1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include <sstream>
35 using namespace clang;
36 using namespace CodeGen;
37 
38 /***/
39 
40 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
41   switch (CC) {
42   default: return llvm::CallingConv::C;
43   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
44   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
45   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
46   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
47   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
48   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
49   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
50   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
51   // TODO: Add support for __pascal to LLVM.
52   case CC_X86Pascal: return llvm::CallingConv::C;
53   // TODO: Add support for __vectorcall to LLVM.
54   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
55   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
56   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
57   }
58 }
59 
60 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
61 /// qualification.
62 /// FIXME: address space qualification?
63 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
64   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
65   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
66 }
67 
68 /// Returns the canonical formal type of the given C++ method.
69 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
70   return MD->getType()->getCanonicalTypeUnqualified()
71            .getAs<FunctionProtoType>();
72 }
73 
74 /// Returns the "extra-canonicalized" return type, which discards
75 /// qualifiers on the return type.  Codegen doesn't care about them,
76 /// and it makes ABI code a little easier to be able to assume that
77 /// all parameter and return types are top-level unqualified.
78 static CanQualType GetReturnType(QualType RetTy) {
79   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
80 }
81 
82 /// Arrange the argument and result information for a value of the given
83 /// unprototyped freestanding function type.
84 const CGFunctionInfo &
85 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
86   // When translating an unprototyped function type, always use a
87   // variadic type.
88   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
89                                  /*instanceMethod=*/false,
90                                  /*chainCall=*/false, None,
91                                  FTNP->getExtInfo(), RequiredArgs(0));
92 }
93 
94 /// Arrange the LLVM function layout for a value of the given function
95 /// type, on top of any implicit parameters already stored.
96 static const CGFunctionInfo &
97 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
98                         SmallVectorImpl<CanQualType> &prefix,
99                         CanQual<FunctionProtoType> FTP) {
100   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
101   // FIXME: Kill copy.
102   prefix.append(FTP->param_type_begin(), FTP->param_type_end());
103   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
104   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
105                                      /*chainCall=*/false, prefix,
106                                      FTP->getExtInfo(), required);
107 }
108 
109 /// Arrange the argument and result information for a value of the
110 /// given freestanding function type.
111 const CGFunctionInfo &
112 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
113   SmallVector<CanQualType, 16> argTypes;
114   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
115                                    FTP);
116 }
117 
118 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
119   // Set the appropriate calling convention for the Function.
120   if (D->hasAttr<StdCallAttr>())
121     return CC_X86StdCall;
122 
123   if (D->hasAttr<FastCallAttr>())
124     return CC_X86FastCall;
125 
126   if (D->hasAttr<ThisCallAttr>())
127     return CC_X86ThisCall;
128 
129   if (D->hasAttr<VectorCallAttr>())
130     return CC_X86VectorCall;
131 
132   if (D->hasAttr<PascalAttr>())
133     return CC_X86Pascal;
134 
135   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
136     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
137 
138   if (D->hasAttr<IntelOclBiccAttr>())
139     return CC_IntelOclBicc;
140 
141   if (D->hasAttr<MSABIAttr>())
142     return IsWindows ? CC_C : CC_X86_64Win64;
143 
144   if (D->hasAttr<SysVABIAttr>())
145     return IsWindows ? CC_X86_64SysV : CC_C;
146 
147   return CC_C;
148 }
149 
150 /// Arrange the argument and result information for a call to an
151 /// unknown C++ non-static member function of the given abstract type.
152 /// (Zero value of RD means we don't have any meaningful "this" argument type,
153 ///  so fall back to a generic pointer type).
154 /// The member function must be an ordinary function, i.e. not a
155 /// constructor or destructor.
156 const CGFunctionInfo &
157 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
158                                    const FunctionProtoType *FTP) {
159   SmallVector<CanQualType, 16> argTypes;
160 
161   // Add the 'this' pointer.
162   if (RD)
163     argTypes.push_back(GetThisType(Context, RD));
164   else
165     argTypes.push_back(Context.VoidPtrTy);
166 
167   return ::arrangeLLVMFunctionInfo(
168       *this, true, argTypes,
169       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
170 }
171 
172 /// Arrange the argument and result information for a declaration or
173 /// definition of the given C++ non-static member function.  The
174 /// member function must be an ordinary function, i.e. not a
175 /// constructor or destructor.
176 const CGFunctionInfo &
177 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
178   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
179   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
180 
181   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
182 
183   if (MD->isInstance()) {
184     // The abstract case is perfectly fine.
185     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
186     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
187   }
188 
189   return arrangeFreeFunctionType(prototype);
190 }
191 
192 const CGFunctionInfo &
193 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
194                                             StructorType Type) {
195 
196   SmallVector<CanQualType, 16> argTypes;
197   argTypes.push_back(GetThisType(Context, MD->getParent()));
198 
199   GlobalDecl GD;
200   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
201     GD = GlobalDecl(CD, toCXXCtorType(Type));
202   } else {
203     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
204     GD = GlobalDecl(DD, toCXXDtorType(Type));
205   }
206 
207   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
208 
209   // Add the formal parameters.
210   argTypes.append(FTP->param_type_begin(), FTP->param_type_end());
211 
212   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
213 
214   RequiredArgs required =
215       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
216 
217   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
218   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
219                                ? argTypes.front()
220                                : TheCXXABI.hasMostDerivedReturn(GD)
221                                      ? CGM.getContext().VoidPtrTy
222                                      : Context.VoidTy;
223   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
224                                  /*chainCall=*/false, argTypes, extInfo,
225                                  required);
226 }
227 
228 /// Arrange a call to a C++ method, passing the given arguments.
229 const CGFunctionInfo &
230 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
231                                         const CXXConstructorDecl *D,
232                                         CXXCtorType CtorKind,
233                                         unsigned ExtraArgs) {
234   // FIXME: Kill copy.
235   SmallVector<CanQualType, 16> ArgTypes;
236   for (const auto &Arg : args)
237     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
238 
239   CanQual<FunctionProtoType> FPT = GetFormalType(D);
240   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
241   GlobalDecl GD(D, CtorKind);
242   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
243                                ? ArgTypes.front()
244                                : TheCXXABI.hasMostDerivedReturn(GD)
245                                      ? CGM.getContext().VoidPtrTy
246                                      : Context.VoidTy;
247 
248   FunctionType::ExtInfo Info = FPT->getExtInfo();
249   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
250                                  /*chainCall=*/false, ArgTypes, Info,
251                                  Required);
252 }
253 
254 /// Arrange the argument and result information for the declaration or
255 /// definition of the given function.
256 const CGFunctionInfo &
257 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
258   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
259     if (MD->isInstance())
260       return arrangeCXXMethodDeclaration(MD);
261 
262   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
263 
264   assert(isa<FunctionType>(FTy));
265 
266   // When declaring a function without a prototype, always use a
267   // non-variadic type.
268   if (isa<FunctionNoProtoType>(FTy)) {
269     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
270     return arrangeLLVMFunctionInfo(
271         noProto->getReturnType(), /*instanceMethod=*/false,
272         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
273   }
274 
275   assert(isa<FunctionProtoType>(FTy));
276   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
277 }
278 
279 /// Arrange the argument and result information for the declaration or
280 /// definition of an Objective-C method.
281 const CGFunctionInfo &
282 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
283   // It happens that this is the same as a call with no optional
284   // arguments, except also using the formal 'self' type.
285   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
286 }
287 
288 /// Arrange the argument and result information for the function type
289 /// through which to perform a send to the given Objective-C method,
290 /// using the given receiver type.  The receiver type is not always
291 /// the 'self' type of the method or even an Objective-C pointer type.
292 /// This is *not* the right method for actually performing such a
293 /// message send, due to the possibility of optional arguments.
294 const CGFunctionInfo &
295 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
296                                               QualType receiverType) {
297   SmallVector<CanQualType, 16> argTys;
298   argTys.push_back(Context.getCanonicalParamType(receiverType));
299   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
300   // FIXME: Kill copy?
301   for (const auto *I : MD->params()) {
302     argTys.push_back(Context.getCanonicalParamType(I->getType()));
303   }
304 
305   FunctionType::ExtInfo einfo;
306   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
307   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
308 
309   if (getContext().getLangOpts().ObjCAutoRefCount &&
310       MD->hasAttr<NSReturnsRetainedAttr>())
311     einfo = einfo.withProducesResult(true);
312 
313   RequiredArgs required =
314     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
315 
316   return arrangeLLVMFunctionInfo(
317       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
318       /*chainCall=*/false, argTys, einfo, required);
319 }
320 
321 const CGFunctionInfo &
322 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
323   // FIXME: Do we need to handle ObjCMethodDecl?
324   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
325 
326   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
327     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
328 
329   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
330     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
331 
332   return arrangeFunctionDeclaration(FD);
333 }
334 
335 /// Arrange a thunk that takes 'this' as the first parameter followed by
336 /// varargs.  Return a void pointer, regardless of the actual return type.
337 /// The body of the thunk will end in a musttail call to a function of the
338 /// correct type, and the caller will bitcast the function to the correct
339 /// prototype.
340 const CGFunctionInfo &
341 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
342   assert(MD->isVirtual() && "only virtual memptrs have thunks");
343   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
344   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
345   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
346                                  /*chainCall=*/false, ArgTys,
347                                  FTP->getExtInfo(), RequiredArgs(1));
348 }
349 
350 const CGFunctionInfo &
351 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
352                                    CXXCtorType CT) {
353   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
354 
355   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
356   SmallVector<CanQualType, 2> ArgTys;
357   const CXXRecordDecl *RD = CD->getParent();
358   ArgTys.push_back(GetThisType(Context, RD));
359   if (CT == Ctor_CopyingClosure)
360     ArgTys.push_back(*FTP->param_type_begin());
361   if (RD->getNumVBases() > 0)
362     ArgTys.push_back(Context.IntTy);
363   CallingConv CC = Context.getDefaultCallingConvention(
364       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
365   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
366                                  /*chainCall=*/false, ArgTys,
367                                  FunctionType::ExtInfo(CC), RequiredArgs::All);
368 }
369 
370 /// Arrange a call as unto a free function, except possibly with an
371 /// additional number of formal parameters considered required.
372 static const CGFunctionInfo &
373 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
374                             CodeGenModule &CGM,
375                             const CallArgList &args,
376                             const FunctionType *fnType,
377                             unsigned numExtraRequiredArgs,
378                             bool chainCall) {
379   assert(args.size() >= numExtraRequiredArgs);
380 
381   // In most cases, there are no optional arguments.
382   RequiredArgs required = RequiredArgs::All;
383 
384   // If we have a variadic prototype, the required arguments are the
385   // extra prefix plus the arguments in the prototype.
386   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
387     if (proto->isVariadic())
388       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
389 
390   // If we don't have a prototype at all, but we're supposed to
391   // explicitly use the variadic convention for unprototyped calls,
392   // treat all of the arguments as required but preserve the nominal
393   // possibility of variadics.
394   } else if (CGM.getTargetCodeGenInfo()
395                 .isNoProtoCallVariadic(args,
396                                        cast<FunctionNoProtoType>(fnType))) {
397     required = RequiredArgs(args.size());
398   }
399 
400   // FIXME: Kill copy.
401   SmallVector<CanQualType, 16> argTypes;
402   for (const auto &arg : args)
403     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
404   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
405                                      /*instanceMethod=*/false, chainCall,
406                                      argTypes, fnType->getExtInfo(), required);
407 }
408 
409 /// Figure out the rules for calling a function with the given formal
410 /// type using the given arguments.  The arguments are necessary
411 /// because the function might be unprototyped, in which case it's
412 /// target-dependent in crazy ways.
413 const CGFunctionInfo &
414 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
415                                       const FunctionType *fnType,
416                                       bool chainCall) {
417   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
418                                      chainCall ? 1 : 0, chainCall);
419 }
420 
421 /// A block function call is essentially a free-function call with an
422 /// extra implicit argument.
423 const CGFunctionInfo &
424 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
425                                        const FunctionType *fnType) {
426   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
427                                      /*chainCall=*/false);
428 }
429 
430 const CGFunctionInfo &
431 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
432                                       const CallArgList &args,
433                                       FunctionType::ExtInfo info,
434                                       RequiredArgs required) {
435   // FIXME: Kill copy.
436   SmallVector<CanQualType, 16> argTypes;
437   for (const auto &Arg : args)
438     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
439   return arrangeLLVMFunctionInfo(
440       GetReturnType(resultType), /*instanceMethod=*/false,
441       /*chainCall=*/false, argTypes, info, required);
442 }
443 
444 /// Arrange a call to a C++ method, passing the given arguments.
445 const CGFunctionInfo &
446 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
447                                    const FunctionProtoType *FPT,
448                                    RequiredArgs required) {
449   // FIXME: Kill copy.
450   SmallVector<CanQualType, 16> argTypes;
451   for (const auto &Arg : args)
452     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
453 
454   FunctionType::ExtInfo info = FPT->getExtInfo();
455   return arrangeLLVMFunctionInfo(
456       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
457       /*chainCall=*/false, argTypes, info, required);
458 }
459 
460 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
461     QualType resultType, const FunctionArgList &args,
462     const FunctionType::ExtInfo &info, bool isVariadic) {
463   // FIXME: Kill copy.
464   SmallVector<CanQualType, 16> argTypes;
465   for (auto Arg : args)
466     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
467 
468   RequiredArgs required =
469     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
470   return arrangeLLVMFunctionInfo(
471       GetReturnType(resultType), /*instanceMethod=*/false,
472       /*chainCall=*/false, argTypes, info, required);
473 }
474 
475 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
476   return arrangeLLVMFunctionInfo(
477       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
478       None, FunctionType::ExtInfo(), RequiredArgs::All);
479 }
480 
481 /// Arrange the argument and result information for an abstract value
482 /// of a given function type.  This is the method which all of the
483 /// above functions ultimately defer to.
