1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /***/ 47 48 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 49 switch (CC) { 50 default: return llvm::CallingConv::C; 51 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 52 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 53 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 54 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 55 case CC_Win64: return llvm::CallingConv::Win64; 56 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 57 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 58 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 59 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 60 // TODO: Add support for __pascal to LLVM. 61 case CC_X86Pascal: return llvm::CallingConv::C; 62 // TODO: Add support for __vectorcall to LLVM. 63 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 64 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 65 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall; 66 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL; 67 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 68 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 69 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 70 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 71 case CC_Swift: return llvm::CallingConv::Swift; 72 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 73 } 74 } 75 76 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 77 /// qualification. Either or both of RD and MD may be null. A null RD indicates 78 /// that there is no meaningful 'this' type, and a null MD can occur when 79 /// calling a method pointer. 80 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 81 const CXXMethodDecl *MD) { 82 QualType RecTy; 83 if (RD) 84 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 85 else 86 RecTy = Context.VoidTy; 87 88 if (MD) 89 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 90 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 91 } 92 93 /// Returns the canonical formal type of the given C++ method. 94 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 95 return MD->getType()->getCanonicalTypeUnqualified() 96 .getAs<FunctionProtoType>(); 97 } 98 99 /// Returns the "extra-canonicalized" return type, which discards 100 /// qualifiers on the return type. Codegen doesn't care about them, 101 /// and it makes ABI code a little easier to be able to assume that 102 /// all parameter and return types are top-level unqualified. 103 static CanQualType GetReturnType(QualType RetTy) { 104 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 105 } 106 107 /// Arrange the argument and result information for a value of the given 108 /// unprototyped freestanding function type. 109 const CGFunctionInfo & 110 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 111 // When translating an unprototyped function type, always use a 112 // variadic type. 113 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 114 /*instanceMethod=*/false, 115 /*chainCall=*/false, None, 116 FTNP->getExtInfo(), {}, RequiredArgs(0)); 117 } 118 119 static void addExtParameterInfosForCall( 120 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 121 const FunctionProtoType *proto, 122 unsigned prefixArgs, 123 unsigned totalArgs) { 124 assert(proto->hasExtParameterInfos()); 125 assert(paramInfos.size() <= prefixArgs); 126 assert(proto->getNumParams() + prefixArgs <= totalArgs); 127 128 paramInfos.reserve(totalArgs); 129 130 // Add default infos for any prefix args that don't already have infos. 131 paramInfos.resize(prefixArgs); 132 133 // Add infos for the prototype. 134 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 135 paramInfos.push_back(ParamInfo); 136 // pass_object_size params have no parameter info. 137 if (ParamInfo.hasPassObjectSize()) 138 paramInfos.emplace_back(); 139 } 140 141 assert(paramInfos.size() <= totalArgs && 142 "Did we forget to insert pass_object_size args?"); 143 // Add default infos for the variadic and/or suffix arguments. 144 paramInfos.resize(totalArgs); 145 } 146 147 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 148 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 149 static void appendParameterTypes(const CodeGenTypes &CGT, 150 SmallVectorImpl<CanQualType> &prefix, 151 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 152 CanQual<FunctionProtoType> FPT) { 153 // Fast path: don't touch param info if we don't need to. 154 if (!FPT->hasExtParameterInfos()) { 155 assert(paramInfos.empty() && 156 "We have paramInfos, but the prototype doesn't?"); 157 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 158 return; 159 } 160 161 unsigned PrefixSize = prefix.size(); 162 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 163 // parameters; the only thing that can change this is the presence of 164 // pass_object_size. So, we preallocate for the common case. 165 prefix.reserve(prefix.size() + FPT->getNumParams()); 166 167 auto ExtInfos = FPT->getExtParameterInfos(); 168 assert(ExtInfos.size() == FPT->getNumParams()); 169 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 170 prefix.push_back(FPT->getParamType(I)); 171 if (ExtInfos[I].hasPassObjectSize()) 172 prefix.push_back(CGT.getContext().getSizeType()); 173 } 174 175 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 176 prefix.size()); 177 } 178 179 /// Arrange the LLVM function layout for a value of the given function 180 /// type, on top of any implicit parameters already stored. 181 static const CGFunctionInfo & 182 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 183 SmallVectorImpl<CanQualType> &prefix, 184 CanQual<FunctionProtoType> FTP) { 185 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 186 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 187 // FIXME: Kill copy. 188 appendParameterTypes(CGT, prefix, paramInfos, FTP); 189 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 190 191 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 192 /*chainCall=*/false, prefix, 193 FTP->getExtInfo(), paramInfos, 194 Required); 195 } 196 197 /// Arrange the argument and result information for a value of the 198 /// given freestanding function type. 199 const CGFunctionInfo & 200 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 201 SmallVector<CanQualType, 16> argTypes; 202 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 203 FTP); 204 } 205 206 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 207 bool IsWindows) { 208 // Set the appropriate calling convention for the Function. 209 if (D->hasAttr<StdCallAttr>()) 210 return CC_X86StdCall; 211 212 if (D->hasAttr<FastCallAttr>()) 213 return CC_X86FastCall; 214 215 if (D->hasAttr<RegCallAttr>()) 216 return CC_X86RegCall; 217 218 if (D->hasAttr<ThisCallAttr>()) 219 return CC_X86ThisCall; 220 221 if (D->hasAttr<VectorCallAttr>()) 222 return CC_X86VectorCall; 223 224 if (D->hasAttr<PascalAttr>()) 225 return CC_X86Pascal; 226 227 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 228 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 229 230 if (D->hasAttr<AArch64VectorPcsAttr>()) 231 return CC_AArch64VectorCall; 232 233 if (D->hasAttr<AArch64SVEPcsAttr>()) 234 return CC_AArch64SVEPCS; 235 236 if (D->hasAttr<AMDGPUKernelCallAttr>()) 237 return CC_AMDGPUKernelCall; 238 239 if (D->hasAttr<IntelOclBiccAttr>()) 240 return CC_IntelOclBicc; 241 242 if (D->hasAttr<MSABIAttr>()) 243 return IsWindows ? CC_C : CC_Win64; 244 245 if (D->hasAttr<SysVABIAttr>()) 246 return IsWindows ? CC_X86_64SysV : CC_C; 247 248 if (D->hasAttr<PreserveMostAttr>()) 249 return CC_PreserveMost; 250 251 if (D->hasAttr<PreserveAllAttr>()) 252 return CC_PreserveAll; 253 254 return CC_C; 255 } 256 257 /// Arrange the argument and result information for a call to an 258 /// unknown C++ non-static member function of the given abstract type. 259 /// (A null RD means we don't have any meaningful "this" argument type, 260 /// so fall back to a generic pointer type). 261 /// The member function must be an ordinary function, i.e. not a 262 /// constructor or destructor. 263 const CGFunctionInfo & 264 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 265 const FunctionProtoType *FTP, 266 const CXXMethodDecl *MD) { 267 SmallVector<CanQualType, 16> argTypes; 268 269 // Add the 'this' pointer. 270 argTypes.push_back(DeriveThisType(RD, MD)); 271 272 return ::arrangeLLVMFunctionInfo( 273 *this, true, argTypes, 274 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 275 } 276 277 /// Set calling convention for CUDA/HIP kernel. 278 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 279 const FunctionDecl *FD) { 280 if (FD->hasAttr<CUDAGlobalAttr>()) { 281 const FunctionType *FT = FTy->getAs<FunctionType>(); 282 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 283 FTy = FT->getCanonicalTypeUnqualified(); 284 } 285 } 286 287 /// Arrange the argument and result information for a declaration or 288 /// definition of the given C++ non-static member function. The 289 /// member function must be an ordinary function, i.e. not a 290 /// constructor or destructor. 291 const CGFunctionInfo & 292 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 293 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 294 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 295 296 CanQualType FT = GetFormalType(MD).getAs<Type>(); 297 setCUDAKernelCallingConvention(FT, CGM, MD); 298 auto prototype = FT.getAs<FunctionProtoType>(); 299 300 if (MD->isInstance()) { 301 // The abstract case is perfectly fine. 302 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 303 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 304 } 305 306 return arrangeFreeFunctionType(prototype); 307 } 308 309 bool CodeGenTypes::inheritingCtorHasParams( 310 const InheritedConstructor &Inherited, CXXCtorType Type) { 311 // Parameters are unnecessary if we're constructing a base class subobject 312 // and the inherited constructor lives in a virtual base. 313 return Type == Ctor_Complete || 314 !Inherited.getShadowDecl()->constructsVirtualBase() || 315 !Target.getCXXABI().hasConstructorVariants(); 316 } 317 318 const CGFunctionInfo & 319 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 320 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 321 322 SmallVector<CanQualType, 16> argTypes; 323 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 324 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 325 326 bool PassParams = true; 327 328 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 329 // A base class inheriting constructor doesn't get forwarded arguments 330 // needed to construct a virtual base (or base class thereof). 331 if (auto Inherited = CD->getInheritedConstructor()) 332 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 333 } 334 335 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 336 337 // Add the formal parameters. 338 if (PassParams) 339 appendParameterTypes(*this, argTypes, paramInfos, FTP); 340 341 CGCXXABI::AddedStructorArgCounts AddedArgs = 342 TheCXXABI.buildStructorSignature(GD, argTypes); 343 if (!paramInfos.empty()) { 344 // Note: prefix implies after the first param. 345 if (AddedArgs.Prefix) 346 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 347 FunctionProtoType::ExtParameterInfo{}); 348 if (AddedArgs.Suffix) 349 paramInfos.append(AddedArgs.Suffix, 350 FunctionProtoType::ExtParameterInfo{}); 351 } 352 353 RequiredArgs required = 354 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 355 : RequiredArgs::All); 356 357 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 358 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 359 ? argTypes.front() 360 : TheCXXABI.hasMostDerivedReturn(GD) 361 ? CGM.getContext().VoidPtrTy 362 : Context.VoidTy; 363 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 364 /*chainCall=*/false, argTypes, extInfo, 365 paramInfos, required); 366 } 367 368 static SmallVector<CanQualType, 16> 369 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 370 SmallVector<CanQualType, 16> argTypes; 371 for (auto &arg : args) 372 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 373 return argTypes; 374 } 375 376 static SmallVector<CanQualType, 16> 377 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 378 SmallVector<CanQualType, 16> argTypes; 379 for (auto &arg : args) 380 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 381 return argTypes; 382 } 383 384 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 385 getExtParameterInfosForCall(const FunctionProtoType *proto, 386 unsigned prefixArgs, unsigned totalArgs) { 387 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 388 if (proto->hasExtParameterInfos()) { 389 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 390 } 391 return result; 392 } 393 394 /// Arrange a call to a C++ method, passing the given arguments. 395 /// 396 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 397 /// parameter. 398 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 399 /// args. 400 /// PassProtoArgs indicates whether `args` has args for the parameters in the 401 /// given CXXConstructorDecl. 402 const CGFunctionInfo & 403 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 404 const CXXConstructorDecl *D, 405 CXXCtorType CtorKind, 406 unsigned ExtraPrefixArgs, 407 unsigned ExtraSuffixArgs, 408 bool PassProtoArgs) { 409 // FIXME: Kill copy. 410 SmallVector<CanQualType, 16> ArgTypes; 411 for (const auto &Arg : args) 412 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 413 414 // +1 for implicit this, which should always be args[0]. 415 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 416 417 CanQual<FunctionProtoType> FPT = GetFormalType(D); 418 RequiredArgs Required = PassProtoArgs 419 ? RequiredArgs::forPrototypePlus( 420 FPT, TotalPrefixArgs + ExtraSuffixArgs) 421 : RequiredArgs::All; 422 423 GlobalDecl GD(D, CtorKind); 424 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 425 ? ArgTypes.front() 426 : TheCXXABI.hasMostDerivedReturn(GD) 427 ? CGM.getContext().VoidPtrTy 428 : Context.VoidTy; 429 430 FunctionType::ExtInfo Info = FPT->getExtInfo(); 431 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 432 // If the prototype args are elided, we should only have ABI-specific args, 433 // which never have param info. 434 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 435 // ABI-specific suffix arguments are treated the same as variadic arguments. 436 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 437 ArgTypes.size()); 438 } 439 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 440 /*chainCall=*/false, ArgTypes, Info, 441 ParamInfos, Required); 442 } 443 444 /// Arrange the argument and result information for the declaration or 445 /// definition of the given function. 446 const CGFunctionInfo & 447 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 448 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 449 if (MD->isInstance()) 450 return arrangeCXXMethodDeclaration(MD); 451 452 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 453 454 assert(isa<FunctionType>(FTy)); 455 setCUDAKernelCallingConvention(FTy, CGM, FD); 456 457 // When declaring a function without a prototype, always use a 458 // non-variadic type. 459 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 460 return arrangeLLVMFunctionInfo( 461 noProto->getReturnType(), /*instanceMethod=*/false, 462 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 463 } 464 465 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 466 } 467 468 /// Arrange the argument and result information for the declaration or 469 /// definition of an Objective-C method. 470 const CGFunctionInfo & 471 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 472 // It happens that this is the same as a call with no optional 473 // arguments, except also using the formal 'self' type. 474 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 475 } 476 477 /// Arrange the argument and result information for the function type 478 /// through which to perform a send to the given Objective-C method, 479 /// using the given receiver type. The receiver type is not always 480 /// the 'self' type of the method or even an Objective-C pointer type. 481 /// This is *not* the right method for actually performing such a 482 /// message send, due to the possibility of optional arguments. 483 const CGFunctionInfo & 484 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 485 QualType receiverType) { 486 SmallVector<CanQualType, 16> argTys; 487 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 488 argTys.push_back(Context.getCanonicalParamType(receiverType)); 489 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 490 // FIXME: Kill copy? 491 for (const auto *I : MD->parameters()) { 492 argTys.push_back(Context.getCanonicalParamType(I->getType())); 493 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 494 I->hasAttr<NoEscapeAttr>()); 495 extParamInfos.push_back(extParamInfo); 496 } 497 498 FunctionType::ExtInfo einfo; 499 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 500 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 501 502 if (getContext().getLangOpts().ObjCAutoRefCount && 503 MD->hasAttr<NSReturnsRetainedAttr>()) 504 einfo = einfo.withProducesResult(true); 505 506 RequiredArgs required = 507 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 508 509 return arrangeLLVMFunctionInfo( 510 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 511 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 512 } 513 514 const CGFunctionInfo & 515 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 516 const CallArgList &args) { 517 auto argTypes = getArgTypesForCall(Context, args); 518 FunctionType::ExtInfo einfo; 519 520 return arrangeLLVMFunctionInfo( 521 GetReturnType(returnType), /*instanceMethod=*/false, 522 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 523 } 524 525 const CGFunctionInfo & 526 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 527 // FIXME: Do we need to handle ObjCMethodDecl? 528 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 529 530 if (isa<CXXConstructorDecl>(GD.getDecl()) || 531 isa<CXXDestructorDecl>(GD.getDecl())) 532 return arrangeCXXStructorDeclaration(GD); 533 534 return arrangeFunctionDeclaration(FD); 535 } 536 537 /// Arrange a thunk that takes 'this' as the first parameter followed by 538 /// varargs. Return a void pointer, regardless of the actual return type. 539 /// The body of the thunk will end in a musttail call to a function of the 540 /// correct type, and the caller will bitcast the function to the correct 541 /// prototype. 542 const CGFunctionInfo & 543 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 544 assert(MD->isVirtual() && "only methods have thunks"); 545 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 546 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 547 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 548 /*chainCall=*/false, ArgTys, 549 FTP->getExtInfo(), {}, RequiredArgs(1)); 550 } 551 552 const CGFunctionInfo & 553 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 554 CXXCtorType CT) { 555 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 556 557 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 558 SmallVector<CanQualType, 2> ArgTys; 559 const CXXRecordDecl *RD = CD->getParent(); 560 ArgTys.push_back(DeriveThisType(RD, CD)); 561 if (CT == Ctor_CopyingClosure) 562 ArgTys.push_back(*FTP->param_type_begin()); 563 if (RD->getNumVBases() > 0) 564 ArgTys.push_back(Context.IntTy); 565 CallingConv CC = Context.getDefaultCallingConvention( 566 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 567 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 568 /*chainCall=*/false, ArgTys, 569 FunctionType::ExtInfo(CC), {}, 570 RequiredArgs::All); 571 } 572 573 /// Arrange a call as unto a free function, except possibly with an 574 /// additional number of formal parameters considered required. 575 static const CGFunctionInfo & 576 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 577 CodeGenModule &CGM, 578 const CallArgList &args, 579 const FunctionType *fnType, 580 unsigned numExtraRequiredArgs, 581 bool chainCall) { 582 assert(args.size() >= numExtraRequiredArgs); 583 584 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 585 586 // In most cases, there are no optional arguments. 587 RequiredArgs required = RequiredArgs::All; 588 589 // If we have a variadic prototype, the required arguments are the 590 // extra prefix plus the arguments in the prototype. 591 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 592 if (proto->isVariadic()) 593 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 594 595 if (proto->hasExtParameterInfos()) 596 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 597 args.size()); 598 599 // If we don't have a prototype at all, but we're supposed to 600 // explicitly use the variadic convention for unprototyped calls, 601 // treat all of the arguments as required but preserve the nominal 602 // possibility of variadics. 603 } else if (CGM.getTargetCodeGenInfo() 604 .isNoProtoCallVariadic(args, 605 cast<FunctionNoProtoType>(fnType))) { 606 required = RequiredArgs(args.size()); 607 } 608 609 // FIXME: Kill copy. 610 SmallVector<CanQualType, 16> argTypes; 611 for (const auto &arg : args) 612 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 613 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 614 /*instanceMethod=*/false, chainCall, 615 argTypes, fnType->getExtInfo(), paramInfos, 616 required); 617 } 618 619 /// Figure out the rules for calling a function with the given formal 620 /// type using the given arguments. The arguments are necessary 621 /// because the function might be unprototyped, in which case it's 622 /// target-dependent in crazy ways. 623 const CGFunctionInfo & 624 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 625 const FunctionType *fnType, 626 bool chainCall) { 627 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 628 chainCall ? 1 : 0, chainCall); 629 } 630 631 /// A block function is essentially a free function with an 632 /// extra implicit argument. 633 const CGFunctionInfo & 634 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 635 const FunctionType *fnType) { 636 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 637 /*chainCall=*/false); 638 } 639 640 const CGFunctionInfo & 641 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 642 const FunctionArgList ¶ms) { 643 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 644 auto argTypes = getArgTypesForDeclaration(Context, params); 645 646 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 647 /*instanceMethod*/ false, /*chainCall*/ false, 648 argTypes, proto->getExtInfo(), paramInfos, 649 RequiredArgs::forPrototypePlus(proto, 1)); 650 } 651 652 const CGFunctionInfo & 653 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 654 const CallArgList &args) { 655 // FIXME: Kill copy. 656 SmallVector<CanQualType, 16> argTypes; 657 for (const auto &Arg : args) 658 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 659 return arrangeLLVMFunctionInfo( 660 GetReturnType(resultType), /*instanceMethod=*/false, 661 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 662 /*paramInfos=*/ {}, RequiredArgs::All); 663 } 664 665 const CGFunctionInfo & 666 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 667 const FunctionArgList &args) { 668 auto argTypes = getArgTypesForDeclaration(Context, args); 669 670 return arrangeLLVMFunctionInfo( 671 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 672 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 673 } 674 675 const CGFunctionInfo & 676 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 677 ArrayRef<CanQualType> argTypes) { 678 return arrangeLLVMFunctionInfo( 679 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 680 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 681 } 682 683 /// Arrange a call to a C++ method, passing the given arguments. 684 /// 685 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 686 /// does not count `this`. 687 const CGFunctionInfo & 688 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 689 const FunctionProtoType *proto, 690 RequiredArgs required, 691 unsigned numPrefixArgs) { 692 assert(numPrefixArgs + 1 <= args.size() && 693 "Emitting a call with less args than the required prefix?"); 694 // Add one to account for `this`. It's a bit awkward here, but we don't count 695 // `this` in similar places elsewhere. 696 auto paramInfos = 697 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 698 699 // FIXME: Kill copy. 700 auto argTypes = getArgTypesForCall(Context, args); 701 702 FunctionType::ExtInfo info = proto->getExtInfo(); 703 return arrangeLLVMFunctionInfo( 704 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 705 /*chainCall=*/false, argTypes, info, paramInfos, required); 706 } 707 708 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 709 return arrangeLLVMFunctionInfo( 710 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 711 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 712 } 713 714 const CGFunctionInfo & 715 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 716 const CallArgList &args) { 717 assert(signature.arg_size() <= args.size()); 718 if (signature.arg_size() == args.size()) 719 return signature; 720 721 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 722 auto sigParamInfos = signature.getExtParameterInfos(); 723 if (!sigParamInfos.empty()) { 724 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 725 paramInfos.resize(args.size()); 726 } 727 728 auto argTypes = getArgTypesForCall(Context, args); 729 730 assert(signature.getRequiredArgs().allowsOptionalArgs()); 731 return arrangeLLVMFunctionInfo(signature.getReturnType(), 732 signature.isInstanceMethod(), 733 signature.isChainCall(), 734 argTypes, 735 signature.getExtInfo(), 736 paramInfos, 737 signature.getRequiredArgs()); 738 } 739 740 namespace clang { 741 namespace CodeGen { 742 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 743 } 744 } 745 746 /// Arrange the argument and result information for an abstract value 747 /// of a given function type. This is the method which all of the 748 /// above functions ultimately defer to. 749 const CGFunctionInfo & 750 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 751 bool instanceMethod, 752 bool chainCall, 753 ArrayRef<CanQualType> argTypes, 754 FunctionType::ExtInfo info, 755 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 756 RequiredArgs required) { 757 assert(llvm::all_of(argTypes, 758 [](CanQualType T) { return T.isCanonicalAsParam(); })); 759 760 // Lookup or create unique function info. 761 llvm::FoldingSetNodeID ID; 762 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 763 required, resultType, argTypes); 764 765 void *insertPos = nullptr; 766 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 767 if (FI) 768 return *FI; 769 770 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 771 772 // Construct the function info. We co-allocate the ArgInfos. 