1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69 
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
71 /// qualification.
72 /// FIXME: address space qualification?
73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
74   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
75   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
76 }
77 
78 /// Returns the canonical formal type of the given C++ method.
79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
80   return MD->getType()->getCanonicalTypeUnqualified()
81            .getAs<FunctionProtoType>();
82 }
83 
84 /// Returns the "extra-canonicalized" return type, which discards
85 /// qualifiers on the return type.  Codegen doesn't care about them,
86 /// and it makes ABI code a little easier to be able to assume that
87 /// all parameter and return types are top-level unqualified.
88 static CanQualType GetReturnType(QualType RetTy) {
89   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
90 }
91 
92 /// Arrange the argument and result information for a value of the given
93 /// unprototyped freestanding function type.
94 const CGFunctionInfo &
95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
96   // When translating an unprototyped function type, always use a
97   // variadic type.
98   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
99                                  /*instanceMethod=*/false,
100                                  /*chainCall=*/false, None,
101                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
102 }
103 
104 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in
105 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
106 static void appendParameterTypes(const CodeGenTypes &CGT,
107                                  SmallVectorImpl<CanQualType> &prefix,
108               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
109                                  CanQual<FunctionProtoType> FPT,
110                                  const FunctionDecl *FD) {
111   // Fill out paramInfos.
112   if (FPT->hasExtParameterInfos() || !paramInfos.empty()) {
113     assert(paramInfos.size() <= prefix.size());
114     auto protoParamInfos = FPT->getExtParameterInfos();
115     paramInfos.reserve(prefix.size() + protoParamInfos.size());
116     paramInfos.resize(prefix.size());
117     paramInfos.append(protoParamInfos.begin(), protoParamInfos.end());
118   }
119 
120   // Fast path: unknown target.
121   if (FD == nullptr) {
122     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
123     return;
124   }
125 
126   // In the vast majority cases, we'll have precisely FPT->getNumParams()
127   // parameters; the only thing that can change this is the presence of
128   // pass_object_size. So, we preallocate for the common case.
129   prefix.reserve(prefix.size() + FPT->getNumParams());
130 
131   assert(FD->getNumParams() == FPT->getNumParams());
132   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
133     prefix.push_back(FPT->getParamType(I));
134     if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>())
135       prefix.push_back(CGT.getContext().getSizeType());
136   }
137 }
138 
139 /// Arrange the LLVM function layout for a value of the given function
140 /// type, on top of any implicit parameters already stored.
141 static const CGFunctionInfo &
142 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
143                         SmallVectorImpl<CanQualType> &prefix,
144                         CanQual<FunctionProtoType> FTP,
145                         const FunctionDecl *FD) {
146   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
147   RequiredArgs Required =
148       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
149   // FIXME: Kill copy.
150   appendParameterTypes(CGT, prefix, paramInfos, FTP, FD);
151   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
152 
153   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
154                                      /*chainCall=*/false, prefix,
155                                      FTP->getExtInfo(), paramInfos,
156                                      Required);
157 }
158 
159 /// Arrange the argument and result information for a value of the
160 /// given freestanding function type.
161 const CGFunctionInfo &
162 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
163                                       const FunctionDecl *FD) {
164   SmallVector<CanQualType, 16> argTypes;
165   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
166                                    FTP, FD);
167 }
168 
169 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
170   // Set the appropriate calling convention for the Function.
171   if (D->hasAttr<StdCallAttr>())
172     return CC_X86StdCall;
173 
174   if (D->hasAttr<FastCallAttr>())
175     return CC_X86FastCall;
176 
177   if (D->hasAttr<RegCallAttr>())
178     return CC_X86RegCall;
179 
180   if (D->hasAttr<ThisCallAttr>())
181     return CC_X86ThisCall;
182 
183   if (D->hasAttr<VectorCallAttr>())
184     return CC_X86VectorCall;
185 
186   if (D->hasAttr<PascalAttr>())
187     return CC_X86Pascal;
188 
189   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
190     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
191 
192   if (D->hasAttr<IntelOclBiccAttr>())
193     return CC_IntelOclBicc;
194 
195   if (D->hasAttr<MSABIAttr>())
196     return IsWindows ? CC_C : CC_X86_64Win64;
197 
198   if (D->hasAttr<SysVABIAttr>())
199     return IsWindows ? CC_X86_64SysV : CC_C;
200 
201   if (D->hasAttr<PreserveMostAttr>())
202     return CC_PreserveMost;
203 
204   if (D->hasAttr<PreserveAllAttr>())
205     return CC_PreserveAll;
206 
207   return CC_C;
208 }
209 
210 /// Arrange the argument and result information for a call to an
211 /// unknown C++ non-static member function of the given abstract type.
212 /// (Zero value of RD means we don't have any meaningful "this" argument type,
213 ///  so fall back to a generic pointer type).
214 /// The member function must be an ordinary function, i.e. not a
215 /// constructor or destructor.
216 const CGFunctionInfo &
217 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
218                                    const FunctionProtoType *FTP,
219                                    const CXXMethodDecl *MD) {
220   SmallVector<CanQualType, 16> argTypes;
221 
222   // Add the 'this' pointer.
223   if (RD)
224     argTypes.push_back(GetThisType(Context, RD));
225   else
226     argTypes.push_back(Context.VoidPtrTy);
227 
228   return ::arrangeLLVMFunctionInfo(
229       *this, true, argTypes,
230       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
231 }
232 
233 /// Arrange the argument and result information for a declaration or
234 /// definition of the given C++ non-static member function.  The
235 /// member function must be an ordinary function, i.e. not a
236 /// constructor or destructor.
237 const CGFunctionInfo &
238 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
239   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
240   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
241 
242   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
243 
244   if (MD->isInstance()) {
245     // The abstract case is perfectly fine.
246     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
247     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
248   }
249 
250   return arrangeFreeFunctionType(prototype, MD);
251 }
252 
253 bool CodeGenTypes::inheritingCtorHasParams(
254     const InheritedConstructor &Inherited, CXXCtorType Type) {
255   // Parameters are unnecessary if we're constructing a base class subobject
256   // and the inherited constructor lives in a virtual base.
257   return Type == Ctor_Complete ||
258          !Inherited.getShadowDecl()->constructsVirtualBase() ||
259          !Target.getCXXABI().hasConstructorVariants();
260   }
261 
262 const CGFunctionInfo &
263 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
264                                             StructorType Type) {
265 
266   SmallVector<CanQualType, 16> argTypes;
267   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
268   argTypes.push_back(GetThisType(Context, MD->getParent()));
269 
270   bool PassParams = true;
271 
272   GlobalDecl GD;
273   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
274     GD = GlobalDecl(CD, toCXXCtorType(Type));
275 
276     // A base class inheriting constructor doesn't get forwarded arguments
277     // needed to construct a virtual base (or base class thereof).
278     if (auto Inherited = CD->getInheritedConstructor())
279       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
280   } else {
281     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
282     GD = GlobalDecl(DD, toCXXDtorType(Type));
283   }
284 
285   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
286 
287   // Add the formal parameters.
288   if (PassParams)
289     appendParameterTypes(*this, argTypes, paramInfos, FTP, MD);
290 
291   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
292 
293   RequiredArgs required =
294       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
295                                       : RequiredArgs::All);
296 
297   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
298   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
299                                ? argTypes.front()
300                                : TheCXXABI.hasMostDerivedReturn(GD)
301                                      ? CGM.getContext().VoidPtrTy
302                                      : Context.VoidTy;
303   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
304                                  /*chainCall=*/false, argTypes, extInfo,
305                                  paramInfos, required);
306 }
307 
308 static SmallVector<CanQualType, 16>
309 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
310   SmallVector<CanQualType, 16> argTypes;
311   for (auto &arg : args)
312     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
313   return argTypes;
314 }
315 
316 static SmallVector<CanQualType, 16>
317 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
318   SmallVector<CanQualType, 16> argTypes;
319   for (auto &arg : args)
320     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
321   return argTypes;
322 }
323 
324 static void addExtParameterInfosForCall(
325          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
326                                         const FunctionProtoType *proto,
327                                         unsigned prefixArgs,
328                                         unsigned totalArgs) {
329   assert(proto->hasExtParameterInfos());
330   assert(paramInfos.size() <= prefixArgs);
331   assert(proto->getNumParams() + prefixArgs <= totalArgs);
332 
333   // Add default infos for any prefix args that don't already have infos.
334   paramInfos.resize(prefixArgs);
335 
336   // Add infos for the prototype.
337   auto protoInfos = proto->getExtParameterInfos();
338   paramInfos.append(protoInfos.begin(), protoInfos.end());
339 
340   // Add default infos for the variadic arguments.
341   paramInfos.resize(totalArgs);
342 }
343 
344 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
345 getExtParameterInfosForCall(const FunctionProtoType *proto,
346                             unsigned prefixArgs, unsigned totalArgs) {
347   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
348   if (proto->hasExtParameterInfos()) {
349     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
350   }
351   return result;
352 }
353 
354 /// Arrange a call to a C++ method, passing the given arguments.
355 const CGFunctionInfo &
356 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
357                                         const CXXConstructorDecl *D,
358                                         CXXCtorType CtorKind,
359                                         unsigned ExtraArgs) {
360   // FIXME: Kill copy.
361   SmallVector<CanQualType, 16> ArgTypes;
362   for (const auto &Arg : args)
363     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
364 
365   CanQual<FunctionProtoType> FPT = GetFormalType(D);
366   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs, D);
367   GlobalDecl GD(D, CtorKind);
368   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
369                                ? ArgTypes.front()
370                                : TheCXXABI.hasMostDerivedReturn(GD)
371                                      ? CGM.getContext().VoidPtrTy
372                                      : Context.VoidTy;
373 
374   FunctionType::ExtInfo Info = FPT->getExtInfo();
375   auto ParamInfos = getExtParameterInfosForCall(FPT.getTypePtr(), 1 + ExtraArgs,
376                                                 ArgTypes.size());
377   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
378                                  /*chainCall=*/false, ArgTypes, Info,
379                                  ParamInfos, Required);
380 }
381 
382 /// Arrange the argument and result information for the declaration or
383 /// definition of the given function.
384 const CGFunctionInfo &
385 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
386   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
387     if (MD->isInstance())
388       return arrangeCXXMethodDeclaration(MD);
389 
390   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
391 
392   assert(isa<FunctionType>(FTy));
393 
394   // When declaring a function without a prototype, always use a
395   // non-variadic type.
396   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
397     return arrangeLLVMFunctionInfo(
398         noProto->getReturnType(), /*instanceMethod=*/false,
399         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
400   }
401 
402   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
403 }
404 
405 /// Arrange the argument and result information for the declaration or
406 /// definition of an Objective-C method.
407 const CGFunctionInfo &
408 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
409   // It happens that this is the same as a call with no optional
410   // arguments, except also using the formal 'self' type.
411   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
412 }
413 
414 /// Arrange the argument and result information for the function type
415 /// through which to perform a send to the given Objective-C method,
416 /// using the given receiver type.  The receiver type is not always
417 /// the 'self' type of the method or even an Objective-C pointer type.
418 /// This is *not* the right method for actually performing such a
419 /// message send, due to the possibility of optional arguments.
420 const CGFunctionInfo &
421 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
422                                               QualType receiverType) {
423   SmallVector<CanQualType, 16> argTys;
424   argTys.push_back(Context.getCanonicalParamType(receiverType));
425   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
426   // FIXME: Kill copy?
427   for (const auto *I : MD->parameters()) {
428     argTys.push_back(Context.getCanonicalParamType(I->getType()));
429   }
430 
431   FunctionType::ExtInfo einfo;
432   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
433   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
434 
435   if (getContext().getLangOpts().ObjCAutoRefCount &&
436       MD->hasAttr<NSReturnsRetainedAttr>())
437     einfo = einfo.withProducesResult(true);
438 
439   RequiredArgs required =
440     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
441 
442   return arrangeLLVMFunctionInfo(
443       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
444       /*chainCall=*/false, argTys, einfo, {}, required);
445 }
446 
447 const CGFunctionInfo &
448 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
449                                                  const CallArgList &args) {
450   auto argTypes = getArgTypesForCall(Context, args);
451   FunctionType::ExtInfo einfo;
452 
453   return arrangeLLVMFunctionInfo(
454       GetReturnType(returnType), /*instanceMethod=*/false,
455       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
456 }
457 
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
460   // FIXME: Do we need to handle ObjCMethodDecl?
461   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
462 
463   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
464     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
465 
466   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
467     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
468 
469   return arrangeFunctionDeclaration(FD);
470 }
471 
472 /// Arrange a thunk that takes 'this' as the first parameter followed by
473 /// varargs.  Return a void pointer, regardless of the actual return type.
474 /// The body of the thunk will end in a musttail call to a function of the
475 /// correct type, and the caller will bitcast the function to the correct
476 /// prototype.
477 const CGFunctionInfo &
478 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
479   assert(MD->isVirtual() && "only virtual memptrs have thunks");
480   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
481   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
482   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
483                                  /*chainCall=*/false, ArgTys,
484                                  FTP->getExtInfo(), {}, RequiredArgs(1));
485 }
486 
487 const CGFunctionInfo &
488 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
489                                    CXXCtorType CT) {
490   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
491 
492   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
493   SmallVector<CanQualType, 2> ArgTys;
494   const CXXRecordDecl *RD = CD->getParent();
495   ArgTys.push_back(GetThisType(Context, RD));
496   if (CT == Ctor_CopyingClosure)
497     ArgTys.push_back(*FTP->param_type_begin());
498   if (RD->getNumVBases() > 0)
499     ArgTys.push_back(Context.IntTy);
500   CallingConv CC = Context.getDefaultCallingConvention(
501       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
502   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
503                                  /*chainCall=*/false, ArgTys,
504                                  FunctionType::ExtInfo(CC), {},
505                                  RequiredArgs::All);
506 }
507 
508 /// Arrange a call as unto a free function, except possibly with an
509 /// additional number of formal parameters considered required.
510 static const CGFunctionInfo &
511 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
512                             CodeGenModule &CGM,
513                             const CallArgList &args,
514                             const FunctionType *fnType,
515                             unsigned numExtraRequiredArgs,
516                             bool chainCall) {
517   assert(args.size() >= numExtraRequiredArgs);
518 
519   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
520 
521   // In most cases, there are no optional arguments.
522   RequiredArgs required = RequiredArgs::All;
523 
524   // If we have a variadic prototype, the required arguments are the
525   // extra prefix plus the arguments in the prototype.
526   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
527     if (proto->isVariadic())
528       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
529 
530     if (proto->hasExtParameterInfos())
531       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
532                                   args.size());
533 
534   // If we don't have a prototype at all, but we're supposed to
535   // explicitly use the variadic convention for unprototyped calls,
536   // treat all of the arguments as required but preserve the nominal
537   // possibility of variadics.
538   } else if (CGM.getTargetCodeGenInfo()
539                 .isNoProtoCallVariadic(args,
540                                        cast<FunctionNoProtoType>(fnType))) {
541     required = RequiredArgs(args.size());
542   }
543 
544   // FIXME: Kill copy.
545   SmallVector<CanQualType, 16> argTypes;
546   for (const auto &arg : args)
547     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
548   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
549                                      /*instanceMethod=*/false, chainCall,
550                                      argTypes, fnType->getExtInfo(), paramInfos,
551                                      required);
552 }
553 
554 /// Figure out the rules for calling a function with the given formal
555 /// type using the given arguments.  The arguments are necessary
556 /// because the function might be unprototyped, in which case it's
557 /// target-dependent in crazy ways.
558 const CGFunctionInfo &
559 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
560                                       const FunctionType *fnType,
561                                       bool chainCall) {
562   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
563                                      chainCall ? 1 : 0, chainCall);
564 }
565 
566 /// A block function is essentially a free function with an
567 /// extra implicit argument.
568 const CGFunctionInfo &
569 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
570                                        const FunctionType *fnType) {
571   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
572                                      /*chainCall=*/false);
573 }
574 
575 const CGFunctionInfo &
576 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
577                                               const FunctionArgList &params) {
578   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
579   auto argTypes = getArgTypesForDeclaration(Context, params);
580 
581   return arrangeLLVMFunctionInfo(
582       GetReturnType(proto->getReturnType()),
583       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
584       proto->getExtInfo(), paramInfos,
585       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
586 }
587 
588 const CGFunctionInfo &
589 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
590                                          const CallArgList &args) {
591   // FIXME: Kill copy.
