1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 /***/
47 
48 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
49   switch (CC) {
50   default: return llvm::CallingConv::C;
51   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
52   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
53   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
54   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
55   case CC_Win64: return llvm::CallingConv::Win64;
56   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
57   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
58   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
59   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
60   // TODO: Add support for __pascal to LLVM.
61   case CC_X86Pascal: return llvm::CallingConv::C;
62   // TODO: Add support for __vectorcall to LLVM.
63   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
64   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
65   case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall;
66   case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL;
67   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
68   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
69   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
70   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
71   case CC_Swift: return llvm::CallingConv::Swift;
72   case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
73   }
74 }
75 
76 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
77 /// qualification. Either or both of RD and MD may be null. A null RD indicates
78 /// that there is no meaningful 'this' type, and a null MD can occur when
79 /// calling a method pointer.
80 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
81                                          const CXXMethodDecl *MD) {
82   QualType RecTy;
83   if (RD)
84     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
85   else
86     RecTy = Context.VoidTy;
87 
88   if (MD)
89     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
90   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
91 }
92 
93 /// Returns the canonical formal type of the given C++ method.
94 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
95   return MD->getType()->getCanonicalTypeUnqualified()
96            .getAs<FunctionProtoType>();
97 }
98 
99 /// Returns the "extra-canonicalized" return type, which discards
100 /// qualifiers on the return type.  Codegen doesn't care about them,
101 /// and it makes ABI code a little easier to be able to assume that
102 /// all parameter and return types are top-level unqualified.
103 static CanQualType GetReturnType(QualType RetTy) {
104   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
105 }
106 
107 /// Arrange the argument and result information for a value of the given
108 /// unprototyped freestanding function type.
109 const CGFunctionInfo &
110 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
111   // When translating an unprototyped function type, always use a
112   // variadic type.
113   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
114                                  /*instanceMethod=*/false,
115                                  /*chainCall=*/false, None,
116                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
117 }
118 
119 static void addExtParameterInfosForCall(
120          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
121                                         const FunctionProtoType *proto,
122                                         unsigned prefixArgs,
123                                         unsigned totalArgs) {
124   assert(proto->hasExtParameterInfos());
125   assert(paramInfos.size() <= prefixArgs);
126   assert(proto->getNumParams() + prefixArgs <= totalArgs);
127 
128   paramInfos.reserve(totalArgs);
129 
130   // Add default infos for any prefix args that don't already have infos.
131   paramInfos.resize(prefixArgs);
132 
133   // Add infos for the prototype.
134   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
135     paramInfos.push_back(ParamInfo);
136     // pass_object_size params have no parameter info.
137     if (ParamInfo.hasPassObjectSize())
138       paramInfos.emplace_back();
139   }
140 
141   assert(paramInfos.size() <= totalArgs &&
142          "Did we forget to insert pass_object_size args?");
143   // Add default infos for the variadic and/or suffix arguments.
144   paramInfos.resize(totalArgs);
145 }
146 
147 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
148 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
149 static void appendParameterTypes(const CodeGenTypes &CGT,
150                                  SmallVectorImpl<CanQualType> &prefix,
151               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
152                                  CanQual<FunctionProtoType> FPT) {
153   // Fast path: don't touch param info if we don't need to.
154   if (!FPT->hasExtParameterInfos()) {
155     assert(paramInfos.empty() &&
156            "We have paramInfos, but the prototype doesn't?");
157     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
158     return;
159   }
160 
161   unsigned PrefixSize = prefix.size();
162   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
163   // parameters; the only thing that can change this is the presence of
164   // pass_object_size. So, we preallocate for the common case.
165   prefix.reserve(prefix.size() + FPT->getNumParams());
166 
167   auto ExtInfos = FPT->getExtParameterInfos();
168   assert(ExtInfos.size() == FPT->getNumParams());
169   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
170     prefix.push_back(FPT->getParamType(I));
171     if (ExtInfos[I].hasPassObjectSize())
172       prefix.push_back(CGT.getContext().getSizeType());
173   }
174 
175   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
176                               prefix.size());
177 }
178 
179 /// Arrange the LLVM function layout for a value of the given function
180 /// type, on top of any implicit parameters already stored.
181 static const CGFunctionInfo &
182 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
183                         SmallVectorImpl<CanQualType> &prefix,
184                         CanQual<FunctionProtoType> FTP) {
185   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
186   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
187   // FIXME: Kill copy.
188   appendParameterTypes(CGT, prefix, paramInfos, FTP);
189   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
190 
191   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
192                                      /*chainCall=*/false, prefix,
193                                      FTP->getExtInfo(), paramInfos,
194                                      Required);
195 }
196 
197 /// Arrange the argument and result information for a value of the
198 /// given freestanding function type.
199 const CGFunctionInfo &
200 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
201   SmallVector<CanQualType, 16> argTypes;
202   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
203                                    FTP);
204 }
205 
206 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
207                                                bool IsWindows) {
208   // Set the appropriate calling convention for the Function.
209   if (D->hasAttr<StdCallAttr>())
210     return CC_X86StdCall;
211 
212   if (D->hasAttr<FastCallAttr>())
213     return CC_X86FastCall;
214 
215   if (D->hasAttr<RegCallAttr>())
216     return CC_X86RegCall;
217 
218   if (D->hasAttr<ThisCallAttr>())
219     return CC_X86ThisCall;
220 
221   if (D->hasAttr<VectorCallAttr>())
222     return CC_X86VectorCall;
223 
224   if (D->hasAttr<PascalAttr>())
225     return CC_X86Pascal;
226 
227   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
228     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
229 
230   if (D->hasAttr<AArch64VectorPcsAttr>())
231     return CC_AArch64VectorCall;
232 
233   if (D->hasAttr<AArch64SVEPcsAttr>())
234     return CC_AArch64SVEPCS;
235 
236   if (D->hasAttr<AMDGPUKernelCallAttr>())
237     return CC_AMDGPUKernelCall;
238 
239   if (D->hasAttr<IntelOclBiccAttr>())
240     return CC_IntelOclBicc;
241 
242   if (D->hasAttr<MSABIAttr>())
243     return IsWindows ? CC_C : CC_Win64;
244 
245   if (D->hasAttr<SysVABIAttr>())
246     return IsWindows ? CC_X86_64SysV : CC_C;
247 
248   if (D->hasAttr<PreserveMostAttr>())
249     return CC_PreserveMost;
250 
251   if (D->hasAttr<PreserveAllAttr>())
252     return CC_PreserveAll;
253 
254   return CC_C;
255 }
256 
257 /// Arrange the argument and result information for a call to an
258 /// unknown C++ non-static member function of the given abstract type.
259 /// (A null RD means we don't have any meaningful "this" argument type,
260 ///  so fall back to a generic pointer type).
261 /// The member function must be an ordinary function, i.e. not a
262 /// constructor or destructor.
263 const CGFunctionInfo &
264 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
265                                    const FunctionProtoType *FTP,
266                                    const CXXMethodDecl *MD) {
267   SmallVector<CanQualType, 16> argTypes;
268 
269   // Add the 'this' pointer.
270   argTypes.push_back(DeriveThisType(RD, MD));
271 
272   return ::arrangeLLVMFunctionInfo(
273       *this, true, argTypes,
274       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
275 }
276 
277 /// Set calling convention for CUDA/HIP kernel.
278 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
279                                            const FunctionDecl *FD) {
280   if (FD->hasAttr<CUDAGlobalAttr>()) {
281     const FunctionType *FT = FTy->getAs<FunctionType>();
282     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
283     FTy = FT->getCanonicalTypeUnqualified();
284   }
285 }
286 
287 /// Arrange the argument and result information for a declaration or
288 /// definition of the given C++ non-static member function.  The
289 /// member function must be an ordinary function, i.e. not a
290 /// constructor or destructor.
291 const CGFunctionInfo &
292 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
293   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
294   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
295 
296   CanQualType FT = GetFormalType(MD).getAs<Type>();
297   setCUDAKernelCallingConvention(FT, CGM, MD);
298   auto prototype = FT.getAs<FunctionProtoType>();
299 
300   if (MD->isInstance()) {
301     // The abstract case is perfectly fine.
302     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
303     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
304   }
305 
306   return arrangeFreeFunctionType(prototype);
307 }
308 
309 bool CodeGenTypes::inheritingCtorHasParams(
310     const InheritedConstructor &Inherited, CXXCtorType Type) {
311   // Parameters are unnecessary if we're constructing a base class subobject
312   // and the inherited constructor lives in a virtual base.
313   return Type == Ctor_Complete ||
314          !Inherited.getShadowDecl()->constructsVirtualBase() ||
315          !Target.getCXXABI().hasConstructorVariants();
316 }
317 
318 const CGFunctionInfo &
319 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
320   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
321 
322   SmallVector<CanQualType, 16> argTypes;
323   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
324   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
325 
326   bool PassParams = true;
327 
328   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
329     // A base class inheriting constructor doesn't get forwarded arguments
330     // needed to construct a virtual base (or base class thereof).
331     if (auto Inherited = CD->getInheritedConstructor())
332       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
333   }
334 
335   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
336 
337   // Add the formal parameters.
338   if (PassParams)
339     appendParameterTypes(*this, argTypes, paramInfos, FTP);
340 
341   CGCXXABI::AddedStructorArgCounts AddedArgs =
342       TheCXXABI.buildStructorSignature(GD, argTypes);
343   if (!paramInfos.empty()) {
344     // Note: prefix implies after the first param.
345     if (AddedArgs.Prefix)
346       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
347                         FunctionProtoType::ExtParameterInfo{});
348     if (AddedArgs.Suffix)
349       paramInfos.append(AddedArgs.Suffix,
350                         FunctionProtoType::ExtParameterInfo{});
351   }
352 
353   RequiredArgs required =
354       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
355                                       : RequiredArgs::All);
356 
357   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
358   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
359                                ? argTypes.front()
360                                : TheCXXABI.hasMostDerivedReturn(GD)
361                                      ? CGM.getContext().VoidPtrTy
362                                      : Context.VoidTy;
363   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
364                                  /*chainCall=*/false, argTypes, extInfo,
365                                  paramInfos, required);
366 }
367 
368 static SmallVector<CanQualType, 16>
369 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
370   SmallVector<CanQualType, 16> argTypes;
371   for (auto &arg : args)
372     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
373   return argTypes;
374 }
375 
376 static SmallVector<CanQualType, 16>
377 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
378   SmallVector<CanQualType, 16> argTypes;
379   for (auto &arg : args)
380     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
381   return argTypes;
382 }
383 
384 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
385 getExtParameterInfosForCall(const FunctionProtoType *proto,
386                             unsigned prefixArgs, unsigned totalArgs) {
387   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
388   if (proto->hasExtParameterInfos()) {
389     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
390   }
391   return result;
392 }
393 
394 /// Arrange a call to a C++ method, passing the given arguments.
395 ///
396 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
397 /// parameter.
398 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
399 /// args.
400 /// PassProtoArgs indicates whether `args` has args for the parameters in the
401 /// given CXXConstructorDecl.
402 const CGFunctionInfo &
403 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
404                                         const CXXConstructorDecl *D,
405                                         CXXCtorType CtorKind,
406                                         unsigned ExtraPrefixArgs,
407                                         unsigned ExtraSuffixArgs,
408                                         bool PassProtoArgs) {
409   // FIXME: Kill copy.
410   SmallVector<CanQualType, 16> ArgTypes;
411   for (const auto &Arg : args)
412     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
413 
414   // +1 for implicit this, which should always be args[0].
415   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
416 
417   CanQual<FunctionProtoType> FPT = GetFormalType(D);
418   RequiredArgs Required = PassProtoArgs
419                               ? RequiredArgs::forPrototypePlus(
420                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
421                               : RequiredArgs::All;
422 
423   GlobalDecl GD(D, CtorKind);
424   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
425                                ? ArgTypes.front()
426                                : TheCXXABI.hasMostDerivedReturn(GD)
427                                      ? CGM.getContext().VoidPtrTy
428                                      : Context.VoidTy;
429 
430   FunctionType::ExtInfo Info = FPT->getExtInfo();
431   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
432   // If the prototype args are elided, we should only have ABI-specific args,
433   // which never have param info.
434   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
435     // ABI-specific suffix arguments are treated the same as variadic arguments.
436     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
437                                 ArgTypes.size());
438   }
439   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
440                                  /*chainCall=*/false, ArgTypes, Info,
441                                  ParamInfos, Required);
442 }
443 
444 /// Arrange the argument and result information for the declaration or
445 /// definition of the given function.
446 const CGFunctionInfo &
447 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
448   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
449     if (MD->isInstance())
450       return arrangeCXXMethodDeclaration(MD);
451 
452   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
453 
454   assert(isa<FunctionType>(FTy));
455   setCUDAKernelCallingConvention(FTy, CGM, FD);
456 
457   // When declaring a function without a prototype, always use a
458   // non-variadic type.
459   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
460     return arrangeLLVMFunctionInfo(
461         noProto->getReturnType(), /*instanceMethod=*/false,
462         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
463   }
464 
465   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
466 }
467 
468 /// Arrange the argument and result information for the declaration or
469 /// definition of an Objective-C method.
470 const CGFunctionInfo &
471 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
472   // It happens that this is the same as a call with no optional
473   // arguments, except also using the formal 'self' type.
474   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
475 }
476 
477 /// Arrange the argument and result information for the function type
478 /// through which to perform a send to the given Objective-C method,
479 /// using the given receiver type.  The receiver type is not always
480 /// the 'self' type of the method or even an Objective-C pointer type.
481 /// This is *not* the right method for actually performing such a
482 /// message send, due to the possibility of optional arguments.
483 const CGFunctionInfo &
484 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
485                                               QualType receiverType) {
486   SmallVector<CanQualType, 16> argTys;
487   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
488   argTys.push_back(Context.getCanonicalParamType(receiverType));
489   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
490   // FIXME: Kill copy?
491   for (const auto *I : MD->parameters()) {
492     argTys.push_back(Context.getCanonicalParamType(I->getType()));
493     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
494         I->hasAttr<NoEscapeAttr>());
495     extParamInfos.push_back(extParamInfo);
496   }
497 
498   FunctionType::ExtInfo einfo;
499   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
500   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
501 
502   if (getContext().getLangOpts().ObjCAutoRefCount &&
503       MD->hasAttr<NSReturnsRetainedAttr>())
504     einfo = einfo.withProducesResult(true);
505 
506   RequiredArgs required =
507     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
508 
509   return arrangeLLVMFunctionInfo(
510       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
511       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
512 }
513 
514 const CGFunctionInfo &
515 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
516                                                  const CallArgList &args) {
517   auto argTypes = getArgTypesForCall(Context, args);
518   FunctionType::ExtInfo einfo;
519 
520   return arrangeLLVMFunctionInfo(
521       GetReturnType(returnType), /*instanceMethod=*/false,
522       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
523 }
524 
525 const CGFunctionInfo &
526 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
527   // FIXME: Do we need to handle ObjCMethodDecl?
528   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
529 
530   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
531       isa<CXXDestructorDecl>(GD.getDecl()))
532     return arrangeCXXStructorDeclaration(GD);
533 
534   return arrangeFunctionDeclaration(FD);
535 }
536 
537 /// Arrange a thunk that takes 'this' as the first parameter followed by
538 /// varargs.  Return a void pointer, regardless of the actual return type.
539 /// The body of the thunk will end in a musttail call to a function of the
540 /// correct type, and the caller will bitcast the function to the correct
541 /// prototype.
542 const CGFunctionInfo &
543 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
544   assert(MD->isVirtual() && "only methods have thunks");
545   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
546   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
547   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
548                                  /*chainCall=*/false, ArgTys,
549                                  FTP->getExtInfo(), {}, RequiredArgs(1));
550 }
551 
552 const CGFunctionInfo &
553 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
554                                    CXXCtorType CT) {
555   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
556 
557   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
558   SmallVector<CanQualType, 2> ArgTys;
559   const CXXRecordDecl *RD = CD->getParent();
560   ArgTys.push_back(DeriveThisType(RD, CD));
561   if (CT == Ctor_CopyingClosure)
562     ArgTys.push_back(*FTP->param_type_begin());
563   if (RD->getNumVBases() > 0)
564     ArgTys.push_back(Context.IntTy);
565   CallingConv CC = Context.getDefaultCallingConvention(
566       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
567   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
568                                  /*chainCall=*/false, ArgTys,
569                                  FunctionType::ExtInfo(CC), {},
570                                  RequiredArgs::All);
571 }
572 
573 /// Arrange a call as unto a free function, except possibly with an
574 /// additional number of formal parameters considered required.
575 static const CGFunctionInfo &
576 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
577                             CodeGenModule &CGM,
578                             const CallArgList &args,
579                             const FunctionType *fnType,
580                             unsigned numExtraRequiredArgs,
581                             bool chainCall) {
582   assert(args.size() >= numExtraRequiredArgs);
583 
584   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
585 
586   // In most cases, there are no optional arguments.
587   RequiredArgs required = RequiredArgs::All;
588 
589   // If we have a variadic prototype, the required arguments are the
590   // extra prefix plus the arguments in the prototype.
591   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
592     if (proto->isVariadic())
593       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
594 
595     if (proto->hasExtParameterInfos())
596       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
597                                   args.size());
598 
599   // If we don't have a prototype at all, but we're supposed to
600   // explicitly use the variadic convention for unprototyped calls,
601   // treat all of the arguments as required but preserve the nominal
602   // possibility of variadics.
603   } else if (CGM.getTargetCodeGenInfo()
604                 .isNoProtoCallVariadic(args,
605                                        cast<FunctionNoProtoType>(fnType))) {
606     required = RequiredArgs(args.size());
607   }
608 
609   // FIXME: Kill copy.
610   SmallVector<CanQualType, 16> argTypes;
611   for (const auto &arg : args)
612     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
613   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
614                                      /*instanceMethod=*/false, chainCall,
615                                      argTypes, fnType->getExtInfo(), paramInfos,
616                                      required);
617 }
618 
619 /// Figure out the rules for calling a function with the given formal
620 /// type using the given arguments.  The arguments are necessary
621 /// because the function might be unprototyped, in which case it's
622 /// target-dependent in crazy ways.
623 const CGFunctionInfo &
624 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
625                                       const FunctionType *fnType,
626                                       bool chainCall) {
627   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
628                                      chainCall ? 1 : 0, chainCall);
629 }
630 
631 /// A block function is essentially a free function with an
632 /// extra implicit argument.
633 const CGFunctionInfo &
634 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
635                                        const FunctionType *fnType) {
636   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
637                                      /*chainCall=*/false);
638 }
639 
640 const CGFunctionInfo &
641 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
642                                               const FunctionArgList &params) {
643   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
644   auto argTypes = getArgTypesForDeclaration(Context, params);
645 
646   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
647                                  /*instanceMethod*/ false, /*chainCall*/ false,
648                                  argTypes, proto->getExtInfo(), paramInfos,
649                                  RequiredArgs::forPrototypePlus(proto, 1));
650 }
651 
652 const CGFunctionInfo &
653 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
654                                          const CallArgList &args) {
655   // FIXME: Kill copy.
656   SmallVector<CanQualType, 16> argTypes;
657   for (const auto &Arg : args)
658     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
659   return arrangeLLVMFunctionInfo(
660       GetReturnType(resultType), /*instanceMethod=*/false,
661       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
662       /*paramInfos=*/ {}, RequiredArgs::All);
663 }
664 
665 const CGFunctionInfo &
666 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
667                                                 const FunctionArgList &args) {
668   auto argTypes = getArgTypesForDeclaration(Context, args);
669 
670   return arrangeLLVMFunctionInfo(
671       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
672       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
673 }
674 
675 const CGFunctionInfo &
676 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
677                                               ArrayRef<CanQualType> argTypes) {
678   return arrangeLLVMFunctionInfo(
679       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
680       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
681 }
682 
683 /// Arrange a call to a C++ method, passing the given arguments.
684 ///
685 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
686 /// does not count `this`.
687 const CGFunctionInfo &
688 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
689                                    const FunctionProtoType *proto,
690                                    RequiredArgs required,
691                                    unsigned numPrefixArgs) {
692   assert(numPrefixArgs + 1 <= args.size() &&
693          "Emitting a call with less args than the required prefix?");
694   // Add one to account for `this`. It's a bit awkward here, but we don't count
695   // `this` in similar places elsewhere.
696   auto paramInfos =
697     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
698 
699   // FIXME: Kill copy.
700   auto argTypes = getArgTypesForCall(Context, args);
701 
702   FunctionType::ExtInfo info = proto->getExtInfo();
703   return arrangeLLVMFunctionInfo(
704       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
705       /*chainCall=*/false, argTypes, info, paramInfos, required);
706 }
707 
708 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
709   return arrangeLLVMFunctionInfo(
710       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
711       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
712 }
713 
714 const CGFunctionInfo &
715 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
716                           const CallArgList &args) {
717   assert(signature.arg_size() <= args.size());
718   if (signature.arg_size() == args.size())
719     return signature;
720 
721   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
722   auto sigParamInfos = signature.getExtParameterInfos();
723   if (!sigParamInfos.empty()) {
724     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
725     paramInfos.resize(args.size());
726   }
727 
728   auto argTypes = getArgTypesForCall(Context, args);
729 
730   assert(signature.getRequiredArgs().allowsOptionalArgs());
731   return arrangeLLVMFunctionInfo(signature.getReturnType(),
732                                  signature.isInstanceMethod(),
733                                  signature.isChainCall(),
734                                  argTypes,
735                                  signature.getExtInfo(),
736                                  paramInfos,
737                                  signature.getRequiredArgs());
738 }
739 
740 namespace clang {
741 namespace CodeGen {
742 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
743 }
744 }
745 
746 /// Arrange the argument and result information for an abstract value
747 /// of a given function type.  This is the method which all of the
748 /// above functions ultimately defer to.
749 const CGFunctionInfo &
750 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
751                                       bool instanceMethod,
752                                       bool chainCall,
753                                       ArrayRef<CanQualType> argTypes,
754                                       FunctionType::ExtInfo info,
755                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
756                                       RequiredArgs required) {
757   assert(llvm::all_of(argTypes,
758                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
759 
760   // Lookup or create unique function info.