484 const CGFunctionInfo &
485 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
486                                       bool instanceMethod,
487                                       bool chainCall,
488                                       ArrayRef<CanQualType> argTypes,
489                                       FunctionType::ExtInfo info,
490                                       RequiredArgs required) {
491   assert(std::all_of(argTypes.begin(), argTypes.end(),
492                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
493 
494   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
495 
496   // Lookup or create unique function info.
497   llvm::FoldingSetNodeID ID;
498   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
499                           resultType, argTypes);
500 
501   void *insertPos = nullptr;
502   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
503   if (FI)
504     return *FI;
505 
506   // Construct the function info.  We co-allocate the ArgInfos.
507   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
508                               resultType, argTypes, required);
509   FunctionInfos.InsertNode(FI, insertPos);
510 
511   bool inserted = FunctionsBeingProcessed.insert(FI).second;
512   (void)inserted;
513   assert(inserted && "Recursively being processed?");
514 
515   // Compute ABI information.
516   getABIInfo().computeInfo(*FI);
517 
518   // Loop over all of the computed argument and return value info.  If any of
519   // them are direct or extend without a specified coerce type, specify the
520   // default now.
521   ABIArgInfo &retInfo = FI->getReturnInfo();
522   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
523     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
524 
525   for (auto &I : FI->arguments())
526     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
527       I.info.setCoerceToType(ConvertType(I.type));
528 
529   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
530   assert(erased && "Not in set?");
531 
532   return *FI;
533 }
534 
535 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
536                                        bool instanceMethod,
537                                        bool chainCall,
538                                        const FunctionType::ExtInfo &info,
539                                        CanQualType resultType,
540                                        ArrayRef<CanQualType> argTypes,
541                                        RequiredArgs required) {
542   void *buffer = operator new(sizeof(CGFunctionInfo) +
543                               sizeof(ArgInfo) * (argTypes.size() + 1));
544   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
545   FI->CallingConvention = llvmCC;
546   FI->EffectiveCallingConvention = llvmCC;
547   FI->ASTCallingConvention = info.getCC();
548   FI->InstanceMethod = instanceMethod;
549   FI->ChainCall = chainCall;
550   FI->NoReturn = info.getNoReturn();
551   FI->ReturnsRetained = info.getProducesResult();
552   FI->Required = required;
553   FI->HasRegParm = info.getHasRegParm();
554   FI->RegParm = info.getRegParm();
555   FI->ArgStruct = nullptr;
556   FI->NumArgs = argTypes.size();
557   FI->getArgsBuffer()[0].type = resultType;
558   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
559     FI->getArgsBuffer()[i + 1].type = argTypes[i];
560   return FI;
561 }
562 
563 /***/
564 
565 namespace {
566 // ABIArgInfo::Expand implementation.
567 
568 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
569 struct TypeExpansion {
570   enum TypeExpansionKind {
571     // Elements of constant arrays are expanded recursively.
572     TEK_ConstantArray,
573     // Record fields are expanded recursively (but if record is a union, only
574     // the field with the largest size is expanded).
575     TEK_Record,
576     // For complex types, real and imaginary parts are expanded recursively.
577     TEK_Complex,
578     // All other types are not expandable.
579     TEK_None
580   };
581 
582   const TypeExpansionKind Kind;
583 
584   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
585   virtual ~TypeExpansion() {}
586 };
587 
588 struct ConstantArrayExpansion : TypeExpansion {
589   QualType EltTy;
590   uint64_t NumElts;
591 
592   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
593       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
594   static bool classof(const TypeExpansion *TE) {
595     return TE->Kind == TEK_ConstantArray;
596   }
597 };
598 
599 struct RecordExpansion : TypeExpansion {
600   SmallVector<const CXXBaseSpecifier *, 1> Bases;
601 
602   SmallVector<const FieldDecl *, 1> Fields;
603 
604   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
605                   SmallVector<const FieldDecl *, 1> &&Fields)
606       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
607   static bool classof(const TypeExpansion *TE) {
608     return TE->Kind == TEK_Record;
609   }
610 };
611 
612 struct ComplexExpansion : TypeExpansion {
613   QualType EltTy;
614 
615   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
616   static bool classof(const TypeExpansion *TE) {
617     return TE->Kind == TEK_Complex;
618   }
619 };
620 
621 struct NoExpansion : TypeExpansion {
622   NoExpansion() : TypeExpansion(TEK_None) {}
623   static bool classof(const TypeExpansion *TE) {
624     return TE->Kind == TEK_None;
625   }
626 };
627 }  // namespace
628 
629 static std::unique_ptr<TypeExpansion>
630 getTypeExpansion(QualType Ty, const ASTContext &Context) {
631   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
632     return llvm::make_unique<ConstantArrayExpansion>(
633         AT->getElementType(), AT->getSize().getZExtValue());
634   }
635   if (const RecordType *RT = Ty->getAs<RecordType>()) {
636     SmallVector<const CXXBaseSpecifier *, 1> Bases;
637     SmallVector<const FieldDecl *, 1> Fields;
638     const RecordDecl *RD = RT->getDecl();
639     assert(!RD->hasFlexibleArrayMember() &&
640            "Cannot expand structure with flexible array.");
641     if (RD->isUnion()) {
642       // Unions can be here only in degenerative cases - all the fields are same
643       // after flattening. Thus we have to use the "largest" field.
644       const FieldDecl *LargestFD = nullptr;
645       CharUnits UnionSize = CharUnits::Zero();
646 
647       for (const auto *FD : RD->fields()) {
648         // Skip zero length bitfields.
649         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
650           continue;
651         assert(!FD->isBitField() &&
652                "Cannot expand structure with bit-field members.");
653         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
654         if (UnionSize < FieldSize) {
655           UnionSize = FieldSize;
656           LargestFD = FD;
657         }
658       }
659       if (LargestFD)
660         Fields.push_back(LargestFD);
661     } else {
662       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
663         assert(!CXXRD->isDynamicClass() &&
664                "cannot expand vtable pointers in dynamic classes");
665         for (const CXXBaseSpecifier &BS : CXXRD->bases())
666           Bases.push_back(&BS);
667       }
668 
669       for (const auto *FD : RD->fields()) {
670         // Skip zero length bitfields.
671         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
672           continue;
673         assert(!FD->isBitField() &&
674                "Cannot expand structure with bit-field members.");
675         Fields.push_back(FD);
676       }
677     }
678     return llvm::make_unique<RecordExpansion>(std::move(Bases),
679                                               std::move(Fields));
680   }
681   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
682     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
683   }
684   return llvm::make_unique<NoExpansion>();
685 }
686 
687 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
688   auto Exp = getTypeExpansion(Ty, Context);
689   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
690     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
691   }
692   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
693     int Res = 0;
694     for (auto BS : RExp->Bases)
695       Res += getExpansionSize(BS->getType(), Context);
696     for (auto FD : RExp->Fields)
697       Res += getExpansionSize(FD->getType(), Context);
698     return Res;
699   }
700   if (isa<ComplexExpansion>(Exp.get()))
701     return 2;
702   assert(isa<NoExpansion>(Exp.get()));
703   return 1;
704 }
705 
706 void
707 CodeGenTypes::getExpandedTypes(QualType Ty,
708                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
709   auto Exp = getTypeExpansion(Ty, Context);
710   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
711     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
712       getExpandedTypes(CAExp->EltTy, TI);
713     }
714   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
715     for (auto BS : RExp->Bases)
716       getExpandedTypes(BS->getType(), TI);
717     for (auto FD : RExp->Fields)
718       getExpandedTypes(FD->getType(), TI);
719   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
720     llvm::Type *EltTy = ConvertType(CExp->EltTy);
721     *TI++ = EltTy;
722     *TI++ = EltTy;
723   } else {
724     assert(isa<NoExpansion>(Exp.get()));
725     *TI++ = ConvertType(Ty);
726   }
727 }
728 
729 void CodeGenFunction::ExpandTypeFromArgs(
730     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
731   assert(LV.isSimple() &&
732          "Unexpected non-simple lvalue during struct expansion.");
733 
734   auto Exp = getTypeExpansion(Ty, getContext());
735   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
736     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
737       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, i);
738       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
739       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
740     }
741   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
742     llvm::Value *This = LV.getAddress();
743     for (const CXXBaseSpecifier *BS : RExp->Bases) {
744       // Perform a single step derived-to-base conversion.
745       llvm::Value *Base =
746           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
747                                 /*NullCheckValue=*/false, SourceLocation());
748       LValue SubLV = MakeAddrLValue(Base, BS->getType());
749 
750       // Recurse onto bases.
751       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
752     }
753     for (auto FD : RExp->Fields) {
754       // FIXME: What are the right qualifiers here?
755       LValue SubLV = EmitLValueForField(LV, FD);
756       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
757     }
758   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
759     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
760     EmitStoreThroughLValue(RValue::get(*AI++),
761                            MakeAddrLValue(RealAddr, CExp->EltTy));
762     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
763     EmitStoreThroughLValue(RValue::get(*AI++),
764                            MakeAddrLValue(ImagAddr, CExp->EltTy));
765   } else {
766     assert(isa<NoExpansion>(Exp.get()));
767     EmitStoreThroughLValue(RValue::get(*AI++), LV);
768   }
769 }
770 
771 void CodeGenFunction::ExpandTypeToArgs(
772     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
773     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
774   auto Exp = getTypeExpansion(Ty, getContext());
775   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
776     llvm::Value *Addr = RV.getAggregateAddr();
777     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
778       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, i);
779       RValue EltRV =
780           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
781       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
782     }
783   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
784     llvm::Value *This = RV.getAggregateAddr();
785     for (const CXXBaseSpecifier *BS : RExp->Bases) {
786       // Perform a single step derived-to-base conversion.
787       llvm::Value *Base =
788           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
789                                 /*NullCheckValue=*/false, SourceLocation());
790       RValue BaseRV = RValue::getAggregate(Base);
791 
792       // Recurse onto bases.
793       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
794                        IRCallArgPos);
795     }
796 
797     LValue LV = MakeAddrLValue(This, Ty);
798     for (auto FD : RExp->Fields) {
799       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
800       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
801                        IRCallArgPos);
802     }
803   } else if (isa<ComplexExpansion>(Exp.get())) {
804     ComplexPairTy CV = RV.getComplexVal();
805     IRCallArgs[IRCallArgPos++] = CV.first;
806     IRCallArgs[IRCallArgPos++] = CV.second;
807   } else {
808     assert(isa<NoExpansion>(Exp.get()));
809     assert(RV.isScalar() &&
810            "Unexpected non-scalar rvalue during struct expansion.");
811 
812     // Insert a bitcast as needed.
813     llvm::Value *V = RV.getScalarVal();
814     if (IRCallArgPos < IRFuncTy->getNumParams() &&
815         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
816       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
817 
818     IRCallArgs[IRCallArgPos++] = V;
819   }
820 }
821 
822 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
823 /// accessing some number of bytes out of it, try to gep into the struct to get
824 /// at its inner goodness.  Dive as deep as possible without entering an element
825 /// with an in-memory size smaller than DstSize.
826 static llvm::Value *
827 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
828                                    llvm::StructType *SrcSTy,
829                                    uint64_t DstSize, CodeGenFunction &CGF) {
830   // We can't dive into a zero-element struct.
831   if (SrcSTy->getNumElements() == 0) return SrcPtr;
832 
833   llvm::Type *FirstElt = SrcSTy->getElementType(0);
834 
835   // If the first elt is at least as large as what we're looking for, or if the
836   // first element is the same size as the whole struct, we can enter it. The
837   // comparison must be made on the store size and not the alloca size. Using
838   // the alloca size may overstate the size of the load.
839   uint64_t FirstEltSize =
840     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
841   if (FirstEltSize < DstSize &&
842       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
843     return SrcPtr;
844 
845   // GEP into the first element.
846   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
847 
848   // If the first element is a struct, recurse.
849   llvm::Type *SrcTy =
850     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
851   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
852     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
853 
854   return SrcPtr;
855 }
856 
857 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
858 /// are either integers or pointers.  This does a truncation of the value if it
859 /// is too large or a zero extension if it is too small.
860 ///
861 /// This behaves as if the value were coerced through memory, so on big-endian
862 /// targets the high bits are preserved in a truncation, while little-endian
863 /// targets preserve the low bits.
864 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
865                                              llvm::Type *Ty,
866                                              CodeGenFunction &CGF) {
867   if (Val->getType() == Ty)
868     return Val;
869 
870   if (isa<llvm::PointerType>(Val->getType())) {
871     // If this is Pointer->Pointer avoid conversion to and from int.
872     if (isa<llvm::PointerType>(Ty))
873       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
874 
875     // Convert the pointer to an integer so we can play with its width.
876     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
877   }
878 
879   llvm::Type *DestIntTy = Ty;
880   if (isa<llvm::PointerType>(DestIntTy))
881     DestIntTy = CGF.IntPtrTy;
882 
883   if (Val->getType() != DestIntTy) {
884     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
885     if (DL.isBigEndian()) {
886       // Preserve the high bits on big-endian targets.
887       // That is what memory coercion does.
888       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
889       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
890 
891       if (SrcSize > DstSize) {
892         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
893         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
894       } else {
895         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
896         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
897       }
898     } else {
899       // Little-endian targets preserve the low bits. No shifts required.
900       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
901     }
902   }
903 
904   if (isa<llvm::PointerType>(Ty))
905     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
906   return Val;
907 }
908 
909 
910 
911 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
912 /// a pointer to an object of type \arg Ty.
913 ///
914 /// This safely handles the case when the src type is smaller than the
915 /// destination type; in this situation the values of bits which not
916 /// present in the src are undefined.
917 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
918                                       llvm::Type *Ty,
919                                       CodeGenFunction &CGF) {
920   llvm::Type *SrcTy =
921     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
922 
923   // If SrcTy and Ty are the same, just do a load.
