1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Basic/TargetBuiltins.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 using namespace clang;
38 using namespace CodeGen;
39 
40 /***/
41 
42 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
43   switch (CC) {
44   default: return llvm::CallingConv::C;
45   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
46   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
47   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
48   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
49   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
50   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
51   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
52   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
53   // TODO: Add support for __pascal to LLVM.
54   case CC_X86Pascal: return llvm::CallingConv::C;
55   // TODO: Add support for __vectorcall to LLVM.
56   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
57   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
58   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
59   }
60 }
61 
62 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
63 /// qualification.
64 /// FIXME: address space qualification?
65 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
66   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
67   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
68 }
69 
70 /// Returns the canonical formal type of the given C++ method.
71 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
72   return MD->getType()->getCanonicalTypeUnqualified()
73            .getAs<FunctionProtoType>();
74 }
75 
76 /// Returns the "extra-canonicalized" return type, which discards
77 /// qualifiers on the return type.  Codegen doesn't care about them,
78 /// and it makes ABI code a little easier to be able to assume that
79 /// all parameter and return types are top-level unqualified.
80 static CanQualType GetReturnType(QualType RetTy) {
81   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
82 }
83 
84 /// Arrange the argument and result information for a value of the given
85 /// unprototyped freestanding function type.
86 const CGFunctionInfo &
87 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
88   // When translating an unprototyped function type, always use a
89   // variadic type.
90   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
91                                  /*instanceMethod=*/false,
92                                  /*chainCall=*/false, None,
93                                  FTNP->getExtInfo(), RequiredArgs(0));
94 }
95 
96 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in
97 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
98 static void appendParameterTypes(const CodeGenTypes &CGT,
99                                  SmallVectorImpl<CanQualType> &prefix,
100                                  const CanQual<FunctionProtoType> &FPT,
101                                  const FunctionDecl *FD) {
102   // Fast path: unknown target.
103   if (FD == nullptr) {
104     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
105     return;
106   }
107 
108   // In the vast majority cases, we'll have precisely FPT->getNumParams()
109   // parameters; the only thing that can change this is the presence of
110   // pass_object_size. So, we preallocate for the common case.
111   prefix.reserve(prefix.size() + FPT->getNumParams());
112 
113   assert(FD->getNumParams() == FPT->getNumParams());
114   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
115     prefix.push_back(FPT->getParamType(I));
116     if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>())
117       prefix.push_back(CGT.getContext().getSizeType());
118   }
119 }
120 
121 /// Arrange the LLVM function layout for a value of the given function
122 /// type, on top of any implicit parameters already stored.
123 static const CGFunctionInfo &
124 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
125                         SmallVectorImpl<CanQualType> &prefix,
126                         CanQual<FunctionProtoType> FTP,
127                         const FunctionDecl *FD) {
128   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
129   // FIXME: Kill copy.
130   appendParameterTypes(CGT, prefix, FTP, FD);
131   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
132   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
133                                      /*chainCall=*/false, prefix,
134                                      FTP->getExtInfo(), required);
135 }
136 
137 /// Arrange the argument and result information for a value of the
138 /// given freestanding function type.
139 const CGFunctionInfo &
140 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
141                                       const FunctionDecl *FD) {
142   SmallVector<CanQualType, 16> argTypes;
143   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
144                                    FTP, FD);
145 }
146 
147 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
148   // Set the appropriate calling convention for the Function.
149   if (D->hasAttr<StdCallAttr>())
150     return CC_X86StdCall;
151 
152   if (D->hasAttr<FastCallAttr>())
153     return CC_X86FastCall;
154 
155   if (D->hasAttr<ThisCallAttr>())
156     return CC_X86ThisCall;
157 
158   if (D->hasAttr<VectorCallAttr>())
159     return CC_X86VectorCall;
160 
161   if (D->hasAttr<PascalAttr>())
162     return CC_X86Pascal;
163 
164   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
165     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
166 
167   if (D->hasAttr<IntelOclBiccAttr>())
168     return CC_IntelOclBicc;
169 
170   if (D->hasAttr<MSABIAttr>())
171     return IsWindows ? CC_C : CC_X86_64Win64;
172 
173   if (D->hasAttr<SysVABIAttr>())
174     return IsWindows ? CC_X86_64SysV : CC_C;
175 
176   return CC_C;
177 }
178 
179 /// Arrange the argument and result information for a call to an
180 /// unknown C++ non-static member function of the given abstract type.
181 /// (Zero value of RD means we don't have any meaningful "this" argument type,
182 ///  so fall back to a generic pointer type).
183 /// The member function must be an ordinary function, i.e. not a
184 /// constructor or destructor.
185 const CGFunctionInfo &
186 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
187                                    const FunctionProtoType *FTP,
188                                    const CXXMethodDecl *MD) {
189   SmallVector<CanQualType, 16> argTypes;
190 
191   // Add the 'this' pointer.
192   if (RD)
193     argTypes.push_back(GetThisType(Context, RD));
194   else
195     argTypes.push_back(Context.VoidPtrTy);
196 
197   return ::arrangeLLVMFunctionInfo(
198       *this, true, argTypes,
199       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
200 }
201 
202 /// Arrange the argument and result information for a declaration or
203 /// definition of the given C++ non-static member function.  The
204 /// member function must be an ordinary function, i.e. not a
205 /// constructor or destructor.
206 const CGFunctionInfo &
207 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
208   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
209   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
210 
211   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
212 
213   if (MD->isInstance()) {
214     // The abstract case is perfectly fine.
215     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
216     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
217   }
218 
219   return arrangeFreeFunctionType(prototype, MD);
220 }
221 
222 const CGFunctionInfo &
223 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
224                                             StructorType Type) {
225 
226   SmallVector<CanQualType, 16> argTypes;
227   argTypes.push_back(GetThisType(Context, MD->getParent()));
228 
229   GlobalDecl GD;
230   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
231     GD = GlobalDecl(CD, toCXXCtorType(Type));
232   } else {
233     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
234     GD = GlobalDecl(DD, toCXXDtorType(Type));
235   }
236 
237   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
238 
239   // Add the formal parameters.
240   appendParameterTypes(*this, argTypes, FTP, MD);
241 
242   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
243 
244   RequiredArgs required =
245       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
246 
247   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
248   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
249                                ? argTypes.front()
250                                : TheCXXABI.hasMostDerivedReturn(GD)
251                                      ? CGM.getContext().VoidPtrTy
252                                      : Context.VoidTy;
253   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
254                                  /*chainCall=*/false, argTypes, extInfo,
255                                  required);
256 }
257 
258 /// Arrange a call to a C++ method, passing the given arguments.
259 const CGFunctionInfo &
260 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
261                                         const CXXConstructorDecl *D,
262                                         CXXCtorType CtorKind,
263                                         unsigned ExtraArgs) {
264   // FIXME: Kill copy.
265   SmallVector<CanQualType, 16> ArgTypes;
266   for (const auto &Arg : args)
267     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
268 
269   CanQual<FunctionProtoType> FPT = GetFormalType(D);
270   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
271   GlobalDecl GD(D, CtorKind);
272   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
273                                ? ArgTypes.front()
274                                : TheCXXABI.hasMostDerivedReturn(GD)
275                                      ? CGM.getContext().VoidPtrTy
276                                      : Context.VoidTy;
277 
278   FunctionType::ExtInfo Info = FPT->getExtInfo();
279   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
280                                  /*chainCall=*/false, ArgTypes, Info,
281                                  Required);
282 }
283 
284 /// Arrange the argument and result information for the declaration or
285 /// definition of the given function.
286 const CGFunctionInfo &
287 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
288   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
289     if (MD->isInstance())
290       return arrangeCXXMethodDeclaration(MD);
291 
292   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
293 
294   assert(isa<FunctionType>(FTy));
295 
296   // When declaring a function without a prototype, always use a
297   // non-variadic type.
298   if (isa<FunctionNoProtoType>(FTy)) {
299     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
300     return arrangeLLVMFunctionInfo(
301         noProto->getReturnType(), /*instanceMethod=*/false,
302         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
303   }
304 
305   assert(isa<FunctionProtoType>(FTy));
306   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD);
307 }
308 
309 /// Arrange the argument and result information for the declaration or
310 /// definition of an Objective-C method.
311 const CGFunctionInfo &
312 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
313   // It happens that this is the same as a call with no optional
314   // arguments, except also using the formal 'self' type.
315   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
316 }
317 
318 /// Arrange the argument and result information for the function type
319 /// through which to perform a send to the given Objective-C method,
320 /// using the given receiver type.  The receiver type is not always
321 /// the 'self' type of the method or even an Objective-C pointer type.
322 /// This is *not* the right method for actually performing such a
323 /// message send, due to the possibility of optional arguments.
324 const CGFunctionInfo &
325 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
326                                               QualType receiverType) {
327   SmallVector<CanQualType, 16> argTys;
328   argTys.push_back(Context.getCanonicalParamType(receiverType));
329   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
330   // FIXME: Kill copy?
331   for (const auto *I : MD->params()) {
332     argTys.push_back(Context.getCanonicalParamType(I->getType()));
333   }
334 
335   FunctionType::ExtInfo einfo;
336   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
337   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
338 
339   if (getContext().getLangOpts().ObjCAutoRefCount &&
340       MD->hasAttr<NSReturnsRetainedAttr>())
341     einfo = einfo.withProducesResult(true);
342 
343   RequiredArgs required =
344     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
345 
346   return arrangeLLVMFunctionInfo(
347       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
348       /*chainCall=*/false, argTys, einfo, required);
349 }
350 
351 const CGFunctionInfo &
352 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
353   // FIXME: Do we need to handle ObjCMethodDecl?
354   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
355 
356   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
357     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
358 
359   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
360     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
361 
362   return arrangeFunctionDeclaration(FD);
363 }
364 
365 /// Arrange a thunk that takes 'this' as the first parameter followed by
366 /// varargs.  Return a void pointer, regardless of the actual return type.
367 /// The body of the thunk will end in a musttail call to a function of the
368 /// correct type, and the caller will bitcast the function to the correct
369 /// prototype.
370 const CGFunctionInfo &
371 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
372   assert(MD->isVirtual() && "only virtual memptrs have thunks");
373   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
374   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
375   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
376                                  /*chainCall=*/false, ArgTys,
377                                  FTP->getExtInfo(), RequiredArgs(1));
378 }
379 
380 const CGFunctionInfo &
381 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
382                                    CXXCtorType CT) {
383   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
384 
385   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
386   SmallVector<CanQualType, 2> ArgTys;
387   const CXXRecordDecl *RD = CD->getParent();
388   ArgTys.push_back(GetThisType(Context, RD));
389   if (CT == Ctor_CopyingClosure)
390     ArgTys.push_back(*FTP->param_type_begin());
391   if (RD->getNumVBases() > 0)
392     ArgTys.push_back(Context.IntTy);
393   CallingConv CC = Context.getDefaultCallingConvention(
394       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
395   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
396                                  /*chainCall=*/false, ArgTys,
397                                  FunctionType::ExtInfo(CC), RequiredArgs::All);
398 }
399 
400 /// Arrange a call as unto a free function, except possibly with an
401 /// additional number of formal parameters considered required.
402 static const CGFunctionInfo &
403 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
404                             CodeGenModule &CGM,
405                             const CallArgList &args,
406                             const FunctionType *fnType,
407                             unsigned numExtraRequiredArgs,
408                             bool chainCall) {
409   assert(args.size() >= numExtraRequiredArgs);
410 
411   // In most cases, there are no optional arguments.
412   RequiredArgs required = RequiredArgs::All;
413 
414   // If we have a variadic prototype, the required arguments are the
415   // extra prefix plus the arguments in the prototype.
416   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
417     if (proto->isVariadic())
418       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
419 
420   // If we don't have a prototype at all, but we're supposed to
421   // explicitly use the variadic convention for unprototyped calls,
422   // treat all of the arguments as required but preserve the nominal
423   // possibility of variadics.
424   } else if (CGM.getTargetCodeGenInfo()
425                 .isNoProtoCallVariadic(args,
426                                        cast<FunctionNoProtoType>(fnType))) {
427     required = RequiredArgs(args.size());
428   }
429 
430   // FIXME: Kill copy.
431   SmallVector<CanQualType, 16> argTypes;
432   for (const auto &arg : args)
433     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
434   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
435                                      /*instanceMethod=*/false, chainCall,
436                                      argTypes, fnType->getExtInfo(), required);
437 }
438 
439 /// Figure out the rules for calling a function with the given formal
440 /// type using the given arguments.  The arguments are necessary
441 /// because the function might be unprototyped, in which case it's
442 /// target-dependent in crazy ways.
443 const CGFunctionInfo &
444 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
445                                       const FunctionType *fnType,
446                                       bool chainCall) {
447   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
448                                      chainCall ? 1 : 0, chainCall);
449 }
450 
451 /// A block function call is essentially a free-function call with an
452 /// extra implicit argument.
453 const CGFunctionInfo &
454 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
455                                        const FunctionType *fnType) {
456   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
457                                      /*chainCall=*/false);
458 }
459 
460 const CGFunctionInfo &
461 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
462                                       const CallArgList &args,
463                                       FunctionType::ExtInfo info,
464                                       RequiredArgs required) {
465   // FIXME: Kill copy.
466   SmallVector<CanQualType, 16> argTypes;
467   for (const auto &Arg : args)
468     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
469   return arrangeLLVMFunctionInfo(
470       GetReturnType(resultType), /*instanceMethod=*/false,
471       /*chainCall=*/false, argTypes, info, required);
472 }
473 
474 /// Arrange a call to a C++ method, passing the given arguments.
475 const CGFunctionInfo &
476 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
477                                    const FunctionProtoType *FPT,
478                                    RequiredArgs required) {
479   // FIXME: Kill copy.
480   SmallVector<CanQualType, 16> argTypes;
481   for (const auto &Arg : args)
482     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
483 
484   FunctionType::ExtInfo info = FPT->getExtInfo();
485   return arrangeLLVMFunctionInfo(
486       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
487       /*chainCall=*/false, argTypes, info, required);
488 }
489 
490 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
491     QualType resultType, const FunctionArgList &args,
492     const FunctionType::ExtInfo &info, bool isVariadic) {
493   // FIXME: Kill copy.