761   llvm::FoldingSetNodeID ID;
762   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
763                           required, resultType, argTypes);
764 
765   void *insertPos = nullptr;
766   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
767   if (FI)
768     return *FI;
769 
770   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
771 
772   // Construct the function info.  We co-allocate the ArgInfos.
773   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
774                               paramInfos, resultType, argTypes, required);
775   FunctionInfos.InsertNode(FI, insertPos);
776 
777   bool inserted = FunctionsBeingProcessed.insert(FI).second;
778   (void)inserted;
779   assert(inserted && "Recursively being processed?");
780 
781   // Compute ABI information.
782   if (CC == llvm::CallingConv::SPIR_KERNEL) {
783     // Force target independent argument handling for the host visible
784     // kernel functions.
785     computeSPIRKernelABIInfo(CGM, *FI);
786   } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
787     swiftcall::computeABIInfo(CGM, *FI);
788   } else {
789     getABIInfo().computeInfo(*FI);
790   }
791 
792   // Loop over all of the computed argument and return value info.  If any of
793   // them are direct or extend without a specified coerce type, specify the
794   // default now.
795   ABIArgInfo &retInfo = FI->getReturnInfo();
796   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
797     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
798 
799   for (auto &I : FI->arguments())
800     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
801       I.info.setCoerceToType(ConvertType(I.type));
802 
803   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
804   assert(erased && "Not in set?");
805 
806   return *FI;
807 }
808 
809 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
810                                        bool instanceMethod,
811                                        bool chainCall,
812                                        const FunctionType::ExtInfo &info,
813                                        ArrayRef<ExtParameterInfo> paramInfos,
814                                        CanQualType resultType,
815                                        ArrayRef<CanQualType> argTypes,
816                                        RequiredArgs required) {
817   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
818   assert(!required.allowsOptionalArgs() ||
819          required.getNumRequiredArgs() <= argTypes.size());
820 
821   void *buffer =
822     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
823                                   argTypes.size() + 1, paramInfos.size()));
824 
825   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
826   FI->CallingConvention = llvmCC;
827   FI->EffectiveCallingConvention = llvmCC;
828   FI->ASTCallingConvention = info.getCC();
829   FI->InstanceMethod = instanceMethod;
830   FI->ChainCall = chainCall;
831   FI->CmseNSCall = info.getCmseNSCall();
832   FI->NoReturn = info.getNoReturn();
833   FI->ReturnsRetained = info.getProducesResult();
834   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
835   FI->NoCfCheck = info.getNoCfCheck();
836   FI->Required = required;
837   FI->HasRegParm = info.getHasRegParm();
838   FI->RegParm = info.getRegParm();
839   FI->ArgStruct = nullptr;
840   FI->ArgStructAlign = 0;
841   FI->NumArgs = argTypes.size();
842   FI->HasExtParameterInfos = !paramInfos.empty();
843   FI->getArgsBuffer()[0].type = resultType;
844   FI->MaxVectorWidth = 0;
845   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
846     FI->getArgsBuffer()[i + 1].type = argTypes[i];
847   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
848     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
849   return FI;
850 }
851 
852 /***/
853 
854 namespace {
855 // ABIArgInfo::Expand implementation.
856 
857 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
858 struct TypeExpansion {
859   enum TypeExpansionKind {
860     // Elements of constant arrays are expanded recursively.
861     TEK_ConstantArray,
862     // Record fields are expanded recursively (but if record is a union, only
863     // the field with the largest size is expanded).
864     TEK_Record,
865     // For complex types, real and imaginary parts are expanded recursively.
866     TEK_Complex,
867     // All other types are not expandable.
868     TEK_None
869   };
870 
871   const TypeExpansionKind Kind;
872 
873   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
874   virtual ~TypeExpansion() {}
875 };
876 
877 struct ConstantArrayExpansion : TypeExpansion {
878   QualType EltTy;
879   uint64_t NumElts;
880 
881   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
882       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
883   static bool classof(const TypeExpansion *TE) {
884     return TE->Kind == TEK_ConstantArray;
885   }
886 };
887 
888 struct RecordExpansion : TypeExpansion {
889   SmallVector<const CXXBaseSpecifier *, 1> Bases;
890 
891   SmallVector<const FieldDecl *, 1> Fields;
892 
893   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
894                   SmallVector<const FieldDecl *, 1> &&Fields)
895       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
896         Fields(std::move(Fields)) {}
897   static bool classof(const TypeExpansion *TE) {
898     return TE->Kind == TEK_Record;
899   }
900 };
901 
902 struct ComplexExpansion : TypeExpansion {
903   QualType EltTy;
904 
905   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
906   static bool classof(const TypeExpansion *TE) {
907     return TE->Kind == TEK_Complex;
908   }
909 };
910 
911 struct NoExpansion : TypeExpansion {
912   NoExpansion() : TypeExpansion(TEK_None) {}
913   static bool classof(const TypeExpansion *TE) {
914     return TE->Kind == TEK_None;
915   }
916 };
917 }  // namespace
918 
919 static std::unique_ptr<TypeExpansion>
920 getTypeExpansion(QualType Ty, const ASTContext &Context) {
921   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
922     return std::make_unique<ConstantArrayExpansion>(
923         AT->getElementType(), AT->getSize().getZExtValue());
924   }
925   if (const RecordType *RT = Ty->getAs<RecordType>()) {
926     SmallVector<const CXXBaseSpecifier *, 1> Bases;
927     SmallVector<const FieldDecl *, 1> Fields;
928     const RecordDecl *RD = RT->getDecl();
929     assert(!RD->hasFlexibleArrayMember() &&
930            "Cannot expand structure with flexible array.");
931     if (RD->isUnion()) {
932       // Unions can be here only in degenerative cases - all the fields are same
933       // after flattening. Thus we have to use the "largest" field.
934       const FieldDecl *LargestFD = nullptr;
935       CharUnits UnionSize = CharUnits::Zero();
936 
937       for (const auto *FD : RD->fields()) {
938         if (FD->isZeroLengthBitField(Context))
939           continue;
940         assert(!FD->isBitField() &&
941                "Cannot expand structure with bit-field members.");
942         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
943         if (UnionSize < FieldSize) {
944           UnionSize = FieldSize;
945           LargestFD = FD;
946         }
947       }
948       if (LargestFD)
949         Fields.push_back(LargestFD);
950     } else {
951       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
952         assert(!CXXRD->isDynamicClass() &&
953                "cannot expand vtable pointers in dynamic classes");
954         llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases()));
955       }
956 
957       for (const auto *FD : RD->fields()) {
958         if (FD->isZeroLengthBitField(Context))
959           continue;
960         assert(!FD->isBitField() &&
961                "Cannot expand structure with bit-field members.");
962         Fields.push_back(FD);
963       }
964     }
965     return std::make_unique<RecordExpansion>(std::move(Bases),
966                                               std::move(Fields));
967   }
968   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
969     return std::make_unique<ComplexExpansion>(CT->getElementType());
970   }
971   return std::make_unique<NoExpansion>();
972 }
973 
974 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
975   auto Exp = getTypeExpansion(Ty, Context);
976   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
977     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
978   }
979   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
980     int Res = 0;
981     for (auto BS : RExp->Bases)
982       Res += getExpansionSize(BS->getType(), Context);
983     for (auto FD : RExp->Fields)
984       Res += getExpansionSize(FD->getType(), Context);
985     return Res;
986   }
987   if (isa<ComplexExpansion>(Exp.get()))
988     return 2;
989   assert(isa<NoExpansion>(Exp.get()));
990   return 1;
991 }
992 
993 void
994 CodeGenTypes::getExpandedTypes(QualType Ty,
995                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
996   auto Exp = getTypeExpansion(Ty, Context);
997   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
998     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
999       getExpandedTypes(CAExp->EltTy, TI);
1000     }
1001   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1002     for (auto BS : RExp->Bases)
1003       getExpandedTypes(BS->getType(), TI);
1004     for (auto FD : RExp->Fields)
1005       getExpandedTypes(FD->getType(), TI);
1006   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
1007     llvm::Type *EltTy = ConvertType(CExp->EltTy);
1008     *TI++ = EltTy;
1009     *TI++ = EltTy;
1010   } else {
1011     assert(isa<NoExpansion>(Exp.get()));
1012     *TI++ = ConvertType(Ty);
1013   }
1014 }
1015 
1016 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1017                                       ConstantArrayExpansion *CAE,
1018                                       Address BaseAddr,
1019                                       llvm::function_ref<void(Address)> Fn) {
1020   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1021   CharUnits EltAlign =
1022     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1023   llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy);
1024 
1025   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1026     llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1027         BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1028     Fn(Address(EltAddr, EltTy, EltAlign));
1029   }
1030 }
1031 
1032 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1033                                          llvm::Function::arg_iterator &AI) {
1034   assert(LV.isSimple() &&
1035          "Unexpected non-simple lvalue during struct expansion.");
1036 
1037   auto Exp = getTypeExpansion(Ty, getContext());
1038   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1039     forConstantArrayExpansion(
1040         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1041           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1042           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1043         });
1044   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1045     Address This = LV.getAddress(*this);
1046     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1047       // Perform a single step derived-to-base conversion.
1048       Address Base =
1049           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1050                                 /*NullCheckValue=*/false, SourceLocation());
1051       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1052 
1053       // Recurse onto bases.
1054       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1055     }
1056     for (auto FD : RExp->Fields) {
1057       // FIXME: What are the right qualifiers here?
1058       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1059       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1060     }
1061   } else if (isa<ComplexExpansion>(Exp.get())) {
1062     auto realValue = &*AI++;
1063     auto imagValue = &*AI++;
1064     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1065   } else {
1066     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1067     // primitive store.
1068     assert(isa<NoExpansion>(Exp.get()));
1069     llvm::Value *Arg = &*AI++;
1070     if (LV.isBitField()) {
1071       EmitStoreThroughLValue(RValue::get(Arg), LV);
1072     } else {
1073       // TODO: currently there are some places are inconsistent in what LLVM
1074       // pointer type they use (see D118744). Once clang uses opaque pointers
1075       // all LLVM pointer types will be the same and we can remove this check.
1076       if (Arg->getType()->isPointerTy()) {
1077         Address Addr = LV.getAddress(*this);
1078         Arg = Builder.CreateBitCast(Arg, Addr.getElementType());
1079       }
1080       EmitStoreOfScalar(Arg, LV);
1081     }
1082   }
1083 }
1084 
1085 void CodeGenFunction::ExpandTypeToArgs(
1086     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1087     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1088   auto Exp = getTypeExpansion(Ty, getContext());
1089   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1090     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1091                                    : Arg.getKnownRValue().getAggregateAddress();
1092     forConstantArrayExpansion(
1093         *this, CAExp, Addr, [&](Address EltAddr) {
1094           CallArg EltArg = CallArg(
1095               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1096               CAExp->EltTy);
1097           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1098                            IRCallArgPos);
1099         });
1100   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1101     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1102                                    : Arg.getKnownRValue().getAggregateAddress();
1103     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1104       // Perform a single step derived-to-base conversion.
1105       Address Base =
1106           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1107                                 /*NullCheckValue=*/false, SourceLocation());
1108       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1109 
1110       // Recurse onto bases.
1111       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1112                        IRCallArgPos);
1113     }
1114 
1115     LValue LV = MakeAddrLValue(This, Ty);
1116     for (auto FD : RExp->Fields) {
1117       CallArg FldArg =
1118           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1119       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1120                        IRCallArgPos);
1121     }
1122   } else if (isa<ComplexExpansion>(Exp.get())) {
1123     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1124     IRCallArgs[IRCallArgPos++] = CV.first;
1125     IRCallArgs[IRCallArgPos++] = CV.second;
1126   } else {
1127     assert(isa<NoExpansion>(Exp.get()));
1128     auto RV = Arg.getKnownRValue();
1129     assert(RV.isScalar() &&
1130            "Unexpected non-scalar rvalue during struct expansion.");
1131 
1132     // Insert a bitcast as needed.
1133     llvm::Value *V = RV.getScalarVal();
1134     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1135         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1136       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1137 
1138     IRCallArgs[IRCallArgPos++] = V;
1139   }
1140 }
1141 
1142 /// Create a temporary allocation for the purposes of coercion.
1143 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1144                                            CharUnits MinAlign,
1145                                            const Twine &Name = "tmp") {
1146   // Don't use an alignment that's worse than what LLVM would prefer.
1147   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1148   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1149 
1150   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1151 }
1152 
1153 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1154 /// accessing some number of bytes out of it, try to gep into the struct to get
1155 /// at its inner goodness.  Dive as deep as possible without entering an element
1156 /// with an in-memory size smaller than DstSize.
1157 static Address
1158 EnterStructPointerForCoercedAccess(Address SrcPtr,
1159                                    llvm::StructType *SrcSTy,
1160                                    uint64_t DstSize, CodeGenFunction &CGF) {
1161   // We can't dive into a zero-element struct.
1162   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1163 
1164   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1165 
1166   // If the first elt is at least as large as what we're looking for, or if the
1167   // first element is the same size as the whole struct, we can enter it. The
1168   // comparison must be made on the store size and not the alloca size. Using
1169   // the alloca size may overstate the size of the load.
1170   uint64_t FirstEltSize =
1171     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1172   if (FirstEltSize < DstSize &&
1173       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1174     return SrcPtr;
1175 
1176   // GEP into the first element.
1177   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1178 
1179   // If the first element is a struct, recurse.
1180   llvm::Type *SrcTy = SrcPtr.getElementType();
1181   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1182     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1183 
1184   return SrcPtr;
1185 }
1186 
1187 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1188 /// are either integers or pointers.  This does a truncation of the value if it
1189 /// is too large or a zero extension if it is too small.
1190 ///
1191 /// This behaves as if the value were coerced through memory, so on big-endian
1192 /// targets the high bits are preserved in a truncation, while little-endian
1193 /// targets preserve the low bits.
1194 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1195                                              llvm::Type *Ty,
1196                                              CodeGenFunction &CGF) {
1197   if (Val->getType() == Ty)
1198     return Val;
1199 
1200   if (isa<llvm::PointerType>(Val->getType())) {
1201     // If this is Pointer->Pointer avoid conversion to and from int.
1202     if (isa<llvm::PointerType>(Ty))
1203       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1204 
1205     // Convert the pointer to an integer so we can play with its width.
1206     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1207   }
1208 
1209   llvm::Type *DestIntTy = Ty;
1210   if (isa<llvm::PointerType>(DestIntTy))
1211     DestIntTy = CGF.IntPtrTy;
1212 
1213   if (Val->getType() != DestIntTy) {
1214     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1215     if (DL.isBigEndian()) {
1216       // Preserve the high bits on big-endian targets.
1217       // That is what memory coercion does.
1218       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1219       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1220 
1221       if (SrcSize > DstSize) {
1222         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1223         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1224       } else {
1225         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1226         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1227       }
1228     } else {
1229       // Little-endian targets preserve the low bits. No shifts required.
1230       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1231     }
1232   }
1233 
1234   if (isa<llvm::PointerType>(Ty))
1235     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1236   return Val;
1237 }
1238 
1239 
1240 
1241 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1242 /// a pointer to an object of type \arg Ty, known to be aligned to
1243 /// \arg SrcAlign bytes.
1244 ///
1245 /// This safely handles the case when the src type is smaller than the
1246 /// destination type; in this situation the values of bits which not
1247 /// present in the src are undefined.
1248 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1249                                       CodeGenFunction &CGF) {
1250   llvm::Type *SrcTy = Src.getElementType();
1251 
1252   // If SrcTy and Ty are the same, just do a load.
1253   if (SrcTy == Ty)
1254     return CGF.Builder.CreateLoad(Src);
1255 
1256   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1257 
1258   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1259     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1260                                              DstSize.getFixedSize(), CGF);
1261     SrcTy = Src.getElementType();
1262   }
1263 
1264   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1265 
1266   // If the source and destination are integer or pointer types, just do an
1267   // extension or truncation to the desired type.
1268   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1269       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1270     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1271     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1272   }
1273 
1274   // If load is legal, just bitcast the src pointer.
1275   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1276       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1277     // Generally SrcSize is never greater than DstSize, since this means we are
1278     // losing bits. However, this can happen in cases where the structure has
1279     // additional padding, for example due to a user specified alignment.
1280     //
1281     // FIXME: Assert that we aren't truncating non-padding bits when have access
1282     // to that information.
1283     Src = CGF.Builder.CreateElementBitCast(Src, Ty);
1284     return CGF.Builder.CreateLoad(Src);
1285   }
1286 
1287   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1288   // the types match, use the llvm.experimental.vector.insert intrinsic to
1289   // perform the conversion.
1290   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1291     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1292       // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1293       // vector, use a vector insert and bitcast the result.
1294       bool NeedsBitcast = false;
1295       auto PredType =
1296           llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1297       llvm::Type *OrigType = Ty;
1298       if (ScalableDst == PredType &&
1299           FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1300         ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1301         NeedsBitcast = true;
1302       }
1303       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1304         auto *Load = CGF.Builder.CreateLoad(Src);
1305         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1306         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1307         llvm::Value *Result = CGF.Builder.CreateInsertVector(
1308             ScalableDst, UndefVec, Load, Zero, "castScalableSve");
1309         if (NeedsBitcast)
1310           Result = CGF.Builder.CreateBitCast(Result, OrigType);
1311         return Result;
1312       }
1313     }
1314   }
1315 
1316   // Otherwise do coercion through memory. This is stupid, but simple.
1317   Address Tmp =
1318       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1319   CGF.Builder.CreateMemCpy(
1320       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1321       Src.getAlignment().getAsAlign(),
1322       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1323   return CGF.Builder.CreateLoad(Tmp);
1324 }
1325 
1326 // Function to store a first-class aggregate into memory.  We prefer to
1327 // store the elements rather than the aggregate to be more friendly to
1328 // fast-isel.
1329 // FIXME: Do we need to recurse here?
1330 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1331                                          bool DestIsVolatile) {
1332   // Prefer scalar stores to first-class aggregate stores.
1333   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1334     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1335       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1336       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1337       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1338     }
1339   } else {
1340     Builder.CreateStore(Val, Dest, DestIsVolatile);
1341   }
1342 }
1343 
1344 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1345 /// where the source and destination may have different types.  The
1346 /// destination is known to be aligned to \arg DstAlign bytes.
1347 ///
1348 /// This safely handles the case when the src type is larger than the
1349 /// destination type; the upper bits of the src will be lost.
1350 static void CreateCoercedStore(llvm::Value *Src,
1351                                Address Dst,
1352                                bool DstIsVolatile,
1353                                CodeGenFunction &CGF) {
1354   llvm::Type *SrcTy = Src->getType();
1355   llvm::Type *DstTy = Dst.getElementType();
1356   if (SrcTy == DstTy) {
1357     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1358     return;
1359   }
1360 
1361   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1362 
1363   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1364     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1365                                              SrcSize.getFixedSize(), CGF);
1366     DstTy = Dst.getElementType();
1367   }
1368 
1369   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1370   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1371   if (SrcPtrTy && DstPtrTy &&
1372       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1373     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1374     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1375     return;
1376   }
1377 
1378   // If the source and destination are integer or pointer types, just do an
1379   // extension or truncation to the desired type.
1380   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1381       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1382     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1383     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1384     return;
1385   }
1386 
1387   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1388 
1389   // If store is legal, just bitcast the src pointer.
1390   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1391       isa<llvm::ScalableVectorType>(DstTy) ||
1392       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1393     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1394     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1395   } else {
1396     // Otherwise do coercion through memory. This is stupid, but
1397     // simple.
1398 
1399     // Generally SrcSize is never greater than DstSize, since this means we are
1400     // losing bits. However, this can happen in cases where the structure has
1401     // additional padding, for example due to a user specified alignment.
1402     //
1403     // FIXME: Assert that we aren't truncating non-padding bits when have access
1404     // to that information.
1405     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1406     CGF.Builder.CreateStore(Src, Tmp);
1407     CGF.Builder.CreateMemCpy(
1408         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1409         Tmp.getAlignment().getAsAlign(),
1410         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1411   }
1412 }
1413 
1414 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1415                                    const ABIArgInfo &info) {
1416   if (unsigned offset = info.getDirectOffset()) {
1417     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1418     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1419                                              CharUnits::fromQuantity(offset));
1420     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1421   }
1422   return addr;
1423 }
1424 
1425 namespace {
1426 
1427 /// Encapsulates information about the way function arguments from
1428 /// CGFunctionInfo should be passed to actual LLVM IR function.
1429 class ClangToLLVMArgMapping {
1430   static const unsigned InvalidIndex = ~0U;
1431   unsigned InallocaArgNo;
1432   unsigned SRetArgNo;
1433   unsigned TotalIRArgs;
1434 
1435   /// Arguments of LLVM IR function corresponding to single Clang argument.
1436   struct IRArgs {
1437     unsigned PaddingArgIndex;
1438     // Argument is expanded to IR arguments at positions
1439     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1440     unsigned FirstArgIndex;
1441     unsigned NumberOfArgs;
1442 
1443     IRArgs()
1444         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1445           NumberOfArgs(0) {}
1446   };
1447 
1448   SmallVector<IRArgs, 8> ArgInfo;
1449 
1450 public:
1451   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1452                         bool OnlyRequiredArgs = false)
1453       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1454         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1455     construct(Context, FI, OnlyRequiredArgs);
1456   }
1457 
1458   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1459   unsigned getInallocaArgNo() const {
1460     assert(hasInallocaArg());
1461     return InallocaArgNo;
1462   }
1463 
1464   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1465   unsigned getSRetArgNo() const {
1466     assert(hasSRetArg());
1467     return SRetArgNo;
1468   }
1469 
1470   unsigned totalIRArgs() const { return TotalIRArgs; }
1471 
1472   bool hasPaddingArg(unsigned ArgNo) const {
1473     assert(ArgNo < ArgInfo.size());
1474     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1475   }
1476   unsigned getPaddingArgNo(unsigned ArgNo) const {
1477     assert(hasPaddingArg(ArgNo));
1478     return ArgInfo[ArgNo].PaddingArgIndex;
1479   }
1480 
1481   /// Returns index of first IR argument corresponding to ArgNo, and their
1482   /// quantity.
