1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "ABIInfo.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Attributes.h"
27 #include "llvm/Support/CallSite.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/InlineAsm.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 using namespace clang;
32 using namespace CodeGen;
33 
34 /***/
35 
36 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
37   switch (CC) {
38   default: return llvm::CallingConv::C;
39   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
40   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
41   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
42   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
43   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
44   // TODO: add support for CC_X86Pascal to llvm
45   }
46 }
47 
48 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
49 /// qualification.
50 /// FIXME: address space qualification?
51 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
52   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
53   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
54 }
55 
56 /// Returns the canonical formal type of the given C++ method.
57 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
58   return MD->getType()->getCanonicalTypeUnqualified()
59            .getAs<FunctionProtoType>();
60 }
61 
62 /// Returns the "extra-canonicalized" return type, which discards
63 /// qualifiers on the return type.  Codegen doesn't care about them,
64 /// and it makes ABI code a little easier to be able to assume that
65 /// all parameter and return types are top-level unqualified.
66 static CanQualType GetReturnType(QualType RetTy) {
67   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
68 }
69 
70 /// Arrange the argument and result information for a value of the given
71 /// unprototyped freestanding function type.
72 const CGFunctionInfo &
73 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
74   // When translating an unprototyped function type, always use a
75   // variadic type.
76   return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
77                                  ArrayRef<CanQualType>(),
78                                  FTNP->getExtInfo(),
79                                  RequiredArgs(0));
80 }
81 
82 /// Arrange the LLVM function layout for a value of the given function
83 /// type, on top of any implicit parameters already stored.  Use the
84 /// given ExtInfo instead of the ExtInfo from the function type.
85 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
86                                        SmallVectorImpl<CanQualType> &prefix,
87                                              CanQual<FunctionProtoType> FTP,
88                                               FunctionType::ExtInfo extInfo) {
89   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
90   // FIXME: Kill copy.
91   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
92     prefix.push_back(FTP->getArgType(i));
93   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
94   return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
95 }
96 
97 /// Arrange the argument and result information for a free function (i.e.
98 /// not a C++ or ObjC instance method) of the given type.
99 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
100                                       SmallVectorImpl<CanQualType> &prefix,
101                                             CanQual<FunctionProtoType> FTP) {
102   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
103 }
104 
105 /// Given the formal ext-info of a C++ instance method, adjust it
106 /// according to the C++ ABI in effect.
107 static void adjustCXXMethodInfo(CodeGenTypes &CGT,
108                                 FunctionType::ExtInfo &extInfo,
109                                 bool isVariadic) {
110   if (extInfo.getCC() == CC_Default) {
111     CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
112     extInfo = extInfo.withCallingConv(CC);
113   }
114 }
115 
116 /// Arrange the argument and result information for a free function (i.e.
117 /// not a C++ or ObjC instance method) of the given type.
118 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
119                                       SmallVectorImpl<CanQualType> &prefix,
120                                             CanQual<FunctionProtoType> FTP) {
121   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
122   adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
123   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
124 }
125 
126 /// Arrange the argument and result information for a value of the
127 /// given freestanding function type.
128 const CGFunctionInfo &
129 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
130   SmallVector<CanQualType, 16> argTypes;
131   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
132 }
133 
134 static CallingConv getCallingConventionForDecl(const Decl *D) {
135   // Set the appropriate calling convention for the Function.
136   if (D->hasAttr<StdCallAttr>())
137     return CC_X86StdCall;
138 
139   if (D->hasAttr<FastCallAttr>())
140     return CC_X86FastCall;
141 
142   if (D->hasAttr<ThisCallAttr>())
143     return CC_X86ThisCall;
144 
145   if (D->hasAttr<PascalAttr>())
146     return CC_X86Pascal;
147 
148   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
149     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
150 
151   return CC_C;
152 }
153 
154 /// Arrange the argument and result information for a call to an
155 /// unknown C++ non-static member function of the given abstract type.
156 /// The member function must be an ordinary function, i.e. not a
157 /// constructor or destructor.