592   SmallVector<CanQualType, 16> argTypes;
593   for (const auto &Arg : args)
594     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
595   return arrangeLLVMFunctionInfo(
596       GetReturnType(resultType), /*instanceMethod=*/false,
597       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
598       /*paramInfos=*/ {}, RequiredArgs::All);
599 }
600 
601 const CGFunctionInfo &
602 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
603                                                 const FunctionArgList &args) {
604   auto argTypes = getArgTypesForDeclaration(Context, args);
605 
606   return arrangeLLVMFunctionInfo(
607       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
608       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
609 }
610 
611 const CGFunctionInfo &
612 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
613                                               ArrayRef<CanQualType> argTypes) {
614   return arrangeLLVMFunctionInfo(
615       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
616       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
617 }
618 
619 /// Arrange a call to a C++ method, passing the given arguments.
620 const CGFunctionInfo &
621 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
622                                    const FunctionProtoType *proto,
623                                    RequiredArgs required) {
624   unsigned numRequiredArgs =
625     (proto->isVariadic() ? required.getNumRequiredArgs() : args.size());
626   unsigned numPrefixArgs = numRequiredArgs - proto->getNumParams();
627   auto paramInfos =
628     getExtParameterInfosForCall(proto, numPrefixArgs, args.size());
629 
630   // FIXME: Kill copy.
631   auto argTypes = getArgTypesForCall(Context, args);
632 
633   FunctionType::ExtInfo info = proto->getExtInfo();
634   return arrangeLLVMFunctionInfo(
635       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
636       /*chainCall=*/false, argTypes, info, paramInfos, required);
637 }
638 
639 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
640   return arrangeLLVMFunctionInfo(
641       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
642       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
643 }
644 
645 const CGFunctionInfo &
646 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
647                           const CallArgList &args) {
648   assert(signature.arg_size() <= args.size());
649   if (signature.arg_size() == args.size())
650     return signature;
651 
652   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
653   auto sigParamInfos = signature.getExtParameterInfos();
654   if (!sigParamInfos.empty()) {
655     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
656     paramInfos.resize(args.size());
657   }
658 
659   auto argTypes = getArgTypesForCall(Context, args);
660 
661   assert(signature.getRequiredArgs().allowsOptionalArgs());
662   return arrangeLLVMFunctionInfo(signature.getReturnType(),
663                                  signature.isInstanceMethod(),
664                                  signature.isChainCall(),
665                                  argTypes,
666                                  signature.getExtInfo(),
667                                  paramInfos,
668                                  signature.getRequiredArgs());
669 }
670 
671 /// Arrange the argument and result information for an abstract value
672 /// of a given function type.  This is the method which all of the
673 /// above functions ultimately defer to.
674 const CGFunctionInfo &
675 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
676                                       bool instanceMethod,
677                                       bool chainCall,
678                                       ArrayRef<CanQualType> argTypes,
679                                       FunctionType::ExtInfo info,
680                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
681                                       RequiredArgs required) {
682   assert(std::all_of(argTypes.begin(), argTypes.end(),
683                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
684 
685   // Lookup or create unique function info.
686   llvm::FoldingSetNodeID ID;
687   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
688                           required, resultType, argTypes);
689 
690   void *insertPos = nullptr;
691   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
692   if (FI)
693     return *FI;
694 
695   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
696 
697   // Construct the function info.  We co-allocate the ArgInfos.
698   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
699                               paramInfos, resultType, argTypes, required);
700   FunctionInfos.InsertNode(FI, insertPos);
701 
702   bool inserted = FunctionsBeingProcessed.insert(FI).second;
703   (void)inserted;
704   assert(inserted && "Recursively being processed?");
705 
706   // Compute ABI information.
707   if (info.getCC() != CC_Swift) {
708     getABIInfo().computeInfo(*FI);
709   } else {
710     swiftcall::computeABIInfo(CGM, *FI);
711   }
712 
713   // Loop over all of the computed argument and return value info.  If any of
714   // them are direct or extend without a specified coerce type, specify the
715   // default now.
716   ABIArgInfo &retInfo = FI->getReturnInfo();
717   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
718     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
719 
720   for (auto &I : FI->arguments())
721     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
722       I.info.setCoerceToType(ConvertType(I.type));
723 
724   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
725   assert(erased && "Not in set?");
726 
727   return *FI;
728 }
729 
730 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
731                                        bool instanceMethod,
732                                        bool chainCall,
733                                        const FunctionType::ExtInfo &info,
734                                        ArrayRef<ExtParameterInfo> paramInfos,
735                                        CanQualType resultType,
736                                        ArrayRef<CanQualType> argTypes,
737                                        RequiredArgs required) {
738   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
739 
740   void *buffer =
741     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
742                                   argTypes.size() + 1, paramInfos.size()));
743 
744   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
745   FI->CallingConvention = llvmCC;
746   FI->EffectiveCallingConvention = llvmCC;
747   FI->ASTCallingConvention = info.getCC();
748   FI->InstanceMethod = instanceMethod;
749   FI->ChainCall = chainCall;
750   FI->NoReturn = info.getNoReturn();
751   FI->ReturnsRetained = info.getProducesResult();
752   FI->Required = required;
753   FI->HasRegParm = info.getHasRegParm();
754   FI->RegParm = info.getRegParm();
755   FI->ArgStruct = nullptr;
756   FI->ArgStructAlign = 0;
757   FI->NumArgs = argTypes.size();
758   FI->HasExtParameterInfos = !paramInfos.empty();
759   FI->getArgsBuffer()[0].type = resultType;
760   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
761     FI->getArgsBuffer()[i + 1].type = argTypes[i];
762   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
763     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
764   return FI;
765 }
766 
767 /***/
768 
769 namespace {
770 // ABIArgInfo::Expand implementation.
771 
772 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
773 struct TypeExpansion {
774   enum TypeExpansionKind {
775     // Elements of constant arrays are expanded recursively.
776     TEK_ConstantArray,
777     // Record fields are expanded recursively (but if record is a union, only
778     // the field with the largest size is expanded).
779     TEK_Record,
780     // For complex types, real and imaginary parts are expanded recursively.
781     TEK_Complex,
782     // All other types are not expandable.
783     TEK_None
784   };
785 
786   const TypeExpansionKind Kind;
787 
788   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
789   virtual ~TypeExpansion() {}
790 };
791 
792 struct ConstantArrayExpansion : TypeExpansion {
793   QualType EltTy;
794   uint64_t NumElts;
795 
796   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
797       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
798   static bool classof(const TypeExpansion *TE) {
799     return TE->Kind == TEK_ConstantArray;
800   }
801 };
802 
803 struct RecordExpansion : TypeExpansion {
804   SmallVector<const CXXBaseSpecifier *, 1> Bases;
805 
806   SmallVector<const FieldDecl *, 1> Fields;
807 
808   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
809                   SmallVector<const FieldDecl *, 1> &&Fields)
810       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
811         Fields(std::move(Fields)) {}
812   static bool classof(const TypeExpansion *TE) {
813     return TE->Kind == TEK_Record;
814   }
815 };
816 
817 struct ComplexExpansion : TypeExpansion {
818   QualType EltTy;
819 
820   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
821   static bool classof(const TypeExpansion *TE) {
822     return TE->Kind == TEK_Complex;
823   }
824 };
825 
826 struct NoExpansion : TypeExpansion {
827   NoExpansion() : TypeExpansion(TEK_None) {}
828   static bool classof(const TypeExpansion *TE) {
829     return TE->Kind == TEK_None;
830   }
831 };
832 }  // namespace
833 
834 static std::unique_ptr<TypeExpansion>
835 getTypeExpansion(QualType Ty, const ASTContext &Context) {
836   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
837     return llvm::make_unique<ConstantArrayExpansion>(
838         AT->getElementType(), AT->getSize().getZExtValue());
839   }
840   if (const RecordType *RT = Ty->getAs<RecordType>()) {
841     SmallVector<const CXXBaseSpecifier *, 1> Bases;
842     SmallVector<const FieldDecl *, 1> Fields;
843     const RecordDecl *RD = RT->getDecl();
844     assert(!RD->hasFlexibleArrayMember() &&
845            "Cannot expand structure with flexible array.");
846     if (RD->isUnion()) {
847       // Unions can be here only in degenerative cases - all the fields are same
848       // after flattening. Thus we have to use the "largest" field.
849       const FieldDecl *LargestFD = nullptr;
850       CharUnits UnionSize = CharUnits::Zero();
851 
852       for (const auto *FD : RD->fields()) {
853         // Skip zero length bitfields.
854         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
855           continue;
856         assert(!FD->isBitField() &&
857                "Cannot expand structure with bit-field members.");
858         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
859         if (UnionSize < FieldSize) {
860           UnionSize = FieldSize;
861           LargestFD = FD;
862         }
863       }
864       if (LargestFD)
865         Fields.push_back(LargestFD);
866     } else {
867       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
868         assert(!CXXRD->isDynamicClass() &&
869                "cannot expand vtable pointers in dynamic classes");
870         for (const CXXBaseSpecifier &BS : CXXRD->bases())
871           Bases.push_back(&BS);
872       }
873 
874       for (const auto *FD : RD->fields()) {
875         // Skip zero length bitfields.
876         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
877           continue;
878         assert(!FD->isBitField() &&
879                "Cannot expand structure with bit-field members.");
880         Fields.push_back(FD);
881       }
882     }
883     return llvm::make_unique<RecordExpansion>(std::move(Bases),
884                                               std::move(Fields));
885   }
886   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
887     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
888   }
889   return llvm::make_unique<NoExpansion>();
890 }
891 
892 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
893   auto Exp = getTypeExpansion(Ty, Context);
894   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
895     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
896   }
897   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
898     int Res = 0;
899     for (auto BS : RExp->Bases)
900       Res += getExpansionSize(BS->getType(), Context);
901     for (auto FD : RExp->Fields)
902       Res += getExpansionSize(FD->getType(), Context);
903     return Res;
904   }
905   if (isa<ComplexExpansion>(Exp.get()))
906     return 2;
907   assert(isa<NoExpansion>(Exp.get()));
908   return 1;
909 }
910 
911 void
912 CodeGenTypes::getExpandedTypes(QualType Ty,
913                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
914   auto Exp = getTypeExpansion(Ty, Context);
915   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
916     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
917       getExpandedTypes(CAExp->EltTy, TI);
918     }
919   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
920     for (auto BS : RExp->Bases)
921       getExpandedTypes(BS->getType(), TI);
922     for (auto FD : RExp->Fields)
923       getExpandedTypes(FD->getType(), TI);
924   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
925     llvm::Type *EltTy = ConvertType(CExp->EltTy);
926     *TI++ = EltTy;
927     *TI++ = EltTy;
928   } else {
929     assert(isa<NoExpansion>(Exp.get()));
930     *TI++ = ConvertType(Ty);
931   }
932 }
933 
934 static void forConstantArrayExpansion(CodeGenFunction &CGF,
935                                       ConstantArrayExpansion *CAE,
936                                       Address BaseAddr,
937                                       llvm::function_ref<void(Address)> Fn) {
938   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
939   CharUnits EltAlign =
940     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
941 
942   for (int i = 0, n = CAE->NumElts; i < n; i++) {
943     llvm::Value *EltAddr =
944       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
945     Fn(Address(EltAddr, EltAlign));
946   }
947 }
948 
949 void CodeGenFunction::ExpandTypeFromArgs(
950     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
951   assert(LV.isSimple() &&
952          "Unexpected non-simple lvalue during struct expansion.");
953 
954   auto Exp = getTypeExpansion(Ty, getContext());
955   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
956     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
957                               [&](Address EltAddr) {
958       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
959       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
960     });
961   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
962     Address This = LV.getAddress();
963     for (const CXXBaseSpecifier *BS : RExp->Bases) {
964       // Perform a single step derived-to-base conversion.
965       Address Base =
966           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
967                                 /*NullCheckValue=*/false, SourceLocation());
968       LValue SubLV = MakeAddrLValue(Base, BS->getType());
969 
970       // Recurse onto bases.
971       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
972     }
973     for (auto FD : RExp->Fields) {
974       // FIXME: What are the right qualifiers here?
975       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
976       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
977     }
978   } else if (isa<ComplexExpansion>(Exp.get())) {
979     auto realValue = *AI++;
980     auto imagValue = *AI++;
981     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
982   } else {
983     assert(isa<NoExpansion>(Exp.get()));
984     EmitStoreThroughLValue(RValue::get(*AI++), LV);
985   }
986 }
987 
988 void CodeGenFunction::ExpandTypeToArgs(
989     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
990     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
991   auto Exp = getTypeExpansion(Ty, getContext());
992   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
993     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
994                               [&](Address EltAddr) {
995       RValue EltRV =
996           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
997       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
998     });
999   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1000     Address This = RV.getAggregateAddress();
1001     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1002       // Perform a single step derived-to-base conversion.
1003       Address Base =
1004           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1005                                 /*NullCheckValue=*/false, SourceLocation());
1006       RValue BaseRV = RValue::getAggregate(Base);
1007 
1008       // Recurse onto bases.
1009       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
1010                        IRCallArgPos);
1011     }
1012 
1013     LValue LV = MakeAddrLValue(This, Ty);
1014     for (auto FD : RExp->Fields) {
1015       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
1016       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
1017                        IRCallArgPos);
1018     }
1019   } else if (isa<ComplexExpansion>(Exp.get())) {
1020     ComplexPairTy CV = RV.getComplexVal();
1021     IRCallArgs[IRCallArgPos++] = CV.first;
1022     IRCallArgs[IRCallArgPos++] = CV.second;
1023   } else {
1024     assert(isa<NoExpansion>(Exp.get()));
1025     assert(RV.isScalar() &&
1026            "Unexpected non-scalar rvalue during struct expansion.");
1027 
1028     // Insert a bitcast as needed.
1029     llvm::Value *V = RV.getScalarVal();
1030     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1031         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1032       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1033 
1034     IRCallArgs[IRCallArgPos++] = V;
1035   }
1036 }
1037 
1038 /// Create a temporary allocation for the purposes of coercion.
1039 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1040                                            CharUnits MinAlign) {
1041   // Don't use an alignment that's worse than what LLVM would prefer.
1042   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1043   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1044 
1045   return CGF.CreateTempAlloca(Ty, Align);
1046 }
1047 
1048 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1049 /// accessing some number of bytes out of it, try to gep into the struct to get
1050 /// at its inner goodness.  Dive as deep as possible without entering an element
1051 /// with an in-memory size smaller than DstSize.
1052 static Address
1053 EnterStructPointerForCoercedAccess(Address SrcPtr,
1054                                    llvm::StructType *SrcSTy,
1055                                    uint64_t DstSize, CodeGenFunction &CGF) {
1056   // We can't dive into a zero-element struct.
1057   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1058 
1059   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1060 
1061   // If the first elt is at least as large as what we're looking for, or if the
1062   // first element is the same size as the whole struct, we can enter it. The
1063   // comparison must be made on the store size and not the alloca size. Using
1064   // the alloca size may overstate the size of the load.
1065   uint64_t FirstEltSize =
1066     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1067   if (FirstEltSize < DstSize &&
1068       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1069     return SrcPtr;
1070 
1071   // GEP into the first element.
1072   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1073 
1074   // If the first element is a struct, recurse.
1075   llvm::Type *SrcTy = SrcPtr.getElementType();
1076   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1077     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1078 
1079   return SrcPtr;
1080 }
1081 
1082 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1083 /// are either integers or pointers.  This does a truncation of the value if it
1084 /// is too large or a zero extension if it is too small.
1085 ///
1086 /// This behaves as if the value were coerced through memory, so on big-endian
1087 /// targets the high bits are preserved in a truncation, while little-endian
1088 /// targets preserve the low bits.
1089 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1090                                              llvm::Type *Ty,
1091                                              CodeGenFunction &CGF) {
1092   if (Val->getType() == Ty)
1093     return Val;
1094 
1095   if (isa<llvm::PointerType>(Val->getType())) {
1096     // If this is Pointer->Pointer avoid conversion to and from int.
1097     if (isa<llvm::PointerType>(Ty))
1098       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1099 
1100     // Convert the pointer to an integer so we can play with its width.
1101     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1102   }
1103 
1104   llvm::Type *DestIntTy = Ty;
1105   if (isa<llvm::PointerType>(DestIntTy))
1106     DestIntTy = CGF.IntPtrTy;
1107 
1108   if (Val->getType() != DestIntTy) {
1109     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1110     if (DL.isBigEndian()) {
1111       // Preserve the high bits on big-endian targets.