1483   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1484     assert(ArgNo < ArgInfo.size());
1485     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1486                           ArgInfo[ArgNo].NumberOfArgs);
1487   }
1488 
1489 private:
1490   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1491                  bool OnlyRequiredArgs);
1492 };
1493 
1494 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1495                                       const CGFunctionInfo &FI,
1496                                       bool OnlyRequiredArgs) {
1497   unsigned IRArgNo = 0;
1498   bool SwapThisWithSRet = false;
1499   const ABIArgInfo &RetAI = FI.getReturnInfo();
1500 
1501   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1502     SwapThisWithSRet = RetAI.isSRetAfterThis();
1503     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1504   }
1505 
1506   unsigned ArgNo = 0;
1507   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1508   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1509        ++I, ++ArgNo) {
1510     assert(I != FI.arg_end());
1511     QualType ArgType = I->type;
1512     const ABIArgInfo &AI = I->info;
1513     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1514     auto &IRArgs = ArgInfo[ArgNo];
1515 
1516     if (AI.getPaddingType())
1517       IRArgs.PaddingArgIndex = IRArgNo++;
1518 
1519     switch (AI.getKind()) {
1520     case ABIArgInfo::Extend:
1521     case ABIArgInfo::Direct: {
1522       // FIXME: handle sseregparm someday...
1523       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1524       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1525         IRArgs.NumberOfArgs = STy->getNumElements();
1526       } else {
1527         IRArgs.NumberOfArgs = 1;
1528       }
1529       break;
1530     }
1531     case ABIArgInfo::Indirect:
1532     case ABIArgInfo::IndirectAliased:
1533       IRArgs.NumberOfArgs = 1;
1534       break;
1535     case ABIArgInfo::Ignore:
1536     case ABIArgInfo::InAlloca:
1537       // ignore and inalloca doesn't have matching LLVM parameters.
1538       IRArgs.NumberOfArgs = 0;
1539       break;
1540     case ABIArgInfo::CoerceAndExpand:
1541       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1542       break;
1543     case ABIArgInfo::Expand:
1544       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1545       break;
1546     }
1547 
1548     if (IRArgs.NumberOfArgs > 0) {
1549       IRArgs.FirstArgIndex = IRArgNo;
1550       IRArgNo += IRArgs.NumberOfArgs;
1551     }
1552 
1553     // Skip over the sret parameter when it comes second.  We already handled it
1554     // above.
1555     if (IRArgNo == 1 && SwapThisWithSRet)
1556       IRArgNo++;
1557   }
1558   assert(ArgNo == ArgInfo.size());
1559 
1560   if (FI.usesInAlloca())
1561     InallocaArgNo = IRArgNo++;
1562 
1563   TotalIRArgs = IRArgNo;
1564 }
1565 }  // namespace
1566 
1567 /***/
1568 
1569 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1570   const auto &RI = FI.getReturnInfo();
1571   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1572 }
1573 
1574 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1575   return ReturnTypeUsesSRet(FI) &&
1576          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1577 }
1578 
1579 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1580   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1581     switch (BT->getKind()) {
1582     default:
1583       return false;
1584     case BuiltinType::Float:
1585       return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1586     case BuiltinType::Double:
1587       return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1588     case BuiltinType::LongDouble:
1589       return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1590     }
1591   }
1592 
1593   return false;
1594 }
1595 
1596 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1597   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1598     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1599       if (BT->getKind() == BuiltinType::LongDouble)
1600         return getTarget().useObjCFP2RetForComplexLongDouble();
1601     }
1602   }
1603 
1604   return false;
1605 }
1606 
1607 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1608   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1609   return GetFunctionType(FI);
1610 }
1611 
1612 llvm::FunctionType *
1613 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1614 
1615   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1616   (void)Inserted;
1617   assert(Inserted && "Recursively being processed?");
1618 
1619   llvm::Type *resultType = nullptr;
1620   const ABIArgInfo &retAI = FI.getReturnInfo();
1621   switch (retAI.getKind()) {
1622   case ABIArgInfo::Expand:
1623   case ABIArgInfo::IndirectAliased:
1624     llvm_unreachable("Invalid ABI kind for return argument");
1625 
1626   case ABIArgInfo::Extend:
1627   case ABIArgInfo::Direct:
1628     resultType = retAI.getCoerceToType();
1629     break;
1630 
1631   case ABIArgInfo::InAlloca:
1632     if (retAI.getInAllocaSRet()) {
1633       // sret things on win32 aren't void, they return the sret pointer.
1634       QualType ret = FI.getReturnType();
1635       llvm::Type *ty = ConvertType(ret);
1636       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1637       resultType = llvm::PointerType::get(ty, addressSpace);
1638     } else {
1639       resultType = llvm::Type::getVoidTy(getLLVMContext());
1640     }
1641     break;
1642 
1643   case ABIArgInfo::Indirect:
1644   case ABIArgInfo::Ignore:
1645     resultType = llvm::Type::getVoidTy(getLLVMContext());
1646     break;
1647 
1648   case ABIArgInfo::CoerceAndExpand:
1649     resultType = retAI.getUnpaddedCoerceAndExpandType();
1650     break;
1651   }
1652 
1653   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1654   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1655 
1656   // Add type for sret argument.
1657   if (IRFunctionArgs.hasSRetArg()) {
1658     QualType Ret = FI.getReturnType();
1659     llvm::Type *Ty = ConvertType(Ret);
1660     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1661     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1662         llvm::PointerType::get(Ty, AddressSpace);
1663   }
1664 
1665   // Add type for inalloca argument.
1666   if (IRFunctionArgs.hasInallocaArg()) {
1667     auto ArgStruct = FI.getArgStruct();
1668     assert(ArgStruct);
1669     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1670   }
1671 
1672   // Add in all of the required arguments.
1673   unsigned ArgNo = 0;
1674   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1675                                      ie = it + FI.getNumRequiredArgs();
1676   for (; it != ie; ++it, ++ArgNo) {
1677     const ABIArgInfo &ArgInfo = it->info;
1678 
1679     // Insert a padding type to ensure proper alignment.
1680     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1681       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1682           ArgInfo.getPaddingType();
1683 
1684     unsigned FirstIRArg, NumIRArgs;
1685     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1686 
1687     switch (ArgInfo.getKind()) {
1688     case ABIArgInfo::Ignore:
1689     case ABIArgInfo::InAlloca:
1690       assert(NumIRArgs == 0);
1691       break;
1692 
1693     case ABIArgInfo::Indirect: {
1694       assert(NumIRArgs == 1);
1695       // indirect arguments are always on the stack, which is alloca addr space.
1696       llvm::Type *LTy = ConvertTypeForMem(it->type);
1697       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1698           CGM.getDataLayout().getAllocaAddrSpace());
1699       break;
1700     }
1701     case ABIArgInfo::IndirectAliased: {
1702       assert(NumIRArgs == 1);
1703       llvm::Type *LTy = ConvertTypeForMem(it->type);
1704       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1705       break;
1706     }
1707     case ABIArgInfo::Extend:
1708     case ABIArgInfo::Direct: {
1709       // Fast-isel and the optimizer generally like scalar values better than
1710       // FCAs, so we flatten them if this is safe to do for this argument.
1711       llvm::Type *argType = ArgInfo.getCoerceToType();
1712       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1713       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1714         assert(NumIRArgs == st->getNumElements());
1715         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1716           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1717       } else {
1718         assert(NumIRArgs == 1);
1719         ArgTypes[FirstIRArg] = argType;
1720       }
1721       break;
1722     }
1723 
1724     case ABIArgInfo::CoerceAndExpand: {
1725       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1726       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1727         *ArgTypesIter++ = EltTy;
1728       }
1729       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1730       break;
1731     }
1732 
1733     case ABIArgInfo::Expand:
1734       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1735       getExpandedTypes(it->type, ArgTypesIter);
1736       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1737       break;
1738     }
1739   }
1740 
1741   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1742   assert(Erased && "Not in set?");
1743 
1744   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1745 }
1746 
1747 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1748   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1749   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1750 
1751   if (!isFuncTypeConvertible(FPT))
1752     return llvm::StructType::get(getLLVMContext());
1753 
1754   return GetFunctionType(GD);
1755 }
1756 
1757 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1758                                                llvm::AttrBuilder &FuncAttrs,
1759                                                const FunctionProtoType *FPT) {
1760   if (!FPT)
1761     return;
1762 
1763   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1764       FPT->isNothrow())
1765     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1766 }
1767 
1768 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
1769                                      const Decl *Callee) {
1770   if (!Callee)
1771     return;
1772 
1773   SmallVector<StringRef, 4> Attrs;
1774 
1775   for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
1776     AA->getAssumption().split(Attrs, ",");
1777 
1778   if (!Attrs.empty())
1779     FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1780                            llvm::join(Attrs.begin(), Attrs.end(), ","));
1781 }
1782 
1783 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1784                                           QualType ReturnType) {
1785   // We can't just discard the return value for a record type with a
1786   // complex destructor or a non-trivially copyable type.
1787   if (const RecordType *RT =
1788           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1789     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1790       return ClassDecl->hasTrivialDestructor();
1791   }
1792   return ReturnType.isTriviallyCopyableType(Context);
1793 }
1794 
1795 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1796                                                  bool HasOptnone,
1797                                                  bool AttrOnCallSite,
1798                                                llvm::AttrBuilder &FuncAttrs) {
1799   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1800   if (!HasOptnone) {
1801     if (CodeGenOpts.OptimizeSize)
1802       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1803     if (CodeGenOpts.OptimizeSize == 2)
1804       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1805   }
1806 
1807   if (CodeGenOpts.DisableRedZone)
1808     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1809   if (CodeGenOpts.IndirectTlsSegRefs)
1810     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1811   if (CodeGenOpts.NoImplicitFloat)
1812     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1813 
1814   if (AttrOnCallSite) {
1815     // Attributes that should go on the call site only.
1816     // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
1817     // the -fno-builtin-foo list.
1818     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1819       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1820     if (!CodeGenOpts.TrapFuncName.empty())
1821       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1822   } else {
1823     StringRef FpKind;
1824     switch (CodeGenOpts.getFramePointer()) {
1825     case CodeGenOptions::FramePointerKind::None:
1826       FpKind = "none";
1827       break;
1828     case CodeGenOptions::FramePointerKind::NonLeaf:
1829       FpKind = "non-leaf";
1830       break;
1831     case CodeGenOptions::FramePointerKind::All:
1832       FpKind = "all";
1833       break;
1834     }
1835     FuncAttrs.addAttribute("frame-pointer", FpKind);
1836 
1837     if (CodeGenOpts.LessPreciseFPMAD)
1838       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1839 
1840     if (CodeGenOpts.NullPointerIsValid)
1841       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1842 
1843     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1844       FuncAttrs.addAttribute("denormal-fp-math",
1845                              CodeGenOpts.FPDenormalMode.str());
1846     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1847       FuncAttrs.addAttribute(
1848           "denormal-fp-math-f32",
1849           CodeGenOpts.FP32DenormalMode.str());
1850     }
1851 
1852     if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1853       FuncAttrs.addAttribute("no-trapping-math", "true");
1854 
1855     // TODO: Are these all needed?
1856     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1857     if (LangOpts.NoHonorInfs)
1858       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1859     if (LangOpts.NoHonorNaNs)
1860       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1861     if (LangOpts.ApproxFunc)
1862       FuncAttrs.addAttribute("approx-func-fp-math", "true");
1863     if (LangOpts.UnsafeFPMath)
1864       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1865     if (CodeGenOpts.SoftFloat)
1866       FuncAttrs.addAttribute("use-soft-float", "true");
1867     FuncAttrs.addAttribute("stack-protector-buffer-size",
1868                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1869     if (LangOpts.NoSignedZero)
1870       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1871 
1872     // TODO: Reciprocal estimate codegen options should apply to instructions?
1873     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1874     if (!Recips.empty())
1875       FuncAttrs.addAttribute("reciprocal-estimates",
1876                              llvm::join(Recips, ","));
1877 
1878     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1879         CodeGenOpts.PreferVectorWidth != "none")
1880       FuncAttrs.addAttribute("prefer-vector-width",
1881                              CodeGenOpts.PreferVectorWidth);
1882 
1883     if (CodeGenOpts.StackRealignment)
1884       FuncAttrs.addAttribute("stackrealign");
1885     if (CodeGenOpts.Backchain)
1886       FuncAttrs.addAttribute("backchain");
1887     if (CodeGenOpts.EnableSegmentedStacks)
1888       FuncAttrs.addAttribute("split-stack");
1889 
1890     if (CodeGenOpts.SpeculativeLoadHardening)
1891       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1892 
1893     // Add zero-call-used-regs attribute.
1894     switch (CodeGenOpts.getZeroCallUsedRegs()) {
1895     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
1896       FuncAttrs.removeAttribute("zero-call-used-regs");
1897       break;
1898     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
1899       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg");
1900       break;
1901     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
1902       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr");
1903       break;
1904     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
1905       FuncAttrs.addAttribute("zero-call-used-regs", "used-arg");
1906       break;
1907     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
1908       FuncAttrs.addAttribute("zero-call-used-regs", "used");
1909       break;
1910     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
1911       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg");
1912       break;
1913     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
1914       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr");
1915       break;
1916     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
1917       FuncAttrs.addAttribute("zero-call-used-regs", "all-arg");
1918       break;
1919     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
1920       FuncAttrs.addAttribute("zero-call-used-regs", "all");
1921       break;
1922     }
1923   }
1924 
1925   if (getLangOpts().assumeFunctionsAreConvergent()) {
1926     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1927     // convergent (meaning, they may call an intrinsically convergent op, such
1928     // as __syncthreads() / barrier(), and so can't have certain optimizations
1929     // applied around them).  LLVM will remove this attribute where it safely
1930     // can.
1931     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1932   }
1933 
1934   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1935     // Exceptions aren't supported in CUDA device code.
1936     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1937   }
1938 
1939   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1940     StringRef Var, Value;
1941     std::tie(Var, Value) = Attr.split('=');
1942     FuncAttrs.addAttribute(Var, Value);
1943   }
1944 }
1945 
1946 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1947   llvm::AttrBuilder FuncAttrs(F.getContext());
1948   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1949                                /* AttrOnCallSite = */ false, FuncAttrs);
1950   // TODO: call GetCPUAndFeaturesAttributes?
1951   F.addFnAttrs(FuncAttrs);
1952 }
1953 
1954 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1955                                                    llvm::AttrBuilder &attrs) {
1956   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1957                                /*for call*/ false, attrs);
1958   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1959 }
1960 
1961 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1962                                    const LangOptions &LangOpts,
1963                                    const NoBuiltinAttr *NBA = nullptr) {
1964   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1965     SmallString<32> AttributeName;
1966     AttributeName += "no-builtin-";
1967     AttributeName += BuiltinName;
1968     FuncAttrs.addAttribute(AttributeName);
1969   };
1970 
1971   // First, handle the language options passed through -fno-builtin.
1972   if (LangOpts.NoBuiltin) {
1973     // -fno-builtin disables them all.
1974     FuncAttrs.addAttribute("no-builtins");
1975     return;
1976   }
1977 
1978   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1979   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1980 
1981   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1982   // the source.
1983   if (!NBA)
1984     return;
1985 
1986   // If there is a wildcard in the builtin names specified through the
1987   // attribute, disable them all.
1988   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1989     FuncAttrs.addAttribute("no-builtins");
1990     return;
1991   }
1992 
1993   // And last, add the rest of the builtin names.
1994   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1995 }
1996 
1997 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
1998                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
1999                              bool CheckCoerce = true) {
2000   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
2001   if (AI.getKind() == ABIArgInfo::Indirect)
2002     return true;
2003   if (AI.getKind() == ABIArgInfo::Extend)
2004     return true;
2005   if (!DL.typeSizeEqualsStoreSize(Ty))
2006     // TODO: This will result in a modest amount of values not marked noundef
2007     // when they could be. We care about values that *invisibly* contain undef
2008     // bits from the perspective of LLVM IR.
2009     return false;
2010   if (CheckCoerce && AI.canHaveCoerceToType()) {
2011     llvm::Type *CoerceTy = AI.getCoerceToType();
2012     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
2013                                   DL.getTypeSizeInBits(Ty)))
2014       // If we're coercing to a type with a greater size than the canonical one,
2015       // we're introducing new undef bits.
2016       // Coercing to a type of smaller or equal size is ok, as we know that
2017       // there's no internal padding (typeSizeEqualsStoreSize).
2018       return false;
2019   }
2020   if (QTy->isBitIntType())
2021     return true;
2022   if (QTy->isReferenceType())
2023     return true;
2024   if (QTy->isNullPtrType())
2025     return false;
2026   if (QTy->isMemberPointerType())
2027     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2028     // now, never mark them.
2029     return false;
2030   if (QTy->isScalarType()) {
2031     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
2032       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
2033     return true;
2034   }
2035   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
2036     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
2037   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
2038     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
2039   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
2040     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
2041 
2042   // TODO: Some structs may be `noundef`, in specific situations.
2043   return false;
2044 }
2045 
2046 /// Construct the IR attribute list of a function or call.
2047 ///
2048 /// When adding an attribute, please consider where it should be handled:
2049 ///
2050 ///   - getDefaultFunctionAttributes is for attributes that are essentially
2051 ///     part of the global target configuration (but perhaps can be
2052 ///     overridden on a per-function basis).  Adding attributes there
2053 ///     will cause them to also be set in frontends that build on Clang's
2054 ///     target-configuration logic, as well as for code defined in library
2055 ///     modules such as CUDA's libdevice.
2056 ///
2057 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2058 ///     and adds declaration-specific, convention-specific, and
2059 ///     frontend-specific logic.  The last is of particular importance:
2060 ///     attributes that restrict how the frontend generates code must be
2061 ///     added here rather than getDefaultFunctionAttributes.
2062 ///
2063 void CodeGenModule::ConstructAttributeList(StringRef Name,
2064                                            const CGFunctionInfo &FI,
2065                                            CGCalleeInfo CalleeInfo,
2066                                            llvm::AttributeList &AttrList,
2067                                            unsigned &CallingConv,
2068                                            bool AttrOnCallSite, bool IsThunk) {
2069   llvm::AttrBuilder FuncAttrs(getLLVMContext());
2070   llvm::AttrBuilder RetAttrs(getLLVMContext());
2071 
2072   // Collect function IR attributes from the CC lowering.
2073   // We'll collect the paramete and result attributes later.
2074   CallingConv = FI.getEffectiveCallingConvention();
2075   if (FI.isNoReturn())
2076     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2077   if (FI.isCmseNSCall())
2078     FuncAttrs.addAttribute("cmse_nonsecure_call");
2079 
2080   // Collect function IR attributes from the callee prototype if we have one.
2081   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2082                                      CalleeInfo.getCalleeFunctionProtoType());
2083 
2084   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2085 
2086   // Attach assumption attributes to the declaration. If this is a call
2087   // site, attach assumptions from the caller to the call as well.
2088   AddAttributesFromAssumes(FuncAttrs, TargetDecl);
2089 
2090   bool HasOptnone = false;
2091   // The NoBuiltinAttr attached to the target FunctionDecl.
2092   const NoBuiltinAttr *NBA = nullptr;
2093 
2094   // Collect function IR attributes based on declaration-specific
2095   // information.
2096   // FIXME: handle sseregparm someday...
2097   if (TargetDecl) {
2098     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2099       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2100     if (TargetDecl->hasAttr<NoThrowAttr>())
2101       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2102     if (TargetDecl->hasAttr<NoReturnAttr>())
2103       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2104     if (TargetDecl->hasAttr<ColdAttr>())
2105       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2106     if (TargetDecl->hasAttr<HotAttr>())
2107       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2108     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2109       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2110     if (TargetDecl->hasAttr<ConvergentAttr>())
2111       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2112 
2113     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2114       AddAttributesFromFunctionProtoType(
2115           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2116       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2117         // A sane operator new returns a non-aliasing pointer.
2118         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2119         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2120             (Kind == OO_New || Kind == OO_Array_New))
2121           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2122       }
2123       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2124       const bool IsVirtualCall = MD && MD->isVirtual();
2125       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2126       // virtual function. These attributes are not inherited by overloads.
2127       if (!(AttrOnCallSite && IsVirtualCall)) {
2128         if (Fn->isNoReturn())
2129           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2130         NBA = Fn->getAttr<NoBuiltinAttr>();
2131       }
2132       // Only place nomerge attribute on call sites, never functions. This
2133       // allows it to work on indirect virtual function calls.
2134       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2135         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2136     }
2137 
2138     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2139     if (TargetDecl->hasAttr<ConstAttr>()) {
2140       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2141       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2142       // gcc specifies that 'const' functions have greater restrictions than
2143       // 'pure' functions, so they also cannot have infinite loops.
2144       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2145     } else if (TargetDecl->hasAttr<PureAttr>()) {
2146       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2147       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2148       // gcc specifies that 'pure' functions cannot have infinite loops.
2149       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2150     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2151       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2152       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2153     }
2154     if (TargetDecl->hasAttr<RestrictAttr>())
2155       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2156     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2157         !CodeGenOpts.NullPointerIsValid)
2158       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2159     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2160       FuncAttrs.addAttribute("no_caller_saved_registers");
2161     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2162       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2163     if (TargetDecl->hasAttr<LeafAttr>())
2164       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2165 
2166     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2167     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2168       Optional<unsigned> NumElemsParam;
2169       if (AllocSize->getNumElemsParam().isValid())
2170         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2171       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2172                                  NumElemsParam);
2173     }
2174 
2175     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2176       if (getLangOpts().OpenCLVersion <= 120) {
2177         // OpenCL v1.2 Work groups are always uniform
2178         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2179       } else {
2180         // OpenCL v2.0 Work groups may be whether uniform or not.
2181         // '-cl-uniform-work-group-size' compile option gets a hint
2182         // to the compiler that the global work-size be a multiple of
2183         // the work-group size specified to clEnqueueNDRangeKernel
2184         // (i.e. work groups are uniform).
