RequiredArgs(0); 325 } 326 327 return arrangeFreeFunctionCall(fnType->getResultType(), args, 328 fnType->getExtInfo(), required); 329 } 330 331 const CGFunctionInfo & 332 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 333 const CallArgList &args, 334 FunctionType::ExtInfo info, 335 RequiredArgs required) { 336 // FIXME: Kill copy. 337 SmallVector<CanQualType, 16> argTypes; 338 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 339 i != e; ++i) 340 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 341 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 342 required); 343 } 344 345 /// Arrange a call to a C++ method, passing the given arguments. 346 const CGFunctionInfo & 347 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 348 const FunctionProtoType *FPT, 349 RequiredArgs required) { 350 // FIXME: Kill copy. 351 SmallVector<CanQualType, 16> argTypes; 352 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 353 i != e; ++i) 354 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 355 356 FunctionType::ExtInfo info = FPT->getExtInfo(); 357 adjustCXXMethodInfo(*this, info); 358 return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()), 359 argTypes, info, required); 360 } 361 362 const CGFunctionInfo & 363 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType, 364 const FunctionArgList &args, 365 const FunctionType::ExtInfo &info, 366 bool isVariadic) { 367 // FIXME: Kill copy. 368 SmallVector<CanQualType, 16> argTypes; 369 for (FunctionArgList::const_iterator i = args.begin(), e = args.end(); 370 i != e; ++i) 371 argTypes.push_back(Context.getCanonicalParamType((*i)->getType())); 372 373 RequiredArgs required = 374 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 375 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 376 required); 377 } 378 379 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 380 return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(), 381 FunctionType::ExtInfo(), RequiredArgs::All); 382 } 383 384 /// Arrange the argument and result information for an abstract value 385 /// of a given function type. This is the method which all of the 386 /// above functions ultimately defer to. 387 const CGFunctionInfo & 388 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 389 ArrayRef<CanQualType> argTypes, 390 FunctionType::ExtInfo info, 391 RequiredArgs required) { 392 #ifndef NDEBUG 393 for (ArrayRef<CanQualType>::const_iterator 394 I = argTypes.begin(), E = argTypes.end(); I != E; ++I) 395 assert(I->isCanonicalAsParam()); 396 #endif 397 398 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 399 400 // Lookup or create unique function info. 401 llvm::FoldingSetNodeID ID; 402 CGFunctionInfo::Profile(ID, info, required, resultType, argTypes); 403 404 void *insertPos = 0; 405 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 406 if (FI) 407 return *FI; 408 409 // Construct the function info. We co-allocate the ArgInfos. 410 FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required); 411 FunctionInfos.InsertNode(FI, insertPos); 412 413 bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted; 414 assert(inserted && "Recursively being processed?"); 415 416 // Compute ABI information. 417 getABIInfo().computeInfo(*FI); 418 419 // Loop over all of the computed argument and return value info. If any of 420 // them are direct or extend without a specified coerce type, specify the 421 // default now. 422 ABIArgInfo &retInfo = FI->getReturnInfo(); 423 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0) 424 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 425 426 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); 427 I != E; ++I) 428 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) 429 I->info.setCoerceToType(ConvertType(I->type)); 430 431 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 432 assert(erased && "Not in set?"); 433 434 return *FI; 435 } 436 437 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 438 const FunctionType::ExtInfo &info, 439 CanQualType resultType, 440 ArrayRef<CanQualType> argTypes, 441 RequiredArgs required) { 442 void *buffer = operator new(sizeof(CGFunctionInfo) + 443 sizeof(ArgInfo) * (argTypes.size() + 1)); 444 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 445 FI->CallingConvention = llvmCC; 446 FI->EffectiveCallingConvention = llvmCC; 447 FI->ASTCallingConvention = info.getCC(); 448 FI->NoReturn = info.getNoReturn(); 449 FI->ReturnsRetained = info.getProducesResult(); 450 FI->Required = required; 451 FI->HasRegParm = info.getHasRegParm(); 452 FI->RegParm = info.getRegParm(); 453 FI->NumArgs = argTypes.size(); 454 FI->getArgsBuffer()[0].type = resultType; 455 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 456 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 457 return FI; 458 } 459 460 /***/ 461 462 void CodeGenTypes::GetExpandedTypes(QualType type, 463 SmallVectorImpl<llvm::Type*> &expandedTypes) { 464 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { 465 uint64_t NumElts = AT->getSize().getZExtValue(); 466 for (uint64_t Elt = 0; Elt < NumElts; ++Elt) 467 GetExpandedTypes(AT->getElementType(), expandedTypes); 468 } else if (const RecordType *RT = type->getAs<RecordType>()) { 469 const RecordDecl *RD = RT->getDecl(); 470 assert(!RD->hasFlexibleArrayMember() && 471 "Cannot expand structure with flexible array."); 472 if (RD->isUnion()) { 473 // Unions can be here only in degenerative cases - all the fields are same 474 // after flattening. Thus we have to use the "largest" field. 475 const FieldDecl *LargestFD = 0; 476 CharUnits UnionSize = CharUnits::Zero(); 477 478 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 479 i != e; ++i) { 480 const FieldDecl *FD = *i; 481 assert(!FD->isBitField() && 482 "Cannot expand structure with bit-field members."); 483 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 484 if (UnionSize < FieldSize) { 485 UnionSize = FieldSize; 486 LargestFD = FD; 487 } 488 } 489 if (LargestFD) 490 GetExpandedTypes(LargestFD->getType(), expandedTypes); 491 } else { 492 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 493 i != e; ++i) { 494 assert(!i->isBitField() && 495 "Cannot expand structure with bit-field members."); 496 GetExpandedTypes(i->getType(), expandedTypes); 497 } 498 } 499 } else if (const ComplexType *CT = type->getAs<ComplexType>()) { 500 llvm::Type *EltTy = ConvertType(CT->getElementType()); 501 expandedTypes.push_back(EltTy); 502 expandedTypes.push_back(EltTy); 503 } else 504 expandedTypes.push_back(ConvertType(type)); 505 } 506 507 llvm::Function::arg_iterator 508 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 509 llvm::Function::arg_iterator AI) { 510 assert(LV.isSimple() && 511 "Unexpected non-simple lvalue during struct expansion."); 512 513 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 514 unsigned NumElts = AT->getSize().getZExtValue(); 515 QualType EltTy = AT->getElementType(); 516 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 517 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt); 518 LValue LV = MakeAddrLValue(EltAddr, EltTy); 519 AI = ExpandTypeFromArgs(EltTy, LV, AI); 520 } 521 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 522 RecordDecl *RD = RT->getDecl(); 523 if (RD->isUnion()) { 524 // Unions can be here only in degenerative cases - all the fields are same 525 // after flattening. Thus we have to use the "largest" field. 526 const FieldDecl *LargestFD = 0; 527 CharUnits UnionSize = CharUnits::Zero(); 528 529 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 530 i != e; ++i) { 531 const FieldDecl *FD = *i; 532 assert(!FD->isBitField() && 533 "Cannot expand structure with bit-field members."); 534 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 535 if (UnionSize < FieldSize) { 536 UnionSize = FieldSize; 537 LargestFD = FD; 538 } 539 } 540 if (LargestFD) { 541 // FIXME: What are the right qualifiers here? 542 LValue SubLV = EmitLValueForField(LV, LargestFD); 543 AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI); 544 } 545 } else { 546 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 547 i != e; ++i) { 548 FieldDecl *FD = *i; 549 QualType FT = FD->getType(); 550 551 // FIXME: What are the right qualifiers here? 552 LValue SubLV = EmitLValueForField(LV, FD); 553 AI = ExpandTypeFromArgs(FT, SubLV, AI); 554 } 555 } 556 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 557 QualType EltTy = CT->getElementType(); 558 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real"); 559 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); 560 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag"); 561 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); 562 } else { 563 EmitStoreThroughLValue(RValue::get(AI), LV); 564 ++AI; 565 } 566 567 return AI; 568 } 569 570 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 571 /// accessing some number of bytes out of it, try to gep into the struct to get 572 /// at its inner goodness. Dive as deep as possible without entering an element 573 /// with an in-memory size smaller than DstSize. 