158 const CGFunctionInfo &
159 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
160                                    const FunctionProtoType *FTP) {
161   SmallVector<CanQualType, 16> argTypes;
162 
163   // Add the 'this' pointer.
164   argTypes.push_back(GetThisType(Context, RD));
165 
166   return ::arrangeCXXMethodType(*this, argTypes,
167               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
168 }
169 
170 /// Arrange the argument and result information for a declaration or
171 /// definition of the given C++ non-static member function.  The
172 /// member function must be an ordinary function, i.e. not a
173 /// constructor or destructor.
174 const CGFunctionInfo &
175 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
176   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
177   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
178 
179   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
180 
181   if (MD->isInstance()) {
182     // The abstract case is perfectly fine.
183     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
184   }
185 
186   return arrangeFreeFunctionType(prototype);
187 }
188 
189 /// Arrange the argument and result information for a declaration
190 /// or definition to the given constructor variant.
191 const CGFunctionInfo &
192 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
193                                                CXXCtorType ctorKind) {
194   SmallVector<CanQualType, 16> argTypes;
195   argTypes.push_back(GetThisType(Context, D->getParent()));
196   CanQualType resultType = Context.VoidTy;
197 
198   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
199 
200   CanQual<FunctionProtoType> FTP = GetFormalType(D);
201 
202   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
203 
204   // Add the formal parameters.
205   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
206     argTypes.push_back(FTP->getArgType(i));
207 
208   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
209   adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
210   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
211 }
212 
213 /// Arrange the argument and result information for a declaration,
214 /// definition, or call to the given destructor variant.  It so
215 /// happens that all three cases produce the same information.
216 const CGFunctionInfo &
217 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
218                                    CXXDtorType dtorKind) {
219   SmallVector<CanQualType, 2> argTypes;
220   argTypes.push_back(GetThisType(Context, D->getParent()));
221   CanQualType resultType = Context.VoidTy;
222 
223   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
224 
225   CanQual<FunctionProtoType> FTP = GetFormalType(D);
226   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
227   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
228 
229   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
230   adjustCXXMethodInfo(*this, extInfo, false);
231   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
232                                  RequiredArgs::All);
233 }
234 
235 /// Arrange the argument and result information for the declaration or
236 /// definition of the given function.
237 const CGFunctionInfo &
238 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
239   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
240     if (MD->isInstance())
241       return arrangeCXXMethodDeclaration(MD);
242 
243   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
244 
245   assert(isa<FunctionType>(FTy));
246 
247   // When declaring a function without a prototype, always use a
248   // non-variadic type.
249   if (isa<FunctionNoProtoType>(FTy)) {
250     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
251     return arrangeLLVMFunctionInfo(noProto->getResultType(),
252                                    ArrayRef<CanQualType>(),
253                                    noProto->getExtInfo(),
254                                    RequiredArgs::All);
255   }
256 
257   assert(isa<FunctionProtoType>(FTy));
258   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
259 }
260 
261 /// Arrange the argument and result information for the declaration or
262 /// definition of an Objective-C method.
263 const CGFunctionInfo &
264 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
265   // It happens that this is the same as a call with no optional
266   // arguments, except also using the formal 'self' type.
267   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
268 }
269 
270 /// Arrange the argument and result information for the function type
271 /// through which to perform a send to the given Objective-C method,
272 /// using the given receiver type.  The receiver type is not always
273 /// the 'self' type of the method or even an Objective-C pointer type.
274 /// This is *not* the right method for actually performing such a
275 /// message send, due to the possibility of optional arguments.
276 const CGFunctionInfo &
277 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
278                                               QualType receiverType) {
279   SmallVector<CanQualType, 16> argTys;
280   argTys.push_back(Context.getCanonicalParamType(receiverType));
281   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
282   // FIXME: Kill copy?
283   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
284          e = MD->param_end(); i != e; ++i) {
285     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
286   }
287 
288   FunctionType::ExtInfo einfo;
289   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
290 
291   if (getContext().getLangOpts().ObjCAutoRefCount &&
292       MD->hasAttr<NSReturnsRetainedAttr>())
293     einfo = einfo.withProducesResult(true);
294 
295   RequiredArgs required =
296     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
297 
298   return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
299                                  einfo, required);
300 }
301 
302 const CGFunctionInfo &
303 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
304   // FIXME: Do we need to handle ObjCMethodDecl?