924   if (SrcTy == Ty)
925     return CGF.Builder.CreateLoad(SrcPtr);
926 
927   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
928 
929   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
930     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
931     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
932   }
933 
934   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
935 
936   // If the source and destination are integer or pointer types, just do an
937   // extension or truncation to the desired type.
938   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
939       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
940     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
941     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
942   }
943 
944   // If load is legal, just bitcast the src pointer.
945   if (SrcSize >= DstSize) {
946     // Generally SrcSize is never greater than DstSize, since this means we are
947     // losing bits. However, this can happen in cases where the structure has
948     // additional padding, for example due to a user specified alignment.
949     //
950     // FIXME: Assert that we aren't truncating non-padding bits when have access
951     // to that information.
952     llvm::Value *Casted =
953       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
954     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
955     // FIXME: Use better alignment / avoid requiring aligned load.
956     Load->setAlignment(1);
957     return Load;
958   }
959 
960   // Otherwise do coercion through memory. This is stupid, but
961   // simple.
962   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
963   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
964   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
965   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
966   // FIXME: Use better alignment.
967   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
968       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
969       1, false);
970   return CGF.Builder.CreateLoad(Tmp);
971 }
972 
973 // Function to store a first-class aggregate into memory.  We prefer to
974 // store the elements rather than the aggregate to be more friendly to
975 // fast-isel.
976 // FIXME: Do we need to recurse here?
977 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
978                           llvm::Value *DestPtr, bool DestIsVolatile,
979                           bool LowAlignment) {
980   // Prefer scalar stores to first-class aggregate stores.
981   if (llvm::StructType *STy =
982         dyn_cast<llvm::StructType>(Val->getType())) {
983     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
984       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
985       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
986       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
987                                                     DestIsVolatile);
988       if (LowAlignment)
989         SI->setAlignment(1);
990     }
991   } else {
992     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
993     if (LowAlignment)
994       SI->setAlignment(1);
995   }
996 }
997 
998 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
999 /// where the source and destination may have different types.
1000 ///
1001 /// This safely handles the case when the src type is larger than the
1002 /// destination type; the upper bits of the src will be lost.
1003 static void CreateCoercedStore(llvm::Value *Src,
1004                                llvm::Value *DstPtr,
1005                                bool DstIsVolatile,
1006                                CodeGenFunction &CGF) {
1007   llvm::Type *SrcTy = Src->getType();
1008   llvm::Type *DstTy =
1009     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1010   if (SrcTy == DstTy) {
1011     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
1012     return;
1013   }
1014 
1015   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1016 
1017   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1018     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
1019     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1020   }
1021 
1022   // If the source and destination are integer or pointer types, just do an
1023   // extension or truncation to the desired type.
1024   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1025       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1026     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1027     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
1028     return;
1029   }
1030 
1031   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1032 
1033   // If store is legal, just bitcast the src pointer.
1034   if (SrcSize <= DstSize) {
1035     llvm::Value *Casted =
1036       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
1037     // FIXME: Use better alignment / avoid requiring aligned store.
1038     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
1039   } else {
1040     // Otherwise do coercion through memory. This is stupid, but
1041     // simple.
1042 
1043     // Generally SrcSize is never greater than DstSize, since this means we are
1044     // losing bits. However, this can happen in cases where the structure has
1045     // additional padding, for example due to a user specified alignment.
1046     //
1047     // FIXME: Assert that we aren't truncating non-padding bits when have access
1048     // to that information.
1049     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
1050     CGF.Builder.CreateStore(Src, Tmp);
1051     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
1052     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
1053     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
1054     // FIXME: Use better alignment.
1055     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1056         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1057         1, false);
1058   }
1059 }
1060 
1061 namespace {
1062 
1063 /// Encapsulates information about the way function arguments from
1064 /// CGFunctionInfo should be passed to actual LLVM IR function.
1065 class ClangToLLVMArgMapping {
1066   static const unsigned InvalidIndex = ~0U;
1067   unsigned InallocaArgNo;
1068   unsigned SRetArgNo;
1069   unsigned TotalIRArgs;
1070 
1071   /// Arguments of LLVM IR function corresponding to single Clang argument.
1072   struct IRArgs {
1073     unsigned PaddingArgIndex;
1074     // Argument is expanded to IR arguments at positions
1075     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1076     unsigned FirstArgIndex;
1077     unsigned NumberOfArgs;
1078 
1079     IRArgs()
1080         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1081           NumberOfArgs(0) {}
1082   };
1083 
1084   SmallVector<IRArgs, 8> ArgInfo;
1085 
1086 public:
1087   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1088                         bool OnlyRequiredArgs = false)
1089       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1090         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1091     construct(Context, FI, OnlyRequiredArgs);
1092   }
1093 
1094   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1095   unsigned getInallocaArgNo() const {
1096     assert(hasInallocaArg());
1097     return InallocaArgNo;
1098   }
1099 
1100   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1101   unsigned getSRetArgNo() const {
1102     assert(hasSRetArg());
1103     return SRetArgNo;
1104   }
1105 
1106   unsigned totalIRArgs() const { return TotalIRArgs; }
1107 
1108   bool hasPaddingArg(unsigned ArgNo) const {
1109     assert(ArgNo < ArgInfo.size());
1110     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1111   }
1112   unsigned getPaddingArgNo(unsigned ArgNo) const {
1113     assert(hasPaddingArg(ArgNo));
1114     return ArgInfo[ArgNo].PaddingArgIndex;
1115   }
1116 
1117   /// Returns index of first IR argument corresponding to ArgNo, and their
1118   /// quantity.
1119   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1120     assert(ArgNo < ArgInfo.size());
1121     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1122                           ArgInfo[ArgNo].NumberOfArgs);
1123   }
1124 
1125 private:
1126   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1127                  bool OnlyRequiredArgs);
1128 };
1129 
1130 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1131                                       const CGFunctionInfo &FI,
1132                                       bool OnlyRequiredArgs) {
1133   unsigned IRArgNo = 0;
1134   bool SwapThisWithSRet = false;
1135   const ABIArgInfo &RetAI = FI.getReturnInfo();
1136 
1137   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1138     SwapThisWithSRet = RetAI.isSRetAfterThis();
1139     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1140   }
1141 
1142   unsigned ArgNo = 0;
1143   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1144   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1145        ++I, ++ArgNo) {
1146     assert(I != FI.arg_end());
1147     QualType ArgType = I->type;
1148     const ABIArgInfo &AI = I->info;
1149     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1150     auto &IRArgs = ArgInfo[ArgNo];
1151 
1152     if (AI.getPaddingType())
1153       IRArgs.PaddingArgIndex = IRArgNo++;
1154 
1155     switch (AI.getKind()) {
1156     case ABIArgInfo::Extend:
1157     case ABIArgInfo::Direct: {
1158       // FIXME: handle sseregparm someday...
1159       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1160       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1161         IRArgs.NumberOfArgs = STy->getNumElements();
1162       } else {
1163         IRArgs.NumberOfArgs = 1;
1164       }
1165       break;
1166     }
1167     case ABIArgInfo::Indirect:
1168       IRArgs.NumberOfArgs = 1;
1169       break;
1170     case ABIArgInfo::Ignore:
1171     case ABIArgInfo::InAlloca:
1172       // ignore and inalloca doesn't have matching LLVM parameters.
1173       IRArgs.NumberOfArgs = 0;
1174       break;
1175     case ABIArgInfo::Expand: {
1176       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1177       break;
1178     }
1179     }
1180 
1181     if (IRArgs.NumberOfArgs > 0) {
1182       IRArgs.FirstArgIndex = IRArgNo;
1183       IRArgNo += IRArgs.NumberOfArgs;
1184     }
1185 
1186     // Skip over the sret parameter when it comes second.  We already handled it
1187     // above.
1188     if (IRArgNo == 1 && SwapThisWithSRet)
1189       IRArgNo++;
1190   }
1191   assert(ArgNo == ArgInfo.size());
1192 
1193   if (FI.usesInAlloca())
1194     InallocaArgNo = IRArgNo++;
1195 
1196   TotalIRArgs = IRArgNo;
1197 }
1198 }  // namespace
1199 
1200 /***/
1201 
1202 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1203   return FI.getReturnInfo().isIndirect();
1204 }
1205 
1206 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1207   return ReturnTypeUsesSRet(FI) &&
1208          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1209 }
1210 
1211 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1212   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1213     switch (BT->getKind()) {
1214     default:
1215       return false;
1216     case BuiltinType::Float:
1217       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1218     case BuiltinType::Double:
1219       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1220     case BuiltinType::LongDouble:
1221       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1222     }
1223   }
1224 
1225   return false;
1226 }
1227 
1228 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1229   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1230     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1231       if (BT->getKind() == BuiltinType::LongDouble)
1232         return getTarget().useObjCFP2RetForComplexLongDouble();
1233     }
1234   }
1235 
1236   return false;
1237 }
1238 
1239 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1240   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1241   return GetFunctionType(FI);
1242 }
1243 
1244 llvm::FunctionType *
1245 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1246 
1247   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1248   (void)Inserted;
1249   assert(Inserted && "Recursively being processed?");
1250 
1251   llvm::Type *resultType = nullptr;
1252   const ABIArgInfo &retAI = FI.getReturnInfo();
1253   switch (retAI.getKind()) {
1254   case ABIArgInfo::Expand:
1255     llvm_unreachable("Invalid ABI kind for return argument");
1256 
1257   case ABIArgInfo::Extend:
1258   case ABIArgInfo::Direct:
1259     resultType = retAI.getCoerceToType();
1260     break;
1261 
1262   case ABIArgInfo::InAlloca:
1263     if (retAI.getInAllocaSRet()) {
1264       // sret things on win32 aren't void, they return the sret pointer.
1265       QualType ret = FI.getReturnType();
1266       llvm::Type *ty = ConvertType(ret);
1267       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1268       resultType = llvm::PointerType::get(ty, addressSpace);
1269     } else {
1270       resultType = llvm::Type::getVoidTy(getLLVMContext());
1271     }
1272     break;
1273 
1274   case ABIArgInfo::Indirect: {
1275     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
1276     resultType = llvm::Type::getVoidTy(getLLVMContext());
1277     break;
1278   }
1279 
1280   case ABIArgInfo::Ignore:
1281     resultType = llvm::Type::getVoidTy(getLLVMContext());
1282     break;
1283   }
1284 
1285   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1286   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1287 
1288   // Add type for sret argument.
1289   if (IRFunctionArgs.hasSRetArg()) {
1290     QualType Ret = FI.getReturnType();
1291     llvm::Type *Ty = ConvertType(Ret);
1292     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1293     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1294         llvm::PointerType::get(Ty, AddressSpace);
1295   }
1296 
1297   // Add type for inalloca argument.
1298   if (IRFunctionArgs.hasInallocaArg()) {
1299     auto ArgStruct = FI.getArgStruct();
1300     assert(ArgStruct);
1301     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1302   }
1303 
1304   // Add in all of the required arguments.
1305   unsigned ArgNo = 0;
1306   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1307                                      ie = it + FI.getNumRequiredArgs();
1308   for (; it != ie; ++it, ++ArgNo) {
1309     const ABIArgInfo &ArgInfo = it->info;
1310 
1311     // Insert a padding type to ensure proper alignment.
1312     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1313       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1314           ArgInfo.getPaddingType();
1315 
1316     unsigned FirstIRArg, NumIRArgs;
1317     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1318 
1319     switch (ArgInfo.getKind()) {
1320     case ABIArgInfo::Ignore:
1321     case ABIArgInfo::InAlloca:
1322       assert(NumIRArgs == 0);
1323       break;
1324 
1325     case ABIArgInfo::Indirect: {
1326       assert(NumIRArgs == 1);
1327       // indirect arguments are always on the stack, which is addr space #0.
1328       llvm::Type *LTy = ConvertTypeForMem(it->type);
1329       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1330       break;
1331     }
1332 
1333     case ABIArgInfo::Extend:
1334     case ABIArgInfo::Direct: {
1335       // Fast-isel and the optimizer generally like scalar values better than
1336       // FCAs, so we flatten them if this is safe to do for this argument.
1337       llvm::Type *argType = ArgInfo.getCoerceToType();
1338       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1339       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1340         assert(NumIRArgs == st->getNumElements());
1341         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1342           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1343       } else {
1344         assert(NumIRArgs == 1);
1345         ArgTypes[FirstIRArg] = argType;
1346       }
1347       break;
1348     }
1349 
1350     case ABIArgInfo::Expand:
1351       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1352       getExpandedTypes(it->type, ArgTypesIter);
1353       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1354       break;
1355     }
1356   }
1357 
1358   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1359   assert(Erased && "Not in set?");
1360 
1361   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1362 }
1363 
1364 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1365   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1366   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1367 
1368   if (!isFuncTypeConvertible(FPT))
1369     return llvm::StructType::get(getLLVMContext());
1370 
1371   const CGFunctionInfo *Info;
1372   if (isa<CXXDestructorDecl>(MD))
1373     Info =
1374         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1375   else
1376     Info = &arrangeCXXMethodDeclaration(MD);
1377   return GetFunctionType(*Info);
1378 }
1379 
1380 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1381                                            const Decl *TargetDecl,
1382                                            AttributeListType &PAL,
1383                                            unsigned &CallingConv,
1384                                            bool AttrOnCallSite) {
1385   llvm::AttrBuilder FuncAttrs;
1386   llvm::AttrBuilder RetAttrs;
1387   bool HasOptnone = false;
1388 
1389   CallingConv = FI.getEffectiveCallingConvention();
1390 
1391   if (FI.isNoReturn())
1392     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1393 
1394   // FIXME: handle sseregparm someday...