2185         FuncAttrs.addAttribute("uniform-work-group-size",
2186                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2187       }
2188     }
2189   }
2190 
2191   // Attach "no-builtins" attributes to:
2192   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2193   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2194   // The attributes can come from:
2195   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2196   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2197   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2198 
2199   // Collect function IR attributes based on global settiings.
2200   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2201 
2202   // Override some default IR attributes based on declaration-specific
2203   // information.
2204   if (TargetDecl) {
2205     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2206       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2207     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2208       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2209     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2210       FuncAttrs.removeAttribute("split-stack");
2211     if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
2212       // A function "__attribute__((...))" overrides the command-line flag.
2213       auto Kind =
2214           TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
2215       FuncAttrs.removeAttribute("zero-call-used-regs");
2216       FuncAttrs.addAttribute(
2217           "zero-call-used-regs",
2218           ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind));
2219     }
2220 
2221     // Add NonLazyBind attribute to function declarations when -fno-plt
2222     // is used.
2223     // FIXME: what if we just haven't processed the function definition
2224     // yet, or if it's an external definition like C99 inline?
2225     if (CodeGenOpts.NoPLT) {
2226       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2227         if (!Fn->isDefined() && !AttrOnCallSite) {
2228           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2229         }
2230       }
2231     }
2232   }
2233 
2234   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2235   // functions with -funique-internal-linkage-names.
2236   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2237     if (isa<FunctionDecl>(TargetDecl)) {
2238       if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) ==
2239           llvm::GlobalValue::InternalLinkage)
2240         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2241                                "selected");
2242     }
2243   }
2244 
2245   // Collect non-call-site function IR attributes from declaration-specific
2246   // information.
2247   if (!AttrOnCallSite) {
2248     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2249       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2250 
2251     // Whether tail calls are enabled.
2252     auto shouldDisableTailCalls = [&] {
2253       // Should this be honored in getDefaultFunctionAttributes?
2254       if (CodeGenOpts.DisableTailCalls)
2255         return true;
2256 
2257       if (!TargetDecl)
2258         return false;
2259 
2260       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2261           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2262         return true;
2263 
2264       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2265         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2266           if (!BD->doesNotEscape())
2267             return true;
2268       }
2269 
2270       return false;
2271     };
2272     if (shouldDisableTailCalls())
2273       FuncAttrs.addAttribute("disable-tail-calls", "true");
2274 
2275     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2276     // handles these separately to set them based on the global defaults.
2277     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2278   }
2279 
2280   // Collect attributes from arguments and return values.
2281   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2282 
2283   QualType RetTy = FI.getReturnType();
2284   const ABIArgInfo &RetAI = FI.getReturnInfo();
2285   const llvm::DataLayout &DL = getDataLayout();
2286 
2287   // C++ explicitly makes returning undefined values UB. C's rule only applies
2288   // to used values, so we never mark them noundef for now.
2289   bool HasStrictReturn = getLangOpts().CPlusPlus;
2290   if (TargetDecl && HasStrictReturn) {
2291     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2292       HasStrictReturn &= !FDecl->isExternC();
2293     else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2294       // Function pointer
2295       HasStrictReturn &= !VDecl->isExternC();
2296   }
2297 
2298   // We don't want to be too aggressive with the return checking, unless
2299   // it's explicit in the code opts or we're using an appropriate sanitizer.
2300   // Try to respect what the programmer intended.
2301   HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2302                      !MayDropFunctionReturn(getContext(), RetTy) ||
2303                      getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2304                      getLangOpts().Sanitize.has(SanitizerKind::Return);
2305 
2306   // Determine if the return type could be partially undef
2307   if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2308     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2309         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2310       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2311   }
2312 
2313   switch (RetAI.getKind()) {
2314   case ABIArgInfo::Extend:
2315     if (RetAI.isSignExt())
2316       RetAttrs.addAttribute(llvm::Attribute::SExt);
2317     else
2318       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2319     LLVM_FALLTHROUGH;
2320   case ABIArgInfo::Direct:
2321     if (RetAI.getInReg())
2322       RetAttrs.addAttribute(llvm::Attribute::InReg);
2323     break;
2324   case ABIArgInfo::Ignore:
2325     break;
2326 
2327   case ABIArgInfo::InAlloca:
2328   case ABIArgInfo::Indirect: {
2329     // inalloca and sret disable readnone and readonly
2330     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2331       .removeAttribute(llvm::Attribute::ReadNone);
2332     break;
2333   }
2334 
2335   case ABIArgInfo::CoerceAndExpand:
2336     break;
2337 
2338   case ABIArgInfo::Expand:
2339   case ABIArgInfo::IndirectAliased:
2340     llvm_unreachable("Invalid ABI kind for return argument");
2341   }
2342 
2343   if (!IsThunk) {
2344     // FIXME: fix this properly, https://reviews.llvm.org/D100388
2345     if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2346       QualType PTy = RefTy->getPointeeType();
2347       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2348         RetAttrs.addDereferenceableAttr(
2349             getMinimumObjectSize(PTy).getQuantity());
2350       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2351           !CodeGenOpts.NullPointerIsValid)
2352         RetAttrs.addAttribute(llvm::Attribute::NonNull);
2353       if (PTy->isObjectType()) {
2354         llvm::Align Alignment =
2355             getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2356         RetAttrs.addAlignmentAttr(Alignment);
2357       }
2358     }
2359   }
2360 
2361   bool hasUsedSRet = false;
2362   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2363 
2364   // Attach attributes to sret.
2365   if (IRFunctionArgs.hasSRetArg()) {
2366     llvm::AttrBuilder SRETAttrs(getLLVMContext());
2367     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2368     hasUsedSRet = true;
2369     if (RetAI.getInReg())
2370       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2371     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2372     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2373         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2374   }
2375 
2376   // Attach attributes to inalloca argument.
2377   if (IRFunctionArgs.hasInallocaArg()) {
2378     llvm::AttrBuilder Attrs(getLLVMContext());
2379     Attrs.addInAllocaAttr(FI.getArgStruct());
2380     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2381         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2382   }
2383 
2384   // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2385   // unless this is a thunk function.
2386   // FIXME: fix this properly, https://reviews.llvm.org/D100388
2387   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2388       !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2389     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2390 
2391     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2392 
2393     llvm::AttrBuilder Attrs(getLLVMContext());
2394 
2395     QualType ThisTy =
2396         FI.arg_begin()->type.castAs<PointerType>()->getPointeeType();
2397 
2398     if (!CodeGenOpts.NullPointerIsValid &&
2399         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2400       Attrs.addAttribute(llvm::Attribute::NonNull);
2401       Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2402     } else {
2403       // FIXME dereferenceable should be correct here, regardless of
2404       // NullPointerIsValid. However, dereferenceable currently does not always
2405       // respect NullPointerIsValid and may imply nonnull and break the program.
2406       // See https://reviews.llvm.org/D66618 for discussions.
2407       Attrs.addDereferenceableOrNullAttr(
2408           getMinimumObjectSize(
2409               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2410               .getQuantity());
2411     }
2412 
2413     llvm::Align Alignment =
2414         getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2415                                 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2416             .getAsAlign();
2417     Attrs.addAlignmentAttr(Alignment);
2418 
2419     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2420   }
2421 
2422   unsigned ArgNo = 0;
2423   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2424                                           E = FI.arg_end();
2425        I != E; ++I, ++ArgNo) {
2426     QualType ParamType = I->type;
2427     const ABIArgInfo &AI = I->info;
2428     llvm::AttrBuilder Attrs(getLLVMContext());
2429 
2430     // Add attribute for padding argument, if necessary.
2431     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2432       if (AI.getPaddingInReg()) {
2433         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2434             llvm::AttributeSet::get(
2435                 getLLVMContext(),
2436                 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg));
2437       }
2438     }
2439 
2440     // Decide whether the argument we're handling could be partially undef
2441     if (CodeGenOpts.EnableNoundefAttrs &&
2442         DetermineNoUndef(ParamType, getTypes(), DL, AI)) {
2443       Attrs.addAttribute(llvm::Attribute::NoUndef);
2444     }
2445 
2446     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2447     // have the corresponding parameter variable.  It doesn't make
2448     // sense to do it here because parameters are so messed up.
2449     switch (AI.getKind()) {
2450     case ABIArgInfo::Extend:
2451       if (AI.isSignExt())
2452         Attrs.addAttribute(llvm::Attribute::SExt);
2453       else
2454         Attrs.addAttribute(llvm::Attribute::ZExt);
2455       LLVM_FALLTHROUGH;
2456     case ABIArgInfo::Direct:
2457       if (ArgNo == 0 && FI.isChainCall())
2458         Attrs.addAttribute(llvm::Attribute::Nest);
2459       else if (AI.getInReg())
2460         Attrs.addAttribute(llvm::Attribute::InReg);
2461       Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2462       break;
2463 
2464     case ABIArgInfo::Indirect: {
2465       if (AI.getInReg())
2466         Attrs.addAttribute(llvm::Attribute::InReg);
2467 
2468       if (AI.getIndirectByVal())
2469         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2470 
2471       auto *Decl = ParamType->getAsRecordDecl();
2472       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2473           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2474         // When calling the function, the pointer passed in will be the only
2475         // reference to the underlying object. Mark it accordingly.
2476         Attrs.addAttribute(llvm::Attribute::NoAlias);
2477 
2478       // TODO: We could add the byref attribute if not byval, but it would
2479       // require updating many testcases.
2480 
2481       CharUnits Align = AI.getIndirectAlign();
2482 
2483       // In a byval argument, it is important that the required
2484       // alignment of the type is honored, as LLVM might be creating a
2485       // *new* stack object, and needs to know what alignment to give
2486       // it. (Sometimes it can deduce a sensible alignment on its own,
2487       // but not if clang decides it must emit a packed struct, or the
2488       // user specifies increased alignment requirements.)
2489       //
2490       // This is different from indirect *not* byval, where the object
2491       // exists already, and the align attribute is purely
2492       // informative.
2493       assert(!Align.isZero());
2494 
2495       // For now, only add this when we have a byval argument.
2496       // TODO: be less lazy about updating test cases.
2497       if (AI.getIndirectByVal())
2498         Attrs.addAlignmentAttr(Align.getQuantity());
2499 
2500       // byval disables readnone and readonly.
2501       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2502         .removeAttribute(llvm::Attribute::ReadNone);
2503 
2504       break;
2505     }
2506     case ABIArgInfo::IndirectAliased: {
2507       CharUnits Align = AI.getIndirectAlign();
2508       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2509       Attrs.addAlignmentAttr(Align.getQuantity());
2510       break;
2511     }
2512     case ABIArgInfo::Ignore:
2513     case ABIArgInfo::Expand:
2514     case ABIArgInfo::CoerceAndExpand:
2515       break;
2516 
2517     case ABIArgInfo::InAlloca:
2518       // inalloca disables readnone and readonly.
2519       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2520           .removeAttribute(llvm::Attribute::ReadNone);
2521       continue;
2522     }
2523 
2524     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2525       QualType PTy = RefTy->getPointeeType();
2526       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2527         Attrs.addDereferenceableAttr(
2528             getMinimumObjectSize(PTy).getQuantity());
2529       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2530           !CodeGenOpts.NullPointerIsValid)
2531         Attrs.addAttribute(llvm::Attribute::NonNull);
2532       if (PTy->isObjectType()) {
2533         llvm::Align Alignment =
2534             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2535         Attrs.addAlignmentAttr(Alignment);
2536       }
2537     }
2538 
2539     // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2540     // > For arguments to a __kernel function declared to be a pointer to a
2541     // > data type, the OpenCL compiler can assume that the pointee is always
2542     // > appropriately aligned as required by the data type.
2543     if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
2544         ParamType->isPointerType()) {
2545       QualType PTy = ParamType->getPointeeType();
2546       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2547         llvm::Align Alignment =
2548             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2549         Attrs.addAlignmentAttr(Alignment);
2550       }
2551     }
2552 
2553     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2554     case ParameterABI::Ordinary:
2555       break;
2556 
2557     case ParameterABI::SwiftIndirectResult: {
2558       // Add 'sret' if we haven't already used it for something, but
2559       // only if the result is void.
2560       if (!hasUsedSRet && RetTy->isVoidType()) {
2561         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2562         hasUsedSRet = true;
2563       }
2564 
2565       // Add 'noalias' in either case.
2566       Attrs.addAttribute(llvm::Attribute::NoAlias);
2567 
2568       // Add 'dereferenceable' and 'alignment'.
2569       auto PTy = ParamType->getPointeeType();
2570       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2571         auto info = getContext().getTypeInfoInChars(PTy);
2572         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2573         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2574       }
2575       break;
2576     }
2577 
2578     case ParameterABI::SwiftErrorResult:
2579       Attrs.addAttribute(llvm::Attribute::SwiftError);
2580       break;
2581 
2582     case ParameterABI::SwiftContext:
2583       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2584       break;
2585 
2586     case ParameterABI::SwiftAsyncContext:
2587       Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2588       break;
2589     }
2590 
2591     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2592       Attrs.addAttribute(llvm::Attribute::NoCapture);
2593 
2594     if (Attrs.hasAttributes()) {
2595       unsigned FirstIRArg, NumIRArgs;
2596       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2597       for (unsigned i = 0; i < NumIRArgs; i++)
2598         ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
2599             getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs));
2600     }
2601   }
2602   assert(ArgNo == FI.arg_size());
2603 
2604   AttrList = llvm::AttributeList::get(
2605       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2606       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2607 }
2608 
2609 /// An argument came in as a promoted argument; demote it back to its
2610 /// declared type.
2611 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2612                                          const VarDecl *var,
2613                                          llvm::Value *value) {
2614   llvm::Type *varType = CGF.ConvertType(var->getType());
2615 
2616   // This can happen with promotions that actually don't change the
2617   // underlying type, like the enum promotions.
2618   if (value->getType() == varType) return value;
2619 
2620   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2621          && "unexpected promotion type");
2622 
2623   if (isa<llvm::IntegerType>(varType))
2624     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2625 
2626   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2627 }
2628 
2629 /// Returns the attribute (either parameter attribute, or function
2630 /// attribute), which declares argument ArgNo to be non-null.
2631 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2632                                          QualType ArgType, unsigned ArgNo) {
2633   // FIXME: __attribute__((nonnull)) can also be applied to:
2634   //   - references to pointers, where the pointee is known to be
2635   //     nonnull (apparently a Clang extension)
2636   //   - transparent unions containing pointers
2637   // In the former case, LLVM IR cannot represent the constraint. In
2638   // the latter case, we have no guarantee that the transparent union
2639   // is in fact passed as a pointer.
2640   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2641     return nullptr;
2642   // First, check attribute on parameter itself.
2643   if (PVD) {
2644     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2645       return ParmNNAttr;
2646   }
2647   // Check function attributes.
2648   if (!FD)
2649     return nullptr;
2650   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2651     if (NNAttr->isNonNull(ArgNo))
2652       return NNAttr;
2653   }
2654   return nullptr;
2655 }
2656 
2657 namespace {
2658   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2659     Address Temp;
2660     Address Arg;
2661     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2662     void Emit(CodeGenFunction &CGF, Flags flags) override {
2663       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2664       CGF.Builder.CreateStore(errorValue, Arg);
2665     }
2666   };
2667 }
2668 
2669 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2670                                          llvm::Function *Fn,
2671                                          const FunctionArgList &Args) {
2672   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2673     // Naked functions don't have prologues.
2674     return;
2675 
2676   // If this is an implicit-return-zero function, go ahead and
2677   // initialize the return value.  TODO: it might be nice to have
2678   // a more general mechanism for this that didn't require synthesized
2679   // return statements.
2680   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2681     if (FD->hasImplicitReturnZero()) {
2682       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2683       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2684       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2685       Builder.CreateStore(Zero, ReturnValue);
2686     }
2687   }
2688 
2689   // FIXME: We no longer need the types from FunctionArgList; lift up and
2690   // simplify.
2691 
2692   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2693   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2694 
2695   // If we're using inalloca, all the memory arguments are GEPs off of the last
2696   // parameter, which is a pointer to the complete memory area.
2697   Address ArgStruct = Address::invalid();
2698   if (IRFunctionArgs.hasInallocaArg()) {
2699     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2700                         FI.getArgStruct(), FI.getArgStructAlignment());
2701 
2702     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2703   }
2704 
2705   // Name the struct return parameter.
2706   if (IRFunctionArgs.hasSRetArg()) {
2707     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2708     AI->setName("agg.result");
2709     AI->addAttr(llvm::Attribute::NoAlias);
2710   }
2711 
2712   // Track if we received the parameter as a pointer (indirect, byval, or
2713   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2714   // into a local alloca for us.
2715   SmallVector<ParamValue, 16> ArgVals;
2716   ArgVals.reserve(Args.size());
2717 
2718   // Create a pointer value for every parameter declaration.  This usually
2719   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2720   // any cleanups or do anything that might unwind.  We do that separately, so
2721   // we can push the cleanups in the correct order for the ABI.
2722   assert(FI.arg_size() == Args.size() &&
2723          "Mismatch between function signature & arguments.");
2724   unsigned ArgNo = 0;
2725   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2726   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2727        i != e; ++i, ++info_it, ++ArgNo) {
2728     const VarDecl *Arg = *i;
2729     const ABIArgInfo &ArgI = info_it->info;
2730 
2731     bool isPromoted =
2732       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2733     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2734     // the parameter is promoted. In this case we convert to
2735     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2736     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2737     assert(hasScalarEvaluationKind(Ty) ==
2738            hasScalarEvaluationKind(Arg->getType()));
2739 
2740     unsigned FirstIRArg, NumIRArgs;
2741     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2742 
2743     switch (ArgI.getKind()) {
2744     case ABIArgInfo::InAlloca: {
2745       assert(NumIRArgs == 0);
2746       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2747       Address V =
2748           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2749       if (ArgI.getInAllocaIndirect())
2750         V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty),
2751                     getContext().getTypeAlignInChars(Ty));
2752       ArgVals.push_back(ParamValue::forIndirect(V));
2753       break;
2754     }
2755 
2756     case ABIArgInfo::Indirect:
2757     case ABIArgInfo::IndirectAliased: {
2758       assert(NumIRArgs == 1);
2759       Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty),
2760                                   ArgI.getIndirectAlign());
2761 
2762       if (!hasScalarEvaluationKind(Ty)) {
2763         // Aggregates and complex variables are accessed by reference. All we
2764         // need to do is realign the value, if requested. Also, if the address
2765         // may be aliased, copy it to ensure that the parameter variable is
2766         // mutable and has a unique adress, as C requires.
2767         Address V = ParamAddr;
2768         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2769           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2770 
2771           // Copy from the incoming argument pointer to the temporary with the
2772           // appropriate alignment.
2773           //
2774           // FIXME: We should have a common utility for generating an aggregate
2775           // copy.
2776           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2777           Builder.CreateMemCpy(
2778               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2779               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2780               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2781           V = AlignedTemp;
2782         }
2783         ArgVals.push_back(ParamValue::forIndirect(V));
2784       } else {
2785         // Load scalar value from indirect argument.
2786         llvm::Value *V =
2787             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2788 
2789         if (isPromoted)
2790           V = emitArgumentDemotion(*this, Arg, V);
2791         ArgVals.push_back(ParamValue::forDirect(V));
2792       }
2793       break;
2794     }
2795 
2796     case ABIArgInfo::Extend:
2797     case ABIArgInfo::Direct: {
2798       auto AI = Fn->getArg(FirstIRArg);
2799       llvm::Type *LTy = ConvertType(Arg->getType());
2800 
2801       // Prepare parameter attributes. So far, only attributes for pointer
2802       // parameters are prepared. See
2803       // http://llvm.org/docs/LangRef.html#paramattrs.
2804       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2805           ArgI.getCoerceToType()->isPointerTy()) {
2806         assert(NumIRArgs == 1);
2807 
2808         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2809           // Set `nonnull` attribute if any.
2810           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2811                              PVD->getFunctionScopeIndex()) &&
2812               !CGM.getCodeGenOpts().NullPointerIsValid)
2813             AI->addAttr(llvm::Attribute::NonNull);
2814 
2815           QualType OTy = PVD->getOriginalType();
2816           if (const auto *ArrTy =
2817               getContext().getAsConstantArrayType(OTy)) {
2818             // A C99 array parameter declaration with the static keyword also
2819             // indicates dereferenceability, and if the size is constant we can
2820             // use the dereferenceable attribute (which requires the size in
2821             // bytes).
2822             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2823               QualType ETy = ArrTy->getElementType();
2824               llvm::Align Alignment =
2825                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2826               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
2827               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2828               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2829                   ArrSize) {
2830                 llvm::AttrBuilder Attrs(getLLVMContext());
2831                 Attrs.addDereferenceableAttr(
2832                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2833                     ArrSize);
2834                 AI->addAttrs(Attrs);
2835               } else if (getContext().getTargetInfo().getNullPointerValue(
2836                              ETy.getAddressSpace()) == 0 &&
2837                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2838                 AI->addAttr(llvm::Attribute::NonNull);
2839               }
2840             }
2841           } else if (const auto *ArrTy =
2842                      getContext().getAsVariableArrayType(OTy)) {
2843             // For C99 VLAs with the static keyword, we don't know the size so
2844             // we can't use the dereferenceable attribute, but in addrspace(0)
2845             // we know that it must be nonnull.
2846             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2847               QualType ETy = ArrTy->getElementType();
2848               llvm::Align Alignment =
2849                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2850               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
2851               if (!getContext().getTargetAddressSpace(ETy) &&
2852                   !CGM.getCodeGenOpts().NullPointerIsValid)
2853                 AI->addAttr(llvm::Attribute::NonNull);
2854             }
2855           }
2856 
2857           // Set `align` attribute if any.
2858           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2859           if (!AVAttr)
2860             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2861               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2862           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2863             // If alignment-assumption sanitizer is enabled, we do *not* add
2864             // alignment attribute here, but emit normal alignment assumption,
2865             // so the UBSAN check could function.