773 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 774 paramInfos, resultType, argTypes, required); 775 FunctionInfos.InsertNode(FI, insertPos); 776 777 bool inserted = FunctionsBeingProcessed.insert(FI).second; 778 (void)inserted; 779 assert(inserted && "Recursively being processed?"); 780 781 // Compute ABI information. 782 if (CC == llvm::CallingConv::SPIR_KERNEL) { 783 // Force target independent argument handling for the host visible 784 // kernel functions. 785 computeSPIRKernelABIInfo(CGM, *FI); 786 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 787 swiftcall::computeABIInfo(CGM, *FI); 788 } else { 789 getABIInfo().computeInfo(*FI); 790 } 791 792 // Loop over all of the computed argument and return value info. If any of 793 // them are direct or extend without a specified coerce type, specify the 794 // default now. 795 ABIArgInfo &retInfo = FI->getReturnInfo(); 796 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 797 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 798 799 for (auto &I : FI->arguments()) 800 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 801 I.info.setCoerceToType(ConvertType(I.type)); 802 803 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 804 assert(erased && "Not in set?"); 805 806 return *FI; 807 } 808 809 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 810 bool instanceMethod, 811 bool chainCall, 812 const FunctionType::ExtInfo &info, 813 ArrayRef<ExtParameterInfo> paramInfos, 814 CanQualType resultType, 815 ArrayRef<CanQualType> argTypes, 816 RequiredArgs required) { 817 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 818 assert(!required.allowsOptionalArgs() || 819 required.getNumRequiredArgs() <= argTypes.size()); 820 821 void *buffer = 822 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 823 argTypes.size() + 1, paramInfos.size())); 824 825 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 826 FI->CallingConvention = llvmCC; 827 FI->EffectiveCallingConvention = llvmCC; 828 FI->ASTCallingConvention = info.getCC(); 829 FI->InstanceMethod = instanceMethod; 830 FI->ChainCall = chainCall; 831 FI->CmseNSCall = info.getCmseNSCall(); 832 FI->NoReturn = info.getNoReturn(); 833 FI->ReturnsRetained = info.getProducesResult(); 834 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 835 FI->NoCfCheck = info.getNoCfCheck(); 836 FI->Required = required; 837 FI->HasRegParm = info.getHasRegParm(); 838 FI->RegParm = info.getRegParm(); 839 FI->ArgStruct = nullptr; 840 FI->ArgStructAlign = 0; 841 FI->NumArgs = argTypes.size(); 842 FI->HasExtParameterInfos = !paramInfos.empty(); 843 FI->getArgsBuffer()[0].type = resultType; 844 FI->MaxVectorWidth = 0; 845 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 846 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 847 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 848 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 849 return FI; 850 } 851 852 /***/ 853 854 namespace { 855 // ABIArgInfo::Expand implementation. 856 857 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 858 struct TypeExpansion { 859 enum TypeExpansionKind { 860 // Elements of constant arrays are expanded recursively. 861 TEK_ConstantArray, 862 // Record fields are expanded recursively (but if record is a union, only 863 // the field with the largest size is expanded). 864 TEK_Record, 865 // For complex types, real and imaginary parts are expanded recursively. 866 TEK_Complex, 867 // All other types are not expandable. 868 TEK_None 869 }; 870 871 const TypeExpansionKind Kind; 872 873 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 874 virtual ~TypeExpansion() {} 875 }; 876 877 struct ConstantArrayExpansion : TypeExpansion { 878 QualType EltTy; 879 uint64_t NumElts; 880 881 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 882 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 883 static bool classof(const TypeExpansion *TE) { 884 return TE->Kind == TEK_ConstantArray; 885 } 886 }; 887 888 struct RecordExpansion : TypeExpansion { 889 SmallVector<const CXXBaseSpecifier *, 1> Bases; 890 891 SmallVector<const FieldDecl *, 1> Fields; 892 893 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 894 SmallVector<const FieldDecl *, 1> &&Fields) 895 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 896 Fields(std::move(Fields)) {} 897 static bool classof(const TypeExpansion *TE) { 898 return TE->Kind == TEK_Record; 899 } 900 }; 901 902 struct ComplexExpansion : TypeExpansion { 903 QualType EltTy; 904 905 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 906 static bool classof(const TypeExpansion *TE) { 907 return TE->Kind == TEK_Complex; 908 } 909 }; 910 911 struct NoExpansion : TypeExpansion { 912 NoExpansion() : TypeExpansion(TEK_None) {} 913 static bool classof(const TypeExpansion *TE) { 914 return TE->Kind == TEK_None; 915 } 916 }; 917 } // namespace 918 919 static std::unique_ptr<TypeExpansion> 920 getTypeExpansion(QualType Ty, const ASTContext &Context) { 921 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 922 return std::make_unique<ConstantArrayExpansion>( 923 AT->getElementType(), AT->getSize().getZExtValue()); 924 } 925 if (const RecordType *RT = Ty->getAs<RecordType>()) { 926 SmallVector<const CXXBaseSpecifier *, 1> Bases; 927 SmallVector<const FieldDecl *, 1> Fields; 928 const RecordDecl *RD = RT->getDecl(); 929 assert(!RD->hasFlexibleArrayMember() && 930 "Cannot expand structure with flexible array."); 931 if (RD->isUnion()) { 932 // Unions can be here only in degenerative cases - all the fields are same 933 // after flattening. Thus we have to use the "largest" field. 934 const FieldDecl *LargestFD = nullptr; 935 CharUnits UnionSize = CharUnits::Zero(); 936 937 for (const auto *FD : RD->fields()) { 938 if (FD->isZeroLengthBitField(Context)) 939 continue; 940 assert(!FD->isBitField() && 941 "Cannot expand structure with bit-field members."); 942 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 943 if (UnionSize < FieldSize) { 944 UnionSize = FieldSize; 945 LargestFD = FD; 946 } 947 } 948 if (LargestFD) 949 Fields.push_back(LargestFD); 950 } else { 951 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 952 assert(!CXXRD->isDynamicClass() && 953 "cannot expand vtable pointers in dynamic classes"); 954 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases())); 955 } 956 957 for (const auto *FD : RD->fields()) { 958 if (FD->isZeroLengthBitField(Context)) 959 continue; 960 assert(!FD->isBitField() && 961 "Cannot expand structure with bit-field members."); 962 Fields.push_back(FD); 963 } 964 } 965 return std::make_unique<RecordExpansion>(std::move(Bases), 966 std::move(Fields)); 967 } 968 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 969 return std::make_unique<ComplexExpansion>(CT->getElementType()); 970 } 971 return std::make_unique<NoExpansion>(); 972 } 973 974 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 975 auto Exp = getTypeExpansion(Ty, Context); 976 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 977 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 978 } 979 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 980 int Res = 0; 981 for (auto BS : RExp->Bases) 982 Res += getExpansionSize(BS->getType(), Context); 983 for (auto FD : RExp->Fields) 984 Res += getExpansionSize(FD->getType(), Context); 985 return Res; 986 } 987 if (isa<ComplexExpansion>(Exp.get())) 988 return 2; 989 assert(isa<NoExpansion>(Exp.get())); 990 return 1; 991 } 992 993 void 994 CodeGenTypes::getExpandedTypes(QualType Ty, 995 SmallVectorImpl<llvm::Type *>::iterator &TI) { 996 auto Exp = getTypeExpansion(Ty, Context); 997 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 998 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 999 getExpandedTypes(CAExp->EltTy, TI); 1000 } 1001 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1002 for (auto BS : RExp->Bases) 1003 getExpandedTypes(BS->getType(), TI); 1004 for (auto FD : RExp->Fields) 1005 getExpandedTypes(FD->getType(), TI); 1006 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 1007 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1008 *TI++ = EltTy; 1009 *TI++ = EltTy; 1010 } else { 1011 assert(isa<NoExpansion>(Exp.get())); 1012 *TI++ = ConvertType(Ty); 1013 } 1014 } 1015 1016 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1017 ConstantArrayExpansion *CAE, 1018 Address BaseAddr, 1019 llvm::function_ref<void(Address)> Fn) { 1020 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1021 CharUnits EltAlign = 1022 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1023 llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy); 1024 1025 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1026 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( 1027 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); 1028 Fn(Address(EltAddr, EltTy, EltAlign)); 1029 } 1030 } 1031 1032 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1033 llvm::Function::arg_iterator &AI) { 1034 assert(LV.isSimple() && 1035 "Unexpected non-simple lvalue during struct expansion."); 1036 1037 auto Exp = getTypeExpansion(Ty, getContext()); 1038 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1039 forConstantArrayExpansion( 1040 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1041 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1042 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1043 }); 1044 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1045 Address This = LV.getAddress(*this); 1046 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1047 // Perform a single step derived-to-base conversion. 1048 Address Base = 1049 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1050 /*NullCheckValue=*/false, SourceLocation()); 1051 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1052 1053 // Recurse onto bases. 1054 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1055 } 1056 for (auto FD : RExp->Fields) { 1057 // FIXME: What are the right qualifiers here? 1058 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1059 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1060 } 1061 } else if (isa<ComplexExpansion>(Exp.get())) { 1062 auto realValue = &*AI++; 1063 auto imagValue = &*AI++; 1064 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1065 } else { 1066 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1067 // primitive store. 1068 assert(isa<NoExpansion>(Exp.get())); 1069 llvm::Value *Arg = &*AI++; 1070 if (LV.isBitField()) { 1071 EmitStoreThroughLValue(RValue::get(Arg), LV); 1072 } else { 1073 // TODO: currently there are some places are inconsistent in what LLVM 1074 // pointer type they use (see D118744). Once clang uses opaque pointers 1075 // all LLVM pointer types will be the same and we can remove this check. 1076 if (Arg->getType()->isPointerTy()) { 1077 Address Addr = LV.getAddress(*this); 1078 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1079 } 1080 EmitStoreOfScalar(Arg, LV); 1081 } 1082 } 1083 } 1084 1085 void CodeGenFunction::ExpandTypeToArgs( 1086 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1087 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1088 auto Exp = getTypeExpansion(Ty, getContext()); 1089 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1090 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1091 : Arg.getKnownRValue().getAggregateAddress(); 1092 forConstantArrayExpansion( 1093 *this, CAExp, Addr, [&](Address EltAddr) { 1094 CallArg EltArg = CallArg( 1095 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1096 CAExp->EltTy); 1097 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1098 IRCallArgPos); 1099 }); 1100 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1101 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1102 : Arg.getKnownRValue().getAggregateAddress(); 1103 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1104 // Perform a single step derived-to-base conversion. 1105 Address Base = 1106 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1107 /*NullCheckValue=*/false, SourceLocation()); 1108 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1109 1110 // Recurse onto bases. 1111 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1112 IRCallArgPos); 1113 } 1114 1115 LValue LV = MakeAddrLValue(This, Ty); 1116 for (auto FD : RExp->Fields) { 1117 CallArg FldArg = 1118 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1119 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1120 IRCallArgPos); 1121 } 1122 } else if (isa<ComplexExpansion>(Exp.get())) { 1123 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1124 IRCallArgs[IRCallArgPos++] = CV.first; 1125 IRCallArgs[IRCallArgPos++] = CV.second; 1126 } else { 1127 assert(isa<NoExpansion>(Exp.get())); 1128 auto RV = Arg.getKnownRValue(); 1129 assert(RV.isScalar() && 1130 "Unexpected non-scalar rvalue during struct expansion."); 1131 1132 // Insert a bitcast as needed. 1133 llvm::Value *V = RV.getScalarVal(); 1134 if (IRCallArgPos < IRFuncTy->getNumParams() && 1135 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1136 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1137 1138 IRCallArgs[IRCallArgPos++] = V; 1139 } 1140 } 1141 1142 /// Create a temporary allocation for the purposes of coercion. 1143 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1144 CharUnits MinAlign, 1145 const Twine &Name = "tmp") { 1146 // Don't use an alignment that's worse than what LLVM would prefer. 1147 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1148 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1149 1150 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1151 } 1152 1153 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1154 /// accessing some number of bytes out of it, try to gep into the struct to get 1155 /// at its inner goodness. Dive as deep as possible without entering an element 1156 /// with an in-memory size smaller than DstSize. 1157 static Address 1158 EnterStructPointerForCoercedAccess(Address SrcPtr, 1159 llvm::StructType *SrcSTy, 1160 uint64_t DstSize, CodeGenFunction &CGF) { 1161 // We can't dive into a zero-element struct. 1162 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1163 1164 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1165 1166 // If the first elt is at least as large as what we're looking for, or if the 1167 // first element is the same size as the whole struct, we can enter it. The 1168 // comparison must be made on the store size and not the alloca size. Using 1169 // the alloca size may overstate the size of the load. 1170 uint64_t FirstEltSize = 1171 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1172 if (FirstEltSize < DstSize && 1173 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1174 return SrcPtr; 1175 1176 // GEP into the first element. 1177 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1178 1179 // If the first element is a struct, recurse. 1180 llvm::Type *SrcTy = SrcPtr.getElementType(); 1181 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1182 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1183 1184 return SrcPtr; 1185 } 1186 1187 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1188 /// are either integers or pointers. This does a truncation of the value if it 1189 /// is too large or a zero extension if it is too small. 1190 /// 1191 /// This behaves as if the value were coerced through memory, so on big-endian 1192 /// targets the high bits are preserved in a truncation, while little-endian 1193 /// targets preserve the low bits. 1194 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1195 llvm::Type *Ty, 1196 CodeGenFunction &CGF) { 1197 if (Val->getType() == Ty) 1198 return Val; 1199 1200 if (isa<llvm::PointerType>(Val->getType())) { 1201 // If this is Pointer->Pointer avoid conversion to and from int. 1202 if (isa<llvm::PointerType>(Ty)) 1203 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1204 1205 // Convert the pointer to an integer so we can play with its width. 1206 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1207 } 1208 1209 llvm::Type *DestIntTy = Ty; 1210 if (isa<llvm::PointerType>(DestIntTy)) 1211 DestIntTy = CGF.IntPtrTy; 1212 1213 if (Val->getType() != DestIntTy) { 1214 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1215 if (DL.isBigEndian()) { 1216 // Preserve the high bits on big-endian targets. 1217 // That is what memory coercion does. 1218 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1219 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1220 1221 if (SrcSize > DstSize) { 1222 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1223 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1224 } else { 1225 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1226 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1227 } 1228 } else { 1229 // Little-endian targets preserve the low bits. No shifts required. 1230 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1231 } 1232 } 1233 1234 if (isa<llvm::PointerType>(Ty)) 1235 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1236 return Val; 1237 } 1238 1239 1240 1241 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1242 /// a pointer to an object of type \arg Ty, known to be aligned to 1243 /// \arg SrcAlign bytes. 1244 /// 1245 /// This safely handles the case when the src type is smaller than the 1246 /// destination type; in this situation the values of bits which not 1247 /// present in the src are undefined. 1248 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1249 CodeGenFunction &CGF) { 1250 llvm::Type *SrcTy = Src.getElementType(); 1251 1252 // If SrcTy and Ty are the same, just do a load. 1253 if (SrcTy == Ty) 1254 return CGF.Builder.CreateLoad(Src); 1255 1256 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1257 1258 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1259 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1260 DstSize.getFixedSize(), CGF); 1261 SrcTy = Src.getElementType(); 1262 } 1263 1264 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1265 1266 // If the source and destination are integer or pointer types, just do an 1267 // extension or truncation to the desired type. 1268 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1269 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1270 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1271 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1272 } 1273 1274 // If load is legal, just bitcast the src pointer. 1275 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1276 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1277 // Generally SrcSize is never greater than DstSize, since this means we are 1278 // losing bits. However, this can happen in cases where the structure has 1279 // additional padding, for example due to a user specified alignment. 1280 // 1281 // FIXME: Assert that we aren't truncating non-padding bits when have access 1282 // to that information. 1283 Src = CGF.Builder.CreateElementBitCast(Src, Ty); 1284 return CGF.Builder.CreateLoad(Src); 1285 } 1286 1287 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1288 // the types match, use the llvm.experimental.vector.insert intrinsic to 1289 // perform the conversion. 1290 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1291 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1292 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 1293 // vector, use a vector insert and bitcast the result. 1294 bool NeedsBitcast = false; 1295 auto PredType = 1296 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16); 1297 llvm::Type *OrigType = Ty; 1298 if (ScalableDst == PredType && 1299 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) { 1300 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2); 1301 NeedsBitcast = true; 1302 } 1303 if (ScalableDst->getElementType() == FixedSrc->getElementType()) { 1304 auto *Load = CGF.Builder.CreateLoad(Src); 1305 auto *UndefVec = llvm::UndefValue::get(ScalableDst); 1306 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1307 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1308 ScalableDst, UndefVec, Load, Zero, "castScalableSve"); 1309 if (NeedsBitcast) 1310 Result = CGF.Builder.CreateBitCast(Result, OrigType); 1311 return Result; 1312 } 1313 } 1314 } 1315 1316 // Otherwise do coercion through memory. This is stupid, but simple. 1317 Address Tmp = 1318 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1319 CGF.Builder.CreateMemCpy( 1320 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1321 Src.getAlignment().getAsAlign(), 1322 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1323 return CGF.Builder.CreateLoad(Tmp); 1324 } 1325 1326 // Function to store a first-class aggregate into memory. We prefer to 1327 // store the elements rather than the aggregate to be more friendly to 1328 // fast-isel. 1329 // FIXME: Do we need to recurse here? 1330 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1331 bool DestIsVolatile) { 1332 // Prefer scalar stores to first-class aggregate stores. 1333 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1334 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1335 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1336 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1337 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1338 } 1339 } else { 1340 Builder.CreateStore(Val, Dest, DestIsVolatile); 1341 } 1342 } 1343 1344 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1345 /// where the source and destination may have different types. The 1346 /// destination is known to be aligned to \arg DstAlign bytes. 1347 /// 1348 /// This safely handles the case when the src type is larger than the 1349 /// destination type; the upper bits of the src will be lost. 1350 static void CreateCoercedStore(llvm::Value *Src, 1351 Address Dst, 1352 bool DstIsVolatile, 1353 CodeGenFunction &CGF) { 1354 llvm::Type *SrcTy = Src->getType(); 1355 llvm::Type *DstTy = Dst.getElementType(); 1356 if (SrcTy == DstTy) { 1357 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1358 return; 1359 } 1360 1361 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1362 1363 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1364 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1365 SrcSize.getFixedSize(), CGF); 1366 DstTy = Dst.getElementType(); 1367 } 1368 1369 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1370 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1371 if (SrcPtrTy && DstPtrTy && 1372 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1373 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1374 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1375 return; 1376 } 1377 1378 // If the source and destination are integer or pointer types, just do an 1379 // extension or truncation to the desired type. 1380 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1381 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1382 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1383 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1384 return; 1385 } 1386 1387 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1388 1389 // If store is legal, just bitcast the src pointer. 1390 if (isa<llvm::ScalableVectorType>(SrcTy) || 1391 isa<llvm::ScalableVectorType>(DstTy) || 1392 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1393 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1394 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1395 } else { 1396 // Otherwise do coercion through memory. This is stupid, but 1397 // simple. 1398 1399 // Generally SrcSize is never greater than DstSize, since this means we are 1400 // losing bits. However, this can happen in cases where the structure has 1401 // additional padding, for example due to a user specified alignment. 1402 // 1403 // FIXME: Assert that we aren't truncating non-padding bits when have access 1404 // to that information. 1405 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1406 CGF.Builder.CreateStore(Src, Tmp); 1407 CGF.Builder.CreateMemCpy( 1408 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1409 Tmp.getAlignment().getAsAlign(), 1410 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1411 } 1412 } 1413 1414 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1415 const ABIArgInfo &info) { 1416 if (unsigned offset = info.getDirectOffset()) { 1417 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1418 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1419 CharUnits::fromQuantity(offset)); 1420 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1421 } 1422 return addr; 1423 } 1424 1425 namespace { 1426 1427 /// Encapsulates information about the way function arguments from 1428 /// CGFunctionInfo should be passed to actual LLVM IR function. 1429 class ClangToLLVMArgMapping { 1430 static const unsigned InvalidIndex = ~0U; 1431 unsigned InallocaArgNo; 1432 unsigned SRetArgNo; 1433 unsigned TotalIRArgs; 1434 1435 /// Arguments of LLVM IR function corresponding to single Clang argument. 