1395   if (TargetDecl) {
1396     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1397       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1398     if (TargetDecl->hasAttr<NoThrowAttr>())
1399       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1400     if (TargetDecl->hasAttr<NoReturnAttr>())
1401       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1402     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1403       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1404 
1405     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1406       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1407       if (FPT && FPT->isNothrow(getContext()))
1408         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1409       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1410       // These attributes are not inherited by overloads.
1411       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1412       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1413         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1414     }
1415 
1416     // 'const' and 'pure' attribute functions are also nounwind.
1417     if (TargetDecl->hasAttr<ConstAttr>()) {
1418       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1419       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1420     } else if (TargetDecl->hasAttr<PureAttr>()) {
1421       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1422       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1423     }
1424     if (TargetDecl->hasAttr<RestrictAttr>())
1425       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1426     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1427       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1428 
1429     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1430   }
1431 
1432   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1433   if (!HasOptnone) {
1434     if (CodeGenOpts.OptimizeSize)
1435       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1436     if (CodeGenOpts.OptimizeSize == 2)
1437       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1438   }
1439 
1440   if (CodeGenOpts.DisableRedZone)
1441     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1442   if (CodeGenOpts.NoImplicitFloat)
1443     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1444   if (CodeGenOpts.EnableSegmentedStacks &&
1445       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1446     FuncAttrs.addAttribute("split-stack");
1447 
1448   if (AttrOnCallSite) {
1449     // Attributes that should go on the call site only.
1450     if (!CodeGenOpts.SimplifyLibCalls)
1451       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1452   } else {
1453     // Attributes that should go on the function, but not the call site.
1454     if (!CodeGenOpts.DisableFPElim) {
1455       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1456     } else if (CodeGenOpts.OmitLeafFramePointer) {
1457       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1458       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1459     } else {
1460       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1461       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1462     }
1463 
1464     FuncAttrs.addAttribute("less-precise-fpmad",
1465                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1466     FuncAttrs.addAttribute("no-infs-fp-math",
1467                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1468     FuncAttrs.addAttribute("no-nans-fp-math",
1469                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1470     FuncAttrs.addAttribute("unsafe-fp-math",
1471                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1472     FuncAttrs.addAttribute("use-soft-float",
1473                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1474     FuncAttrs.addAttribute("stack-protector-buffer-size",
1475                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1476 
1477     if (!CodeGenOpts.StackRealignment)
1478       FuncAttrs.addAttribute("no-realign-stack");
1479 
1480     // Add target-cpu and target-features work if they differ from the defaults.
1481     std::string &CPU = getTarget().getTargetOpts().CPU;
1482     if (CPU != "" && CPU != getTarget().getTriple().getArchName())
1483       FuncAttrs.addAttribute("target-cpu", getTarget().getTargetOpts().CPU);
1484 
1485     // TODO: FeaturesAsWritten gets us the features on the command line,
1486     // for canonicalization purposes we might want to avoid putting features
1487     // in the target-features set if we know it'll be one of the default
1488     // features in the backend, e.g. corei7-avx and +avx.
1489     std::vector<std::string> &Features =
1490         getTarget().getTargetOpts().FeaturesAsWritten;
1491     if (!Features.empty()) {
1492       std::stringstream S;
1493       std::copy(Features.begin(), Features.end(),
1494                 std::ostream_iterator<std::string>(S, ","));
1495       // The drop_back gets rid of the trailing space.
1496       FuncAttrs.addAttribute("target-features",
1497                              StringRef(S.str()).drop_back(1));
1498     }
1499   }
1500 
1501   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1502 
1503   QualType RetTy = FI.getReturnType();
1504   const ABIArgInfo &RetAI = FI.getReturnInfo();
1505   switch (RetAI.getKind()) {
1506   case ABIArgInfo::Extend:
1507     if (RetTy->hasSignedIntegerRepresentation())
1508       RetAttrs.addAttribute(llvm::Attribute::SExt);
1509     else if (RetTy->hasUnsignedIntegerRepresentation())
1510       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1511     // FALL THROUGH
1512   case ABIArgInfo::Direct:
1513     if (RetAI.getInReg())
1514       RetAttrs.addAttribute(llvm::Attribute::InReg);
1515     break;
1516   case ABIArgInfo::Ignore:
1517     break;
1518 
1519   case ABIArgInfo::InAlloca:
1520   case ABIArgInfo::Indirect: {
1521     // inalloca and sret disable readnone and readonly
1522     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1523       .removeAttribute(llvm::Attribute::ReadNone);
1524     break;
1525   }
1526 
1527   case ABIArgInfo::Expand:
1528     llvm_unreachable("Invalid ABI kind for return argument");
1529   }
1530 
1531   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1532     QualType PTy = RefTy->getPointeeType();
1533     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1534       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1535                                         .getQuantity());
1536     else if (getContext().getTargetAddressSpace(PTy) == 0)
1537       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1538   }
1539 
1540   // Attach return attributes.
1541   if (RetAttrs.hasAttributes()) {
1542     PAL.push_back(llvm::AttributeSet::get(
1543         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1544   }
1545 
1546   // Attach attributes to sret.
1547   if (IRFunctionArgs.hasSRetArg()) {
1548     llvm::AttrBuilder SRETAttrs;
1549     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1550     if (RetAI.getInReg())
1551       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1552     PAL.push_back(llvm::AttributeSet::get(
1553         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1554   }
1555 
1556   // Attach attributes to inalloca argument.
1557   if (IRFunctionArgs.hasInallocaArg()) {
1558     llvm::AttrBuilder Attrs;
1559     Attrs.addAttribute(llvm::Attribute::InAlloca);
1560     PAL.push_back(llvm::AttributeSet::get(
1561         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1562   }
1563 
1564   unsigned ArgNo = 0;
1565   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1566                                           E = FI.arg_end();
1567        I != E; ++I, ++ArgNo) {
1568     QualType ParamType = I->type;
1569     const ABIArgInfo &AI = I->info;
1570     llvm::AttrBuilder Attrs;
1571 
1572     // Add attribute for padding argument, if necessary.
1573     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1574       if (AI.getPaddingInReg())
1575         PAL.push_back(llvm::AttributeSet::get(
1576             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1577             llvm::Attribute::InReg));
1578     }
1579 
1580     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1581     // have the corresponding parameter variable.  It doesn't make
1582     // sense to do it here because parameters are so messed up.
1583     switch (AI.getKind()) {
1584     case ABIArgInfo::Extend:
1585       if (ParamType->isSignedIntegerOrEnumerationType())
1586         Attrs.addAttribute(llvm::Attribute::SExt);
1587       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1588         Attrs.addAttribute(llvm::Attribute::ZExt);
1589       // FALL THROUGH
1590     case ABIArgInfo::Direct:
1591       if (ArgNo == 0 && FI.isChainCall())
1592         Attrs.addAttribute(llvm::Attribute::Nest);
1593       else if (AI.getInReg())
1594         Attrs.addAttribute(llvm::Attribute::InReg);
1595       break;
1596 
1597     case ABIArgInfo::Indirect:
1598       if (AI.getInReg())
1599         Attrs.addAttribute(llvm::Attribute::InReg);
1600 
1601       if (AI.getIndirectByVal())
1602         Attrs.addAttribute(llvm::Attribute::ByVal);
1603 
1604       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1605 
1606       // byval disables readnone and readonly.
1607       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1608         .removeAttribute(llvm::Attribute::ReadNone);
1609       break;
1610 
1611     case ABIArgInfo::Ignore:
1612     case ABIArgInfo::Expand:
1613       continue;
1614 
1615     case ABIArgInfo::InAlloca:
1616       // inalloca disables readnone and readonly.
1617       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1618           .removeAttribute(llvm::Attribute::ReadNone);
1619       continue;
1620     }
1621 
1622     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1623       QualType PTy = RefTy->getPointeeType();
1624       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1625         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1626                                        .getQuantity());
1627       else if (getContext().getTargetAddressSpace(PTy) == 0)
1628         Attrs.addAttribute(llvm::Attribute::NonNull);
1629     }
1630 
1631     if (Attrs.hasAttributes()) {
1632       unsigned FirstIRArg, NumIRArgs;
1633       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1634       for (unsigned i = 0; i < NumIRArgs; i++)
1635         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1636                                               FirstIRArg + i + 1, Attrs));
1637     }
1638   }
1639   assert(ArgNo == FI.arg_size());
1640 
1641   if (FuncAttrs.hasAttributes())
1642     PAL.push_back(llvm::
1643                   AttributeSet::get(getLLVMContext(),
1644                                     llvm::AttributeSet::FunctionIndex,
1645                                     FuncAttrs));
1646 }
1647 
1648 /// An argument came in as a promoted argument; demote it back to its
1649 /// declared type.
1650 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1651                                          const VarDecl *var,
1652                                          llvm::Value *value) {
1653   llvm::Type *varType = CGF.ConvertType(var->getType());
1654 
1655   // This can happen with promotions that actually don't change the
1656   // underlying type, like the enum promotions.
1657   if (value->getType() == varType) return value;
1658 
1659   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1660          && "unexpected promotion type");
1661 
1662   if (isa<llvm::IntegerType>(varType))
1663     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1664 
1665   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1666 }
1667 
1668 /// Returns the attribute (either parameter attribute, or function
1669 /// attribute), which declares argument ArgNo to be non-null.
1670 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1671                                          QualType ArgType, unsigned ArgNo) {
1672   // FIXME: __attribute__((nonnull)) can also be applied to:
1673   //   - references to pointers, where the pointee is known to be
1674   //     nonnull (apparently a Clang extension)
1675   //   - transparent unions containing pointers
1676   // In the former case, LLVM IR cannot represent the constraint. In
1677   // the latter case, we have no guarantee that the transparent union
1678   // is in fact passed as a pointer.
1679   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1680     return nullptr;
1681   // First, check attribute on parameter itself.
1682   if (PVD) {
1683     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1684       return ParmNNAttr;
1685   }
1686   // Check function attributes.
1687   if (!FD)
1688     return nullptr;
1689   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1690     if (NNAttr->isNonNull(ArgNo))
1691       return NNAttr;
1692   }
1693   return nullptr;
1694 }
1695 
1696 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1697                                          llvm::Function *Fn,
1698                                          const FunctionArgList &Args) {
1699   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1700     // Naked functions don't have prologues.
1701     return;
1702 
1703   // If this is an implicit-return-zero function, go ahead and
1704   // initialize the return value.  TODO: it might be nice to have
1705   // a more general mechanism for this that didn't require synthesized
1706   // return statements.
1707   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1708     if (FD->hasImplicitReturnZero()) {
1709       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1710       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1711       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1712       Builder.CreateStore(Zero, ReturnValue);
1713     }
1714   }
1715 
1716   // FIXME: We no longer need the types from FunctionArgList; lift up and
1717   // simplify.
1718 
1719   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1720   // Flattened function arguments.
1721   SmallVector<llvm::Argument *, 16> FnArgs;
1722   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1723   for (auto &Arg : Fn->args()) {
1724     FnArgs.push_back(&Arg);
1725   }
1726   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1727 
1728   // If we're using inalloca, all the memory arguments are GEPs off of the last
1729   // parameter, which is a pointer to the complete memory area.
1730   llvm::Value *ArgStruct = nullptr;
1731   if (IRFunctionArgs.hasInallocaArg()) {
1732     ArgStruct = FnArgs[IRFunctionArgs.getInallocaArgNo()];
1733     assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1734   }
1735 
1736   // Name the struct return parameter.
1737   if (IRFunctionArgs.hasSRetArg()) {
1738     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1739     AI->setName("agg.result");
1740     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1741                                         llvm::Attribute::NoAlias));
1742   }
1743 
1744   // Track if we received the parameter as a pointer (indirect, byval, or
1745   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1746   // into a local alloca for us.
1747   enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1748   typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1749   SmallVector<ValueAndIsPtr, 16> ArgVals;
1750   ArgVals.reserve(Args.size());
1751 
1752   // Create a pointer value for every parameter declaration.  This usually
1753   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1754   // any cleanups or do anything that might unwind.  We do that separately, so
1755   // we can push the cleanups in the correct order for the ABI.
1756   assert(FI.arg_size() == Args.size() &&
1757          "Mismatch between function signature & arguments.");
1758   unsigned ArgNo = 0;
1759   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1760   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1761        i != e; ++i, ++info_it, ++ArgNo) {
1762     const VarDecl *Arg = *i;
1763     QualType Ty = info_it->type;
1764     const ABIArgInfo &ArgI = info_it->info;
1765 
1766     bool isPromoted =
1767       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1768 
1769     unsigned FirstIRArg, NumIRArgs;
1770     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1771 
1772     switch (ArgI.getKind()) {
1773     case ABIArgInfo::InAlloca: {
1774       assert(NumIRArgs == 0);
1775       llvm::Value *V = Builder.CreateStructGEP(
1776           ArgStruct, ArgI.getInAllocaFieldIndex(), Arg->getName());
1777       ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1778       break;
1779     }
1780 
1781     case ABIArgInfo::Indirect: {
1782       assert(NumIRArgs == 1);
1783       llvm::Value *V = FnArgs[FirstIRArg];
1784 
1785       if (!hasScalarEvaluationKind(Ty)) {
1786         // Aggregates and complex variables are accessed by reference.  All we
1787         // need to do is realign the value, if requested
1788         if (ArgI.getIndirectRealign()) {
1789           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1790 
1791           // Copy from the incoming argument pointer to the temporary with the
1792           // appropriate alignment.
1793           //
1794           // FIXME: We should have a common utility for generating an aggregate
1795           // copy.
1796           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1797           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1798           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1799           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1800           Builder.CreateMemCpy(Dst,
1801                                Src,
1802                                llvm::ConstantInt::get(IntPtrTy,
1803                                                       Size.getQuantity()),
1804                                ArgI.getIndirectAlign(),
1805                                false);
1806           V = AlignedTemp;
1807         }
1808         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1809       } else {
1810         // Load scalar value from indirect argument.