2866             llvm::ConstantInt *AlignmentCI =
2867                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2868             uint64_t AlignmentInt =
2869                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2870             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2871               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2872               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
2873                   llvm::Align(AlignmentInt)));
2874             }
2875           }
2876         }
2877 
2878         // Set 'noalias' if an argument type has the `restrict` qualifier.
2879         if (Arg->getType().isRestrictQualified())
2880           AI->addAttr(llvm::Attribute::NoAlias);
2881       }
2882 
2883       // Prepare the argument value. If we have the trivial case, handle it
2884       // with no muss and fuss.
2885       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2886           ArgI.getCoerceToType() == ConvertType(Ty) &&
2887           ArgI.getDirectOffset() == 0) {
2888         assert(NumIRArgs == 1);
2889 
2890         // LLVM expects swifterror parameters to be used in very restricted
2891         // ways.  Copy the value into a less-restricted temporary.
2892         llvm::Value *V = AI;
2893         if (FI.getExtParameterInfo(ArgNo).getABI()
2894               == ParameterABI::SwiftErrorResult) {
2895           QualType pointeeTy = Ty->getPointeeType();
2896           assert(pointeeTy->isPointerType());
2897           Address temp =
2898             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2899           Address arg(V, ConvertTypeForMem(pointeeTy),
2900                       getContext().getTypeAlignInChars(pointeeTy));
2901           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2902           Builder.CreateStore(incomingErrorValue, temp);
2903           V = temp.getPointer();
2904 
2905           // Push a cleanup to copy the value back at the end of the function.
2906           // The convention does not guarantee that the value will be written
2907           // back if the function exits with an unwind exception.
2908           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2909         }
2910 
2911         // Ensure the argument is the correct type.
2912         if (V->getType() != ArgI.getCoerceToType())
2913           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2914 
2915         if (isPromoted)
2916           V = emitArgumentDemotion(*this, Arg, V);
2917 
2918         // Because of merging of function types from multiple decls it is
2919         // possible for the type of an argument to not match the corresponding
2920         // type in the function type. Since we are codegening the callee
2921         // in here, add a cast to the argument type.
2922         llvm::Type *LTy = ConvertType(Arg->getType());
2923         if (V->getType() != LTy)
2924           V = Builder.CreateBitCast(V, LTy);
2925 
2926         ArgVals.push_back(ParamValue::forDirect(V));
2927         break;
2928       }
2929 
2930       // VLST arguments are coerced to VLATs at the function boundary for
2931       // ABI consistency. If this is a VLST that was coerced to
2932       // a VLAT at the function boundary and the types match up, use
2933       // llvm.experimental.vector.extract to convert back to the original
2934       // VLST.
2935       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2936         llvm::Value *Coerced = Fn->getArg(FirstIRArg);
2937         if (auto *VecTyFrom =
2938                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2939           // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2940           // vector, bitcast the source and use a vector extract.
2941           auto PredType =
2942               llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2943           if (VecTyFrom == PredType &&
2944               VecTyTo->getElementType() == Builder.getInt8Ty()) {
2945             VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2946             Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
2947           }
2948           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2949             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2950 
2951             assert(NumIRArgs == 1);
2952             Coerced->setName(Arg->getName() + ".coerce");
2953             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2954                 VecTyTo, Coerced, Zero, "castFixedSve")));
2955             break;
2956           }
2957         }
2958       }
2959 
2960       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2961                                      Arg->getName());
2962 
2963       // Pointer to store into.
2964       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2965 
2966       // Fast-isel and the optimizer generally like scalar values better than
2967       // FCAs, so we flatten them if this is safe to do for this argument.
2968       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2969       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2970           STy->getNumElements() > 1) {
2971         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2972         llvm::Type *DstTy = Ptr.getElementType();
2973         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2974 
2975         Address AddrToStoreInto = Address::invalid();
2976         if (SrcSize <= DstSize) {
2977           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2978         } else {
2979           AddrToStoreInto =
2980             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2981         }
2982 
2983         assert(STy->getNumElements() == NumIRArgs);
2984         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2985           auto AI = Fn->getArg(FirstIRArg + i);
2986           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2987           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2988           Builder.CreateStore(AI, EltPtr);
2989         }
2990 
2991         if (SrcSize > DstSize) {
2992           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2993         }
2994 
2995       } else {
2996         // Simple case, just do a coerced store of the argument into the alloca.
2997         assert(NumIRArgs == 1);
2998         auto AI = Fn->getArg(FirstIRArg);
2999         AI->setName(Arg->getName() + ".coerce");
3000         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
3001       }
3002 
3003       // Match to what EmitParmDecl is expecting for this type.
3004       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
3005         llvm::Value *V =
3006             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
3007         if (isPromoted)
3008           V = emitArgumentDemotion(*this, Arg, V);
3009         ArgVals.push_back(ParamValue::forDirect(V));
3010       } else {
3011         ArgVals.push_back(ParamValue::forIndirect(Alloca));
3012       }
3013       break;
3014     }
3015 
3016     case ABIArgInfo::CoerceAndExpand: {
3017       // Reconstruct into a temporary.
3018       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3019       ArgVals.push_back(ParamValue::forIndirect(alloca));
3020 
3021       auto coercionType = ArgI.getCoerceAndExpandType();
3022       alloca = Builder.CreateElementBitCast(alloca, coercionType);
3023 
3024       unsigned argIndex = FirstIRArg;
3025       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3026         llvm::Type *eltType = coercionType->getElementType(i);
3027         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
3028           continue;
3029 
3030         auto eltAddr = Builder.CreateStructGEP(alloca, i);
3031         auto elt = Fn->getArg(argIndex++);
3032         Builder.CreateStore(elt, eltAddr);
3033       }
3034       assert(argIndex == FirstIRArg + NumIRArgs);
3035       break;
3036     }
3037 
3038     case ABIArgInfo::Expand: {
3039       // If this structure was expanded into multiple arguments then
3040       // we need to create a temporary and reconstruct it from the
3041       // arguments.
3042       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3043       LValue LV = MakeAddrLValue(Alloca, Ty);
3044       ArgVals.push_back(ParamValue::forIndirect(Alloca));
3045 
3046       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
3047       ExpandTypeFromArgs(Ty, LV, FnArgIter);
3048       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
3049       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
3050         auto AI = Fn->getArg(FirstIRArg + i);
3051         AI->setName(Arg->getName() + "." + Twine(i));
3052       }
3053       break;
3054     }
3055 
3056     case ABIArgInfo::Ignore:
3057       assert(NumIRArgs == 0);
3058       // Initialize the local variable appropriately.
3059       if (!hasScalarEvaluationKind(Ty)) {
3060         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
3061       } else {
3062         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
3063         ArgVals.push_back(ParamValue::forDirect(U));
3064       }
3065       break;
3066     }
3067   }
3068 
3069   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3070     for (int I = Args.size() - 1; I >= 0; --I)
3071       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3072   } else {
3073     for (unsigned I = 0, E = Args.size(); I != E; ++I)
3074       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3075   }
3076 }
3077 
3078 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3079   while (insn->use_empty()) {
3080     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3081     if (!bitcast) return;
3082 
3083     // This is "safe" because we would have used a ConstantExpr otherwise.
3084     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3085     bitcast->eraseFromParent();
3086   }
3087 }
3088 
3089 /// Try to emit a fused autorelease of a return result.
3090 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3091                                                     llvm::Value *result) {
3092   // We must be immediately followed the cast.
3093   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3094   if (BB->empty()) return nullptr;
3095   if (&BB->back() != result) return nullptr;
3096 
3097   llvm::Type *resultType = result->getType();
3098 
3099   // result is in a BasicBlock and is therefore an Instruction.
3100   llvm::Instruction *generator = cast<llvm::Instruction>(result);
3101 
3102   SmallVector<llvm::Instruction *, 4> InstsToKill;
3103 
3104   // Look for:
3105   //  %generator = bitcast %type1* %generator2 to %type2*
3106   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3107     // We would have emitted this as a constant if the operand weren't
3108     // an Instruction.
3109     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3110 
3111     // Require the generator to be immediately followed by the cast.
3112     if (generator->getNextNode() != bitcast)
3113       return nullptr;
3114 
3115     InstsToKill.push_back(bitcast);
3116   }
3117 
3118   // Look for:
3119   //   %generator = call i8* @objc_retain(i8* %originalResult)
3120   // or
3121   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3122   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3123   if (!call) return nullptr;
3124 
3125   bool doRetainAutorelease;
3126 
3127   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3128     doRetainAutorelease = true;
3129   } else if (call->getCalledOperand() ==
3130              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3131     doRetainAutorelease = false;
3132 
3133     // If we emitted an assembly marker for this call (and the
3134     // ARCEntrypoints field should have been set if so), go looking
3135     // for that call.  If we can't find it, we can't do this
3136     // optimization.  But it should always be the immediately previous
3137     // instruction, unless we needed bitcasts around the call.
3138     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3139       llvm::Instruction *prev = call->getPrevNode();
3140       assert(prev);
3141       if (isa<llvm::BitCastInst>(prev)) {
3142         prev = prev->getPrevNode();
3143         assert(prev);
3144       }
3145       assert(isa<llvm::CallInst>(prev));
3146       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3147              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3148       InstsToKill.push_back(prev);
3149     }
3150   } else {
3151     return nullptr;
3152   }
3153 
3154   result = call->getArgOperand(0);
3155   InstsToKill.push_back(call);
3156 
3157   // Keep killing bitcasts, for sanity.  Note that we no longer care
3158   // about precise ordering as long as there's exactly one use.
3159   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3160     if (!bitcast->hasOneUse()) break;
3161     InstsToKill.push_back(bitcast);
3162     result = bitcast->getOperand(0);
3163   }
3164 
3165   // Delete all the unnecessary instructions, from latest to earliest.
3166   for (auto *I : InstsToKill)
3167     I->eraseFromParent();
3168 
3169   // Do the fused retain/autorelease if we were asked to.
3170   if (doRetainAutorelease)
3171     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3172 
3173   // Cast back to the result type.
3174   return CGF.Builder.CreateBitCast(result, resultType);
3175 }
3176 
3177 /// If this is a +1 of the value of an immutable 'self', remove it.
3178 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3179                                           llvm::Value *result) {
3180   // This is only applicable to a method with an immutable 'self'.
3181   const ObjCMethodDecl *method =
3182     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3183   if (!method) return nullptr;
3184   const VarDecl *self = method->getSelfDecl();
3185   if (!self->getType().isConstQualified()) return nullptr;
3186 
3187   // Look for a retain call.
3188   llvm::CallInst *retainCall =
3189     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3190   if (!retainCall || retainCall->getCalledOperand() !=
3191                          CGF.CGM.getObjCEntrypoints().objc_retain)
3192     return nullptr;
3193 
3194   // Look for an ordinary load of 'self'.
3195   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3196   llvm::LoadInst *load =
3197     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3198   if (!load || load->isAtomic() || load->isVolatile() ||
3199       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3200     return nullptr;
3201 
3202   // Okay!  Burn it all down.  This relies for correctness on the
3203   // assumption that the retain is emitted as part of the return and
3204   // that thereafter everything is used "linearly".
3205   llvm::Type *resultType = result->getType();
3206   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3207   assert(retainCall->use_empty());
3208   retainCall->eraseFromParent();
3209   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3210 
3211   return CGF.Builder.CreateBitCast(load, resultType);
3212 }
3213 
3214 /// Emit an ARC autorelease of the result of a function.
3215 ///
3216 /// \return the value to actually return from the function
3217 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3218                                             llvm::Value *result) {
3219   // If we're returning 'self', kill the initial retain.  This is a
3220   // heuristic attempt to "encourage correctness" in the really unfortunate
3221   // case where we have a return of self during a dealloc and we desperately
3222   // need to avoid the possible autorelease.
3223   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3224     return self;
3225 
3226   // At -O0, try to emit a fused retain/autorelease.
3227   if (CGF.shouldUseFusedARCCalls())
3228     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3229       return fused;
3230 
3231   return CGF.EmitARCAutoreleaseReturnValue(result);
3232 }
3233 
3234 /// Heuristically search for a dominating store to the return-value slot.
3235 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3236   // Check if a User is a store which pointerOperand is the ReturnValue.
3237   // We are looking for stores to the ReturnValue, not for stores of the
3238   // ReturnValue to some other location.
3239   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3240     auto *SI = dyn_cast<llvm::StoreInst>(U);
3241     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() ||
3242         SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType())
3243       return nullptr;
3244     // These aren't actually possible for non-coerced returns, and we
3245     // only care about non-coerced returns on this code path.
3246     assert(!SI->isAtomic() && !SI->isVolatile());
3247     return SI;
3248   };
3249   // If there are multiple uses of the return-value slot, just check
3250   // for something immediately preceding the IP.  Sometimes this can
3251   // happen with how we generate implicit-returns; it can also happen
3252   // with noreturn cleanups.
3253   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3254     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3255     if (IP->empty()) return nullptr;
3256 
3257     // Look at directly preceding instruction, skipping bitcasts and lifetime
3258     // markers.
3259     for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) {
3260       if (isa<llvm::BitCastInst>(&I))
3261         continue;
3262       if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I))
3263         if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end)
3264           continue;
3265 
3266       return GetStoreIfValid(&I);
3267     }
3268     return nullptr;
3269   }
3270 
3271   llvm::StoreInst *store =
3272       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3273   if (!store) return nullptr;
3274 
3275   // Now do a first-and-dirty dominance check: just walk up the
3276   // single-predecessors chain from the current insertion point.
3277   llvm::BasicBlock *StoreBB = store->getParent();
3278   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3279   while (IP != StoreBB) {
3280     if (!(IP = IP->getSinglePredecessor()))
3281       return nullptr;
3282   }
3283 
3284   // Okay, the store's basic block dominates the insertion point; we
3285   // can do our thing.
3286   return store;
3287 }
3288 
3289 // Helper functions for EmitCMSEClearRecord
3290 
3291 // Set the bits corresponding to a field having width `BitWidth` and located at
3292 // offset `BitOffset` (from the least significant bit) within a storage unit of
3293 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3294 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3295 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3296                         int BitWidth, int CharWidth) {
3297   assert(CharWidth <= 64);
3298   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3299 
3300   int Pos = 0;
3301   if (BitOffset >= CharWidth) {
3302     Pos += BitOffset / CharWidth;
3303     BitOffset = BitOffset % CharWidth;
3304   }
3305 
3306   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3307   if (BitOffset + BitWidth >= CharWidth) {
3308     Bits[Pos++] |= (Used << BitOffset) & Used;
3309     BitWidth -= CharWidth - BitOffset;
3310     BitOffset = 0;
3311   }
3312 
3313   while (BitWidth >= CharWidth) {
3314     Bits[Pos++] = Used;
3315     BitWidth -= CharWidth;
3316   }
3317 
3318   if (BitWidth > 0)
3319     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3320 }
3321 
3322 // Set the bits corresponding to a field having width `BitWidth` and located at
3323 // offset `BitOffset` (from the least significant bit) within a storage unit of
3324 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3325 // `Bits` corresponds to one target byte. Use target endian layout.
3326 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3327                         int StorageSize, int BitOffset, int BitWidth,
3328                         int CharWidth, bool BigEndian) {
3329 
3330   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3331   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3332 
3333   if (BigEndian)
3334     std::reverse(TmpBits.begin(), TmpBits.end());
3335 
3336   for (uint64_t V : TmpBits)
3337     Bits[StorageOffset++] |= V;
3338 }
3339 
3340 static void setUsedBits(CodeGenModule &, QualType, int,
3341                         SmallVectorImpl<uint64_t> &);
3342 
3343 // Set the bits in `Bits`, which correspond to the value representations of
3344 // the actual members of the record type `RTy`. Note that this function does
3345 // not handle base classes, virtual tables, etc, since they cannot happen in
3346 // CMSE function arguments or return. The bit mask corresponds to the target
3347 // memory layout, i.e. it's endian dependent.
3348 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3349                         SmallVectorImpl<uint64_t> &Bits) {
3350   ASTContext &Context = CGM.getContext();
3351   int CharWidth = Context.getCharWidth();
3352   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3353   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3354   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3355 
3356   int Idx = 0;
3357   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3358     const FieldDecl *F = *I;
3359 
3360     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3361         F->getType()->isIncompleteArrayType())
3362       continue;
3363 
3364     if (F->isBitField()) {
3365       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3366       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3367                   BFI.StorageSize / CharWidth, BFI.Offset,
3368                   BFI.Size, CharWidth,
3369                   CGM.getDataLayout().isBigEndian());
3370       continue;
3371     }
3372 
3373     setUsedBits(CGM, F->getType(),
3374                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3375   }
3376 }
3377 
3378 // Set the bits in `Bits`, which correspond to the value representations of
3379 // the elements of an array type `ATy`.
3380 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3381                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3382   const ASTContext &Context = CGM.getContext();
3383 
3384   QualType ETy = Context.getBaseElementType(ATy);
3385   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3386   SmallVector<uint64_t, 4> TmpBits(Size);
3387   setUsedBits(CGM, ETy, 0, TmpBits);
3388 
3389   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3390     auto Src = TmpBits.begin();
3391     auto Dst = Bits.begin() + Offset + I * Size;
3392     for (int J = 0; J < Size; ++J)
3393       *Dst++ |= *Src++;
3394   }
3395 }
3396 
3397 // Set the bits in `Bits`, which correspond to the value representations of
3398 // the type `QTy`.
3399 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3400                         SmallVectorImpl<uint64_t> &Bits) {
3401   if (const auto *RTy = QTy->getAs<RecordType>())
3402     return setUsedBits(CGM, RTy, Offset, Bits);
3403 
3404   ASTContext &Context = CGM.getContext();
3405   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3406     return setUsedBits(CGM, ATy, Offset, Bits);
3407 
3408   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3409   if (Size <= 0)
3410     return;
3411 
3412   std::fill_n(Bits.begin() + Offset, Size,
3413               (uint64_t(1) << Context.getCharWidth()) - 1);
3414 }
3415 
3416 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3417                                    int Pos, int Size, int CharWidth,
3418                                    bool BigEndian) {
3419   assert(Size > 0);
3420   uint64_t Mask = 0;
3421   if (BigEndian) {
3422     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3423          ++P)
3424       Mask = (Mask << CharWidth) | *P;
3425   } else {
3426     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3427     do
3428       Mask = (Mask << CharWidth) | *--P;
3429     while (P != End);
3430   }
3431   return Mask;
3432 }
3433 
3434 // Emit code to clear the bits in a record, which aren't a part of any user
3435 // declared member, when the record is a function return.
3436 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3437                                                   llvm::IntegerType *ITy,
3438                                                   QualType QTy) {
3439   assert(Src->getType() == ITy);
3440   assert(ITy->getScalarSizeInBits() <= 64);
3441 
3442   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3443   int Size = DataLayout.getTypeStoreSize(ITy);
3444   SmallVector<uint64_t, 4> Bits(Size);
3445   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3446 
3447   int CharWidth = CGM.getContext().getCharWidth();
3448   uint64_t Mask =
3449       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3450 
3451   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3452 }
3453 
3454 // Emit code to clear the bits in a record, which aren't a part of any user
3455 // declared member, when the record is a function argument.
3456 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3457                                                   llvm::ArrayType *ATy,
3458                                                   QualType QTy) {
3459   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3460   int Size = DataLayout.getTypeStoreSize(ATy);
3461   SmallVector<uint64_t, 16> Bits(Size);
3462   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3463 
3464   // Clear each element of the LLVM array.
3465   int CharWidth = CGM.getContext().getCharWidth();
3466   int CharsPerElt =
3467       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3468   int MaskIndex = 0;
3469   llvm::Value *R = llvm::UndefValue::get(ATy);
3470   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3471     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3472                                        DataLayout.isBigEndian());
3473     MaskIndex += CharsPerElt;
3474     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3475     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3476     R = Builder.CreateInsertValue(R, T1, I);
3477   }
3478 
3479   return R;
3480 }
3481 
3482 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3483                                          bool EmitRetDbgLoc,
3484                                          SourceLocation EndLoc) {
3485   if (FI.isNoReturn()) {
3486     // Noreturn functions don't return.
3487     EmitUnreachable(EndLoc);
3488     return;
3489   }
3490 
3491   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3492     // Naked functions don't have epilogues.
3493     Builder.CreateUnreachable();
3494     return;
3495   }
3496 
3497   // Functions with no result always return void.
3498   if (!ReturnValue.isValid()) {
3499     Builder.CreateRetVoid();
3500     return;
3501   }
3502 
3503   llvm::DebugLoc RetDbgLoc;
3504   llvm::Value *RV = nullptr;
3505   QualType RetTy = FI.getReturnType();
3506   const ABIArgInfo &RetAI = FI.getReturnInfo();
3507 
3508   switch (RetAI.getKind()) {
3509   case ABIArgInfo::InAlloca:
3510     // Aggregrates get evaluated directly into the destination.  Sometimes we
3511     // need to return the sret value in a register, though.
3512     assert(hasAggregateEvaluationKind(RetTy));
3513     if (RetAI.getInAllocaSRet()) {
3514       llvm::Function::arg_iterator EI = CurFn->arg_end();
3515       --EI;
3516       llvm::Value *ArgStruct = &*EI;
3517       llvm::Value *SRet = Builder.CreateStructGEP(
3518           FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex());
3519       llvm::Type *Ty =
3520           cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3521       RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3522     }
3523     break;
3524 
3525   case ABIArgInfo::Indirect: {
3526     auto AI = CurFn->arg_begin();
3527     if (RetAI.isSRetAfterThis())
3528       ++AI;
3529     switch (getEvaluationKind(RetTy)) {
3530     case TEK_Complex: {
3531       ComplexPairTy RT =
3532         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3533       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3534                          /*isInit*/ true);
3535       break;
3536     }
3537     case TEK_Aggregate:
3538       // Do nothing; aggregrates get evaluated directly into the destination.
3539       break;
3540     case TEK_Scalar: {
3541       LValueBaseInfo BaseInfo;
3542       TBAAAccessInfo TBAAInfo;
3543       CharUnits Alignment =
3544           CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
3545       Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
3546       LValue ArgVal =
3547           LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
3548       EmitStoreOfScalar(
3549           Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true);
3550       break;
3551     }
3552     }
3553     break;
3554   }
3555 
3556   case ABIArgInfo::Extend:
3557   case ABIArgInfo::Direct:
3558     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3559         RetAI.getDirectOffset() == 0) {
3560       // The internal return value temp always will have pointer-to-return-type
3561       // type, just do a load.