574 static llvm::Value * 575 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 576 llvm::StructType *SrcSTy, 577 uint64_t DstSize, CodeGenFunction &CGF) { 578 // We can't dive into a zero-element struct. 579 if (SrcSTy->getNumElements() == 0) return SrcPtr; 580 581 llvm::Type *FirstElt = SrcSTy->getElementType(0); 582 583 // If the first elt is at least as large as what we're looking for, or if the 584 // first element is the same size as the whole struct, we can enter it. 585 uint64_t FirstEltSize = 586 CGF.CGM.getTargetData().getTypeAllocSize(FirstElt); 587 if (FirstEltSize < DstSize && 588 FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy)) 589 return SrcPtr; 590 591 // GEP into the first element. 592 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 593 594 // If the first element is a struct, recurse. 595 llvm::Type *SrcTy = 596 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 597 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 598 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 599 600 return SrcPtr; 601 } 602 603 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 604 /// are either integers or pointers. This does a truncation of the value if it 605 /// is too large or a zero extension if it is too small. 606 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 607 llvm::Type *Ty, 608 CodeGenFunction &CGF) { 609 if (Val->getType() == Ty) 610 return Val; 611 612 if (isa<llvm::PointerType>(Val->getType())) { 613 // If this is Pointer->Pointer avoid conversion to and from int. 614 if (isa<llvm::PointerType>(Ty)) 615 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 616 617 // Convert the pointer to an integer so we can play with its width. 618 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 619 } 620 621 llvm::Type *DestIntTy = Ty; 622 if (isa<llvm::PointerType>(DestIntTy)) 623 DestIntTy = CGF.IntPtrTy; 624 625 if (Val->getType() != DestIntTy) 626 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 627 628 if (isa<llvm::PointerType>(Ty)) 629 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 630 return Val; 631 } 632 633 634 635 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 636 /// a pointer to an object of type \arg Ty. 637 /// 638 /// This safely handles the case when the src type is smaller than the 639 /// destination type; in this situation the values of bits which not 640 /// present in the src are undefined. 641 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 642 llvm::Type *Ty, 643 CodeGenFunction &CGF) { 644 llvm::Type *SrcTy = 645 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 646 647 // If SrcTy and Ty are the same, just do a load. 648 if (SrcTy == Ty) 649 return CGF.Builder.CreateLoad(SrcPtr); 650 651 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); 652 653 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 654 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 655 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 656 } 657 658 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 659 660 // If the source and destination are integer or pointer types, just do an 661 // extension or truncation to the desired type. 662 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 663 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 664 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 665 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 666 } 667 668 // If load is legal, just bitcast the src pointer. 669 if (SrcSize >= DstSize) { 670 // Generally SrcSize is never greater than DstSize, since this means we are 671 // losing bits. However, this can happen in cases where the structure has 672 // additional padding, for example due to a user specified alignment. 673 // 674 // FIXME: Assert that we aren't truncating non-padding bits when have access 675 // to that information. 676 llvm::Value *Casted = 677 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 678 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 679 // FIXME: Use better alignment / avoid requiring aligned load. 680 Load->setAlignment(1); 681 return Load; 682 } 683 684 // Otherwise do coercion through memory. This is stupid, but 685 // simple. 686 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 687 llvm::Value *Casted = 688 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); 689 llvm::StoreInst *Store = 690 CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); 691 // FIXME: Use better alignment / avoid requiring aligned store. 692 Store->setAlignment(1); 693 return CGF.Builder.CreateLoad(Tmp); 694 } 695 696 // Function to store a first-class aggregate into memory. We prefer to 697 // store the elements rather than the aggregate to be more friendly to 698 // fast-isel. 699 // FIXME: Do we need to recurse here? 700 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 701 llvm::Value *DestPtr, bool DestIsVolatile, 702 bool LowAlignment) { 703 // Prefer scalar stores to first-class aggregate stores. 704 if (llvm::StructType *STy = 705 dyn_cast<llvm::StructType>(Val->getType())) { 706 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 707 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 708 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 709 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 710 DestIsVolatile); 711 if (LowAlignment) 712 SI->setAlignment(1); 713 } 714 } else { 715 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 716 if (LowAlignment) 717 SI->setAlignment(1); 718 } 719 } 720 721 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 722 /// where the source and destination may have different types. 723 /// 724 /// This safely handles the case when the src type is larger than the 725 /// destination type; the upper bits of the src will be lost. 726 static void CreateCoercedStore(llvm::Value *Src, 727 llvm::Value *DstPtr, 728 bool DstIsVolatile, 729 CodeGenFunction &CGF) { 730 llvm::Type *SrcTy = Src->getType(); 731 llvm::Type *DstTy = 732 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 733 if (SrcTy == DstTy) { 734 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 735 return; 736 } 737 738 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 739 740 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 741 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 742 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 743 } 744 745 // If the source and destination are integer or pointer types, just do an 746 // extension or truncation to the desired type. 747 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 748 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 749 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 750 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 751 return; 752 } 753 754 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); 755 756 // If store is legal, just bitcast the src pointer. 757 if (SrcSize <= DstSize) { 758 llvm::Value *Casted = 759 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 760 // FIXME: Use better alignment / avoid requiring aligned store. 761 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 762 } else { 763 // Otherwise do coercion through memory. This is stupid, but 764 // simple. 765 766 // Generally SrcSize is never greater than DstSize, since this means we are 767 // losing bits. However, this can happen in cases where the structure has 768 // additional padding, for example due to a user specified alignment. 769 // 770 // FIXME: Assert that we aren't truncating non-padding bits when have access 771 // to that information. 