494   SmallVector<CanQualType, 16> argTypes;
495   for (auto Arg : args)
496     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
497 
498   RequiredArgs required =
499     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
500   return arrangeLLVMFunctionInfo(
501       GetReturnType(resultType), /*instanceMethod=*/false,
502       /*chainCall=*/false, argTypes, info, required);
503 }
504 
505 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
506   return arrangeLLVMFunctionInfo(
507       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
508       None, FunctionType::ExtInfo(), RequiredArgs::All);
509 }
510 
511 /// Arrange the argument and result information for an abstract value
512 /// of a given function type.  This is the method which all of the
513 /// above functions ultimately defer to.
514 const CGFunctionInfo &
515 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
516                                       bool instanceMethod,
517                                       bool chainCall,
518                                       ArrayRef<CanQualType> argTypes,
519                                       FunctionType::ExtInfo info,
520                                       RequiredArgs required) {
521   assert(std::all_of(argTypes.begin(), argTypes.end(),
522                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
523 
524   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
525 
526   // Lookup or create unique function info.
527   llvm::FoldingSetNodeID ID;
528   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
529                           resultType, argTypes);
530 
531   void *insertPos = nullptr;
532   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
533   if (FI)
534     return *FI;
535 
536   // Construct the function info.  We co-allocate the ArgInfos.
537   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
538                               resultType, argTypes, required);
539   FunctionInfos.InsertNode(FI, insertPos);
540 
541   bool inserted = FunctionsBeingProcessed.insert(FI).second;
542   (void)inserted;
543   assert(inserted && "Recursively being processed?");
544 
545   // Compute ABI information.
546   getABIInfo().computeInfo(*FI);
547 
548   // Loop over all of the computed argument and return value info.  If any of
549   // them are direct or extend without a specified coerce type, specify the
550   // default now.
551   ABIArgInfo &retInfo = FI->getReturnInfo();
552   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
553     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
554 
555   for (auto &I : FI->arguments())
556     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
557       I.info.setCoerceToType(ConvertType(I.type));
558 
559   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
560   assert(erased && "Not in set?");
561 
562   return *FI;
563 }
564 
565 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
566                                        bool instanceMethod,
567                                        bool chainCall,
568                                        const FunctionType::ExtInfo &info,
569                                        CanQualType resultType,
570                                        ArrayRef<CanQualType> argTypes,
571                                        RequiredArgs required) {
572   void *buffer = operator new(totalSizeToAlloc<ArgInfo>(argTypes.size() + 1));
573   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
574   FI->CallingConvention = llvmCC;
575   FI->EffectiveCallingConvention = llvmCC;
576   FI->ASTCallingConvention = info.getCC();
577   FI->InstanceMethod = instanceMethod;
578   FI->ChainCall = chainCall;
579   FI->NoReturn = info.getNoReturn();
580   FI->ReturnsRetained = info.getProducesResult();
581   FI->Required = required;
582   FI->HasRegParm = info.getHasRegParm();
583   FI->RegParm = info.getRegParm();
584   FI->ArgStruct = nullptr;
585   FI->ArgStructAlign = 0;
586   FI->NumArgs = argTypes.size();
587   FI->getArgsBuffer()[0].type = resultType;
588   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
589     FI->getArgsBuffer()[i + 1].type = argTypes[i];
590   return FI;
591 }
592 
593 /***/
594 
595 namespace {
596 // ABIArgInfo::Expand implementation.
597 
598 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
599 struct TypeExpansion {
600   enum TypeExpansionKind {
601     // Elements of constant arrays are expanded recursively.
602     TEK_ConstantArray,
603     // Record fields are expanded recursively (but if record is a union, only
604     // the field with the largest size is expanded).
605     TEK_Record,
606     // For complex types, real and imaginary parts are expanded recursively.
607     TEK_Complex,
608     // All other types are not expandable.
609     TEK_None
610   };
611 
612   const TypeExpansionKind Kind;
613 
614   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
615   virtual ~TypeExpansion() {}
616 };
617 
618 struct ConstantArrayExpansion : TypeExpansion {
619   QualType EltTy;
620   uint64_t NumElts;
621 
622   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
623       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
624   static bool classof(const TypeExpansion *TE) {
625     return TE->Kind == TEK_ConstantArray;
626   }
627 };
628 
629 struct RecordExpansion : TypeExpansion {
630   SmallVector<const CXXBaseSpecifier *, 1> Bases;
631 
632   SmallVector<const FieldDecl *, 1> Fields;
633 
634   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
635                   SmallVector<const FieldDecl *, 1> &&Fields)
636       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
637   static bool classof(const TypeExpansion *TE) {
638     return TE->Kind == TEK_Record;
639   }
640 };
641 
642 struct ComplexExpansion : TypeExpansion {
643   QualType EltTy;
644 
645   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
646   static bool classof(const TypeExpansion *TE) {
647     return TE->Kind == TEK_Complex;
648   }
649 };
650 
651 struct NoExpansion : TypeExpansion {
652   NoExpansion() : TypeExpansion(TEK_None) {}
653   static bool classof(const TypeExpansion *TE) {
654     return TE->Kind == TEK_None;
655   }
656 };
657 }  // namespace
658 
659 static std::unique_ptr<TypeExpansion>
660 getTypeExpansion(QualType Ty, const ASTContext &Context) {
661   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
662     return llvm::make_unique<ConstantArrayExpansion>(
663         AT->getElementType(), AT->getSize().getZExtValue());
664   }
665   if (const RecordType *RT = Ty->getAs<RecordType>()) {
666     SmallVector<const CXXBaseSpecifier *, 1> Bases;
667     SmallVector<const FieldDecl *, 1> Fields;
668     const RecordDecl *RD = RT->getDecl();
669     assert(!RD->hasFlexibleArrayMember() &&
670            "Cannot expand structure with flexible array.");
671     if (RD->isUnion()) {
672       // Unions can be here only in degenerative cases - all the fields are same
673       // after flattening. Thus we have to use the "largest" field.
674       const FieldDecl *LargestFD = nullptr;
675       CharUnits UnionSize = CharUnits::Zero();
676 
677       for (const auto *FD : RD->fields()) {
678         // Skip zero length bitfields.
679         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
680           continue;
681         assert(!FD->isBitField() &&
682                "Cannot expand structure with bit-field members.");
683         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
684         if (UnionSize < FieldSize) {
685           UnionSize = FieldSize;
686           LargestFD = FD;
687         }
688       }
689       if (LargestFD)
690         Fields.push_back(LargestFD);
691     } else {
692       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
693         assert(!CXXRD->isDynamicClass() &&
694                "cannot expand vtable pointers in dynamic classes");
695         for (const CXXBaseSpecifier &BS : CXXRD->bases())
696           Bases.push_back(&BS);
697       }
698 
699       for (const auto *FD : RD->fields()) {
700         // Skip zero length bitfields.
701         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
702           continue;
703         assert(!FD->isBitField() &&
704                "Cannot expand structure with bit-field members.");
705         Fields.push_back(FD);
706       }
707     }
708     return llvm::make_unique<RecordExpansion>(std::move(Bases),
709                                               std::move(Fields));
710   }
711   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
712     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
713   }
714   return llvm::make_unique<NoExpansion>();
715 }
716 
717 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
718   auto Exp = getTypeExpansion(Ty, Context);
719   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
720     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
721   }
722   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
723     int Res = 0;
724     for (auto BS : RExp->Bases)
725       Res += getExpansionSize(BS->getType(), Context);
726     for (auto FD : RExp->Fields)
727       Res += getExpansionSize(FD->getType(), Context);
728     return Res;
729   }
730   if (isa<ComplexExpansion>(Exp.get()))
731     return 2;
732   assert(isa<NoExpansion>(Exp.get()));
733   return 1;
734 }
735 
736 void
737 CodeGenTypes::getExpandedTypes(QualType Ty,
738                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
739   auto Exp = getTypeExpansion(Ty, Context);
740   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
741     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
742       getExpandedTypes(CAExp->EltTy, TI);
743     }
744   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
745     for (auto BS : RExp->Bases)
746       getExpandedTypes(BS->getType(), TI);
747     for (auto FD : RExp->Fields)
748       getExpandedTypes(FD->getType(), TI);
749   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
750     llvm::Type *EltTy = ConvertType(CExp->EltTy);
751     *TI++ = EltTy;
752     *TI++ = EltTy;
753   } else {
754     assert(isa<NoExpansion>(Exp.get()));
755     *TI++ = ConvertType(Ty);
756   }
757 }
758 
759 static void forConstantArrayExpansion(CodeGenFunction &CGF,
760                                       ConstantArrayExpansion *CAE,
761                                       Address BaseAddr,
762                                       llvm::function_ref<void(Address)> Fn) {
763   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
764   CharUnits EltAlign =
765     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
766 
767   for (int i = 0, n = CAE->NumElts; i < n; i++) {
768     llvm::Value *EltAddr =
769       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
770     Fn(Address(EltAddr, EltAlign));
771   }
772 }
773 
774 void CodeGenFunction::ExpandTypeFromArgs(
775     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
776   assert(LV.isSimple() &&
777          "Unexpected non-simple lvalue during struct expansion.");
778 
779   auto Exp = getTypeExpansion(Ty, getContext());
780   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
781     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
782                               [&](Address EltAddr) {
783       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
784       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
785     });
786   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
787     Address This = LV.getAddress();
788     for (const CXXBaseSpecifier *BS : RExp->Bases) {
789       // Perform a single step derived-to-base conversion.
790       Address Base =
791           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
792                                 /*NullCheckValue=*/false, SourceLocation());
793       LValue SubLV = MakeAddrLValue(Base, BS->getType());
794 
795       // Recurse onto bases.
796       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
797     }
798     for (auto FD : RExp->Fields) {
799       // FIXME: What are the right qualifiers here?
800       LValue SubLV = EmitLValueForField(LV, FD);
801       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
802     }
803   } else if (isa<ComplexExpansion>(Exp.get())) {
804     auto realValue = *AI++;
805     auto imagValue = *AI++;
806     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
807   } else {
808     assert(isa<NoExpansion>(Exp.get()));
809     EmitStoreThroughLValue(RValue::get(*AI++), LV);
810   }
811 }
812 
813 void CodeGenFunction::ExpandTypeToArgs(
814     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
815     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
816   auto Exp = getTypeExpansion(Ty, getContext());
817   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
818     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
819                               [&](Address EltAddr) {
820       RValue EltRV =
821           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
822       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
823     });
824   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
825     Address This = RV.getAggregateAddress();
826     for (const CXXBaseSpecifier *BS : RExp->Bases) {
827       // Perform a single step derived-to-base conversion.
828       Address Base =
829           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
830                                 /*NullCheckValue=*/false, SourceLocation());
831       RValue BaseRV = RValue::getAggregate(Base);
832 
833       // Recurse onto bases.
834       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
835                        IRCallArgPos);
836     }
837 
838     LValue LV = MakeAddrLValue(This, Ty);
839     for (auto FD : RExp->Fields) {
840       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
841       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
842                        IRCallArgPos);
843     }
844   } else if (isa<ComplexExpansion>(Exp.get())) {
845     ComplexPairTy CV = RV.getComplexVal();
846     IRCallArgs[IRCallArgPos++] = CV.first;
847     IRCallArgs[IRCallArgPos++] = CV.second;
848   } else {
849     assert(isa<NoExpansion>(Exp.get()));
850     assert(RV.isScalar() &&
851            "Unexpected non-scalar rvalue during struct expansion.");
852 
853     // Insert a bitcast as needed.
854     llvm::Value *V = RV.getScalarVal();
855     if (IRCallArgPos < IRFuncTy->getNumParams() &&
856         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
857       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
858 
859     IRCallArgs[IRCallArgPos++] = V;
860   }
861 }
862 
863 /// Create a temporary allocation for the purposes of coercion.
864 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
865                                            CharUnits MinAlign) {
866   // Don't use an alignment that's worse than what LLVM would prefer.
867   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
868   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
869 
870   return CGF.CreateTempAlloca(Ty, Align);
871 }
872 
873 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
874 /// accessing some number of bytes out of it, try to gep into the struct to get
875 /// at its inner goodness.  Dive as deep as possible without entering an element
876 /// with an in-memory size smaller than DstSize.
877 static Address
878 EnterStructPointerForCoercedAccess(Address SrcPtr,
879                                    llvm::StructType *SrcSTy,
880                                    uint64_t DstSize, CodeGenFunction &CGF) {
881   // We can't dive into a zero-element struct.
882   if (SrcSTy->getNumElements() == 0) return SrcPtr;
883 
884   llvm::Type *FirstElt = SrcSTy->getElementType(0);
885 
886   // If the first elt is at least as large as what we're looking for, or if the
887   // first element is the same size as the whole struct, we can enter it. The
888   // comparison must be made on the store size and not the alloca size. Using
889   // the alloca size may overstate the size of the load.
890   uint64_t FirstEltSize =
891     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
892   if (FirstEltSize < DstSize &&
893       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
894     return SrcPtr;
895 
896   // GEP into the first element.
897   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
898 
899   // If the first element is a struct, recurse.
900   llvm::Type *SrcTy = SrcPtr.getElementType();
901   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
902     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
903 
904   return SrcPtr;
905 }
906 
907 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
908 /// are either integers or pointers.  This does a truncation of the value if it
909 /// is too large or a zero extension if it is too small.
910 ///
911 /// This behaves as if the value were coerced through memory, so on big-endian
912 /// targets the high bits are preserved in a truncation, while little-endian
913 /// targets preserve the low bits.
914 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
915                                              llvm::Type *Ty,
916                                              CodeGenFunction &CGF) {
917   if (Val->getType() == Ty)
918     return Val;
919 
920   if (isa<llvm::PointerType>(Val->getType())) {
921     // If this is Pointer->Pointer avoid conversion to and from int.
922     if (isa<llvm::PointerType>(Ty))
923       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
924 
925     // Convert the pointer to an integer so we can play with its width.
926     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
927   }
928 
929   llvm::Type *DestIntTy = Ty;
930   if (isa<llvm::PointerType>(DestIntTy))
931     DestIntTy = CGF.IntPtrTy;
932 
933   if (Val->getType() != DestIntTy) {
934     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
935     if (DL.isBigEndian()) {
936       // Preserve the high bits on big-endian targets.
937       // That is what memory coercion does.