1436 struct IRArgs { 1437 unsigned PaddingArgIndex; 1438 // Argument is expanded to IR arguments at positions 1439 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1440 unsigned FirstArgIndex; 1441 unsigned NumberOfArgs; 1442 1443 IRArgs() 1444 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1445 NumberOfArgs(0) {} 1446 }; 1447 1448 SmallVector<IRArgs, 8> ArgInfo; 1449 1450 public: 1451 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1452 bool OnlyRequiredArgs = false) 1453 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1454 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1455 construct(Context, FI, OnlyRequiredArgs); 1456 } 1457 1458 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1459 unsigned getInallocaArgNo() const { 1460 assert(hasInallocaArg()); 1461 return InallocaArgNo; 1462 } 1463 1464 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1465 unsigned getSRetArgNo() const { 1466 assert(hasSRetArg()); 1467 return SRetArgNo; 1468 } 1469 1470 unsigned totalIRArgs() const { return TotalIRArgs; } 1471 1472 bool hasPaddingArg(unsigned ArgNo) const { 1473 assert(ArgNo < ArgInfo.size()); 1474 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1475 } 1476 unsigned getPaddingArgNo(unsigned ArgNo) const { 1477 assert(hasPaddingArg(ArgNo)); 1478 return ArgInfo[ArgNo].PaddingArgIndex; 1479 } 1480 1481 /// Returns index of first IR argument corresponding to ArgNo, and their 1482 /// quantity. 1483 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1484 assert(ArgNo < ArgInfo.size()); 1485 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1486 ArgInfo[ArgNo].NumberOfArgs); 1487 } 1488 1489 private: 1490 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1491 bool OnlyRequiredArgs); 1492 }; 1493 1494 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1495 const CGFunctionInfo &FI, 1496 bool OnlyRequiredArgs) { 1497 unsigned IRArgNo = 0; 1498 bool SwapThisWithSRet = false; 1499 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1500 1501 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1502 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1503 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1504 } 1505 1506 unsigned ArgNo = 0; 1507 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1508 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1509 ++I, ++ArgNo) { 1510 assert(I != FI.arg_end()); 1511 QualType ArgType = I->type; 1512 const ABIArgInfo &AI = I->info; 1513 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1514 auto &IRArgs = ArgInfo[ArgNo]; 1515 1516 if (AI.getPaddingType()) 1517 IRArgs.PaddingArgIndex = IRArgNo++; 1518 1519 switch (AI.getKind()) { 1520 case ABIArgInfo::Extend: 1521 case ABIArgInfo::Direct: { 1522 // FIXME: handle sseregparm someday... 1523 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1524 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1525 IRArgs.NumberOfArgs = STy->getNumElements(); 1526 } else { 1527 IRArgs.NumberOfArgs = 1; 1528 } 1529 break; 1530 } 1531 case ABIArgInfo::Indirect: 1532 case ABIArgInfo::IndirectAliased: 1533 IRArgs.NumberOfArgs = 1; 1534 break; 1535 case ABIArgInfo::Ignore: 1536 case ABIArgInfo::InAlloca: 1537 // ignore and inalloca doesn't have matching LLVM parameters. 1538 IRArgs.NumberOfArgs = 0; 1539 break; 1540 case ABIArgInfo::CoerceAndExpand: 1541 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1542 break; 1543 case ABIArgInfo::Expand: 1544 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1545 break; 1546 } 1547 1548 if (IRArgs.NumberOfArgs > 0) { 1549 IRArgs.FirstArgIndex = IRArgNo; 1550 IRArgNo += IRArgs.NumberOfArgs; 1551 } 1552 1553 // Skip over the sret parameter when it comes second. We already handled it 1554 // above. 1555 if (IRArgNo == 1 && SwapThisWithSRet) 1556 IRArgNo++; 1557 } 1558 assert(ArgNo == ArgInfo.size()); 1559 1560 if (FI.usesInAlloca()) 1561 InallocaArgNo = IRArgNo++; 1562 1563 TotalIRArgs = IRArgNo; 1564 } 1565 } // namespace 1566 1567 /***/ 1568 1569 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1570 const auto &RI = FI.getReturnInfo(); 1571 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1572 } 1573 1574 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1575 return ReturnTypeUsesSRet(FI) && 1576 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1577 } 1578 1579 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1580 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1581 switch (BT->getKind()) { 1582 default: 1583 return false; 1584 case BuiltinType::Float: 1585 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1586 case BuiltinType::Double: 1587 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1588 case BuiltinType::LongDouble: 1589 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1590 } 1591 } 1592 1593 return false; 1594 } 1595 1596 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1597 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1598 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1599 if (BT->getKind() == BuiltinType::LongDouble) 1600 return getTarget().useObjCFP2RetForComplexLongDouble(); 1601 } 1602 } 1603 1604 return false; 1605 } 1606 1607 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1608 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1609 return GetFunctionType(FI); 1610 } 1611 1612 llvm::FunctionType * 1613 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1614 1615 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1616 (void)Inserted; 1617 assert(Inserted && "Recursively being processed?"); 1618 1619 llvm::Type *resultType = nullptr; 1620 const ABIArgInfo &retAI = FI.getReturnInfo(); 1621 switch (retAI.getKind()) { 1622 case ABIArgInfo::Expand: 1623 case ABIArgInfo::IndirectAliased: 1624 llvm_unreachable("Invalid ABI kind for return argument"); 1625 1626 case ABIArgInfo::Extend: 1627 case ABIArgInfo::Direct: 1628 resultType = retAI.getCoerceToType(); 1629 break; 1630 1631 case ABIArgInfo::InAlloca: 1632 if (retAI.getInAllocaSRet()) { 1633 // sret things on win32 aren't void, they return the sret pointer. 1634 QualType ret = FI.getReturnType(); 1635 llvm::Type *ty = ConvertType(ret); 1636 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1637 resultType = llvm::PointerType::get(ty, addressSpace); 1638 } else { 1639 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1640 } 1641 break; 1642 1643 case ABIArgInfo::Indirect: 1644 case ABIArgInfo::Ignore: 1645 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1646 break; 1647 1648 case ABIArgInfo::CoerceAndExpand: 1649 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1650 break; 1651 } 1652 1653 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1654 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1655 1656 // Add type for sret argument. 1657 if (IRFunctionArgs.hasSRetArg()) { 1658 QualType Ret = FI.getReturnType(); 1659 llvm::Type *Ty = ConvertType(Ret); 1660 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1661 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1662 llvm::PointerType::get(Ty, AddressSpace); 1663 } 1664 1665 // Add type for inalloca argument. 1666 if (IRFunctionArgs.hasInallocaArg()) { 1667 auto ArgStruct = FI.getArgStruct(); 1668 assert(ArgStruct); 1669 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1670 } 1671 1672 // Add in all of the required arguments. 1673 unsigned ArgNo = 0; 1674 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1675 ie = it + FI.getNumRequiredArgs(); 1676 for (; it != ie; ++it, ++ArgNo) { 1677 const ABIArgInfo &ArgInfo = it->info; 1678 1679 // Insert a padding type to ensure proper alignment. 1680 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1681 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1682 ArgInfo.getPaddingType(); 1683 1684 unsigned FirstIRArg, NumIRArgs; 1685 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1686 1687 switch (ArgInfo.getKind()) { 1688 case ABIArgInfo::Ignore: 1689 case ABIArgInfo::InAlloca: 1690 assert(NumIRArgs == 0); 1691 break; 1692 1693 case ABIArgInfo::Indirect: { 1694 assert(NumIRArgs == 1); 1695 // indirect arguments are always on the stack, which is alloca addr space. 1696 llvm::Type *LTy = ConvertTypeForMem(it->type); 1697 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1698 CGM.getDataLayout().getAllocaAddrSpace()); 1699 break; 1700 } 1701 case ABIArgInfo::IndirectAliased: { 1702 assert(NumIRArgs == 1); 1703 llvm::Type *LTy = ConvertTypeForMem(it->type); 1704 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1705 break; 1706 } 1707 case ABIArgInfo::Extend: 1708 case ABIArgInfo::Direct: { 1709 // Fast-isel and the optimizer generally like scalar values better than 1710 // FCAs, so we flatten them if this is safe to do for this argument. 1711 llvm::Type *argType = ArgInfo.getCoerceToType(); 1712 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1713 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1714 assert(NumIRArgs == st->getNumElements()); 1715 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1716 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1717 } else { 1718 assert(NumIRArgs == 1); 1719 ArgTypes[FirstIRArg] = argType; 1720 } 1721 break; 1722 } 1723 1724 case ABIArgInfo::CoerceAndExpand: { 1725 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1726 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1727 *ArgTypesIter++ = EltTy; 1728 } 1729 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1730 break; 1731 } 1732 1733 case ABIArgInfo::Expand: 1734 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1735 getExpandedTypes(it->type, ArgTypesIter); 1736 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1737 break; 1738 } 1739 } 1740 1741 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1742 assert(Erased && "Not in set?"); 1743 1744 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1745 } 1746 1747 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1748 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1749 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1750 1751 if (!isFuncTypeConvertible(FPT)) 1752 return llvm::StructType::get(getLLVMContext()); 1753 1754 return GetFunctionType(GD); 1755 } 1756 1757 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1758 llvm::AttrBuilder &FuncAttrs, 1759 const FunctionProtoType *FPT) { 1760 if (!FPT) 1761 return; 1762 1763 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1764 FPT->isNothrow()) 1765 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1766 } 1767 1768 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs, 1769 const Decl *Callee) { 1770 if (!Callee) 1771 return; 1772 1773 SmallVector<StringRef, 4> Attrs; 1774 1775 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>()) 1776 AA->getAssumption().split(Attrs, ","); 1777 1778 if (!Attrs.empty()) 1779 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1780 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1781 } 1782 1783 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1784 QualType ReturnType) { 1785 // We can't just discard the return value for a record type with a 1786 // complex destructor or a non-trivially copyable type. 1787 if (const RecordType *RT = 1788 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1789 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1790 return ClassDecl->hasTrivialDestructor(); 1791 } 1792 return ReturnType.isTriviallyCopyableType(Context); 1793 } 1794 1795 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1796 bool HasOptnone, 1797 bool AttrOnCallSite, 1798 llvm::AttrBuilder &FuncAttrs) { 1799 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1800 if (!HasOptnone) { 1801 if (CodeGenOpts.OptimizeSize) 1802 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1803 if (CodeGenOpts.OptimizeSize == 2) 1804 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1805 } 1806 1807 if (CodeGenOpts.DisableRedZone) 1808 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1809 if (CodeGenOpts.IndirectTlsSegRefs) 1810 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1811 if (CodeGenOpts.NoImplicitFloat) 1812 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1813 1814 if (AttrOnCallSite) { 1815 // Attributes that should go on the call site only. 1816 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking 1817 // the -fno-builtin-foo list. 1818 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1819 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1820 if (!CodeGenOpts.TrapFuncName.empty()) 1821 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1822 } else { 1823 StringRef FpKind; 1824 switch (CodeGenOpts.getFramePointer()) { 1825 case CodeGenOptions::FramePointerKind::None: 1826 FpKind = "none"; 1827 break; 1828 case CodeGenOptions::FramePointerKind::NonLeaf: 1829 FpKind = "non-leaf"; 1830 break; 1831 case CodeGenOptions::FramePointerKind::All: 1832 FpKind = "all"; 1833 break; 1834 } 1835 FuncAttrs.addAttribute("frame-pointer", FpKind); 1836 1837 if (CodeGenOpts.LessPreciseFPMAD) 1838 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1839 1840 if (CodeGenOpts.NullPointerIsValid) 1841 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1842 1843 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1844 FuncAttrs.addAttribute("denormal-fp-math", 1845 CodeGenOpts.FPDenormalMode.str()); 1846 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1847 FuncAttrs.addAttribute( 1848 "denormal-fp-math-f32", 1849 CodeGenOpts.FP32DenormalMode.str()); 1850 } 1851 1852 if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore) 1853 FuncAttrs.addAttribute("no-trapping-math", "true"); 1854 1855 // TODO: Are these all needed? 1856 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1857 if (LangOpts.NoHonorInfs) 1858 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1859 if (LangOpts.NoHonorNaNs) 1860 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1861 if (LangOpts.ApproxFunc) 1862 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1863 if (LangOpts.UnsafeFPMath) 1864 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1865 if (CodeGenOpts.SoftFloat) 1866 FuncAttrs.addAttribute("use-soft-float", "true"); 1867 FuncAttrs.addAttribute("stack-protector-buffer-size", 1868 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1869 if (LangOpts.NoSignedZero) 1870 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1871 1872 // TODO: Reciprocal estimate codegen options should apply to instructions? 1873 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1874 if (!Recips.empty()) 1875 FuncAttrs.addAttribute("reciprocal-estimates", 1876 llvm::join(Recips, ",")); 1877 1878 if (!CodeGenOpts.PreferVectorWidth.empty() && 1879 CodeGenOpts.PreferVectorWidth != "none") 1880 FuncAttrs.addAttribute("prefer-vector-width", 1881 CodeGenOpts.PreferVectorWidth); 1882 1883 if (CodeGenOpts.StackRealignment) 1884 FuncAttrs.addAttribute("stackrealign"); 1885 if (CodeGenOpts.Backchain) 1886 FuncAttrs.addAttribute("backchain"); 1887 if (CodeGenOpts.EnableSegmentedStacks) 1888 FuncAttrs.addAttribute("split-stack"); 1889 1890 if (CodeGenOpts.SpeculativeLoadHardening) 1891 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1892 1893 // Add zero-call-used-regs attribute. 1894 switch (CodeGenOpts.getZeroCallUsedRegs()) { 1895 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 1896 FuncAttrs.removeAttribute("zero-call-used-regs"); 1897 break; 1898 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 1899 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 1900 break; 1901 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 1902 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 1903 break; 1904 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 1905 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 1906 break; 1907 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 1908 FuncAttrs.addAttribute("zero-call-used-regs", "used"); 1909 break; 1910 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 1911 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 1912 break; 1913 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 1914 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 1915 break; 1916 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 1917 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 1918 break; 1919 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 1920 FuncAttrs.addAttribute("zero-call-used-regs", "all"); 1921 break; 1922 } 1923 } 1924 1925 if (getLangOpts().assumeFunctionsAreConvergent()) { 1926 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1927 // convergent (meaning, they may call an intrinsically convergent op, such 1928 // as __syncthreads() / barrier(), and so can't have certain optimizations 1929 // applied around them). LLVM will remove this attribute where it safely 1930 // can. 1931 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1932 } 1933 1934 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1935 // Exceptions aren't supported in CUDA device code. 1936 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1937 } 1938 1939 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1940 StringRef Var, Value; 1941 std::tie(Var, Value) = Attr.split('='); 1942 FuncAttrs.addAttribute(Var, Value); 1943 } 1944 } 1945 1946 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1947 llvm::AttrBuilder FuncAttrs(F.getContext()); 1948 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1949 /* AttrOnCallSite = */ false, FuncAttrs); 1950 // TODO: call GetCPUAndFeaturesAttributes? 1951 F.addFnAttrs(FuncAttrs); 1952 } 1953 1954 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1955 llvm::AttrBuilder &attrs) { 1956 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1957 /*for call*/ false, attrs); 1958 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1959 } 1960 1961 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1962 const LangOptions &LangOpts, 1963 const NoBuiltinAttr *NBA = nullptr) { 1964 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1965 SmallString<32> AttributeName; 1966 AttributeName += "no-builtin-"; 1967 AttributeName += BuiltinName; 1968 FuncAttrs.addAttribute(AttributeName); 1969 }; 1970 1971 // First, handle the language options passed through -fno-builtin. 1972 if (LangOpts.NoBuiltin) { 1973 // -fno-builtin disables them all. 1974 FuncAttrs.addAttribute("no-builtins"); 1975 return; 1976 } 1977 1978 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1979 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1980 1981 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1982 // the source. 1983 if (!NBA) 1984 return; 1985 1986 // If there is a wildcard in the builtin names specified through the 1987 // attribute, disable them all. 1988 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1989 FuncAttrs.addAttribute("no-builtins"); 1990 return; 1991 } 1992 1993 // And last, add the rest of the builtin names. 1994 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1995 } 1996 1997 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 1998 const llvm::DataLayout &DL, const ABIArgInfo &AI, 1999 bool CheckCoerce = true) { 2000 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 2001 if (AI.getKind() == ABIArgInfo::Indirect) 2002 return true; 2003 if (AI.getKind() == ABIArgInfo::Extend) 2004 return true; 2005 if (!DL.typeSizeEqualsStoreSize(Ty)) 2006 // TODO: This will result in a modest amount of values not marked noundef 2007 // when they could be. We care about values that *invisibly* contain undef 2008 // bits from the perspective of LLVM IR. 2009 return false; 2010 if (CheckCoerce && AI.canHaveCoerceToType()) { 2011 llvm::Type *CoerceTy = AI.getCoerceToType(); 2012 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2013 DL.getTypeSizeInBits(Ty))) 2014 // If we're coercing to a type with a greater size than the canonical one, 2015 // we're introducing new undef bits. 2016 // Coercing to a type of smaller or equal size is ok, as we know that 2017 // there's no internal padding (typeSizeEqualsStoreSize). 2018 return false; 2019 } 2020 if (QTy->isBitIntType()) 2021 return true; 2022 if (QTy->isReferenceType()) 2023 return true; 2024 if (QTy->isNullPtrType()) 2025 return false; 2026 if (QTy->isMemberPointerType()) 2027 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2028 // now, never mark them. 2029 return false; 2030 if (QTy->isScalarType()) { 2031 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2032 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2033 return true; 2034 } 2035 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2036 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2037 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2038 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2039 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2040 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2041 2042 // TODO: Some structs may be `noundef`, in specific situations. 2043 return false; 2044 } 2045 2046 /// Construct the IR attribute list of a function or call. 2047 /// 2048 /// When adding an attribute, please consider where it should be handled: 2049 /// 2050 /// - getDefaultFunctionAttributes is for attributes that are essentially 2051 /// part of the global target configuration (but perhaps can be 2052 /// overridden on a per-function basis). Adding attributes there 2053 /// will cause them to also be set in frontends that build on Clang's 2054 /// target-configuration logic, as well as for code defined in library 2055 /// modules such as CUDA's libdevice. 2056 /// 2057 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2058 /// and adds declaration-specific, convention-specific, and 2059 /// frontend-specific logic. The last is of particular importance: 2060 /// attributes that restrict how the frontend generates code must be 2061 /// added here rather than getDefaultFunctionAttributes. 2062 /// 2063 void CodeGenModule::ConstructAttributeList(StringRef Name, 2064 const CGFunctionInfo &FI, 2065 CGCalleeInfo CalleeInfo, 2066 llvm::AttributeList &AttrList, 2067 unsigned &CallingConv, 2068 bool AttrOnCallSite, bool IsThunk) { 2069 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2070 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2071 2072 // Collect function IR attributes from the CC lowering. 2073 // We'll collect the paramete and result attributes later. 2074 CallingConv = FI.getEffectiveCallingConvention(); 2075 if (FI.isNoReturn()) 2076 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2077 if (FI.isCmseNSCall()) 2078 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2079 2080 // Collect function IR attributes from the callee prototype if we have one. 2081 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2082 CalleeInfo.getCalleeFunctionProtoType()); 2083 2084 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2085 2086 // Attach assumption attributes to the declaration. If this is a call 2087 // site, attach assumptions from the caller to the call as well. 2088 AddAttributesFromAssumes(FuncAttrs, TargetDecl); 2089 2090 bool HasOptnone = false; 2091 // The NoBuiltinAttr attached to the target FunctionDecl. 2092 const NoBuiltinAttr *NBA = nullptr; 2093 2094 // Collect function IR attributes based on declaration-specific 2095 // information. 2096 // FIXME: handle sseregparm someday... 2097 if (TargetDecl) { 2098 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2099 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2100 if (TargetDecl->hasAttr<NoThrowAttr>()) 2101 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2102 if (TargetDecl->hasAttr<NoReturnAttr>()) 2103 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2104 if (TargetDecl->hasAttr<ColdAttr>()) 2105 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2106 if (TargetDecl->hasAttr<HotAttr>()) 2107 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2108 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2109 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2110 if (TargetDecl->hasAttr<ConvergentAttr>()) 2111 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2112 2113 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2114 AddAttributesFromFunctionProtoType( 2115 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2116 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2117 // A sane operator new returns a non-aliasing pointer. 2118 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2119 if (getCodeGenOpts().AssumeSaneOperatorNew && 2120 (Kind == OO_New || Kind == OO_Array_New)) 2121 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2122 } 2123 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2124 const bool IsVirtualCall = MD && MD->isVirtual(); 2125 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2126 // virtual function. These attributes are not inherited by overloads. 2127 if (!(AttrOnCallSite && IsVirtualCall)) { 2128 if (Fn->isNoReturn()) 2129 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2130 NBA = Fn->getAttr<NoBuiltinAttr>(); 2131 } 2132 // Only place nomerge attribute on call sites, never functions. This 2133 // allows it to work on indirect virtual function calls. 2134 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2135 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2136 } 2137 2138 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2139 if (TargetDecl->hasAttr<ConstAttr>()) { 2140 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 2141 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2142 // gcc specifies that 'const' functions have greater restrictions than 2143 // 'pure' functions, so they also cannot have infinite loops. 2144 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2145 } else if (TargetDecl->hasAttr<PureAttr>()) { 2146 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 2147 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2148 // gcc specifies that 'pure' functions cannot have infinite loops. 