772 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 773 CGF.Builder.CreateStore(Src, Tmp); 774 llvm::Value *Casted = 775 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); 776 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 777 // FIXME: Use better alignment / avoid requiring aligned load. 778 Load->setAlignment(1); 779 CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile); 780 } 781 } 782 783 /***/ 784 785 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 786 return FI.getReturnInfo().isIndirect(); 787 } 788 789 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 790 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 791 switch (BT->getKind()) { 792 default: 793 return false; 794 case BuiltinType::Float: 795 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float); 796 case BuiltinType::Double: 797 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double); 798 case BuiltinType::LongDouble: 799 return getContext().getTargetInfo().useObjCFPRetForRealType( 800 TargetInfo::LongDouble); 801 } 802 } 803 804 return false; 805 } 806 807 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 808 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 809 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 810 if (BT->getKind() == BuiltinType::LongDouble) 811 return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble(); 812 } 813 } 814 815 return false; 816 } 817 818 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 819 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 820 return GetFunctionType(FI); 821 } 822 823 llvm::FunctionType * 824 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 825 826 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; 827 assert(Inserted && "Recursively being processed?"); 828 829 SmallVector<llvm::Type*, 8> argTypes; 830 llvm::Type *resultType = 0; 831 832 const ABIArgInfo &retAI = FI.getReturnInfo(); 833 switch (retAI.getKind()) { 834 case ABIArgInfo::Expand: 835 llvm_unreachable("Invalid ABI kind for return argument"); 836 837 case ABIArgInfo::Extend: 838 case ABIArgInfo::Direct: 839 resultType = retAI.getCoerceToType(); 840 break; 841 842 case ABIArgInfo::Indirect: { 843 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 844 resultType = llvm::Type::getVoidTy(getLLVMContext()); 845 846 QualType ret = FI.getReturnType(); 847 llvm::Type *ty = ConvertType(ret); 848 unsigned addressSpace = Context.getTargetAddressSpace(ret); 849 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 850 break; 851 } 852 853 case ABIArgInfo::Ignore: 854 resultType = llvm::Type::getVoidTy(getLLVMContext()); 855 break; 856 } 857 858 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 859 ie = FI.arg_end(); it != ie; ++it) { 860 const ABIArgInfo &argAI = it->info; 861 862 switch (argAI.getKind()) { 863 case ABIArgInfo::Ignore: 864 break; 865 866 case ABIArgInfo::Indirect: { 867 // indirect arguments are always on the stack, which is addr space #0. 868 llvm::Type *LTy = ConvertTypeForMem(it->type); 869 argTypes.push_back(LTy->getPointerTo()); 870 break; 871 } 872 873 case ABIArgInfo::Extend: 874 case ABIArgInfo::Direct: { 875 // Insert a padding type to ensure proper alignment. 876 if (llvm::Type *PaddingType = argAI.getPaddingType()) 877 argTypes.push_back(PaddingType); 878 // If the coerce-to type is a first class aggregate, flatten it. Either 879 // way is semantically identical, but fast-isel and the optimizer 880 // generally likes scalar values better than FCAs. 881 llvm::Type *argType = argAI.getCoerceToType(); 882 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { 883 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 884 argTypes.push_back(st->getElementType(i)); 885 } else { 886 argTypes.push_back(argType); 887 } 888 break; 889 } 890 891 case ABIArgInfo::Expand: 892 GetExpandedTypes(it->type, argTypes); 893 break; 894 } 895 } 896 897 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 898 assert(Erased && "Not in set?"); 899 900 return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic()); 901 } 902 903 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 904 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 905 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 906 907 if (!isFuncTypeConvertible(FPT)) 908 return llvm::StructType::get(getLLVMContext()); 909 910 const CGFunctionInfo *Info; 911 if (isa<CXXDestructorDecl>(MD)) 912 Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 913 else 914 Info = &arrangeCXXMethodDeclaration(MD); 915 return GetFunctionType(*Info); 916 } 917 918 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 919 const Decl *TargetDecl, 920 AttributeListType &PAL, 921 unsigned &CallingConv) { 922 llvm::Attributes FuncAttrs; 923 llvm::Attributes RetAttrs; 924 925 CallingConv = FI.getEffectiveCallingConvention(); 926 927 if (FI.isNoReturn()) 928 FuncAttrs |= llvm::Attribute::NoReturn; 929 930 // FIXME: handle sseregparm someday... 931 if (TargetDecl) { 932 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 933 FuncAttrs |= llvm::Attribute::ReturnsTwice; 934 if (TargetDecl->hasAttr<NoThrowAttr>()) 935 FuncAttrs |= llvm::Attribute::NoUnwind; 936 else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 937 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 938 if (FPT && FPT->isNothrow(getContext())) 939 FuncAttrs |= llvm::Attribute::NoUnwind; 940 } 941 942 if (TargetDecl->hasAttr<NoReturnAttr>()) 943 FuncAttrs |= llvm::Attribute::NoReturn; 944 945 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 946 FuncAttrs |= llvm::Attribute::ReturnsTwice; 947 948 // 'const' and 'pure' attribute functions are also nounwind. 949 if (TargetDecl->hasAttr<ConstAttr>()) { 950 FuncAttrs |= llvm::Attribute::ReadNone; 951 FuncAttrs |= llvm::Attribute::NoUnwind; 952 } else if (TargetDecl->hasAttr<PureAttr>()) { 953 FuncAttrs |= llvm::Attribute::ReadOnly; 954 FuncAttrs |= llvm::Attribute::NoUnwind; 955 } 956 if (TargetDecl->hasAttr<MallocAttr>()) 957 RetAttrs |= llvm::Attribute::NoAlias; 958 } 959 960 if (CodeGenOpts.OptimizeSize) 961 FuncAttrs |= llvm::Attribute::OptimizeForSize; 962 if (CodeGenOpts.DisableRedZone) 963 FuncAttrs |= llvm::Attribute::NoRedZone; 964 if (CodeGenOpts.NoImplicitFloat) 965 FuncAttrs |= llvm::Attribute::NoImplicitFloat; 966 967 QualType RetTy = FI.getReturnType(); 968 unsigned Index = 1; 969 const ABIArgInfo &RetAI = FI.getReturnInfo(); 970 switch (RetAI.getKind()) { 971 case ABIArgInfo::Extend: 972 if (RetTy->hasSignedIntegerRepresentation()) 973 RetAttrs |= llvm::Attribute::SExt; 974 else if (RetTy->hasUnsignedIntegerRepresentation()) 975 RetAttrs |= llvm::Attribute::ZExt; 976 break; 977 case ABIArgInfo::Direct: 978 case ABIArgInfo::Ignore: 979 break; 980 981 case ABIArgInfo::Indirect: 982 PAL.push_back(llvm::AttributeWithIndex::get(Index, 983 llvm::Attribute::StructRet)); 984 ++Index; 985 // sret disables readnone and readonly 986 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 987 llvm::Attribute::ReadNone); 988 break; 989 990 case ABIArgInfo::Expand: 991 llvm_unreachable("Invalid ABI kind for return argument"); 992 } 993 994 if (RetAttrs) 995 PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); 996 997 // FIXME: RegParm should be reduced in case of global register variable. 998 signed RegParm; 999 if (FI.getHasRegParm()) 1000 RegParm = FI.getRegParm(); 1001 else 1002 RegParm = CodeGenOpts.NumRegisterParameters; 1003 1004 unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0); 1005 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1006 ie = FI.arg_end(); it != ie; ++it) { 1007 QualType ParamType = it->type; 1008 const ABIArgInfo &AI = it->info; 1009 llvm::Attributes Attrs; 1010 1011 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1012 // have the corresponding parameter variable. It doesn't make 1013 // sense to do it here because parameters are so messed up. 1014 switch (AI.getKind()) { 1015 case ABIArgInfo::Extend: 1016 if (ParamType->isSignedIntegerOrEnumerationType()) 1017 Attrs |= llvm::Attribute::SExt; 1018 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 1019 Attrs |= llvm::Attribute::ZExt; 1020 // FALL THROUGH 1021 case ABIArgInfo::Direct: 1022 if (RegParm > 0 && 1023 (ParamType->isIntegerType() || ParamType->isPointerType() || 1024 ParamType->isReferenceType())) { 1025 RegParm -= 1026 (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; 1027 if (RegParm >= 0) 1028 Attrs |= llvm::Attribute::InReg; 1029 } 1030 // FIXME: handle sseregparm someday... 1031 1032 // Increment Index if there is padding. 1033 Index += (AI.getPaddingType() != 0); 1034 1035 if (llvm::StructType *STy = 1036 dyn_cast<llvm::StructType>(AI.getCoerceToType())) 1037 Index += STy->getNumElements()-1; // 1 will be added below. 1038 break; 1039 1040 case ABIArgInfo::Indirect: 1041 if (AI.getIndirectByVal()) 1042 Attrs |= llvm::Attribute::ByVal; 1043 1044 Attrs |= 1045 llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); 1046 // byval disables readnone and readonly. 1047 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 1048 llvm::Attribute::ReadNone); 1049 break; 1050 1051 case ABIArgInfo::Ignore: 1052 // Skip increment, no matching LLVM parameter. 