305   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
306 
307   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
308     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
309 
310   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
311     return arrangeCXXDestructor(DD, GD.getDtorType());
312 
313   return arrangeFunctionDeclaration(FD);
314 }
315 
316 /// Figure out the rules for calling a function with the given formal
317 /// type using the given arguments.  The arguments are necessary
318 /// because the function might be unprototyped, in which case it's
319 /// target-dependent in crazy ways.
320 const CGFunctionInfo &
321 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
322                                       const FunctionType *fnType) {
323   RequiredArgs required = RequiredArgs::All;
324   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
325     if (proto->isVariadic())
326       required = RequiredArgs(proto->getNumArgs());
327   } else if (CGM.getTargetCodeGenInfo()
328                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
329     required = RequiredArgs(0);
330   }
331 
332   return arrangeFreeFunctionCall(fnType->getResultType(), args,
333                                  fnType->getExtInfo(), required);
334 }
335 
336 const CGFunctionInfo &
337 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
338                                       const CallArgList &args,
339                                       FunctionType::ExtInfo info,
340                                       RequiredArgs required) {
341   // FIXME: Kill copy.
342   SmallVector<CanQualType, 16> argTypes;
343   for (CallArgList::const_iterator i = args.begin(), e = args.end();
344        i != e; ++i)
345     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
346   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
347                                  required);
348 }
349 
350 /// Arrange a call to a C++ method, passing the given arguments.
351 const CGFunctionInfo &
352 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
353                                    const FunctionProtoType *FPT,
354                                    RequiredArgs required) {
355   // FIXME: Kill copy.
356   SmallVector<CanQualType, 16> argTypes;
357   for (CallArgList::const_iterator i = args.begin(), e = args.end();
358        i != e; ++i)
359     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
360 
361   FunctionType::ExtInfo info = FPT->getExtInfo();
362   adjustCXXMethodInfo(*this, info, FPT->isVariadic());
363   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
364                                  argTypes, info, required);
365 }
366 
367 const CGFunctionInfo &
368 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
369                                          const FunctionArgList &args,
370                                          const FunctionType::ExtInfo &info,
371                                          bool isVariadic) {
372   // FIXME: Kill copy.
373   SmallVector<CanQualType, 16> argTypes;
374   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
375        i != e; ++i)
376     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
377 
378   RequiredArgs required =
379     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
380   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
381                                  required);
382 }
383 
384 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
385   return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(),
386                                  FunctionType::ExtInfo(), RequiredArgs::All);
387 }
388 
389 /// Arrange the argument and result information for an abstract value
390 /// of a given function type.  This is the method which all of the
391 /// above functions ultimately defer to.
392 const CGFunctionInfo &
393 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
394                                       ArrayRef<CanQualType> argTypes,
395                                       FunctionType::ExtInfo info,
396                                       RequiredArgs required) {
397 #ifndef NDEBUG
398   for (ArrayRef<CanQualType>::const_iterator
399          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
400     assert(I->isCanonicalAsParam());
401 #endif
402 
403   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
404 
405   // Lookup or create unique function info.
406   llvm::FoldingSetNodeID ID;
407   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
408 
409   void *insertPos = 0;
410   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
411   if (FI)
412     return *FI;
413 
414   // Construct the function info.  We co-allocate the ArgInfos.
415   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
416   FunctionInfos.InsertNode(FI, insertPos);
417 
418   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
419   assert(inserted && "Recursively being processed?");
420 
421   // Compute ABI information.
422   getABIInfo().computeInfo(*FI);
423 
424   // Loop over all of the computed argument and return value info.  If any of
425   // them are direct or extend without a specified coerce type, specify the
426   // default now.