2149 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2150 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2151 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 2152 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2153 } 2154 if (TargetDecl->hasAttr<RestrictAttr>()) 2155 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2156 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2157 !CodeGenOpts.NullPointerIsValid) 2158 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2159 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2160 FuncAttrs.addAttribute("no_caller_saved_registers"); 2161 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2162 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2163 if (TargetDecl->hasAttr<LeafAttr>()) 2164 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2165 2166 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2167 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2168 Optional<unsigned> NumElemsParam; 2169 if (AllocSize->getNumElemsParam().isValid()) 2170 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2171 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2172 NumElemsParam); 2173 } 2174 2175 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2176 if (getLangOpts().OpenCLVersion <= 120) { 2177 // OpenCL v1.2 Work groups are always uniform 2178 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2179 } else { 2180 // OpenCL v2.0 Work groups may be whether uniform or not. 2181 // '-cl-uniform-work-group-size' compile option gets a hint 2182 // to the compiler that the global work-size be a multiple of 2183 // the work-group size specified to clEnqueueNDRangeKernel 2184 // (i.e. work groups are uniform). 2185 FuncAttrs.addAttribute("uniform-work-group-size", 2186 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2187 } 2188 } 2189 } 2190 2191 // Attach "no-builtins" attributes to: 2192 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2193 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2194 // The attributes can come from: 2195 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2196 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2197 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2198 2199 // Collect function IR attributes based on global settiings. 2200 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2201 2202 // Override some default IR attributes based on declaration-specific 2203 // information. 2204 if (TargetDecl) { 2205 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2206 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2207 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2208 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2209 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2210 FuncAttrs.removeAttribute("split-stack"); 2211 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 2212 // A function "__attribute__((...))" overrides the command-line flag. 2213 auto Kind = 2214 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 2215 FuncAttrs.removeAttribute("zero-call-used-regs"); 2216 FuncAttrs.addAttribute( 2217 "zero-call-used-regs", 2218 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 2219 } 2220 2221 // Add NonLazyBind attribute to function declarations when -fno-plt 2222 // is used. 2223 // FIXME: what if we just haven't processed the function definition 2224 // yet, or if it's an external definition like C99 inline? 2225 if (CodeGenOpts.NoPLT) { 2226 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2227 if (!Fn->isDefined() && !AttrOnCallSite) { 2228 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2229 } 2230 } 2231 } 2232 } 2233 2234 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2235 // functions with -funique-internal-linkage-names. 2236 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2237 if (isa<FunctionDecl>(TargetDecl)) { 2238 if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) == 2239 llvm::GlobalValue::InternalLinkage) 2240 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2241 "selected"); 2242 } 2243 } 2244 2245 // Collect non-call-site function IR attributes from declaration-specific 2246 // information. 2247 if (!AttrOnCallSite) { 2248 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2249 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2250 2251 // Whether tail calls are enabled. 2252 auto shouldDisableTailCalls = [&] { 2253 // Should this be honored in getDefaultFunctionAttributes? 2254 if (CodeGenOpts.DisableTailCalls) 2255 return true; 2256 2257 if (!TargetDecl) 2258 return false; 2259 2260 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2261 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2262 return true; 2263 2264 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2265 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2266 if (!BD->doesNotEscape()) 2267 return true; 2268 } 2269 2270 return false; 2271 }; 2272 if (shouldDisableTailCalls()) 2273 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2274 2275 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2276 // handles these separately to set them based on the global defaults. 2277 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2278 } 2279 2280 // Collect attributes from arguments and return values. 2281 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2282 2283 QualType RetTy = FI.getReturnType(); 2284 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2285 const llvm::DataLayout &DL = getDataLayout(); 2286 2287 // C++ explicitly makes returning undefined values UB. C's rule only applies 2288 // to used values, so we never mark them noundef for now. 2289 bool HasStrictReturn = getLangOpts().CPlusPlus; 2290 if (TargetDecl && HasStrictReturn) { 2291 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) 2292 HasStrictReturn &= !FDecl->isExternC(); 2293 else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) 2294 // Function pointer 2295 HasStrictReturn &= !VDecl->isExternC(); 2296 } 2297 2298 // We don't want to be too aggressive with the return checking, unless 2299 // it's explicit in the code opts or we're using an appropriate sanitizer. 2300 // Try to respect what the programmer intended. 2301 HasStrictReturn &= getCodeGenOpts().StrictReturn || 2302 !MayDropFunctionReturn(getContext(), RetTy) || 2303 getLangOpts().Sanitize.has(SanitizerKind::Memory) || 2304 getLangOpts().Sanitize.has(SanitizerKind::Return); 2305 2306 // Determine if the return type could be partially undef 2307 if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) { 2308 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2309 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2310 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2311 } 2312 2313 switch (RetAI.getKind()) { 2314 case ABIArgInfo::Extend: 2315 if (RetAI.isSignExt()) 2316 RetAttrs.addAttribute(llvm::Attribute::SExt); 2317 else 2318 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2319 LLVM_FALLTHROUGH; 2320 case ABIArgInfo::Direct: 2321 if (RetAI.getInReg()) 2322 RetAttrs.addAttribute(llvm::Attribute::InReg); 2323 break; 2324 case ABIArgInfo::Ignore: 2325 break; 2326 2327 case ABIArgInfo::InAlloca: 2328 case ABIArgInfo::Indirect: { 2329 // inalloca and sret disable readnone and readonly 2330 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2331 .removeAttribute(llvm::Attribute::ReadNone); 2332 break; 2333 } 2334 2335 case ABIArgInfo::CoerceAndExpand: 2336 break; 2337 2338 case ABIArgInfo::Expand: 2339 case ABIArgInfo::IndirectAliased: 2340 llvm_unreachable("Invalid ABI kind for return argument"); 2341 } 2342 2343 if (!IsThunk) { 2344 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2345 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2346 QualType PTy = RefTy->getPointeeType(); 2347 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2348 RetAttrs.addDereferenceableAttr( 2349 getMinimumObjectSize(PTy).getQuantity()); 2350 if (getContext().getTargetAddressSpace(PTy) == 0 && 2351 !CodeGenOpts.NullPointerIsValid) 2352 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2353 if (PTy->isObjectType()) { 2354 llvm::Align Alignment = 2355 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2356 RetAttrs.addAlignmentAttr(Alignment); 2357 } 2358 } 2359 } 2360 2361 bool hasUsedSRet = false; 2362 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2363 2364 // Attach attributes to sret. 2365 if (IRFunctionArgs.hasSRetArg()) { 2366 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2367 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2368 hasUsedSRet = true; 2369 if (RetAI.getInReg()) 2370 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2371 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2372 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2373 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2374 } 2375 2376 // Attach attributes to inalloca argument. 2377 if (IRFunctionArgs.hasInallocaArg()) { 2378 llvm::AttrBuilder Attrs(getLLVMContext()); 2379 Attrs.addInAllocaAttr(FI.getArgStruct()); 2380 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2381 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2382 } 2383 2384 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2385 // unless this is a thunk function. 2386 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2387 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2388 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2389 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2390 2391 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2392 2393 llvm::AttrBuilder Attrs(getLLVMContext()); 2394 2395 QualType ThisTy = 2396 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType(); 2397 2398 if (!CodeGenOpts.NullPointerIsValid && 2399 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2400 Attrs.addAttribute(llvm::Attribute::NonNull); 2401 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2402 } else { 2403 // FIXME dereferenceable should be correct here, regardless of 2404 // NullPointerIsValid. However, dereferenceable currently does not always 2405 // respect NullPointerIsValid and may imply nonnull and break the program. 2406 // See https://reviews.llvm.org/D66618 for discussions. 2407 Attrs.addDereferenceableOrNullAttr( 2408 getMinimumObjectSize( 2409 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2410 .getQuantity()); 2411 } 2412 2413 llvm::Align Alignment = 2414 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2415 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2416 .getAsAlign(); 2417 Attrs.addAlignmentAttr(Alignment); 2418 2419 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2420 } 2421 2422 unsigned ArgNo = 0; 2423 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2424 E = FI.arg_end(); 2425 I != E; ++I, ++ArgNo) { 2426 QualType ParamType = I->type; 2427 const ABIArgInfo &AI = I->info; 2428 llvm::AttrBuilder Attrs(getLLVMContext()); 2429 2430 // Add attribute for padding argument, if necessary. 2431 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2432 if (AI.getPaddingInReg()) { 2433 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2434 llvm::AttributeSet::get( 2435 getLLVMContext(), 2436 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2437 } 2438 } 2439 2440 // Decide whether the argument we're handling could be partially undef 2441 if (CodeGenOpts.EnableNoundefAttrs && 2442 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2443 Attrs.addAttribute(llvm::Attribute::NoUndef); 2444 } 2445 2446 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2447 // have the corresponding parameter variable. It doesn't make 2448 // sense to do it here because parameters are so messed up. 2449 switch (AI.getKind()) { 2450 case ABIArgInfo::Extend: 2451 if (AI.isSignExt()) 2452 Attrs.addAttribute(llvm::Attribute::SExt); 2453 else 2454 Attrs.addAttribute(llvm::Attribute::ZExt); 2455 LLVM_FALLTHROUGH; 2456 case ABIArgInfo::Direct: 2457 if (ArgNo == 0 && FI.isChainCall()) 2458 Attrs.addAttribute(llvm::Attribute::Nest); 2459 else if (AI.getInReg()) 2460 Attrs.addAttribute(llvm::Attribute::InReg); 2461 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2462 break; 2463 2464 case ABIArgInfo::Indirect: { 2465 if (AI.getInReg()) 2466 Attrs.addAttribute(llvm::Attribute::InReg); 2467 2468 if (AI.getIndirectByVal()) 2469 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2470 2471 auto *Decl = ParamType->getAsRecordDecl(); 2472 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2473 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2474 // When calling the function, the pointer passed in will be the only 2475 // reference to the underlying object. Mark it accordingly. 2476 Attrs.addAttribute(llvm::Attribute::NoAlias); 2477 2478 // TODO: We could add the byref attribute if not byval, but it would 2479 // require updating many testcases. 2480 2481 CharUnits Align = AI.getIndirectAlign(); 2482 2483 // In a byval argument, it is important that the required 2484 // alignment of the type is honored, as LLVM might be creating a 2485 // *new* stack object, and needs to know what alignment to give 2486 // it. (Sometimes it can deduce a sensible alignment on its own, 2487 // but not if clang decides it must emit a packed struct, or the 2488 // user specifies increased alignment requirements.) 2489 // 2490 // This is different from indirect *not* byval, where the object 2491 // exists already, and the align attribute is purely 2492 // informative. 2493 assert(!Align.isZero()); 2494 2495 // For now, only add this when we have a byval argument. 2496 // TODO: be less lazy about updating test cases. 2497 if (AI.getIndirectByVal()) 2498 Attrs.addAlignmentAttr(Align.getQuantity()); 2499 2500 // byval disables readnone and readonly. 2501 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2502 .removeAttribute(llvm::Attribute::ReadNone); 2503 2504 break; 2505 } 2506 case ABIArgInfo::IndirectAliased: { 2507 CharUnits Align = AI.getIndirectAlign(); 2508 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2509 Attrs.addAlignmentAttr(Align.getQuantity()); 2510 break; 2511 } 2512 case ABIArgInfo::Ignore: 2513 case ABIArgInfo::Expand: 2514 case ABIArgInfo::CoerceAndExpand: 2515 break; 2516 2517 case ABIArgInfo::InAlloca: 2518 // inalloca disables readnone and readonly. 2519 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2520 .removeAttribute(llvm::Attribute::ReadNone); 2521 continue; 2522 } 2523 2524 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2525 QualType PTy = RefTy->getPointeeType(); 2526 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2527 Attrs.addDereferenceableAttr( 2528 getMinimumObjectSize(PTy).getQuantity()); 2529 if (getContext().getTargetAddressSpace(PTy) == 0 && 2530 !CodeGenOpts.NullPointerIsValid) 2531 Attrs.addAttribute(llvm::Attribute::NonNull); 2532 if (PTy->isObjectType()) { 2533 llvm::Align Alignment = 2534 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2535 Attrs.addAlignmentAttr(Alignment); 2536 } 2537 } 2538 2539 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2540 // > For arguments to a __kernel function declared to be a pointer to a 2541 // > data type, the OpenCL compiler can assume that the pointee is always 2542 // > appropriately aligned as required by the data type. 2543 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2544 ParamType->isPointerType()) { 2545 QualType PTy = ParamType->getPointeeType(); 2546 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2547 llvm::Align Alignment = 2548 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2549 Attrs.addAlignmentAttr(Alignment); 2550 } 2551 } 2552 2553 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2554 case ParameterABI::Ordinary: 2555 break; 2556 2557 case ParameterABI::SwiftIndirectResult: { 2558 // Add 'sret' if we haven't already used it for something, but 2559 // only if the result is void. 2560 if (!hasUsedSRet && RetTy->isVoidType()) { 2561 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2562 hasUsedSRet = true; 2563 } 2564 2565 // Add 'noalias' in either case. 2566 Attrs.addAttribute(llvm::Attribute::NoAlias); 2567 2568 // Add 'dereferenceable' and 'alignment'. 2569 auto PTy = ParamType->getPointeeType(); 2570 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2571 auto info = getContext().getTypeInfoInChars(PTy); 2572 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2573 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2574 } 2575 break; 2576 } 2577 2578 case ParameterABI::SwiftErrorResult: 2579 Attrs.addAttribute(llvm::Attribute::SwiftError); 2580 break; 2581 2582 case ParameterABI::SwiftContext: 2583 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2584 break; 2585 2586 case ParameterABI::SwiftAsyncContext: 2587 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2588 break; 2589 } 2590 2591 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2592 Attrs.addAttribute(llvm::Attribute::NoCapture); 2593 2594 if (Attrs.hasAttributes()) { 2595 unsigned FirstIRArg, NumIRArgs; 2596 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2597 for (unsigned i = 0; i < NumIRArgs; i++) 2598 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2599 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2600 } 2601 } 2602 assert(ArgNo == FI.arg_size()); 2603 2604 AttrList = llvm::AttributeList::get( 2605 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2606 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2607 } 2608 2609 /// An argument came in as a promoted argument; demote it back to its 2610 /// declared type. 2611 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2612 const VarDecl *var, 2613 llvm::Value *value) { 2614 llvm::Type *varType = CGF.ConvertType(var->getType()); 2615 2616 // This can happen with promotions that actually don't change the 2617 // underlying type, like the enum promotions. 2618 if (value->getType() == varType) return value; 2619 2620 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2621 && "unexpected promotion type"); 2622 2623 if (isa<llvm::IntegerType>(varType)) 2624 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2625 2626 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2627 } 2628 2629 /// Returns the attribute (either parameter attribute, or function 2630 /// attribute), which declares argument ArgNo to be non-null. 2631 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2632 QualType ArgType, unsigned ArgNo) { 2633 // FIXME: __attribute__((nonnull)) can also be applied to: 2634 // - references to pointers, where the pointee is known to be 2635 // nonnull (apparently a Clang extension) 2636 // - transparent unions containing pointers 2637 // In the former case, LLVM IR cannot represent the constraint. In 2638 // the latter case, we have no guarantee that the transparent union 2639 // is in fact passed as a pointer. 2640 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2641 return nullptr; 2642 // First, check attribute on parameter itself. 2643 if (PVD) { 2644 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2645 return ParmNNAttr; 2646 } 2647 // Check function attributes. 2648 if (!FD) 2649 return nullptr; 2650 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2651 if (NNAttr->isNonNull(ArgNo)) 2652 return NNAttr; 2653 } 2654 return nullptr; 2655 } 2656 2657 namespace { 2658 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2659 Address Temp; 2660 Address Arg; 2661 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2662 void Emit(CodeGenFunction &CGF, Flags flags) override { 2663 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2664 CGF.Builder.CreateStore(errorValue, Arg); 2665 } 2666 }; 2667 } 2668 2669 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2670 llvm::Function *Fn, 2671 const FunctionArgList &Args) { 2672 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2673 // Naked functions don't have prologues. 2674 return; 2675 2676 // If this is an implicit-return-zero function, go ahead and 2677 // initialize the return value. TODO: it might be nice to have 2678 // a more general mechanism for this that didn't require synthesized 2679 // return statements. 2680 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2681 if (FD->hasImplicitReturnZero()) { 2682 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2683 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2684 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2685 Builder.CreateStore(Zero, ReturnValue); 2686 } 2687 } 2688 2689 // FIXME: We no longer need the types from FunctionArgList; lift up and 2690 // simplify. 2691 2692 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2693 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2694 2695 // If we're using inalloca, all the memory arguments are GEPs off of the last 2696 // parameter, which is a pointer to the complete memory area. 2697 Address ArgStruct = Address::invalid(); 2698 if (IRFunctionArgs.hasInallocaArg()) { 2699 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2700 FI.getArgStruct(), FI.getArgStructAlignment()); 2701 2702 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2703 } 2704 2705 // Name the struct return parameter. 2706 if (IRFunctionArgs.hasSRetArg()) { 2707 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2708 AI->setName("agg.result"); 2709 AI->addAttr(llvm::Attribute::NoAlias); 2710 } 2711 2712 // Track if we received the parameter as a pointer (indirect, byval, or 2713 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2714 // into a local alloca for us. 2715 SmallVector<ParamValue, 16> ArgVals; 2716 ArgVals.reserve(Args.size()); 2717 2718 // Create a pointer value for every parameter declaration. This usually 2719 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2720 // any cleanups or do anything that might unwind. We do that separately, so 2721 // we can push the cleanups in the correct order for the ABI. 2722 assert(FI.arg_size() == Args.size() && 2723 "Mismatch between function signature & arguments."); 2724 unsigned ArgNo = 0; 2725 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2726 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2727 i != e; ++i, ++info_it, ++ArgNo) { 2728 const VarDecl *Arg = *i; 2729 const ABIArgInfo &ArgI = info_it->info; 2730 2731 bool isPromoted = 2732 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2733 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2734 // the parameter is promoted. In this case we convert to 2735 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2736 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2737 assert(hasScalarEvaluationKind(Ty) == 2738 hasScalarEvaluationKind(Arg->getType())); 2739 2740 unsigned FirstIRArg, NumIRArgs; 2741 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2742 2743 switch (ArgI.getKind()) { 2744 case ABIArgInfo::InAlloca: { 2745 assert(NumIRArgs == 0); 2746 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2747 Address V = 2748 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2749 if (ArgI.getInAllocaIndirect()) 2750 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty), 2751 getContext().getTypeAlignInChars(Ty)); 2752 ArgVals.push_back(ParamValue::forIndirect(V)); 2753 break; 2754 } 2755 2756 case ABIArgInfo::Indirect: 2757 case ABIArgInfo::IndirectAliased: { 2758 assert(NumIRArgs == 1); 2759 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty), 2760 ArgI.getIndirectAlign()); 2761 2762 if (!hasScalarEvaluationKind(Ty)) { 2763 // Aggregates and complex variables are accessed by reference. All we 2764 // need to do is realign the value, if requested. Also, if the address 2765 // may be aliased, copy it to ensure that the parameter variable is 2766 // mutable and has a unique adress, as C requires. 2767 Address V = ParamAddr; 2768 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2769 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2770 2771 // Copy from the incoming argument pointer to the temporary with the 2772 // appropriate alignment. 2773 // 2774 // FIXME: We should have a common utility for generating an aggregate 2775 // copy. 2776 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2777 Builder.CreateMemCpy( 2778 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2779 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2780 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2781 V = AlignedTemp; 2782 } 2783 ArgVals.push_back(ParamValue::forIndirect(V)); 2784 } else { 2785 // Load scalar value from indirect argument. 2786 llvm::Value *V = 2787 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2788 2789 if (isPromoted) 2790 V = emitArgumentDemotion(*this, Arg, V); 2791 ArgVals.push_back(ParamValue::forDirect(V)); 2792 } 2793 break; 2794 } 2795 2796 case ABIArgInfo::Extend: 2797 case ABIArgInfo::Direct: { 2798 auto AI = Fn->getArg(FirstIRArg); 2799 llvm::Type *LTy = ConvertType(Arg->getType()); 2800 2801 // Prepare parameter attributes. So far, only attributes for pointer 2802 // parameters are prepared. See 2803 // http://llvm.org/docs/LangRef.html#paramattrs. 2804 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2805 ArgI.getCoerceToType()->isPointerTy()) { 2806 assert(NumIRArgs == 1); 2807 2808 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2809 // Set `nonnull` attribute if any. 2810 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2811 PVD->getFunctionScopeIndex()) && 2812 !CGM.getCodeGenOpts().NullPointerIsValid) 2813 AI->addAttr(llvm::Attribute::NonNull); 2814 2815 QualType OTy = PVD->getOriginalType(); 2816 if (const auto *ArrTy = 2817 getContext().getAsConstantArrayType(OTy)) { 2818 // A C99 array parameter declaration with the static keyword also 2819 // indicates dereferenceability, and if the size is constant we can 2820 // use the dereferenceable attribute (which requires the size in 2821 // bytes). 