1112       // That is what memory coercion does.
1113       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1114       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1115 
1116       if (SrcSize > DstSize) {
1117         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1118         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1119       } else {
1120         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1121         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1122       }
1123     } else {
1124       // Little-endian targets preserve the low bits. No shifts required.
1125       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1126     }
1127   }
1128 
1129   if (isa<llvm::PointerType>(Ty))
1130     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1131   return Val;
1132 }
1133 
1134 
1135 
1136 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1137 /// a pointer to an object of type \arg Ty, known to be aligned to
1138 /// \arg SrcAlign bytes.
1139 ///
1140 /// This safely handles the case when the src type is smaller than the
1141 /// destination type; in this situation the values of bits which not
1142 /// present in the src are undefined.
1143 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1144                                       CodeGenFunction &CGF) {
1145   llvm::Type *SrcTy = Src.getElementType();
1146 
1147   // If SrcTy and Ty are the same, just do a load.
1148   if (SrcTy == Ty)
1149     return CGF.Builder.CreateLoad(Src);
1150 
1151   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1152 
1153   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1154     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1155     SrcTy = Src.getType()->getElementType();
1156   }
1157 
1158   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1159 
1160   // If the source and destination are integer or pointer types, just do an
1161   // extension or truncation to the desired type.
1162   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1163       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1164     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1165     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1166   }
1167 
1168   // If load is legal, just bitcast the src pointer.
1169   if (SrcSize >= DstSize) {
1170     // Generally SrcSize is never greater than DstSize, since this means we are
1171     // losing bits. However, this can happen in cases where the structure has
1172     // additional padding, for example due to a user specified alignment.
1173     //
1174     // FIXME: Assert that we aren't truncating non-padding bits when have access
1175     // to that information.
1176     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
1177     return CGF.Builder.CreateLoad(Src);
1178   }
1179 
1180   // Otherwise do coercion through memory. This is stupid, but simple.
1181   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1182   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1183   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
1184   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1185       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1186       false);
1187   return CGF.Builder.CreateLoad(Tmp);
1188 }
1189 
1190 // Function to store a first-class aggregate into memory.  We prefer to
1191 // store the elements rather than the aggregate to be more friendly to
1192 // fast-isel.
1193 // FIXME: Do we need to recurse here?
1194 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1195                           Address Dest, bool DestIsVolatile) {
1196   // Prefer scalar stores to first-class aggregate stores.
1197   if (llvm::StructType *STy =
1198         dyn_cast<llvm::StructType>(Val->getType())) {
1199     const llvm::StructLayout *Layout =
1200       CGF.CGM.getDataLayout().getStructLayout(STy);
1201 
1202     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1203       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1204       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1205       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1206       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1207     }
1208   } else {
1209     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1210   }
1211 }
1212 
1213 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1214 /// where the source and destination may have different types.  The
1215 /// destination is known to be aligned to \arg DstAlign bytes.
1216 ///
1217 /// This safely handles the case when the src type is larger than the
1218 /// destination type; the upper bits of the src will be lost.
1219 static void CreateCoercedStore(llvm::Value *Src,
1220                                Address Dst,
1221                                bool DstIsVolatile,
1222                                CodeGenFunction &CGF) {
1223   llvm::Type *SrcTy = Src->getType();
1224   llvm::Type *DstTy = Dst.getType()->getElementType();
1225   if (SrcTy == DstTy) {
1226     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1227     return;
1228   }
1229 
1230   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1231 
1232   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1233     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1234     DstTy = Dst.getType()->getElementType();
1235   }
1236 
1237   // If the source and destination are integer or pointer types, just do an
1238   // extension or truncation to the desired type.
1239   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1240       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1241     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1242     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1243     return;
1244   }
1245 
1246   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1247 
1248   // If store is legal, just bitcast the src pointer.
1249   if (SrcSize <= DstSize) {
1250     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1251     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1252   } else {
1253     // Otherwise do coercion through memory. This is stupid, but
1254     // simple.
1255 
1256     // Generally SrcSize is never greater than DstSize, since this means we are
1257     // losing bits. However, this can happen in cases where the structure has
1258     // additional padding, for example due to a user specified alignment.
1259     //
1260     // FIXME: Assert that we aren't truncating non-padding bits when have access
1261     // to that information.
1262     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1263     CGF.Builder.CreateStore(Src, Tmp);
1264     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1265     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1266     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1267         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1268         false);
1269   }
1270 }
1271 
1272 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1273                                    const ABIArgInfo &info) {
1274   if (unsigned offset = info.getDirectOffset()) {
1275     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1276     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1277                                              CharUnits::fromQuantity(offset));
1278     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1279   }
1280   return addr;
1281 }
1282 
1283 namespace {
1284 
1285 /// Encapsulates information about the way function arguments from
1286 /// CGFunctionInfo should be passed to actual LLVM IR function.
1287 class ClangToLLVMArgMapping {
1288   static const unsigned InvalidIndex = ~0U;
1289   unsigned InallocaArgNo;
1290   unsigned SRetArgNo;
1291   unsigned TotalIRArgs;
1292 
1293   /// Arguments of LLVM IR function corresponding to single Clang argument.
1294   struct IRArgs {
1295     unsigned PaddingArgIndex;
1296     // Argument is expanded to IR arguments at positions
1297     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1298     unsigned FirstArgIndex;
1299     unsigned NumberOfArgs;
1300 
1301     IRArgs()
1302         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1303           NumberOfArgs(0) {}
1304   };
1305 
1306   SmallVector<IRArgs, 8> ArgInfo;
1307 
1308 public:
1309   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1310                         bool OnlyRequiredArgs = false)
1311       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1312         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1313     construct(Context, FI, OnlyRequiredArgs);
1314   }
1315 
1316   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1317   unsigned getInallocaArgNo() const {
1318     assert(hasInallocaArg());
1319     return InallocaArgNo;
1320   }
1321 
1322   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1323   unsigned getSRetArgNo() const {
1324     assert(hasSRetArg());
1325     return SRetArgNo;
1326   }
1327 
1328   unsigned totalIRArgs() const { return TotalIRArgs; }
1329 
1330   bool hasPaddingArg(unsigned ArgNo) const {
1331     assert(ArgNo < ArgInfo.size());
1332     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1333   }
1334   unsigned getPaddingArgNo(unsigned ArgNo) const {
1335     assert(hasPaddingArg(ArgNo));
1336     return ArgInfo[ArgNo].PaddingArgIndex;
1337   }
1338 
1339   /// Returns index of first IR argument corresponding to ArgNo, and their
1340   /// quantity.
1341   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1342     assert(ArgNo < ArgInfo.size());
1343     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1344                           ArgInfo[ArgNo].NumberOfArgs);
1345   }
1346 
1347 private:
1348   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1349                  bool OnlyRequiredArgs);
1350 };
1351 
1352 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1353                                       const CGFunctionInfo &FI,
1354                                       bool OnlyRequiredArgs) {
1355   unsigned IRArgNo = 0;
1356   bool SwapThisWithSRet = false;
1357   const ABIArgInfo &RetAI = FI.getReturnInfo();
1358 
1359   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1360     SwapThisWithSRet = RetAI.isSRetAfterThis();
1361     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1362   }
1363 
1364   unsigned ArgNo = 0;
1365   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1366   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1367        ++I, ++ArgNo) {
1368     assert(I != FI.arg_end());
1369     QualType ArgType = I->type;
1370     const ABIArgInfo &AI = I->info;
1371     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1372     auto &IRArgs = ArgInfo[ArgNo];
1373 
1374     if (AI.getPaddingType())
1375       IRArgs.PaddingArgIndex = IRArgNo++;
1376 
1377     switch (AI.getKind()) {
1378     case ABIArgInfo::Extend:
1379     case ABIArgInfo::Direct: {
1380       // FIXME: handle sseregparm someday...
1381       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1382       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1383         IRArgs.NumberOfArgs = STy->getNumElements();
1384       } else {
1385         IRArgs.NumberOfArgs = 1;
1386       }
1387       break;
1388     }
1389     case ABIArgInfo::Indirect:
1390       IRArgs.NumberOfArgs = 1;
1391       break;
1392     case ABIArgInfo::Ignore:
1393     case ABIArgInfo::InAlloca:
1394       // ignore and inalloca doesn't have matching LLVM parameters.
1395       IRArgs.NumberOfArgs = 0;
1396       break;
1397     case ABIArgInfo::CoerceAndExpand:
1398       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1399       break;
1400     case ABIArgInfo::Expand:
1401       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1402       break;
1403     }
1404 
1405     if (IRArgs.NumberOfArgs > 0) {
1406       IRArgs.FirstArgIndex = IRArgNo;
1407       IRArgNo += IRArgs.NumberOfArgs;
1408     }
1409 
1410     // Skip over the sret parameter when it comes second.  We already handled it
1411     // above.
1412     if (IRArgNo == 1 && SwapThisWithSRet)
1413       IRArgNo++;
1414   }
1415   assert(ArgNo == ArgInfo.size());
1416 
1417   if (FI.usesInAlloca())
1418     InallocaArgNo = IRArgNo++;
1419 
1420   TotalIRArgs = IRArgNo;
1421 }
1422 }  // namespace
1423 
1424 /***/
1425 
1426 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1427   return FI.getReturnInfo().isIndirect();
1428 }
1429 
1430 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1431   return ReturnTypeUsesSRet(FI) &&
1432          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1433 }
1434 
1435 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1436   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1437     switch (BT->getKind()) {
1438     default:
1439       return false;
1440     case BuiltinType::Float:
1441       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1442     case BuiltinType::Double:
1443       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1444     case BuiltinType::LongDouble:
1445       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1446     }
1447   }
1448 
1449   return false;
1450 }
1451 
1452 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1453   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1454     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1455       if (BT->getKind() == BuiltinType::LongDouble)
1456         return getTarget().useObjCFP2RetForComplexLongDouble();
1457     }
1458   }
1459 
1460   return false;
1461 }
1462 
1463 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1464   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1465   return GetFunctionType(FI);
1466 }
1467 
1468 llvm::FunctionType *
1469 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1470 
1471   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1472   (void)Inserted;
1473   assert(Inserted && "Recursively being processed?");
1474 
1475   llvm::Type *resultType = nullptr;
1476   const ABIArgInfo &retAI = FI.getReturnInfo();
1477   switch (retAI.getKind()) {
1478   case ABIArgInfo::Expand:
1479     llvm_unreachable("Invalid ABI kind for return argument");
1480 
1481   case ABIArgInfo::Extend:
1482   case ABIArgInfo::Direct:
1483     resultType = retAI.getCoerceToType();
1484     break;
1485 
1486   case ABIArgInfo::InAlloca:
1487     if (retAI.getInAllocaSRet()) {
1488       // sret things on win32 aren't void, they return the sret pointer.
1489       QualType ret = FI.getReturnType();
1490       llvm::Type *ty = ConvertType(ret);
1491       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1492       resultType = llvm::PointerType::get(ty, addressSpace);
1493     } else {
1494       resultType = llvm::Type::getVoidTy(getLLVMContext());
1495     }
1496     break;
1497 
1498   case ABIArgInfo::Indirect:
1499   case ABIArgInfo::Ignore:
1500     resultType = llvm::Type::getVoidTy(getLLVMContext());
1501     break;
1502 
1503   case ABIArgInfo::CoerceAndExpand:
1504     resultType = retAI.getUnpaddedCoerceAndExpandType();
1505     break;
1506   }
1507 
1508   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1509   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1510 
1511   // Add type for sret argument.
1512   if (IRFunctionArgs.hasSRetArg()) {
1513     QualType Ret = FI.getReturnType();
1514     llvm::Type *Ty = ConvertType(Ret);
1515     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1516     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1517         llvm::PointerType::get(Ty, AddressSpace);
1518   }
1519 
1520   // Add type for inalloca argument.
1521   if (IRFunctionArgs.hasInallocaArg()) {
1522     auto ArgStruct = FI.getArgStruct();
1523     assert(ArgStruct);
1524     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1525   }
1526 
1527   // Add in all of the required arguments.
1528   unsigned ArgNo = 0;
1529   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1530                                      ie = it + FI.getNumRequiredArgs();
1531   for (; it != ie; ++it, ++ArgNo) {
1532     const ABIArgInfo &ArgInfo = it->info;
1533 
1534     // Insert a padding type to ensure proper alignment.
1535     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1536       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1537           ArgInfo.getPaddingType();
1538 
1539     unsigned FirstIRArg, NumIRArgs;
1540     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1541 
1542     switch (ArgInfo.getKind()) {
1543     case ABIArgInfo::Ignore:
1544     case ABIArgInfo::InAlloca:
1545       assert(NumIRArgs == 0);
1546       break;
1547 
1548     case ABIArgInfo::Indirect: {
1549       assert(NumIRArgs == 1);
1550       // indirect arguments are always on the stack, which is addr space #0.
1551       llvm::Type *LTy = ConvertTypeForMem(it->type);
1552       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1553       break;
1554     }
1555 
1556     case ABIArgInfo::Extend:
1557     case ABIArgInfo::Direct: {
1558       // Fast-isel and the optimizer generally like scalar values better than
1559       // FCAs, so we flatten them if this is safe to do for this argument.
1560       llvm::Type *argType = ArgInfo.getCoerceToType();
1561       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1562       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1563         assert(NumIRArgs == st->getNumElements());
1564         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1565           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1566       } else {
1567         assert(NumIRArgs == 1);
1568         ArgTypes[FirstIRArg] = argType;
1569       }
1570       break;
1571     }
1572 
1573     case ABIArgInfo::CoerceAndExpand: {
1574       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1575       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1576         *ArgTypesIter++ = EltTy;
1577       }
1578       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1579       break;
1580     }
1581 
1582     case ABIArgInfo::Expand:
1583       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1584       getExpandedTypes(it->type, ArgTypesIter);
1585       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1586       break;
1587     }
1588   }
1589 
1590   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1591   assert(Erased && "Not in set?");
1592 
1593   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1594 }
1595 
1596 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1597   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1598   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1599 
1600   if (!isFuncTypeConvertible(FPT))
1601     return llvm::StructType::get(getLLVMContext());
1602 
1603   const CGFunctionInfo *Info;
1604   if (isa<CXXDestructorDecl>(MD))
1605     Info =
1606         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1607   else
1608     Info = &arrangeCXXMethodDeclaration(MD);
1609   return GetFunctionType(*Info);
1610 }
1611 
1612 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1613                                                llvm::AttrBuilder &FuncAttrs,
1614                                                const FunctionProtoType *FPT) {
1615   if (!FPT)
1616     return;
1617 
1618   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1619       FPT->isNothrow(Ctx))
1620     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1621 }
1622 
1623 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1624                                                bool AttrOnCallSite,
1625                                                llvm::AttrBuilder &FuncAttrs) {
1626   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1627   if (!HasOptnone) {
1628     if (CodeGenOpts.OptimizeSize)
1629       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1630     if (CodeGenOpts.OptimizeSize == 2)
1631       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1632   }
1633 
1634   if (CodeGenOpts.DisableRedZone)
1635     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1636   if (CodeGenOpts.NoImplicitFloat)
1637     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1638 
1639   if (AttrOnCallSite) {
1640     // Attributes that should go on the call site only.
1641     if (!CodeGenOpts.SimplifyLibCalls ||
1642         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1643       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1644     if (!CodeGenOpts.TrapFuncName.empty())
1645       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1646   } else {
1647     // Attributes that should go on the function, but not the call site.
1648     if (!CodeGenOpts.DisableFPElim) {
1649       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1650     } else if (CodeGenOpts.OmitLeafFramePointer) {
1651       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1652       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1653     } else {
1654       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1655       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1656     }
1657 
1658     FuncAttrs.addAttribute("less-precise-fpmad",
1659                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1660 
1661     if (!CodeGenOpts.FPDenormalMode.empty())
1662       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1663 
1664     FuncAttrs.addAttribute("no-trapping-math",
1665                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1666 
1667     // TODO: Are these all needed?