938       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
939       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
940 
941       if (SrcSize > DstSize) {
942         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
943         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
944       } else {
945         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
946         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
947       }
948     } else {
949       // Little-endian targets preserve the low bits. No shifts required.
950       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
951     }
952   }
953 
954   if (isa<llvm::PointerType>(Ty))
955     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
956   return Val;
957 }
958 
959 
960 
961 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
962 /// a pointer to an object of type \arg Ty, known to be aligned to
963 /// \arg SrcAlign bytes.
964 ///
965 /// This safely handles the case when the src type is smaller than the
966 /// destination type; in this situation the values of bits which not
967 /// present in the src are undefined.
968 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
969                                       CodeGenFunction &CGF) {
970   llvm::Type *SrcTy = Src.getElementType();
971 
972   // If SrcTy and Ty are the same, just do a load.
973   if (SrcTy == Ty)
974     return CGF.Builder.CreateLoad(Src);
975 
976   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
977 
978   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
979     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
980     SrcTy = Src.getType()->getElementType();
981   }
982 
983   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
984 
985   // If the source and destination are integer or pointer types, just do an
986   // extension or truncation to the desired type.
987   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
988       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
989     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
990     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
991   }
992 
993   // If load is legal, just bitcast the src pointer.
994   if (SrcSize >= DstSize) {
995     // Generally SrcSize is never greater than DstSize, since this means we are
996     // losing bits. However, this can happen in cases where the structure has
997     // additional padding, for example due to a user specified alignment.
998     //
999     // FIXME: Assert that we aren't truncating non-padding bits when have access
1000     // to that information.
1001     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
1002     return CGF.Builder.CreateLoad(Src);
1003   }
1004 
1005   // Otherwise do coercion through memory. This is stupid, but simple.
1006   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1007   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1008   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
1009   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1010       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1011       false);
1012   return CGF.Builder.CreateLoad(Tmp);
1013 }
1014 
1015 // Function to store a first-class aggregate into memory.  We prefer to
1016 // store the elements rather than the aggregate to be more friendly to
1017 // fast-isel.
1018 // FIXME: Do we need to recurse here?
1019 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1020                           Address Dest, bool DestIsVolatile) {
1021   // Prefer scalar stores to first-class aggregate stores.
1022   if (llvm::StructType *STy =
1023         dyn_cast<llvm::StructType>(Val->getType())) {
1024     const llvm::StructLayout *Layout =
1025       CGF.CGM.getDataLayout().getStructLayout(STy);
1026 
1027     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1028       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1029       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1030       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1031       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1032     }
1033   } else {
1034     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1035   }
1036 }
1037 
1038 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1039 /// where the source and destination may have different types.  The
1040 /// destination is known to be aligned to \arg DstAlign bytes.
1041 ///
1042 /// This safely handles the case when the src type is larger than the
1043 /// destination type; the upper bits of the src will be lost.
1044 static void CreateCoercedStore(llvm::Value *Src,
1045                                Address Dst,
1046                                bool DstIsVolatile,
1047                                CodeGenFunction &CGF) {
1048   llvm::Type *SrcTy = Src->getType();
1049   llvm::Type *DstTy = Dst.getType()->getElementType();
1050   if (SrcTy == DstTy) {
1051     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1052     return;
1053   }
1054 
1055   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1056 
1057   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1058     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1059     DstTy = Dst.getType()->getElementType();
1060   }
1061 
1062   // If the source and destination are integer or pointer types, just do an
1063   // extension or truncation to the desired type.
1064   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1065       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1066     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1067     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1068     return;
1069   }
1070 
1071   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1072 
1073   // If store is legal, just bitcast the src pointer.
1074   if (SrcSize <= DstSize) {
1075     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1076     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1077   } else {
1078     // Otherwise do coercion through memory. This is stupid, but
1079     // simple.
1080 
1081     // Generally SrcSize is never greater than DstSize, since this means we are
1082     // losing bits. However, this can happen in cases where the structure has
1083     // additional padding, for example due to a user specified alignment.
1084     //
1085     // FIXME: Assert that we aren't truncating non-padding bits when have access
1086     // to that information.
1087     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1088     CGF.Builder.CreateStore(Src, Tmp);
1089     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1090     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1091     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1092         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1093         false);
1094   }
1095 }
1096 
1097 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1098                                    const ABIArgInfo &info) {
1099   if (unsigned offset = info.getDirectOffset()) {
1100     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1101     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1102                                              CharUnits::fromQuantity(offset));
1103     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1104   }
1105   return addr;
1106 }
1107 
1108 namespace {
1109 
1110 /// Encapsulates information about the way function arguments from
1111 /// CGFunctionInfo should be passed to actual LLVM IR function.
1112 class ClangToLLVMArgMapping {
1113   static const unsigned InvalidIndex = ~0U;
1114   unsigned InallocaArgNo;
1115   unsigned SRetArgNo;
1116   unsigned TotalIRArgs;
1117 
1118   /// Arguments of LLVM IR function corresponding to single Clang argument.
1119   struct IRArgs {
1120     unsigned PaddingArgIndex;
1121     // Argument is expanded to IR arguments at positions
1122     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1123     unsigned FirstArgIndex;
1124     unsigned NumberOfArgs;
1125 
1126     IRArgs()
1127         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1128           NumberOfArgs(0) {}
1129   };
1130 
1131   SmallVector<IRArgs, 8> ArgInfo;
1132 
1133 public:
1134   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1135                         bool OnlyRequiredArgs = false)
1136       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1137         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1138     construct(Context, FI, OnlyRequiredArgs);
1139   }
1140 
1141   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1142   unsigned getInallocaArgNo() const {
1143     assert(hasInallocaArg());
1144     return InallocaArgNo;
1145   }
1146 
1147   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1148   unsigned getSRetArgNo() const {
1149     assert(hasSRetArg());
1150     return SRetArgNo;
1151   }
1152 
1153   unsigned totalIRArgs() const { return TotalIRArgs; }
1154 
1155   bool hasPaddingArg(unsigned ArgNo) const {
1156     assert(ArgNo < ArgInfo.size());
1157     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1158   }
1159   unsigned getPaddingArgNo(unsigned ArgNo) const {
1160     assert(hasPaddingArg(ArgNo));
1161     return ArgInfo[ArgNo].PaddingArgIndex;
1162   }
1163 
1164   /// Returns index of first IR argument corresponding to ArgNo, and their
1165   /// quantity.
1166   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1167     assert(ArgNo < ArgInfo.size());
1168     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1169                           ArgInfo[ArgNo].NumberOfArgs);
1170   }
1171 
1172 private:
1173   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1174                  bool OnlyRequiredArgs);
1175 };
1176 
1177 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1178                                       const CGFunctionInfo &FI,
1179                                       bool OnlyRequiredArgs) {
1180   unsigned IRArgNo = 0;
1181   bool SwapThisWithSRet = false;
1182   const ABIArgInfo &RetAI = FI.getReturnInfo();
1183 
1184   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1185     SwapThisWithSRet = RetAI.isSRetAfterThis();
1186     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1187   }
1188 
1189   unsigned ArgNo = 0;
1190   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1191   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1192        ++I, ++ArgNo) {
1193     assert(I != FI.arg_end());
1194     QualType ArgType = I->type;
1195     const ABIArgInfo &AI = I->info;
1196     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1197     auto &IRArgs = ArgInfo[ArgNo];
1198 
1199     if (AI.getPaddingType())
1200       IRArgs.PaddingArgIndex = IRArgNo++;
1201 
1202     switch (AI.getKind()) {
1203     case ABIArgInfo::Extend:
1204     case ABIArgInfo::Direct: {
1205       // FIXME: handle sseregparm someday...
1206       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1207       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1208         IRArgs.NumberOfArgs = STy->getNumElements();
1209       } else {
1210         IRArgs.NumberOfArgs = 1;
1211       }
1212       break;
1213     }
1214     case ABIArgInfo::Indirect:
1215       IRArgs.NumberOfArgs = 1;
1216       break;
1217     case ABIArgInfo::Ignore:
1218     case ABIArgInfo::InAlloca:
1219       // ignore and inalloca doesn't have matching LLVM parameters.
1220       IRArgs.NumberOfArgs = 0;
1221       break;
1222     case ABIArgInfo::Expand: {
1223       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1224       break;
1225     }
1226     }
1227 
1228     if (IRArgs.NumberOfArgs > 0) {
1229       IRArgs.FirstArgIndex = IRArgNo;
1230       IRArgNo += IRArgs.NumberOfArgs;
1231     }
1232 
1233     // Skip over the sret parameter when it comes second.  We already handled it
1234     // above.
1235     if (IRArgNo == 1 && SwapThisWithSRet)
1236       IRArgNo++;
1237   }
1238   assert(ArgNo == ArgInfo.size());
1239 
1240   if (FI.usesInAlloca())
1241     InallocaArgNo = IRArgNo++;
1242 
1243   TotalIRArgs = IRArgNo;
1244 }
1245 }  // namespace
1246 
1247 /***/
1248 
1249 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1250   return FI.getReturnInfo().isIndirect();
1251 }
1252 
1253 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1254   return ReturnTypeUsesSRet(FI) &&
1255          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1256 }
1257 
1258 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1259   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1260     switch (BT->getKind()) {
1261     default:
1262       return false;
1263     case BuiltinType::Float:
1264       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1265     case BuiltinType::Double:
1266       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1267     case BuiltinType::LongDouble:
1268       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1269     }
1270   }
1271 
1272   return false;
1273 }
1274 
1275 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1276   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1277     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1278       if (BT->getKind() == BuiltinType::LongDouble)
1279         return getTarget().useObjCFP2RetForComplexLongDouble();
1280     }
1281   }
1282 
1283   return false;
1284 }
1285 
1286 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1287   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1288   return GetFunctionType(FI);
1289 }
1290 
1291 llvm::FunctionType *
1292 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1293 
1294   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1295   (void)Inserted;
1296   assert(Inserted && "Recursively being processed?");
1297 
1298   llvm::Type *resultType = nullptr;
1299   const ABIArgInfo &retAI = FI.getReturnInfo();
1300   switch (retAI.getKind()) {
1301   case ABIArgInfo::Expand:
1302     llvm_unreachable("Invalid ABI kind for return argument");
1303 
1304   case ABIArgInfo::Extend:
1305   case ABIArgInfo::Direct:
1306     resultType = retAI.getCoerceToType();
1307     break;
1308 
1309   case ABIArgInfo::InAlloca:
1310     if (retAI.getInAllocaSRet()) {
1311       // sret things on win32 aren't void, they return the sret pointer.
1312       QualType ret = FI.getReturnType();
1313       llvm::Type *ty = ConvertType(ret);
1314       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1315       resultType = llvm::PointerType::get(ty, addressSpace);
1316     } else {
1317       resultType = llvm::Type::getVoidTy(getLLVMContext());
1318     }
1319     break;
1320 
1321   case ABIArgInfo::Indirect:
1322   case ABIArgInfo::Ignore:
1323     resultType = llvm::Type::getVoidTy(getLLVMContext());
1324     break;
1325   }
1326 
1327   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1328   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1329 
1330   // Add type for sret argument.
1331   if (IRFunctionArgs.hasSRetArg()) {
1332     QualType Ret = FI.getReturnType();
1333     llvm::Type *Ty = ConvertType(Ret);
1334     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1335     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1336         llvm::PointerType::get(Ty, AddressSpace);
1337   }
1338 
1339   // Add type for inalloca argument.
1340   if (IRFunctionArgs.hasInallocaArg()) {
1341     auto ArgStruct = FI.getArgStruct();
1342     assert(ArgStruct);
1343     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1344   }
1345 
1346   // Add in all of the required arguments.
1347   unsigned ArgNo = 0;
1348   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1349                                      ie = it + FI.getNumRequiredArgs();
1350   for (; it != ie; ++it, ++ArgNo) {
1351     const ABIArgInfo &ArgInfo = it->info;
1352 
1353     // Insert a padding type to ensure proper alignment.
1354     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1355       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1356           ArgInfo.getPaddingType();
1357 
1358     unsigned FirstIRArg, NumIRArgs;
1359     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1360 
1361     switch (ArgInfo.getKind()) {
1362     case ABIArgInfo::Ignore:
1363     case ABIArgInfo::InAlloca:
1364       assert(NumIRArgs == 0);
1365       break;
1366 
1367     case ABIArgInfo::Indirect: {
1368       assert(NumIRArgs == 1);
1369       // indirect arguments are always on the stack, which is addr space #0.
1370       llvm::Type *LTy = ConvertTypeForMem(it->type);
1371       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1372       break;
1373     }
1374 
1375     case ABIArgInfo::Extend:
1376     case ABIArgInfo::Direct: {
1377       // Fast-isel and the optimizer generally like scalar values better than
1378       // FCAs, so we flatten them if this is safe to do for this argument.
1379       llvm::Type *argType = ArgInfo.getCoerceToType();
1380       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1381       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1382         assert(NumIRArgs == st->getNumElements());
1383         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1384           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1385       } else {
1386         assert(NumIRArgs == 1);
1387         ArgTypes[FirstIRArg] = argType;
1388       }
1389       break;
1390     }
1391 
1392     case ABIArgInfo::Expand:
1393       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1394       getExpandedTypes(it->type, ArgTypesIter);
1395       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1396       break;
1397     }
1398   }
1399 
1400   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1401   assert(Erased && "Not in set?");
1402 
1403   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1404 }
1405 
1406 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1407   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1408   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1409 
1410   if (!isFuncTypeConvertible(FPT))
1411     return llvm::StructType::get(getLLVMContext());
1412 
1413   const CGFunctionInfo *Info;
1414   if (isa<CXXDestructorDecl>(MD))
1415     Info =
1416         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1417   else
1418     Info = &arrangeCXXMethodDeclaration(MD);
1419   return GetFunctionType(*Info);
1420 }
1421 
1422 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1423                                                llvm::AttrBuilder &FuncAttrs,
1424                                                const FunctionProtoType *FPT) {
1425   if (!FPT)
1426     return;
1427 
1428   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1429       FPT->isNothrow(Ctx))
1430     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1431 }
1432 
1433 void CodeGenModule::ConstructAttributeList(
1434     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1435     AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) {
1436   llvm::AttrBuilder FuncAttrs;
1437   llvm::AttrBuilder RetAttrs;
1438   bool HasOptnone = false;
1439 
1440   CallingConv = FI.getEffectiveCallingConvention();
1441 
1442   if (FI.isNoReturn())
1443     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1444 
1445   // If we have information about the function prototype, we can learn
1446   // attributes form there.