427   ABIArgInfo &retInfo = FI->getReturnInfo();
428   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
429     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
430 
431   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
432        I != E; ++I)
433     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
434       I->info.setCoerceToType(ConvertType(I->type));
435 
436   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
437   assert(erased && "Not in set?");
438 
439   return *FI;
440 }
441 
442 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
443                                        const FunctionType::ExtInfo &info,
444                                        CanQualType resultType,
445                                        ArrayRef<CanQualType> argTypes,
446                                        RequiredArgs required) {
447   void *buffer = operator new(sizeof(CGFunctionInfo) +
448                               sizeof(ArgInfo) * (argTypes.size() + 1));
449   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
450   FI->CallingConvention = llvmCC;
451   FI->EffectiveCallingConvention = llvmCC;
452   FI->ASTCallingConvention = info.getCC();
453   FI->NoReturn = info.getNoReturn();
454   FI->ReturnsRetained = info.getProducesResult();
455   FI->Required = required;
456   FI->HasRegParm = info.getHasRegParm();
457   FI->RegParm = info.getRegParm();
458   FI->NumArgs = argTypes.size();
459   FI->getArgsBuffer()[0].type = resultType;
460   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
461     FI->getArgsBuffer()[i + 1].type = argTypes[i];
462   return FI;
463 }
464 
465 /***/
466 
467 void CodeGenTypes::GetExpandedTypes(QualType type,
468                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
469   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
470     uint64_t NumElts = AT->getSize().getZExtValue();
471     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
472       GetExpandedTypes(AT->getElementType(), expandedTypes);
473   } else if (const RecordType *RT = type->getAs<RecordType>()) {
474     const RecordDecl *RD = RT->getDecl();
475     assert(!RD->hasFlexibleArrayMember() &&
476            "Cannot expand structure with flexible array.");
477     if (RD->isUnion()) {
478       // Unions can be here only in degenerative cases - all the fields are same
479       // after flattening. Thus we have to use the "largest" field.
480       const FieldDecl *LargestFD = 0;
481       CharUnits UnionSize = CharUnits::Zero();
482 
483       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
484            i != e; ++i) {
485         const FieldDecl *FD = *i;
486         assert(!FD->isBitField() &&
487                "Cannot expand structure with bit-field members.");
488         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
489         if (UnionSize < FieldSize) {
490           UnionSize = FieldSize;
491           LargestFD = FD;
492         }
493       }
494       if (LargestFD)
495         GetExpandedTypes(LargestFD->getType(), expandedTypes);
496     } else {
497       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
498            i != e; ++i) {
499         assert(!i->isBitField() &&
500                "Cannot expand structure with bit-field members.");
501         GetExpandedTypes(i->getType(), expandedTypes);
502       }
503     }
504   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
505     llvm::Type *EltTy = ConvertType(CT->getElementType());
506     expandedTypes.push_back(EltTy);
507     expandedTypes.push_back(EltTy);
508   } else
509     expandedTypes.push_back(ConvertType(type));
510 }
511 
512 llvm::Function::arg_iterator
513 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
514                                     llvm::Function::arg_iterator AI) {
515   assert(LV.isSimple() &&
516          "Unexpected non-simple lvalue during struct expansion.");
517 
518   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
519     unsigned NumElts = AT->getSize().getZExtValue();
520     QualType EltTy = AT->getElementType();
521     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
522       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
523       LValue LV = MakeAddrLValue(EltAddr, EltTy);
524       AI = ExpandTypeFromArgs(EltTy, LV, AI);
525     }
526   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
527     RecordDecl *RD = RT->getDecl();
528     if (RD->isUnion()) {
529       // Unions can be here only in degenerative cases - all the fields are same
530       // after flattening. Thus we have to use the "largest" field.
531       const FieldDecl *LargestFD = 0;
532       CharUnits UnionSize = CharUnits::Zero();
533 
534       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
535            i != e; ++i) {
536         const FieldDecl *FD = *i;
537         assert(!FD->isBitField() &&
538                "Cannot expand structure with bit-field members.");
539         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
540         if (UnionSize < FieldSize) {
541           UnionSize = FieldSize;
542           LargestFD = FD;
543         }
544       }
545       if (LargestFD) {
546         // FIXME: What are the right qualifiers here?