1668     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1669     FuncAttrs.addAttribute("no-infs-fp-math",
1670                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1671     FuncAttrs.addAttribute("no-nans-fp-math",
1672                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1673     FuncAttrs.addAttribute("unsafe-fp-math",
1674                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1675     FuncAttrs.addAttribute("use-soft-float",
1676                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1677     FuncAttrs.addAttribute("stack-protector-buffer-size",
1678                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1679     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1680                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1681     FuncAttrs.addAttribute(
1682         "correctly-rounded-divide-sqrt-fp-math",
1683         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1684 
1685     // TODO: Reciprocal estimate codegen options should apply to instructions?
1686     std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals;
1687     if (!Recips.empty())
1688       FuncAttrs.addAttribute("reciprocal-estimates",
1689                              llvm::join(Recips.begin(), Recips.end(), ","));
1690 
1691     if (CodeGenOpts.StackRealignment)
1692       FuncAttrs.addAttribute("stackrealign");
1693     if (CodeGenOpts.Backchain)
1694       FuncAttrs.addAttribute("backchain");
1695   }
1696 
1697   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1698     // Conservatively, mark all functions and calls in CUDA as convergent
1699     // (meaning, they may call an intrinsically convergent op, such as
1700     // __syncthreads(), and so can't have certain optimizations applied around
1701     // them).  LLVM will remove this attribute where it safely can.
1702     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1703 
1704     // Exceptions aren't supported in CUDA device code.
1705     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1706 
1707     // Respect -fcuda-flush-denormals-to-zero.
1708     if (getLangOpts().CUDADeviceFlushDenormalsToZero)
1709       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1710   }
1711 }
1712 
1713 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1714   llvm::AttrBuilder FuncAttrs;
1715   ConstructDefaultFnAttrList(F.getName(),
1716                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1717                              /* AttrOnCallsite = */ false, FuncAttrs);
1718   llvm::AttributeSet AS = llvm::AttributeSet::get(
1719       getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs);
1720   F.addAttributes(llvm::AttributeSet::FunctionIndex, AS);
1721 }
1722 
1723 void CodeGenModule::ConstructAttributeList(
1724     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1725     AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) {
1726   llvm::AttrBuilder FuncAttrs;
1727   llvm::AttrBuilder RetAttrs;
1728 
1729   CallingConv = FI.getEffectiveCallingConvention();
1730   if (FI.isNoReturn())
1731     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1732 
1733   // If we have information about the function prototype, we can learn
1734   // attributes form there.
1735   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1736                                      CalleeInfo.getCalleeFunctionProtoType());
1737 
1738   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1739 
1740   bool HasOptnone = false;
1741   // FIXME: handle sseregparm someday...
1742   if (TargetDecl) {
1743     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1744       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1745     if (TargetDecl->hasAttr<NoThrowAttr>())
1746       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1747     if (TargetDecl->hasAttr<NoReturnAttr>())
1748       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1749     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1750       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1751     if (TargetDecl->hasAttr<ConvergentAttr>())
1752       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1753 
1754     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1755       AddAttributesFromFunctionProtoType(
1756           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1757       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1758       // These attributes are not inherited by overloads.
1759       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1760       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1761         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1762     }
1763 
1764     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1765     if (TargetDecl->hasAttr<ConstAttr>()) {
1766       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1767       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1768     } else if (TargetDecl->hasAttr<PureAttr>()) {
1769       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1770       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1771     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1772       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1773       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1774     }
1775     if (TargetDecl->hasAttr<RestrictAttr>())
1776       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1777     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1778       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1779 
1780     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1781     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1782       Optional<unsigned> NumElemsParam;
1783       // alloc_size args are base-1, 0 means not present.
1784       if (unsigned N = AllocSize->getNumElemsParam())
1785         NumElemsParam = N - 1;
1786       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1,
1787                                  NumElemsParam);
1788     }
1789   }
1790 
1791   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1792 
1793   if (CodeGenOpts.EnableSegmentedStacks &&
1794       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1795     FuncAttrs.addAttribute("split-stack");
1796 
1797   if (!AttrOnCallSite) {
1798     bool DisableTailCalls =
1799         CodeGenOpts.DisableTailCalls ||
1800         (TargetDecl && (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1801                         TargetDecl->hasAttr<AnyX86InterruptAttr>()));
1802     FuncAttrs.addAttribute("disable-tail-calls",
1803                            llvm::toStringRef(DisableTailCalls));
1804 
1805     // Add target-cpu and target-features attributes to functions. If
1806     // we have a decl for the function and it has a target attribute then
1807     // parse that and add it to the feature set.
1808     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1809     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1810     if (FD && FD->hasAttr<TargetAttr>()) {
1811       llvm::StringMap<bool> FeatureMap;
1812       getFunctionFeatureMap(FeatureMap, FD);
1813 
1814       // Produce the canonical string for this set of features.
1815       std::vector<std::string> Features;
1816       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1817                                                  ie = FeatureMap.end();
1818            it != ie; ++it)
1819         Features.push_back((it->second ? "+" : "-") + it->first().str());
1820 
1821       // Now add the target-cpu and target-features to the function.
1822       // While we populated the feature map above, we still need to
1823       // get and parse the target attribute so we can get the cpu for
1824       // the function.
1825       const auto *TD = FD->getAttr<TargetAttr>();
1826       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1827       if (ParsedAttr.second != "")
1828         TargetCPU = ParsedAttr.second;
1829       if (TargetCPU != "")
1830         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1831       if (!Features.empty()) {
1832         std::sort(Features.begin(), Features.end());
1833         FuncAttrs.addAttribute(
1834             "target-features",
1835             llvm::join(Features.begin(), Features.end(), ","));
1836       }
1837     } else {
1838       // Otherwise just add the existing target cpu and target features to the
1839       // function.
1840       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1841       if (TargetCPU != "")
1842         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1843       if (!Features.empty()) {
1844         std::sort(Features.begin(), Features.end());
1845         FuncAttrs.addAttribute(
1846             "target-features",
1847             llvm::join(Features.begin(), Features.end(), ","));
1848       }
1849     }
1850   }
1851 
1852   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1853 
1854   QualType RetTy = FI.getReturnType();
1855   const ABIArgInfo &RetAI = FI.getReturnInfo();
1856   switch (RetAI.getKind()) {
1857   case ABIArgInfo::Extend:
1858     if (RetTy->hasSignedIntegerRepresentation())
1859       RetAttrs.addAttribute(llvm::Attribute::SExt);
1860     else if (RetTy->hasUnsignedIntegerRepresentation())
1861       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1862     // FALL THROUGH
1863   case ABIArgInfo::Direct:
1864     if (RetAI.getInReg())
1865       RetAttrs.addAttribute(llvm::Attribute::InReg);
1866     break;
1867   case ABIArgInfo::Ignore:
1868     break;
1869 
1870   case ABIArgInfo::InAlloca:
1871   case ABIArgInfo::Indirect: {
1872     // inalloca and sret disable readnone and readonly
1873     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1874       .removeAttribute(llvm::Attribute::ReadNone);
1875     break;
1876   }
1877 
1878   case ABIArgInfo::CoerceAndExpand:
1879     break;
1880 
1881   case ABIArgInfo::Expand:
1882     llvm_unreachable("Invalid ABI kind for return argument");
1883   }
1884 
1885   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1886     QualType PTy = RefTy->getPointeeType();
1887     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1888       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1889                                         .getQuantity());
1890     else if (getContext().getTargetAddressSpace(PTy) == 0)
1891       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1892   }
1893 
1894   // Attach return attributes.
1895   if (RetAttrs.hasAttributes()) {
1896     PAL.push_back(llvm::AttributeSet::get(
1897         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1898   }
1899 
1900   bool hasUsedSRet = false;
1901 
1902   // Attach attributes to sret.
1903   if (IRFunctionArgs.hasSRetArg()) {
1904     llvm::AttrBuilder SRETAttrs;
1905     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1906     hasUsedSRet = true;
1907     if (RetAI.getInReg())
1908       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1909     PAL.push_back(llvm::AttributeSet::get(
1910         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1911   }
1912 
1913   // Attach attributes to inalloca argument.
1914   if (IRFunctionArgs.hasInallocaArg()) {
1915     llvm::AttrBuilder Attrs;
1916     Attrs.addAttribute(llvm::Attribute::InAlloca);
1917     PAL.push_back(llvm::AttributeSet::get(
1918         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1919   }
1920 
1921   unsigned ArgNo = 0;
1922   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1923                                           E = FI.arg_end();
1924        I != E; ++I, ++ArgNo) {
1925     QualType ParamType = I->type;
1926     const ABIArgInfo &AI = I->info;
1927     llvm::AttrBuilder Attrs;
1928 
1929     // Add attribute for padding argument, if necessary.
1930     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1931       if (AI.getPaddingInReg())
1932         PAL.push_back(llvm::AttributeSet::get(
1933             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1934             llvm::Attribute::InReg));
1935     }
1936 
1937     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1938     // have the corresponding parameter variable.  It doesn't make
1939     // sense to do it here because parameters are so messed up.
1940     switch (AI.getKind()) {
1941     case ABIArgInfo::Extend:
1942       if (ParamType->isSignedIntegerOrEnumerationType())
1943         Attrs.addAttribute(llvm::Attribute::SExt);
1944       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1945         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1946           Attrs.addAttribute(llvm::Attribute::SExt);
1947         else
1948           Attrs.addAttribute(llvm::Attribute::ZExt);
1949       }
1950       // FALL THROUGH
1951     case ABIArgInfo::Direct:
1952       if (ArgNo == 0 && FI.isChainCall())
1953         Attrs.addAttribute(llvm::Attribute::Nest);
1954       else if (AI.getInReg())
1955         Attrs.addAttribute(llvm::Attribute::InReg);
1956       break;
1957 
1958     case ABIArgInfo::Indirect: {
1959       if (AI.getInReg())
1960         Attrs.addAttribute(llvm::Attribute::InReg);
1961 
1962       if (AI.getIndirectByVal())
1963         Attrs.addAttribute(llvm::Attribute::ByVal);
1964 
1965       CharUnits Align = AI.getIndirectAlign();
1966 
1967       // In a byval argument, it is important that the required
1968       // alignment of the type is honored, as LLVM might be creating a
1969       // *new* stack object, and needs to know what alignment to give
1970       // it. (Sometimes it can deduce a sensible alignment on its own,
1971       // but not if clang decides it must emit a packed struct, or the
1972       // user specifies increased alignment requirements.)
1973       //
1974       // This is different from indirect *not* byval, where the object
1975       // exists already, and the align attribute is purely
1976       // informative.
1977       assert(!Align.isZero());
1978 
1979       // For now, only add this when we have a byval argument.
1980       // TODO: be less lazy about updating test cases.
1981       if (AI.getIndirectByVal())
1982         Attrs.addAlignmentAttr(Align.getQuantity());
1983 
1984       // byval disables readnone and readonly.
1985       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1986         .removeAttribute(llvm::Attribute::ReadNone);
1987       break;
1988     }
1989     case ABIArgInfo::Ignore:
1990     case ABIArgInfo::Expand:
1991     case ABIArgInfo::CoerceAndExpand:
1992       break;
1993 
1994     case ABIArgInfo::InAlloca:
1995       // inalloca disables readnone and readonly.
1996       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1997           .removeAttribute(llvm::Attribute::ReadNone);
1998       continue;
1999     }
2000 
2001     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2002       QualType PTy = RefTy->getPointeeType();
2003       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2004         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2005                                        .getQuantity());
2006       else if (getContext().getTargetAddressSpace(PTy) == 0)
2007         Attrs.addAttribute(llvm::Attribute::NonNull);
2008     }
2009 
2010     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2011     case ParameterABI::Ordinary:
2012       break;
2013 
2014     case ParameterABI::SwiftIndirectResult: {
2015       // Add 'sret' if we haven't already used it for something, but
2016       // only if the result is void.
2017       if (!hasUsedSRet && RetTy->isVoidType()) {
2018         Attrs.addAttribute(llvm::Attribute::StructRet);
2019         hasUsedSRet = true;
2020       }
2021 
2022       // Add 'noalias' in either case.
2023       Attrs.addAttribute(llvm::Attribute::NoAlias);
2024 
2025       // Add 'dereferenceable' and 'alignment'.
2026       auto PTy = ParamType->getPointeeType();
2027       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2028         auto info = getContext().getTypeInfoInChars(PTy);
2029         Attrs.addDereferenceableAttr(info.first.getQuantity());
2030         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2031                                                  info.second.getQuantity()));
2032       }
2033       break;
2034     }
2035 
2036     case ParameterABI::SwiftErrorResult:
2037       Attrs.addAttribute(llvm::Attribute::SwiftError);
2038       break;
2039 
2040     case ParameterABI::SwiftContext:
2041       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2042       break;
2043     }
2044 
2045     if (Attrs.hasAttributes()) {
2046       unsigned FirstIRArg, NumIRArgs;
2047       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2048       for (unsigned i = 0; i < NumIRArgs; i++)
2049         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
2050                                               FirstIRArg + i + 1, Attrs));
2051     }
2052   }
2053   assert(ArgNo == FI.arg_size());
2054 
2055   if (FuncAttrs.hasAttributes())
2056     PAL.push_back(llvm::
2057                   AttributeSet::get(getLLVMContext(),
2058                                     llvm::AttributeSet::FunctionIndex,
2059                                     FuncAttrs));
2060 }
2061 
2062 /// An argument came in as a promoted argument; demote it back to its
2063 /// declared type.
2064 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2065                                          const VarDecl *var,
2066                                          llvm::Value *value) {
2067   llvm::Type *varType = CGF.ConvertType(var->getType());
2068 
2069   // This can happen with promotions that actually don't change the
2070   // underlying type, like the enum promotions.
2071   if (value->getType() == varType) return value;
2072 
2073   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2074          && "unexpected promotion type");
2075 
2076   if (isa<llvm::IntegerType>(varType))
2077     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2078 
2079   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2080 }
2081 
2082 /// Returns the attribute (either parameter attribute, or function
2083 /// attribute), which declares argument ArgNo to be non-null.
2084 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2085                                          QualType ArgType, unsigned ArgNo) {
2086   // FIXME: __attribute__((nonnull)) can also be applied to:
2087   //   - references to pointers, where the pointee is known to be
2088   //     nonnull (apparently a Clang extension)
2089   //   - transparent unions containing pointers
2090   // In the former case, LLVM IR cannot represent the constraint. In
2091   // the latter case, we have no guarantee that the transparent union
2092   // is in fact passed as a pointer.
2093   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2094     return nullptr;
2095   // First, check attribute on parameter itself.
2096   if (PVD) {
2097     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2098       return ParmNNAttr;
2099   }
2100   // Check function attributes.
2101   if (!FD)
2102     return nullptr;
2103   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2104     if (NNAttr->isNonNull(ArgNo))
2105       return NNAttr;
2106   }
2107   return nullptr;
2108 }
2109 
2110 namespace {
2111   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2112     Address Temp;
2113     Address Arg;
2114     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2115     void Emit(CodeGenFunction &CGF, Flags flags) override {
2116       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2117       CGF.Builder.CreateStore(errorValue, Arg);
2118     }
2119   };
2120 }
2121 
2122 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2123                                          llvm::Function *Fn,
2124                                          const FunctionArgList &Args) {
2125   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2126     // Naked functions don't have prologues.
2127     return;
2128 
2129   // If this is an implicit-return-zero function, go ahead and
2130   // initialize the return value.  TODO: it might be nice to have
2131   // a more general mechanism for this that didn't require synthesized
2132   // return statements.
2133   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2134     if (FD->hasImplicitReturnZero()) {
2135       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2136       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2137       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2138       Builder.CreateStore(Zero, ReturnValue);
2139     }
2140   }
2141 
2142   // FIXME: We no longer need the types from FunctionArgList; lift up and
2143   // simplify.
2144 
2145   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2146   // Flattened function arguments.
2147   SmallVector<llvm::Value *, 16> FnArgs;
2148   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2149   for (auto &Arg : Fn->args()) {
2150     FnArgs.push_back(&Arg);
2151   }
2152   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2153 
2154   // If we're using inalloca, all the memory arguments are GEPs off of the last
2155   // parameter, which is a pointer to the complete memory area.
2156   Address ArgStruct = Address::invalid();
2157   const llvm::StructLayout *ArgStructLayout = nullptr;
2158   if (IRFunctionArgs.hasInallocaArg()) {
2159     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2160     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2161                         FI.getArgStructAlignment());
2162 
2163     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2164   }
2165 
2166   // Name the struct return parameter.
2167   if (IRFunctionArgs.hasSRetArg()) {
2168     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2169     AI->setName("agg.result");
2170     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
2171                                         llvm::Attribute::NoAlias));
2172   }
2173 
2174   // Track if we received the parameter as a pointer (indirect, byval, or
2175   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2176   // into a local alloca for us.