1811         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1812         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1813                              Arg->getLocStart());
1814 
1815         if (isPromoted)
1816           V = emitArgumentDemotion(*this, Arg, V);
1817         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1818       }
1819       break;
1820     }
1821 
1822     case ABIArgInfo::Extend:
1823     case ABIArgInfo::Direct: {
1824 
1825       // If we have the trivial case, handle it with no muss and fuss.
1826       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1827           ArgI.getCoerceToType() == ConvertType(Ty) &&
1828           ArgI.getDirectOffset() == 0) {
1829         assert(NumIRArgs == 1);
1830         auto AI = FnArgs[FirstIRArg];
1831         llvm::Value *V = AI;
1832 
1833         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1834           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1835                              PVD->getFunctionScopeIndex()))
1836             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1837                                                 AI->getArgNo() + 1,
1838                                                 llvm::Attribute::NonNull));
1839 
1840           QualType OTy = PVD->getOriginalType();
1841           if (const auto *ArrTy =
1842               getContext().getAsConstantArrayType(OTy)) {
1843             // A C99 array parameter declaration with the static keyword also
1844             // indicates dereferenceability, and if the size is constant we can
1845             // use the dereferenceable attribute (which requires the size in
1846             // bytes).
1847             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1848               QualType ETy = ArrTy->getElementType();
1849               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1850               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1851                   ArrSize) {
1852                 llvm::AttrBuilder Attrs;
1853                 Attrs.addDereferenceableAttr(
1854                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1855                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1856                                                     AI->getArgNo() + 1, Attrs));
1857               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1858                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1859                                                     AI->getArgNo() + 1,
1860                                                     llvm::Attribute::NonNull));
1861               }
1862             }
1863           } else if (const auto *ArrTy =
1864                      getContext().getAsVariableArrayType(OTy)) {
1865             // For C99 VLAs with the static keyword, we don't know the size so
1866             // we can't use the dereferenceable attribute, but in addrspace(0)
1867             // we know that it must be nonnull.
1868             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1869                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1870               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1871                                                   AI->getArgNo() + 1,
1872                                                   llvm::Attribute::NonNull));
1873           }
1874 
1875           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1876           if (!AVAttr)
1877             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1878               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1879           if (AVAttr) {
1880             llvm::Value *AlignmentValue =
1881               EmitScalarExpr(AVAttr->getAlignment());
1882             llvm::ConstantInt *AlignmentCI =
1883               cast<llvm::ConstantInt>(AlignmentValue);
1884             unsigned Alignment =
1885               std::min((unsigned) AlignmentCI->getZExtValue(),
1886                        +llvm::Value::MaximumAlignment);
1887 
1888             llvm::AttrBuilder Attrs;
1889             Attrs.addAlignmentAttr(Alignment);
1890             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1891                                                 AI->getArgNo() + 1, Attrs));
1892           }
1893         }
1894 
1895         if (Arg->getType().isRestrictQualified())
1896           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1897                                               AI->getArgNo() + 1,
1898                                               llvm::Attribute::NoAlias));
1899 
1900         // Ensure the argument is the correct type.
1901         if (V->getType() != ArgI.getCoerceToType())
1902           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1903 
1904         if (isPromoted)
1905           V = emitArgumentDemotion(*this, Arg, V);
1906 
1907         if (const CXXMethodDecl *MD =
1908             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1909           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1910             V = CGM.getCXXABI().
1911                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1912         }
1913 
1914         // Because of merging of function types from multiple decls it is
1915         // possible for the type of an argument to not match the corresponding
1916         // type in the function type. Since we are codegening the callee
1917         // in here, add a cast to the argument type.
1918         llvm::Type *LTy = ConvertType(Arg->getType());
1919         if (V->getType() != LTy)
1920           V = Builder.CreateBitCast(V, LTy);
1921 
1922         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1923         break;
1924       }
1925 
1926       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1927 
1928       // The alignment we need to use is the max of the requested alignment for
1929       // the argument plus the alignment required by our access code below.
1930       unsigned AlignmentToUse =
1931         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1932       AlignmentToUse = std::max(AlignmentToUse,
1933                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1934 
1935       Alloca->setAlignment(AlignmentToUse);
1936       llvm::Value *V = Alloca;
1937       llvm::Value *Ptr = V;    // Pointer to store into.
1938 
1939       // If the value is offset in memory, apply the offset now.
1940       if (unsigned Offs = ArgI.getDirectOffset()) {
1941         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1942         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1943         Ptr = Builder.CreateBitCast(Ptr,
1944                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1945       }
1946 
1947       // Fast-isel and the optimizer generally like scalar values better than
1948       // FCAs, so we flatten them if this is safe to do for this argument.
1949       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1950       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
1951           STy->getNumElements() > 1) {
1952         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1953         llvm::Type *DstTy =
1954           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1955         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1956 
1957         if (SrcSize <= DstSize) {
1958           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1959 
1960           assert(STy->getNumElements() == NumIRArgs);
1961           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1962             auto AI = FnArgs[FirstIRArg + i];
1963             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1964             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1965             Builder.CreateStore(AI, EltPtr);
1966           }
1967         } else {
1968           llvm::AllocaInst *TempAlloca =
1969             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1970           TempAlloca->setAlignment(AlignmentToUse);
1971           llvm::Value *TempV = TempAlloca;
1972 
1973           assert(STy->getNumElements() == NumIRArgs);
1974           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1975             auto AI = FnArgs[FirstIRArg + i];
1976             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1977             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1978             Builder.CreateStore(AI, EltPtr);
1979           }
1980 
1981           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1982         }
1983       } else {
1984         // Simple case, just do a coerced store of the argument into the alloca.
1985         assert(NumIRArgs == 1);
1986         auto AI = FnArgs[FirstIRArg];
1987         AI->setName(Arg->getName() + ".coerce");
1988         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
1989       }
1990 
1991 
1992       // Match to what EmitParmDecl is expecting for this type.
1993       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1994         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
1995         if (isPromoted)
1996           V = emitArgumentDemotion(*this, Arg, V);
1997         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1998       } else {
1999         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
2000       }
2001       break;
2002     }
2003 
2004     case ABIArgInfo::Expand: {
2005       // If this structure was expanded into multiple arguments then
2006       // we need to create a temporary and reconstruct it from the
2007       // arguments.
2008       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
2009       CharUnits Align = getContext().getDeclAlign(Arg);
2010       Alloca->setAlignment(Align.getQuantity());
2011       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
2012       ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
2013 
2014       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2015       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2016       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2017       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2018         auto AI = FnArgs[FirstIRArg + i];
2019         AI->setName(Arg->getName() + "." + Twine(i));
2020       }
2021       break;
2022     }
2023 
2024     case ABIArgInfo::Ignore:
2025       assert(NumIRArgs == 0);
2026       // Initialize the local variable appropriately.
2027       if (!hasScalarEvaluationKind(Ty)) {
2028         ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
2029       } else {
2030         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2031         ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
2032       }
2033       break;
2034     }
2035   }
2036 
2037   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2038     for (int I = Args.size() - 1; I >= 0; --I)
2039       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2040                    I + 1);
2041   } else {
2042     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2043       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2044                    I + 1);
2045   }
2046 }
2047 
2048 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2049   while (insn->use_empty()) {
2050     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2051     if (!bitcast) return;
2052 
2053     // This is "safe" because we would have used a ConstantExpr otherwise.
2054     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2055     bitcast->eraseFromParent();
2056   }
2057 }
2058 
2059 /// Try to emit a fused autorelease of a return result.
2060 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2061                                                     llvm::Value *result) {
2062   // We must be immediately followed the cast.
2063   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2064   if (BB->empty()) return nullptr;
2065   if (&BB->back() != result) return nullptr;
2066 
2067   llvm::Type *resultType = result->getType();
2068 
2069   // result is in a BasicBlock and is therefore an Instruction.
2070   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2071 
2072   SmallVector<llvm::Instruction*,4> insnsToKill;
2073 
2074   // Look for:
2075   //  %generator = bitcast %type1* %generator2 to %type2*
2076   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2077     // We would have emitted this as a constant if the operand weren't
2078     // an Instruction.
2079     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2080 
2081     // Require the generator to be immediately followed by the cast.
2082     if (generator->getNextNode() != bitcast)
2083       return nullptr;
2084 
2085     insnsToKill.push_back(bitcast);
2086   }
2087 
2088   // Look for:
2089   //   %generator = call i8* @objc_retain(i8* %originalResult)
2090   // or
2091   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2092   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2093   if (!call) return nullptr;
2094 
2095   bool doRetainAutorelease;
2096 
2097   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
2098     doRetainAutorelease = true;
2099   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
2100                                           .objc_retainAutoreleasedReturnValue) {
2101     doRetainAutorelease = false;
2102 
2103     // If we emitted an assembly marker for this call (and the
2104     // ARCEntrypoints field should have been set if so), go looking
2105     // for that call.  If we can't find it, we can't do this
2106     // optimization.  But it should always be the immediately previous
2107     // instruction, unless we needed bitcasts around the call.
2108     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
2109       llvm::Instruction *prev = call->getPrevNode();
2110       assert(prev);
2111       if (isa<llvm::BitCastInst>(prev)) {
2112         prev = prev->getPrevNode();
2113         assert(prev);
2114       }
2115       assert(isa<llvm::CallInst>(prev));
2116       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2117                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
2118       insnsToKill.push_back(prev);
2119     }
2120   } else {
2121     return nullptr;
2122   }
2123 
2124   result = call->getArgOperand(0);
2125   insnsToKill.push_back(call);
2126 
2127   // Keep killing bitcasts, for sanity.  Note that we no longer care
2128   // about precise ordering as long as there's exactly one use.
2129   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2130     if (!bitcast->hasOneUse()) break;
2131     insnsToKill.push_back(bitcast);
2132     result = bitcast->getOperand(0);
2133   }
2134 
2135   // Delete all the unnecessary instructions, from latest to earliest.
2136   for (SmallVectorImpl<llvm::Instruction*>::iterator
2137          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2138     (*i)->eraseFromParent();
2139 
2140   // Do the fused retain/autorelease if we were asked to.
2141   if (doRetainAutorelease)
2142     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2143 
2144   // Cast back to the result type.
2145   return CGF.Builder.CreateBitCast(result, resultType);
2146 }
2147 
2148 /// If this is a +1 of the value of an immutable 'self', remove it.
2149 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2150                                           llvm::Value *result) {
2151   // This is only applicable to a method with an immutable 'self'.
2152   const ObjCMethodDecl *method =
2153     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2154   if (!method) return nullptr;
2155   const VarDecl *self = method->getSelfDecl();
2156   if (!self->getType().isConstQualified()) return nullptr;
2157 
2158   // Look for a retain call.
2159   llvm::CallInst *retainCall =
2160     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2161   if (!retainCall ||
2162       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
2163     return nullptr;
2164 
2165   // Look for an ordinary load of 'self'.
2166   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2167   llvm::LoadInst *load =
2168     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2169   if (!load || load->isAtomic() || load->isVolatile() ||
2170       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
2171     return nullptr;
2172 
2173   // Okay!  Burn it all down.  This relies for correctness on the
2174   // assumption that the retain is emitted as part of the return and
2175   // that thereafter everything is used "linearly".
2176   llvm::Type *resultType = result->getType();
2177   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2178   assert(retainCall->use_empty());
2179   retainCall->eraseFromParent();
2180   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2181 
2182   return CGF.Builder.CreateBitCast(load, resultType);
2183 }
2184 
2185 /// Emit an ARC autorelease of the result of a function.
2186 ///
2187 /// \return the value to actually return from the function
2188 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2189                                             llvm::Value *result) {
2190   // If we're returning 'self', kill the initial retain.  This is a
2191   // heuristic attempt to "encourage correctness" in the really unfortunate
2192   // case where we have a return of self during a dealloc and we desperately
2193   // need to avoid the possible autorelease.
2194   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2195     return self;
2196 
2197   // At -O0, try to emit a fused retain/autorelease.
2198   if (CGF.shouldUseFusedARCCalls())
2199     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2200       return fused;
2201 
2202   return CGF.EmitARCAutoreleaseReturnValue(result);
2203 }
2204 
2205 /// Heuristically search for a dominating store to the return-value slot.
2206 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2207   // If there are multiple uses of the return-value slot, just check
2208   // for something immediately preceding the IP.  Sometimes this can
2209   // happen with how we generate implicit-returns; it can also happen
2210   // with noreturn cleanups.
2211   if (!CGF.ReturnValue->hasOneUse()) {
2212     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2213     if (IP->empty()) return nullptr;
2214     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
2215     if (!store) return nullptr;
2216     if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
2217     assert(!store->isAtomic() && !store->isVolatile()); // see below
2218     return store;
2219   }
2220 
2221   llvm::StoreInst *store =
2222     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
2223   if (!store) return nullptr;
2224 
2225   // These aren't actually possible for non-coerced returns, and we
2226   // only care about non-coerced returns on this code path.
2227   assert(!store->isAtomic() && !store->isVolatile());
2228 
2229   // Now do a first-and-dirty dominance check: just walk up the
2230   // single-predecessors chain from the current insertion point.
2231   llvm::BasicBlock *StoreBB = store->getParent();
2232   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2233   while (IP != StoreBB) {
2234     if (!(IP = IP->getSinglePredecessor()))
2235       return nullptr;
2236   }
2237 
2238   // Okay, the store's basic block dominates the insertion point; we
2239   // can do our thing.
2240   return store;
2241 }
2242 
2243 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2244                                          bool EmitRetDbgLoc,
2245                                          SourceLocation EndLoc) {
2246   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2247     // Naked functions don't have epilogues.
2248     Builder.CreateUnreachable();
2249     return;
2250   }
2251 
2252   // Functions with no result always return void.