1447   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1448                                      CalleeInfo.getCalleeFunctionProtoType());
1449 
1450   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1451 
1452   // FIXME: handle sseregparm someday...
1453   if (TargetDecl) {
1454     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1455       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1456     if (TargetDecl->hasAttr<NoThrowAttr>())
1457       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1458     if (TargetDecl->hasAttr<NoReturnAttr>())
1459       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1460     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1461       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1462 
1463     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1464       AddAttributesFromFunctionProtoType(
1465           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1466       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1467       // These attributes are not inherited by overloads.
1468       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1469       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1470         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1471     }
1472 
1473     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1474     if (TargetDecl->hasAttr<ConstAttr>()) {
1475       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1476       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1477     } else if (TargetDecl->hasAttr<PureAttr>()) {
1478       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1479       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1480     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1481       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1482       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1483     }
1484     if (TargetDecl->hasAttr<RestrictAttr>())
1485       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1486     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1487       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1488 
1489     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1490   }
1491 
1492   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1493   if (!HasOptnone) {
1494     if (CodeGenOpts.OptimizeSize)
1495       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1496     if (CodeGenOpts.OptimizeSize == 2)
1497       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1498   }
1499 
1500   if (CodeGenOpts.DisableRedZone)
1501     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1502   if (CodeGenOpts.NoImplicitFloat)
1503     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1504   if (CodeGenOpts.EnableSegmentedStacks &&
1505       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1506     FuncAttrs.addAttribute("split-stack");
1507 
1508   if (AttrOnCallSite) {
1509     // Attributes that should go on the call site only.
1510     if (!CodeGenOpts.SimplifyLibCalls ||
1511         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1512       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1513     if (!CodeGenOpts.TrapFuncName.empty())
1514       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1515   } else {
1516     // Attributes that should go on the function, but not the call site.
1517     if (!CodeGenOpts.DisableFPElim) {
1518       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1519     } else if (CodeGenOpts.OmitLeafFramePointer) {
1520       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1521       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1522     } else {
1523       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1524       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1525     }
1526 
1527     bool DisableTailCalls =
1528         CodeGenOpts.DisableTailCalls ||
1529         (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>());
1530     FuncAttrs.addAttribute("disable-tail-calls",
1531                            llvm::toStringRef(DisableTailCalls));
1532 
1533     FuncAttrs.addAttribute("less-precise-fpmad",
1534                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1535     FuncAttrs.addAttribute("no-infs-fp-math",
1536                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1537     FuncAttrs.addAttribute("no-nans-fp-math",
1538                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1539     FuncAttrs.addAttribute("unsafe-fp-math",
1540                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1541     FuncAttrs.addAttribute("use-soft-float",
1542                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1543     FuncAttrs.addAttribute("stack-protector-buffer-size",
1544                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1545 
1546     if (CodeGenOpts.StackRealignment)
1547       FuncAttrs.addAttribute("stackrealign");
1548 
1549     // Add target-cpu and target-features attributes to functions. If
1550     // we have a decl for the function and it has a target attribute then
1551     // parse that and add it to the feature set.
1552     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1553     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1554     if (FD && FD->hasAttr<TargetAttr>()) {
1555       llvm::StringMap<bool> FeatureMap;
1556       getFunctionFeatureMap(FeatureMap, FD);
1557 
1558       // Produce the canonical string for this set of features.
1559       std::vector<std::string> Features;
1560       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1561                                                  ie = FeatureMap.end();
1562            it != ie; ++it)
1563         Features.push_back((it->second ? "+" : "-") + it->first().str());
1564 
1565       // Now add the target-cpu and target-features to the function.
1566       // While we populated the feature map above, we still need to
1567       // get and parse the target attribute so we can get the cpu for
1568       // the function.
1569       const auto *TD = FD->getAttr<TargetAttr>();
1570       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1571       if (ParsedAttr.second != "")
1572         TargetCPU = ParsedAttr.second;
1573       if (TargetCPU != "")
1574         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1575       if (!Features.empty()) {
1576         std::sort(Features.begin(), Features.end());
1577         FuncAttrs.addAttribute(
1578             "target-features",
1579             llvm::join(Features.begin(), Features.end(), ","));
1580       }
1581     } else {
1582       // Otherwise just add the existing target cpu and target features to the
1583       // function.
1584       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1585       if (TargetCPU != "")
1586         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1587       if (!Features.empty()) {
1588         std::sort(Features.begin(), Features.end());
1589         FuncAttrs.addAttribute(
1590             "target-features",
1591             llvm::join(Features.begin(), Features.end(), ","));
1592       }
1593     }
1594   }
1595 
1596   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1597 
1598   QualType RetTy = FI.getReturnType();
1599   const ABIArgInfo &RetAI = FI.getReturnInfo();
1600   switch (RetAI.getKind()) {
1601   case ABIArgInfo::Extend:
1602     if (RetTy->hasSignedIntegerRepresentation())
1603       RetAttrs.addAttribute(llvm::Attribute::SExt);
1604     else if (RetTy->hasUnsignedIntegerRepresentation())
1605       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1606     // FALL THROUGH
1607   case ABIArgInfo::Direct:
1608     if (RetAI.getInReg())
1609       RetAttrs.addAttribute(llvm::Attribute::InReg);
1610     break;
1611   case ABIArgInfo::Ignore:
1612     break;
1613 
1614   case ABIArgInfo::InAlloca:
1615   case ABIArgInfo::Indirect: {
1616     // inalloca and sret disable readnone and readonly
1617     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1618       .removeAttribute(llvm::Attribute::ReadNone);
1619     break;
1620   }
1621 
1622   case ABIArgInfo::Expand:
1623     llvm_unreachable("Invalid ABI kind for return argument");
1624   }
1625 
1626   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1627     QualType PTy = RefTy->getPointeeType();
1628     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1629       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1630                                         .getQuantity());
1631     else if (getContext().getTargetAddressSpace(PTy) == 0)
1632       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1633   }
1634 
1635   // Attach return attributes.
1636   if (RetAttrs.hasAttributes()) {
1637     PAL.push_back(llvm::AttributeSet::get(
1638         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1639   }
1640 
1641   // Attach attributes to sret.
1642   if (IRFunctionArgs.hasSRetArg()) {
1643     llvm::AttrBuilder SRETAttrs;
1644     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1645     if (RetAI.getInReg())
1646       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1647     PAL.push_back(llvm::AttributeSet::get(
1648         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1649   }
1650 
1651   // Attach attributes to inalloca argument.
1652   if (IRFunctionArgs.hasInallocaArg()) {
1653     llvm::AttrBuilder Attrs;
1654     Attrs.addAttribute(llvm::Attribute::InAlloca);
1655     PAL.push_back(llvm::AttributeSet::get(
1656         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1657   }
1658 
1659   unsigned ArgNo = 0;
1660   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1661                                           E = FI.arg_end();
1662        I != E; ++I, ++ArgNo) {
1663     QualType ParamType = I->type;
1664     const ABIArgInfo &AI = I->info;
1665     llvm::AttrBuilder Attrs;
1666 
1667     // Add attribute for padding argument, if necessary.
1668     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1669       if (AI.getPaddingInReg())
1670         PAL.push_back(llvm::AttributeSet::get(
1671             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1672             llvm::Attribute::InReg));
1673     }
1674 
1675     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1676     // have the corresponding parameter variable.  It doesn't make
1677     // sense to do it here because parameters are so messed up.
1678     switch (AI.getKind()) {
1679     case ABIArgInfo::Extend:
1680       if (ParamType->isSignedIntegerOrEnumerationType())
1681         Attrs.addAttribute(llvm::Attribute::SExt);
1682       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1683         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1684           Attrs.addAttribute(llvm::Attribute::SExt);
1685         else
1686           Attrs.addAttribute(llvm::Attribute::ZExt);
1687       }
1688       // FALL THROUGH
1689     case ABIArgInfo::Direct:
1690       if (ArgNo == 0 && FI.isChainCall())
1691         Attrs.addAttribute(llvm::Attribute::Nest);
1692       else if (AI.getInReg())
1693         Attrs.addAttribute(llvm::Attribute::InReg);
1694       break;
1695 
1696     case ABIArgInfo::Indirect: {
1697       if (AI.getInReg())
1698         Attrs.addAttribute(llvm::Attribute::InReg);
1699 
1700       if (AI.getIndirectByVal())
1701         Attrs.addAttribute(llvm::Attribute::ByVal);
1702 
1703       CharUnits Align = AI.getIndirectAlign();
1704 
1705       // In a byval argument, it is important that the required
1706       // alignment of the type is honored, as LLVM might be creating a
1707       // *new* stack object, and needs to know what alignment to give
1708       // it. (Sometimes it can deduce a sensible alignment on its own,
1709       // but not if clang decides it must emit a packed struct, or the
1710       // user specifies increased alignment requirements.)
1711       //
1712       // This is different from indirect *not* byval, where the object
1713       // exists already, and the align attribute is purely
1714       // informative.
1715       assert(!Align.isZero());
1716 
1717       // For now, only add this when we have a byval argument.
1718       // TODO: be less lazy about updating test cases.
1719       if (AI.getIndirectByVal())
1720         Attrs.addAlignmentAttr(Align.getQuantity());
1721 
1722       // byval disables readnone and readonly.
1723       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1724         .removeAttribute(llvm::Attribute::ReadNone);
1725       break;
1726     }
1727     case ABIArgInfo::Ignore:
1728     case ABIArgInfo::Expand:
1729       continue;
1730 
1731     case ABIArgInfo::InAlloca:
1732       // inalloca disables readnone and readonly.
1733       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1734           .removeAttribute(llvm::Attribute::ReadNone);
1735       continue;
1736     }
1737 
1738     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1739       QualType PTy = RefTy->getPointeeType();
1740       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1741         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1742                                        .getQuantity());
1743       else if (getContext().getTargetAddressSpace(PTy) == 0)
1744         Attrs.addAttribute(llvm::Attribute::NonNull);
1745     }
1746 
1747     if (Attrs.hasAttributes()) {
1748       unsigned FirstIRArg, NumIRArgs;
1749       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1750       for (unsigned i = 0; i < NumIRArgs; i++)
1751         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1752                                               FirstIRArg + i + 1, Attrs));
1753     }
1754   }
1755   assert(ArgNo == FI.arg_size());
1756 
1757   if (FuncAttrs.hasAttributes())
1758     PAL.push_back(llvm::
1759                   AttributeSet::get(getLLVMContext(),
1760                                     llvm::AttributeSet::FunctionIndex,
1761                                     FuncAttrs));
1762 }
1763 
1764 /// An argument came in as a promoted argument; demote it back to its
1765 /// declared type.
1766 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1767                                          const VarDecl *var,
1768                                          llvm::Value *value) {
1769   llvm::Type *varType = CGF.ConvertType(var->getType());
1770 
1771   // This can happen with promotions that actually don't change the
1772   // underlying type, like the enum promotions.
1773   if (value->getType() == varType) return value;
1774 
1775   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1776          && "unexpected promotion type");
1777 
1778   if (isa<llvm::IntegerType>(varType))
1779     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1780 
1781   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1782 }
1783 
1784 /// Returns the attribute (either parameter attribute, or function
1785 /// attribute), which declares argument ArgNo to be non-null.
1786 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1787                                          QualType ArgType, unsigned ArgNo) {
1788   // FIXME: __attribute__((nonnull)) can also be applied to:
1789   //   - references to pointers, where the pointee is known to be
1790   //     nonnull (apparently a Clang extension)
1791   //   - transparent unions containing pointers
1792   // In the former case, LLVM IR cannot represent the constraint. In
1793   // the latter case, we have no guarantee that the transparent union
1794   // is in fact passed as a pointer.
1795   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1796     return nullptr;
1797   // First, check attribute on parameter itself.
1798   if (PVD) {
1799     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1800       return ParmNNAttr;
1801   }
1802   // Check function attributes.
1803   if (!FD)
1804     return nullptr;
1805   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1806     if (NNAttr->isNonNull(ArgNo))
1807       return NNAttr;
1808   }
1809   return nullptr;
1810 }
1811 
1812 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1813                                          llvm::Function *Fn,
1814                                          const FunctionArgList &Args) {
1815   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1816     // Naked functions don't have prologues.
1817     return;
1818 
1819   // If this is an implicit-return-zero function, go ahead and
1820   // initialize the return value.  TODO: it might be nice to have
1821   // a more general mechanism for this that didn't require synthesized
1822   // return statements.
1823   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1824     if (FD->hasImplicitReturnZero()) {
1825       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1826       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1827       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1828       Builder.CreateStore(Zero, ReturnValue);
1829     }
1830   }
1831 
1832   // FIXME: We no longer need the types from FunctionArgList; lift up and
1833   // simplify.
1834 
1835   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1836   // Flattened function arguments.
1837   SmallVector<llvm::Argument *, 16> FnArgs;
1838   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1839   for (auto &Arg : Fn->args()) {
1840     FnArgs.push_back(&Arg);
1841   }
1842   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1843 
1844   // If we're using inalloca, all the memory arguments are GEPs off of the last
1845   // parameter, which is a pointer to the complete memory area.
1846   Address ArgStruct = Address::invalid();
1847   const llvm::StructLayout *ArgStructLayout = nullptr;
1848   if (IRFunctionArgs.hasInallocaArg()) {
1849     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
1850     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
1851                         FI.getArgStructAlignment());
1852 
1853     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
1854   }
1855 
1856   // Name the struct return parameter.
1857   if (IRFunctionArgs.hasSRetArg()) {
1858     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1859     AI->setName("agg.result");
1860     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1861                                         llvm::Attribute::NoAlias));
1862   }
1863 
1864   // Track if we received the parameter as a pointer (indirect, byval, or
1865   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1866   // into a local alloca for us.
1867   SmallVector<ParamValue, 16> ArgVals;
1868   ArgVals.reserve(Args.size());
1869 
1870   // Create a pointer value for every parameter declaration.  This usually
1871   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1872   // any cleanups or do anything that might unwind.  We do that separately, so
1873   // we can push the cleanups in the correct order for the ABI.