547         LValue SubLV = EmitLValueForField(LV, LargestFD);
548         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
549       }
550     } else {
551       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
552            i != e; ++i) {
553         FieldDecl *FD = *i;
554         QualType FT = FD->getType();
555 
556         // FIXME: What are the right qualifiers here?
557         LValue SubLV = EmitLValueForField(LV, FD);
558         AI = ExpandTypeFromArgs(FT, SubLV, AI);
559       }
560     }
561   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
562     QualType EltTy = CT->getElementType();
563     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
564     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
565     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
566     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
567   } else {
568     EmitStoreThroughLValue(RValue::get(AI), LV);
569     ++AI;
570   }
571 
572   return AI;
573 }
574 
575 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
576 /// accessing some number of bytes out of it, try to gep into the struct to get
577 /// at its inner goodness.  Dive as deep as possible without entering an element
578 /// with an in-memory size smaller than DstSize.
579 static llvm::Value *
580 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
581                                    llvm::StructType *SrcSTy,
582                                    uint64_t DstSize, CodeGenFunction &CGF) {
583   // We can't dive into a zero-element struct.
584   if (SrcSTy->getNumElements() == 0) return SrcPtr;
585 
586   llvm::Type *FirstElt = SrcSTy->getElementType(0);
587 
588   // If the first elt is at least as large as what we're looking for, or if the
589   // first element is the same size as the whole struct, we can enter it.
590   uint64_t FirstEltSize =
591     CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
592   if (FirstEltSize < DstSize &&
593       FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
594     return SrcPtr;
595 
596   // GEP into the first element.
597   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
598 
599   // If the first element is a struct, recurse.
600   llvm::Type *SrcTy =
601     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
602   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
603     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
604 
605   return SrcPtr;
606 }
607 
608 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
609 /// are either integers or pointers.  This does a truncation of the value if it
610 /// is too large or a zero extension if it is too small.
611 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
612                                              llvm::Type *Ty,
613                                              CodeGenFunction &CGF) {
614   if (Val->getType() == Ty)
615     return Val;
616 
617   if (isa<llvm::PointerType>(Val->getType())) {
618     // If this is Pointer->Pointer avoid conversion to and from int.
619     if (isa<llvm::PointerType>(Ty))
620       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
621 
622     // Convert the pointer to an integer so we can play with its width.
623     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
624   }
625 
626   llvm::Type *DestIntTy = Ty;
627   if (isa<llvm::PointerType>(DestIntTy))
628     DestIntTy = CGF.IntPtrTy;
629 
630   if (Val->getType() != DestIntTy)
631     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
632 
633   if (isa<llvm::PointerType>(Ty))
634     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
635   return Val;
636 }
637 
638 
639 
640 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
641 /// a pointer to an object of type \arg Ty.
642 ///
643 /// This safely handles the case when the src type is smaller than the
644 /// destination type; in this situation the values of bits which not
645 /// present in the src are undefined.
646 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
647                                       llvm::Type *Ty,
648                                       CodeGenFunction &CGF) {
649   llvm::Type *SrcTy =
650     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
651 
652   // If SrcTy and Ty are the same, just do a load.
653   if (SrcTy == Ty)
654     return CGF.Builder.CreateLoad(SrcPtr);
655 
656   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
657 
658   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
659     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
660     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
661   }
662 
663   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
664 
665   // If the source and destination are integer or pointer types, just do an
666   // extension or truncation to the desired type.
667   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
668       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
669     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
670     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
671   }
672 
673   // If load is legal, just bitcast the src pointer.
674   if (SrcSize >= DstSize) {
675     // Generally SrcSize is never greater than DstSize, since this means we are
676     // losing bits. However, this can happen in cases where the structure has
677     // additional padding, for example due to a user specified alignment.
678     //
679     // FIXME: Assert that we aren't truncating non-padding bits when have access
680     // to that information.
681     llvm::Value *Casted =
682       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
683     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
684     // FIXME: Use better alignment / avoid requiring aligned load.
685     Load->setAlignment(1);
686     return Load;
687   }
688 
689   // Otherwise do coercion through memory. This is stupid, but
690   // simple.