2822 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2823 QualType ETy = ArrTy->getElementType(); 2824 llvm::Align Alignment = 2825 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2826 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2827 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2828 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2829 ArrSize) { 2830 llvm::AttrBuilder Attrs(getLLVMContext()); 2831 Attrs.addDereferenceableAttr( 2832 getContext().getTypeSizeInChars(ETy).getQuantity() * 2833 ArrSize); 2834 AI->addAttrs(Attrs); 2835 } else if (getContext().getTargetInfo().getNullPointerValue( 2836 ETy.getAddressSpace()) == 0 && 2837 !CGM.getCodeGenOpts().NullPointerIsValid) { 2838 AI->addAttr(llvm::Attribute::NonNull); 2839 } 2840 } 2841 } else if (const auto *ArrTy = 2842 getContext().getAsVariableArrayType(OTy)) { 2843 // For C99 VLAs with the static keyword, we don't know the size so 2844 // we can't use the dereferenceable attribute, but in addrspace(0) 2845 // we know that it must be nonnull. 2846 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2847 QualType ETy = ArrTy->getElementType(); 2848 llvm::Align Alignment = 2849 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2850 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2851 if (!getContext().getTargetAddressSpace(ETy) && 2852 !CGM.getCodeGenOpts().NullPointerIsValid) 2853 AI->addAttr(llvm::Attribute::NonNull); 2854 } 2855 } 2856 2857 // Set `align` attribute if any. 2858 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2859 if (!AVAttr) 2860 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2861 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2862 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2863 // If alignment-assumption sanitizer is enabled, we do *not* add 2864 // alignment attribute here, but emit normal alignment assumption, 2865 // so the UBSAN check could function. 2866 llvm::ConstantInt *AlignmentCI = 2867 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2868 uint64_t AlignmentInt = 2869 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2870 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2871 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2872 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 2873 llvm::Align(AlignmentInt))); 2874 } 2875 } 2876 } 2877 2878 // Set 'noalias' if an argument type has the `restrict` qualifier. 2879 if (Arg->getType().isRestrictQualified()) 2880 AI->addAttr(llvm::Attribute::NoAlias); 2881 } 2882 2883 // Prepare the argument value. If we have the trivial case, handle it 2884 // with no muss and fuss. 2885 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2886 ArgI.getCoerceToType() == ConvertType(Ty) && 2887 ArgI.getDirectOffset() == 0) { 2888 assert(NumIRArgs == 1); 2889 2890 // LLVM expects swifterror parameters to be used in very restricted 2891 // ways. Copy the value into a less-restricted temporary. 2892 llvm::Value *V = AI; 2893 if (FI.getExtParameterInfo(ArgNo).getABI() 2894 == ParameterABI::SwiftErrorResult) { 2895 QualType pointeeTy = Ty->getPointeeType(); 2896 assert(pointeeTy->isPointerType()); 2897 Address temp = 2898 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2899 Address arg(V, ConvertTypeForMem(pointeeTy), 2900 getContext().getTypeAlignInChars(pointeeTy)); 2901 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2902 Builder.CreateStore(incomingErrorValue, temp); 2903 V = temp.getPointer(); 2904 2905 // Push a cleanup to copy the value back at the end of the function. 2906 // The convention does not guarantee that the value will be written 2907 // back if the function exits with an unwind exception. 2908 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2909 } 2910 2911 // Ensure the argument is the correct type. 2912 if (V->getType() != ArgI.getCoerceToType()) 2913 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2914 2915 if (isPromoted) 2916 V = emitArgumentDemotion(*this, Arg, V); 2917 2918 // Because of merging of function types from multiple decls it is 2919 // possible for the type of an argument to not match the corresponding 2920 // type in the function type. Since we are codegening the callee 2921 // in here, add a cast to the argument type. 2922 llvm::Type *LTy = ConvertType(Arg->getType()); 2923 if (V->getType() != LTy) 2924 V = Builder.CreateBitCast(V, LTy); 2925 2926 ArgVals.push_back(ParamValue::forDirect(V)); 2927 break; 2928 } 2929 2930 // VLST arguments are coerced to VLATs at the function boundary for 2931 // ABI consistency. If this is a VLST that was coerced to 2932 // a VLAT at the function boundary and the types match up, use 2933 // llvm.experimental.vector.extract to convert back to the original 2934 // VLST. 2935 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 2936 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 2937 if (auto *VecTyFrom = 2938 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 2939 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2940 // vector, bitcast the source and use a vector extract. 2941 auto PredType = 2942 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2943 if (VecTyFrom == PredType && 2944 VecTyTo->getElementType() == Builder.getInt8Ty()) { 2945 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2946 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 2947 } 2948 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 2949 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 2950 2951 assert(NumIRArgs == 1); 2952 Coerced->setName(Arg->getName() + ".coerce"); 2953 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 2954 VecTyTo, Coerced, Zero, "castFixedSve"))); 2955 break; 2956 } 2957 } 2958 } 2959 2960 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2961 Arg->getName()); 2962 2963 // Pointer to store into. 2964 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2965 2966 // Fast-isel and the optimizer generally like scalar values better than 2967 // FCAs, so we flatten them if this is safe to do for this argument. 2968 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2969 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2970 STy->getNumElements() > 1) { 2971 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2972 llvm::Type *DstTy = Ptr.getElementType(); 2973 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2974 2975 Address AddrToStoreInto = Address::invalid(); 2976 if (SrcSize <= DstSize) { 2977 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2978 } else { 2979 AddrToStoreInto = 2980 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2981 } 2982 2983 assert(STy->getNumElements() == NumIRArgs); 2984 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2985 auto AI = Fn->getArg(FirstIRArg + i); 2986 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2987 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2988 Builder.CreateStore(AI, EltPtr); 2989 } 2990 2991 if (SrcSize > DstSize) { 2992 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2993 } 2994 2995 } else { 2996 // Simple case, just do a coerced store of the argument into the alloca. 2997 assert(NumIRArgs == 1); 2998 auto AI = Fn->getArg(FirstIRArg); 2999 AI->setName(Arg->getName() + ".coerce"); 3000 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 3001 } 3002 3003 // Match to what EmitParmDecl is expecting for this type. 3004 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 3005 llvm::Value *V = 3006 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 3007 if (isPromoted) 3008 V = emitArgumentDemotion(*this, Arg, V); 3009 ArgVals.push_back(ParamValue::forDirect(V)); 3010 } else { 3011 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3012 } 3013 break; 3014 } 3015 3016 case ABIArgInfo::CoerceAndExpand: { 3017 // Reconstruct into a temporary. 3018 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3019 ArgVals.push_back(ParamValue::forIndirect(alloca)); 3020 3021 auto coercionType = ArgI.getCoerceAndExpandType(); 3022 alloca = Builder.CreateElementBitCast(alloca, coercionType); 3023 3024 unsigned argIndex = FirstIRArg; 3025 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3026 llvm::Type *eltType = coercionType->getElementType(i); 3027 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 3028 continue; 3029 3030 auto eltAddr = Builder.CreateStructGEP(alloca, i); 3031 auto elt = Fn->getArg(argIndex++); 3032 Builder.CreateStore(elt, eltAddr); 3033 } 3034 assert(argIndex == FirstIRArg + NumIRArgs); 3035 break; 3036 } 3037 3038 case ABIArgInfo::Expand: { 3039 // If this structure was expanded into multiple arguments then 3040 // we need to create a temporary and reconstruct it from the 3041 // arguments. 3042 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3043 LValue LV = MakeAddrLValue(Alloca, Ty); 3044 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3045 3046 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 3047 ExpandTypeFromArgs(Ty, LV, FnArgIter); 3048 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 3049 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 3050 auto AI = Fn->getArg(FirstIRArg + i); 3051 AI->setName(Arg->getName() + "." + Twine(i)); 3052 } 3053 break; 3054 } 3055 3056 case ABIArgInfo::Ignore: 3057 assert(NumIRArgs == 0); 3058 // Initialize the local variable appropriately. 3059 if (!hasScalarEvaluationKind(Ty)) { 3060 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3061 } else { 3062 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3063 ArgVals.push_back(ParamValue::forDirect(U)); 3064 } 3065 break; 3066 } 3067 } 3068 3069 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3070 for (int I = Args.size() - 1; I >= 0; --I) 3071 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3072 } else { 3073 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3074 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3075 } 3076 } 3077 3078 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3079 while (insn->use_empty()) { 3080 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3081 if (!bitcast) return; 3082 3083 // This is "safe" because we would have used a ConstantExpr otherwise. 3084 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3085 bitcast->eraseFromParent(); 3086 } 3087 } 3088 3089 /// Try to emit a fused autorelease of a return result. 3090 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3091 llvm::Value *result) { 3092 // We must be immediately followed the cast. 3093 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3094 if (BB->empty()) return nullptr; 3095 if (&BB->back() != result) return nullptr; 3096 3097 llvm::Type *resultType = result->getType(); 3098 3099 // result is in a BasicBlock and is therefore an Instruction. 3100 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3101 3102 SmallVector<llvm::Instruction *, 4> InstsToKill; 3103 3104 // Look for: 3105 // %generator = bitcast %type1* %generator2 to %type2* 3106 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3107 // We would have emitted this as a constant if the operand weren't 3108 // an Instruction. 3109 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3110 3111 // Require the generator to be immediately followed by the cast. 3112 if (generator->getNextNode() != bitcast) 3113 return nullptr; 3114 3115 InstsToKill.push_back(bitcast); 3116 } 3117 3118 // Look for: 3119 // %generator = call i8* @objc_retain(i8* %originalResult) 3120 // or 3121 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3122 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3123 if (!call) return nullptr; 3124 3125 bool doRetainAutorelease; 3126 3127 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3128 doRetainAutorelease = true; 3129 } else if (call->getCalledOperand() == 3130 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3131 doRetainAutorelease = false; 3132 3133 // If we emitted an assembly marker for this call (and the 3134 // ARCEntrypoints field should have been set if so), go looking 3135 // for that call. If we can't find it, we can't do this 3136 // optimization. But it should always be the immediately previous 3137 // instruction, unless we needed bitcasts around the call. 3138 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3139 llvm::Instruction *prev = call->getPrevNode(); 3140 assert(prev); 3141 if (isa<llvm::BitCastInst>(prev)) { 3142 prev = prev->getPrevNode(); 3143 assert(prev); 3144 } 3145 assert(isa<llvm::CallInst>(prev)); 3146 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3147 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3148 InstsToKill.push_back(prev); 3149 } 3150 } else { 3151 return nullptr; 3152 } 3153 3154 result = call->getArgOperand(0); 3155 InstsToKill.push_back(call); 3156 3157 // Keep killing bitcasts, for sanity. Note that we no longer care 3158 // about precise ordering as long as there's exactly one use. 3159 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3160 if (!bitcast->hasOneUse()) break; 3161 InstsToKill.push_back(bitcast); 3162 result = bitcast->getOperand(0); 3163 } 3164 3165 // Delete all the unnecessary instructions, from latest to earliest. 3166 for (auto *I : InstsToKill) 3167 I->eraseFromParent(); 3168 3169 // Do the fused retain/autorelease if we were asked to. 3170 if (doRetainAutorelease) 3171 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3172 3173 // Cast back to the result type. 3174 return CGF.Builder.CreateBitCast(result, resultType); 3175 } 3176 3177 /// If this is a +1 of the value of an immutable 'self', remove it. 3178 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3179 llvm::Value *result) { 3180 // This is only applicable to a method with an immutable 'self'. 3181 const ObjCMethodDecl *method = 3182 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3183 if (!method) return nullptr; 3184 const VarDecl *self = method->getSelfDecl(); 3185 if (!self->getType().isConstQualified()) return nullptr; 3186 3187 // Look for a retain call. 3188 llvm::CallInst *retainCall = 3189 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 3190 if (!retainCall || retainCall->getCalledOperand() != 3191 CGF.CGM.getObjCEntrypoints().objc_retain) 3192 return nullptr; 3193 3194 // Look for an ordinary load of 'self'. 3195 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3196 llvm::LoadInst *load = 3197 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3198 if (!load || load->isAtomic() || load->isVolatile() || 3199 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 3200 return nullptr; 3201 3202 // Okay! Burn it all down. This relies for correctness on the 3203 // assumption that the retain is emitted as part of the return and 3204 // that thereafter everything is used "linearly". 3205 llvm::Type *resultType = result->getType(); 3206 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3207 assert(retainCall->use_empty()); 3208 retainCall->eraseFromParent(); 3209 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3210 3211 return CGF.Builder.CreateBitCast(load, resultType); 3212 } 3213 3214 /// Emit an ARC autorelease of the result of a function. 3215 /// 3216 /// \return the value to actually return from the function 3217 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3218 llvm::Value *result) { 3219 // If we're returning 'self', kill the initial retain. This is a 3220 // heuristic attempt to "encourage correctness" in the really unfortunate 3221 // case where we have a return of self during a dealloc and we desperately 3222 // need to avoid the possible autorelease. 3223 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3224 return self; 3225 3226 // At -O0, try to emit a fused retain/autorelease. 3227 if (CGF.shouldUseFusedARCCalls()) 3228 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3229 return fused; 3230 3231 return CGF.EmitARCAutoreleaseReturnValue(result); 3232 } 3233 3234 /// Heuristically search for a dominating store to the return-value slot. 3235 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3236 // Check if a User is a store which pointerOperand is the ReturnValue. 3237 // We are looking for stores to the ReturnValue, not for stores of the 3238 // ReturnValue to some other location. 3239 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 3240 auto *SI = dyn_cast<llvm::StoreInst>(U); 3241 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() || 3242 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) 3243 return nullptr; 3244 // These aren't actually possible for non-coerced returns, and we 3245 // only care about non-coerced returns on this code path. 3246 assert(!SI->isAtomic() && !SI->isVolatile()); 3247 return SI; 3248 }; 3249 // If there are multiple uses of the return-value slot, just check 3250 // for something immediately preceding the IP. Sometimes this can 3251 // happen with how we generate implicit-returns; it can also happen 3252 // with noreturn cleanups. 3253 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3254 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3255 if (IP->empty()) return nullptr; 3256 3257 // Look at directly preceding instruction, skipping bitcasts and lifetime 3258 // markers. 3259 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) { 3260 if (isa<llvm::BitCastInst>(&I)) 3261 continue; 3262 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I)) 3263 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) 3264 continue; 3265 3266 return GetStoreIfValid(&I); 3267 } 3268 return nullptr; 3269 } 3270 3271 llvm::StoreInst *store = 3272 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3273 if (!store) return nullptr; 3274 3275 // Now do a first-and-dirty dominance check: just walk up the 3276 // single-predecessors chain from the current insertion point. 3277 llvm::BasicBlock *StoreBB = store->getParent(); 3278 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3279 while (IP != StoreBB) { 3280 if (!(IP = IP->getSinglePredecessor())) 3281 return nullptr; 3282 } 3283 3284 // Okay, the store's basic block dominates the insertion point; we 3285 // can do our thing. 3286 return store; 3287 } 3288 3289 // Helper functions for EmitCMSEClearRecord 3290 3291 // Set the bits corresponding to a field having width `BitWidth` and located at 3292 // offset `BitOffset` (from the least significant bit) within a storage unit of 3293 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3294 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3295 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3296 int BitWidth, int CharWidth) { 3297 assert(CharWidth <= 64); 3298 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3299 3300 int Pos = 0; 3301 if (BitOffset >= CharWidth) { 3302 Pos += BitOffset / CharWidth; 3303 BitOffset = BitOffset % CharWidth; 3304 } 3305 3306 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3307 if (BitOffset + BitWidth >= CharWidth) { 3308 Bits[Pos++] |= (Used << BitOffset) & Used; 3309 BitWidth -= CharWidth - BitOffset; 3310 BitOffset = 0; 3311 } 3312 3313 while (BitWidth >= CharWidth) { 3314 Bits[Pos++] = Used; 3315 BitWidth -= CharWidth; 3316 } 3317 3318 if (BitWidth > 0) 3319 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3320 } 3321 3322 // Set the bits corresponding to a field having width `BitWidth` and located at 3323 // offset `BitOffset` (from the least significant bit) within a storage unit of 3324 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3325 // `Bits` corresponds to one target byte. Use target endian layout. 3326 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3327 int StorageSize, int BitOffset, int BitWidth, 3328 int CharWidth, bool BigEndian) { 3329 3330 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3331 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3332 3333 if (BigEndian) 3334 std::reverse(TmpBits.begin(), TmpBits.end()); 3335 3336 for (uint64_t V : TmpBits) 3337 Bits[StorageOffset++] |= V; 3338 } 3339 3340 static void setUsedBits(CodeGenModule &, QualType, int, 3341 SmallVectorImpl<uint64_t> &); 3342 3343 // Set the bits in `Bits`, which correspond to the value representations of 3344 // the actual members of the record type `RTy`. Note that this function does 3345 // not handle base classes, virtual tables, etc, since they cannot happen in 3346 // CMSE function arguments or return. The bit mask corresponds to the target 3347 // memory layout, i.e. it's endian dependent. 3348 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3349 SmallVectorImpl<uint64_t> &Bits) { 3350 ASTContext &Context = CGM.getContext(); 3351 int CharWidth = Context.getCharWidth(); 3352 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3353 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3354 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3355 3356 int Idx = 0; 3357 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3358 const FieldDecl *F = *I; 3359 3360 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3361 F->getType()->isIncompleteArrayType()) 3362 continue; 3363 3364 if (F->isBitField()) { 3365 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3366 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3367 BFI.StorageSize / CharWidth, BFI.Offset, 3368 BFI.Size, CharWidth, 3369 CGM.getDataLayout().isBigEndian()); 3370 continue; 3371 } 3372 3373 setUsedBits(CGM, F->getType(), 3374 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3375 } 3376 } 3377 3378 // Set the bits in `Bits`, which correspond to the value representations of 3379 // the elements of an array type `ATy`. 3380 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3381 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3382 const ASTContext &Context = CGM.getContext(); 3383 3384 QualType ETy = Context.getBaseElementType(ATy); 3385 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3386 SmallVector<uint64_t, 4> TmpBits(Size); 3387 setUsedBits(CGM, ETy, 0, TmpBits); 3388 3389 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3390 auto Src = TmpBits.begin(); 3391 auto Dst = Bits.begin() + Offset + I * Size; 3392 for (int J = 0; J < Size; ++J) 3393 *Dst++ |= *Src++; 3394 } 3395 } 3396 3397 // Set the bits in `Bits`, which correspond to the value representations of 3398 // the type `QTy`. 3399 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3400 SmallVectorImpl<uint64_t> &Bits) { 3401 if (const auto *RTy = QTy->getAs<RecordType>()) 3402 return setUsedBits(CGM, RTy, Offset, Bits); 3403 3404 ASTContext &Context = CGM.getContext(); 3405 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3406 return setUsedBits(CGM, ATy, Offset, Bits); 3407 3408 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3409 if (Size <= 0) 3410 return; 3411 3412 std::fill_n(Bits.begin() + Offset, Size, 3413 (uint64_t(1) << Context.getCharWidth()) - 1); 3414 } 3415 3416 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3417 int Pos, int Size, int CharWidth, 3418 bool BigEndian) { 3419 assert(Size > 0); 3420 uint64_t Mask = 0; 3421 if (BigEndian) { 3422 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3423 ++P) 3424 Mask = (Mask << CharWidth) | *P; 3425 } else { 3426 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3427 do 3428 Mask = (Mask << CharWidth) | *--P; 3429 while (P != End); 3430 } 3431 return Mask; 3432 } 3433 3434 // Emit code to clear the bits in a record, which aren't a part of any user 3435 // declared member, when the record is a function return. 3436 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3437 llvm::IntegerType *ITy, 3438 QualType QTy) { 3439 assert(Src->getType() == ITy); 3440 assert(ITy->getScalarSizeInBits() <= 64); 3441 3442 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3443 int Size = DataLayout.getTypeStoreSize(ITy); 3444 SmallVector<uint64_t, 4> Bits(Size); 3445 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3446 3447 int CharWidth = CGM.getContext().getCharWidth(); 3448 uint64_t Mask = 3449 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3450 3451 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3452 } 3453 3454 // Emit code to clear the bits in a record, which aren't a part of any user 3455 // declared member, when the record is a function argument. 3456 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3457 llvm::ArrayType *ATy, 3458 QualType QTy) { 3459 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3460 int Size = DataLayout.getTypeStoreSize(ATy); 3461 SmallVector<uint64_t, 16> Bits(Size); 3462 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3463 3464 // Clear each element of the LLVM array. 3465 int CharWidth = CGM.getContext().getCharWidth(); 3466 int CharsPerElt = 3467 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3468 int MaskIndex = 0; 3469 llvm::Value *R = llvm::UndefValue::get(ATy); 3470 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3471 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3472 DataLayout.isBigEndian()); 3473 MaskIndex += CharsPerElt; 3474 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3475 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3476 R = Builder.CreateInsertValue(R, T1, I); 3477 } 3478 3479 return R; 3480 } 3481 3482 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3483 bool EmitRetDbgLoc, 3484 SourceLocation EndLoc) { 3485 if (FI.isNoReturn()) { 3486 // Noreturn functions don't return. 3487 EmitUnreachable(EndLoc); 3488 return; 3489 } 3490 3491 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3492 // Naked functions don't have epilogues. 3493 Builder.CreateUnreachable(); 3494 return; 3495 } 3496 3497 // Functions with no result always return void. 3498 if (!ReturnValue.isValid()) { 3499 Builder.CreateRetVoid(); 3500 return; 3501 } 3502 3503 llvm::DebugLoc RetDbgLoc; 3504 llvm::Value *RV = nullptr; 3505 QualType RetTy = FI.getReturnType(); 3506 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3507 3508 switch (RetAI.getKind()) { 3509 case ABIArgInfo::InAlloca: 3510 // Aggregrates get evaluated directly into the destination. Sometimes we 3511 // need to return the sret value in a register, though. 