1874   assert(FI.arg_size() == Args.size() &&
1875          "Mismatch between function signature & arguments.");
1876   unsigned ArgNo = 0;
1877   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1878   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1879        i != e; ++i, ++info_it, ++ArgNo) {
1880     const VarDecl *Arg = *i;
1881     QualType Ty = info_it->type;
1882     const ABIArgInfo &ArgI = info_it->info;
1883 
1884     bool isPromoted =
1885       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1886 
1887     unsigned FirstIRArg, NumIRArgs;
1888     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1889 
1890     switch (ArgI.getKind()) {
1891     case ABIArgInfo::InAlloca: {
1892       assert(NumIRArgs == 0);
1893       auto FieldIndex = ArgI.getInAllocaFieldIndex();
1894       CharUnits FieldOffset =
1895         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
1896       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
1897                                           Arg->getName());
1898       ArgVals.push_back(ParamValue::forIndirect(V));
1899       break;
1900     }
1901 
1902     case ABIArgInfo::Indirect: {
1903       assert(NumIRArgs == 1);
1904       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
1905 
1906       if (!hasScalarEvaluationKind(Ty)) {
1907         // Aggregates and complex variables are accessed by reference.  All we
1908         // need to do is realign the value, if requested.
1909         Address V = ParamAddr;
1910         if (ArgI.getIndirectRealign()) {
1911           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
1912 
1913           // Copy from the incoming argument pointer to the temporary with the
1914           // appropriate alignment.
1915           //
1916           // FIXME: We should have a common utility for generating an aggregate
1917           // copy.
1918           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1919           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
1920           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
1921           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
1922           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
1923           V = AlignedTemp;
1924         }
1925         ArgVals.push_back(ParamValue::forIndirect(V));
1926       } else {
1927         // Load scalar value from indirect argument.
1928         llvm::Value *V =
1929           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
1930 
1931         if (isPromoted)
1932           V = emitArgumentDemotion(*this, Arg, V);
1933         ArgVals.push_back(ParamValue::forDirect(V));
1934       }
1935       break;
1936     }
1937 
1938     case ABIArgInfo::Extend:
1939     case ABIArgInfo::Direct: {
1940 
1941       // If we have the trivial case, handle it with no muss and fuss.
1942       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1943           ArgI.getCoerceToType() == ConvertType(Ty) &&
1944           ArgI.getDirectOffset() == 0) {
1945         assert(NumIRArgs == 1);
1946         auto AI = FnArgs[FirstIRArg];
1947         llvm::Value *V = AI;
1948 
1949         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1950           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1951                              PVD->getFunctionScopeIndex()))
1952             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1953                                                 AI->getArgNo() + 1,
1954                                                 llvm::Attribute::NonNull));
1955 
1956           QualType OTy = PVD->getOriginalType();
1957           if (const auto *ArrTy =
1958               getContext().getAsConstantArrayType(OTy)) {
1959             // A C99 array parameter declaration with the static keyword also
1960             // indicates dereferenceability, and if the size is constant we can
1961             // use the dereferenceable attribute (which requires the size in
1962             // bytes).
1963             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1964               QualType ETy = ArrTy->getElementType();
1965               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1966               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1967                   ArrSize) {
1968                 llvm::AttrBuilder Attrs;
1969                 Attrs.addDereferenceableAttr(
1970                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1971                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1972                                                     AI->getArgNo() + 1, Attrs));
1973               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1974                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1975                                                     AI->getArgNo() + 1,
1976                                                     llvm::Attribute::NonNull));
1977               }
1978             }
1979           } else if (const auto *ArrTy =
1980                      getContext().getAsVariableArrayType(OTy)) {
1981             // For C99 VLAs with the static keyword, we don't know the size so
1982             // we can't use the dereferenceable attribute, but in addrspace(0)
1983             // we know that it must be nonnull.
1984             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1985                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1986               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1987                                                   AI->getArgNo() + 1,
1988                                                   llvm::Attribute::NonNull));
1989           }
1990 
1991           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1992           if (!AVAttr)
1993             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1994               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1995           if (AVAttr) {
1996             llvm::Value *AlignmentValue =
1997               EmitScalarExpr(AVAttr->getAlignment());
1998             llvm::ConstantInt *AlignmentCI =
1999               cast<llvm::ConstantInt>(AlignmentValue);
2000             unsigned Alignment =
2001               std::min((unsigned) AlignmentCI->getZExtValue(),
2002                        +llvm::Value::MaximumAlignment);
2003 
2004             llvm::AttrBuilder Attrs;
2005             Attrs.addAlignmentAttr(Alignment);
2006             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2007                                                 AI->getArgNo() + 1, Attrs));
2008           }
2009         }
2010 
2011         if (Arg->getType().isRestrictQualified())
2012           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2013                                               AI->getArgNo() + 1,
2014                                               llvm::Attribute::NoAlias));
2015 
2016         // Ensure the argument is the correct type.
2017         if (V->getType() != ArgI.getCoerceToType())
2018           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2019 
2020         if (isPromoted)
2021           V = emitArgumentDemotion(*this, Arg, V);
2022 
2023         if (const CXXMethodDecl *MD =
2024             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
2025           if (MD->isVirtual() && Arg == CXXABIThisDecl)
2026             V = CGM.getCXXABI().
2027                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
2028         }
2029 
2030         // Because of merging of function types from multiple decls it is
2031         // possible for the type of an argument to not match the corresponding
2032         // type in the function type. Since we are codegening the callee
2033         // in here, add a cast to the argument type.
2034         llvm::Type *LTy = ConvertType(Arg->getType());
2035         if (V->getType() != LTy)
2036           V = Builder.CreateBitCast(V, LTy);
2037 
2038         ArgVals.push_back(ParamValue::forDirect(V));
2039         break;
2040       }
2041 
2042       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2043                                      Arg->getName());
2044 
2045       // Pointer to store into.
2046       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2047 
2048       // Fast-isel and the optimizer generally like scalar values better than
2049       // FCAs, so we flatten them if this is safe to do for this argument.
2050       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2051       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2052           STy->getNumElements() > 1) {
2053         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2054         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2055         llvm::Type *DstTy = Ptr.getElementType();
2056         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2057 
2058         Address AddrToStoreInto = Address::invalid();
2059         if (SrcSize <= DstSize) {
2060           AddrToStoreInto =
2061             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2062         } else {
2063           AddrToStoreInto =
2064             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2065         }
2066 
2067         assert(STy->getNumElements() == NumIRArgs);
2068         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2069           auto AI = FnArgs[FirstIRArg + i];
2070           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2071           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2072           Address EltPtr =
2073             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2074           Builder.CreateStore(AI, EltPtr);
2075         }
2076 
2077         if (SrcSize > DstSize) {
2078           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2079         }
2080 
2081       } else {
2082         // Simple case, just do a coerced store of the argument into the alloca.
2083         assert(NumIRArgs == 1);
2084         auto AI = FnArgs[FirstIRArg];
2085         AI->setName(Arg->getName() + ".coerce");
2086         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2087       }
2088 
2089       // Match to what EmitParmDecl is expecting for this type.
2090       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2091         llvm::Value *V =
2092           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2093         if (isPromoted)
2094           V = emitArgumentDemotion(*this, Arg, V);
2095         ArgVals.push_back(ParamValue::forDirect(V));
2096       } else {
2097         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2098       }
2099       break;
2100     }
2101 
2102     case ABIArgInfo::Expand: {
2103       // If this structure was expanded into multiple arguments then
2104       // we need to create a temporary and reconstruct it from the
2105       // arguments.
2106       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2107       LValue LV = MakeAddrLValue(Alloca, Ty);
2108       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2109 
2110       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2111       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2112       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2113       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2114         auto AI = FnArgs[FirstIRArg + i];
2115         AI->setName(Arg->getName() + "." + Twine(i));
2116       }
2117       break;
2118     }
2119 
2120     case ABIArgInfo::Ignore:
2121       assert(NumIRArgs == 0);
2122       // Initialize the local variable appropriately.
2123       if (!hasScalarEvaluationKind(Ty)) {
2124         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2125       } else {
2126         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2127         ArgVals.push_back(ParamValue::forDirect(U));
2128       }
2129       break;
2130     }
2131   }
2132 
2133   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2134     for (int I = Args.size() - 1; I >= 0; --I)
2135       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2136   } else {
2137     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2138       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2139   }
2140 }
2141 
2142 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2143   while (insn->use_empty()) {
2144     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2145     if (!bitcast) return;
2146 
2147     // This is "safe" because we would have used a ConstantExpr otherwise.
2148     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2149     bitcast->eraseFromParent();
2150   }
2151 }
2152 
2153 /// Try to emit a fused autorelease of a return result.
2154 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2155                                                     llvm::Value *result) {
2156   // We must be immediately followed the cast.
2157   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2158   if (BB->empty()) return nullptr;
2159   if (&BB->back() != result) return nullptr;
2160 
2161   llvm::Type *resultType = result->getType();
2162 
2163   // result is in a BasicBlock and is therefore an Instruction.
2164   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2165 
2166   SmallVector<llvm::Instruction*,4> insnsToKill;
2167 
2168   // Look for:
2169   //  %generator = bitcast %type1* %generator2 to %type2*
2170   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2171     // We would have emitted this as a constant if the operand weren't
2172     // an Instruction.
2173     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2174 
2175     // Require the generator to be immediately followed by the cast.
2176     if (generator->getNextNode() != bitcast)
2177       return nullptr;
2178 
2179     insnsToKill.push_back(bitcast);
2180   }
2181 
2182   // Look for:
2183   //   %generator = call i8* @objc_retain(i8* %originalResult)
2184   // or
2185   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2186   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2187   if (!call) return nullptr;
2188 
2189   bool doRetainAutorelease;
2190 
2191   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2192     doRetainAutorelease = true;
2193   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2194                                           .objc_retainAutoreleasedReturnValue) {
2195     doRetainAutorelease = false;
2196 
2197     // If we emitted an assembly marker for this call (and the
2198     // ARCEntrypoints field should have been set if so), go looking
2199     // for that call.  If we can't find it, we can't do this
2200     // optimization.  But it should always be the immediately previous
2201     // instruction, unless we needed bitcasts around the call.
2202     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2203       llvm::Instruction *prev = call->getPrevNode();
2204       assert(prev);
2205       if (isa<llvm::BitCastInst>(prev)) {
2206         prev = prev->getPrevNode();
2207         assert(prev);
2208       }
2209       assert(isa<llvm::CallInst>(prev));
2210       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2211                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2212       insnsToKill.push_back(prev);
2213     }
2214   } else {
2215     return nullptr;
2216   }
2217 
2218   result = call->getArgOperand(0);
2219   insnsToKill.push_back(call);
2220 
2221   // Keep killing bitcasts, for sanity.  Note that we no longer care
2222   // about precise ordering as long as there's exactly one use.
2223   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2224     if (!bitcast->hasOneUse()) break;
2225     insnsToKill.push_back(bitcast);
2226     result = bitcast->getOperand(0);
2227   }
2228 
2229   // Delete all the unnecessary instructions, from latest to earliest.
2230   for (SmallVectorImpl<llvm::Instruction*>::iterator
2231          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2232     (*i)->eraseFromParent();
2233 
2234   // Do the fused retain/autorelease if we were asked to.
2235   if (doRetainAutorelease)
2236     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2237 
2238   // Cast back to the result type.
2239   return CGF.Builder.CreateBitCast(result, resultType);
2240 }
2241 
2242 /// If this is a +1 of the value of an immutable 'self', remove it.
2243 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2244                                           llvm::Value *result) {
2245   // This is only applicable to a method with an immutable 'self'.
2246   const ObjCMethodDecl *method =
2247     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2248   if (!method) return nullptr;
2249   const VarDecl *self = method->getSelfDecl();
2250   if (!self->getType().isConstQualified()) return nullptr;
2251 
2252   // Look for a retain call.
2253   llvm::CallInst *retainCall =
2254     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2255   if (!retainCall ||
2256       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2257     return nullptr;
2258 
2259   // Look for an ordinary load of 'self'.
2260   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2261   llvm::LoadInst *load =
2262     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2263   if (!load || load->isAtomic() || load->isVolatile() ||
2264       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2265     return nullptr;
2266 
2267   // Okay!  Burn it all down.  This relies for correctness on the
2268   // assumption that the retain is emitted as part of the return and
2269   // that thereafter everything is used "linearly".
2270   llvm::Type *resultType = result->getType();
2271   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2272   assert(retainCall->use_empty());
2273   retainCall->eraseFromParent();
2274   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2275 
2276   return CGF.Builder.CreateBitCast(load, resultType);
2277 }
2278 
2279 /// Emit an ARC autorelease of the result of a function.
2280 ///
2281 /// \return the value to actually return from the function
2282 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2283                                             llvm::Value *result) {
2284   // If we're returning 'self', kill the initial retain.  This is a
2285   // heuristic attempt to "encourage correctness" in the really unfortunate
2286   // case where we have a return of self during a dealloc and we desperately
2287   // need to avoid the possible autorelease.
2288   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2289     return self;
2290 
2291   // At -O0, try to emit a fused retain/autorelease.
2292   if (CGF.shouldUseFusedARCCalls())
2293     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2294       return fused;
2295 
2296   return CGF.EmitARCAutoreleaseReturnValue(result);
2297 }
2298 
2299 /// Heuristically search for a dominating store to the return-value slot.
2300 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2301   // Check if a User is a store which pointerOperand is the ReturnValue.
2302   // We are looking for stores to the ReturnValue, not for stores of the
2303   // ReturnValue to some other location.
2304   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2305     auto *SI = dyn_cast<llvm::StoreInst>(U);
2306     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2307       return nullptr;
2308     // These aren't actually possible for non-coerced returns, and we
2309     // only care about non-coerced returns on this code path.
2310     assert(!SI->isAtomic() && !SI->isVolatile());
2311     return SI;
2312   };
2313   // If there are multiple uses of the return-value slot, just check
2314   // for something immediately preceding the IP.  Sometimes this can
2315   // happen with how we generate implicit-returns; it can also happen
2316   // with noreturn cleanups.