2177   SmallVector<ParamValue, 16> ArgVals;
2178   ArgVals.reserve(Args.size());
2179 
2180   // Create a pointer value for every parameter declaration.  This usually
2181   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2182   // any cleanups or do anything that might unwind.  We do that separately, so
2183   // we can push the cleanups in the correct order for the ABI.
2184   assert(FI.arg_size() == Args.size() &&
2185          "Mismatch between function signature & arguments.");
2186   unsigned ArgNo = 0;
2187   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2188   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2189        i != e; ++i, ++info_it, ++ArgNo) {
2190     const VarDecl *Arg = *i;
2191     QualType Ty = info_it->type;
2192     const ABIArgInfo &ArgI = info_it->info;
2193 
2194     bool isPromoted =
2195       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2196 
2197     unsigned FirstIRArg, NumIRArgs;
2198     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2199 
2200     switch (ArgI.getKind()) {
2201     case ABIArgInfo::InAlloca: {
2202       assert(NumIRArgs == 0);
2203       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2204       CharUnits FieldOffset =
2205         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2206       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2207                                           Arg->getName());
2208       ArgVals.push_back(ParamValue::forIndirect(V));
2209       break;
2210     }
2211 
2212     case ABIArgInfo::Indirect: {
2213       assert(NumIRArgs == 1);
2214       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2215 
2216       if (!hasScalarEvaluationKind(Ty)) {
2217         // Aggregates and complex variables are accessed by reference.  All we
2218         // need to do is realign the value, if requested.
2219         Address V = ParamAddr;
2220         if (ArgI.getIndirectRealign()) {
2221           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2222 
2223           // Copy from the incoming argument pointer to the temporary with the
2224           // appropriate alignment.
2225           //
2226           // FIXME: We should have a common utility for generating an aggregate
2227           // copy.
2228           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2229           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2230           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2231           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2232           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2233           V = AlignedTemp;
2234         }
2235         ArgVals.push_back(ParamValue::forIndirect(V));
2236       } else {
2237         // Load scalar value from indirect argument.
2238         llvm::Value *V =
2239           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
2240 
2241         if (isPromoted)
2242           V = emitArgumentDemotion(*this, Arg, V);
2243         ArgVals.push_back(ParamValue::forDirect(V));
2244       }
2245       break;
2246     }
2247 
2248     case ABIArgInfo::Extend:
2249     case ABIArgInfo::Direct: {
2250 
2251       // If we have the trivial case, handle it with no muss and fuss.
2252       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2253           ArgI.getCoerceToType() == ConvertType(Ty) &&
2254           ArgI.getDirectOffset() == 0) {
2255         assert(NumIRArgs == 1);
2256         llvm::Value *V = FnArgs[FirstIRArg];
2257         auto AI = cast<llvm::Argument>(V);
2258 
2259         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2260           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2261                              PVD->getFunctionScopeIndex()))
2262             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2263                                                 AI->getArgNo() + 1,
2264                                                 llvm::Attribute::NonNull));
2265 
2266           QualType OTy = PVD->getOriginalType();
2267           if (const auto *ArrTy =
2268               getContext().getAsConstantArrayType(OTy)) {
2269             // A C99 array parameter declaration with the static keyword also
2270             // indicates dereferenceability, and if the size is constant we can
2271             // use the dereferenceable attribute (which requires the size in
2272             // bytes).
2273             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2274               QualType ETy = ArrTy->getElementType();
2275               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2276               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2277                   ArrSize) {
2278                 llvm::AttrBuilder Attrs;
2279                 Attrs.addDereferenceableAttr(
2280                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2281                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2282                                                     AI->getArgNo() + 1, Attrs));
2283               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
2284                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2285                                                     AI->getArgNo() + 1,
2286                                                     llvm::Attribute::NonNull));
2287               }
2288             }
2289           } else if (const auto *ArrTy =
2290                      getContext().getAsVariableArrayType(OTy)) {
2291             // For C99 VLAs with the static keyword, we don't know the size so
2292             // we can't use the dereferenceable attribute, but in addrspace(0)
2293             // we know that it must be nonnull.
2294             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2295                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
2296               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2297                                                   AI->getArgNo() + 1,
2298                                                   llvm::Attribute::NonNull));
2299           }
2300 
2301           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2302           if (!AVAttr)
2303             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2304               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2305           if (AVAttr) {
2306             llvm::Value *AlignmentValue =
2307               EmitScalarExpr(AVAttr->getAlignment());
2308             llvm::ConstantInt *AlignmentCI =
2309               cast<llvm::ConstantInt>(AlignmentValue);
2310             unsigned Alignment =
2311               std::min((unsigned) AlignmentCI->getZExtValue(),
2312                        +llvm::Value::MaximumAlignment);
2313 
2314             llvm::AttrBuilder Attrs;
2315             Attrs.addAlignmentAttr(Alignment);
2316             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2317                                                 AI->getArgNo() + 1, Attrs));
2318           }
2319         }
2320 
2321         if (Arg->getType().isRestrictQualified())
2322           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2323                                               AI->getArgNo() + 1,
2324                                               llvm::Attribute::NoAlias));
2325 
2326         // LLVM expects swifterror parameters to be used in very restricted
2327         // ways.  Copy the value into a less-restricted temporary.
2328         if (FI.getExtParameterInfo(ArgNo).getABI()
2329               == ParameterABI::SwiftErrorResult) {
2330           QualType pointeeTy = Ty->getPointeeType();
2331           assert(pointeeTy->isPointerType());
2332           Address temp =
2333             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2334           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2335           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2336           Builder.CreateStore(incomingErrorValue, temp);
2337           V = temp.getPointer();
2338 
2339           // Push a cleanup to copy the value back at the end of the function.
2340           // The convention does not guarantee that the value will be written
2341           // back if the function exits with an unwind exception.
2342           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2343         }
2344 
2345         // Ensure the argument is the correct type.
2346         if (V->getType() != ArgI.getCoerceToType())
2347           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2348 
2349         if (isPromoted)
2350           V = emitArgumentDemotion(*this, Arg, V);
2351 
2352         // Because of merging of function types from multiple decls it is
2353         // possible for the type of an argument to not match the corresponding
2354         // type in the function type. Since we are codegening the callee
2355         // in here, add a cast to the argument type.
2356         llvm::Type *LTy = ConvertType(Arg->getType());
2357         if (V->getType() != LTy)
2358           V = Builder.CreateBitCast(V, LTy);
2359 
2360         ArgVals.push_back(ParamValue::forDirect(V));
2361         break;
2362       }
2363 
2364       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2365                                      Arg->getName());
2366 
2367       // Pointer to store into.
2368       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2369 
2370       // Fast-isel and the optimizer generally like scalar values better than
2371       // FCAs, so we flatten them if this is safe to do for this argument.
2372       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2373       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2374           STy->getNumElements() > 1) {
2375         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2376         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2377         llvm::Type *DstTy = Ptr.getElementType();
2378         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2379 
2380         Address AddrToStoreInto = Address::invalid();
2381         if (SrcSize <= DstSize) {
2382           AddrToStoreInto =
2383             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2384         } else {
2385           AddrToStoreInto =
2386             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2387         }
2388 
2389         assert(STy->getNumElements() == NumIRArgs);
2390         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2391           auto AI = FnArgs[FirstIRArg + i];
2392           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2393           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2394           Address EltPtr =
2395             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2396           Builder.CreateStore(AI, EltPtr);
2397         }
2398 
2399         if (SrcSize > DstSize) {
2400           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2401         }
2402 
2403       } else {
2404         // Simple case, just do a coerced store of the argument into the alloca.
2405         assert(NumIRArgs == 1);
2406         auto AI = FnArgs[FirstIRArg];
2407         AI->setName(Arg->getName() + ".coerce");
2408         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2409       }
2410 
2411       // Match to what EmitParmDecl is expecting for this type.
2412       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2413         llvm::Value *V =
2414           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2415         if (isPromoted)
2416           V = emitArgumentDemotion(*this, Arg, V);
2417         ArgVals.push_back(ParamValue::forDirect(V));
2418       } else {
2419         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2420       }
2421       break;
2422     }
2423 
2424     case ABIArgInfo::CoerceAndExpand: {
2425       // Reconstruct into a temporary.
2426       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2427       ArgVals.push_back(ParamValue::forIndirect(alloca));
2428 
2429       auto coercionType = ArgI.getCoerceAndExpandType();
2430       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2431       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2432 
2433       unsigned argIndex = FirstIRArg;
2434       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2435         llvm::Type *eltType = coercionType->getElementType(i);
2436         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2437           continue;
2438 
2439         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2440         auto elt = FnArgs[argIndex++];
2441         Builder.CreateStore(elt, eltAddr);
2442       }
2443       assert(argIndex == FirstIRArg + NumIRArgs);
2444       break;
2445     }
2446 
2447     case ABIArgInfo::Expand: {
2448       // If this structure was expanded into multiple arguments then
2449       // we need to create a temporary and reconstruct it from the
2450       // arguments.
2451       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2452       LValue LV = MakeAddrLValue(Alloca, Ty);
2453       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2454 
2455       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2456       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2457       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2458       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2459         auto AI = FnArgs[FirstIRArg + i];
2460         AI->setName(Arg->getName() + "." + Twine(i));
2461       }
2462       break;
2463     }
2464 
2465     case ABIArgInfo::Ignore:
2466       assert(NumIRArgs == 0);
2467       // Initialize the local variable appropriately.
2468       if (!hasScalarEvaluationKind(Ty)) {
2469         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2470       } else {
2471         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2472         ArgVals.push_back(ParamValue::forDirect(U));
2473       }
2474       break;
2475     }
2476   }
2477 
2478   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2479     for (int I = Args.size() - 1; I >= 0; --I)
2480       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2481   } else {
2482     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2483       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2484   }
2485 }
2486 
2487 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2488   while (insn->use_empty()) {
2489     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2490     if (!bitcast) return;
2491 
2492     // This is "safe" because we would have used a ConstantExpr otherwise.
2493     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2494     bitcast->eraseFromParent();
2495   }
2496 }
2497 
2498 /// Try to emit a fused autorelease of a return result.
2499 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2500                                                     llvm::Value *result) {
2501   // We must be immediately followed the cast.
2502   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2503   if (BB->empty()) return nullptr;
2504   if (&BB->back() != result) return nullptr;
2505 
2506   llvm::Type *resultType = result->getType();
2507 
2508   // result is in a BasicBlock and is therefore an Instruction.
2509   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2510 
2511   SmallVector<llvm::Instruction *, 4> InstsToKill;
2512 
2513   // Look for:
2514   //  %generator = bitcast %type1* %generator2 to %type2*
2515   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2516     // We would have emitted this as a constant if the operand weren't
2517     // an Instruction.
2518     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2519 
2520     // Require the generator to be immediately followed by the cast.
2521     if (generator->getNextNode() != bitcast)
2522       return nullptr;
2523 
2524     InstsToKill.push_back(bitcast);
2525   }
2526 
2527   // Look for:
2528   //   %generator = call i8* @objc_retain(i8* %originalResult)
2529   // or
2530   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2531   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2532   if (!call) return nullptr;
2533 
2534   bool doRetainAutorelease;
2535 
2536   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2537     doRetainAutorelease = true;
2538   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2539                                           .objc_retainAutoreleasedReturnValue) {
2540     doRetainAutorelease = false;
2541 
2542     // If we emitted an assembly marker for this call (and the
2543     // ARCEntrypoints field should have been set if so), go looking
2544     // for that call.  If we can't find it, we can't do this
2545     // optimization.  But it should always be the immediately previous
2546     // instruction, unless we needed bitcasts around the call.
2547     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2548       llvm::Instruction *prev = call->getPrevNode();
2549       assert(prev);
2550       if (isa<llvm::BitCastInst>(prev)) {
2551         prev = prev->getPrevNode();
2552         assert(prev);
2553       }
2554       assert(isa<llvm::CallInst>(prev));
2555       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2556                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2557       InstsToKill.push_back(prev);
2558     }
2559   } else {
2560     return nullptr;
2561   }
2562 
2563   result = call->getArgOperand(0);
2564   InstsToKill.push_back(call);
2565 
2566   // Keep killing bitcasts, for sanity.  Note that we no longer care
2567   // about precise ordering as long as there's exactly one use.
2568   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2569     if (!bitcast->hasOneUse()) break;
2570     InstsToKill.push_back(bitcast);
2571     result = bitcast->getOperand(0);
2572   }
2573 
2574   // Delete all the unnecessary instructions, from latest to earliest.
2575   for (auto *I : InstsToKill)
2576     I->eraseFromParent();
2577 
2578   // Do the fused retain/autorelease if we were asked to.
2579   if (doRetainAutorelease)
2580     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2581 
2582   // Cast back to the result type.
2583   return CGF.Builder.CreateBitCast(result, resultType);
2584 }
2585 
2586 /// If this is a +1 of the value of an immutable 'self', remove it.
2587 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2588                                           llvm::Value *result) {
2589   // This is only applicable to a method with an immutable 'self'.
2590   const ObjCMethodDecl *method =
2591     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2592   if (!method) return nullptr;
2593   const VarDecl *self = method->getSelfDecl();
2594   if (!self->getType().isConstQualified()) return nullptr;
2595 
2596   // Look for a retain call.
2597   llvm::CallInst *retainCall =
2598     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2599   if (!retainCall ||
2600       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2601     return nullptr;
2602 
2603   // Look for an ordinary load of 'self'.
2604   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2605   llvm::LoadInst *load =
2606     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2607   if (!load || load->isAtomic() || load->isVolatile() ||
2608       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2609     return nullptr;
2610 
2611   // Okay!  Burn it all down.  This relies for correctness on the
2612   // assumption that the retain is emitted as part of the return and
2613   // that thereafter everything is used "linearly".
2614   llvm::Type *resultType = result->getType();
2615   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2616   assert(retainCall->use_empty());
2617   retainCall->eraseFromParent();
2618   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2619 
2620   return CGF.Builder.CreateBitCast(load, resultType);
2621 }
2622 
2623 /// Emit an ARC autorelease of the result of a function.
2624 ///
2625 /// \return the value to actually return from the function
2626 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2627                                             llvm::Value *result) {
2628   // If we're returning 'self', kill the initial retain.  This is a
2629   // heuristic attempt to "encourage correctness" in the really unfortunate
2630   // case where we have a return of self during a dealloc and we desperately
2631   // need to avoid the possible autorelease.
2632   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2633     return self;
2634 
2635   // At -O0, try to emit a fused retain/autorelease.
2636   if (CGF.shouldUseFusedARCCalls())
2637     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2638       return fused;
2639 
2640   return CGF.EmitARCAutoreleaseReturnValue(result);
2641 }
2642 
2643 /// Heuristically search for a dominating store to the return-value slot.
2644 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2645   // Check if a User is a store which pointerOperand is the ReturnValue.
2646   // We are looking for stores to the ReturnValue, not for stores of the
2647   // ReturnValue to some other location.
2648   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2649     auto *SI = dyn_cast<llvm::StoreInst>(U);
2650     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2651       return nullptr;
2652     // These aren't actually possible for non-coerced returns, and we
2653     // only care about non-coerced returns on this code path.
2654     assert(!SI->isAtomic() && !SI->isVolatile());
2655     return SI;
2656   };
2657   // If there are multiple uses of the return-value slot, just check
2658   // for something immediately preceding the IP.  Sometimes this can
2659   // happen with how we generate implicit-returns; it can also happen
2660   // with noreturn cleanups.
2661   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2662     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2663     if (IP->empty()) return nullptr;
2664     llvm::Instruction *I = &IP->back();
2665 
2666     // Skip lifetime markers
2667     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2668                                             IE = IP->rend();
2669          II != IE; ++II) {
2670       if (llvm::IntrinsicInst *Intrinsic =
2671               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2672         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2673           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2674           ++II;
2675           if (II == IE)
2676             break;
2677           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2678             continue;
2679         }
2680       }
2681       I = &*II;
2682       break;
2683     }
2684 
2685     return GetStoreIfValid(I);
2686   }
2687 
2688   llvm::StoreInst *store =
2689       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2690   if (!store) return nullptr;
2691 
2692   // Now do a first-and-dirty dominance check: just walk up the
2693   // single-predecessors chain from the current insertion point.