3562 
3563       // If there is a dominating store to ReturnValue, we can elide
3564       // the load, zap the store, and usually zap the alloca.
3565       if (llvm::StoreInst *SI =
3566               findDominatingStoreToReturnValue(*this)) {
3567         // Reuse the debug location from the store unless there is
3568         // cleanup code to be emitted between the store and return
3569         // instruction.
3570         if (EmitRetDbgLoc && !AutoreleaseResult)
3571           RetDbgLoc = SI->getDebugLoc();
3572         // Get the stored value and nuke the now-dead store.
3573         RV = SI->getValueOperand();
3574         SI->eraseFromParent();
3575 
3576       // Otherwise, we have to do a simple load.
3577       } else {
3578         RV = Builder.CreateLoad(ReturnValue);
3579       }
3580     } else {
3581       // If the value is offset in memory, apply the offset now.
3582       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3583 
3584       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3585     }
3586 
3587     // In ARC, end functions that return a retainable type with a call
3588     // to objc_autoreleaseReturnValue.
3589     if (AutoreleaseResult) {
3590 #ifndef NDEBUG
3591       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3592       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3593       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3594       // CurCodeDecl or BlockInfo.
3595       QualType RT;
3596 
3597       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3598         RT = FD->getReturnType();
3599       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3600         RT = MD->getReturnType();
3601       else if (isa<BlockDecl>(CurCodeDecl))
3602         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3603       else
3604         llvm_unreachable("Unexpected function/method type");
3605 
3606       assert(getLangOpts().ObjCAutoRefCount &&
3607              !FI.isReturnsRetained() &&
3608              RT->isObjCRetainableType());
3609 #endif
3610       RV = emitAutoreleaseOfResult(*this, RV);
3611     }
3612 
3613     break;
3614 
3615   case ABIArgInfo::Ignore:
3616     break;
3617 
3618   case ABIArgInfo::CoerceAndExpand: {
3619     auto coercionType = RetAI.getCoerceAndExpandType();
3620 
3621     // Load all of the coerced elements out into results.
3622     llvm::SmallVector<llvm::Value*, 4> results;
3623     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3624     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3625       auto coercedEltType = coercionType->getElementType(i);
3626       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3627         continue;
3628 
3629       auto eltAddr = Builder.CreateStructGEP(addr, i);
3630       auto elt = Builder.CreateLoad(eltAddr);
3631       results.push_back(elt);
3632     }
3633 
3634     // If we have one result, it's the single direct result type.
3635     if (results.size() == 1) {
3636       RV = results[0];
3637 
3638     // Otherwise, we need to make a first-class aggregate.
3639     } else {
3640       // Construct a return type that lacks padding elements.
3641       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3642 
3643       RV = llvm::UndefValue::get(returnType);
3644       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3645         RV = Builder.CreateInsertValue(RV, results[i], i);
3646       }
3647     }
3648     break;
3649   }
3650   case ABIArgInfo::Expand:
3651   case ABIArgInfo::IndirectAliased:
3652     llvm_unreachable("Invalid ABI kind for return argument");
3653   }
3654 
3655   llvm::Instruction *Ret;
3656   if (RV) {
3657     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3658       // For certain return types, clear padding bits, as they may reveal
3659       // sensitive information.
3660       // Small struct/union types are passed as integers.
3661       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3662       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3663         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3664     }
3665     EmitReturnValueCheck(RV);
3666     Ret = Builder.CreateRet(RV);
3667   } else {
3668     Ret = Builder.CreateRetVoid();
3669   }
3670 
3671   if (RetDbgLoc)
3672     Ret->setDebugLoc(std::move(RetDbgLoc));
3673 }
3674 
3675 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3676   // A current decl may not be available when emitting vtable thunks.
3677   if (!CurCodeDecl)
3678     return;
3679 
3680   // If the return block isn't reachable, neither is this check, so don't emit
3681   // it.
3682   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3683     return;
3684 
3685   ReturnsNonNullAttr *RetNNAttr = nullptr;
3686   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3687     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3688 
3689   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3690     return;
3691 
3692   // Prefer the returns_nonnull attribute if it's present.
3693   SourceLocation AttrLoc;
3694   SanitizerMask CheckKind;
3695   SanitizerHandler Handler;
3696   if (RetNNAttr) {
3697     assert(!requiresReturnValueNullabilityCheck() &&
3698            "Cannot check nullability and the nonnull attribute");
3699     AttrLoc = RetNNAttr->getLocation();
3700     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3701     Handler = SanitizerHandler::NonnullReturn;
3702   } else {
3703     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3704       if (auto *TSI = DD->getTypeSourceInfo())
3705         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3706           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3707     CheckKind = SanitizerKind::NullabilityReturn;
3708     Handler = SanitizerHandler::NullabilityReturn;
3709   }
3710 
3711   SanitizerScope SanScope(this);
3712 
3713   // Make sure the "return" source location is valid. If we're checking a
3714   // nullability annotation, make sure the preconditions for the check are met.
3715   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3716   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3717   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3718   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3719   if (requiresReturnValueNullabilityCheck())
3720     CanNullCheck =
3721         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3722   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3723   EmitBlock(Check);
3724 
3725   // Now do the null check.
3726   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3727   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3728   llvm::Value *DynamicData[] = {SLocPtr};
3729   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3730 
3731   EmitBlock(NoCheck);
3732 
3733 #ifndef NDEBUG
3734   // The return location should not be used after the check has been emitted.
3735   ReturnLocation = Address::invalid();
3736 #endif
3737 }
3738 
3739 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3740   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3741   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3742 }
3743 
3744 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3745                                           QualType Ty) {
3746   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3747   // placeholders.
3748   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3749   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3750   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3751 
3752   // FIXME: When we generate this IR in one pass, we shouldn't need
3753   // this win32-specific alignment hack.
3754   CharUnits Align = CharUnits::fromQuantity(4);
3755   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3756 
3757   return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align),
3758                                Ty.getQualifiers(),
3759                                AggValueSlot::IsNotDestructed,
3760                                AggValueSlot::DoesNotNeedGCBarriers,
3761                                AggValueSlot::IsNotAliased,
3762                                AggValueSlot::DoesNotOverlap);
3763 }
3764 
3765 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3766                                           const VarDecl *param,
3767                                           SourceLocation loc) {
3768   // StartFunction converted the ABI-lowered parameter(s) into a
3769   // local alloca.  We need to turn that into an r-value suitable
3770   // for EmitCall.
3771   Address local = GetAddrOfLocalVar(param);
3772 
3773   QualType type = param->getType();
3774 
3775   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3776     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3777   }
3778 
3779   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3780   // but the argument needs to be the original pointer.
3781   if (type->isReferenceType()) {
3782     args.add(RValue::get(Builder.CreateLoad(local)), type);
3783 
3784   // In ARC, move out of consumed arguments so that the release cleanup
3785   // entered by StartFunction doesn't cause an over-release.  This isn't
3786   // optimal -O0 code generation, but it should get cleaned up when
3787   // optimization is enabled.  This also assumes that delegate calls are
3788   // performed exactly once for a set of arguments, but that should be safe.
3789   } else if (getLangOpts().ObjCAutoRefCount &&
3790              param->hasAttr<NSConsumedAttr>() &&
3791              type->isObjCRetainableType()) {
3792     llvm::Value *ptr = Builder.CreateLoad(local);
3793     auto null =
3794       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3795     Builder.CreateStore(null, local);
3796     args.add(RValue::get(ptr), type);
3797 
3798   // For the most part, we just need to load the alloca, except that
3799   // aggregate r-values are actually pointers to temporaries.
3800   } else {
3801     args.add(convertTempToRValue(local, type, loc), type);
3802   }
3803 
3804   // Deactivate the cleanup for the callee-destructed param that was pushed.
3805   if (type->isRecordType() && !CurFuncIsThunk &&
3806       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3807       param->needsDestruction(getContext())) {
3808     EHScopeStack::stable_iterator cleanup =
3809         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3810     assert(cleanup.isValid() &&
3811            "cleanup for callee-destructed param not recorded");
3812     // This unreachable is a temporary marker which will be removed later.
3813     llvm::Instruction *isActive = Builder.CreateUnreachable();
3814     args.addArgCleanupDeactivation(cleanup, isActive);
3815   }
3816 }
3817 
3818 static bool isProvablyNull(llvm::Value *addr) {
3819   return isa<llvm::ConstantPointerNull>(addr);
3820 }
3821 
3822 /// Emit the actual writing-back of a writeback.
3823 static void emitWriteback(CodeGenFunction &CGF,
3824                           const CallArgList::Writeback &writeback) {
3825   const LValue &srcLV = writeback.Source;
3826   Address srcAddr = srcLV.getAddress(CGF);
3827   assert(!isProvablyNull(srcAddr.getPointer()) &&
3828          "shouldn't have writeback for provably null argument");
3829 
3830   llvm::BasicBlock *contBB = nullptr;
3831 
3832   // If the argument wasn't provably non-null, we need to null check
3833   // before doing the store.
3834   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3835                                               CGF.CGM.getDataLayout());
3836   if (!provablyNonNull) {
3837     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3838     contBB = CGF.createBasicBlock("icr.done");
3839 
3840     llvm::Value *isNull =
3841       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3842     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3843     CGF.EmitBlock(writebackBB);
3844   }
3845 
3846   // Load the value to writeback.
3847   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3848 
3849   // Cast it back, in case we're writing an id to a Foo* or something.
3850   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3851                                     "icr.writeback-cast");
3852 
3853   // Perform the writeback.
3854 
3855   // If we have a "to use" value, it's something we need to emit a use
3856   // of.  This has to be carefully threaded in: if it's done after the
3857   // release it's potentially undefined behavior (and the optimizer
3858   // will ignore it), and if it happens before the retain then the
3859   // optimizer could move the release there.
3860   if (writeback.ToUse) {
3861     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3862 
3863     // Retain the new value.  No need to block-copy here:  the block's
3864     // being passed up the stack.
3865     value = CGF.EmitARCRetainNonBlock(value);
3866 
3867     // Emit the intrinsic use here.
3868     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3869 
3870     // Load the old value (primitively).
3871     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3872 
3873     // Put the new value in place (primitively).
3874     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3875 
3876     // Release the old value.
3877     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3878 
3879   // Otherwise, we can just do a normal lvalue store.
3880   } else {
3881     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3882   }
3883 
3884   // Jump to the continuation block.
3885   if (!provablyNonNull)
3886     CGF.EmitBlock(contBB);
3887 }
3888 
3889 static void emitWritebacks(CodeGenFunction &CGF,
3890                            const CallArgList &args) {
3891   for (const auto &I : args.writebacks())
3892     emitWriteback(CGF, I);
3893 }
3894 
3895 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3896                                             const CallArgList &CallArgs) {
3897   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3898     CallArgs.getCleanupsToDeactivate();
3899   // Iterate in reverse to increase the likelihood of popping the cleanup.
3900   for (const auto &I : llvm::reverse(Cleanups)) {
3901     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3902     I.IsActiveIP->eraseFromParent();
3903   }
3904 }
3905 
3906 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3907   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3908     if (uop->getOpcode() == UO_AddrOf)
3909       return uop->getSubExpr();
3910   return nullptr;
3911 }
3912 
3913 /// Emit an argument that's being passed call-by-writeback.  That is,
3914 /// we are passing the address of an __autoreleased temporary; it
3915 /// might be copy-initialized with the current value of the given
3916 /// address, but it will definitely be copied out of after the call.
3917 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3918                              const ObjCIndirectCopyRestoreExpr *CRE) {
3919   LValue srcLV;
3920 
3921   // Make an optimistic effort to emit the address as an l-value.
3922   // This can fail if the argument expression is more complicated.
3923   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3924     srcLV = CGF.EmitLValue(lvExpr);
3925 
3926   // Otherwise, just emit it as a scalar.
3927   } else {
3928     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3929 
3930     QualType srcAddrType =
3931       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3932     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3933   }
3934   Address srcAddr = srcLV.getAddress(CGF);
3935 
3936   // The dest and src types don't necessarily match in LLVM terms
3937   // because of the crazy ObjC compatibility rules.
3938 
3939   llvm::PointerType *destType =
3940       cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3941   llvm::Type *destElemType =
3942       CGF.ConvertTypeForMem(CRE->getType()->getPointeeType());
3943 
3944   // If the address is a constant null, just pass the appropriate null.
3945   if (isProvablyNull(srcAddr.getPointer())) {
3946     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3947              CRE->getType());
3948     return;
3949   }
3950 
3951   // Create the temporary.
3952   Address temp =
3953       CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp");
3954   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3955   // and that cleanup will be conditional if we can't prove that the l-value
3956   // isn't null, so we need to register a dominating point so that the cleanups
3957   // system will make valid IR.
3958   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3959 
3960   // Zero-initialize it if we're not doing a copy-initialization.
3961   bool shouldCopy = CRE->shouldCopy();
3962   if (!shouldCopy) {
3963     llvm::Value *null =
3964         llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType));
3965     CGF.Builder.CreateStore(null, temp);
3966   }
3967 
3968   llvm::BasicBlock *contBB = nullptr;
3969   llvm::BasicBlock *originBB = nullptr;
3970 
3971   // If the address is *not* known to be non-null, we need to switch.
3972   llvm::Value *finalArgument;
3973 
3974   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3975                                               CGF.CGM.getDataLayout());
3976   if (provablyNonNull) {
3977     finalArgument = temp.getPointer();
3978   } else {
3979     llvm::Value *isNull =
3980       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3981 
3982     finalArgument = CGF.Builder.CreateSelect(isNull,
3983                                    llvm::ConstantPointerNull::get(destType),
3984                                              temp.getPointer(), "icr.argument");
3985 
3986     // If we need to copy, then the load has to be conditional, which
3987     // means we need control flow.
3988     if (shouldCopy) {
3989       originBB = CGF.Builder.GetInsertBlock();
3990       contBB = CGF.createBasicBlock("icr.cont");
3991       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3992       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3993       CGF.EmitBlock(copyBB);
3994       condEval.begin(CGF);
3995     }
3996   }
3997 
3998   llvm::Value *valueToUse = nullptr;
3999 
4000   // Perform a copy if necessary.
4001   if (shouldCopy) {
4002     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
4003     assert(srcRV.isScalar());
4004 
4005     llvm::Value *src = srcRV.getScalarVal();
4006     src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast");
4007 
4008     // Use an ordinary store, not a store-to-lvalue.
4009     CGF.Builder.CreateStore(src, temp);
4010 
4011     // If optimization is enabled, and the value was held in a
4012     // __strong variable, we need to tell the optimizer that this
4013     // value has to stay alive until we're doing the store back.
4014     // This is because the temporary is effectively unretained,
4015     // and so otherwise we can violate the high-level semantics.
4016     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4017         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
4018       valueToUse = src;
4019     }
4020   }
4021 
4022   // Finish the control flow if we needed it.
4023   if (shouldCopy && !provablyNonNull) {
4024     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
4025     CGF.EmitBlock(contBB);
4026 
4027     // Make a phi for the value to intrinsically use.
4028     if (valueToUse) {
4029       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
4030                                                       "icr.to-use");
4031       phiToUse->addIncoming(valueToUse, copyBB);
4032       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
4033                             originBB);
4034       valueToUse = phiToUse;
4035     }
4036 
4037     condEval.end(CGF);
4038   }
4039 
4040   args.addWriteback(srcLV, temp, valueToUse);
4041   args.add(RValue::get(finalArgument), CRE->getType());
4042 }
4043 
4044 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
4045   assert(!StackBase);
4046 
4047   // Save the stack.
4048   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
4049   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
4050 }
4051 
4052 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
4053   if (StackBase) {
4054     // Restore the stack after the call.
4055     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
4056     CGF.Builder.CreateCall(F, StackBase);
4057   }
4058 }
4059 
4060 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4061                                           SourceLocation ArgLoc,
4062                                           AbstractCallee AC,
4063                                           unsigned ParmNum) {
4064   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4065                          SanOpts.has(SanitizerKind::NullabilityArg)))
4066     return;
4067 
4068   // The param decl may be missing in a variadic function.
4069   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4070   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4071 
4072   // Prefer the nonnull attribute if it's present.
4073   const NonNullAttr *NNAttr = nullptr;
4074   if (SanOpts.has(SanitizerKind::NonnullAttribute))
4075     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4076 
4077   bool CanCheckNullability = false;
4078   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4079     auto Nullability = PVD->getType()->getNullability(getContext());
4080     CanCheckNullability = Nullability &&
4081                           *Nullability == NullabilityKind::NonNull &&
4082                           PVD->getTypeSourceInfo();
4083   }
4084 
4085   if (!NNAttr && !CanCheckNullability)
4086     return;
4087 
4088   SourceLocation AttrLoc;
4089   SanitizerMask CheckKind;
4090   SanitizerHandler Handler;
4091   if (NNAttr) {
4092     AttrLoc = NNAttr->getLocation();
4093     CheckKind = SanitizerKind::NonnullAttribute;
4094     Handler = SanitizerHandler::NonnullArg;
4095   } else {
4096     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4097     CheckKind = SanitizerKind::NullabilityArg;
4098     Handler = SanitizerHandler::NullabilityArg;
4099   }
4100 
4101   SanitizerScope SanScope(this);
4102   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4103   llvm::Constant *StaticData[] = {
4104       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4105       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4106   };
4107   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
4108 }
4109 
4110 // Check if the call is going to use the inalloca convention. This needs to
4111 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4112 // later, so we can't check it directly.
4113 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4114                             ArrayRef<QualType> ArgTypes) {
4115   // The Swift calling conventions don't go through the target-specific
4116   // argument classification, they never use inalloca.
4117   // TODO: Consider limiting inalloca use to only calling conventions supported
4118   // by MSVC.
4119   if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4120     return false;
4121   if (!CGM.getTarget().getCXXABI().isMicrosoft())
4122     return false;
4123   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4124     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4125   });
4126 }
4127 
4128 #ifndef NDEBUG
4129 // Determine whether the given argument is an Objective-C method
4130 // that may have type parameters in its signature.
4131 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4132   const DeclContext *dc = method->getDeclContext();
4133   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4134     return classDecl->getTypeParamListAsWritten();
4135   }
4136 
4137   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4138     return catDecl->getTypeParamList();
4139   }
4140 
4141   return false;
4142 }
4143 #endif
4144 
4145 /// EmitCallArgs - Emit call arguments for a function.
4146 void CodeGenFunction::EmitCallArgs(
4147     CallArgList &Args, PrototypeWrapper Prototype,
4148     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4149     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4150   SmallVector<QualType, 16> ArgTypes;
4151 
4152   assert((ParamsToSkip == 0 || Prototype.P) &&
4153          "Can't skip parameters if type info is not provided");
4154 
4155   // This variable only captures *explicitly* written conventions, not those
4156   // applied by default via command line flags or target defaults, such as
4157   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4158   // require knowing if this is a C++ instance method or being able to see
4159   // unprototyped FunctionTypes.
4160   CallingConv ExplicitCC = CC_C;
4161 
4162   // First, if a prototype was provided, use those argument types.
4163   bool IsVariadic = false;
4164   if (Prototype.P) {
4165     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4166     if (MD) {
4167       IsVariadic = MD->isVariadic();
4168       ExplicitCC = getCallingConventionForDecl(
4169           MD, CGM.getTarget().getTriple().isOSWindows());
4170       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4171                       MD->param_type_end());
4172     } else {
4173       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4174       IsVariadic = FPT->isVariadic();
4175       ExplicitCC = FPT->getExtInfo().getCC();
4176       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4177                       FPT->param_type_end());
4178     }
4179 
4180 #ifndef NDEBUG
4181     // Check that the prototyped types match the argument expression types.
4182     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4183     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4184     for (QualType Ty : ArgTypes) {
4185       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4186       assert(
4187           (isGenericMethod || Ty->isVariablyModifiedType() ||
4188            Ty.getNonReferenceType()->isObjCRetainableType() ||
4189            getContext()
4190                    .getCanonicalType(Ty.getNonReferenceType())
4191                    .getTypePtr() ==
4192                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4193           "type mismatch in call argument!");
4194       ++Arg;
4195     }
4196 
4197     // Either we've emitted all the call args, or we have a call to variadic
4198     // function.
4199     assert((Arg == ArgRange.end() || IsVariadic) &&
4200            "Extra arguments in non-variadic function!");
4201 #endif
4202   }
4203 
4204   // If we still have any arguments, emit them using the type of the argument.
4205   for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
4206     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4207   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4208 
4209   // We must evaluate arguments from right to left in the MS C++ ABI,
4210   // because arguments are destroyed left to right in the callee. As a special
4211   // case, there are certain language constructs that require left-to-right
4212   // evaluation, and in those cases we consider the evaluation order requirement
4213   // to trump the "destruction order is reverse construction order" guarantee.
4214   bool LeftToRight =
4215       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4216           ? Order == EvaluationOrder::ForceLeftToRight
4217           : Order != EvaluationOrder::ForceRightToLeft;
4218 
4219   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4220                                          RValue EmittedArg) {
4221     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4222       return;
4223     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4224     if (PS == nullptr)
4225       return;
4226 
4227     const auto &Context = getContext();
4228     auto SizeTy = Context.getSizeType();
4229     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4230     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4231     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4232                                                      EmittedArg.getScalarVal(),
4233                                                      PS->isDynamic());
4234     Args.add(RValue::get(V), SizeTy);
4235     // If we're emitting args in reverse, be sure to do so with
4236     // pass_object_size, as well.
4237     if (!LeftToRight)
4238       std::swap(Args.back(), *(&Args.back() - 1));
4239   };
4240 
4241   // Insert a stack save if we're going to need any inalloca args.
4242   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4243     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4244            "inalloca only supported on x86");
4245     Args.allocateArgumentMemory(*this);
4246   }
4247 
4248   // Evaluate each argument in the appropriate order.