1053 continue; 1054 1055 case ABIArgInfo::Expand: { 1056 SmallVector<llvm::Type*, 8> types; 1057 // FIXME: This is rather inefficient. Do we ever actually need to do 1058 // anything here? The result should be just reconstructed on the other 1059 // side, so extension should be a non-issue. 1060 getTypes().GetExpandedTypes(ParamType, types); 1061 Index += types.size(); 1062 continue; 1063 } 1064 } 1065 1066 if (Attrs) 1067 PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs)); 1068 ++Index; 1069 } 1070 if (FuncAttrs) 1071 PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); 1072 } 1073 1074 /// An argument came in as a promoted argument; demote it back to its 1075 /// declared type. 1076 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1077 const VarDecl *var, 1078 llvm::Value *value) { 1079 llvm::Type *varType = CGF.ConvertType(var->getType()); 1080 1081 // This can happen with promotions that actually don't change the 1082 // underlying type, like the enum promotions. 1083 if (value->getType() == varType) return value; 1084 1085 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1086 && "unexpected promotion type"); 1087 1088 if (isa<llvm::IntegerType>(varType)) 1089 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1090 1091 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1092 } 1093 1094 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1095 llvm::Function *Fn, 1096 const FunctionArgList &Args) { 1097 // If this is an implicit-return-zero function, go ahead and 1098 // initialize the return value. TODO: it might be nice to have 1099 // a more general mechanism for this that didn't require synthesized 1100 // return statements. 1101 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 1102 if (FD->hasImplicitReturnZero()) { 1103 QualType RetTy = FD->getResultType().getUnqualifiedType(); 1104 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1105 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1106 Builder.CreateStore(Zero, ReturnValue); 1107 } 1108 } 1109 1110 // FIXME: We no longer need the types from FunctionArgList; lift up and 1111 // simplify. 1112 1113 // Emit allocs for param decls. Give the LLVM Argument nodes names. 1114 llvm::Function::arg_iterator AI = Fn->arg_begin(); 1115 1116 // Name the struct return argument. 1117 if (CGM.ReturnTypeUsesSRet(FI)) { 1118 AI->setName("agg.result"); 1119 AI->addAttr(llvm::Attribute::NoAlias); 1120 ++AI; 1121 } 1122 1123 assert(FI.arg_size() == Args.size() && 1124 "Mismatch between function signature & arguments."); 1125 unsigned ArgNo = 1; 1126 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1127 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1128 i != e; ++i, ++info_it, ++ArgNo) { 1129 const VarDecl *Arg = *i; 1130 QualType Ty = info_it->type; 1131 const ABIArgInfo &ArgI = info_it->info; 1132 1133 bool isPromoted = 1134 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1135 1136 switch (ArgI.getKind()) { 1137 case ABIArgInfo::Indirect: { 1138 llvm::Value *V = AI; 1139 1140 if (hasAggregateLLVMType(Ty)) { 1141 // Aggregates and complex variables are accessed by reference. All we 1142 // need to do is realign the value, if requested 1143 if (ArgI.getIndirectRealign()) { 1144 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 1145 1146 // Copy from the incoming argument pointer to the temporary with the 1147 // appropriate alignment. 1148 // 1149 // FIXME: We should have a common utility for generating an aggregate 1150 // copy. 1151 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 1152 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1153 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 1154 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 1155 Builder.CreateMemCpy(Dst, 1156 Src, 1157 llvm::ConstantInt::get(IntPtrTy, 1158 Size.getQuantity()), 1159 ArgI.getIndirectAlign(), 1160 false); 1161 V = AlignedTemp; 1162 } 1163 } else { 1164 // Load scalar value from indirect argument. 1165 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1166 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); 1167 1168 if (isPromoted) 1169 V = emitArgumentDemotion(*this, Arg, V); 1170 } 1171 EmitParmDecl(*Arg, V, ArgNo); 1172 break; 1173 } 1174 1175 case ABIArgInfo::Extend: 1176 case ABIArgInfo::Direct: { 1177 // Skip the dummy padding argument. 1178 if (ArgI.getPaddingType()) 1179 ++AI; 1180 1181 // If we have the trivial case, handle it with no muss and fuss. 1182 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1183 ArgI.getCoerceToType() == ConvertType(Ty) && 1184 ArgI.getDirectOffset() == 0) { 1185 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1186 llvm::Value *V = AI; 1187 1188 if (Arg->getType().isRestrictQualified()) 1189 AI->addAttr(llvm::Attribute::NoAlias); 1190 1191 // Ensure the argument is the correct type. 1192 if (V->getType() != ArgI.getCoerceToType()) 1193 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1194 1195 if (isPromoted) 1196 V = emitArgumentDemotion(*this, Arg, V); 1197 1198 EmitParmDecl(*Arg, V, ArgNo); 1199 break; 1200 } 1201 1202 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); 1203 1204 // The alignment we need to use is the max of the requested alignment for 1205 // the argument plus the alignment required by our access code below. 1206 unsigned AlignmentToUse = 1207 CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType()); 1208 AlignmentToUse = std::max(AlignmentToUse, 1209 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1210 1211 Alloca->setAlignment(AlignmentToUse); 1212 llvm::Value *V = Alloca; 1213 llvm::Value *Ptr = V; // Pointer to store into. 1214 1215 // If the value is offset in memory, apply the offset now. 1216 if (unsigned Offs = ArgI.getDirectOffset()) { 1217 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1218 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1219 Ptr = Builder.CreateBitCast(Ptr, 1220 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1221 } 1222 1223 // If the coerce-to type is a first class aggregate, we flatten it and 1224 // pass the elements. Either way is semantically identical, but fast-isel 1225 // and the optimizer generally likes scalar values better than FCAs. 1226 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 1227 if (STy && STy->getNumElements() > 1) { 1228 uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy); 1229 llvm::Type *DstTy = 1230 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 1231 uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy); 1232 1233 if (SrcSize <= DstSize) { 1234 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1235 1236 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1237 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1238 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1239 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1240 Builder.CreateStore(AI++, EltPtr); 1241 } 1242 } else { 1243 llvm::AllocaInst *TempAlloca = 1244 CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); 1245 TempAlloca->setAlignment(AlignmentToUse); 1246 llvm::Value *TempV = TempAlloca; 1247 1248 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1249 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1250 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1251 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i); 1252 Builder.CreateStore(AI++, EltPtr); 1253 } 1254 1255 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); 1256 } 1257 } else { 1258 // Simple case, just do a coerced store of the argument into the alloca. 1259 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1260 AI->setName(Arg->getName() + ".coerce"); 1261 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 1262 } 1263 1264 1265 // Match to what EmitParmDecl is expecting for this type. 1266 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 1267 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); 1268 if (isPromoted) 1269 V = emitArgumentDemotion(*this, Arg, V); 1270 } 1271 EmitParmDecl(*Arg, V, ArgNo); 1272 continue; // Skip ++AI increment, already done. 1273 } 1274 1275 case ABIArgInfo::Expand: { 1276 // If this structure was expanded into multiple arguments then 1277 // we need to create a temporary and reconstruct it from the 1278 // arguments. 1279 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1280 CharUnits Align = getContext().getDeclAlign(Arg); 1281 Alloca->setAlignment(Align.getQuantity()); 1282 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1283 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); 1284 EmitParmDecl(*Arg, Alloca, ArgNo); 1285 1286 // Name the arguments used in expansion and increment AI. 1287 unsigned Index = 0; 1288 for (; AI != End; ++AI, ++Index) 1289 AI->setName(Arg->getName() + "." + Twine(Index)); 1290 continue; 1291 } 1292 1293 case ABIArgInfo::Ignore: 1294 // Initialize the local variable appropriately. 