2694   llvm::BasicBlock *StoreBB = store->getParent();
2695   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2696   while (IP != StoreBB) {
2697     if (!(IP = IP->getSinglePredecessor()))
2698       return nullptr;
2699   }
2700 
2701   // Okay, the store's basic block dominates the insertion point; we
2702   // can do our thing.
2703   return store;
2704 }
2705 
2706 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2707                                          bool EmitRetDbgLoc,
2708                                          SourceLocation EndLoc) {
2709   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2710     // Naked functions don't have epilogues.
2711     Builder.CreateUnreachable();
2712     return;
2713   }
2714 
2715   // Functions with no result always return void.
2716   if (!ReturnValue.isValid()) {
2717     Builder.CreateRetVoid();
2718     return;
2719   }
2720 
2721   llvm::DebugLoc RetDbgLoc;
2722   llvm::Value *RV = nullptr;
2723   QualType RetTy = FI.getReturnType();
2724   const ABIArgInfo &RetAI = FI.getReturnInfo();
2725 
2726   switch (RetAI.getKind()) {
2727   case ABIArgInfo::InAlloca:
2728     // Aggregrates get evaluated directly into the destination.  Sometimes we
2729     // need to return the sret value in a register, though.
2730     assert(hasAggregateEvaluationKind(RetTy));
2731     if (RetAI.getInAllocaSRet()) {
2732       llvm::Function::arg_iterator EI = CurFn->arg_end();
2733       --EI;
2734       llvm::Value *ArgStruct = &*EI;
2735       llvm::Value *SRet = Builder.CreateStructGEP(
2736           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2737       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2738     }
2739     break;
2740 
2741   case ABIArgInfo::Indirect: {
2742     auto AI = CurFn->arg_begin();
2743     if (RetAI.isSRetAfterThis())
2744       ++AI;
2745     switch (getEvaluationKind(RetTy)) {
2746     case TEK_Complex: {
2747       ComplexPairTy RT =
2748         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2749       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2750                          /*isInit*/ true);
2751       break;
2752     }
2753     case TEK_Aggregate:
2754       // Do nothing; aggregrates get evaluated directly into the destination.
2755       break;
2756     case TEK_Scalar:
2757       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2758                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2759                         /*isInit*/ true);
2760       break;
2761     }
2762     break;
2763   }
2764 
2765   case ABIArgInfo::Extend:
2766   case ABIArgInfo::Direct:
2767     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2768         RetAI.getDirectOffset() == 0) {
2769       // The internal return value temp always will have pointer-to-return-type
2770       // type, just do a load.
2771 
2772       // If there is a dominating store to ReturnValue, we can elide
2773       // the load, zap the store, and usually zap the alloca.
2774       if (llvm::StoreInst *SI =
2775               findDominatingStoreToReturnValue(*this)) {
2776         // Reuse the debug location from the store unless there is
2777         // cleanup code to be emitted between the store and return
2778         // instruction.
2779         if (EmitRetDbgLoc && !AutoreleaseResult)
2780           RetDbgLoc = SI->getDebugLoc();
2781         // Get the stored value and nuke the now-dead store.
2782         RV = SI->getValueOperand();
2783         SI->eraseFromParent();
2784 
2785         // If that was the only use of the return value, nuke it as well now.
2786         auto returnValueInst = ReturnValue.getPointer();
2787         if (returnValueInst->use_empty()) {
2788           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2789             alloca->eraseFromParent();
2790             ReturnValue = Address::invalid();
2791           }
2792         }
2793 
2794       // Otherwise, we have to do a simple load.
2795       } else {
2796         RV = Builder.CreateLoad(ReturnValue);
2797       }
2798     } else {
2799       // If the value is offset in memory, apply the offset now.
2800       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2801 
2802       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2803     }
2804 
2805     // In ARC, end functions that return a retainable type with a call
2806     // to objc_autoreleaseReturnValue.
2807     if (AutoreleaseResult) {
2808 #ifndef NDEBUG
2809       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2810       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2811       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2812       // CurCodeDecl or BlockInfo.
2813       QualType RT;
2814 
2815       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2816         RT = FD->getReturnType();
2817       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2818         RT = MD->getReturnType();
2819       else if (isa<BlockDecl>(CurCodeDecl))
2820         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2821       else
2822         llvm_unreachable("Unexpected function/method type");
2823 
2824       assert(getLangOpts().ObjCAutoRefCount &&
2825              !FI.isReturnsRetained() &&
2826              RT->isObjCRetainableType());
2827 #endif
2828       RV = emitAutoreleaseOfResult(*this, RV);
2829     }
2830 
2831     break;
2832 
2833   case ABIArgInfo::Ignore:
2834     break;
2835 
2836   case ABIArgInfo::CoerceAndExpand: {
2837     auto coercionType = RetAI.getCoerceAndExpandType();
2838     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2839 
2840     // Load all of the coerced elements out into results.
2841     llvm::SmallVector<llvm::Value*, 4> results;
2842     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2843     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2844       auto coercedEltType = coercionType->getElementType(i);
2845       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2846         continue;
2847 
2848       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2849       auto elt = Builder.CreateLoad(eltAddr);
2850       results.push_back(elt);
2851     }
2852 
2853     // If we have one result, it's the single direct result type.
2854     if (results.size() == 1) {
2855       RV = results[0];
2856 
2857     // Otherwise, we need to make a first-class aggregate.
2858     } else {
2859       // Construct a return type that lacks padding elements.
2860       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2861 
2862       RV = llvm::UndefValue::get(returnType);
2863       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2864         RV = Builder.CreateInsertValue(RV, results[i], i);
2865       }
2866     }
2867     break;
2868   }
2869 
2870   case ABIArgInfo::Expand:
2871     llvm_unreachable("Invalid ABI kind for return argument");
2872   }
2873 
2874   llvm::Instruction *Ret;
2875   if (RV) {
2876     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2877       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
2878         SanitizerScope SanScope(this);
2879         llvm::Value *Cond = Builder.CreateICmpNE(
2880             RV, llvm::Constant::getNullValue(RV->getType()));
2881         llvm::Constant *StaticData[] = {
2882             EmitCheckSourceLocation(EndLoc),
2883             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2884         };
2885         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2886                   SanitizerHandler::NonnullReturn, StaticData, None);
2887       }
2888     }
2889     Ret = Builder.CreateRet(RV);
2890   } else {
2891     Ret = Builder.CreateRetVoid();
2892   }
2893 
2894   if (RetDbgLoc)
2895     Ret->setDebugLoc(std::move(RetDbgLoc));
2896 }
2897 
2898 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2899   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2900   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2901 }
2902 
2903 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2904                                           QualType Ty) {
2905   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2906   // placeholders.
2907   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2908   llvm::Type *IRPtrTy = IRTy->getPointerTo();
2909   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
2910 
2911   // FIXME: When we generate this IR in one pass, we shouldn't need
2912   // this win32-specific alignment hack.
2913   CharUnits Align = CharUnits::fromQuantity(4);
2914   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
2915 
2916   return AggValueSlot::forAddr(Address(Placeholder, Align),
2917                                Ty.getQualifiers(),
2918                                AggValueSlot::IsNotDestructed,
2919                                AggValueSlot::DoesNotNeedGCBarriers,
2920                                AggValueSlot::IsNotAliased);
2921 }
2922 
2923 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2924                                           const VarDecl *param,
2925                                           SourceLocation loc) {
2926   // StartFunction converted the ABI-lowered parameter(s) into a
2927   // local alloca.  We need to turn that into an r-value suitable
2928   // for EmitCall.
2929   Address local = GetAddrOfLocalVar(param);
2930 
2931   QualType type = param->getType();
2932 
2933   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2934          "cannot emit delegate call arguments for inalloca arguments!");
2935 
2936   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
2937   // but the argument needs to be the original pointer.
2938   if (type->isReferenceType()) {
2939     args.add(RValue::get(Builder.CreateLoad(local)), type);
2940 
2941   // In ARC, move out of consumed arguments so that the release cleanup
2942   // entered by StartFunction doesn't cause an over-release.  This isn't
2943   // optimal -O0 code generation, but it should get cleaned up when
2944   // optimization is enabled.  This also assumes that delegate calls are
2945   // performed exactly once for a set of arguments, but that should be safe.
2946   } else if (getLangOpts().ObjCAutoRefCount &&
2947              param->hasAttr<NSConsumedAttr>() &&
2948              type->isObjCRetainableType()) {
2949     llvm::Value *ptr = Builder.CreateLoad(local);
2950     auto null =
2951       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
2952     Builder.CreateStore(null, local);
2953     args.add(RValue::get(ptr), type);
2954 
2955   // For the most part, we just need to load the alloca, except that
2956   // aggregate r-values are actually pointers to temporaries.
2957   } else {
2958     args.add(convertTempToRValue(local, type, loc), type);
2959   }
2960 }
2961 
2962 static bool isProvablyNull(llvm::Value *addr) {
2963   return isa<llvm::ConstantPointerNull>(addr);
2964 }
2965 
2966 /// Emit the actual writing-back of a writeback.
2967 static void emitWriteback(CodeGenFunction &CGF,
2968                           const CallArgList::Writeback &writeback) {
2969   const LValue &srcLV = writeback.Source;
2970   Address srcAddr = srcLV.getAddress();
2971   assert(!isProvablyNull(srcAddr.getPointer()) &&
2972          "shouldn't have writeback for provably null argument");
2973 
2974   llvm::BasicBlock *contBB = nullptr;
2975 
2976   // If the argument wasn't provably non-null, we need to null check
2977   // before doing the store.
2978   bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer());
2979   if (!provablyNonNull) {
2980     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2981     contBB = CGF.createBasicBlock("icr.done");
2982 
2983     llvm::Value *isNull =
2984       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2985     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2986     CGF.EmitBlock(writebackBB);
2987   }
2988 
2989   // Load the value to writeback.
2990   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2991 
2992   // Cast it back, in case we're writing an id to a Foo* or something.
2993   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
2994                                     "icr.writeback-cast");
2995 
2996   // Perform the writeback.
2997 
2998   // If we have a "to use" value, it's something we need to emit a use
2999   // of.  This has to be carefully threaded in: if it's done after the
3000   // release it's potentially undefined behavior (and the optimizer
3001   // will ignore it), and if it happens before the retain then the
3002   // optimizer could move the release there.
3003   if (writeback.ToUse) {
3004     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3005 
3006     // Retain the new value.  No need to block-copy here:  the block's
3007     // being passed up the stack.
3008     value = CGF.EmitARCRetainNonBlock(value);
3009 
3010     // Emit the intrinsic use here.
3011     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3012 
3013     // Load the old value (primitively).
3014     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3015 
3016     // Put the new value in place (primitively).
3017     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3018 
3019     // Release the old value.
3020     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3021 
3022   // Otherwise, we can just do a normal lvalue store.
3023   } else {
3024     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3025   }
3026 
3027   // Jump to the continuation block.
3028   if (!provablyNonNull)
3029     CGF.EmitBlock(contBB);
3030 }
3031 
3032 static void emitWritebacks(CodeGenFunction &CGF,
3033                            const CallArgList &args) {
3034   for (const auto &I : args.writebacks())
3035     emitWriteback(CGF, I);
3036 }
3037 
3038 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3039                                             const CallArgList &CallArgs) {
3040   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
3041   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3042     CallArgs.getCleanupsToDeactivate();
3043   // Iterate in reverse to increase the likelihood of popping the cleanup.
3044   for (const auto &I : llvm::reverse(Cleanups)) {
3045     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3046     I.IsActiveIP->eraseFromParent();
3047   }
3048 }
3049 
3050 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3051   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3052     if (uop->getOpcode() == UO_AddrOf)
3053       return uop->getSubExpr();
3054   return nullptr;
3055 }
3056 
3057 /// Emit an argument that's being passed call-by-writeback.  That is,
3058 /// we are passing the address of an __autoreleased temporary; it
3059 /// might be copy-initialized with the current value of the given
3060 /// address, but it will definitely be copied out of after the call.
3061 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3062                              const ObjCIndirectCopyRestoreExpr *CRE) {
3063   LValue srcLV;
3064 
3065   // Make an optimistic effort to emit the address as an l-value.
3066   // This can fail if the argument expression is more complicated.
3067   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3068     srcLV = CGF.EmitLValue(lvExpr);
3069 
3070   // Otherwise, just emit it as a scalar.
3071   } else {
3072     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3073 
3074     QualType srcAddrType =
3075       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3076     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3077   }
3078   Address srcAddr = srcLV.getAddress();
3079 
3080   // The dest and src types don't necessarily match in LLVM terms
3081   // because of the crazy ObjC compatibility rules.
3082 
3083   llvm::PointerType *destType =
3084     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3085 
3086   // If the address is a constant null, just pass the appropriate null.
3087   if (isProvablyNull(srcAddr.getPointer())) {
3088     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3089              CRE->getType());
3090     return;
3091   }
3092 
3093   // Create the temporary.
3094   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3095                                       CGF.getPointerAlign(),
3096                                       "icr.temp");
3097   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3098   // and that cleanup will be conditional if we can't prove that the l-value
3099   // isn't null, so we need to register a dominating point so that the cleanups
3100   // system will make valid IR.
3101   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3102 
3103   // Zero-initialize it if we're not doing a copy-initialization.
3104   bool shouldCopy = CRE->shouldCopy();
3105   if (!shouldCopy) {
3106     llvm::Value *null =
3107       llvm::ConstantPointerNull::get(
3108         cast<llvm::PointerType>(destType->getElementType()));
3109     CGF.Builder.CreateStore(null, temp);
3110   }
3111 
3112   llvm::BasicBlock *contBB = nullptr;
3113   llvm::BasicBlock *originBB = nullptr;
3114 
3115   // If the address is *not* known to be non-null, we need to switch.
3116   llvm::Value *finalArgument;
3117 
3118   bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer());
3119   if (provablyNonNull) {
3120     finalArgument = temp.getPointer();
3121   } else {
3122     llvm::Value *isNull =
3123       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3124 
3125     finalArgument = CGF.Builder.CreateSelect(isNull,
3126                                    llvm::ConstantPointerNull::get(destType),
3127                                              temp.getPointer(), "icr.argument");
3128 
3129     // If we need to copy, then the load has to be conditional, which
3130     // means we need control flow.
3131     if (shouldCopy) {
3132       originBB = CGF.Builder.GetInsertBlock();
3133       contBB = CGF.createBasicBlock("icr.cont");
3134       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3135       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3136       CGF.EmitBlock(copyBB);
3137       condEval.begin(CGF);
3138     }
3139   }
3140 
3141   llvm::Value *valueToUse = nullptr;
3142 
3143   // Perform a copy if necessary.
3144   if (shouldCopy) {
3145     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3146     assert(srcRV.isScalar());
3147 
3148     llvm::Value *src = srcRV.getScalarVal();
3149     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3150                                     "icr.cast");
3151 
3152     // Use an ordinary store, not a store-to-lvalue.
3153     CGF.Builder.CreateStore(src, temp);
3154 
3155     // If optimization is enabled, and the value was held in a
3156     // __strong variable, we need to tell the optimizer that this
3157     // value has to stay alive until we're doing the store back.
3158     // This is because the temporary is effectively unretained,
3159     // and so otherwise we can violate the high-level semantics.
3160     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3161         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3162       valueToUse = src;
3163     }
3164   }
3165 
3166   // Finish the control flow if we needed it.
3167   if (shouldCopy && !provablyNonNull) {
3168     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3169     CGF.EmitBlock(contBB);
3170 
3171     // Make a phi for the value to intrinsically use.
3172     if (valueToUse) {
3173       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3174                                                       "icr.to-use");
3175       phiToUse->addIncoming(valueToUse, copyBB);
3176       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3177                             originBB);
3178       valueToUse = phiToUse;
3179     }
3180 
3181     condEval.end(CGF);
3182   }
3183 
3184   args.addWriteback(srcLV, temp, valueToUse);
3185   args.add(RValue::get(finalArgument), CRE->getType());
3186 }
3187 
3188 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3189   assert(!StackBase);
3190 
3191   // Save the stack.
3192   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3193   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3194 }
3195 
3196 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3197   if (StackBase) {
3198     // Restore the stack after the call.