4249   size_t CallArgsStart = Args.size();
4250   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4251     unsigned Idx = LeftToRight ? I : E - I - 1;
4252     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4253     unsigned InitialArgSize = Args.size();
4254     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4255     // the argument and parameter match or the objc method is parameterized.
4256     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4257             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4258                                                 ArgTypes[Idx]) ||
4259             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4260              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4261            "Argument and parameter types don't match");
4262     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4263     // In particular, we depend on it being the last arg in Args, and the
4264     // objectsize bits depend on there only being one arg if !LeftToRight.
4265     assert(InitialArgSize + 1 == Args.size() &&
4266            "The code below depends on only adding one arg per EmitCallArg");
4267     (void)InitialArgSize;
4268     // Since pointer argument are never emitted as LValue, it is safe to emit
4269     // non-null argument check for r-value only.
4270     if (!Args.back().hasLValue()) {
4271       RValue RVArg = Args.back().getKnownRValue();
4272       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4273                           ParamsToSkip + Idx);
4274       // @llvm.objectsize should never have side-effects and shouldn't need
4275       // destruction/cleanups, so we can safely "emit" it after its arg,
4276       // regardless of right-to-leftness
4277       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4278     }
4279   }
4280 
4281   if (!LeftToRight) {
4282     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4283     // IR function.
4284     std::reverse(Args.begin() + CallArgsStart, Args.end());
4285   }
4286 }
4287 
4288 namespace {
4289 
4290 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4291   DestroyUnpassedArg(Address Addr, QualType Ty)
4292       : Addr(Addr), Ty(Ty) {}
4293 
4294   Address Addr;
4295   QualType Ty;
4296 
4297   void Emit(CodeGenFunction &CGF, Flags flags) override {
4298     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4299     if (DtorKind == QualType::DK_cxx_destructor) {
4300       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4301       assert(!Dtor->isTrivial());
4302       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4303                                 /*Delegating=*/false, Addr, Ty);
4304     } else {
4305       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4306     }
4307   }
4308 };
4309 
4310 struct DisableDebugLocationUpdates {
4311   CodeGenFunction &CGF;
4312   bool disabledDebugInfo;
4313   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4314     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4315       CGF.disableDebugInfo();
4316   }
4317   ~DisableDebugLocationUpdates() {
4318     if (disabledDebugInfo)
4319       CGF.enableDebugInfo();
4320   }
4321 };
4322 
4323 } // end anonymous namespace
4324 
4325 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4326   if (!HasLV)
4327     return RV;
4328   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4329   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4330                         LV.isVolatile());
4331   IsUsed = true;
4332   return RValue::getAggregate(Copy.getAddress(CGF));
4333 }
4334 
4335 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4336   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4337   if (!HasLV && RV.isScalar())
4338     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4339   else if (!HasLV && RV.isComplex())
4340     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4341   else {
4342     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4343     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4344     // We assume that call args are never copied into subobjects.
4345     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4346                           HasLV ? LV.isVolatileQualified()
4347                                 : RV.isVolatileQualified());
4348   }
4349   IsUsed = true;
4350 }
4351 
4352 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4353                                   QualType type) {
4354   DisableDebugLocationUpdates Dis(*this, E);
4355   if (const ObjCIndirectCopyRestoreExpr *CRE
4356         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4357     assert(getLangOpts().ObjCAutoRefCount);
4358     return emitWritebackArg(*this, args, CRE);
4359   }
4360 
4361   assert(type->isReferenceType() == E->isGLValue() &&
4362          "reference binding to unmaterialized r-value!");
4363 
4364   if (E->isGLValue()) {
4365     assert(E->getObjectKind() == OK_Ordinary);
4366     return args.add(EmitReferenceBindingToExpr(E), type);
4367   }
4368 
4369   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4370 
4371   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4372   // However, we still have to push an EH-only cleanup in case we unwind before
4373   // we make it to the call.
4374   if (type->isRecordType() &&
4375       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4376     // If we're using inalloca, use the argument memory.  Otherwise, use a
4377     // temporary.
4378     AggValueSlot Slot = args.isUsingInAlloca()
4379         ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
4380 
4381     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4382     if (const auto *RD = type->getAsCXXRecordDecl())
4383       DestroyedInCallee = RD->hasNonTrivialDestructor();
4384     else
4385       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4386 
4387     if (DestroyedInCallee)
4388       Slot.setExternallyDestructed();
4389 
4390     EmitAggExpr(E, Slot);
4391     RValue RV = Slot.asRValue();
4392     args.add(RV, type);
4393 
4394     if (DestroyedInCallee && NeedsEHCleanup) {
4395       // Create a no-op GEP between the placeholder and the cleanup so we can
4396       // RAUW it successfully.  It also serves as a marker of the first
4397       // instruction where the cleanup is active.
4398       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4399                                               type);
4400       // This unreachable is a temporary marker which will be removed later.
4401       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4402       args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive);
4403     }
4404     return;
4405   }
4406 
4407   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4408       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4409     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4410     assert(L.isSimple());
4411     args.addUncopiedAggregate(L, type);
4412     return;
4413   }
4414 
4415   args.add(EmitAnyExprToTemp(E), type);
4416 }
4417 
4418 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4419   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4420   // implicitly widens null pointer constants that are arguments to varargs
4421   // functions to pointer-sized ints.
4422   if (!getTarget().getTriple().isOSWindows())
4423     return Arg->getType();
4424 
4425   if (Arg->getType()->isIntegerType() &&
4426       getContext().getTypeSize(Arg->getType()) <
4427           getContext().getTargetInfo().getPointerWidth(0) &&
4428       Arg->isNullPointerConstant(getContext(),
4429                                  Expr::NPC_ValueDependentIsNotNull)) {
4430     return getContext().getIntPtrType();
4431   }
4432 
4433   return Arg->getType();
4434 }
4435 
4436 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4437 // optimizer it can aggressively ignore unwind edges.
4438 void
4439 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4440   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4441       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4442     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4443                       CGM.getNoObjCARCExceptionsMetadata());
4444 }
4445 
4446 /// Emits a call to the given no-arguments nounwind runtime function.
4447 llvm::CallInst *
4448 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4449                                          const llvm::Twine &name) {
4450   return EmitNounwindRuntimeCall(callee, None, name);
4451 }
4452 
4453 /// Emits a call to the given nounwind runtime function.
4454 llvm::CallInst *
4455 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4456                                          ArrayRef<llvm::Value *> args,
4457                                          const llvm::Twine &name) {
4458   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4459   call->setDoesNotThrow();
4460   return call;
4461 }
4462 
4463 /// Emits a simple call (never an invoke) to the given no-arguments
4464 /// runtime function.
4465 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4466                                                  const llvm::Twine &name) {
4467   return EmitRuntimeCall(callee, None, name);
4468 }
4469 
4470 // Calls which may throw must have operand bundles indicating which funclet
4471 // they are nested within.
4472 SmallVector<llvm::OperandBundleDef, 1>
4473 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4474   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4475   // There is no need for a funclet operand bundle if we aren't inside a
4476   // funclet.
4477   if (!CurrentFuncletPad)
4478     return BundleList;
4479 
4480   // Skip intrinsics which cannot throw.
4481   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4482   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4483     return BundleList;
4484 
4485   BundleList.emplace_back("funclet", CurrentFuncletPad);
4486   return BundleList;
4487 }
4488 
4489 /// Emits a simple call (never an invoke) to the given runtime function.
4490 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4491                                                  ArrayRef<llvm::Value *> args,
4492                                                  const llvm::Twine &name) {
4493   llvm::CallInst *call = Builder.CreateCall(
4494       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4495   call->setCallingConv(getRuntimeCC());
4496   return call;
4497 }
4498 
4499 /// Emits a call or invoke to the given noreturn runtime function.
4500 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4501     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4502   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4503       getBundlesForFunclet(callee.getCallee());
4504 
4505   if (getInvokeDest()) {
4506     llvm::InvokeInst *invoke =
4507       Builder.CreateInvoke(callee,
4508                            getUnreachableBlock(),
4509                            getInvokeDest(),
4510                            args,
4511                            BundleList);
4512     invoke->setDoesNotReturn();
4513     invoke->setCallingConv(getRuntimeCC());
4514   } else {
4515     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4516     call->setDoesNotReturn();
4517     call->setCallingConv(getRuntimeCC());
4518     Builder.CreateUnreachable();
4519   }
4520 }
4521 
4522 /// Emits a call or invoke instruction to the given nullary runtime function.
4523 llvm::CallBase *
4524 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4525                                          const Twine &name) {
4526   return EmitRuntimeCallOrInvoke(callee, None, name);
4527 }
4528 
4529 /// Emits a call or invoke instruction to the given runtime function.
4530 llvm::CallBase *
4531 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4532                                          ArrayRef<llvm::Value *> args,
4533                                          const Twine &name) {
4534   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4535   call->setCallingConv(getRuntimeCC());
4536   return call;
4537 }
4538 
4539 /// Emits a call or invoke instruction to the given function, depending
4540 /// on the current state of the EH stack.
4541 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4542                                                   ArrayRef<llvm::Value *> Args,
4543                                                   const Twine &Name) {
4544   llvm::BasicBlock *InvokeDest = getInvokeDest();
4545   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4546       getBundlesForFunclet(Callee.getCallee());
4547 
4548   llvm::CallBase *Inst;
4549   if (!InvokeDest)
4550     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4551   else {
4552     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4553     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4554                                 Name);
4555     EmitBlock(ContBB);
4556   }
4557 
4558   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4559   // optimizer it can aggressively ignore unwind edges.
4560   if (CGM.getLangOpts().ObjCAutoRefCount)
4561     AddObjCARCExceptionMetadata(Inst);
4562 
4563   return Inst;
4564 }
4565 
4566 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4567                                                   llvm::Value *New) {
4568   DeferredReplacements.push_back(
4569       std::make_pair(llvm::WeakTrackingVH(Old), New));
4570 }
4571 
4572 namespace {
4573 
4574 /// Specify given \p NewAlign as the alignment of return value attribute. If
4575 /// such attribute already exists, re-set it to the maximal one of two options.
4576 LLVM_NODISCARD llvm::AttributeList
4577 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4578                                 const llvm::AttributeList &Attrs,
4579                                 llvm::Align NewAlign) {
4580   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4581   if (CurAlign >= NewAlign)
4582     return Attrs;
4583   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4584   return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4585       .addRetAttribute(Ctx, AlignAttr);
4586 }
4587 
4588 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4589 protected:
4590   CodeGenFunction &CGF;
4591 
4592   /// We do nothing if this is, or becomes, nullptr.
4593   const AlignedAttrTy *AA = nullptr;
4594 
4595   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4596   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4597 
4598   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4599       : CGF(CGF_) {
4600     if (!FuncDecl)
4601       return;
4602     AA = FuncDecl->getAttr<AlignedAttrTy>();
4603   }
4604 
4605 public:
4606   /// If we can, materialize the alignment as an attribute on return value.
4607   LLVM_NODISCARD llvm::AttributeList
4608   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4609     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4610       return Attrs;
4611     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4612     if (!AlignmentCI)
4613       return Attrs;
4614     // We may legitimately have non-power-of-2 alignment here.
4615     // If so, this is UB land, emit it via `@llvm.assume` instead.
4616     if (!AlignmentCI->getValue().isPowerOf2())
4617       return Attrs;
4618     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4619         CGF.getLLVMContext(), Attrs,
4620         llvm::Align(
4621             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4622     AA = nullptr; // We're done. Disallow doing anything else.
4623     return NewAttrs;
4624   }
4625 
4626   /// Emit alignment assumption.
4627   /// This is a general fallback that we take if either there is an offset,
4628   /// or the alignment is variable or we are sanitizing for alignment.
4629   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4630     if (!AA)
4631       return;
4632     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4633                                 AA->getLocation(), Alignment, OffsetCI);
4634     AA = nullptr; // We're done. Disallow doing anything else.
4635   }
4636 };
4637 
4638 /// Helper data structure to emit `AssumeAlignedAttr`.
4639 class AssumeAlignedAttrEmitter final
4640     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4641 public:
4642   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4643       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4644     if (!AA)
4645       return;
4646     // It is guaranteed that the alignment/offset are constants.
4647     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4648     if (Expr *Offset = AA->getOffset()) {
4649       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4650       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4651         OffsetCI = nullptr;
4652     }
4653   }
4654 };
4655 
4656 /// Helper data structure to emit `AllocAlignAttr`.
4657 class AllocAlignAttrEmitter final
4658     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4659 public:
4660   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4661                         const CallArgList &CallArgs)
4662       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4663     if (!AA)
4664       return;
4665     // Alignment may or may not be a constant, and that is okay.
4666     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4667                     .getRValue(CGF)
4668                     .getScalarVal();
4669   }
4670 };
4671 
4672 } // namespace
4673 
4674 static unsigned getMaxVectorWidth(const llvm::Type *Ty) {
4675   if (auto *VT = dyn_cast<llvm::VectorType>(Ty))
4676     return VT->getPrimitiveSizeInBits().getKnownMinSize();
4677   if (auto *AT = dyn_cast<llvm::ArrayType>(Ty))
4678     return getMaxVectorWidth(AT->getElementType());
4679 
4680   unsigned MaxVectorWidth = 0;
4681   if (auto *ST = dyn_cast<llvm::StructType>(Ty))
4682     for (auto *I : ST->elements())
4683       MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I));
4684   return MaxVectorWidth;
4685 }
4686 
4687 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4688                                  const CGCallee &Callee,
4689                                  ReturnValueSlot ReturnValue,
4690                                  const CallArgList &CallArgs,
4691                                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4692                                  SourceLocation Loc) {
4693   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4694 
4695   assert(Callee.isOrdinary() || Callee.isVirtual());
4696 
4697   // Handle struct-return functions by passing a pointer to the
4698   // location that we would like to return into.
4699   QualType RetTy = CallInfo.getReturnType();
4700   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4701 
4702   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4703 
4704   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4705   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4706     // We can only guarantee that a function is called from the correct
4707     // context/function based on the appropriate target attributes,
4708     // so only check in the case where we have both always_inline and target
4709     // since otherwise we could be making a conditional call after a check for
4710     // the proper cpu features (and it won't cause code generation issues due to
4711     // function based code generation).
4712     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4713         TargetDecl->hasAttr<TargetAttr>())
4714       checkTargetFeatures(Loc, FD);
4715 
4716     // Some architectures (such as x86-64) have the ABI changed based on
4717     // attribute-target/features. Give them a chance to diagnose.
4718     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4719         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4720   }
4721 
4722 #ifndef NDEBUG
4723   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4724     // For an inalloca varargs function, we don't expect CallInfo to match the
4725     // function pointer's type, because the inalloca struct a will have extra
4726     // fields in it for the varargs parameters.  Code later in this function
4727     // bitcasts the function pointer to the type derived from CallInfo.
4728     //
4729     // In other cases, we assert that the types match up (until pointers stop
4730     // having pointee types).
4731     if (Callee.isVirtual())
4732       assert(IRFuncTy == Callee.getVirtualFunctionType());
4733     else {
4734       llvm::PointerType *PtrTy =
4735           llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType());
4736       assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy));
4737     }
4738   }
4739 #endif
4740 
4741   // 1. Set up the arguments.
4742 
4743   // If we're using inalloca, insert the allocation after the stack save.
4744   // FIXME: Do this earlier rather than hacking it in here!
4745   Address ArgMemory = Address::invalid();
4746   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4747     const llvm::DataLayout &DL = CGM.getDataLayout();
4748     llvm::Instruction *IP = CallArgs.getStackBase();
4749     llvm::AllocaInst *AI;
4750     if (IP) {
4751       IP = IP->getNextNode();
4752       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4753                                 "argmem", IP);
4754     } else {
4755       AI = CreateTempAlloca(ArgStruct, "argmem");
4756     }
4757     auto Align = CallInfo.getArgStructAlignment();
4758     AI->setAlignment(Align.getAsAlign());
4759     AI->setUsedWithInAlloca(true);
4760     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4761     ArgMemory = Address(AI, ArgStruct, Align);
4762   }
4763 
4764   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4765   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4766 
4767   // If the call returns a temporary with struct return, create a temporary
4768   // alloca to hold the result, unless one is given to us.
4769   Address SRetPtr = Address::invalid();
4770   Address SRetAlloca = Address::invalid();
4771   llvm::Value *UnusedReturnSizePtr = nullptr;
4772   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4773     if (!ReturnValue.isNull()) {
4774       SRetPtr = ReturnValue.getValue();
4775     } else {
4776       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4777       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4778         llvm::TypeSize size =
4779             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4780         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4781       }
4782     }
4783     if (IRFunctionArgs.hasSRetArg()) {
4784       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4785     } else if (RetAI.isInAlloca()) {
4786       Address Addr =
4787           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4788       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4789     }
4790   }
4791 
4792   Address swiftErrorTemp = Address::invalid();
4793   Address swiftErrorArg = Address::invalid();
4794 
4795   // When passing arguments using temporary allocas, we need to add the
4796   // appropriate lifetime markers. This vector keeps track of all the lifetime
4797   // markers that need to be ended right after the call.
4798   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4799 
4800   // Translate all of the arguments as necessary to match the IR lowering.
4801   assert(CallInfo.arg_size() == CallArgs.size() &&
4802          "Mismatch between function signature & arguments.");
4803   unsigned ArgNo = 0;
4804   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4805   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4806        I != E; ++I, ++info_it, ++ArgNo) {
4807     const ABIArgInfo &ArgInfo = info_it->info;
4808 
4809     // Insert a padding argument to ensure proper alignment.
4810     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4811       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4812           llvm::UndefValue::get(ArgInfo.getPaddingType());
4813 
4814     unsigned FirstIRArg, NumIRArgs;
4815     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4816 
4817     switch (ArgInfo.getKind()) {
4818     case ABIArgInfo::InAlloca: {
4819       assert(NumIRArgs == 0);
4820       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4821       if (I->isAggregate()) {
4822         Address Addr = I->hasLValue()
4823                            ? I->getKnownLValue().getAddress(*this)
4824                            : I->getKnownRValue().getAggregateAddress();
4825         llvm::Instruction *Placeholder =
4826             cast<llvm::Instruction>(Addr.getPointer());
4827 
4828         if (!ArgInfo.getInAllocaIndirect()) {
4829           // Replace the placeholder with the appropriate argument slot GEP.
4830           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4831           Builder.SetInsertPoint(Placeholder);
4832           Addr = Builder.CreateStructGEP(ArgMemory,
4833                                          ArgInfo.getInAllocaFieldIndex());
4834           Builder.restoreIP(IP);
4835         } else {
4836           // For indirect things such as overaligned structs, replace the
4837           // placeholder with a regular aggregate temporary alloca. Store the
4838           // address of this alloca into the struct.
4839           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4840           Address ArgSlot = Builder.CreateStructGEP(
4841               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4842           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4843         }
4844         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4845       } else if (ArgInfo.getInAllocaIndirect()) {
4846         // Make a temporary alloca and store the address of it into the argument
4847         // struct.
4848         Address Addr = CreateMemTempWithoutCast(
4849             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4850             "indirect-arg-temp");
4851         I->copyInto(*this, Addr);
4852         Address ArgSlot =
4853             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4854         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4855       } else {
4856         // Store the RValue into the argument struct.
4857         Address Addr =
4858             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4859         // There are some cases where a trivial bitcast is not avoidable.  The
4860         // definition of a type later in a translation unit may change it's type
4861         // from {}* to (%struct.foo*)*.
4862         Addr = Builder.CreateElementBitCast(Addr, ConvertTypeForMem(I->Ty));
4863         I->copyInto(*this, Addr);
4864       }
4865       break;
4866     }
4867 
4868     case ABIArgInfo::Indirect:
4869     case ABIArgInfo::IndirectAliased: {
4870       assert(NumIRArgs == 1);
4871       if (!I->isAggregate()) {
4872         // Make a temporary alloca to pass the argument.
4873         Address Addr = CreateMemTempWithoutCast(
4874             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4875         IRCallArgs[FirstIRArg] = Addr.getPointer();
4876 
4877         I->copyInto(*this, Addr);
4878       } else {
4879         // We want to avoid creating an unnecessary temporary+copy here;
4880         // however, we need one in three cases:
4881         // 1. If the argument is not byval, and we are required to copy the
4882         //    source.  (This case doesn't occur on any common architecture.)
4883         // 2. If the argument is byval, RV is not sufficiently aligned, and
4884         //    we cannot force it to be sufficiently aligned.
4885         // 3. If the argument is byval, but RV is not located in default
4886         //    or alloca address space.
4887         Address Addr = I->hasLValue()
4888                            ? I->getKnownLValue().getAddress(*this)
4889                            : I->getKnownRValue().getAggregateAddress();
4890         llvm::Value *V = Addr.getPointer();
4891         CharUnits Align = ArgInfo.getIndirectAlign();
4892         const llvm::DataLayout *TD = &CGM.getDataLayout();
4893 
4894         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4895                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4896                     TD->getAllocaAddrSpace()) &&
4897                "indirect argument must be in alloca address space");
4898 
4899         bool NeedCopy = false;
4900 
4901         if (Addr.getAlignment() < Align &&
4902             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4903                 Align.getAsAlign()) {
4904           NeedCopy = true;
4905         } else if (I->hasLValue()) {
4906           auto LV = I->getKnownLValue();
4907           auto AS = LV.getAddressSpace();
4908 
4909           if (!ArgInfo.getIndirectByVal() ||
4910               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4911             NeedCopy = true;
4912           }
4913           if (!getLangOpts().OpenCL) {
4914             if ((ArgInfo.getIndirectByVal() &&
4915                 (AS != LangAS::Default &&
4916                  AS != CGM.getASTAllocaAddressSpace()))) {
4917               NeedCopy = true;
4918             }
4919           }
4920           // For OpenCL even if RV is located in default or alloca address space
4921           // we don't want to perform address space cast for it.
4922           else if ((ArgInfo.getIndirectByVal() &&
4923                     Addr.getType()->getAddressSpace() != IRFuncTy->
4924                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4925             NeedCopy = true;
4926           }
4927         }
4928 
4929         if (NeedCopy) {
4930           // Create an aligned temporary, and copy to it.