2317   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2318     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2319     if (IP->empty()) return nullptr;
2320     llvm::Instruction *I = &IP->back();
2321 
2322     // Skip lifetime markers
2323     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2324                                             IE = IP->rend();
2325          II != IE; ++II) {
2326       if (llvm::IntrinsicInst *Intrinsic =
2327               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2328         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2329           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2330           ++II;
2331           if (II == IE)
2332             break;
2333           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2334             continue;
2335         }
2336       }
2337       I = &*II;
2338       break;
2339     }
2340 
2341     return GetStoreIfValid(I);
2342   }
2343 
2344   llvm::StoreInst *store =
2345       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2346   if (!store) return nullptr;
2347 
2348   // Now do a first-and-dirty dominance check: just walk up the
2349   // single-predecessors chain from the current insertion point.
2350   llvm::BasicBlock *StoreBB = store->getParent();
2351   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2352   while (IP != StoreBB) {
2353     if (!(IP = IP->getSinglePredecessor()))
2354       return nullptr;
2355   }
2356 
2357   // Okay, the store's basic block dominates the insertion point; we
2358   // can do our thing.
2359   return store;
2360 }
2361 
2362 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2363                                          bool EmitRetDbgLoc,
2364                                          SourceLocation EndLoc) {
2365   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2366     // Naked functions don't have epilogues.
2367     Builder.CreateUnreachable();
2368     return;
2369   }
2370 
2371   // Functions with no result always return void.
2372   if (!ReturnValue.isValid()) {
2373     Builder.CreateRetVoid();
2374     return;
2375   }
2376 
2377   llvm::DebugLoc RetDbgLoc;
2378   llvm::Value *RV = nullptr;
2379   QualType RetTy = FI.getReturnType();
2380   const ABIArgInfo &RetAI = FI.getReturnInfo();
2381 
2382   switch (RetAI.getKind()) {
2383   case ABIArgInfo::InAlloca:
2384     // Aggregrates get evaluated directly into the destination.  Sometimes we
2385     // need to return the sret value in a register, though.
2386     assert(hasAggregateEvaluationKind(RetTy));
2387     if (RetAI.getInAllocaSRet()) {
2388       llvm::Function::arg_iterator EI = CurFn->arg_end();
2389       --EI;
2390       llvm::Value *ArgStruct = &*EI;
2391       llvm::Value *SRet = Builder.CreateStructGEP(
2392           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2393       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2394     }
2395     break;
2396 
2397   case ABIArgInfo::Indirect: {
2398     auto AI = CurFn->arg_begin();
2399     if (RetAI.isSRetAfterThis())
2400       ++AI;
2401     switch (getEvaluationKind(RetTy)) {
2402     case TEK_Complex: {
2403       ComplexPairTy RT =
2404         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2405       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2406                          /*isInit*/ true);
2407       break;
2408     }
2409     case TEK_Aggregate:
2410       // Do nothing; aggregrates get evaluated directly into the destination.
2411       break;
2412     case TEK_Scalar:
2413       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2414                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2415                         /*isInit*/ true);
2416       break;
2417     }
2418     break;
2419   }
2420 
2421   case ABIArgInfo::Extend:
2422   case ABIArgInfo::Direct:
2423     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2424         RetAI.getDirectOffset() == 0) {
2425       // The internal return value temp always will have pointer-to-return-type
2426       // type, just do a load.
2427 
2428       // If there is a dominating store to ReturnValue, we can elide
2429       // the load, zap the store, and usually zap the alloca.
2430       if (llvm::StoreInst *SI =
2431               findDominatingStoreToReturnValue(*this)) {
2432         // Reuse the debug location from the store unless there is
2433         // cleanup code to be emitted between the store and return
2434         // instruction.
2435         if (EmitRetDbgLoc && !AutoreleaseResult)
2436           RetDbgLoc = SI->getDebugLoc();
2437         // Get the stored value and nuke the now-dead store.
2438         RV = SI->getValueOperand();
2439         SI->eraseFromParent();
2440 
2441         // If that was the only use of the return value, nuke it as well now.
2442         auto returnValueInst = ReturnValue.getPointer();
2443         if (returnValueInst->use_empty()) {
2444           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2445             alloca->eraseFromParent();
2446             ReturnValue = Address::invalid();
2447           }
2448         }
2449 
2450       // Otherwise, we have to do a simple load.
2451       } else {
2452         RV = Builder.CreateLoad(ReturnValue);
2453       }
2454     } else {
2455       // If the value is offset in memory, apply the offset now.
2456       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2457 
2458       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2459     }
2460 
2461     // In ARC, end functions that return a retainable type with a call
2462     // to objc_autoreleaseReturnValue.
2463     if (AutoreleaseResult) {
2464       assert(getLangOpts().ObjCAutoRefCount &&
2465              !FI.isReturnsRetained() &&
2466              RetTy->isObjCRetainableType());
2467       RV = emitAutoreleaseOfResult(*this, RV);
2468     }
2469 
2470     break;
2471 
2472   case ABIArgInfo::Ignore:
2473     break;
2474 
2475   case ABIArgInfo::Expand:
2476     llvm_unreachable("Invalid ABI kind for return argument");
2477   }
2478 
2479   llvm::Instruction *Ret;
2480   if (RV) {
2481     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2482       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
2483         SanitizerScope SanScope(this);
2484         llvm::Value *Cond = Builder.CreateICmpNE(
2485             RV, llvm::Constant::getNullValue(RV->getType()));
2486         llvm::Constant *StaticData[] = {
2487             EmitCheckSourceLocation(EndLoc),
2488             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2489         };
2490         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2491                   "nonnull_return", StaticData, None);
2492       }
2493     }
2494     Ret = Builder.CreateRet(RV);
2495   } else {
2496     Ret = Builder.CreateRetVoid();
2497   }
2498 
2499   if (RetDbgLoc)
2500     Ret->setDebugLoc(std::move(RetDbgLoc));
2501 }
2502 
2503 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2504   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2505   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2506 }
2507 
2508 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2509                                           QualType Ty) {
2510   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2511   // placeholders.
2512   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2513   llvm::Value *Placeholder =
2514     llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2515   Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder);
2516 
2517   // FIXME: When we generate this IR in one pass, we shouldn't need
2518   // this win32-specific alignment hack.
2519   CharUnits Align = CharUnits::fromQuantity(4);
2520 
2521   return AggValueSlot::forAddr(Address(Placeholder, Align),
2522                                Ty.getQualifiers(),
2523                                AggValueSlot::IsNotDestructed,
2524                                AggValueSlot::DoesNotNeedGCBarriers,
2525                                AggValueSlot::IsNotAliased);
2526 }
2527 
2528 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2529                                           const VarDecl *param,
2530                                           SourceLocation loc) {
2531   // StartFunction converted the ABI-lowered parameter(s) into a
2532   // local alloca.  We need to turn that into an r-value suitable
2533   // for EmitCall.
2534   Address local = GetAddrOfLocalVar(param);
2535 
2536   QualType type = param->getType();
2537 
2538   // For the most part, we just need to load the alloca, except:
2539   // 1) aggregate r-values are actually pointers to temporaries, and
2540   // 2) references to non-scalars are pointers directly to the aggregate.
2541   // I don't know why references to scalars are different here.
2542   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2543     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2544       return args.add(RValue::getAggregate(local), type);
2545 
2546     // Locals which are references to scalars are represented
2547     // with allocas holding the pointer.
2548     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2549   }
2550 
2551   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2552          "cannot emit delegate call arguments for inalloca arguments!");
2553 
2554   args.add(convertTempToRValue(local, type, loc), type);
2555 }
2556 
2557 static bool isProvablyNull(llvm::Value *addr) {
2558   return isa<llvm::ConstantPointerNull>(addr);
2559 }
2560 
2561 static bool isProvablyNonNull(llvm::Value *addr) {
2562   return isa<llvm::AllocaInst>(addr);
2563 }
2564 
2565 /// Emit the actual writing-back of a writeback.
2566 static void emitWriteback(CodeGenFunction &CGF,
2567                           const CallArgList::Writeback &writeback) {
2568   const LValue &srcLV = writeback.Source;
2569   Address srcAddr = srcLV.getAddress();
2570   assert(!isProvablyNull(srcAddr.getPointer()) &&
2571          "shouldn't have writeback for provably null argument");
2572 
2573   llvm::BasicBlock *contBB = nullptr;
2574 
2575   // If the argument wasn't provably non-null, we need to null check
2576   // before doing the store.
2577   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2578   if (!provablyNonNull) {
2579     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2580     contBB = CGF.createBasicBlock("icr.done");
2581 
2582     llvm::Value *isNull =
2583       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2584     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2585     CGF.EmitBlock(writebackBB);
2586   }
2587 
2588   // Load the value to writeback.
2589   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2590 
2591   // Cast it back, in case we're writing an id to a Foo* or something.
2592   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
2593                                     "icr.writeback-cast");
2594 
2595   // Perform the writeback.
2596 
2597   // If we have a "to use" value, it's something we need to emit a use
2598   // of.  This has to be carefully threaded in: if it's done after the
2599   // release it's potentially undefined behavior (and the optimizer
2600   // will ignore it), and if it happens before the retain then the
2601   // optimizer could move the release there.
2602   if (writeback.ToUse) {
2603     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2604 
2605     // Retain the new value.  No need to block-copy here:  the block's
2606     // being passed up the stack.
2607     value = CGF.EmitARCRetainNonBlock(value);
2608 
2609     // Emit the intrinsic use here.
2610     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2611 
2612     // Load the old value (primitively).
2613     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2614 
2615     // Put the new value in place (primitively).
2616     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2617 
2618     // Release the old value.
2619     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2620 
2621   // Otherwise, we can just do a normal lvalue store.
2622   } else {
2623     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2624   }
2625 
2626   // Jump to the continuation block.
2627   if (!provablyNonNull)
2628     CGF.EmitBlock(contBB);
2629 }
2630 
2631 static void emitWritebacks(CodeGenFunction &CGF,
2632                            const CallArgList &args) {
2633   for (const auto &I : args.writebacks())
2634     emitWriteback(CGF, I);
2635 }
2636 
2637 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2638                                             const CallArgList &CallArgs) {
2639   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2640   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2641     CallArgs.getCleanupsToDeactivate();
2642   // Iterate in reverse to increase the likelihood of popping the cleanup.
2643   for (const auto &I : llvm::reverse(Cleanups)) {
2644     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
2645     I.IsActiveIP->eraseFromParent();
2646   }
2647 }
2648 
2649 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2650   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2651     if (uop->getOpcode() == UO_AddrOf)
2652       return uop->getSubExpr();
2653   return nullptr;
2654 }
2655 
2656 /// Emit an argument that's being passed call-by-writeback.  That is,
2657 /// we are passing the address of an __autoreleased temporary; it
2658 /// might be copy-initialized with the current value of the given
2659 /// address, but it will definitely be copied out of after the call.
2660 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2661                              const ObjCIndirectCopyRestoreExpr *CRE) {
2662   LValue srcLV;
2663 
2664   // Make an optimistic effort to emit the address as an l-value.
2665   // This can fail if the argument expression is more complicated.
2666   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2667     srcLV = CGF.EmitLValue(lvExpr);
2668 
2669   // Otherwise, just emit it as a scalar.
2670   } else {
2671     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
2672 
2673     QualType srcAddrType =
2674       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2675     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
2676   }
2677   Address srcAddr = srcLV.getAddress();
2678 
2679   // The dest and src types don't necessarily match in LLVM terms
2680   // because of the crazy ObjC compatibility rules.
2681 
2682   llvm::PointerType *destType =
2683     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2684 
2685   // If the address is a constant null, just pass the appropriate null.
2686   if (isProvablyNull(srcAddr.getPointer())) {
2687     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2688              CRE->getType());
2689     return;
2690   }
2691 
2692   // Create the temporary.
2693   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
2694                                       CGF.getPointerAlign(),
2695                                       "icr.temp");
2696   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2697   // and that cleanup will be conditional if we can't prove that the l-value
2698   // isn't null, so we need to register a dominating point so that the cleanups
2699   // system will make valid IR.
2700   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2701 
2702   // Zero-initialize it if we're not doing a copy-initialization.
2703   bool shouldCopy = CRE->shouldCopy();
2704   if (!shouldCopy) {
2705     llvm::Value *null =
2706       llvm::ConstantPointerNull::get(
2707         cast<llvm::PointerType>(destType->getElementType()));
2708     CGF.Builder.CreateStore(null, temp);
2709   }
2710 
2711   llvm::BasicBlock *contBB = nullptr;
2712   llvm::BasicBlock *originBB = nullptr;
2713 
2714   // If the address is *not* known to be non-null, we need to switch.
2715   llvm::Value *finalArgument;
2716 
2717   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2718   if (provablyNonNull) {
2719     finalArgument = temp.getPointer();
2720   } else {
2721     llvm::Value *isNull =
2722       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2723 
2724     finalArgument = CGF.Builder.CreateSelect(isNull,
2725                                    llvm::ConstantPointerNull::get(destType),
2726                                              temp.getPointer(), "icr.argument");
2727 
2728     // If we need to copy, then the load has to be conditional, which
2729     // means we need control flow.
2730     if (shouldCopy) {
2731       originBB = CGF.Builder.GetInsertBlock();
2732       contBB = CGF.createBasicBlock("icr.cont");
2733       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2734       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2735       CGF.EmitBlock(copyBB);
2736       condEval.begin(CGF);
2737     }
2738   }
2739 
2740   llvm::Value *valueToUse = nullptr;
2741 
2742   // Perform a copy if necessary.
2743   if (shouldCopy) {
2744     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2745     assert(srcRV.isScalar());
2746 
2747     llvm::Value *src = srcRV.getScalarVal();
2748     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2749                                     "icr.cast");
2750 
2751     // Use an ordinary store, not a store-to-lvalue.
2752     CGF.Builder.CreateStore(src, temp);
2753 
2754     // If optimization is enabled, and the value was held in a
2755     // __strong variable, we need to tell the optimizer that this
2756     // value has to stay alive until we're doing the store back.
2757     // This is because the temporary is effectively unretained,
2758     // and so otherwise we can violate the high-level semantics.
2759     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2760         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2761       valueToUse = src;
2762     }
2763   }
2764 
2765   // Finish the control flow if we needed it.
2766   if (shouldCopy && !provablyNonNull) {
2767     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2768     CGF.EmitBlock(contBB);
2769 
2770     // Make a phi for the value to intrinsically use.