691   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
692   llvm::Value *Casted =
693     CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
694   llvm::StoreInst *Store =
695     CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
696   // FIXME: Use better alignment / avoid requiring aligned store.
697   Store->setAlignment(1);
698   return CGF.Builder.CreateLoad(Tmp);
699 }
700 
701 // Function to store a first-class aggregate into memory.  We prefer to
702 // store the elements rather than the aggregate to be more friendly to
703 // fast-isel.
704 // FIXME: Do we need to recurse here?
705 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
706                           llvm::Value *DestPtr, bool DestIsVolatile,
707                           bool LowAlignment) {
708   // Prefer scalar stores to first-class aggregate stores.
709   if (llvm::StructType *STy =
710         dyn_cast<llvm::StructType>(Val->getType())) {
711     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
712       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
713       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
714       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
715                                                     DestIsVolatile);
716       if (LowAlignment)
717         SI->setAlignment(1);
718     }
719   } else {
720     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
721     if (LowAlignment)
722       SI->setAlignment(1);
723   }
724 }
725 
726 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
727 /// where the source and destination may have different types.
728 ///
729 /// This safely handles the case when the src type is larger than the
730 /// destination type; the upper bits of the src will be lost.
731 static void CreateCoercedStore(llvm::Value *Src,
732                                llvm::Value *DstPtr,
733                                bool DstIsVolatile,
734                                CodeGenFunction &CGF) {
735   llvm::Type *SrcTy = Src->getType();
736   llvm::Type *DstTy =
737     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
738   if (SrcTy == DstTy) {
739     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
740     return;
741   }
742 
743   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
744 
745   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
746     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
747     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
748   }
749 
750   // If the source and destination are integer or pointer types, just do an
751   // extension or truncation to the desired type.
752   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
753       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
754     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
755     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
756     return;
757   }
758 
759   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
760 
761   // If store is legal, just bitcast the src pointer.
762   if (SrcSize <= DstSize) {
763     llvm::Value *Casted =
764       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
765     // FIXME: Use better alignment / avoid requiring aligned store.
766     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
767   } else {
768     // Otherwise do coercion through memory. This is stupid, but
769     // simple.
770 
771     // Generally SrcSize is never greater than DstSize, since this means we are
772     // losing bits. However, this can happen in cases where the structure has
773     // additional padding, for example due to a user specified alignment.
774     //
775     // FIXME: Assert that we aren't truncating non-padding bits when have access
776     // to that information.
777     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
778     CGF.Builder.CreateStore(Src, Tmp);
779     llvm::Value *Casted =
780       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
781     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
782     // FIXME: Use better alignment / avoid requiring aligned load.
783     Load->setAlignment(1);
784     CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
785   }
786 }
787 
788 /***/
789 
790 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
791   return FI.getReturnInfo().isIndirect();
792 }
793 
794 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
795   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
796     switch (BT->getKind()) {
797     default:
798       return false;
799     case BuiltinType::Float:
800       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
801     case BuiltinType::Double:
802       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
803     case BuiltinType::LongDouble:
804       return getContext().getTargetInfo().useObjCFPRetForRealType(
805         TargetInfo::LongDouble);
806     }
807   }
808 
809   return false;
810 }
811 
812 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
813   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
814     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
815       if (BT->getKind() == BuiltinType::LongDouble)
816         return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
817     }
818   }
819 
820   return false;
821 }
822 
823 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
824   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
825   return GetFunctionType(FI);
826 }
827 
828 llvm::FunctionType *
829 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
830 
831   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
832   assert(Inserted && "Recursively being processed?");
833 
834   SmallVector<llvm::Type*, 8> argTypes;
835   llvm::Type *resultType = 0;
836 
837   const ABIArgInfo &retAI = FI.getReturnInfo();
838   switch (retAI.getKind()) {
839   case ABIArgInfo::Expand:
840     llvm_unreachable("Invalid ABI kind for return argument");
841 
842   case ABIArgInfo::Extend:
843   case ABIArgInfo::Direct:
844     resultType = retAI.getCoerceToType();
845     break;
846 
847   case ABIArgInfo::Indirect: {
848     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
849     resultType = llvm::Type::getVoidTy(getLLVMContext());
850 
851     QualType ret = FI.getReturnType();
852     llvm::Type *ty = ConvertType(ret);
853     unsigned addressSpace = Context.getTargetAddressSpace(ret);
854     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
855     break;
856   }
857 
858   case ABIArgInfo::Ignore:
859     resultType = llvm::Type::getVoidTy(getLLVMContext());
860     break;
861   }
862 
863   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
864          ie = FI.arg_end(); it != ie; ++it) {
865     const ABIArgInfo &argAI = it->info;
866 
867     switch (argAI.getKind()) {
868     case ABIArgInfo::Ignore:
869       break;
870 
871     case ABIArgInfo::Indirect: {
872       // indirect arguments are always on the stack, which is addr space #0.