1295 if (hasAggregateLLVMType(Ty)) 1296 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); 1297 else 1298 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), 1299 ArgNo); 1300 1301 // Skip increment, no matching LLVM parameter. 1302 continue; 1303 } 1304 1305 ++AI; 1306 } 1307 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1308 } 1309 1310 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 1311 while (insn->use_empty()) { 1312 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 1313 if (!bitcast) return; 1314 1315 // This is "safe" because we would have used a ConstantExpr otherwise. 1316 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 1317 bitcast->eraseFromParent(); 1318 } 1319 } 1320 1321 /// Try to emit a fused autorelease of a return result. 1322 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1323 llvm::Value *result) { 1324 // We must be immediately followed the cast. 1325 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1326 if (BB->empty()) return 0; 1327 if (&BB->back() != result) return 0; 1328 1329 llvm::Type *resultType = result->getType(); 1330 1331 // result is in a BasicBlock and is therefore an Instruction. 1332 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1333 1334 SmallVector<llvm::Instruction*,4> insnsToKill; 1335 1336 // Look for: 1337 // %generator = bitcast %type1* %generator2 to %type2* 1338 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1339 // We would have emitted this as a constant if the operand weren't 1340 // an Instruction. 1341 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1342 1343 // Require the generator to be immediately followed by the cast. 1344 if (generator->getNextNode() != bitcast) 1345 return 0; 1346 1347 insnsToKill.push_back(bitcast); 1348 } 1349 1350 // Look for: 1351 // %generator = call i8* @objc_retain(i8* %originalResult) 1352 // or 1353 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1354 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1355 if (!call) return 0; 1356 1357 bool doRetainAutorelease; 1358 1359 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1360 doRetainAutorelease = true; 1361 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1362 .objc_retainAutoreleasedReturnValue) { 1363 doRetainAutorelease = false; 1364 1365 // Look for an inline asm immediately preceding the call and kill it, too. 1366 llvm::Instruction *prev = call->getPrevNode(); 1367 if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev)) 1368 if (asmCall->getCalledValue() 1369 == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) 1370 insnsToKill.push_back(prev); 1371 } else { 1372 return 0; 1373 } 1374 1375 result = call->getArgOperand(0); 1376 insnsToKill.push_back(call); 1377 1378 // Keep killing bitcasts, for sanity. Note that we no longer care 1379 // about precise ordering as long as there's exactly one use. 1380 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1381 if (!bitcast->hasOneUse()) break; 1382 insnsToKill.push_back(bitcast); 1383 result = bitcast->getOperand(0); 1384 } 1385 1386 // Delete all the unnecessary instructions, from latest to earliest. 1387 for (SmallVectorImpl<llvm::Instruction*>::iterator 1388 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1389 (*i)->eraseFromParent(); 1390 1391 // Do the fused retain/autorelease if we were asked to. 1392 if (doRetainAutorelease) 1393 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1394 1395 // Cast back to the result type. 1396 return CGF.Builder.CreateBitCast(result, resultType); 1397 } 1398 1399 /// If this is a +1 of the value of an immutable 'self', remove it. 1400 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 1401 llvm::Value *result) { 1402 // This is only applicable to a method with an immutable 'self'. 1403 const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl); 1404 if (!method) return 0; 1405 const VarDecl *self = method->getSelfDecl(); 1406 if (!self->getType().isConstQualified()) return 0; 1407 1408 // Look for a retain call. 1409 llvm::CallInst *retainCall = 1410 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 1411 if (!retainCall || 1412 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 1413 return 0; 1414 1415 // Look for an ordinary load of 'self'. 1416 llvm::Value *retainedValue = retainCall->getArgOperand(0); 1417 llvm::LoadInst *load = 1418 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 1419 if (!load || load->isAtomic() || load->isVolatile() || 1420 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 1421 return 0; 1422 1423 // Okay! Burn it all down. This relies for correctness on the 1424 // assumption that the retain is emitted as part of the return and 1425 // that thereafter everything is used "linearly". 1426 llvm::Type *resultType = result->getType(); 1427 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 1428 assert(retainCall->use_empty()); 1429 retainCall->eraseFromParent(); 1430 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 1431 1432 return CGF.Builder.CreateBitCast(load, resultType); 1433 } 1434 1435 /// Emit an ARC autorelease of the result of a function. 1436 /// 1437 /// \return the value to actually return from the function 1438 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1439 llvm::Value *result) { 1440 // If we're returning 'self', kill the initial retain. This is a 1441 // heuristic attempt to "encourage correctness" in the really unfortunate 1442 // case where we have a return of self during a dealloc and we desperately 1443 // need to avoid the possible autorelease. 1444 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 1445 return self; 1446 1447 // At -O0, try to emit a fused retain/autorelease. 1448 if (CGF.shouldUseFusedARCCalls()) 1449 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1450 return fused; 1451 1452 return CGF.EmitARCAutoreleaseReturnValue(result); 1453 } 1454 1455 /// Heuristically search for a dominating store to the return-value slot. 1456 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 1457 // If there are multiple uses of the return-value slot, just check 1458 // for something immediately preceding the IP. Sometimes this can 1459 // happen with how we generate implicit-returns; it can also happen 1460 // with noreturn cleanups. 1461 if (!CGF.ReturnValue->hasOneUse()) { 1462 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1463 if (IP->empty()) return 0; 1464 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); 1465 if (!store) return 0; 1466 if (store->getPointerOperand() != CGF.ReturnValue) return 0; 1467 assert(!store->isAtomic() && !store->isVolatile()); // see below 1468 return store; 1469 } 1470 1471 llvm::StoreInst *store = 1472 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back()); 1473 if (!store) return 0; 1474 1475 // These aren't actually possible for non-coerced returns, and we 1476 // only care about non-coerced returns on this code path. 1477 assert(!store->isAtomic() && !store->isVolatile()); 1478 1479 // Now do a first-and-dirty dominance check: just walk up the 1480 // single-predecessors chain from the current insertion point. 1481 llvm::BasicBlock *StoreBB = store->getParent(); 1482 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1483 while (IP != StoreBB) { 1484 if (!(IP = IP->getSinglePredecessor())) 1485 return 0; 1486 } 1487 1488 // Okay, the store's basic block dominates the insertion point; we 1489 // can do our thing. 1490 return store; 1491 } 1492 1493 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) { 1494 // Functions with no result always return void. 1495 if (ReturnValue == 0) { 1496 Builder.CreateRetVoid(); 1497 return; 1498 } 1499 1500 llvm::DebugLoc RetDbgLoc; 1501 llvm::Value *RV = 0; 1502 QualType RetTy = FI.getReturnType(); 1503 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1504 1505 switch (RetAI.getKind()) { 1506 case ABIArgInfo::Indirect: { 1507 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1508 if (RetTy->isAnyComplexType()) { 1509 ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); 1510 StoreComplexToAddr(RT, CurFn->arg_begin(), false); 1511 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1512 // Do nothing; aggregrates get evaluated directly into the destination. 