2771     if (valueToUse) {
2772       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2773                                                       "icr.to-use");
2774       phiToUse->addIncoming(valueToUse, copyBB);
2775       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2776                             originBB);
2777       valueToUse = phiToUse;
2778     }
2779 
2780     condEval.end(CGF);
2781   }
2782 
2783   args.addWriteback(srcLV, temp, valueToUse);
2784   args.add(RValue::get(finalArgument), CRE->getType());
2785 }
2786 
2787 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2788   assert(!StackBase && !StackCleanup.isValid());
2789 
2790   // Save the stack.
2791   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2792   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
2793 }
2794 
2795 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2796   if (StackBase) {
2797     // Restore the stack after the call.
2798     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2799     CGF.Builder.CreateCall(F, StackBase);
2800   }
2801 }
2802 
2803 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
2804                                           SourceLocation ArgLoc,
2805                                           const FunctionDecl *FD,
2806                                           unsigned ParmNum) {
2807   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2808     return;
2809   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2810   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2811   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2812   if (!NNAttr)
2813     return;
2814   SanitizerScope SanScope(this);
2815   assert(RV.isScalar());
2816   llvm::Value *V = RV.getScalarVal();
2817   llvm::Value *Cond =
2818       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2819   llvm::Constant *StaticData[] = {
2820       EmitCheckSourceLocation(ArgLoc),
2821       EmitCheckSourceLocation(NNAttr->getLocation()),
2822       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
2823   };
2824   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2825                 "nonnull_arg", StaticData, None);
2826 }
2827 
2828 void CodeGenFunction::EmitCallArgs(
2829     CallArgList &Args, ArrayRef<QualType> ArgTypes,
2830     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
2831     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) {
2832   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
2833 
2834   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) {
2835     if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams())
2836       return;
2837     auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>();
2838     if (PS == nullptr)
2839       return;
2840 
2841     const auto &Context = getContext();
2842     auto SizeTy = Context.getSizeType();
2843     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
2844     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T);
2845     Args.add(RValue::get(V), SizeTy);
2846   };
2847 
2848   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2849   // because arguments are destroyed left to right in the callee.
2850   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2851     // Insert a stack save if we're going to need any inalloca args.
2852     bool HasInAllocaArgs = false;
2853     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2854          I != E && !HasInAllocaArgs; ++I)
2855       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2856     if (HasInAllocaArgs) {
2857       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2858       Args.allocateArgumentMemory(*this);
2859     }
2860 
2861     // Evaluate each argument.
2862     size_t CallArgsStart = Args.size();
2863     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2864       CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2865       EmitCallArg(Args, *Arg, ArgTypes[I]);
2866       EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2867                           CalleeDecl, ParamsToSkip + I);
2868       MaybeEmitImplicitObjectSize(I, *Arg);
2869     }
2870 
2871     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2872     // IR function.
2873     std::reverse(Args.begin() + CallArgsStart, Args.end());
2874     return;
2875   }
2876 
2877   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2878     CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2879     assert(Arg != ArgRange.end());
2880     EmitCallArg(Args, *Arg, ArgTypes[I]);
2881     EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2882                         CalleeDecl, ParamsToSkip + I);
2883     MaybeEmitImplicitObjectSize(I, *Arg);
2884   }
2885 }
2886 
2887 namespace {
2888 
2889 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
2890   DestroyUnpassedArg(Address Addr, QualType Ty)
2891       : Addr(Addr), Ty(Ty) {}
2892 
2893   Address Addr;
2894   QualType Ty;
2895 
2896   void Emit(CodeGenFunction &CGF, Flags flags) override {
2897     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2898     assert(!Dtor->isTrivial());
2899     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2900                               /*Delegating=*/false, Addr);
2901   }
2902 };
2903 
2904 struct DisableDebugLocationUpdates {
2905   CodeGenFunction &CGF;
2906   bool disabledDebugInfo;
2907   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2908     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2909       CGF.disableDebugInfo();
2910   }
2911   ~DisableDebugLocationUpdates() {
2912     if (disabledDebugInfo)
2913       CGF.enableDebugInfo();
2914   }
2915 };
2916 
2917 } // end anonymous namespace
2918 
2919 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2920                                   QualType type) {
2921   DisableDebugLocationUpdates Dis(*this, E);
2922   if (const ObjCIndirectCopyRestoreExpr *CRE
2923         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2924     assert(getLangOpts().ObjCAutoRefCount);
2925     assert(getContext().hasSameType(E->getType(), type));
2926     return emitWritebackArg(*this, args, CRE);
2927   }
2928 
2929   assert(type->isReferenceType() == E->isGLValue() &&
2930          "reference binding to unmaterialized r-value!");
2931 
2932   if (E->isGLValue()) {
2933     assert(E->getObjectKind() == OK_Ordinary);
2934     return args.add(EmitReferenceBindingToExpr(E), type);
2935   }
2936 
2937   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2938 
2939   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2940   // However, we still have to push an EH-only cleanup in case we unwind before
2941   // we make it to the call.
2942   if (HasAggregateEvalKind &&
2943       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2944     // If we're using inalloca, use the argument memory.  Otherwise, use a
2945     // temporary.
2946     AggValueSlot Slot;
2947     if (args.isUsingInAlloca())
2948       Slot = createPlaceholderSlot(*this, type);
2949     else
2950       Slot = CreateAggTemp(type, "agg.tmp");
2951 
2952     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2953     bool DestroyedInCallee =
2954         RD && RD->hasNonTrivialDestructor() &&
2955         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2956     if (DestroyedInCallee)
2957       Slot.setExternallyDestructed();
2958 
2959     EmitAggExpr(E, Slot);
2960     RValue RV = Slot.asRValue();
2961     args.add(RV, type);
2962 
2963     if (DestroyedInCallee) {
2964       // Create a no-op GEP between the placeholder and the cleanup so we can
2965       // RAUW it successfully.  It also serves as a marker of the first
2966       // instruction where the cleanup is active.
2967       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
2968                                               type);
2969       // This unreachable is a temporary marker which will be removed later.
2970       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2971       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2972     }
2973     return;
2974   }
2975 
2976   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2977       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2978     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2979     assert(L.isSimple());
2980     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2981       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2982     } else {
2983       // We can't represent a misaligned lvalue in the CallArgList, so copy
2984       // to an aligned temporary now.
2985       Address tmp = CreateMemTemp(type);
2986       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
2987       args.add(RValue::getAggregate(tmp), type);
2988     }
2989     return;
2990   }
2991 
2992   args.add(EmitAnyExprToTemp(E), type);
2993 }
2994 
2995 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2996   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2997   // implicitly widens null pointer constants that are arguments to varargs
2998   // functions to pointer-sized ints.
2999   if (!getTarget().getTriple().isOSWindows())
3000     return Arg->getType();
3001 
3002   if (Arg->getType()->isIntegerType() &&
3003       getContext().getTypeSize(Arg->getType()) <
3004           getContext().getTargetInfo().getPointerWidth(0) &&
3005       Arg->isNullPointerConstant(getContext(),
3006                                  Expr::NPC_ValueDependentIsNotNull)) {
3007     return getContext().getIntPtrType();
3008   }
3009 
3010   return Arg->getType();
3011 }
3012 
3013 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3014 // optimizer it can aggressively ignore unwind edges.
3015 void
3016 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3017   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3018       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3019     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3020                       CGM.getNoObjCARCExceptionsMetadata());
3021 }
3022 
3023 /// Emits a call to the given no-arguments nounwind runtime function.
3024 llvm::CallInst *
3025 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3026                                          const llvm::Twine &name) {
3027   return EmitNounwindRuntimeCall(callee, None, name);
3028 }
3029 
3030 /// Emits a call to the given nounwind runtime function.
3031 llvm::CallInst *
3032 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3033                                          ArrayRef<llvm::Value*> args,
3034                                          const llvm::Twine &name) {
3035   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3036   call->setDoesNotThrow();
3037   return call;
3038 }
3039 
3040 /// Emits a simple call (never an invoke) to the given no-arguments
3041 /// runtime function.
3042 llvm::CallInst *
3043 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3044                                  const llvm::Twine &name) {
3045   return EmitRuntimeCall(callee, None, name);
3046 }
3047 
3048 /// Emits a simple call (never an invoke) to the given runtime function.
3049 llvm::CallInst *
3050 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3051                                  ArrayRef<llvm::Value*> args,
3052                                  const llvm::Twine &name) {
3053   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
3054   call->setCallingConv(getRuntimeCC());
3055   return call;
3056 }
3057 
3058 // Calls which may throw must have operand bundles indicating which funclet
3059 // they are nested within.
3060 static void
3061 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad,
3062                      SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
3063   // There is no need for a funclet operand bundle if we aren't inside a
3064   // funclet.
3065   if (!CurrentFuncletPad)
3066     return;
3067 
3068   // Skip intrinsics which cannot throw.
3069   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3070   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3071     return;
3072 
3073   BundleList.emplace_back("funclet", CurrentFuncletPad);
3074 }
3075 
3076 /// Emits a call or invoke to the given noreturn runtime function.
3077 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3078                                                ArrayRef<llvm::Value*> args) {
3079   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3080   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3081 
3082   if (getInvokeDest()) {
3083     llvm::InvokeInst *invoke =
3084       Builder.CreateInvoke(callee,
3085                            getUnreachableBlock(),
3086                            getInvokeDest(),
3087                            args,
3088                            BundleList);
3089     invoke->setDoesNotReturn();
3090     invoke->setCallingConv(getRuntimeCC());
3091   } else {
3092     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3093     call->setDoesNotReturn();
3094     call->setCallingConv(getRuntimeCC());
3095     Builder.CreateUnreachable();
3096   }
3097 }
3098 
3099 /// Emits a call or invoke instruction to the given nullary runtime function.
3100 llvm::CallSite
3101 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3102                                          const Twine &name) {
3103   return EmitRuntimeCallOrInvoke(callee, None, name);
3104 }
3105 
3106 /// Emits a call or invoke instruction to the given runtime function.
3107 llvm::CallSite
3108 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3109                                          ArrayRef<llvm::Value*> args,
3110                                          const Twine &name) {
3111   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3112   callSite.setCallingConv(getRuntimeCC());
3113   return callSite;
3114 }
3115 
3116 /// Emits a call or invoke instruction to the given function, depending
3117 /// on the current state of the EH stack.
3118 llvm::CallSite
3119 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3120                                   ArrayRef<llvm::Value *> Args,
3121                                   const Twine &Name) {
3122   llvm::BasicBlock *InvokeDest = getInvokeDest();
3123   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3124   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3125 
3126   llvm::Instruction *Inst;
3127   if (!InvokeDest)
3128     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3129   else {
3130     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3131     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3132                                 Name);
3133     EmitBlock(ContBB);
3134   }
3135 
3136   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3137   // optimizer it can aggressively ignore unwind edges.
3138   if (CGM.getLangOpts().ObjCAutoRefCount)
3139     AddObjCARCExceptionMetadata(Inst);
3140 
3141   return llvm::CallSite(Inst);
3142 }
3143 
3144 /// \brief Store a non-aggregate value to an address to initialize it.  For
3145 /// initialization, a non-atomic store will be used.
3146 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3147                                         LValue Dst) {
3148   if (Src.isScalar())
3149     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3150   else
3151     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3152 }
3153 
3154 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3155                                                   llvm::Value *New) {
3156   DeferredReplacements.push_back(std::make_pair(Old, New));
3157 }
3158 
3159 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3160                                  llvm::Value *Callee,
3161                                  ReturnValueSlot ReturnValue,
3162                                  const CallArgList &CallArgs,
3163                                  CGCalleeInfo CalleeInfo,
3164                                  llvm::Instruction **callOrInvoke) {
3165   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3166 
3167   // Handle struct-return functions by passing a pointer to the
3168   // location that we would like to return into.
3169   QualType RetTy = CallInfo.getReturnType();
3170   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3171 
3172   llvm::FunctionType *IRFuncTy =
3173     cast<llvm::FunctionType>(
3174                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3175 
3176   // If we're using inalloca, insert the allocation after the stack save.
3177   // FIXME: Do this earlier rather than hacking it in here!
3178   Address ArgMemory = Address::invalid();
3179   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3180   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3181     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
3182     llvm::Instruction *IP = CallArgs.getStackBase();
3183     llvm::AllocaInst *AI;
3184     if (IP) {
3185       IP = IP->getNextNode();
3186       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3187     } else {
3188       AI = CreateTempAlloca(ArgStruct, "argmem");
3189     }
3190     auto Align = CallInfo.getArgStructAlignment();
3191     AI->setAlignment(Align.getQuantity());
3192     AI->setUsedWithInAlloca(true);
3193     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3194     ArgMemory = Address(AI, Align);
3195   }
3196 
3197   // Helper function to drill into the inalloca allocation.
3198   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3199     auto FieldOffset =
3200       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3201     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3202   };
3203 
3204   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3205   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3206 
3207   // If the call returns a temporary with struct return, create a temporary
3208   // alloca to hold the result, unless one is given to us.
3209   Address SRetPtr = Address::invalid();
3210   size_t UnusedReturnSize = 0;
3211   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3212     if (!ReturnValue.isNull()) {
3213       SRetPtr = ReturnValue.getValue();
3214     } else {
3215       SRetPtr = CreateMemTemp(RetTy);
3216       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3217         uint64_t size =
3218             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3219         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3220           UnusedReturnSize = size;
3221       }
3222     }
3223     if (IRFunctionArgs.hasSRetArg()) {
3224       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3225     } else {
3226       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3227       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3228     }
3229   }
3230 
3231   assert(CallInfo.arg_size() == CallArgs.size() &&
3232          "Mismatch between function signature & arguments.");
3233   unsigned ArgNo = 0;
3234   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3235   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3236        I != E; ++I, ++info_it, ++ArgNo) {
3237     const ABIArgInfo &ArgInfo = info_it->info;
3238     RValue RV = I->RV;
3239 
3240     // Insert a padding argument to ensure proper alignment.
3241     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3242       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3243           llvm::UndefValue::get(ArgInfo.getPaddingType());
3244 
3245     unsigned FirstIRArg, NumIRArgs;
3246     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3247 
3248     switch (ArgInfo.getKind()) {
3249     case ABIArgInfo::InAlloca: {
3250       assert(NumIRArgs == 0);
3251       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3252       if (RV.isAggregate()) {
3253         // Replace the placeholder with the appropriate argument slot GEP.