3199     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3200     CGF.Builder.CreateCall(F, StackBase);
3201   }
3202 }
3203 
3204 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3205                                           SourceLocation ArgLoc,
3206                                           const FunctionDecl *FD,
3207                                           unsigned ParmNum) {
3208   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
3209     return;
3210   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
3211   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3212   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
3213   if (!NNAttr)
3214     return;
3215   SanitizerScope SanScope(this);
3216   assert(RV.isScalar());
3217   llvm::Value *V = RV.getScalarVal();
3218   llvm::Value *Cond =
3219       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3220   llvm::Constant *StaticData[] = {
3221       EmitCheckSourceLocation(ArgLoc),
3222       EmitCheckSourceLocation(NNAttr->getLocation()),
3223       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3224   };
3225   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
3226             SanitizerHandler::NonnullArg, StaticData, None);
3227 }
3228 
3229 void CodeGenFunction::EmitCallArgs(
3230     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3231     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3232     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip,
3233     EvaluationOrder Order) {
3234   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3235 
3236   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) {
3237     if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams())
3238       return;
3239     auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3240     if (PS == nullptr)
3241       return;
3242 
3243     const auto &Context = getContext();
3244     auto SizeTy = Context.getSizeType();
3245     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3246     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T);
3247     Args.add(RValue::get(V), SizeTy);
3248   };
3249 
3250   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3251   // because arguments are destroyed left to right in the callee. As a special
3252   // case, there are certain language constructs that require left-to-right
3253   // evaluation, and in those cases we consider the evaluation order requirement
3254   // to trump the "destruction order is reverse construction order" guarantee.
3255   bool LeftToRight =
3256       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3257           ? Order == EvaluationOrder::ForceLeftToRight
3258           : Order != EvaluationOrder::ForceRightToLeft;
3259 
3260   // Insert a stack save if we're going to need any inalloca args.
3261   bool HasInAllocaArgs = false;
3262   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3263     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3264          I != E && !HasInAllocaArgs; ++I)
3265       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3266     if (HasInAllocaArgs) {
3267       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3268       Args.allocateArgumentMemory(*this);
3269     }
3270   }
3271 
3272   // Evaluate each argument in the appropriate order.
3273   size_t CallArgsStart = Args.size();
3274   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3275     unsigned Idx = LeftToRight ? I : E - I - 1;
3276     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3277     if (!LeftToRight) MaybeEmitImplicitObjectSize(Idx, *Arg);
3278     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3279     EmitNonNullArgCheck(Args.back().RV, ArgTypes[Idx], (*Arg)->getExprLoc(),
3280                         CalleeDecl, ParamsToSkip + Idx);
3281     if (LeftToRight) MaybeEmitImplicitObjectSize(Idx, *Arg);
3282   }
3283 
3284   if (!LeftToRight) {
3285     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3286     // IR function.
3287     std::reverse(Args.begin() + CallArgsStart, Args.end());
3288   }
3289 }
3290 
3291 namespace {
3292 
3293 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3294   DestroyUnpassedArg(Address Addr, QualType Ty)
3295       : Addr(Addr), Ty(Ty) {}
3296 
3297   Address Addr;
3298   QualType Ty;
3299 
3300   void Emit(CodeGenFunction &CGF, Flags flags) override {
3301     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3302     assert(!Dtor->isTrivial());
3303     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3304                               /*Delegating=*/false, Addr);
3305   }
3306 };
3307 
3308 struct DisableDebugLocationUpdates {
3309   CodeGenFunction &CGF;
3310   bool disabledDebugInfo;
3311   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3312     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3313       CGF.disableDebugInfo();
3314   }
3315   ~DisableDebugLocationUpdates() {
3316     if (disabledDebugInfo)
3317       CGF.enableDebugInfo();
3318   }
3319 };
3320 
3321 } // end anonymous namespace
3322 
3323 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3324                                   QualType type) {
3325   DisableDebugLocationUpdates Dis(*this, E);
3326   if (const ObjCIndirectCopyRestoreExpr *CRE
3327         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3328     assert(getLangOpts().ObjCAutoRefCount);
3329     assert(getContext().hasSameUnqualifiedType(E->getType(), type));
3330     return emitWritebackArg(*this, args, CRE);
3331   }
3332 
3333   assert(type->isReferenceType() == E->isGLValue() &&
3334          "reference binding to unmaterialized r-value!");
3335 
3336   if (E->isGLValue()) {
3337     assert(E->getObjectKind() == OK_Ordinary);
3338     return args.add(EmitReferenceBindingToExpr(E), type);
3339   }
3340 
3341   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3342 
3343   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3344   // However, we still have to push an EH-only cleanup in case we unwind before
3345   // we make it to the call.
3346   if (HasAggregateEvalKind &&
3347       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3348     // If we're using inalloca, use the argument memory.  Otherwise, use a
3349     // temporary.
3350     AggValueSlot Slot;
3351     if (args.isUsingInAlloca())
3352       Slot = createPlaceholderSlot(*this, type);
3353     else
3354       Slot = CreateAggTemp(type, "agg.tmp");
3355 
3356     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3357     bool DestroyedInCallee =
3358         RD && RD->hasNonTrivialDestructor() &&
3359         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
3360     if (DestroyedInCallee)
3361       Slot.setExternallyDestructed();
3362 
3363     EmitAggExpr(E, Slot);
3364     RValue RV = Slot.asRValue();
3365     args.add(RV, type);
3366 
3367     if (DestroyedInCallee) {
3368       // Create a no-op GEP between the placeholder and the cleanup so we can
3369       // RAUW it successfully.  It also serves as a marker of the first
3370       // instruction where the cleanup is active.
3371       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3372                                               type);
3373       // This unreachable is a temporary marker which will be removed later.
3374       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3375       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3376     }
3377     return;
3378   }
3379 
3380   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3381       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3382     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3383     assert(L.isSimple());
3384     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
3385       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
3386     } else {
3387       // We can't represent a misaligned lvalue in the CallArgList, so copy
3388       // to an aligned temporary now.
3389       Address tmp = CreateMemTemp(type);
3390       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
3391       args.add(RValue::getAggregate(tmp), type);
3392     }
3393     return;
3394   }
3395 
3396   args.add(EmitAnyExprToTemp(E), type);
3397 }
3398 
3399 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3400   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3401   // implicitly widens null pointer constants that are arguments to varargs
3402   // functions to pointer-sized ints.
3403   if (!getTarget().getTriple().isOSWindows())
3404     return Arg->getType();
3405 
3406   if (Arg->getType()->isIntegerType() &&
3407       getContext().getTypeSize(Arg->getType()) <
3408           getContext().getTargetInfo().getPointerWidth(0) &&
3409       Arg->isNullPointerConstant(getContext(),
3410                                  Expr::NPC_ValueDependentIsNotNull)) {
3411     return getContext().getIntPtrType();
3412   }
3413 
3414   return Arg->getType();
3415 }
3416 
3417 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3418 // optimizer it can aggressively ignore unwind edges.
3419 void
3420 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3421   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3422       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3423     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3424                       CGM.getNoObjCARCExceptionsMetadata());
3425 }
3426 
3427 /// Emits a call to the given no-arguments nounwind runtime function.
3428 llvm::CallInst *
3429 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3430                                          const llvm::Twine &name) {
3431   return EmitNounwindRuntimeCall(callee, None, name);
3432 }
3433 
3434 /// Emits a call to the given nounwind runtime function.
3435 llvm::CallInst *
3436 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3437                                          ArrayRef<llvm::Value*> args,
3438                                          const llvm::Twine &name) {
3439   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3440   call->setDoesNotThrow();
3441   return call;
3442 }
3443 
3444 /// Emits a simple call (never an invoke) to the given no-arguments
3445 /// runtime function.
3446 llvm::CallInst *
3447 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3448                                  const llvm::Twine &name) {
3449   return EmitRuntimeCall(callee, None, name);
3450 }
3451 
3452 // Calls which may throw must have operand bundles indicating which funclet
3453 // they are nested within.
3454 static void
3455 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad,
3456                      SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
3457   // There is no need for a funclet operand bundle if we aren't inside a
3458   // funclet.
3459   if (!CurrentFuncletPad)
3460     return;
3461 
3462   // Skip intrinsics which cannot throw.
3463   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3464   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3465     return;
3466 
3467   BundleList.emplace_back("funclet", CurrentFuncletPad);
3468 }
3469 
3470 /// Emits a simple call (never an invoke) to the given runtime function.
3471 llvm::CallInst *
3472 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3473                                  ArrayRef<llvm::Value*> args,
3474                                  const llvm::Twine &name) {
3475   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3476   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3477 
3478   llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name);
3479   call->setCallingConv(getRuntimeCC());
3480   return call;
3481 }
3482 
3483 /// Emits a call or invoke to the given noreturn runtime function.
3484 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3485                                                ArrayRef<llvm::Value*> args) {
3486   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3487   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3488 
3489   if (getInvokeDest()) {
3490     llvm::InvokeInst *invoke =
3491       Builder.CreateInvoke(callee,
3492                            getUnreachableBlock(),
3493                            getInvokeDest(),
3494                            args,
3495                            BundleList);
3496     invoke->setDoesNotReturn();
3497     invoke->setCallingConv(getRuntimeCC());
3498   } else {
3499     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3500     call->setDoesNotReturn();
3501     call->setCallingConv(getRuntimeCC());
3502     Builder.CreateUnreachable();
3503   }
3504 }
3505 
3506 /// Emits a call or invoke instruction to the given nullary runtime function.
3507 llvm::CallSite
3508 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3509                                          const Twine &name) {
3510   return EmitRuntimeCallOrInvoke(callee, None, name);
3511 }
3512 
3513 /// Emits a call or invoke instruction to the given runtime function.
3514 llvm::CallSite
3515 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3516                                          ArrayRef<llvm::Value*> args,
3517                                          const Twine &name) {
3518   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3519   callSite.setCallingConv(getRuntimeCC());
3520   return callSite;
3521 }
3522 
3523 /// Emits a call or invoke instruction to the given function, depending
3524 /// on the current state of the EH stack.
3525 llvm::CallSite
3526 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3527                                   ArrayRef<llvm::Value *> Args,
3528                                   const Twine &Name) {
3529   llvm::BasicBlock *InvokeDest = getInvokeDest();
3530   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3531   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3532 
3533   llvm::Instruction *Inst;
3534   if (!InvokeDest)
3535     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3536   else {
3537     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3538     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3539                                 Name);
3540     EmitBlock(ContBB);
3541   }
3542 
3543   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3544   // optimizer it can aggressively ignore unwind edges.
3545   if (CGM.getLangOpts().ObjCAutoRefCount)
3546     AddObjCARCExceptionMetadata(Inst);
3547 
3548   return llvm::CallSite(Inst);
3549 }
3550 
3551 /// \brief Store a non-aggregate value to an address to initialize it.  For
3552 /// initialization, a non-atomic store will be used.
3553 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3554                                         LValue Dst) {
3555   if (Src.isScalar())
3556     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3557   else
3558     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3559 }
3560 
3561 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3562                                                   llvm::Value *New) {
3563   DeferredReplacements.push_back(std::make_pair(Old, New));
3564 }
3565 
3566 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3567                                  const CGCallee &Callee,
3568                                  ReturnValueSlot ReturnValue,
3569                                  const CallArgList &CallArgs,
3570                                  llvm::Instruction **callOrInvoke) {
3571   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3572 
3573   assert(Callee.isOrdinary());
3574 
3575   // Handle struct-return functions by passing a pointer to the
3576   // location that we would like to return into.
3577   QualType RetTy = CallInfo.getReturnType();
3578   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3579 
3580   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3581 
3582   // 1. Set up the arguments.
3583 
3584   // If we're using inalloca, insert the allocation after the stack save.
3585   // FIXME: Do this earlier rather than hacking it in here!
3586   Address ArgMemory = Address::invalid();
3587   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3588   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3589     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
3590     llvm::Instruction *IP = CallArgs.getStackBase();
3591     llvm::AllocaInst *AI;
3592     if (IP) {
3593       IP = IP->getNextNode();
3594       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3595     } else {
3596       AI = CreateTempAlloca(ArgStruct, "argmem");
3597     }
3598     auto Align = CallInfo.getArgStructAlignment();
3599     AI->setAlignment(Align.getQuantity());
3600     AI->setUsedWithInAlloca(true);
3601     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3602     ArgMemory = Address(AI, Align);
3603   }
3604 
3605   // Helper function to drill into the inalloca allocation.
3606   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3607     auto FieldOffset =
3608       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3609     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3610   };
3611 
3612   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3613   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3614 
3615   // If the call returns a temporary with struct return, create a temporary
3616   // alloca to hold the result, unless one is given to us.
3617   Address SRetPtr = Address::invalid();
3618   size_t UnusedReturnSize = 0;
3619   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3620     if (!ReturnValue.isNull()) {
3621       SRetPtr = ReturnValue.getValue();
3622     } else {
3623       SRetPtr = CreateMemTemp(RetTy);
3624       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3625         uint64_t size =
3626             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3627         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3628           UnusedReturnSize = size;
3629       }
3630     }
3631     if (IRFunctionArgs.hasSRetArg()) {
3632       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3633     } else if (RetAI.isInAlloca()) {
3634       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3635       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3636     }
3637   }
3638 
3639   Address swiftErrorTemp = Address::invalid();
3640   Address swiftErrorArg = Address::invalid();
3641 
3642   // Translate all of the arguments as necessary to match the IR lowering.
3643   assert(CallInfo.arg_size() == CallArgs.size() &&
3644          "Mismatch between function signature & arguments.");
3645   unsigned ArgNo = 0;
3646   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3647   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3648        I != E; ++I, ++info_it, ++ArgNo) {
3649     const ABIArgInfo &ArgInfo = info_it->info;
3650     RValue RV = I->RV;
3651 
3652     // Insert a padding argument to ensure proper alignment.
3653     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3654       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3655           llvm::UndefValue::get(ArgInfo.getPaddingType());
3656 
3657     unsigned FirstIRArg, NumIRArgs;
3658     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3659 
3660     switch (ArgInfo.getKind()) {
3661     case ABIArgInfo::InAlloca: {
3662       assert(NumIRArgs == 0);
3663       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3664       if (RV.isAggregate()) {
3665         // Replace the placeholder with the appropriate argument slot GEP.
3666         llvm::Instruction *Placeholder =
3667             cast<llvm::Instruction>(RV.getAggregatePointer());
3668         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3669         Builder.SetInsertPoint(Placeholder);
3670         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3671         Builder.restoreIP(IP);
3672         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3673       } else {
3674         // Store the RValue into the argument struct.
3675         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3676         unsigned AS = Addr.getType()->getPointerAddressSpace();
3677         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3678         // There are some cases where a trivial bitcast is not avoidable.  The
3679         // definition of a type later in a translation unit may change it's type
3680         // from {}* to (%struct.foo*)*.
3681         if (Addr.getType() != MemType)
3682           Addr = Builder.CreateBitCast(Addr, MemType);
3683         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3684         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3685       }
3686       break;
3687     }
3688 
3689     case ABIArgInfo::Indirect: {
3690       assert(NumIRArgs == 1);
3691       if (RV.isScalar() || RV.isComplex()) {
3692         // Make a temporary alloca to pass the argument.
3693         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3694         IRCallArgs[FirstIRArg] = Addr.getPointer();
3695 
3696         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3697         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3698       } else {
3699         // We want to avoid creating an unnecessary temporary+copy here;
3700         // however, we need one in three cases:
3701         // 1. If the argument is not byval, and we are required to copy the
3702         //    source.  (This case doesn't occur on any common architecture.)
3703         // 2. If the argument is byval, RV is not sufficiently aligned, and
3704         //    we cannot force it to be sufficiently aligned.
3705         // 3. If the argument is byval, but RV is located in an address space
3706         //    different than that of the argument (0).
3707         Address Addr = RV.getAggregateAddress();
3708         CharUnits Align = ArgInfo.getIndirectAlign();
3709         const llvm::DataLayout *TD = &CGM.getDataLayout();
3710         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3711         const unsigned ArgAddrSpace =
3712             (FirstIRArg < IRFuncTy->getNumParams()
3713                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3714                  : 0);
3715         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3716             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3717              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3718                                               Align.getQuantity(), *TD)
3719                < Align.getQuantity()) ||
3720             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3721           // Create an aligned temporary, and copy to it.
3722           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3723           IRCallArgs[FirstIRArg] = AI.getPointer();
3724           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3725         } else {
3726           // Skip the extra memcpy call.