1513 } else { 1514 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), 1515 false, Alignment, RetTy); 1516 } 1517 break; 1518 } 1519 1520 case ABIArgInfo::Extend: 1521 case ABIArgInfo::Direct: 1522 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1523 RetAI.getDirectOffset() == 0) { 1524 // The internal return value temp always will have pointer-to-return-type 1525 // type, just do a load. 1526 1527 // If there is a dominating store to ReturnValue, we can elide 1528 // the load, zap the store, and usually zap the alloca. 1529 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { 1530 // Get the stored value and nuke the now-dead store. 1531 RetDbgLoc = SI->getDebugLoc(); 1532 RV = SI->getValueOperand(); 1533 SI->eraseFromParent(); 1534 1535 // If that was the only use of the return value, nuke it as well now. 1536 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1537 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1538 ReturnValue = 0; 1539 } 1540 1541 // Otherwise, we have to do a simple load. 1542 } else { 1543 RV = Builder.CreateLoad(ReturnValue); 1544 } 1545 } else { 1546 llvm::Value *V = ReturnValue; 1547 // If the value is offset in memory, apply the offset now. 1548 if (unsigned Offs = RetAI.getDirectOffset()) { 1549 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1550 V = Builder.CreateConstGEP1_32(V, Offs); 1551 V = Builder.CreateBitCast(V, 1552 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1553 } 1554 1555 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1556 } 1557 1558 // In ARC, end functions that return a retainable type with a call 1559 // to objc_autoreleaseReturnValue. 1560 if (AutoreleaseResult) { 1561 assert(getLangOpts().ObjCAutoRefCount && 1562 !FI.isReturnsRetained() && 1563 RetTy->isObjCRetainableType()); 1564 RV = emitAutoreleaseOfResult(*this, RV); 1565 } 1566 1567 break; 1568 1569 case ABIArgInfo::Ignore: 1570 break; 1571 1572 case ABIArgInfo::Expand: 1573 llvm_unreachable("Invalid ABI kind for return argument"); 1574 } 1575 1576 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1577 if (!RetDbgLoc.isUnknown()) 1578 Ret->setDebugLoc(RetDbgLoc); 1579 } 1580 1581 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1582 const VarDecl *param) { 1583 // StartFunction converted the ABI-lowered parameter(s) into a 1584 // local alloca. We need to turn that into an r-value suitable 1585 // for EmitCall. 1586 llvm::Value *local = GetAddrOfLocalVar(param); 1587 1588 QualType type = param->getType(); 1589 1590 // For the most part, we just need to load the alloca, except: 1591 // 1) aggregate r-values are actually pointers to temporaries, and 1592 // 2) references to aggregates are pointers directly to the aggregate. 1593 // I don't know why references to non-aggregates are different here. 1594 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1595 if (hasAggregateLLVMType(ref->getPointeeType())) 1596 return args.add(RValue::getAggregate(local), type); 1597 1598 // Locals which are references to scalars are represented 1599 // with allocas holding the pointer. 1600 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1601 } 1602 1603 if (type->isAnyComplexType()) { 1604 ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false); 1605 return args.add(RValue::getComplex(complex), type); 1606 } 1607 1608 if (hasAggregateLLVMType(type)) 1609 return args.add(RValue::getAggregate(local), type); 1610 1611 unsigned alignment = getContext().getDeclAlign(param).getQuantity(); 1612 llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type); 1613 return args.add(RValue::get(value), type); 1614 } 1615 1616 static bool isProvablyNull(llvm::Value *addr) { 1617 return isa<llvm::ConstantPointerNull>(addr); 1618 } 1619 1620 static bool isProvablyNonNull(llvm::Value *addr) { 1621 return isa<llvm::AllocaInst>(addr); 1622 } 1623 1624 /// Emit the actual writing-back of a writeback. 1625 static void emitWriteback(CodeGenFunction &CGF, 1626 const CallArgList::Writeback &writeback) { 1627 llvm::Value *srcAddr = writeback.Address; 1628 assert(!isProvablyNull(srcAddr) && 1629 "shouldn't have writeback for provably null argument"); 1630 1631 llvm::BasicBlock *contBB = 0; 1632 1633 // If the argument wasn't provably non-null, we need to null check 1634 // before doing the store. 1635 bool provablyNonNull = isProvablyNonNull(srcAddr); 1636 if (!provablyNonNull) { 1637 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 1638 contBB = CGF.createBasicBlock("icr.done"); 1639 1640 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1641 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 1642 CGF.EmitBlock(writebackBB); 1643 } 1644 1645 // Load the value to writeback. 1646 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 1647 1648 // Cast it back, in case we're writing an id to a Foo* or something. 1649 value = CGF.Builder.CreateBitCast(value, 1650 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 1651 "icr.writeback-cast"); 1652 1653 // Perform the writeback. 1654 QualType srcAddrType = writeback.AddressType; 1655 CGF.EmitStoreThroughLValue(RValue::get(value), 1656 CGF.MakeAddrLValue(srcAddr, srcAddrType)); 1657 1658 // Jump to the continuation block. 1659 if (!provablyNonNull) 1660 CGF.EmitBlock(contBB); 1661 } 1662 1663 static void emitWritebacks(CodeGenFunction &CGF, 1664 const CallArgList &args) { 1665 for (CallArgList::writeback_iterator 1666 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) 1667 emitWriteback(CGF, *i); 1668 } 1669 1670 /// Emit an argument that's being passed call-by-writeback. That is, 1671 /// we are passing the address of 1672 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 1673 const ObjCIndirectCopyRestoreExpr *CRE) { 1674 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 1675 1676 // The dest and src types don't necessarily match in LLVM terms 1677 // because of the crazy ObjC compatibility rules. 1678 1679 llvm::PointerType *destType = 1680 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 1681 1682 // If the address is a constant null, just pass the appropriate null. 1683 if (isProvablyNull(srcAddr)) { 1684 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 1685 CRE->getType()); 1686 return; 1687 } 1688 1689 QualType srcAddrType = 1690 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 1691 1692 // Create the temporary. 1693 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 1694 "icr.temp"); 1695 1696 // Zero-initialize it if we're not doing a copy-initialization. 1697 bool shouldCopy = CRE->shouldCopy(); 1698 if (!shouldCopy) { 1699 llvm::Value *null = 1700 llvm::ConstantPointerNull::get( 1701 cast<llvm::PointerType>(destType->getElementType())); 1702 CGF.Builder.CreateStore(null, temp); 1703 } 1704 1705 llvm::BasicBlock *contBB = 0; 1706 1707 // If the address is *not* known to be non-null, we need to switch. 1708 llvm::Value *finalArgument; 1709 1710 bool provablyNonNull = isProvablyNonNull(srcAddr); 1711 if (provablyNonNull) { 1712 finalArgument = temp; 1713 } else { 1714 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1715 1716 finalArgument = CGF.Builder.CreateSelect(isNull, 1717 llvm::ConstantPointerNull::get(destType), 1718 temp, "icr.argument"); 1719 1720 // If we need to copy, then the load has to be conditional, which 1721 // means we need control flow. 1722 if (shouldCopy) { 1723 contBB = CGF.createBasicBlock("icr.cont"); 1724 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 1725 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 1726 CGF.EmitBlock(copyBB); 1727 } 1728 } 1729 1730 // Perform a copy if necessary. 1731 if (shouldCopy) { 1732 LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 1733 RValue srcRV = CGF.EmitLoadOfLValue(srcLV); 1734 assert(srcRV.isScalar()); 1735 1736 llvm::Value *src = srcRV.getScalarVal(); 1737 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 1738 "icr.cast"); 1739 1740 // Use an ordinary store, not a store-to-lvalue. 1741 CGF.Builder.CreateStore(src, temp); 1742 } 1743 1744 // Finish the control flow if we needed it. 1745 if (shouldCopy && !provablyNonNull) 1746 CGF.EmitBlock(contBB); 1747 1748 args.addWriteback(srcAddr, srcAddrType, temp); 1749 args.add(RValue::get(finalArgument), CRE->getType()); 1750 } 1751 1752 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 1753 QualType type) { 1754 if (const ObjCIndirectCopyRestoreExpr *CRE 1755 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 1756 assert(getContext().getLangOpts().ObjCAutoRefCount); 1757 assert(getContext().hasSameType(E->getType(), type)); 1758 return emitWritebackArg(*this, args, CRE); 1759 } 1760 1761 assert(type->isReferenceType() == E->isGLValue() && 1762 "reference binding to unmaterialized r-value!"); 1763 1764 if (E->isGLValue()) { 1765 assert(E->getObjectKind() == OK_Ordinary); 1766 return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0), 1767 type); 1768 } 1769 1770 if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() && 1771 isa<ImplicitCastExpr>(E) && 1772 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 1773 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 1774 assert(L.isSimple()); 1775 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 1776 return; 1777 } 1778 1779 args.add(EmitAnyExprToTemp(E), type); 1780 } 1781 1782 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 1783 // optimizer it can aggressively ignore unwind edges. 