873       llvm::Type *LTy = ConvertTypeForMem(it->type);
874       argTypes.push_back(LTy->getPointerTo());
875       break;
876     }
877 
878     case ABIArgInfo::Extend:
879     case ABIArgInfo::Direct: {
880       // Insert a padding type to ensure proper alignment.
881       if (llvm::Type *PaddingType = argAI.getPaddingType())
882         argTypes.push_back(PaddingType);
883       // If the coerce-to type is a first class aggregate, flatten it.  Either
884       // way is semantically identical, but fast-isel and the optimizer
885       // generally likes scalar values better than FCAs.
886       llvm::Type *argType = argAI.getCoerceToType();
887       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
888         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
889           argTypes.push_back(st->getElementType(i));
890       } else {
891         argTypes.push_back(argType);
892       }
893       break;
894     }
895 
896     case ABIArgInfo::Expand:
897       GetExpandedTypes(it->type, argTypes);
898       break;
899     }
900   }
901 
902   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
903   assert(Erased && "Not in set?");
904 
905   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
906 }
907 
908 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
909   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
910   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
911 
912   if (!isFuncTypeConvertible(FPT))
913     return llvm::StructType::get(getLLVMContext());
914 
915   const CGFunctionInfo *Info;
916   if (isa<CXXDestructorDecl>(MD))
917     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
918   else
919     Info = &arrangeCXXMethodDeclaration(MD);
920   return GetFunctionType(*Info);
921 }
922 
923 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
924                                            const Decl *TargetDecl,
925                                            AttributeListType &PAL,
926                                            unsigned &CallingConv) {
927   llvm::Attributes FuncAttrs;
928   llvm::Attributes RetAttrs;
929 
930   CallingConv = FI.getEffectiveCallingConvention();
931 
932   if (FI.isNoReturn())
933     FuncAttrs |= llvm::Attribute::NoReturn;
934 
935   // FIXME: handle sseregparm someday...
936   if (TargetDecl) {
937     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
938       FuncAttrs |= llvm::Attribute::ReturnsTwice;
939     if (TargetDecl->hasAttr<NoThrowAttr>())
940       FuncAttrs |= llvm::Attribute::NoUnwind;
941     else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
942       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
943       if (FPT && FPT->isNothrow(getContext()))
944         FuncAttrs |= llvm::Attribute::NoUnwind;
945     }
946 
947     if (TargetDecl->hasAttr<NoReturnAttr>())
948       FuncAttrs |= llvm::Attribute::NoReturn;
949 
950     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
951       FuncAttrs |= llvm::Attribute::ReturnsTwice;
952 
953     // 'const' and 'pure' attribute functions are also nounwind.