3512 assert(hasAggregateEvaluationKind(RetTy)); 3513 if (RetAI.getInAllocaSRet()) { 3514 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3515 --EI; 3516 llvm::Value *ArgStruct = &*EI; 3517 llvm::Value *SRet = Builder.CreateStructGEP( 3518 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex()); 3519 llvm::Type *Ty = 3520 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3521 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3522 } 3523 break; 3524 3525 case ABIArgInfo::Indirect: { 3526 auto AI = CurFn->arg_begin(); 3527 if (RetAI.isSRetAfterThis()) 3528 ++AI; 3529 switch (getEvaluationKind(RetTy)) { 3530 case TEK_Complex: { 3531 ComplexPairTy RT = 3532 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3533 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3534 /*isInit*/ true); 3535 break; 3536 } 3537 case TEK_Aggregate: 3538 // Do nothing; aggregrates get evaluated directly into the destination. 3539 break; 3540 case TEK_Scalar: { 3541 LValueBaseInfo BaseInfo; 3542 TBAAAccessInfo TBAAInfo; 3543 CharUnits Alignment = 3544 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3545 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3546 LValue ArgVal = 3547 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3548 EmitStoreOfScalar( 3549 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true); 3550 break; 3551 } 3552 } 3553 break; 3554 } 3555 3556 case ABIArgInfo::Extend: 3557 case ABIArgInfo::Direct: 3558 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3559 RetAI.getDirectOffset() == 0) { 3560 // The internal return value temp always will have pointer-to-return-type 3561 // type, just do a load. 3562 3563 // If there is a dominating store to ReturnValue, we can elide 3564 // the load, zap the store, and usually zap the alloca. 3565 if (llvm::StoreInst *SI = 3566 findDominatingStoreToReturnValue(*this)) { 3567 // Reuse the debug location from the store unless there is 3568 // cleanup code to be emitted between the store and return 3569 // instruction. 3570 if (EmitRetDbgLoc && !AutoreleaseResult) 3571 RetDbgLoc = SI->getDebugLoc(); 3572 // Get the stored value and nuke the now-dead store. 3573 RV = SI->getValueOperand(); 3574 SI->eraseFromParent(); 3575 3576 // Otherwise, we have to do a simple load. 3577 } else { 3578 RV = Builder.CreateLoad(ReturnValue); 3579 } 3580 } else { 3581 // If the value is offset in memory, apply the offset now. 3582 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3583 3584 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3585 } 3586 3587 // In ARC, end functions that return a retainable type with a call 3588 // to objc_autoreleaseReturnValue. 3589 if (AutoreleaseResult) { 3590 #ifndef NDEBUG 3591 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3592 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3593 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3594 // CurCodeDecl or BlockInfo. 3595 QualType RT; 3596 3597 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3598 RT = FD->getReturnType(); 3599 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3600 RT = MD->getReturnType(); 3601 else if (isa<BlockDecl>(CurCodeDecl)) 3602 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3603 else 3604 llvm_unreachable("Unexpected function/method type"); 3605 3606 assert(getLangOpts().ObjCAutoRefCount && 3607 !FI.isReturnsRetained() && 3608 RT->isObjCRetainableType()); 3609 #endif 3610 RV = emitAutoreleaseOfResult(*this, RV); 3611 } 3612 3613 break; 3614 3615 case ABIArgInfo::Ignore: 3616 break; 3617 3618 case ABIArgInfo::CoerceAndExpand: { 3619 auto coercionType = RetAI.getCoerceAndExpandType(); 3620 3621 // Load all of the coerced elements out into results. 3622 llvm::SmallVector<llvm::Value*, 4> results; 3623 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3624 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3625 auto coercedEltType = coercionType->getElementType(i); 3626 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3627 continue; 3628 3629 auto eltAddr = Builder.CreateStructGEP(addr, i); 3630 auto elt = Builder.CreateLoad(eltAddr); 3631 results.push_back(elt); 3632 } 3633 3634 // If we have one result, it's the single direct result type. 3635 if (results.size() == 1) { 3636 RV = results[0]; 3637 3638 // Otherwise, we need to make a first-class aggregate. 3639 } else { 3640 // Construct a return type that lacks padding elements. 3641 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3642 3643 RV = llvm::UndefValue::get(returnType); 3644 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3645 RV = Builder.CreateInsertValue(RV, results[i], i); 3646 } 3647 } 3648 break; 3649 } 3650 case ABIArgInfo::Expand: 3651 case ABIArgInfo::IndirectAliased: 3652 llvm_unreachable("Invalid ABI kind for return argument"); 3653 } 3654 3655 llvm::Instruction *Ret; 3656 if (RV) { 3657 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3658 // For certain return types, clear padding bits, as they may reveal 3659 // sensitive information. 3660 // Small struct/union types are passed as integers. 3661 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3662 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3663 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3664 } 3665 EmitReturnValueCheck(RV); 3666 Ret = Builder.CreateRet(RV); 3667 } else { 3668 Ret = Builder.CreateRetVoid(); 3669 } 3670 3671 if (RetDbgLoc) 3672 Ret->setDebugLoc(std::move(RetDbgLoc)); 3673 } 3674 3675 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3676 // A current decl may not be available when emitting vtable thunks. 3677 if (!CurCodeDecl) 3678 return; 3679 3680 // If the return block isn't reachable, neither is this check, so don't emit 3681 // it. 3682 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3683 return; 3684 3685 ReturnsNonNullAttr *RetNNAttr = nullptr; 3686 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3687 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3688 3689 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3690 return; 3691 3692 // Prefer the returns_nonnull attribute if it's present. 3693 SourceLocation AttrLoc; 3694 SanitizerMask CheckKind; 3695 SanitizerHandler Handler; 3696 if (RetNNAttr) { 3697 assert(!requiresReturnValueNullabilityCheck() && 3698 "Cannot check nullability and the nonnull attribute"); 3699 AttrLoc = RetNNAttr->getLocation(); 3700 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3701 Handler = SanitizerHandler::NonnullReturn; 3702 } else { 3703 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3704 if (auto *TSI = DD->getTypeSourceInfo()) 3705 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3706 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3707 CheckKind = SanitizerKind::NullabilityReturn; 3708 Handler = SanitizerHandler::NullabilityReturn; 3709 } 3710 3711 SanitizerScope SanScope(this); 3712 3713 // Make sure the "return" source location is valid. If we're checking a 3714 // nullability annotation, make sure the preconditions for the check are met. 3715 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3716 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3717 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3718 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3719 if (requiresReturnValueNullabilityCheck()) 3720 CanNullCheck = 3721 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3722 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3723 EmitBlock(Check); 3724 3725 // Now do the null check. 3726 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3727 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3728 llvm::Value *DynamicData[] = {SLocPtr}; 3729 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3730 3731 EmitBlock(NoCheck); 3732 3733 #ifndef NDEBUG 3734 // The return location should not be used after the check has been emitted. 3735 ReturnLocation = Address::invalid(); 3736 #endif 3737 } 3738 3739 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3740 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3741 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3742 } 3743 3744 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3745 QualType Ty) { 3746 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3747 // placeholders. 3748 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3749 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3750 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3751 3752 // FIXME: When we generate this IR in one pass, we shouldn't need 3753 // this win32-specific alignment hack. 3754 CharUnits Align = CharUnits::fromQuantity(4); 3755 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3756 3757 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align), 3758 Ty.getQualifiers(), 3759 AggValueSlot::IsNotDestructed, 3760 AggValueSlot::DoesNotNeedGCBarriers, 3761 AggValueSlot::IsNotAliased, 3762 AggValueSlot::DoesNotOverlap); 3763 } 3764 3765 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3766 const VarDecl *param, 3767 SourceLocation loc) { 3768 // StartFunction converted the ABI-lowered parameter(s) into a 3769 // local alloca. We need to turn that into an r-value suitable 3770 // for EmitCall. 3771 Address local = GetAddrOfLocalVar(param); 3772 3773 QualType type = param->getType(); 3774 3775 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3776 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3777 } 3778 3779 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3780 // but the argument needs to be the original pointer. 3781 if (type->isReferenceType()) { 3782 args.add(RValue::get(Builder.CreateLoad(local)), type); 3783 3784 // In ARC, move out of consumed arguments so that the release cleanup 3785 // entered by StartFunction doesn't cause an over-release. This isn't 3786 // optimal -O0 code generation, but it should get cleaned up when 3787 // optimization is enabled. This also assumes that delegate calls are 3788 // performed exactly once for a set of arguments, but that should be safe. 3789 } else if (getLangOpts().ObjCAutoRefCount && 3790 param->hasAttr<NSConsumedAttr>() && 3791 type->isObjCRetainableType()) { 3792 llvm::Value *ptr = Builder.CreateLoad(local); 3793 auto null = 3794 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3795 Builder.CreateStore(null, local); 3796 args.add(RValue::get(ptr), type); 3797 3798 // For the most part, we just need to load the alloca, except that 3799 // aggregate r-values are actually pointers to temporaries. 3800 } else { 3801 args.add(convertTempToRValue(local, type, loc), type); 3802 } 3803 3804 // Deactivate the cleanup for the callee-destructed param that was pushed. 3805 if (type->isRecordType() && !CurFuncIsThunk && 3806 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3807 param->needsDestruction(getContext())) { 3808 EHScopeStack::stable_iterator cleanup = 3809 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3810 assert(cleanup.isValid() && 3811 "cleanup for callee-destructed param not recorded"); 3812 // This unreachable is a temporary marker which will be removed later. 3813 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3814 args.addArgCleanupDeactivation(cleanup, isActive); 3815 } 3816 } 3817 3818 static bool isProvablyNull(llvm::Value *addr) { 3819 return isa<llvm::ConstantPointerNull>(addr); 3820 } 3821 3822 /// Emit the actual writing-back of a writeback. 3823 static void emitWriteback(CodeGenFunction &CGF, 3824 const CallArgList::Writeback &writeback) { 3825 const LValue &srcLV = writeback.Source; 3826 Address srcAddr = srcLV.getAddress(CGF); 3827 assert(!isProvablyNull(srcAddr.getPointer()) && 3828 "shouldn't have writeback for provably null argument"); 3829 3830 llvm::BasicBlock *contBB = nullptr; 3831 3832 // If the argument wasn't provably non-null, we need to null check 3833 // before doing the store. 3834 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3835 CGF.CGM.getDataLayout()); 3836 if (!provablyNonNull) { 3837 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3838 contBB = CGF.createBasicBlock("icr.done"); 3839 3840 llvm::Value *isNull = 3841 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3842 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3843 CGF.EmitBlock(writebackBB); 3844 } 3845 3846 // Load the value to writeback. 3847 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3848 3849 // Cast it back, in case we're writing an id to a Foo* or something. 3850 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3851 "icr.writeback-cast"); 3852 3853 // Perform the writeback. 3854 3855 // If we have a "to use" value, it's something we need to emit a use 3856 // of. This has to be carefully threaded in: if it's done after the 3857 // release it's potentially undefined behavior (and the optimizer 3858 // will ignore it), and if it happens before the retain then the 3859 // optimizer could move the release there. 3860 if (writeback.ToUse) { 3861 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3862 3863 // Retain the new value. No need to block-copy here: the block's 3864 // being passed up the stack. 3865 value = CGF.EmitARCRetainNonBlock(value); 3866 3867 // Emit the intrinsic use here. 3868 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3869 3870 // Load the old value (primitively). 3871 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3872 3873 // Put the new value in place (primitively). 3874 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3875 3876 // Release the old value. 3877 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3878 3879 // Otherwise, we can just do a normal lvalue store. 3880 } else { 3881 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3882 } 3883 3884 // Jump to the continuation block. 3885 if (!provablyNonNull) 3886 CGF.EmitBlock(contBB); 3887 } 3888 3889 static void emitWritebacks(CodeGenFunction &CGF, 3890 const CallArgList &args) { 3891 for (const auto &I : args.writebacks()) 3892 emitWriteback(CGF, I); 3893 } 3894 3895 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3896 const CallArgList &CallArgs) { 3897 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3898 CallArgs.getCleanupsToDeactivate(); 3899 // Iterate in reverse to increase the likelihood of popping the cleanup. 3900 for (const auto &I : llvm::reverse(Cleanups)) { 3901 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3902 I.IsActiveIP->eraseFromParent(); 3903 } 3904 } 3905 3906 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3907 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3908 if (uop->getOpcode() == UO_AddrOf) 3909 return uop->getSubExpr(); 3910 return nullptr; 3911 } 3912 3913 /// Emit an argument that's being passed call-by-writeback. That is, 3914 /// we are passing the address of an __autoreleased temporary; it 3915 /// might be copy-initialized with the current value of the given 3916 /// address, but it will definitely be copied out of after the call. 3917 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3918 const ObjCIndirectCopyRestoreExpr *CRE) { 3919 LValue srcLV; 3920 3921 // Make an optimistic effort to emit the address as an l-value. 3922 // This can fail if the argument expression is more complicated. 3923 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3924 srcLV = CGF.EmitLValue(lvExpr); 3925 3926 // Otherwise, just emit it as a scalar. 3927 } else { 3928 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3929 3930 QualType srcAddrType = 3931 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3932 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3933 } 3934 Address srcAddr = srcLV.getAddress(CGF); 3935 3936 // The dest and src types don't necessarily match in LLVM terms 3937 // because of the crazy ObjC compatibility rules. 3938 3939 llvm::PointerType *destType = 3940 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3941 llvm::Type *destElemType = 3942 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType()); 3943 3944 // If the address is a constant null, just pass the appropriate null. 3945 if (isProvablyNull(srcAddr.getPointer())) { 3946 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3947 CRE->getType()); 3948 return; 3949 } 3950 3951 // Create the temporary. 3952 Address temp = 3953 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp"); 3954 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3955 // and that cleanup will be conditional if we can't prove that the l-value 3956 // isn't null, so we need to register a dominating point so that the cleanups 3957 // system will make valid IR. 3958 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3959 3960 // Zero-initialize it if we're not doing a copy-initialization. 3961 bool shouldCopy = CRE->shouldCopy(); 3962 if (!shouldCopy) { 3963 llvm::Value *null = 3964 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType)); 3965 CGF.Builder.CreateStore(null, temp); 3966 } 3967 3968 llvm::BasicBlock *contBB = nullptr; 3969 llvm::BasicBlock *originBB = nullptr; 3970 3971 // If the address is *not* known to be non-null, we need to switch. 3972 llvm::Value *finalArgument; 3973 3974 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3975 CGF.CGM.getDataLayout()); 3976 if (provablyNonNull) { 3977 finalArgument = temp.getPointer(); 3978 } else { 3979 llvm::Value *isNull = 3980 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3981 3982 finalArgument = CGF.Builder.CreateSelect(isNull, 3983 llvm::ConstantPointerNull::get(destType), 3984 temp.getPointer(), "icr.argument"); 3985 3986 // If we need to copy, then the load has to be conditional, which 3987 // means we need control flow. 3988 if (shouldCopy) { 3989 originBB = CGF.Builder.GetInsertBlock(); 3990 contBB = CGF.createBasicBlock("icr.cont"); 3991 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3992 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3993 CGF.EmitBlock(copyBB); 3994 condEval.begin(CGF); 3995 } 3996 } 3997 3998 llvm::Value *valueToUse = nullptr; 3999 4000 // Perform a copy if necessary. 4001 if (shouldCopy) { 4002 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 4003 assert(srcRV.isScalar()); 4004 4005 llvm::Value *src = srcRV.getScalarVal(); 4006 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast"); 4007 4008 // Use an ordinary store, not a store-to-lvalue. 4009 CGF.Builder.CreateStore(src, temp); 4010 4011 // If optimization is enabled, and the value was held in a 4012 // __strong variable, we need to tell the optimizer that this 4013 // value has to stay alive until we're doing the store back. 4014 // This is because the temporary is effectively unretained, 4015 // and so otherwise we can violate the high-level semantics. 4016 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 4017 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 4018 valueToUse = src; 4019 } 4020 } 4021 4022 // Finish the control flow if we needed it. 4023 if (shouldCopy && !provablyNonNull) { 4024 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 4025 CGF.EmitBlock(contBB); 4026 4027 // Make a phi for the value to intrinsically use. 4028 if (valueToUse) { 4029 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 4030 "icr.to-use"); 4031 phiToUse->addIncoming(valueToUse, copyBB); 4032 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 4033 originBB); 4034 valueToUse = phiToUse; 4035 } 4036 4037 condEval.end(CGF); 4038 } 4039 4040 args.addWriteback(srcLV, temp, valueToUse); 4041 args.add(RValue::get(finalArgument), CRE->getType()); 4042 } 4043 4044 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4045 assert(!StackBase); 4046 4047 // Save the stack. 4048 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 4049 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 4050 } 4051 4052 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4053 if (StackBase) { 4054 // Restore the stack after the call. 4055 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 4056 CGF.Builder.CreateCall(F, StackBase); 4057 } 4058 } 4059 4060 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4061 SourceLocation ArgLoc, 4062 AbstractCallee AC, 4063 unsigned ParmNum) { 4064 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4065 SanOpts.has(SanitizerKind::NullabilityArg))) 4066 return; 4067 4068 // The param decl may be missing in a variadic function. 4069 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4070 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4071 4072 // Prefer the nonnull attribute if it's present. 4073 const NonNullAttr *NNAttr = nullptr; 4074 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4075 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4076 4077 bool CanCheckNullability = false; 4078 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 4079 auto Nullability = PVD->getType()->getNullability(getContext()); 4080 CanCheckNullability = Nullability && 4081 *Nullability == NullabilityKind::NonNull && 4082 PVD->getTypeSourceInfo(); 4083 } 4084 4085 if (!NNAttr && !CanCheckNullability) 4086 return; 4087 4088 SourceLocation AttrLoc; 4089 SanitizerMask CheckKind; 4090 SanitizerHandler Handler; 4091 if (NNAttr) { 4092 AttrLoc = NNAttr->getLocation(); 4093 CheckKind = SanitizerKind::NonnullAttribute; 4094 Handler = SanitizerHandler::NonnullArg; 4095 } else { 4096 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4097 CheckKind = SanitizerKind::NullabilityArg; 4098 Handler = SanitizerHandler::NullabilityArg; 4099 } 4100 4101 SanitizerScope SanScope(this); 4102 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4103 llvm::Constant *StaticData[] = { 4104 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4105 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4106 }; 4107 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 4108 } 4109 4110 // Check if the call is going to use the inalloca convention. This needs to 4111 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4112 // later, so we can't check it directly. 4113 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4114 ArrayRef<QualType> ArgTypes) { 4115 // The Swift calling conventions don't go through the target-specific 4116 // argument classification, they never use inalloca. 4117 // TODO: Consider limiting inalloca use to only calling conventions supported 4118 // by MSVC. 4119 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4120 return false; 4121 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4122 return false; 4123 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4124 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4125 }); 4126 } 4127 4128 #ifndef NDEBUG 4129 // Determine whether the given argument is an Objective-C method 4130 // that may have type parameters in its signature. 4131 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4132 const DeclContext *dc = method->getDeclContext(); 4133 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4134 return classDecl->getTypeParamListAsWritten(); 4135 } 4136 4137 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4138 return catDecl->getTypeParamList(); 4139 } 4140 4141 return false; 4142 } 4143 #endif 4144 4145 /// EmitCallArgs - Emit call arguments for a function. 4146 void CodeGenFunction::EmitCallArgs( 4147 CallArgList &Args, PrototypeWrapper Prototype, 4148 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4149 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4150 SmallVector<QualType, 16> ArgTypes; 4151 4152 assert((ParamsToSkip == 0 || Prototype.P) && 4153 "Can't skip parameters if type info is not provided"); 4154 4155 // This variable only captures *explicitly* written conventions, not those 4156 // applied by default via command line flags or target defaults, such as 4157 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4158 // require knowing if this is a C++ instance method or being able to see 4159 // unprototyped FunctionTypes. 4160 CallingConv ExplicitCC = CC_C; 4161 4162 // First, if a prototype was provided, use those argument types. 4163 bool IsVariadic = false; 4164 if (Prototype.P) { 4165 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4166 if (MD) { 4167 IsVariadic = MD->isVariadic(); 4168 ExplicitCC = getCallingConventionForDecl( 4169 MD, CGM.getTarget().getTriple().isOSWindows()); 4170 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4171 MD->param_type_end()); 4172 } else { 4173 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4174 IsVariadic = FPT->isVariadic(); 4175 ExplicitCC = FPT->getExtInfo().getCC(); 4176 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4177 FPT->param_type_end()); 4178 } 4179 4180 #ifndef NDEBUG 4181 // Check that the prototyped types match the argument expression types. 4182 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4183 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4184 for (QualType Ty : ArgTypes) { 4185 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4186 assert( 4187 (isGenericMethod || Ty->isVariablyModifiedType() || 4188 Ty.getNonReferenceType()->isObjCRetainableType() || 4189 getContext() 4190 .getCanonicalType(Ty.getNonReferenceType()) 4191 .getTypePtr() == 4192 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4193 "type mismatch in call argument!"); 4194 ++Arg; 4195 } 4196 4197 // Either we've emitted all the call args, or we have a call to variadic 4198 // function. 4199 assert((Arg == ArgRange.end() || IsVariadic) && 4200 "Extra arguments in non-variadic function!"); 4201 #endif 4202 } 4203 4204 // If we still have any arguments, emit them using the type of the argument. 4205 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4206 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4207 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4208 4209 // We must evaluate arguments from right to left in the MS C++ ABI, 4210 // because arguments are destroyed left to right in the callee. As a special 4211 // case, there are certain language constructs that require left-to-right 4212 // evaluation, and in those cases we consider the evaluation order requirement 4213 // to trump the "destruction order is reverse construction order" guarantee. 