3727           IRCallArgs[FirstIRArg] = Addr.getPointer();
3728         }
3729       }
3730       break;
3731     }
3732 
3733     case ABIArgInfo::Ignore:
3734       assert(NumIRArgs == 0);
3735       break;
3736 
3737     case ABIArgInfo::Extend:
3738     case ABIArgInfo::Direct: {
3739       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3740           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3741           ArgInfo.getDirectOffset() == 0) {
3742         assert(NumIRArgs == 1);
3743         llvm::Value *V;
3744         if (RV.isScalar())
3745           V = RV.getScalarVal();
3746         else
3747           V = Builder.CreateLoad(RV.getAggregateAddress());
3748 
3749         // Implement swifterror by copying into a new swifterror argument.
3750         // We'll write back in the normal path out of the call.
3751         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
3752               == ParameterABI::SwiftErrorResult) {
3753           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
3754 
3755           QualType pointeeTy = I->Ty->getPointeeType();
3756           swiftErrorArg =
3757             Address(V, getContext().getTypeAlignInChars(pointeeTy));
3758 
3759           swiftErrorTemp =
3760             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3761           V = swiftErrorTemp.getPointer();
3762           cast<llvm::AllocaInst>(V)->setSwiftError(true);
3763 
3764           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
3765           Builder.CreateStore(errorValue, swiftErrorTemp);
3766         }
3767 
3768         // We might have to widen integers, but we should never truncate.
3769         if (ArgInfo.getCoerceToType() != V->getType() &&
3770             V->getType()->isIntegerTy())
3771           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3772 
3773         // If the argument doesn't match, perform a bitcast to coerce it.  This
3774         // can happen due to trivial type mismatches.
3775         if (FirstIRArg < IRFuncTy->getNumParams() &&
3776             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3777           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3778 
3779         IRCallArgs[FirstIRArg] = V;
3780         break;
3781       }
3782 
3783       // FIXME: Avoid the conversion through memory if possible.
3784       Address Src = Address::invalid();
3785       if (RV.isScalar() || RV.isComplex()) {
3786         Src = CreateMemTemp(I->Ty, "coerce");
3787         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3788         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3789       } else {
3790         Src = RV.getAggregateAddress();
3791       }
3792 
3793       // If the value is offset in memory, apply the offset now.
3794       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3795 
3796       // Fast-isel and the optimizer generally like scalar values better than
3797       // FCAs, so we flatten them if this is safe to do for this argument.
3798       llvm::StructType *STy =
3799             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3800       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3801         llvm::Type *SrcTy = Src.getType()->getElementType();
3802         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3803         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3804 
3805         // If the source type is smaller than the destination type of the
3806         // coerce-to logic, copy the source value into a temp alloca the size
3807         // of the destination type to allow loading all of it. The bits past
3808         // the source value are left undef.
3809         if (SrcSize < DstSize) {
3810           Address TempAlloca
3811             = CreateTempAlloca(STy, Src.getAlignment(),
3812                                Src.getName() + ".coerce");
3813           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3814           Src = TempAlloca;
3815         } else {
3816           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3817         }
3818 
3819         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3820         assert(NumIRArgs == STy->getNumElements());
3821         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3822           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3823           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3824           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3825           IRCallArgs[FirstIRArg + i] = LI;
3826         }
3827       } else {
3828         // In the simple case, just pass the coerced loaded value.
3829         assert(NumIRArgs == 1);
3830         IRCallArgs[FirstIRArg] =
3831           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3832       }
3833 
3834       break;
3835     }
3836 
3837     case ABIArgInfo::CoerceAndExpand: {
3838       auto coercionType = ArgInfo.getCoerceAndExpandType();
3839       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
3840 
3841       llvm::Value *tempSize = nullptr;
3842       Address addr = Address::invalid();
3843       if (RV.isAggregate()) {
3844         addr = RV.getAggregateAddress();
3845       } else {
3846         assert(RV.isScalar()); // complex should always just be direct
3847 
3848         llvm::Type *scalarType = RV.getScalarVal()->getType();
3849         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
3850         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
3851 
3852         tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize);
3853 
3854         // Materialize to a temporary.
3855         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
3856                  CharUnits::fromQuantity(std::max(layout->getAlignment(),
3857                                                   scalarAlign)));
3858         EmitLifetimeStart(scalarSize, addr.getPointer());
3859 
3860         Builder.CreateStore(RV.getScalarVal(), addr);
3861       }
3862 
3863       addr = Builder.CreateElementBitCast(addr, coercionType);
3864 
3865       unsigned IRArgPos = FirstIRArg;
3866       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3867         llvm::Type *eltType = coercionType->getElementType(i);
3868         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
3869         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
3870         llvm::Value *elt = Builder.CreateLoad(eltAddr);
3871         IRCallArgs[IRArgPos++] = elt;
3872       }
3873       assert(IRArgPos == FirstIRArg + NumIRArgs);
3874 
3875       if (tempSize) {
3876         EmitLifetimeEnd(tempSize, addr.getPointer());
3877       }
3878 
3879       break;
3880     }
3881 
3882     case ABIArgInfo::Expand:
3883       unsigned IRArgPos = FirstIRArg;
3884       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3885       assert(IRArgPos == FirstIRArg + NumIRArgs);
3886       break;
3887     }
3888   }
3889 
3890   llvm::Value *CalleePtr = Callee.getFunctionPointer();
3891 
3892   // If we're using inalloca, set up that argument.
3893   if (ArgMemory.isValid()) {
3894     llvm::Value *Arg = ArgMemory.getPointer();
3895     if (CallInfo.isVariadic()) {
3896       // When passing non-POD arguments by value to variadic functions, we will
3897       // end up with a variadic prototype and an inalloca call site.  In such
3898       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3899       // the callee.
3900       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
3901       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
3902       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
3903     } else {
3904       llvm::Type *LastParamTy =
3905           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3906       if (Arg->getType() != LastParamTy) {
3907 #ifndef NDEBUG
3908         // Assert that these structs have equivalent element types.
3909         llvm::StructType *FullTy = CallInfo.getArgStruct();
3910         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3911             cast<llvm::PointerType>(LastParamTy)->getElementType());
3912         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3913         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3914                                                 DE = DeclaredTy->element_end(),
3915                                                 FI = FullTy->element_begin();
3916              DI != DE; ++DI, ++FI)
3917           assert(*DI == *FI);
3918 #endif
3919         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3920       }
3921     }
3922     assert(IRFunctionArgs.hasInallocaArg());
3923     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3924   }
3925 
3926   // 2. Prepare the function pointer.
3927 
3928   // If the callee is a bitcast of a non-variadic function to have a
3929   // variadic function pointer type, check to see if we can remove the
3930   // bitcast.  This comes up with unprototyped functions.
3931   //
3932   // This makes the IR nicer, but more importantly it ensures that we
3933   // can inline the function at -O0 if it is marked always_inline.
3934   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
3935     llvm::FunctionType *CalleeFT =
3936       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
3937     if (!CalleeFT->isVarArg())
3938       return Ptr;
3939 
3940     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
3941     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
3942       return Ptr;
3943 
3944     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
3945     if (!OrigFn)
3946       return Ptr;
3947 
3948     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
3949 
3950     // If the original type is variadic, or if any of the component types
3951     // disagree, we cannot remove the cast.
3952     if (OrigFT->isVarArg() ||
3953         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
3954         OrigFT->getReturnType() != CalleeFT->getReturnType())
3955       return Ptr;
3956 
3957     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
3958       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
3959         return Ptr;
3960 
3961     return OrigFn;
3962   };
3963   CalleePtr = simplifyVariadicCallee(CalleePtr);
3964 
3965   // 3. Perform the actual call.
3966 
3967   // Deactivate any cleanups that we're supposed to do immediately before
3968   // the call.
3969   if (!CallArgs.getCleanupsToDeactivate().empty())
3970     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3971 
3972   // Assert that the arguments we computed match up.  The IR verifier
3973   // will catch this, but this is a common enough source of problems
3974   // during IRGen changes that it's way better for debugging to catch
3975   // it ourselves here.
3976 #ifndef NDEBUG
3977   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3978   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3979     // Inalloca argument can have different type.
3980     if (IRFunctionArgs.hasInallocaArg() &&
3981         i == IRFunctionArgs.getInallocaArgNo())
3982       continue;
3983     if (i < IRFuncTy->getNumParams())
3984       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3985   }
3986 #endif
3987 
3988   // Compute the calling convention and attributes.
3989   unsigned CallingConv;
3990   CodeGen::AttributeListType AttributeList;
3991   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
3992                              Callee.getAbstractInfo(),
3993                              AttributeList, CallingConv,
3994                              /*AttrOnCallSite=*/true);
3995   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3996                                                      AttributeList);
3997 
3998   // Apply some call-site-specific attributes.
3999   // TODO: work this into building the attribute set.
4000 
4001   // Apply always_inline to all calls within flatten functions.
4002   // FIXME: should this really take priority over __try, below?
4003   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4004       !(Callee.getAbstractInfo().getCalleeDecl() &&
4005         Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) {
4006     Attrs =
4007         Attrs.addAttribute(getLLVMContext(),
4008                            llvm::AttributeSet::FunctionIndex,
4009                            llvm::Attribute::AlwaysInline);
4010   }
4011 
4012   // Disable inlining inside SEH __try blocks.
4013   if (isSEHTryScope()) {
4014     Attrs =
4015         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
4016                            llvm::Attribute::NoInline);
4017   }
4018 
4019   // Decide whether to use a call or an invoke.
4020   bool CannotThrow;
4021   if (currentFunctionUsesSEHTry()) {
4022     // SEH cares about asynchronous exceptions, so everything can "throw."
4023     CannotThrow = false;
4024   } else if (isCleanupPadScope() &&
4025              EHPersonality::get(*this).isMSVCXXPersonality()) {
4026     // The MSVC++ personality will implicitly terminate the program if an
4027     // exception is thrown during a cleanup outside of a try/catch.
4028     // We don't need to model anything in IR to get this behavior.
4029     CannotThrow = true;
4030   } else {
4031     // Otherwise, nounwind call sites will never throw.
4032     CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
4033                                      llvm::Attribute::NoUnwind);
4034   }
4035   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4036 
4037   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4038   getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList);
4039 
4040   // Emit the actual call/invoke instruction.
4041   llvm::CallSite CS;
4042   if (!InvokeDest) {
4043     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4044   } else {
4045     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4046     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4047                               BundleList);
4048     EmitBlock(Cont);
4049   }
4050   llvm::Instruction *CI = CS.getInstruction();
4051   if (callOrInvoke)
4052     *callOrInvoke = CI;
4053 
4054   // Apply the attributes and calling convention.
4055   CS.setAttributes(Attrs);
4056   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4057 
4058   // Apply various metadata.
4059 
4060   if (!CI->getType()->isVoidTy())
4061     CI->setName("call");
4062 
4063   // Insert instrumentation or attach profile metadata at indirect call sites.
4064   // For more details, see the comment before the definition of
4065   // IPVK_IndirectCallTarget in InstrProfData.inc.
4066   if (!CS.getCalledFunction())
4067     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4068                      CI, CalleePtr);
4069 
4070   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4071   // optimizer it can aggressively ignore unwind edges.
4072   if (CGM.getLangOpts().ObjCAutoRefCount)
4073     AddObjCARCExceptionMetadata(CI);
4074 
4075   // Suppress tail calls if requested.
4076   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4077     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4078     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4079       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4080   }
4081 
4082   // 4. Finish the call.
4083 
4084   // If the call doesn't return, finish the basic block and clear the
4085   // insertion point; this allows the rest of IRGen to discard
4086   // unreachable code.
4087   if (CS.doesNotReturn()) {
4088     if (UnusedReturnSize)
4089       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4090                       SRetPtr.getPointer());
4091 
4092     Builder.CreateUnreachable();
4093     Builder.ClearInsertionPoint();
4094 
4095     // FIXME: For now, emit a dummy basic block because expr emitters in
4096     // generally are not ready to handle emitting expressions at unreachable
4097     // points.
4098     EnsureInsertPoint();
4099 
4100     // Return a reasonable RValue.
4101     return GetUndefRValue(RetTy);
4102   }
4103 
4104   // Perform the swifterror writeback.
4105   if (swiftErrorTemp.isValid()) {
4106     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4107     Builder.CreateStore(errorResult, swiftErrorArg);
4108   }
4109 
4110   // Emit any call-associated writebacks immediately.  Arguably this
4111   // should happen after any return-value munging.
4112   if (CallArgs.hasWritebacks())
4113     emitWritebacks(*this, CallArgs);
4114 
4115   // The stack cleanup for inalloca arguments has to run out of the normal
4116   // lexical order, so deactivate it and run it manually here.
4117   CallArgs.freeArgumentMemory(*this);
4118 
4119   // Extract the return value.
4120   RValue Ret = [&] {
4121     switch (RetAI.getKind()) {
4122     case ABIArgInfo::CoerceAndExpand: {
4123       auto coercionType = RetAI.getCoerceAndExpandType();
4124       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4125 
4126       Address addr = SRetPtr;
4127       addr = Builder.CreateElementBitCast(addr, coercionType);
4128 
4129       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4130       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4131 
4132       unsigned unpaddedIndex = 0;
4133       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4134         llvm::Type *eltType = coercionType->getElementType(i);
4135         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4136         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4137         llvm::Value *elt = CI;
4138         if (requiresExtract)
4139           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4140         else
4141           assert(unpaddedIndex == 0);
4142         Builder.CreateStore(elt, eltAddr);
4143       }
4144       // FALLTHROUGH
4145     }
4146 
4147     case ABIArgInfo::InAlloca:
4148     case ABIArgInfo::Indirect: {
4149       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4150       if (UnusedReturnSize)
4151         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4152                         SRetPtr.getPointer());
4153       return ret;
4154     }
4155 
4156     case ABIArgInfo::Ignore:
4157       // If we are ignoring an argument that had a result, make sure to
4158       // construct the appropriate return value for our caller.
4159       return GetUndefRValue(RetTy);
4160 
4161     case ABIArgInfo::Extend:
4162     case ABIArgInfo::Direct: {
4163       llvm::Type *RetIRTy = ConvertType(RetTy);
4164       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4165         switch (getEvaluationKind(RetTy)) {
4166         case TEK_Complex: {
4167           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4168           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4169           return RValue::getComplex(std::make_pair(Real, Imag));
4170         }
4171         case TEK_Aggregate: {
4172           Address DestPtr = ReturnValue.getValue();
4173           bool DestIsVolatile = ReturnValue.isVolatile();
4174 
4175           if (!DestPtr.isValid()) {
4176             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4177             DestIsVolatile = false;
4178           }
4179           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4180           return RValue::getAggregate(DestPtr);
4181         }
4182         case TEK_Scalar: {
4183           // If the argument doesn't match, perform a bitcast to coerce it.  This
4184           // can happen due to trivial type mismatches.
4185           llvm::Value *V = CI;
4186           if (V->getType() != RetIRTy)
4187             V = Builder.CreateBitCast(V, RetIRTy);
4188           return RValue::get(V);
4189         }
4190         }
4191         llvm_unreachable("bad evaluation kind");
4192       }
4193 
4194       Address DestPtr = ReturnValue.getValue();
4195       bool DestIsVolatile = ReturnValue.isVolatile();
4196 
4197       if (!DestPtr.isValid()) {
4198         DestPtr = CreateMemTemp(RetTy, "coerce");
4199         DestIsVolatile = false;
4200       }
4201 
4202       // If the value is offset in memory, apply the offset now.
4203       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4204       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4205 
4206       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4207     }
4208 
4209     case ABIArgInfo::Expand:
4210       llvm_unreachable("Invalid ABI kind for return argument");
4211     }
4212 
4213     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4214   } ();
4215 
4216   // Emit the assume_aligned check on the return value.
4217   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4218   if (Ret.isScalar() && TargetDecl) {
4219     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4220       llvm::Value *OffsetValue = nullptr;
4221       if (const auto *Offset = AA->getOffset())
4222         OffsetValue = EmitScalarExpr(Offset);
4223 
4224       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4225       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4226       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4227                               OffsetValue);
4228     }
4229   }
4230 
4231   return Ret;
4232 }
4233 
4234 /* VarArg handling */
4235 
4236 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4237   VAListAddr = VE->isMicrosoftABI()
4238                  ? EmitMSVAListRef(VE->getSubExpr())
4239                  : EmitVAListRef(VE->getSubExpr());
4240   QualType Ty = VE->getType();
4241   if (VE->isMicrosoftABI())
4242     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4243   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4244 }
4245