2253   if (!ReturnValue) {
2254     Builder.CreateRetVoid();
2255     return;
2256   }
2257 
2258   llvm::DebugLoc RetDbgLoc;
2259   llvm::Value *RV = nullptr;
2260   QualType RetTy = FI.getReturnType();
2261   const ABIArgInfo &RetAI = FI.getReturnInfo();
2262 
2263   switch (RetAI.getKind()) {
2264   case ABIArgInfo::InAlloca:
2265     // Aggregrates get evaluated directly into the destination.  Sometimes we
2266     // need to return the sret value in a register, though.
2267     assert(hasAggregateEvaluationKind(RetTy));
2268     if (RetAI.getInAllocaSRet()) {
2269       llvm::Function::arg_iterator EI = CurFn->arg_end();
2270       --EI;
2271       llvm::Value *ArgStruct = EI;
2272       llvm::Value *SRet =
2273           Builder.CreateStructGEP(ArgStruct, RetAI.getInAllocaFieldIndex());
2274       RV = Builder.CreateLoad(SRet, "sret");
2275     }
2276     break;
2277 
2278   case ABIArgInfo::Indirect: {
2279     auto AI = CurFn->arg_begin();
2280     if (RetAI.isSRetAfterThis())
2281       ++AI;
2282     switch (getEvaluationKind(RetTy)) {
2283     case TEK_Complex: {
2284       ComplexPairTy RT =
2285         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
2286                           EndLoc);
2287       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
2288                          /*isInit*/ true);
2289       break;
2290     }
2291     case TEK_Aggregate:
2292       // Do nothing; aggregrates get evaluated directly into the destination.
2293       break;
2294     case TEK_Scalar:
2295       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2296                         MakeNaturalAlignAddrLValue(AI, RetTy),
2297                         /*isInit*/ true);
2298       break;
2299     }
2300     break;
2301   }
2302 
2303   case ABIArgInfo::Extend:
2304   case ABIArgInfo::Direct:
2305     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2306         RetAI.getDirectOffset() == 0) {
2307       // The internal return value temp always will have pointer-to-return-type
2308       // type, just do a load.
2309 
2310       // If there is a dominating store to ReturnValue, we can elide
2311       // the load, zap the store, and usually zap the alloca.
2312       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
2313         // Reuse the debug location from the store unless there is
2314         // cleanup code to be emitted between the store and return
2315         // instruction.
2316         if (EmitRetDbgLoc && !AutoreleaseResult)
2317           RetDbgLoc = SI->getDebugLoc();
2318         // Get the stored value and nuke the now-dead store.
2319         RV = SI->getValueOperand();
2320         SI->eraseFromParent();
2321 
2322         // If that was the only use of the return value, nuke it as well now.
2323         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
2324           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
2325           ReturnValue = nullptr;
2326         }
2327 
2328       // Otherwise, we have to do a simple load.
2329       } else {
2330         RV = Builder.CreateLoad(ReturnValue);
2331       }
2332     } else {
2333       llvm::Value *V = ReturnValue;
2334       // If the value is offset in memory, apply the offset now.
2335       if (unsigned Offs = RetAI.getDirectOffset()) {
2336         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
2337         V = Builder.CreateConstGEP1_32(V, Offs);
2338         V = Builder.CreateBitCast(V,
2339                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2340       }
2341 
2342       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2343     }
2344 
2345     // In ARC, end functions that return a retainable type with a call
2346     // to objc_autoreleaseReturnValue.
2347     if (AutoreleaseResult) {
2348       assert(getLangOpts().ObjCAutoRefCount &&
2349              !FI.isReturnsRetained() &&
2350              RetTy->isObjCRetainableType());
2351       RV = emitAutoreleaseOfResult(*this, RV);
2352     }
2353 
2354     break;
2355 
2356   case ABIArgInfo::Ignore:
2357     break;
2358 
2359   case ABIArgInfo::Expand:
2360     llvm_unreachable("Invalid ABI kind for return argument");
2361   }
2362 
2363   llvm::Instruction *Ret;
2364   if (RV) {
2365     if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2366       if (auto RetNNAttr = CurGD.getDecl()->getAttr<ReturnsNonNullAttr>()) {
2367         SanitizerScope SanScope(this);
2368         llvm::Value *Cond = Builder.CreateICmpNE(
2369             RV, llvm::Constant::getNullValue(RV->getType()));
2370         llvm::Constant *StaticData[] = {
2371             EmitCheckSourceLocation(EndLoc),
2372             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2373         };
2374         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2375                   "nonnull_return", StaticData, None);
2376       }
2377     }
2378     Ret = Builder.CreateRet(RV);
2379   } else {
2380     Ret = Builder.CreateRetVoid();
2381   }
2382 
2383   if (RetDbgLoc)
2384     Ret->setDebugLoc(std::move(RetDbgLoc));
2385 }
2386 
2387 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2388   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2389   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2390 }
2391 
2392 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
2393   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2394   // placeholders.
2395   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2396   llvm::Value *Placeholder =
2397       llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2398   Placeholder = CGF.Builder.CreateLoad(Placeholder);
2399   return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
2400                                Ty.getQualifiers(),
2401                                AggValueSlot::IsNotDestructed,
2402                                AggValueSlot::DoesNotNeedGCBarriers,
2403                                AggValueSlot::IsNotAliased);
2404 }
2405 
2406 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2407                                           const VarDecl *param,
2408                                           SourceLocation loc) {
2409   // StartFunction converted the ABI-lowered parameter(s) into a
2410   // local alloca.  We need to turn that into an r-value suitable
2411   // for EmitCall.
2412   llvm::Value *local = GetAddrOfLocalVar(param);
2413 
2414   QualType type = param->getType();
2415 
2416   // For the most part, we just need to load the alloca, except:
2417   // 1) aggregate r-values are actually pointers to temporaries, and
2418   // 2) references to non-scalars are pointers directly to the aggregate.
2419   // I don't know why references to scalars are different here.
2420   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2421     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2422       return args.add(RValue::getAggregate(local), type);
2423 
2424     // Locals which are references to scalars are represented
2425     // with allocas holding the pointer.
2426     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2427   }
2428 
2429   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2430          "cannot emit delegate call arguments for inalloca arguments!");
2431 
2432   args.add(convertTempToRValue(local, type, loc), type);
2433 }
2434 
2435 static bool isProvablyNull(llvm::Value *addr) {
2436   return isa<llvm::ConstantPointerNull>(addr);
2437 }
2438 
2439 static bool isProvablyNonNull(llvm::Value *addr) {
2440   return isa<llvm::AllocaInst>(addr);
2441 }
2442 
2443 /// Emit the actual writing-back of a writeback.
2444 static void emitWriteback(CodeGenFunction &CGF,
2445                           const CallArgList::Writeback &writeback) {
2446   const LValue &srcLV = writeback.Source;
2447   llvm::Value *srcAddr = srcLV.getAddress();
2448   assert(!isProvablyNull(srcAddr) &&
2449          "shouldn't have writeback for provably null argument");
2450 
2451   llvm::BasicBlock *contBB = nullptr;
2452 
2453   // If the argument wasn't provably non-null, we need to null check
2454   // before doing the store.
2455   bool provablyNonNull = isProvablyNonNull(srcAddr);
2456   if (!provablyNonNull) {
2457     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2458     contBB = CGF.createBasicBlock("icr.done");
2459 
2460     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2461     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2462     CGF.EmitBlock(writebackBB);
2463   }
2464 
2465   // Load the value to writeback.
2466   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2467 
2468   // Cast it back, in case we're writing an id to a Foo* or something.
2469   value = CGF.Builder.CreateBitCast(value,
2470                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
2471                             "icr.writeback-cast");
2472 
2473   // Perform the writeback.
2474 
2475   // If we have a "to use" value, it's something we need to emit a use
2476   // of.  This has to be carefully threaded in: if it's done after the
2477   // release it's potentially undefined behavior (and the optimizer
2478   // will ignore it), and if it happens before the retain then the
2479   // optimizer could move the release there.
2480   if (writeback.ToUse) {
2481     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2482 
2483     // Retain the new value.  No need to block-copy here:  the block's
2484     // being passed up the stack.
2485     value = CGF.EmitARCRetainNonBlock(value);
2486 
2487     // Emit the intrinsic use here.
2488     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2489 
2490     // Load the old value (primitively).
2491     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2492 
2493     // Put the new value in place (primitively).
2494     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2495 
2496     // Release the old value.
2497     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2498 
2499   // Otherwise, we can just do a normal lvalue store.
2500   } else {
2501     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2502   }
2503 
2504   // Jump to the continuation block.
2505   if (!provablyNonNull)
2506     CGF.EmitBlock(contBB);
2507 }
2508 
2509 static void emitWritebacks(CodeGenFunction &CGF,
2510                            const CallArgList &args) {
2511   for (const auto &I : args.writebacks())
2512     emitWriteback(CGF, I);
2513 }
2514 
2515 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2516                                             const CallArgList &CallArgs) {
2517   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2518   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2519     CallArgs.getCleanupsToDeactivate();
2520   // Iterate in reverse to increase the likelihood of popping the cleanup.
2521   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2522          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2523     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2524     I->IsActiveIP->eraseFromParent();
2525   }
2526 }
2527 
2528 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2529   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2530     if (uop->getOpcode() == UO_AddrOf)
2531       return uop->getSubExpr();
2532   return nullptr;
2533 }
2534 
2535 /// Emit an argument that's being passed call-by-writeback.  That is,
2536 /// we are passing the address of
2537 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2538                              const ObjCIndirectCopyRestoreExpr *CRE) {
2539   LValue srcLV;
2540 
2541   // Make an optimistic effort to emit the address as an l-value.
2542   // This can fail if the the argument expression is more complicated.
2543   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2544     srcLV = CGF.EmitLValue(lvExpr);
2545 
2546   // Otherwise, just emit it as a scalar.
2547   } else {
2548     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2549 
2550     QualType srcAddrType =
2551       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2552     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2553   }
2554   llvm::Value *srcAddr = srcLV.getAddress();
2555 
2556   // The dest and src types don't necessarily match in LLVM terms
2557   // because of the crazy ObjC compatibility rules.
2558 
2559   llvm::PointerType *destType =
2560     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2561 
2562   // If the address is a constant null, just pass the appropriate null.
2563   if (isProvablyNull(srcAddr)) {
2564     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2565              CRE->getType());
2566     return;
2567   }
2568 
2569   // Create the temporary.
2570   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2571                                            "icr.temp");
2572   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2573   // and that cleanup will be conditional if we can't prove that the l-value
2574   // isn't null, so we need to register a dominating point so that the cleanups
2575   // system will make valid IR.
2576   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2577 
2578   // Zero-initialize it if we're not doing a copy-initialization.
2579   bool shouldCopy = CRE->shouldCopy();
2580   if (!shouldCopy) {
2581     llvm::Value *null =
2582       llvm::ConstantPointerNull::get(
2583         cast<llvm::PointerType>(destType->getElementType()));
2584     CGF.Builder.CreateStore(null, temp);
2585   }
2586 
2587   llvm::BasicBlock *contBB = nullptr;
2588   llvm::BasicBlock *originBB = nullptr;
2589 
2590   // If the address is *not* known to be non-null, we need to switch.
2591   llvm::Value *finalArgument;
2592 
2593   bool provablyNonNull = isProvablyNonNull(srcAddr);
2594   if (provablyNonNull) {
2595     finalArgument = temp;
2596   } else {
2597     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2598 
2599     finalArgument = CGF.Builder.CreateSelect(isNull,
2600                                    llvm::ConstantPointerNull::get(destType),
2601                                              temp, "icr.argument");
2602 
2603     // If we need to copy, then the load has to be conditional, which
2604     // means we need control flow.
2605     if (shouldCopy) {
2606       originBB = CGF.Builder.GetInsertBlock();
2607       contBB = CGF.createBasicBlock("icr.cont");
2608       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2609       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2610       CGF.EmitBlock(copyBB);
2611       condEval.begin(CGF);
2612     }
2613   }
2614 
2615   llvm::Value *valueToUse = nullptr;
2616 
2617   // Perform a copy if necessary.
2618   if (shouldCopy) {
2619     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2620     assert(srcRV.isScalar());
2621 
2622     llvm::Value *src = srcRV.getScalarVal();
2623     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2624                                     "icr.cast");
2625 
2626     // Use an ordinary store, not a store-to-lvalue.
2627     CGF.Builder.CreateStore(src, temp);
2628 
2629     // If optimization is enabled, and the value was held in a
2630     // __strong variable, we need to tell the optimizer that this
2631     // value has to stay alive until we're doing the store back.
2632     // This is because the temporary is effectively unretained,
2633     // and so otherwise we can violate the high-level semantics.
2634     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2635         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2636       valueToUse = src;
2637     }
2638   }
2639 
2640   // Finish the control flow if we needed it.
2641   if (shouldCopy && !provablyNonNull) {
2642     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2643     CGF.EmitBlock(contBB);
2644 
2645     // Make a phi for the value to intrinsically use.
2646     if (valueToUse) {
2647       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2648                                                       "icr.to-use");
2649       phiToUse->addIncoming(valueToUse, copyBB);
2650       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2651                             originBB);
2652       valueToUse = phiToUse;
2653     }
2654 
2655     condEval.end(CGF);
2656   }
2657 
2658   args.addWriteback(srcLV, temp, valueToUse);
2659   args.add(RValue::get(finalArgument), CRE->getType());
2660 }
2661 
2662 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2663   assert(!StackBase && !StackCleanup.isValid());
2664 
2665   // Save the stack.
2666   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2667   StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
2668 
2669   // Control gets really tied up in landing pads, so we have to spill the
2670   // stacksave to an alloca to avoid violating SSA form.
2671   // TODO: This is dead if we never emit the cleanup.  We should create the
2672   // alloca and store lazily on the first cleanup emission.