4214 bool LeftToRight = 4215 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4216 ? Order == EvaluationOrder::ForceLeftToRight 4217 : Order != EvaluationOrder::ForceRightToLeft; 4218 4219 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4220 RValue EmittedArg) { 4221 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4222 return; 4223 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4224 if (PS == nullptr) 4225 return; 4226 4227 const auto &Context = getContext(); 4228 auto SizeTy = Context.getSizeType(); 4229 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4230 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4231 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4232 EmittedArg.getScalarVal(), 4233 PS->isDynamic()); 4234 Args.add(RValue::get(V), SizeTy); 4235 // If we're emitting args in reverse, be sure to do so with 4236 // pass_object_size, as well. 4237 if (!LeftToRight) 4238 std::swap(Args.back(), *(&Args.back() - 1)); 4239 }; 4240 4241 // Insert a stack save if we're going to need any inalloca args. 4242 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4243 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4244 "inalloca only supported on x86"); 4245 Args.allocateArgumentMemory(*this); 4246 } 4247 4248 // Evaluate each argument in the appropriate order. 4249 size_t CallArgsStart = Args.size(); 4250 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4251 unsigned Idx = LeftToRight ? I : E - I - 1; 4252 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4253 unsigned InitialArgSize = Args.size(); 4254 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4255 // the argument and parameter match or the objc method is parameterized. 4256 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4257 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4258 ArgTypes[Idx]) || 4259 (isa<ObjCMethodDecl>(AC.getDecl()) && 4260 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4261 "Argument and parameter types don't match"); 4262 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4263 // In particular, we depend on it being the last arg in Args, and the 4264 // objectsize bits depend on there only being one arg if !LeftToRight. 4265 assert(InitialArgSize + 1 == Args.size() && 4266 "The code below depends on only adding one arg per EmitCallArg"); 4267 (void)InitialArgSize; 4268 // Since pointer argument are never emitted as LValue, it is safe to emit 4269 // non-null argument check for r-value only. 4270 if (!Args.back().hasLValue()) { 4271 RValue RVArg = Args.back().getKnownRValue(); 4272 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4273 ParamsToSkip + Idx); 4274 // @llvm.objectsize should never have side-effects and shouldn't need 4275 // destruction/cleanups, so we can safely "emit" it after its arg, 4276 // regardless of right-to-leftness 4277 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4278 } 4279 } 4280 4281 if (!LeftToRight) { 4282 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4283 // IR function. 4284 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4285 } 4286 } 4287 4288 namespace { 4289 4290 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4291 DestroyUnpassedArg(Address Addr, QualType Ty) 4292 : Addr(Addr), Ty(Ty) {} 4293 4294 Address Addr; 4295 QualType Ty; 4296 4297 void Emit(CodeGenFunction &CGF, Flags flags) override { 4298 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4299 if (DtorKind == QualType::DK_cxx_destructor) { 4300 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4301 assert(!Dtor->isTrivial()); 4302 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4303 /*Delegating=*/false, Addr, Ty); 4304 } else { 4305 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4306 } 4307 } 4308 }; 4309 4310 struct DisableDebugLocationUpdates { 4311 CodeGenFunction &CGF; 4312 bool disabledDebugInfo; 4313 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4314 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4315 CGF.disableDebugInfo(); 4316 } 4317 ~DisableDebugLocationUpdates() { 4318 if (disabledDebugInfo) 4319 CGF.enableDebugInfo(); 4320 } 4321 }; 4322 4323 } // end anonymous namespace 4324 4325 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4326 if (!HasLV) 4327 return RV; 4328 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4329 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4330 LV.isVolatile()); 4331 IsUsed = true; 4332 return RValue::getAggregate(Copy.getAddress(CGF)); 4333 } 4334 4335 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4336 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4337 if (!HasLV && RV.isScalar()) 4338 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4339 else if (!HasLV && RV.isComplex()) 4340 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4341 else { 4342 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4343 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4344 // We assume that call args are never copied into subobjects. 4345 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4346 HasLV ? LV.isVolatileQualified() 4347 : RV.isVolatileQualified()); 4348 } 4349 IsUsed = true; 4350 } 4351 4352 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4353 QualType type) { 4354 DisableDebugLocationUpdates Dis(*this, E); 4355 if (const ObjCIndirectCopyRestoreExpr *CRE 4356 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4357 assert(getLangOpts().ObjCAutoRefCount); 4358 return emitWritebackArg(*this, args, CRE); 4359 } 4360 4361 assert(type->isReferenceType() == E->isGLValue() && 4362 "reference binding to unmaterialized r-value!"); 4363 4364 if (E->isGLValue()) { 4365 assert(E->getObjectKind() == OK_Ordinary); 4366 return args.add(EmitReferenceBindingToExpr(E), type); 4367 } 4368 4369 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4370 4371 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4372 // However, we still have to push an EH-only cleanup in case we unwind before 4373 // we make it to the call. 4374 if (type->isRecordType() && 4375 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4376 // If we're using inalloca, use the argument memory. Otherwise, use a 4377 // temporary. 4378 AggValueSlot Slot = args.isUsingInAlloca() 4379 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4380 4381 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4382 if (const auto *RD = type->getAsCXXRecordDecl()) 4383 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4384 else 4385 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4386 4387 if (DestroyedInCallee) 4388 Slot.setExternallyDestructed(); 4389 4390 EmitAggExpr(E, Slot); 4391 RValue RV = Slot.asRValue(); 4392 args.add(RV, type); 4393 4394 if (DestroyedInCallee && NeedsEHCleanup) { 4395 // Create a no-op GEP between the placeholder and the cleanup so we can 4396 // RAUW it successfully. It also serves as a marker of the first 4397 // instruction where the cleanup is active. 4398 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4399 type); 4400 // This unreachable is a temporary marker which will be removed later. 4401 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4402 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4403 } 4404 return; 4405 } 4406 4407 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4408 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4409 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4410 assert(L.isSimple()); 4411 args.addUncopiedAggregate(L, type); 4412 return; 4413 } 4414 4415 args.add(EmitAnyExprToTemp(E), type); 4416 } 4417 4418 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4419 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4420 // implicitly widens null pointer constants that are arguments to varargs 4421 // functions to pointer-sized ints. 4422 if (!getTarget().getTriple().isOSWindows()) 4423 return Arg->getType(); 4424 4425 if (Arg->getType()->isIntegerType() && 4426 getContext().getTypeSize(Arg->getType()) < 4427 getContext().getTargetInfo().getPointerWidth(0) && 4428 Arg->isNullPointerConstant(getContext(), 4429 Expr::NPC_ValueDependentIsNotNull)) { 4430 return getContext().getIntPtrType(); 4431 } 4432 4433 return Arg->getType(); 4434 } 4435 4436 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4437 // optimizer it can aggressively ignore unwind edges. 4438 void 4439 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4440 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4441 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4442 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4443 CGM.getNoObjCARCExceptionsMetadata()); 4444 } 4445 4446 /// Emits a call to the given no-arguments nounwind runtime function. 4447 llvm::CallInst * 4448 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4449 const llvm::Twine &name) { 4450 return EmitNounwindRuntimeCall(callee, None, name); 4451 } 4452 4453 /// Emits a call to the given nounwind runtime function. 4454 llvm::CallInst * 4455 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4456 ArrayRef<llvm::Value *> args, 4457 const llvm::Twine &name) { 4458 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4459 call->setDoesNotThrow(); 4460 return call; 4461 } 4462 4463 /// Emits a simple call (never an invoke) to the given no-arguments 4464 /// runtime function. 4465 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4466 const llvm::Twine &name) { 4467 return EmitRuntimeCall(callee, None, name); 4468 } 4469 4470 // Calls which may throw must have operand bundles indicating which funclet 4471 // they are nested within. 4472 SmallVector<llvm::OperandBundleDef, 1> 4473 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4474 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4475 // There is no need for a funclet operand bundle if we aren't inside a 4476 // funclet. 4477 if (!CurrentFuncletPad) 4478 return BundleList; 4479 4480 // Skip intrinsics which cannot throw. 4481 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4482 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4483 return BundleList; 4484 4485 BundleList.emplace_back("funclet", CurrentFuncletPad); 4486 return BundleList; 4487 } 4488 4489 /// Emits a simple call (never an invoke) to the given runtime function. 4490 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4491 ArrayRef<llvm::Value *> args, 4492 const llvm::Twine &name) { 4493 llvm::CallInst *call = Builder.CreateCall( 4494 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4495 call->setCallingConv(getRuntimeCC()); 4496 return call; 4497 } 4498 4499 /// Emits a call or invoke to the given noreturn runtime function. 4500 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4501 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4502 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4503 getBundlesForFunclet(callee.getCallee()); 4504 4505 if (getInvokeDest()) { 4506 llvm::InvokeInst *invoke = 4507 Builder.CreateInvoke(callee, 4508 getUnreachableBlock(), 4509 getInvokeDest(), 4510 args, 4511 BundleList); 4512 invoke->setDoesNotReturn(); 4513 invoke->setCallingConv(getRuntimeCC()); 4514 } else { 4515 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4516 call->setDoesNotReturn(); 4517 call->setCallingConv(getRuntimeCC()); 4518 Builder.CreateUnreachable(); 4519 } 4520 } 4521 4522 /// Emits a call or invoke instruction to the given nullary runtime function. 4523 llvm::CallBase * 4524 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4525 const Twine &name) { 4526 return EmitRuntimeCallOrInvoke(callee, None, name); 4527 } 4528 4529 /// Emits a call or invoke instruction to the given runtime function. 4530 llvm::CallBase * 4531 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4532 ArrayRef<llvm::Value *> args, 4533 const Twine &name) { 4534 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4535 call->setCallingConv(getRuntimeCC()); 4536 return call; 4537 } 4538 4539 /// Emits a call or invoke instruction to the given function, depending 4540 /// on the current state of the EH stack. 4541 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4542 ArrayRef<llvm::Value *> Args, 4543 const Twine &Name) { 4544 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4545 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4546 getBundlesForFunclet(Callee.getCallee()); 4547 4548 llvm::CallBase *Inst; 4549 if (!InvokeDest) 4550 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4551 else { 4552 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4553 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4554 Name); 4555 EmitBlock(ContBB); 4556 } 4557 4558 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4559 // optimizer it can aggressively ignore unwind edges. 4560 if (CGM.getLangOpts().ObjCAutoRefCount) 4561 AddObjCARCExceptionMetadata(Inst); 4562 4563 return Inst; 4564 } 4565 4566 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4567 llvm::Value *New) { 4568 DeferredReplacements.push_back( 4569 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4570 } 4571 4572 namespace { 4573 4574 /// Specify given \p NewAlign as the alignment of return value attribute. If 4575 /// such attribute already exists, re-set it to the maximal one of two options. 4576 LLVM_NODISCARD llvm::AttributeList 4577 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4578 const llvm::AttributeList &Attrs, 4579 llvm::Align NewAlign) { 4580 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4581 if (CurAlign >= NewAlign) 4582 return Attrs; 4583 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4584 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4585 .addRetAttribute(Ctx, AlignAttr); 4586 } 4587 4588 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4589 protected: 4590 CodeGenFunction &CGF; 4591 4592 /// We do nothing if this is, or becomes, nullptr. 4593 const AlignedAttrTy *AA = nullptr; 4594 4595 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4596 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4597 4598 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4599 : CGF(CGF_) { 4600 if (!FuncDecl) 4601 return; 4602 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4603 } 4604 4605 public: 4606 /// If we can, materialize the alignment as an attribute on return value. 4607 LLVM_NODISCARD llvm::AttributeList 4608 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4609 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4610 return Attrs; 4611 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4612 if (!AlignmentCI) 4613 return Attrs; 4614 // We may legitimately have non-power-of-2 alignment here. 4615 // If so, this is UB land, emit it via `@llvm.assume` instead. 4616 if (!AlignmentCI->getValue().isPowerOf2()) 4617 return Attrs; 4618 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4619 CGF.getLLVMContext(), Attrs, 4620 llvm::Align( 4621 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4622 AA = nullptr; // We're done. Disallow doing anything else. 4623 return NewAttrs; 4624 } 4625 4626 /// Emit alignment assumption. 4627 /// This is a general fallback that we take if either there is an offset, 4628 /// or the alignment is variable or we are sanitizing for alignment. 4629 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4630 if (!AA) 4631 return; 4632 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4633 AA->getLocation(), Alignment, OffsetCI); 4634 AA = nullptr; // We're done. Disallow doing anything else. 4635 } 4636 }; 4637 4638 /// Helper data structure to emit `AssumeAlignedAttr`. 4639 class AssumeAlignedAttrEmitter final 4640 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4641 public: 4642 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4643 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4644 if (!AA) 4645 return; 4646 // It is guaranteed that the alignment/offset are constants. 4647 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4648 if (Expr *Offset = AA->getOffset()) { 4649 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4650 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4651 OffsetCI = nullptr; 4652 } 4653 } 4654 }; 4655 4656 /// Helper data structure to emit `AllocAlignAttr`. 4657 class AllocAlignAttrEmitter final 4658 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4659 public: 4660 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4661 const CallArgList &CallArgs) 4662 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4663 if (!AA) 4664 return; 4665 // Alignment may or may not be a constant, and that is okay. 4666 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4667 .getRValue(CGF) 4668 .getScalarVal(); 4669 } 4670 }; 4671 4672 } // namespace 4673 4674 static unsigned getMaxVectorWidth(const llvm::Type *Ty) { 4675 if (auto *VT = dyn_cast<llvm::VectorType>(Ty)) 4676 return VT->getPrimitiveSizeInBits().getKnownMinSize(); 4677 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty)) 4678 return getMaxVectorWidth(AT->getElementType()); 4679 4680 unsigned MaxVectorWidth = 0; 4681 if (auto *ST = dyn_cast<llvm::StructType>(Ty)) 4682 for (auto *I : ST->elements()) 4683 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I)); 4684 return MaxVectorWidth; 4685 } 4686 4687 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4688 const CGCallee &Callee, 4689 ReturnValueSlot ReturnValue, 4690 const CallArgList &CallArgs, 4691 llvm::CallBase **callOrInvoke, bool IsMustTail, 4692 SourceLocation Loc) { 4693 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4694 4695 assert(Callee.isOrdinary() || Callee.isVirtual()); 4696 4697 // Handle struct-return functions by passing a pointer to the 4698 // location that we would like to return into. 4699 QualType RetTy = CallInfo.getReturnType(); 4700 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4701 4702 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4703 4704 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4705 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4706 // We can only guarantee that a function is called from the correct 4707 // context/function based on the appropriate target attributes, 4708 // so only check in the case where we have both always_inline and target 4709 // since otherwise we could be making a conditional call after a check for 4710 // the proper cpu features (and it won't cause code generation issues due to 4711 // function based code generation). 4712 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4713 TargetDecl->hasAttr<TargetAttr>()) 4714 checkTargetFeatures(Loc, FD); 4715 4716 // Some architectures (such as x86-64) have the ABI changed based on 4717 // attribute-target/features. Give them a chance to diagnose. 4718 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4719 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4720 } 4721 4722 #ifndef NDEBUG 4723 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4724 // For an inalloca varargs function, we don't expect CallInfo to match the 4725 // function pointer's type, because the inalloca struct a will have extra 4726 // fields in it for the varargs parameters. Code later in this function 4727 // bitcasts the function pointer to the type derived from CallInfo. 4728 // 4729 // In other cases, we assert that the types match up (until pointers stop 4730 // having pointee types). 4731 if (Callee.isVirtual()) 4732 assert(IRFuncTy == Callee.getVirtualFunctionType()); 4733 else { 4734 llvm::PointerType *PtrTy = 4735 llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType()); 4736 assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy)); 4737 } 4738 } 4739 #endif 4740 4741 // 1. Set up the arguments. 4742 4743 // If we're using inalloca, insert the allocation after the stack save. 4744 // FIXME: Do this earlier rather than hacking it in here! 4745 Address ArgMemory = Address::invalid(); 4746 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4747 const llvm::DataLayout &DL = CGM.getDataLayout(); 4748 llvm::Instruction *IP = CallArgs.getStackBase(); 4749 llvm::AllocaInst *AI; 4750 if (IP) { 4751 IP = IP->getNextNode(); 4752 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4753 "argmem", IP); 4754 } else { 4755 AI = CreateTempAlloca(ArgStruct, "argmem"); 4756 } 4757 auto Align = CallInfo.getArgStructAlignment(); 4758 AI->setAlignment(Align.getAsAlign()); 4759 AI->setUsedWithInAlloca(true); 4760 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4761 ArgMemory = Address(AI, ArgStruct, Align); 4762 } 4763 4764 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4765 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4766 4767 // If the call returns a temporary with struct return, create a temporary 4768 // alloca to hold the result, unless one is given to us. 4769 Address SRetPtr = Address::invalid(); 4770 Address SRetAlloca = Address::invalid(); 4771 llvm::Value *UnusedReturnSizePtr = nullptr; 4772 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4773 if (!ReturnValue.isNull()) { 4774 SRetPtr = ReturnValue.getValue(); 4775 } else { 4776 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4777 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4778 llvm::TypeSize size = 4779 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4780 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4781 } 4782 } 4783 if (IRFunctionArgs.hasSRetArg()) { 4784 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4785 } else if (RetAI.isInAlloca()) { 4786 Address Addr = 4787 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4788 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4789 } 4790 } 4791 4792 Address swiftErrorTemp = Address::invalid(); 4793 Address swiftErrorArg = Address::invalid(); 4794 4795 // When passing arguments using temporary allocas, we need to add the 4796 // appropriate lifetime markers. This vector keeps track of all the lifetime 4797 // markers that need to be ended right after the call. 4798 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4799 4800 // Translate all of the arguments as necessary to match the IR lowering. 4801 assert(CallInfo.arg_size() == CallArgs.size() && 4802 "Mismatch between function signature & arguments."); 4803 unsigned ArgNo = 0; 4804 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4805 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4806 I != E; ++I, ++info_it, ++ArgNo) { 4807 const ABIArgInfo &ArgInfo = info_it->info; 4808 4809 // Insert a padding argument to ensure proper alignment. 4810 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4811 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4812 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4813 4814 unsigned FirstIRArg, NumIRArgs; 4815 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4816 4817 switch (ArgInfo.getKind()) { 4818 case ABIArgInfo::InAlloca: { 4819 assert(NumIRArgs == 0); 4820 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4821 if (I->isAggregate()) { 4822 Address Addr = I->hasLValue() 4823 ? I->getKnownLValue().getAddress(*this) 4824 : I->getKnownRValue().getAggregateAddress(); 4825 llvm::Instruction *Placeholder = 4826 cast<llvm::Instruction>(Addr.getPointer()); 4827 4828 if (!ArgInfo.getInAllocaIndirect()) { 4829 // Replace the placeholder with the appropriate argument slot GEP. 4830 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4831 Builder.SetInsertPoint(Placeholder); 4832 Addr = Builder.CreateStructGEP(ArgMemory, 4833 ArgInfo.getInAllocaFieldIndex()); 4834 Builder.restoreIP(IP); 4835 } else { 4836 // For indirect things such as overaligned structs, replace the 4837 // placeholder with a regular aggregate temporary alloca. Store the 4838 // address of this alloca into the struct. 4839 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4840 Address ArgSlot = Builder.CreateStructGEP( 4841 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4842 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4843 } 4844 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4845 } else if (ArgInfo.getInAllocaIndirect()) { 4846 // Make a temporary alloca and store the address of it into the argument 4847 // struct. 4848 Address Addr = CreateMemTempWithoutCast( 4849 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4850 "indirect-arg-temp"); 4851 I->copyInto(*this, Addr); 4852 Address ArgSlot = 4853 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4854 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4855 } else { 4856 // Store the RValue into the argument struct. 4857 Address Addr = 4858 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4859 // There are some cases where a trivial bitcast is not avoidable. The 4860 // definition of a type later in a translation unit may change it's type 4861 // from {}* to (%struct.foo*)*. 4862 Addr = Builder.CreateElementBitCast(Addr, ConvertTypeForMem(I->Ty)); 4863 I->copyInto(*this, Addr); 4864 } 4865 break; 4866 } 4867 4868 case ABIArgInfo::Indirect: 4869 case ABIArgInfo::IndirectAliased: { 4870 assert(NumIRArgs == 1); 4871 if (!I->isAggregate()) { 4872 // Make a temporary alloca to pass the argument. 4873 Address Addr = CreateMemTempWithoutCast( 4874 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4875 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4876 4877 I->copyInto(*this, Addr); 4878 } else { 4879 // We want to avoid creating an unnecessary temporary+copy here; 4880 // however, we need one in three cases: 4881 // 1. If the argument is not byval, and we are required to copy the 4882 // source. (This case doesn't occur on any common architecture.) 4883 // 2. If the argument is byval, RV is not sufficiently aligned, and 4884 // we cannot force it to be sufficiently aligned. 4885 // 3. If the argument is byval, but RV is not located in default 4886 // or alloca address space. 