4931           Address AI = CreateMemTempWithoutCast(
4932               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4933           IRCallArgs[FirstIRArg] = AI.getPointer();
4934 
4935           // Emit lifetime markers for the temporary alloca.
4936           llvm::TypeSize ByvalTempElementSize =
4937               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4938           llvm::Value *LifetimeSize =
4939               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4940 
4941           // Add cleanup code to emit the end lifetime marker after the call.
4942           if (LifetimeSize) // In case we disabled lifetime markers.
4943             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4944 
4945           // Generate the copy.
4946           I->copyInto(*this, AI);
4947         } else {
4948           // Skip the extra memcpy call.
4949           auto *T = llvm::PointerType::getWithSamePointeeType(
4950               cast<llvm::PointerType>(V->getType()),
4951               CGM.getDataLayout().getAllocaAddrSpace());
4952           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4953               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4954               true);
4955         }
4956       }
4957       break;
4958     }
4959 
4960     case ABIArgInfo::Ignore:
4961       assert(NumIRArgs == 0);
4962       break;
4963 
4964     case ABIArgInfo::Extend:
4965     case ABIArgInfo::Direct: {
4966       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4967           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4968           ArgInfo.getDirectOffset() == 0) {
4969         assert(NumIRArgs == 1);
4970         llvm::Value *V;
4971         if (!I->isAggregate())
4972           V = I->getKnownRValue().getScalarVal();
4973         else
4974           V = Builder.CreateLoad(
4975               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4976                              : I->getKnownRValue().getAggregateAddress());
4977 
4978         // Implement swifterror by copying into a new swifterror argument.
4979         // We'll write back in the normal path out of the call.
4980         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4981               == ParameterABI::SwiftErrorResult) {
4982           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4983 
4984           QualType pointeeTy = I->Ty->getPointeeType();
4985           swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy),
4986                                   getContext().getTypeAlignInChars(pointeeTy));
4987 
4988           swiftErrorTemp =
4989             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4990           V = swiftErrorTemp.getPointer();
4991           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4992 
4993           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4994           Builder.CreateStore(errorValue, swiftErrorTemp);
4995         }
4996 
4997         // We might have to widen integers, but we should never truncate.
4998         if (ArgInfo.getCoerceToType() != V->getType() &&
4999             V->getType()->isIntegerTy())
5000           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
5001 
5002         // If the argument doesn't match, perform a bitcast to coerce it.  This
5003         // can happen due to trivial type mismatches.
5004         if (FirstIRArg < IRFuncTy->getNumParams() &&
5005             V->getType() != IRFuncTy->getParamType(FirstIRArg))
5006           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
5007 
5008         IRCallArgs[FirstIRArg] = V;
5009         break;
5010       }
5011 
5012       // FIXME: Avoid the conversion through memory if possible.
5013       Address Src = Address::invalid();
5014       if (!I->isAggregate()) {
5015         Src = CreateMemTemp(I->Ty, "coerce");
5016         I->copyInto(*this, Src);
5017       } else {
5018         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5019                              : I->getKnownRValue().getAggregateAddress();
5020       }
5021 
5022       // If the value is offset in memory, apply the offset now.
5023       Src = emitAddressAtOffset(*this, Src, ArgInfo);
5024 
5025       // Fast-isel and the optimizer generally like scalar values better than
5026       // FCAs, so we flatten them if this is safe to do for this argument.
5027       llvm::StructType *STy =
5028             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
5029       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
5030         llvm::Type *SrcTy = Src.getElementType();
5031         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
5032         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
5033 
5034         // If the source type is smaller than the destination type of the
5035         // coerce-to logic, copy the source value into a temp alloca the size
5036         // of the destination type to allow loading all of it. The bits past
5037         // the source value are left undef.
5038         if (SrcSize < DstSize) {
5039           Address TempAlloca
5040             = CreateTempAlloca(STy, Src.getAlignment(),
5041                                Src.getName() + ".coerce");
5042           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
5043           Src = TempAlloca;
5044         } else {
5045           Src = Builder.CreateElementBitCast(Src, STy);
5046         }
5047 
5048         assert(NumIRArgs == STy->getNumElements());
5049         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5050           Address EltPtr = Builder.CreateStructGEP(Src, i);
5051           llvm::Value *LI = Builder.CreateLoad(EltPtr);
5052           IRCallArgs[FirstIRArg + i] = LI;
5053         }
5054       } else {
5055         // In the simple case, just pass the coerced loaded value.
5056         assert(NumIRArgs == 1);
5057         llvm::Value *Load =
5058             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
5059 
5060         if (CallInfo.isCmseNSCall()) {
5061           // For certain parameter types, clear padding bits, as they may reveal
5062           // sensitive information.
5063           // Small struct/union types are passed as integer arrays.
5064           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
5065           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
5066             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
5067         }
5068         IRCallArgs[FirstIRArg] = Load;
5069       }
5070 
5071       break;
5072     }
5073 
5074     case ABIArgInfo::CoerceAndExpand: {
5075       auto coercionType = ArgInfo.getCoerceAndExpandType();
5076       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5077 
5078       llvm::Value *tempSize = nullptr;
5079       Address addr = Address::invalid();
5080       Address AllocaAddr = Address::invalid();
5081       if (I->isAggregate()) {
5082         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5083                               : I->getKnownRValue().getAggregateAddress();
5084 
5085       } else {
5086         RValue RV = I->getKnownRValue();
5087         assert(RV.isScalar()); // complex should always just be direct
5088 
5089         llvm::Type *scalarType = RV.getScalarVal()->getType();
5090         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5091         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
5092 
5093         // Materialize to a temporary.
5094         addr =
5095             CreateTempAlloca(RV.getScalarVal()->getType(),
5096                              CharUnits::fromQuantity(std::max(
5097                                  layout->getAlignment().value(), scalarAlign)),
5098                              "tmp",
5099                              /*ArraySize=*/nullptr, &AllocaAddr);
5100         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5101 
5102         Builder.CreateStore(RV.getScalarVal(), addr);
5103       }
5104 
5105       addr = Builder.CreateElementBitCast(addr, coercionType);
5106 
5107       unsigned IRArgPos = FirstIRArg;
5108       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5109         llvm::Type *eltType = coercionType->getElementType(i);
5110         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5111         Address eltAddr = Builder.CreateStructGEP(addr, i);
5112         llvm::Value *elt = Builder.CreateLoad(eltAddr);
5113         IRCallArgs[IRArgPos++] = elt;
5114       }
5115       assert(IRArgPos == FirstIRArg + NumIRArgs);
5116 
5117       if (tempSize) {
5118         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5119       }
5120 
5121       break;
5122     }
5123 
5124     case ABIArgInfo::Expand: {
5125       unsigned IRArgPos = FirstIRArg;
5126       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5127       assert(IRArgPos == FirstIRArg + NumIRArgs);
5128       break;
5129     }
5130     }
5131   }
5132 
5133   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5134   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5135 
5136   // If we're using inalloca, set up that argument.
5137   if (ArgMemory.isValid()) {
5138     llvm::Value *Arg = ArgMemory.getPointer();
5139     if (CallInfo.isVariadic()) {
5140       // When passing non-POD arguments by value to variadic functions, we will
5141       // end up with a variadic prototype and an inalloca call site.  In such
5142       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
5143       // the callee.
5144       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5145       CalleePtr =
5146           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5147     } else {
5148       llvm::Type *LastParamTy =
5149           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5150       if (Arg->getType() != LastParamTy) {
5151 #ifndef NDEBUG
5152         // Assert that these structs have equivalent element types.
5153         llvm::StructType *FullTy = CallInfo.getArgStruct();
5154         if (!LastParamTy->isOpaquePointerTy()) {
5155           llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5156               LastParamTy->getNonOpaquePointerElementType());
5157           assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5158           for (auto DI = DeclaredTy->element_begin(),
5159                     DE = DeclaredTy->element_end(),
5160                     FI = FullTy->element_begin();
5161                DI != DE; ++DI, ++FI)
5162             assert(*DI == *FI);
5163         }
5164 #endif
5165         Arg = Builder.CreateBitCast(Arg, LastParamTy);
5166       }
5167     }
5168     assert(IRFunctionArgs.hasInallocaArg());
5169     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5170   }
5171 
5172   // 2. Prepare the function pointer.
5173 
5174   // If the callee is a bitcast of a non-variadic function to have a
5175   // variadic function pointer type, check to see if we can remove the
5176   // bitcast.  This comes up with unprototyped functions.
5177   //
5178   // This makes the IR nicer, but more importantly it ensures that we
5179   // can inline the function at -O0 if it is marked always_inline.
5180   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5181                                    llvm::Value *Ptr) -> llvm::Function * {
5182     if (!CalleeFT->isVarArg())
5183       return nullptr;
5184 
5185     // Get underlying value if it's a bitcast
5186     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5187       if (CE->getOpcode() == llvm::Instruction::BitCast)
5188         Ptr = CE->getOperand(0);
5189     }
5190 
5191     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5192     if (!OrigFn)
5193       return nullptr;
5194 
5195     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5196 
5197     // If the original type is variadic, or if any of the component types
5198     // disagree, we cannot remove the cast.
5199     if (OrigFT->isVarArg() ||
5200         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5201         OrigFT->getReturnType() != CalleeFT->getReturnType())
5202       return nullptr;
5203 
5204     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5205       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5206         return nullptr;
5207 
5208     return OrigFn;
5209   };
5210 
5211   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5212     CalleePtr = OrigFn;
5213     IRFuncTy = OrigFn->getFunctionType();
5214   }
5215 
5216   // 3. Perform the actual call.
5217 
5218   // Deactivate any cleanups that we're supposed to do immediately before
5219   // the call.
5220   if (!CallArgs.getCleanupsToDeactivate().empty())
5221     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5222 
5223   // Assert that the arguments we computed match up.  The IR verifier
5224   // will catch this, but this is a common enough source of problems
5225   // during IRGen changes that it's way better for debugging to catch
5226   // it ourselves here.
5227 #ifndef NDEBUG
5228   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5229   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5230     // Inalloca argument can have different type.
5231     if (IRFunctionArgs.hasInallocaArg() &&
5232         i == IRFunctionArgs.getInallocaArgNo())
5233       continue;
5234     if (i < IRFuncTy->getNumParams())
5235       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5236   }
5237 #endif
5238 
5239   // Update the largest vector width if any arguments have vector types.
5240   for (unsigned i = 0; i < IRCallArgs.size(); ++i)
5241     LargestVectorWidth = std::max(LargestVectorWidth,
5242                                   getMaxVectorWidth(IRCallArgs[i]->getType()));
5243 
5244   // Compute the calling convention and attributes.
5245   unsigned CallingConv;
5246   llvm::AttributeList Attrs;
5247   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5248                              Callee.getAbstractInfo(), Attrs, CallingConv,
5249                              /*AttrOnCallSite=*/true,
5250                              /*IsThunk=*/false);
5251 
5252   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5253     if (FD->hasAttr<StrictFPAttr>())
5254       // All calls within a strictfp function are marked strictfp
5255       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5256 
5257   // Add call-site nomerge attribute if exists.
5258   if (InNoMergeAttributedStmt)
5259     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5260 
5261   // Add call-site noinline attribute if exists.
5262   if (InNoInlineAttributedStmt)
5263     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5264 
5265   // Add call-site always_inline attribute if exists.
5266   if (InAlwaysInlineAttributedStmt)
5267     Attrs =
5268         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5269 
5270   // Apply some call-site-specific attributes.
5271   // TODO: work this into building the attribute set.
5272 
5273   // Apply always_inline to all calls within flatten functions.
5274   // FIXME: should this really take priority over __try, below?
5275   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5276       !InNoInlineAttributedStmt &&
5277       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5278     Attrs =
5279         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5280   }
5281 
5282   // Disable inlining inside SEH __try blocks.
5283   if (isSEHTryScope()) {
5284     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5285   }
5286 
5287   // Decide whether to use a call or an invoke.
5288   bool CannotThrow;
5289   if (currentFunctionUsesSEHTry()) {
5290     // SEH cares about asynchronous exceptions, so everything can "throw."
5291     CannotThrow = false;
5292   } else if (isCleanupPadScope() &&
5293              EHPersonality::get(*this).isMSVCXXPersonality()) {
5294     // The MSVC++ personality will implicitly terminate the program if an
5295     // exception is thrown during a cleanup outside of a try/catch.
5296     // We don't need to model anything in IR to get this behavior.
5297     CannotThrow = true;
5298   } else {
5299     // Otherwise, nounwind call sites will never throw.
5300     CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5301 
5302     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5303       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5304         CannotThrow = true;
5305   }
5306 
5307   // If we made a temporary, be sure to clean up after ourselves. Note that we
5308   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5309   // pop this cleanup later on. Being eager about this is OK, since this
5310   // temporary is 'invisible' outside of the callee.
5311   if (UnusedReturnSizePtr)
5312     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5313                                          UnusedReturnSizePtr);
5314 
5315   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5316 
5317   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5318       getBundlesForFunclet(CalleePtr);
5319 
5320   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5321     if (FD->hasAttr<StrictFPAttr>())
5322       // All calls within a strictfp function are marked strictfp
5323       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5324 
5325   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5326   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5327 
5328   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5329   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5330 
5331   // Emit the actual call/invoke instruction.
5332   llvm::CallBase *CI;
5333   if (!InvokeDest) {
5334     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5335   } else {
5336     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5337     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5338                               BundleList);
5339     EmitBlock(Cont);
5340   }
5341   if (callOrInvoke)
5342     *callOrInvoke = CI;
5343 
5344   // If this is within a function that has the guard(nocf) attribute and is an
5345   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5346   // Control Flow Guard checks should not be added, even if the call is inlined.
5347   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5348     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5349       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5350         Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5351     }
5352   }
5353 
5354   // Apply the attributes and calling convention.
5355   CI->setAttributes(Attrs);
5356   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5357 
5358   // Apply various metadata.
5359 
5360   if (!CI->getType()->isVoidTy())
5361     CI->setName("call");
5362 
5363   // Update largest vector width from the return type.
5364   LargestVectorWidth =
5365       std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType()));
5366 
5367   // Insert instrumentation or attach profile metadata at indirect call sites.
5368   // For more details, see the comment before the definition of
5369   // IPVK_IndirectCallTarget in InstrProfData.inc.
5370   if (!CI->getCalledFunction())
5371     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5372                      CI, CalleePtr);
5373 
5374   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5375   // optimizer it can aggressively ignore unwind edges.
5376   if (CGM.getLangOpts().ObjCAutoRefCount)
5377     AddObjCARCExceptionMetadata(CI);
5378 
5379   // Set tail call kind if necessary.
5380   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5381     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5382       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5383     else if (IsMustTail)
5384       Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5385   }
5386 
5387   // Add metadata for calls to MSAllocator functions
5388   if (getDebugInfo() && TargetDecl &&
5389       TargetDecl->hasAttr<MSAllocatorAttr>())
5390     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5391 
5392   // Add metadata if calling an __attribute__((error(""))) or warning fn.
5393   if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5394     llvm::ConstantInt *Line =
5395         llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5396     llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5397     llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5398     CI->setMetadata("srcloc", MDT);
5399   }
5400 
5401   // 4. Finish the call.
5402 
5403   // If the call doesn't return, finish the basic block and clear the
5404   // insertion point; this allows the rest of IRGen to discard
5405   // unreachable code.
5406   if (CI->doesNotReturn()) {
5407     if (UnusedReturnSizePtr)
5408       PopCleanupBlock();
5409 
5410     // Strip away the noreturn attribute to better diagnose unreachable UB.
5411     if (SanOpts.has(SanitizerKind::Unreachable)) {
5412       // Also remove from function since CallBase::hasFnAttr additionally checks
5413       // attributes of the called function.
5414       if (auto *F = CI->getCalledFunction())
5415         F->removeFnAttr(llvm::Attribute::NoReturn);
5416       CI->removeFnAttr(llvm::Attribute::NoReturn);
5417 
5418       // Avoid incompatibility with ASan which relies on the `noreturn`
5419       // attribute to insert handler calls.
5420       if (SanOpts.hasOneOf(SanitizerKind::Address |
5421                            SanitizerKind::KernelAddress)) {
5422         SanitizerScope SanScope(this);
5423         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5424         Builder.SetInsertPoint(CI);
5425         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5426         llvm::FunctionCallee Fn =
5427             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5428         EmitNounwindRuntimeCall(Fn);
5429       }
5430     }
5431 
5432     EmitUnreachable(Loc);
5433     Builder.ClearInsertionPoint();
5434 
5435     // FIXME: For now, emit a dummy basic block because expr emitters in
5436     // generally are not ready to handle emitting expressions at unreachable
5437     // points.
5438     EnsureInsertPoint();
5439 
5440     // Return a reasonable RValue.
5441     return GetUndefRValue(RetTy);
5442   }
5443 
5444   // If this is a musttail call, return immediately. We do not branch to the
5445   // epilogue in this case.
5446   if (IsMustTail) {
5447     for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5448          ++it) {
5449       EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5450       if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5451         CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5452     }
5453     if (CI->getType()->isVoidTy())
5454       Builder.CreateRetVoid();
5455     else
5456       Builder.CreateRet(CI);
5457     Builder.ClearInsertionPoint();
5458     EnsureInsertPoint();
5459     return GetUndefRValue(RetTy);
5460   }
5461 
5462   // Perform the swifterror writeback.
5463   if (swiftErrorTemp.isValid()) {
5464     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5465     Builder.CreateStore(errorResult, swiftErrorArg);
5466   }
5467 
5468   // Emit any call-associated writebacks immediately.  Arguably this
5469   // should happen after any return-value munging.
5470   if (CallArgs.hasWritebacks())
5471     emitWritebacks(*this, CallArgs);
5472 
5473   // The stack cleanup for inalloca arguments has to run out of the normal
5474   // lexical order, so deactivate it and run it manually here.
5475   CallArgs.freeArgumentMemory(*this);
5476 
5477   // Extract the return value.
5478   RValue Ret = [&] {
5479     switch (RetAI.getKind()) {
5480     case ABIArgInfo::CoerceAndExpand: {
5481       auto coercionType = RetAI.getCoerceAndExpandType();
5482 
5483       Address addr = SRetPtr;
5484       addr = Builder.CreateElementBitCast(addr, coercionType);
5485 
5486       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5487       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5488 
5489       unsigned unpaddedIndex = 0;
5490       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5491         llvm::Type *eltType = coercionType->getElementType(i);
5492         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5493         Address eltAddr = Builder.CreateStructGEP(addr, i);
5494         llvm::Value *elt = CI;
5495         if (requiresExtract)
5496           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5497         else
5498           assert(unpaddedIndex == 0);
5499         Builder.CreateStore(elt, eltAddr);
5500       }
5501       // FALLTHROUGH
5502       LLVM_FALLTHROUGH;
5503     }
5504 
5505     case ABIArgInfo::InAlloca:
5506     case ABIArgInfo::Indirect: {
5507       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5508       if (UnusedReturnSizePtr)
5509         PopCleanupBlock();
5510       return ret;
5511     }
5512 
5513     case ABIArgInfo::Ignore:
5514       // If we are ignoring an argument that had a result, make sure to
5515       // construct the appropriate return value for our caller.
5516       return GetUndefRValue(RetTy);
5517 
5518     case ABIArgInfo::Extend:
5519     case ABIArgInfo::Direct: {
5520       llvm::Type *RetIRTy = ConvertType(RetTy);
5521       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5522         switch (getEvaluationKind(RetTy)) {
5523         case TEK_Complex: {
5524           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5525           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5526           return RValue::getComplex(std::make_pair(Real, Imag));
5527         }
5528         case TEK_Aggregate: {
5529           Address DestPtr = ReturnValue.getValue();
5530           bool DestIsVolatile = ReturnValue.isVolatile();
5531 
5532           if (!DestPtr.isValid()) {
5533             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5534             DestIsVolatile = false;
5535           }
5536           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5537           return RValue::getAggregate(DestPtr);
5538         }
5539         case TEK_Scalar: {
5540           // If the argument doesn't match, perform a bitcast to coerce it.  This
5541           // can happen due to trivial type mismatches.
5542           llvm::Value *V = CI;
5543           if (V->getType() != RetIRTy)
5544             V = Builder.CreateBitCast(V, RetIRTy);
5545           return RValue::get(V);
5546         }
5547         }
5548         llvm_unreachable("bad evaluation kind");
5549       }
5550 
5551       Address DestPtr = ReturnValue.getValue();
5552       bool DestIsVolatile = ReturnValue.isVolatile();
5553 
5554       if (!DestPtr.isValid()) {
5555         DestPtr = CreateMemTemp(RetTy, "coerce");
5556         DestIsVolatile = false;
5557       }
5558 
5559       // If the value is offset in memory, apply the offset now.
5560       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5561       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5562 
5563       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5564     }
5565 
5566     case ABIArgInfo::Expand:
5567     case ABIArgInfo::IndirectAliased:
5568       llvm_unreachable("Invalid ABI kind for return argument");
5569     }
5570 
5571     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5572   } ();
5573 
5574   // Emit the assume_aligned check on the return value.
5575   if (Ret.isScalar() && TargetDecl) {
5576     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5577     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5578   }
5579 
5580   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5581   // we can't use the full cleanup mechanism.
5582   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5583     LifetimeEnd.Emit(*this, /*Flags=*/{});
5584 
5585   if (!ReturnValue.isExternallyDestructed() &&
5586       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5587     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5588                 RetTy);
5589 
5590   return Ret;
5591 }
5592 
5593 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5594   if (isVirtual()) {
5595     const CallExpr *CE = getVirtualCallExpr();
5596     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5597         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5598         CE ? CE->getBeginLoc() : SourceLocation());
5599   }
5600 
5601   return *this;
5602 }
5603 
5604 /* VarArg handling */
5605 
5606 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5607   VAListAddr = VE->isMicrosoftABI()
5608                  ? EmitMSVAListRef(VE->getSubExpr())
5609                  : EmitVAListRef(VE->getSubExpr());
5610   QualType Ty = VE->getType();
5611   if (VE->isMicrosoftABI())
5612     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5613   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5614 }
5615