2673   StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2674   CGF.Builder.CreateStore(StackBase, StackBaseMem);
2675   CGF.pushStackRestore(EHCleanup, StackBaseMem);
2676   StackCleanup = CGF.EHStack.getInnermostEHScope();
2677   assert(StackCleanup.isValid());
2678 }
2679 
2680 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2681   if (StackBase) {
2682     CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2683     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2684     // We could load StackBase from StackBaseMem, but in the non-exceptional
2685     // case we can skip it.
2686     CGF.Builder.CreateCall(F, StackBase);
2687   }
2688 }
2689 
2690 static void emitNonNullArgCheck(CodeGenFunction &CGF, RValue RV,
2691                                 QualType ArgType, SourceLocation ArgLoc,
2692                                 const FunctionDecl *FD, unsigned ParmNum) {
2693   if (!CGF.SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2694     return;
2695   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2696   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2697   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2698   if (!NNAttr)
2699     return;
2700   CodeGenFunction::SanitizerScope SanScope(&CGF);
2701   assert(RV.isScalar());
2702   llvm::Value *V = RV.getScalarVal();
2703   llvm::Value *Cond =
2704       CGF.Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2705   llvm::Constant *StaticData[] = {
2706       CGF.EmitCheckSourceLocation(ArgLoc),
2707       CGF.EmitCheckSourceLocation(NNAttr->getLocation()),
2708       llvm::ConstantInt::get(CGF.Int32Ty, ArgNo + 1),
2709   };
2710   CGF.EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2711                 "nonnull_arg", StaticData, None);
2712 }
2713 
2714 void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2715                                    ArrayRef<QualType> ArgTypes,
2716                                    CallExpr::const_arg_iterator ArgBeg,
2717                                    CallExpr::const_arg_iterator ArgEnd,
2718                                    const FunctionDecl *CalleeDecl,
2719                                    unsigned ParamsToSkip) {
2720   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2721   // because arguments are destroyed left to right in the callee.
2722   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2723     // Insert a stack save if we're going to need any inalloca args.
2724     bool HasInAllocaArgs = false;
2725     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2726          I != E && !HasInAllocaArgs; ++I)
2727       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2728     if (HasInAllocaArgs) {
2729       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2730       Args.allocateArgumentMemory(*this);
2731     }
2732 
2733     // Evaluate each argument.
2734     size_t CallArgsStart = Args.size();
2735     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2736       CallExpr::const_arg_iterator Arg = ArgBeg + I;
2737       EmitCallArg(Args, *Arg, ArgTypes[I]);
2738       emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2739                           CalleeDecl, ParamsToSkip + I);
2740     }
2741 
2742     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2743     // IR function.
2744     std::reverse(Args.begin() + CallArgsStart, Args.end());
2745     return;
2746   }
2747 
2748   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2749     CallExpr::const_arg_iterator Arg = ArgBeg + I;
2750     assert(Arg != ArgEnd);
2751     EmitCallArg(Args, *Arg, ArgTypes[I]);
2752     emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2753                         CalleeDecl, ParamsToSkip + I);
2754   }
2755 }
2756 
2757 namespace {
2758 
2759 struct DestroyUnpassedArg : EHScopeStack::Cleanup {
2760   DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2761       : Addr(Addr), Ty(Ty) {}
2762 
2763   llvm::Value *Addr;
2764   QualType Ty;
2765 
2766   void Emit(CodeGenFunction &CGF, Flags flags) override {
2767     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2768     assert(!Dtor->isTrivial());
2769     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2770                               /*Delegating=*/false, Addr);
2771   }
2772 };
2773 
2774 }
2775 
2776 struct DisableDebugLocationUpdates {
2777   CodeGenFunction &CGF;
2778   bool disabledDebugInfo;
2779   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2780     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2781       CGF.disableDebugInfo();
2782   }
2783   ~DisableDebugLocationUpdates() {
2784     if (disabledDebugInfo)
2785       CGF.enableDebugInfo();
2786   }
2787 };
2788 
2789 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2790                                   QualType type) {
2791   DisableDebugLocationUpdates Dis(*this, E);
2792   if (const ObjCIndirectCopyRestoreExpr *CRE
2793         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2794     assert(getLangOpts().ObjCAutoRefCount);
2795     assert(getContext().hasSameType(E->getType(), type));
2796     return emitWritebackArg(*this, args, CRE);
2797   }
2798 
2799   assert(type->isReferenceType() == E->isGLValue() &&
2800          "reference binding to unmaterialized r-value!");
2801 
2802   if (E->isGLValue()) {
2803     assert(E->getObjectKind() == OK_Ordinary);
2804     return args.add(EmitReferenceBindingToExpr(E), type);
2805   }
2806 
2807   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2808 
2809   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2810   // However, we still have to push an EH-only cleanup in case we unwind before
2811   // we make it to the call.
2812   if (HasAggregateEvalKind &&
2813       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2814     // If we're using inalloca, use the argument memory.  Otherwise, use a
2815     // temporary.
2816     AggValueSlot Slot;
2817     if (args.isUsingInAlloca())
2818       Slot = createPlaceholderSlot(*this, type);
2819     else
2820       Slot = CreateAggTemp(type, "agg.tmp");
2821 
2822     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2823     bool DestroyedInCallee =
2824         RD && RD->hasNonTrivialDestructor() &&
2825         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2826     if (DestroyedInCallee)
2827       Slot.setExternallyDestructed();
2828 
2829     EmitAggExpr(E, Slot);
2830     RValue RV = Slot.asRValue();
2831     args.add(RV, type);
2832 
2833     if (DestroyedInCallee) {
2834       // Create a no-op GEP between the placeholder and the cleanup so we can
2835       // RAUW it successfully.  It also serves as a marker of the first
2836       // instruction where the cleanup is active.
2837       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2838       // This unreachable is a temporary marker which will be removed later.
2839       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2840       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2841     }
2842     return;
2843   }
2844 
2845   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2846       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2847     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2848     assert(L.isSimple());
2849     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2850       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2851     } else {
2852       // We can't represent a misaligned lvalue in the CallArgList, so copy
2853       // to an aligned temporary now.
2854       llvm::Value *tmp = CreateMemTemp(type);
2855       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2856                         L.getAlignment());
2857       args.add(RValue::getAggregate(tmp), type);
2858     }
2859     return;
2860   }
2861 
2862   args.add(EmitAnyExprToTemp(E), type);
2863 }
2864 
2865 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2866   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2867   // implicitly widens null pointer constants that are arguments to varargs
2868   // functions to pointer-sized ints.
2869   if (!getTarget().getTriple().isOSWindows())
2870     return Arg->getType();
2871 
2872   if (Arg->getType()->isIntegerType() &&
2873       getContext().getTypeSize(Arg->getType()) <
2874           getContext().getTargetInfo().getPointerWidth(0) &&
2875       Arg->isNullPointerConstant(getContext(),
2876                                  Expr::NPC_ValueDependentIsNotNull)) {
2877     return getContext().getIntPtrType();
2878   }
2879 
2880   return Arg->getType();
2881 }
2882 
2883 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2884 // optimizer it can aggressively ignore unwind edges.
2885 void
2886 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2887   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2888       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2889     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2890                       CGM.getNoObjCARCExceptionsMetadata());
2891 }
2892 
2893 /// Emits a call to the given no-arguments nounwind runtime function.
2894 llvm::CallInst *
2895 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2896                                          const llvm::Twine &name) {
2897   return EmitNounwindRuntimeCall(callee, None, name);
2898 }
2899 
2900 /// Emits a call to the given nounwind runtime function.
2901 llvm::CallInst *
2902 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2903                                          ArrayRef<llvm::Value*> args,
2904                                          const llvm::Twine &name) {
2905   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2906   call->setDoesNotThrow();
2907   return call;
2908 }
2909 
2910 /// Emits a simple call (never an invoke) to the given no-arguments
2911 /// runtime function.
2912 llvm::CallInst *
2913 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2914                                  const llvm::Twine &name) {
2915   return EmitRuntimeCall(callee, None, name);
2916 }
2917 
2918 /// Emits a simple call (never an invoke) to the given runtime
2919 /// function.
2920 llvm::CallInst *
2921 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2922                                  ArrayRef<llvm::Value*> args,
2923                                  const llvm::Twine &name) {
2924   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2925   call->setCallingConv(getRuntimeCC());
2926   return call;
2927 }
2928 
2929 /// Emits a call or invoke to the given noreturn runtime function.
2930 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2931                                                ArrayRef<llvm::Value*> args) {
2932   if (getInvokeDest()) {
2933     llvm::InvokeInst *invoke =
2934       Builder.CreateInvoke(callee,
2935                            getUnreachableBlock(),
2936                            getInvokeDest(),
2937                            args);
2938     invoke->setDoesNotReturn();
2939     invoke->setCallingConv(getRuntimeCC());
2940   } else {
2941     llvm::CallInst *call = Builder.CreateCall(callee, args);
2942     call->setDoesNotReturn();
2943     call->setCallingConv(getRuntimeCC());
2944     Builder.CreateUnreachable();
2945   }
2946   PGO.setCurrentRegionUnreachable();
2947 }
2948 
2949 /// Emits a call or invoke instruction to the given nullary runtime
2950 /// function.
2951 llvm::CallSite
2952 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2953                                          const Twine &name) {
2954   return EmitRuntimeCallOrInvoke(callee, None, name);
2955 }
2956 
2957 /// Emits a call or invoke instruction to the given runtime function.
2958 llvm::CallSite
2959 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2960                                          ArrayRef<llvm::Value*> args,
2961                                          const Twine &name) {
2962   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2963   callSite.setCallingConv(getRuntimeCC());
2964   return callSite;
2965 }
2966 
2967 llvm::CallSite
2968 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2969                                   const Twine &Name) {
2970   return EmitCallOrInvoke(Callee, None, Name);
2971 }
2972 
2973 /// Emits a call or invoke instruction to the given function, depending
2974 /// on the current state of the EH stack.
2975 llvm::CallSite
2976 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2977                                   ArrayRef<llvm::Value *> Args,
2978                                   const Twine &Name) {
2979   llvm::BasicBlock *InvokeDest = getInvokeDest();
2980 
2981   llvm::Instruction *Inst;
2982   if (!InvokeDest)
2983     Inst = Builder.CreateCall(Callee, Args, Name);
2984   else {
2985     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2986     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2987     EmitBlock(ContBB);
2988   }
2989 
2990   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2991   // optimizer it can aggressively ignore unwind edges.
2992   if (CGM.getLangOpts().ObjCAutoRefCount)
2993     AddObjCARCExceptionMetadata(Inst);
2994 
2995   return Inst;
2996 }
2997 
2998 /// \brief Store a non-aggregate value to an address to initialize it.  For
2999 /// initialization, a non-atomic store will be used.
3000 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3001                                         LValue Dst) {
3002   if (Src.isScalar())
3003     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3004   else
3005     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3006 }
3007 
3008 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3009                                                   llvm::Value *New) {
3010   DeferredReplacements.push_back(std::make_pair(Old, New));
3011 }
3012 
3013 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3014                                  llvm::Value *Callee,
3015                                  ReturnValueSlot ReturnValue,
3016                                  const CallArgList &CallArgs,
3017                                  const Decl *TargetDecl,
3018                                  llvm::Instruction **callOrInvoke) {
3019   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3020 
3021   // Handle struct-return functions by passing a pointer to the
3022   // location that we would like to return into.
3023   QualType RetTy = CallInfo.getReturnType();
3024   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3025 
3026   llvm::FunctionType *IRFuncTy =
3027     cast<llvm::FunctionType>(
3028                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3029 
3030   // If we're using inalloca, insert the allocation after the stack save.
3031   // FIXME: Do this earlier rather than hacking it in here!
3032   llvm::Value *ArgMemory = nullptr;
3033   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3034     llvm::Instruction *IP = CallArgs.getStackBase();
3035     llvm::AllocaInst *AI;
3036     if (IP) {
3037       IP = IP->getNextNode();
3038       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3039     } else {
3040       AI = CreateTempAlloca(ArgStruct, "argmem");
3041     }
3042     AI->setUsedWithInAlloca(true);
3043     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3044     ArgMemory = AI;
3045   }
3046 
3047   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3048   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3049 
3050   // If the call returns a temporary with struct return, create a temporary
3051   // alloca to hold the result, unless one is given to us.
3052   llvm::Value *SRetPtr = nullptr;
3053   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3054     SRetPtr = ReturnValue.getValue();
3055     if (!SRetPtr)
3056       SRetPtr = CreateMemTemp(RetTy);
3057     if (IRFunctionArgs.hasSRetArg()) {
3058       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr;
3059     } else {
3060       llvm::Value *Addr =
3061           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
3062       Builder.CreateStore(SRetPtr, Addr);
3063     }
3064   }
3065 
3066   assert(CallInfo.arg_size() == CallArgs.size() &&
3067          "Mismatch between function signature & arguments.");
3068   unsigned ArgNo = 0;
3069   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3070   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3071        I != E; ++I, ++info_it, ++ArgNo) {
3072     const ABIArgInfo &ArgInfo = info_it->info;
3073     RValue RV = I->RV;
3074 
3075     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
3076 
3077     // Insert a padding argument to ensure proper alignment.
3078     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3079       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3080           llvm::UndefValue::get(ArgInfo.getPaddingType());
3081 
3082     unsigned FirstIRArg, NumIRArgs;
3083     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3084 
3085     switch (ArgInfo.getKind()) {
3086     case ABIArgInfo::InAlloca: {
3087       assert(NumIRArgs == 0);
3088       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3089       if (RV.isAggregate()) {
3090         // Replace the placeholder with the appropriate argument slot GEP.