4887 Address Addr = I->hasLValue() 4888 ? I->getKnownLValue().getAddress(*this) 4889 : I->getKnownRValue().getAggregateAddress(); 4890 llvm::Value *V = Addr.getPointer(); 4891 CharUnits Align = ArgInfo.getIndirectAlign(); 4892 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4893 4894 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4895 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4896 TD->getAllocaAddrSpace()) && 4897 "indirect argument must be in alloca address space"); 4898 4899 bool NeedCopy = false; 4900 4901 if (Addr.getAlignment() < Align && 4902 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4903 Align.getAsAlign()) { 4904 NeedCopy = true; 4905 } else if (I->hasLValue()) { 4906 auto LV = I->getKnownLValue(); 4907 auto AS = LV.getAddressSpace(); 4908 4909 if (!ArgInfo.getIndirectByVal() || 4910 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4911 NeedCopy = true; 4912 } 4913 if (!getLangOpts().OpenCL) { 4914 if ((ArgInfo.getIndirectByVal() && 4915 (AS != LangAS::Default && 4916 AS != CGM.getASTAllocaAddressSpace()))) { 4917 NeedCopy = true; 4918 } 4919 } 4920 // For OpenCL even if RV is located in default or alloca address space 4921 // we don't want to perform address space cast for it. 4922 else if ((ArgInfo.getIndirectByVal() && 4923 Addr.getType()->getAddressSpace() != IRFuncTy-> 4924 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4925 NeedCopy = true; 4926 } 4927 } 4928 4929 if (NeedCopy) { 4930 // Create an aligned temporary, and copy to it. 4931 Address AI = CreateMemTempWithoutCast( 4932 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4933 IRCallArgs[FirstIRArg] = AI.getPointer(); 4934 4935 // Emit lifetime markers for the temporary alloca. 4936 llvm::TypeSize ByvalTempElementSize = 4937 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4938 llvm::Value *LifetimeSize = 4939 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4940 4941 // Add cleanup code to emit the end lifetime marker after the call. 4942 if (LifetimeSize) // In case we disabled lifetime markers. 4943 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4944 4945 // Generate the copy. 4946 I->copyInto(*this, AI); 4947 } else { 4948 // Skip the extra memcpy call. 4949 auto *T = llvm::PointerType::getWithSamePointeeType( 4950 cast<llvm::PointerType>(V->getType()), 4951 CGM.getDataLayout().getAllocaAddrSpace()); 4952 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4953 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4954 true); 4955 } 4956 } 4957 break; 4958 } 4959 4960 case ABIArgInfo::Ignore: 4961 assert(NumIRArgs == 0); 4962 break; 4963 4964 case ABIArgInfo::Extend: 4965 case ABIArgInfo::Direct: { 4966 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4967 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4968 ArgInfo.getDirectOffset() == 0) { 4969 assert(NumIRArgs == 1); 4970 llvm::Value *V; 4971 if (!I->isAggregate()) 4972 V = I->getKnownRValue().getScalarVal(); 4973 else 4974 V = Builder.CreateLoad( 4975 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4976 : I->getKnownRValue().getAggregateAddress()); 4977 4978 // Implement swifterror by copying into a new swifterror argument. 4979 // We'll write back in the normal path out of the call. 4980 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4981 == ParameterABI::SwiftErrorResult) { 4982 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4983 4984 QualType pointeeTy = I->Ty->getPointeeType(); 4985 swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy), 4986 getContext().getTypeAlignInChars(pointeeTy)); 4987 4988 swiftErrorTemp = 4989 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4990 V = swiftErrorTemp.getPointer(); 4991 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4992 4993 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4994 Builder.CreateStore(errorValue, swiftErrorTemp); 4995 } 4996 4997 // We might have to widen integers, but we should never truncate. 4998 if (ArgInfo.getCoerceToType() != V->getType() && 4999 V->getType()->isIntegerTy()) 5000 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 5001 5002 // If the argument doesn't match, perform a bitcast to coerce it. This 5003 // can happen due to trivial type mismatches. 5004 if (FirstIRArg < IRFuncTy->getNumParams() && 5005 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 5006 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 5007 5008 IRCallArgs[FirstIRArg] = V; 5009 break; 5010 } 5011 5012 // FIXME: Avoid the conversion through memory if possible. 5013 Address Src = Address::invalid(); 5014 if (!I->isAggregate()) { 5015 Src = CreateMemTemp(I->Ty, "coerce"); 5016 I->copyInto(*this, Src); 5017 } else { 5018 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5019 : I->getKnownRValue().getAggregateAddress(); 5020 } 5021 5022 // If the value is offset in memory, apply the offset now. 5023 Src = emitAddressAtOffset(*this, Src, ArgInfo); 5024 5025 // Fast-isel and the optimizer generally like scalar values better than 5026 // FCAs, so we flatten them if this is safe to do for this argument. 5027 llvm::StructType *STy = 5028 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 5029 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 5030 llvm::Type *SrcTy = Src.getElementType(); 5031 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5032 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 5033 5034 // If the source type is smaller than the destination type of the 5035 // coerce-to logic, copy the source value into a temp alloca the size 5036 // of the destination type to allow loading all of it. The bits past 5037 // the source value are left undef. 5038 if (SrcSize < DstSize) { 5039 Address TempAlloca 5040 = CreateTempAlloca(STy, Src.getAlignment(), 5041 Src.getName() + ".coerce"); 5042 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 5043 Src = TempAlloca; 5044 } else { 5045 Src = Builder.CreateElementBitCast(Src, STy); 5046 } 5047 5048 assert(NumIRArgs == STy->getNumElements()); 5049 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5050 Address EltPtr = Builder.CreateStructGEP(Src, i); 5051 llvm::Value *LI = Builder.CreateLoad(EltPtr); 5052 IRCallArgs[FirstIRArg + i] = LI; 5053 } 5054 } else { 5055 // In the simple case, just pass the coerced loaded value. 5056 assert(NumIRArgs == 1); 5057 llvm::Value *Load = 5058 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5059 5060 if (CallInfo.isCmseNSCall()) { 5061 // For certain parameter types, clear padding bits, as they may reveal 5062 // sensitive information. 5063 // Small struct/union types are passed as integer arrays. 5064 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5065 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5066 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5067 } 5068 IRCallArgs[FirstIRArg] = Load; 5069 } 5070 5071 break; 5072 } 5073 5074 case ABIArgInfo::CoerceAndExpand: { 5075 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5076 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5077 5078 llvm::Value *tempSize = nullptr; 5079 Address addr = Address::invalid(); 5080 Address AllocaAddr = Address::invalid(); 5081 if (I->isAggregate()) { 5082 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5083 : I->getKnownRValue().getAggregateAddress(); 5084 5085 } else { 5086 RValue RV = I->getKnownRValue(); 5087 assert(RV.isScalar()); // complex should always just be direct 5088 5089 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5090 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5091 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 5092 5093 // Materialize to a temporary. 5094 addr = 5095 CreateTempAlloca(RV.getScalarVal()->getType(), 5096 CharUnits::fromQuantity(std::max( 5097 layout->getAlignment().value(), scalarAlign)), 5098 "tmp", 5099 /*ArraySize=*/nullptr, &AllocaAddr); 5100 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5101 5102 Builder.CreateStore(RV.getScalarVal(), addr); 5103 } 5104 5105 addr = Builder.CreateElementBitCast(addr, coercionType); 5106 5107 unsigned IRArgPos = FirstIRArg; 5108 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5109 llvm::Type *eltType = coercionType->getElementType(i); 5110 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5111 Address eltAddr = Builder.CreateStructGEP(addr, i); 5112 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5113 IRCallArgs[IRArgPos++] = elt; 5114 } 5115 assert(IRArgPos == FirstIRArg + NumIRArgs); 5116 5117 if (tempSize) { 5118 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5119 } 5120 5121 break; 5122 } 5123 5124 case ABIArgInfo::Expand: { 5125 unsigned IRArgPos = FirstIRArg; 5126 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5127 assert(IRArgPos == FirstIRArg + NumIRArgs); 5128 break; 5129 } 5130 } 5131 } 5132 5133 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5134 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5135 5136 // If we're using inalloca, set up that argument. 5137 if (ArgMemory.isValid()) { 5138 llvm::Value *Arg = ArgMemory.getPointer(); 5139 if (CallInfo.isVariadic()) { 5140 // When passing non-POD arguments by value to variadic functions, we will 5141 // end up with a variadic prototype and an inalloca call site. In such 5142 // cases, we can't do any parameter mismatch checks. Give up and bitcast 5143 // the callee. 5144 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 5145 CalleePtr = 5146 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 5147 } else { 5148 llvm::Type *LastParamTy = 5149 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 5150 if (Arg->getType() != LastParamTy) { 5151 #ifndef NDEBUG 5152 // Assert that these structs have equivalent element types. 5153 llvm::StructType *FullTy = CallInfo.getArgStruct(); 5154 if (!LastParamTy->isOpaquePointerTy()) { 5155 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 5156 LastParamTy->getNonOpaquePointerElementType()); 5157 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 5158 for (auto DI = DeclaredTy->element_begin(), 5159 DE = DeclaredTy->element_end(), 5160 FI = FullTy->element_begin(); 5161 DI != DE; ++DI, ++FI) 5162 assert(*DI == *FI); 5163 } 5164 #endif 5165 Arg = Builder.CreateBitCast(Arg, LastParamTy); 5166 } 5167 } 5168 assert(IRFunctionArgs.hasInallocaArg()); 5169 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5170 } 5171 5172 // 2. Prepare the function pointer. 5173 5174 // If the callee is a bitcast of a non-variadic function to have a 5175 // variadic function pointer type, check to see if we can remove the 5176 // bitcast. This comes up with unprototyped functions. 5177 // 5178 // This makes the IR nicer, but more importantly it ensures that we 5179 // can inline the function at -O0 if it is marked always_inline. 5180 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5181 llvm::Value *Ptr) -> llvm::Function * { 5182 if (!CalleeFT->isVarArg()) 5183 return nullptr; 5184 5185 // Get underlying value if it's a bitcast 5186 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5187 if (CE->getOpcode() == llvm::Instruction::BitCast) 5188 Ptr = CE->getOperand(0); 5189 } 5190 5191 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5192 if (!OrigFn) 5193 return nullptr; 5194 5195 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5196 5197 // If the original type is variadic, or if any of the component types 5198 // disagree, we cannot remove the cast. 5199 if (OrigFT->isVarArg() || 5200 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5201 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5202 return nullptr; 5203 5204 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5205 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5206 return nullptr; 5207 5208 return OrigFn; 5209 }; 5210 5211 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5212 CalleePtr = OrigFn; 5213 IRFuncTy = OrigFn->getFunctionType(); 5214 } 5215 5216 // 3. Perform the actual call. 5217 5218 // Deactivate any cleanups that we're supposed to do immediately before 5219 // the call. 5220 if (!CallArgs.getCleanupsToDeactivate().empty()) 5221 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5222 5223 // Assert that the arguments we computed match up. The IR verifier 5224 // will catch this, but this is a common enough source of problems 5225 // during IRGen changes that it's way better for debugging to catch 5226 // it ourselves here. 5227 #ifndef NDEBUG 5228 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5229 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5230 // Inalloca argument can have different type. 5231 if (IRFunctionArgs.hasInallocaArg() && 5232 i == IRFunctionArgs.getInallocaArgNo()) 5233 continue; 5234 if (i < IRFuncTy->getNumParams()) 5235 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5236 } 5237 #endif 5238 5239 // Update the largest vector width if any arguments have vector types. 5240 for (unsigned i = 0; i < IRCallArgs.size(); ++i) 5241 LargestVectorWidth = std::max(LargestVectorWidth, 5242 getMaxVectorWidth(IRCallArgs[i]->getType())); 5243 5244 // Compute the calling convention and attributes. 5245 unsigned CallingConv; 5246 llvm::AttributeList Attrs; 5247 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5248 Callee.getAbstractInfo(), Attrs, CallingConv, 5249 /*AttrOnCallSite=*/true, 5250 /*IsThunk=*/false); 5251 5252 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5253 if (FD->hasAttr<StrictFPAttr>()) 5254 // All calls within a strictfp function are marked strictfp 5255 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5256 5257 // Add call-site nomerge attribute if exists. 5258 if (InNoMergeAttributedStmt) 5259 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5260 5261 // Add call-site noinline attribute if exists. 5262 if (InNoInlineAttributedStmt) 5263 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5264 5265 // Add call-site always_inline attribute if exists. 5266 if (InAlwaysInlineAttributedStmt) 5267 Attrs = 5268 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5269 5270 // Apply some call-site-specific attributes. 5271 // TODO: work this into building the attribute set. 5272 5273 // Apply always_inline to all calls within flatten functions. 5274 // FIXME: should this really take priority over __try, below? 5275 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5276 !InNoInlineAttributedStmt && 5277 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5278 Attrs = 5279 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5280 } 5281 5282 // Disable inlining inside SEH __try blocks. 5283 if (isSEHTryScope()) { 5284 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5285 } 5286 5287 // Decide whether to use a call or an invoke. 5288 bool CannotThrow; 5289 if (currentFunctionUsesSEHTry()) { 5290 // SEH cares about asynchronous exceptions, so everything can "throw." 5291 CannotThrow = false; 5292 } else if (isCleanupPadScope() && 5293 EHPersonality::get(*this).isMSVCXXPersonality()) { 5294 // The MSVC++ personality will implicitly terminate the program if an 5295 // exception is thrown during a cleanup outside of a try/catch. 5296 // We don't need to model anything in IR to get this behavior. 5297 CannotThrow = true; 5298 } else { 5299 // Otherwise, nounwind call sites will never throw. 5300 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5301 5302 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5303 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5304 CannotThrow = true; 5305 } 5306 5307 // If we made a temporary, be sure to clean up after ourselves. Note that we 5308 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5309 // pop this cleanup later on. Being eager about this is OK, since this 5310 // temporary is 'invisible' outside of the callee. 5311 if (UnusedReturnSizePtr) 5312 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5313 UnusedReturnSizePtr); 5314 5315 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5316 5317 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5318 getBundlesForFunclet(CalleePtr); 5319 5320 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5321 if (FD->hasAttr<StrictFPAttr>()) 5322 // All calls within a strictfp function are marked strictfp 5323 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5324 5325 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5326 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5327 5328 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5329 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5330 5331 // Emit the actual call/invoke instruction. 5332 llvm::CallBase *CI; 5333 if (!InvokeDest) { 5334 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5335 } else { 5336 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5337 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5338 BundleList); 5339 EmitBlock(Cont); 5340 } 5341 if (callOrInvoke) 5342 *callOrInvoke = CI; 5343 5344 // If this is within a function that has the guard(nocf) attribute and is an 5345 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5346 // Control Flow Guard checks should not be added, even if the call is inlined. 5347 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5348 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5349 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5350 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5351 } 5352 } 5353 5354 // Apply the attributes and calling convention. 5355 CI->setAttributes(Attrs); 5356 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5357 5358 // Apply various metadata. 5359 5360 if (!CI->getType()->isVoidTy()) 5361 CI->setName("call"); 5362 5363 // Update largest vector width from the return type. 5364 LargestVectorWidth = 5365 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType())); 5366 5367 // Insert instrumentation or attach profile metadata at indirect call sites. 5368 // For more details, see the comment before the definition of 5369 // IPVK_IndirectCallTarget in InstrProfData.inc. 5370 if (!CI->getCalledFunction()) 5371 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5372 CI, CalleePtr); 5373 5374 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5375 // optimizer it can aggressively ignore unwind edges. 5376 if (CGM.getLangOpts().ObjCAutoRefCount) 5377 AddObjCARCExceptionMetadata(CI); 5378 5379 // Set tail call kind if necessary. 5380 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5381 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5382 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5383 else if (IsMustTail) 5384 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5385 } 5386 5387 // Add metadata for calls to MSAllocator functions 5388 if (getDebugInfo() && TargetDecl && 5389 TargetDecl->hasAttr<MSAllocatorAttr>()) 5390 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5391 5392 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5393 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5394 llvm::ConstantInt *Line = 5395 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding()); 5396 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5397 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5398 CI->setMetadata("srcloc", MDT); 5399 } 5400 5401 // 4. Finish the call. 5402 5403 // If the call doesn't return, finish the basic block and clear the 5404 // insertion point; this allows the rest of IRGen to discard 5405 // unreachable code. 5406 if (CI->doesNotReturn()) { 5407 if (UnusedReturnSizePtr) 5408 PopCleanupBlock(); 5409 5410 // Strip away the noreturn attribute to better diagnose unreachable UB. 5411 if (SanOpts.has(SanitizerKind::Unreachable)) { 5412 // Also remove from function since CallBase::hasFnAttr additionally checks 5413 // attributes of the called function. 5414 if (auto *F = CI->getCalledFunction()) 5415 F->removeFnAttr(llvm::Attribute::NoReturn); 5416 CI->removeFnAttr(llvm::Attribute::NoReturn); 5417 5418 // Avoid incompatibility with ASan which relies on the `noreturn` 5419 // attribute to insert handler calls. 5420 if (SanOpts.hasOneOf(SanitizerKind::Address | 5421 SanitizerKind::KernelAddress)) { 5422 SanitizerScope SanScope(this); 5423 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5424 Builder.SetInsertPoint(CI); 5425 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5426 llvm::FunctionCallee Fn = 5427 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5428 EmitNounwindRuntimeCall(Fn); 5429 } 5430 } 5431 5432 EmitUnreachable(Loc); 5433 Builder.ClearInsertionPoint(); 5434 5435 // FIXME: For now, emit a dummy basic block because expr emitters in 5436 // generally are not ready to handle emitting expressions at unreachable 5437 // points. 5438 EnsureInsertPoint(); 5439 5440 // Return a reasonable RValue. 5441 return GetUndefRValue(RetTy); 5442 } 5443 5444 // If this is a musttail call, return immediately. We do not branch to the 5445 // epilogue in this case. 5446 if (IsMustTail) { 5447 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5448 ++it) { 5449 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5450 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5451 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5452 } 5453 if (CI->getType()->isVoidTy()) 5454 Builder.CreateRetVoid(); 5455 else 5456 Builder.CreateRet(CI); 5457 Builder.ClearInsertionPoint(); 5458 EnsureInsertPoint(); 5459 return GetUndefRValue(RetTy); 5460 } 5461 5462 // Perform the swifterror writeback. 5463 if (swiftErrorTemp.isValid()) { 5464 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5465 Builder.CreateStore(errorResult, swiftErrorArg); 5466 } 5467 5468 // Emit any call-associated writebacks immediately. Arguably this 5469 // should happen after any return-value munging. 5470 if (CallArgs.hasWritebacks()) 5471 emitWritebacks(*this, CallArgs); 5472 5473 // The stack cleanup for inalloca arguments has to run out of the normal 5474 // lexical order, so deactivate it and run it manually here. 5475 CallArgs.freeArgumentMemory(*this); 5476 5477 // Extract the return value. 5478 RValue Ret = [&] { 5479 switch (RetAI.getKind()) { 5480 case ABIArgInfo::CoerceAndExpand: { 5481 auto coercionType = RetAI.getCoerceAndExpandType(); 5482 5483 Address addr = SRetPtr; 5484 addr = Builder.CreateElementBitCast(addr, coercionType); 5485 5486 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5487 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5488 5489 unsigned unpaddedIndex = 0; 5490 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5491 llvm::Type *eltType = coercionType->getElementType(i); 5492 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5493 Address eltAddr = Builder.CreateStructGEP(addr, i); 5494 llvm::Value *elt = CI; 5495 if (requiresExtract) 5496 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5497 else 5498 assert(unpaddedIndex == 0); 5499 Builder.CreateStore(elt, eltAddr); 5500 } 5501 // FALLTHROUGH 5502 LLVM_FALLTHROUGH; 5503 } 5504 5505 case ABIArgInfo::InAlloca: 5506 case ABIArgInfo::Indirect: { 5507 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5508 if (UnusedReturnSizePtr) 5509 PopCleanupBlock(); 5510 return ret; 5511 } 5512 5513 case ABIArgInfo::Ignore: 5514 // If we are ignoring an argument that had a result, make sure to 5515 // construct the appropriate return value for our caller. 5516 return GetUndefRValue(RetTy); 5517 5518 case ABIArgInfo::Extend: 5519 case ABIArgInfo::Direct: { 5520 llvm::Type *RetIRTy = ConvertType(RetTy); 5521 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5522 switch (getEvaluationKind(RetTy)) { 5523 case TEK_Complex: { 5524 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5525 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5526 return RValue::getComplex(std::make_pair(Real, Imag)); 5527 } 5528 case TEK_Aggregate: { 5529 Address DestPtr = ReturnValue.getValue(); 5530 bool DestIsVolatile = ReturnValue.isVolatile(); 5531 5532 if (!DestPtr.isValid()) { 5533 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5534 DestIsVolatile = false; 5535 } 5536 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5537 return RValue::getAggregate(DestPtr); 5538 } 5539 case TEK_Scalar: { 5540 // If the argument doesn't match, perform a bitcast to coerce it. This 5541 // can happen due to trivial type mismatches. 5542 llvm::Value *V = CI; 5543 if (V->getType() != RetIRTy) 5544 V = Builder.CreateBitCast(V, RetIRTy); 5545 return RValue::get(V); 5546 } 5547 } 5548 llvm_unreachable("bad evaluation kind"); 5549 } 5550 5551 Address DestPtr = ReturnValue.getValue(); 5552 bool DestIsVolatile = ReturnValue.isVolatile(); 5553 5554 if (!DestPtr.isValid()) { 5555 DestPtr = CreateMemTemp(RetTy, "coerce"); 5556 DestIsVolatile = false; 5557 } 5558 5559 // If the value is offset in memory, apply the offset now. 5560 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5561 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5562 5563 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5564 } 5565 5566 case ABIArgInfo::Expand: 5567 case ABIArgInfo::IndirectAliased: 5568 llvm_unreachable("Invalid ABI kind for return argument"); 5569 } 5570 5571 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5572 } (); 5573 5574 // Emit the assume_aligned check on the return value. 5575 if (Ret.isScalar() && TargetDecl) { 5576 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5577 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5578 } 5579 5580 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5581 // we can't use the full cleanup mechanism. 5582 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5583 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5584 5585 if (!ReturnValue.isExternallyDestructed() && 5586 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5587 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5588 RetTy); 5589 5590 return Ret; 5591 } 5592 5593 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5594 if (isVirtual()) { 5595 const CallExpr *CE = getVirtualCallExpr(); 5596 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5597 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5598 CE ? CE->getBeginLoc() : SourceLocation()); 5599 } 5600 5601 return *this; 5602 } 5603 5604 /* VarArg handling */ 5605 5606 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5607 VAListAddr = VE->isMicrosoftABI() 5608 ? EmitMSVAListRef(VE->getSubExpr()) 5609 : EmitVAListRef(VE->getSubExpr()); 5610 QualType Ty = VE->getType(); 5611 if (VE->isMicrosoftABI()) 5612 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5613 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5614 } 5615