1784 void 1785 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 1786 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 1787 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 1788 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 1789 CGM.getNoObjCARCExceptionsMetadata()); 1790 } 1791 1792 /// Emits a call or invoke instruction to the given function, depending 1793 /// on the current state of the EH stack. 1794 llvm::CallSite 1795 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1796 ArrayRef<llvm::Value *> Args, 1797 const Twine &Name) { 1798 llvm::BasicBlock *InvokeDest = getInvokeDest(); 1799 1800 llvm::Instruction *Inst; 1801 if (!InvokeDest) 1802 Inst = Builder.CreateCall(Callee, Args, Name); 1803 else { 1804 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 1805 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 1806 EmitBlock(ContBB); 1807 } 1808 1809 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 1810 // optimizer it can aggressively ignore unwind edges. 1811 if (CGM.getLangOpts().ObjCAutoRefCount) 1812 AddObjCARCExceptionMetadata(Inst); 1813 1814 return Inst; 1815 } 1816 1817 llvm::CallSite 1818 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1819 const Twine &Name) { 1820 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); 1821 } 1822 1823 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 1824 llvm::FunctionType *FTy) { 1825 if (ArgNo < FTy->getNumParams()) 1826 assert(Elt->getType() == FTy->getParamType(ArgNo)); 1827 else 1828 assert(FTy->isVarArg()); 1829 ++ArgNo; 1830 } 1831 1832 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 1833 SmallVector<llvm::Value*,16> &Args, 1834 llvm::FunctionType *IRFuncTy) { 1835 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1836 unsigned NumElts = AT->getSize().getZExtValue(); 1837 QualType EltTy = AT->getElementType(); 1838 llvm::Value *Addr = RV.getAggregateAddr(); 1839 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 1840 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 1841 LValue LV = MakeAddrLValue(EltAddr, EltTy); 1842 RValue EltRV; 1843 if (EltTy->isAnyComplexType()) 1844 // FIXME: Volatile? 1845 EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false)); 1846 else if (CodeGenFunction::hasAggregateLLVMType(EltTy)) 1847 EltRV = LV.asAggregateRValue(); 1848 else 1849 EltRV = EmitLoadOfLValue(LV); 1850 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); 1851 } 1852 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 1853 RecordDecl *RD = RT->getDecl(); 1854 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 1855 LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty); 1856 1857 if (RD->isUnion()) { 1858 const FieldDecl *LargestFD = 0; 1859 CharUnits UnionSize = CharUnits::Zero(); 1860 1861 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1862 i != e; ++i) { 1863 const FieldDecl *FD = *i; 1864 assert(!FD->isBitField() && 1865 "Cannot expand structure with bit-field members."); 1866 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 1867 if (UnionSize < FieldSize) { 1868 UnionSize = FieldSize; 1869 LargestFD = FD; 1870 } 1871 } 1872 if (LargestFD) { 1873 RValue FldRV = EmitRValueForField(LV, LargestFD); 1874 ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy); 1875 } 1876 } else { 1877 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1878 i != e; ++i) { 1879 FieldDecl *FD = *i; 1880 1881 RValue FldRV = EmitRValueForField(LV, FD); 1882 ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy); 1883 } 1884 } 1885 } else if (Ty->isAnyComplexType()) { 1886 ComplexPairTy CV = RV.getComplexVal(); 1887 Args.push_back(CV.first); 1888 Args.push_back(CV.second); 1889 } else { 1890 assert(RV.isScalar() && 1891 "Unexpected non-scalar rvalue during struct expansion."); 1892 1893 // Insert a bitcast as needed. 1894 llvm::Value *V = RV.getScalarVal(); 1895 if (Args.size() < IRFuncTy->getNumParams() && 1896 V->getType() != IRFuncTy->getParamType(Args.size())) 1897 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 1898 1899 Args.push_back(V); 1900 } 1901 } 1902 1903 1904 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 1905 llvm::Value *Callee, 1906 ReturnValueSlot ReturnValue, 1907 const CallArgList &CallArgs, 1908 const Decl *TargetDecl, 1909 llvm::Instruction **callOrInvoke) { 1910 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 1911 SmallVector<llvm::Value*, 16> Args; 1912 1913 // Handle struct-return functions by passing a pointer to the 1914 // location that we would like to return into. 1915 QualType RetTy = CallInfo.getReturnType(); 1916 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 1917 1918 // IRArgNo - Keep track of the argument number in the callee we're looking at. 1919 unsigned IRArgNo = 0; 1920 llvm::FunctionType *IRFuncTy = 1921 cast<llvm::FunctionType>( 1922 cast<llvm::PointerType>(Callee->getType())->getElementType()); 1923 1924 // If the call returns a temporary with struct return, create a temporary 1925 // alloca to hold the result, unless one is given to us. 1926 if (CGM.ReturnTypeUsesSRet(CallInfo)) { 1927 llvm::Value *Value = ReturnValue.getValue(); 1928 if (!Value) 1929 Value = CreateMemTemp(RetTy); 1930 Args.push_back(Value); 1931 checkArgMatches(Value, IRArgNo, IRFuncTy); 1932 } 1933 1934 assert(CallInfo.arg_size() == CallArgs.size() && 1935 "Mismatch between function signature & arguments."); 1936 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 1937 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 1938 I != E; ++I, ++info_it) { 1939 const ABIArgInfo &ArgInfo = info_it->info; 1940 RValue RV = I->RV; 1941 1942 unsigned TypeAlign = 1943 getContext().getTypeAlignInChars(I->Ty).getQuantity(); 1944 switch (ArgInfo.getKind()) { 1945 case ABIArgInfo::Indirect: { 1946 if (RV.isScalar() || RV.isComplex()) { 1947 // Make a temporary alloca to pass the argument. 1948 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1949 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 1950 AI->setAlignment(ArgInfo.getIndirectAlign()); 1951 Args.push_back(AI); 1952 1953 if (RV.isScalar()) 1954 EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, 1955 TypeAlign, I->Ty); 1956 else 1957 StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); 1958 1959 // Validate argument match. 1960 checkArgMatches(AI, IRArgNo, IRFuncTy); 1961 } else { 1962 // We want to avoid creating an unnecessary temporary+copy here; 1963 // however, we need one in two cases: 1964 // 1. If the argument is not byval, and we are required to copy the 1965 // source. (This case doesn't occur on any common architecture.) 1966 // 2. If the argument is byval, RV is not sufficiently aligned, and 1967 // we cannot force it to be sufficiently aligned. 1968 llvm::Value *Addr = RV.getAggregateAddr(); 1969 unsigned Align = ArgInfo.getIndirectAlign(); 1970 const llvm::TargetData *TD = &CGM.getTargetData(); 1971 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 1972 (ArgInfo.getIndirectByVal() && TypeAlign < Align && 1973 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) { 1974 // Create an aligned temporary, and copy to it. 1975 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1976 if (Align > AI->getAlignment()) 1977 AI->setAlignment(Align); 1978 Args.push_back(AI); 1979 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 1980 1981 // Validate argument match. 1982 checkArgMatches(AI, IRArgNo, IRFuncTy); 1983 } else { 1984 // Skip the extra memcpy call. 1985 Args.push_back(Addr); 1986 1987 // Validate argument match. 1988 checkArgMatches(Addr, IRArgNo, IRFuncTy); 1989 } 1990 } 1991 break; 1992 } 1993 1994 case ABIArgInfo::Ignore: 1995 break; 1996 1997 case ABIArgInfo::Extend: 1998 case ABIArgInfo::Direct: { 1999 // Insert a padding argument to ensure proper alignment. 2000 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) { 2001 Args.push_back(llvm::UndefValue::get(PaddingType)); 2002 ++IRArgNo; 2003 } 2004 2005 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 2006 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 2007 ArgInfo.getDirectOffset() == 0) { 2008 llvm::Value *V; 2009 if (RV.isScalar()) 2010 V = RV.getScalarVal(); 2011 else 2012 V = Builder.CreateLoad(RV.getAggregateAddr()); 2013 2014 // If the argument doesn't match, perform a bitcast to coerce it. This 2015 // can happen due to trivial type mismatches. 