3254         llvm::Instruction *Placeholder =
3255             cast<llvm::Instruction>(RV.getAggregatePointer());
3256         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3257         Builder.SetInsertPoint(Placeholder);
3258         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3259         Builder.restoreIP(IP);
3260         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3261       } else {
3262         // Store the RValue into the argument struct.
3263         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3264         unsigned AS = Addr.getType()->getPointerAddressSpace();
3265         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3266         // There are some cases where a trivial bitcast is not avoidable.  The
3267         // definition of a type later in a translation unit may change it's type
3268         // from {}* to (%struct.foo*)*.
3269         if (Addr.getType() != MemType)
3270           Addr = Builder.CreateBitCast(Addr, MemType);
3271         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3272         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3273       }
3274       break;
3275     }
3276 
3277     case ABIArgInfo::Indirect: {
3278       assert(NumIRArgs == 1);
3279       if (RV.isScalar() || RV.isComplex()) {
3280         // Make a temporary alloca to pass the argument.
3281         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3282         IRCallArgs[FirstIRArg] = Addr.getPointer();
3283 
3284         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3285         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3286       } else {
3287         // We want to avoid creating an unnecessary temporary+copy here;
3288         // however, we need one in three cases:
3289         // 1. If the argument is not byval, and we are required to copy the
3290         //    source.  (This case doesn't occur on any common architecture.)
3291         // 2. If the argument is byval, RV is not sufficiently aligned, and
3292         //    we cannot force it to be sufficiently aligned.
3293         // 3. If the argument is byval, but RV is located in an address space
3294         //    different than that of the argument (0).
3295         Address Addr = RV.getAggregateAddress();
3296         CharUnits Align = ArgInfo.getIndirectAlign();
3297         const llvm::DataLayout *TD = &CGM.getDataLayout();
3298         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3299         const unsigned ArgAddrSpace =
3300             (FirstIRArg < IRFuncTy->getNumParams()
3301                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3302                  : 0);
3303         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3304             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3305              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3306                                               Align.getQuantity(), *TD)
3307                < Align.getQuantity()) ||
3308             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3309           // Create an aligned temporary, and copy to it.
3310           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3311           IRCallArgs[FirstIRArg] = AI.getPointer();
3312           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3313         } else {
3314           // Skip the extra memcpy call.
3315           IRCallArgs[FirstIRArg] = Addr.getPointer();
3316         }
3317       }
3318       break;
3319     }
3320 
3321     case ABIArgInfo::Ignore:
3322       assert(NumIRArgs == 0);
3323       break;
3324 
3325     case ABIArgInfo::Extend:
3326     case ABIArgInfo::Direct: {
3327       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3328           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3329           ArgInfo.getDirectOffset() == 0) {
3330         assert(NumIRArgs == 1);
3331         llvm::Value *V;
3332         if (RV.isScalar())
3333           V = RV.getScalarVal();
3334         else
3335           V = Builder.CreateLoad(RV.getAggregateAddress());
3336 
3337         // We might have to widen integers, but we should never truncate.
3338         if (ArgInfo.getCoerceToType() != V->getType() &&
3339             V->getType()->isIntegerTy())
3340           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3341 
3342         // If the argument doesn't match, perform a bitcast to coerce it.  This
3343         // can happen due to trivial type mismatches.
3344         if (FirstIRArg < IRFuncTy->getNumParams() &&
3345             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3346           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3347         IRCallArgs[FirstIRArg] = V;
3348         break;
3349       }
3350 
3351       // FIXME: Avoid the conversion through memory if possible.
3352       Address Src = Address::invalid();
3353       if (RV.isScalar() || RV.isComplex()) {
3354         Src = CreateMemTemp(I->Ty, "coerce");
3355         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3356         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3357       } else {
3358         Src = RV.getAggregateAddress();
3359       }
3360 
3361       // If the value is offset in memory, apply the offset now.
3362       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3363 
3364       // Fast-isel and the optimizer generally like scalar values better than
3365       // FCAs, so we flatten them if this is safe to do for this argument.
3366       llvm::StructType *STy =
3367             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3368       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3369         llvm::Type *SrcTy = Src.getType()->getElementType();
3370         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3371         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3372 
3373         // If the source type is smaller than the destination type of the
3374         // coerce-to logic, copy the source value into a temp alloca the size
3375         // of the destination type to allow loading all of it. The bits past
3376         // the source value are left undef.
3377         if (SrcSize < DstSize) {
3378           Address TempAlloca
3379             = CreateTempAlloca(STy, Src.getAlignment(),
3380                                Src.getName() + ".coerce");
3381           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3382           Src = TempAlloca;
3383         } else {
3384           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3385         }
3386 
3387         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3388         assert(NumIRArgs == STy->getNumElements());
3389         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3390           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3391           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3392           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3393           IRCallArgs[FirstIRArg + i] = LI;
3394         }
3395       } else {
3396         // In the simple case, just pass the coerced loaded value.
3397         assert(NumIRArgs == 1);
3398         IRCallArgs[FirstIRArg] =
3399           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3400       }
3401 
3402       break;
3403     }
3404 
3405     case ABIArgInfo::Expand:
3406       unsigned IRArgPos = FirstIRArg;
3407       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3408       assert(IRArgPos == FirstIRArg + NumIRArgs);
3409       break;
3410     }
3411   }
3412 
3413   if (ArgMemory.isValid()) {
3414     llvm::Value *Arg = ArgMemory.getPointer();
3415     if (CallInfo.isVariadic()) {
3416       // When passing non-POD arguments by value to variadic functions, we will
3417       // end up with a variadic prototype and an inalloca call site.  In such
3418       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3419       // the callee.
3420       unsigned CalleeAS =
3421           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3422       Callee = Builder.CreateBitCast(
3423           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3424     } else {
3425       llvm::Type *LastParamTy =
3426           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3427       if (Arg->getType() != LastParamTy) {
3428 #ifndef NDEBUG
3429         // Assert that these structs have equivalent element types.
3430         llvm::StructType *FullTy = CallInfo.getArgStruct();
3431         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3432             cast<llvm::PointerType>(LastParamTy)->getElementType());
3433         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3434         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3435                                                 DE = DeclaredTy->element_end(),
3436                                                 FI = FullTy->element_begin();
3437              DI != DE; ++DI, ++FI)
3438           assert(*DI == *FI);
3439 #endif
3440         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3441       }
3442     }
3443     assert(IRFunctionArgs.hasInallocaArg());
3444     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3445   }
3446 
3447   if (!CallArgs.getCleanupsToDeactivate().empty())
3448     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3449 
3450   // If the callee is a bitcast of a function to a varargs pointer to function
3451   // type, check to see if we can remove the bitcast.  This handles some cases
3452   // with unprototyped functions.
3453   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3454     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3455       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3456       llvm::FunctionType *CurFT =
3457         cast<llvm::FunctionType>(CurPT->getElementType());
3458       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3459 
3460       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3461           ActualFT->getReturnType() == CurFT->getReturnType() &&
3462           ActualFT->getNumParams() == CurFT->getNumParams() &&
3463           ActualFT->getNumParams() == IRCallArgs.size() &&
3464           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3465         bool ArgsMatch = true;
3466         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3467           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3468             ArgsMatch = false;
3469             break;
3470           }
3471 
3472         // Strip the cast if we can get away with it.  This is a nice cleanup,
3473         // but also allows us to inline the function at -O0 if it is marked
3474         // always_inline.
3475         if (ArgsMatch)
3476           Callee = CalleeF;
3477       }
3478     }
3479 
3480   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3481   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3482     // Inalloca argument can have different type.
3483     if (IRFunctionArgs.hasInallocaArg() &&
3484         i == IRFunctionArgs.getInallocaArgNo())
3485       continue;
3486     if (i < IRFuncTy->getNumParams())
3487       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3488   }
3489 
3490   unsigned CallingConv;
3491   CodeGen::AttributeListType AttributeList;
3492   CGM.ConstructAttributeList(Callee->getName(), CallInfo, CalleeInfo,
3493                              AttributeList, CallingConv,
3494                              /*AttrOnCallSite=*/true);
3495   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3496                                                      AttributeList);
3497 
3498   bool CannotThrow;
3499   if (currentFunctionUsesSEHTry()) {
3500     // SEH cares about asynchronous exceptions, everything can "throw."
3501     CannotThrow = false;
3502   } else if (isCleanupPadScope() &&
3503              EHPersonality::get(*this).isMSVCXXPersonality()) {
3504     // The MSVC++ personality will implicitly terminate the program if an
3505     // exception is thrown.  An unwind edge cannot be reached.
3506     CannotThrow = true;
3507   } else {
3508     // Otherwise, nowunind callsites will never throw.
3509     CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3510                                      llvm::Attribute::NoUnwind);
3511   }
3512   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
3513 
3514   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3515   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3516 
3517   llvm::CallSite CS;
3518   if (!InvokeDest) {
3519     CS = Builder.CreateCall(Callee, IRCallArgs, BundleList);
3520   } else {
3521     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3522     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs,
3523                               BundleList);
3524     EmitBlock(Cont);
3525   }
3526   if (callOrInvoke)
3527     *callOrInvoke = CS.getInstruction();
3528 
3529   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3530       !CS.hasFnAttr(llvm::Attribute::NoInline))
3531     Attrs =
3532         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3533                            llvm::Attribute::AlwaysInline);
3534 
3535   // Disable inlining inside SEH __try blocks.
3536   if (isSEHTryScope())
3537     Attrs =
3538         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3539                            llvm::Attribute::NoInline);
3540 
3541   CS.setAttributes(Attrs);
3542   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3543 
3544   // Insert instrumentation or attach profile metadata at indirect call sites
3545   if (!CS.getCalledFunction())
3546     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
3547                      CS.getInstruction(), Callee);
3548 
3549   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3550   // optimizer it can aggressively ignore unwind edges.
3551   if (CGM.getLangOpts().ObjCAutoRefCount)
3552     AddObjCARCExceptionMetadata(CS.getInstruction());
3553 
3554   // If the call doesn't return, finish the basic block and clear the
3555   // insertion point; this allows the rest of IRgen to discard
3556   // unreachable code.
3557   if (CS.doesNotReturn()) {
3558     if (UnusedReturnSize)
3559       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3560                       SRetPtr.getPointer());
3561 
3562     Builder.CreateUnreachable();
3563     Builder.ClearInsertionPoint();
3564 
3565     // FIXME: For now, emit a dummy basic block because expr emitters in
3566     // generally are not ready to handle emitting expressions at unreachable
3567     // points.
3568     EnsureInsertPoint();
3569 
3570     // Return a reasonable RValue.
3571     return GetUndefRValue(RetTy);
3572   }
3573 
3574   llvm::Instruction *CI = CS.getInstruction();
3575   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3576     CI->setName("call");
3577 
3578   // Emit any writebacks immediately.  Arguably this should happen
3579   // after any return-value munging.
3580   if (CallArgs.hasWritebacks())
3581     emitWritebacks(*this, CallArgs);
3582 
3583   // The stack cleanup for inalloca arguments has to run out of the normal
3584   // lexical order, so deactivate it and run it manually here.
3585   CallArgs.freeArgumentMemory(*this);
3586 
3587   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
3588     const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
3589     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
3590       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
3591   }
3592 
3593   RValue Ret = [&] {
3594     switch (RetAI.getKind()) {
3595     case ABIArgInfo::InAlloca:
3596     case ABIArgInfo::Indirect: {
3597       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3598       if (UnusedReturnSize)
3599         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3600                         SRetPtr.getPointer());
3601       return ret;
3602     }
3603 
3604     case ABIArgInfo::Ignore:
3605       // If we are ignoring an argument that had a result, make sure to
3606       // construct the appropriate return value for our caller.
3607       return GetUndefRValue(RetTy);
3608 
3609     case ABIArgInfo::Extend:
3610     case ABIArgInfo::Direct: {
3611       llvm::Type *RetIRTy = ConvertType(RetTy);
3612       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3613         switch (getEvaluationKind(RetTy)) {
3614         case TEK_Complex: {
3615           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3616           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3617           return RValue::getComplex(std::make_pair(Real, Imag));
3618         }
3619         case TEK_Aggregate: {
3620           Address DestPtr = ReturnValue.getValue();
3621           bool DestIsVolatile = ReturnValue.isVolatile();
3622 
3623           if (!DestPtr.isValid()) {
3624             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3625             DestIsVolatile = false;
3626           }
3627           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
3628           return RValue::getAggregate(DestPtr);
3629         }
3630         case TEK_Scalar: {
3631           // If the argument doesn't match, perform a bitcast to coerce it.  This
3632           // can happen due to trivial type mismatches.
3633           llvm::Value *V = CI;
3634           if (V->getType() != RetIRTy)
3635             V = Builder.CreateBitCast(V, RetIRTy);
3636           return RValue::get(V);
3637         }
3638         }
3639         llvm_unreachable("bad evaluation kind");
3640       }
3641 
3642       Address DestPtr = ReturnValue.getValue();
3643       bool DestIsVolatile = ReturnValue.isVolatile();
3644 
3645       if (!DestPtr.isValid()) {
3646         DestPtr = CreateMemTemp(RetTy, "coerce");
3647         DestIsVolatile = false;
3648       }
3649 
3650       // If the value is offset in memory, apply the offset now.
3651       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
3652       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3653 
3654       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3655     }
3656 
3657     case ABIArgInfo::Expand:
3658       llvm_unreachable("Invalid ABI kind for return argument");
3659     }
3660 
3661     llvm_unreachable("Unhandled ABIArgInfo::Kind");
3662   } ();
3663 
3664   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
3665 
3666   if (Ret.isScalar() && TargetDecl) {
3667     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3668       llvm::Value *OffsetValue = nullptr;
3669       if (const auto *Offset = AA->getOffset())
3670         OffsetValue = EmitScalarExpr(Offset);
3671 
3672       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3673       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3674       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3675                               OffsetValue);
3676     }
3677   }
3678 
3679   return Ret;
3680 }
3681 
3682 /* VarArg handling */
3683 
3684 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
3685   VAListAddr = VE->isMicrosoftABI()
3686                  ? EmitMSVAListRef(VE->getSubExpr())
3687                  : EmitVAListRef(VE->getSubExpr());
3688   QualType Ty = VE->getType();
3689   if (VE->isMicrosoftABI())
3690     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
3691   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
3692 }
3693