3091         llvm::Instruction *Placeholder =
3092             cast<llvm::Instruction>(RV.getAggregateAddr());
3093         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3094         Builder.SetInsertPoint(Placeholder);
3095         llvm::Value *Addr = Builder.CreateStructGEP(
3096             ArgMemory, ArgInfo.getInAllocaFieldIndex());
3097         Builder.restoreIP(IP);
3098         deferPlaceholderReplacement(Placeholder, Addr);
3099       } else {
3100         // Store the RValue into the argument struct.
3101         llvm::Value *Addr =
3102             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3103         unsigned AS = Addr->getType()->getPointerAddressSpace();
3104         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3105         // There are some cases where a trivial bitcast is not avoidable.  The
3106         // definition of a type later in a translation unit may change it's type
3107         // from {}* to (%struct.foo*)*.
3108         if (Addr->getType() != MemType)
3109           Addr = Builder.CreateBitCast(Addr, MemType);
3110         LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
3111         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3112       }
3113       break;
3114     }
3115 
3116     case ABIArgInfo::Indirect: {
3117       assert(NumIRArgs == 1);
3118       if (RV.isScalar() || RV.isComplex()) {
3119         // Make a temporary alloca to pass the argument.
3120         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3121         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
3122           AI->setAlignment(ArgInfo.getIndirectAlign());
3123         IRCallArgs[FirstIRArg] = AI;
3124 
3125         LValue argLV = MakeAddrLValue(AI, I->Ty, TypeAlign);
3126         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3127       } else {
3128         // We want to avoid creating an unnecessary temporary+copy here;
3129         // however, we need one in three cases:
3130         // 1. If the argument is not byval, and we are required to copy the
3131         //    source.  (This case doesn't occur on any common architecture.)
3132         // 2. If the argument is byval, RV is not sufficiently aligned, and
3133         //    we cannot force it to be sufficiently aligned.
3134         // 3. If the argument is byval, but RV is located in an address space
3135         //    different than that of the argument (0).
3136         llvm::Value *Addr = RV.getAggregateAddr();
3137         unsigned Align = ArgInfo.getIndirectAlign();
3138         const llvm::DataLayout *TD = &CGM.getDataLayout();
3139         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
3140         const unsigned ArgAddrSpace =
3141             (FirstIRArg < IRFuncTy->getNumParams()
3142                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3143                  : 0);
3144         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3145             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
3146              llvm::getOrEnforceKnownAlignment(Addr, Align, *TD) < Align) ||
3147             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3148           // Create an aligned temporary, and copy to it.
3149           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3150           if (Align > AI->getAlignment())
3151             AI->setAlignment(Align);
3152           IRCallArgs[FirstIRArg] = AI;
3153           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3154         } else {
3155           // Skip the extra memcpy call.
3156           IRCallArgs[FirstIRArg] = Addr;
3157         }
3158       }
3159       break;
3160     }
3161 
3162     case ABIArgInfo::Ignore:
3163       assert(NumIRArgs == 0);
3164       break;
3165 
3166     case ABIArgInfo::Extend:
3167     case ABIArgInfo::Direct: {
3168       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3169           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3170           ArgInfo.getDirectOffset() == 0) {
3171         assert(NumIRArgs == 1);
3172         llvm::Value *V;
3173         if (RV.isScalar())
3174           V = RV.getScalarVal();
3175         else
3176           V = Builder.CreateLoad(RV.getAggregateAddr());
3177 
3178         // We might have to widen integers, but we should never truncate.
3179         if (ArgInfo.getCoerceToType() != V->getType() &&
3180             V->getType()->isIntegerTy())
3181           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3182 
3183         // If the argument doesn't match, perform a bitcast to coerce it.  This
3184         // can happen due to trivial type mismatches.
3185         if (FirstIRArg < IRFuncTy->getNumParams() &&
3186             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3187           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3188         IRCallArgs[FirstIRArg] = V;
3189         break;
3190       }
3191 
3192       // FIXME: Avoid the conversion through memory if possible.
3193       llvm::Value *SrcPtr;
3194       if (RV.isScalar() || RV.isComplex()) {
3195         SrcPtr = CreateMemTemp(I->Ty, "coerce");
3196         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
3197         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3198       } else
3199         SrcPtr = RV.getAggregateAddr();
3200 
3201       // If the value is offset in memory, apply the offset now.
3202       if (unsigned Offs = ArgInfo.getDirectOffset()) {
3203         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
3204         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
3205         SrcPtr = Builder.CreateBitCast(SrcPtr,
3206                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
3207 
3208       }
3209 
3210       // Fast-isel and the optimizer generally like scalar values better than
3211       // FCAs, so we flatten them if this is safe to do for this argument.
3212       llvm::StructType *STy =
3213             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3214       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3215         llvm::Type *SrcTy =
3216           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
3217         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3218         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3219 
3220         // If the source type is smaller than the destination type of the
3221         // coerce-to logic, copy the source value into a temp alloca the size
3222         // of the destination type to allow loading all of it. The bits past
3223         // the source value are left undef.
3224         if (SrcSize < DstSize) {
3225           llvm::AllocaInst *TempAlloca
3226             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
3227           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
3228           SrcPtr = TempAlloca;
3229         } else {
3230           SrcPtr = Builder.CreateBitCast(SrcPtr,
3231                                          llvm::PointerType::getUnqual(STy));
3232         }
3233 
3234         assert(NumIRArgs == STy->getNumElements());
3235         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3236           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
3237           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
3238           // We don't know what we're loading from.
3239           LI->setAlignment(1);
3240           IRCallArgs[FirstIRArg + i] = LI;
3241         }
3242       } else {
3243         // In the simple case, just pass the coerced loaded value.
3244         assert(NumIRArgs == 1);
3245         IRCallArgs[FirstIRArg] =
3246             CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), *this);
3247       }
3248 
3249       break;
3250     }
3251 
3252     case ABIArgInfo::Expand:
3253       unsigned IRArgPos = FirstIRArg;
3254       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3255       assert(IRArgPos == FirstIRArg + NumIRArgs);
3256       break;
3257     }
3258   }
3259 
3260   if (ArgMemory) {
3261     llvm::Value *Arg = ArgMemory;
3262     if (CallInfo.isVariadic()) {
3263       // When passing non-POD arguments by value to variadic functions, we will
3264       // end up with a variadic prototype and an inalloca call site.  In such
3265       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3266       // the callee.
3267       unsigned CalleeAS =
3268           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3269       Callee = Builder.CreateBitCast(
3270           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3271     } else {
3272       llvm::Type *LastParamTy =
3273           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3274       if (Arg->getType() != LastParamTy) {
3275 #ifndef NDEBUG
3276         // Assert that these structs have equivalent element types.
3277         llvm::StructType *FullTy = CallInfo.getArgStruct();
3278         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3279             cast<llvm::PointerType>(LastParamTy)->getElementType());
3280         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3281         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3282                                                 DE = DeclaredTy->element_end(),
3283                                                 FI = FullTy->element_begin();
3284              DI != DE; ++DI, ++FI)
3285           assert(*DI == *FI);
3286 #endif
3287         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3288       }
3289     }
3290     assert(IRFunctionArgs.hasInallocaArg());
3291     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3292   }
3293 
3294   if (!CallArgs.getCleanupsToDeactivate().empty())
3295     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3296 
3297   // If the callee is a bitcast of a function to a varargs pointer to function
3298   // type, check to see if we can remove the bitcast.  This handles some cases
3299   // with unprototyped functions.
3300   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3301     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3302       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3303       llvm::FunctionType *CurFT =
3304         cast<llvm::FunctionType>(CurPT->getElementType());
3305       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3306 
3307       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3308           ActualFT->getReturnType() == CurFT->getReturnType() &&
3309           ActualFT->getNumParams() == CurFT->getNumParams() &&
3310           ActualFT->getNumParams() == IRCallArgs.size() &&
3311           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3312         bool ArgsMatch = true;
3313         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3314           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3315             ArgsMatch = false;
3316             break;
3317           }
3318 
3319         // Strip the cast if we can get away with it.  This is a nice cleanup,
3320         // but also allows us to inline the function at -O0 if it is marked
3321         // always_inline.
3322         if (ArgsMatch)
3323           Callee = CalleeF;
3324       }
3325     }
3326 
3327   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3328   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3329     // Inalloca argument can have different type.
3330     if (IRFunctionArgs.hasInallocaArg() &&
3331         i == IRFunctionArgs.getInallocaArgNo())
3332       continue;
3333     if (i < IRFuncTy->getNumParams())
3334       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3335   }
3336 
3337   unsigned CallingConv;
3338   CodeGen::AttributeListType AttributeList;
3339   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
3340                              CallingConv, true);
3341   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3342                                                      AttributeList);
3343 
3344   llvm::BasicBlock *InvokeDest = nullptr;
3345   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3346                           llvm::Attribute::NoUnwind) ||
3347       currentFunctionUsesSEHTry())
3348     InvokeDest = getInvokeDest();
3349 
3350   llvm::CallSite CS;
3351   if (!InvokeDest) {
3352     CS = Builder.CreateCall(Callee, IRCallArgs);
3353   } else {
3354     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3355     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
3356     EmitBlock(Cont);
3357   }
3358   if (callOrInvoke)
3359     *callOrInvoke = CS.getInstruction();
3360 
3361   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3362       !CS.hasFnAttr(llvm::Attribute::NoInline))
3363     Attrs =
3364         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3365                            llvm::Attribute::AlwaysInline);
3366 
3367   // Disable inlining inside SEH __try blocks.
3368   if (isSEHTryScope())
3369     Attrs =
3370         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3371                            llvm::Attribute::NoInline);
3372 
3373   CS.setAttributes(Attrs);
3374   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3375 
3376   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3377   // optimizer it can aggressively ignore unwind edges.
3378   if (CGM.getLangOpts().ObjCAutoRefCount)
3379     AddObjCARCExceptionMetadata(CS.getInstruction());
3380 
3381   // If the call doesn't return, finish the basic block and clear the
3382   // insertion point; this allows the rest of IRgen to discard
3383   // unreachable code.
3384   if (CS.doesNotReturn()) {
3385     Builder.CreateUnreachable();
3386     Builder.ClearInsertionPoint();
3387 
3388     // FIXME: For now, emit a dummy basic block because expr emitters in
3389     // generally are not ready to handle emitting expressions at unreachable
3390     // points.
3391     EnsureInsertPoint();
3392 
3393     // Return a reasonable RValue.
3394     return GetUndefRValue(RetTy);
3395   }
3396 
3397   llvm::Instruction *CI = CS.getInstruction();
3398   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3399     CI->setName("call");
3400 
3401   // Emit any writebacks immediately.  Arguably this should happen
3402   // after any return-value munging.
3403   if (CallArgs.hasWritebacks())
3404     emitWritebacks(*this, CallArgs);
3405 
3406   // The stack cleanup for inalloca arguments has to run out of the normal
3407   // lexical order, so deactivate it and run it manually here.
3408   CallArgs.freeArgumentMemory(*this);
3409 
3410   RValue Ret = [&] {
3411     switch (RetAI.getKind()) {
3412     case ABIArgInfo::InAlloca:
3413     case ABIArgInfo::Indirect:
3414       return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3415 
3416     case ABIArgInfo::Ignore:
3417       // If we are ignoring an argument that had a result, make sure to
3418       // construct the appropriate return value for our caller.
3419       return GetUndefRValue(RetTy);
3420 
3421     case ABIArgInfo::Extend:
3422     case ABIArgInfo::Direct: {
3423       llvm::Type *RetIRTy = ConvertType(RetTy);
3424       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3425         switch (getEvaluationKind(RetTy)) {
3426         case TEK_Complex: {
3427           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3428           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3429           return RValue::getComplex(std::make_pair(Real, Imag));
3430         }
3431         case TEK_Aggregate: {
3432           llvm::Value *DestPtr = ReturnValue.getValue();
3433           bool DestIsVolatile = ReturnValue.isVolatile();
3434 
3435           if (!DestPtr) {
3436             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3437             DestIsVolatile = false;
3438           }
3439           BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
3440           return RValue::getAggregate(DestPtr);
3441         }
3442         case TEK_Scalar: {
3443           // If the argument doesn't match, perform a bitcast to coerce it.  This
3444           // can happen due to trivial type mismatches.
3445           llvm::Value *V = CI;
3446           if (V->getType() != RetIRTy)
3447             V = Builder.CreateBitCast(V, RetIRTy);
3448           return RValue::get(V);
3449         }
3450         }
3451         llvm_unreachable("bad evaluation kind");
3452       }
3453 
3454       llvm::Value *DestPtr = ReturnValue.getValue();
3455       bool DestIsVolatile = ReturnValue.isVolatile();
3456 
3457       if (!DestPtr) {
3458         DestPtr = CreateMemTemp(RetTy, "coerce");
3459         DestIsVolatile = false;
3460       }
3461 
3462       // If the value is offset in memory, apply the offset now.
3463       llvm::Value *StorePtr = DestPtr;
3464       if (unsigned Offs = RetAI.getDirectOffset()) {
3465         StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
3466         StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
3467         StorePtr = Builder.CreateBitCast(StorePtr,
3468                            llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
3469       }
3470       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3471 
3472       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3473     }
3474 
3475     case ABIArgInfo::Expand:
3476       llvm_unreachable("Invalid ABI kind for return argument");
3477     }
3478 
3479     llvm_unreachable("Unhandled ABIArgInfo::Kind");
3480   } ();
3481 
3482   if (Ret.isScalar() && TargetDecl) {
3483     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3484       llvm::Value *OffsetValue = nullptr;
3485       if (const auto *Offset = AA->getOffset())
3486         OffsetValue = EmitScalarExpr(Offset);
3487 
3488       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3489       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3490       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3491                               OffsetValue);
3492     }
3493   }
3494 
3495   return Ret;
3496 }
3497 
3498 /* VarArg handling */
3499 
3500 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
3501   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
3502 }
3503