2016 if (IRArgNo < IRFuncTy->getNumParams() && 2017 V->getType() != IRFuncTy->getParamType(IRArgNo)) 2018 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 2019 Args.push_back(V); 2020 2021 checkArgMatches(V, IRArgNo, IRFuncTy); 2022 break; 2023 } 2024 2025 // FIXME: Avoid the conversion through memory if possible. 2026 llvm::Value *SrcPtr; 2027 if (RV.isScalar()) { 2028 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 2029 EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty); 2030 } else if (RV.isComplex()) { 2031 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 2032 StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); 2033 } else 2034 SrcPtr = RV.getAggregateAddr(); 2035 2036 // If the value is offset in memory, apply the offset now. 2037 if (unsigned Offs = ArgInfo.getDirectOffset()) { 2038 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 2039 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 2040 SrcPtr = Builder.CreateBitCast(SrcPtr, 2041 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 2042 2043 } 2044 2045 // If the coerce-to type is a first class aggregate, we flatten it and 2046 // pass the elements. Either way is semantically identical, but fast-isel 2047 // and the optimizer generally likes scalar values better than FCAs. 2048 if (llvm::StructType *STy = 2049 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 2050 SrcPtr = Builder.CreateBitCast(SrcPtr, 2051 llvm::PointerType::getUnqual(STy)); 2052 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2053 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 2054 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 2055 // We don't know what we're loading from. 2056 LI->setAlignment(1); 2057 Args.push_back(LI); 2058 2059 // Validate argument match. 2060 checkArgMatches(LI, IRArgNo, IRFuncTy); 2061 } 2062 } else { 2063 // In the simple case, just pass the coerced loaded value. 2064 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 2065 *this)); 2066 2067 // Validate argument match. 2068 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 2069 } 2070 2071 break; 2072 } 2073 2074 case ABIArgInfo::Expand: 2075 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 2076 IRArgNo = Args.size(); 2077 break; 2078 } 2079 } 2080 2081 // If the callee is a bitcast of a function to a varargs pointer to function 2082 // type, check to see if we can remove the bitcast. This handles some cases 2083 // with unprototyped functions. 2084 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 2085 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 2086 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 2087 llvm::FunctionType *CurFT = 2088 cast<llvm::FunctionType>(CurPT->getElementType()); 2089 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 2090 2091 if (CE->getOpcode() == llvm::Instruction::BitCast && 2092 ActualFT->getReturnType() == CurFT->getReturnType() && 2093 ActualFT->getNumParams() == CurFT->getNumParams() && 2094 ActualFT->getNumParams() == Args.size() && 2095 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 2096 bool ArgsMatch = true; 2097 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 2098 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 2099 ArgsMatch = false; 2100 break; 2101 } 2102 2103 // Strip the cast if we can get away with it. This is a nice cleanup, 2104 // but also allows us to inline the function at -O0 if it is marked 2105 // always_inline. 2106 if (ArgsMatch) 2107 Callee = CalleeF; 2108 } 2109 } 2110 2111 unsigned CallingConv; 2112 CodeGen::AttributeListType AttributeList; 2113 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); 2114 llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList); 2115 2116 llvm::BasicBlock *InvokeDest = 0; 2117 if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) 2118 InvokeDest = getInvokeDest(); 2119 2120 llvm::CallSite CS; 2121 if (!InvokeDest) { 2122 CS = Builder.CreateCall(Callee, Args); 2123 } else { 2124 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 2125 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); 2126 EmitBlock(Cont); 2127 } 2128 if (callOrInvoke) 2129 *callOrInvoke = CS.getInstruction(); 2130 2131 CS.setAttributes(Attrs); 2132 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2133 2134 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2135 // optimizer it can aggressively ignore unwind edges. 2136 if (CGM.getLangOpts().ObjCAutoRefCount) 2137 AddObjCARCExceptionMetadata(CS.getInstruction()); 2138 2139 // If the call doesn't return, finish the basic block and clear the 2140 // insertion point; this allows the rest of IRgen to discard 2141 // unreachable code. 2142 if (CS.doesNotReturn()) { 2143 Builder.CreateUnreachable(); 2144 Builder.ClearInsertionPoint(); 2145 2146 // FIXME: For now, emit a dummy basic block because expr emitters in 2147 // generally are not ready to handle emitting expressions at unreachable 2148 // points. 2149 EnsureInsertPoint(); 2150 2151 // Return a reasonable RValue. 2152 return GetUndefRValue(RetTy); 2153 } 2154 2155 llvm::Instruction *CI = CS.getInstruction(); 2156 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 2157 CI->setName("call"); 2158 2159 // Emit any writebacks immediately. Arguably this should happen 2160 // after any return-value munging. 2161 if (CallArgs.hasWritebacks()) 2162 emitWritebacks(*this, CallArgs); 2163 2164 switch (RetAI.getKind()) { 2165 case ABIArgInfo::Indirect: { 2166 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 2167 if (RetTy->isAnyComplexType()) 2168 return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); 2169 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 2170 return RValue::getAggregate(Args[0]); 2171 return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy)); 2172 } 2173 2174 case ABIArgInfo::Ignore: 2175 // If we are ignoring an argument that had a result, make sure to 2176 // construct the appropriate return value for our caller. 2177 return GetUndefRValue(RetTy); 2178 2179 case ABIArgInfo::Extend: 2180 case ABIArgInfo::Direct: { 2181 llvm::Type *RetIRTy = ConvertType(RetTy); 2182 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 2183 if (RetTy->isAnyComplexType()) { 2184 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 2185 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 2186 return RValue::getComplex(std::make_pair(Real, Imag)); 2187 } 2188 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 2189 llvm::Value *DestPtr = ReturnValue.getValue(); 2190 bool DestIsVolatile = ReturnValue.isVolatile(); 2191 2192 if (!DestPtr) { 2193 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 2194 DestIsVolatile = false; 2195 } 2196 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 2197 return RValue::getAggregate(DestPtr); 2198 } 2199 2200 // If the argument doesn't match, perform a bitcast to coerce it. This 2201 // can happen due to trivial type mismatches. 2202 llvm::Value *V = CI; 2203 if (V->getType() != RetIRTy) 2204 V = Builder.CreateBitCast(V, RetIRTy); 2205 return RValue::get(V); 2206 } 2207 2208 llvm::Value *DestPtr = ReturnValue.getValue(); 2209 bool DestIsVolatile = ReturnValue.isVolatile(); 2210 2211 if (!DestPtr) { 2212 DestPtr = CreateMemTemp(RetTy, "coerce"); 2213 DestIsVolatile = false; 2214 } 2215 2216 // If the value is offset in memory, apply the offset now. 2217 llvm::Value *StorePtr = DestPtr; 2218 if (unsigned Offs = RetAI.getDirectOffset()) { 2219 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 2220 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 2221 StorePtr = Builder.CreateBitCast(StorePtr, 2222 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 2223 } 2224 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 2225 2226 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 2227 if (RetTy->isAnyComplexType()) 2228 return RValue::getComplex(LoadComplexFromAddr(DestPtr, false)); 2229 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 2230 return RValue::getAggregate(DestPtr); 2231 return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy)); 2232 } 2233 2234 case ABIArgInfo::Expand: 2235 llvm_unreachable("Invalid ABI kind for return argument"); 2236 } 2237 2238 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 2239 } 2240 2241 /* VarArg handling */ 2242 2243 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 2244 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 2245 } 2246