954     if (TargetDecl->hasAttr<ConstAttr>()) {
955       FuncAttrs |= llvm::Attribute::ReadNone;
956       FuncAttrs |= llvm::Attribute::NoUnwind;
957     } else if (TargetDecl->hasAttr<PureAttr>()) {
958       FuncAttrs |= llvm::Attribute::ReadOnly;
959       FuncAttrs |= llvm::Attribute::NoUnwind;
960     }
961     if (TargetDecl->hasAttr<MallocAttr>())
962       RetAttrs |= llvm::Attribute::NoAlias;
963   }
964 
965   if (CodeGenOpts.OptimizeSize)
966     FuncAttrs |= llvm::Attribute::OptimizeForSize;
967   if (CodeGenOpts.DisableRedZone)
968     FuncAttrs |= llvm::Attribute::NoRedZone;
969   if (CodeGenOpts.NoImplicitFloat)
970     FuncAttrs |= llvm::Attribute::NoImplicitFloat;
971 
972   QualType RetTy = FI.getReturnType();
973   unsigned Index = 1;
974   const ABIArgInfo &RetAI = FI.getReturnInfo();
975   switch (RetAI.getKind()) {
976   case ABIArgInfo::Extend:
977    if (RetTy->hasSignedIntegerRepresentation())
978      RetAttrs |= llvm::Attribute::SExt;
979    else if (RetTy->hasUnsignedIntegerRepresentation())
980      RetAttrs |= llvm::Attribute::ZExt;
981     break;
982   case ABIArgInfo::Direct:
983   case ABIArgInfo::Ignore:
984     break;
985 
986   case ABIArgInfo::Indirect:
987     PAL.push_back(llvm::AttributeWithIndex::get(Index,
988                                                 llvm::Attribute::StructRet));
989     ++Index;
990     // sret disables readnone and readonly
991     FuncAttrs &= ~(llvm::Attribute::ReadOnly |
992                    llvm::Attribute::ReadNone);
993     break;
994 
995   case ABIArgInfo::Expand:
996     llvm_unreachable("Invalid ABI kind for return argument");
997   }
998 
999   if (RetAttrs)
1000     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
1001 
1002   // FIXME: RegParm should be reduced in case of global register variable.
1003   signed RegParm;
1004   if (FI.getHasRegParm())
1005     RegParm = FI.getRegParm();
1006   else
1007     RegParm = CodeGenOpts.NumRegisterParameters;
1008 
1009   unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0);
1010   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1011          ie = FI.arg_end(); it != ie; ++it) {
1012     QualType ParamType = it->type;
1013     const ABIArgInfo &AI = it->info;
1014     llvm::Attributes Attrs;
1015 
1016     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1017     // have the corresponding parameter variable.  It doesn't make
1018     // sense to do it here because parameters are so messed up.
1019     switch (AI.getKind()) {
1020     case ABIArgInfo::Extend:
1021       if (ParamType->isSignedIntegerOrEnumerationType())
1022         Attrs |= llvm::Attribute::SExt;
1023       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1024         Attrs |= llvm::Attribute::ZExt;
1025       // FALL THROUGH
1026     case ABIArgInfo::Direct:
1027       if (RegParm > 0 &&
1028           (ParamType->isIntegerType() || ParamType->isPointerType() ||
1029            ParamType->isReferenceType())) {
1030         RegParm -=
1031         (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
1032         if (RegParm >= 0)
1033           Attrs |= llvm::Attribute::InReg;
1034       }
1035       // FIXME: handle sseregparm someday...
1036 
1037       // Increment Index if there is padding.
1038       Index += (AI.getPaddingType() != 0);
1039 
1040       if (llvm::StructType *STy =
1041             dyn_cast<llvm::StructType>(AI.getCoerceToType()))
1042         Index += STy->getNumElements()-1;  // 1 will be added below.
1043       break;
1044 
1045     case ABIArgInfo::Indirect:
1046       if (AI.getIndirectByVal())
1047         Attrs |= llvm::Attribute::ByVal;
1048 
1049       Attrs |=
1050         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
1051       // byval disables readnone and readonly.
1052       FuncAttrs &= ~(llvm::Attribute::ReadOnly |
1053                      llvm::Attribute::ReadNone);
1054       break;
1055 
1056     case ABIArgInfo::Ignore:
1057       // Skip increment, no matching LLVM parameter.
1058       continue;
1059 
1060     case ABIArgInfo::Expand: {
1061       SmallVector<llvm::Type*, 8> types;
1062       // FIXME: This is rather inefficient. Do we ever actually need to do
1063       // anything here? The result should be just reconstructed on the other
1064       // side, so extension should be a non-issue.
1065       getTypes().GetExpandedTypes(ParamType, types);
1066       Index += types.size();
1067       continue;
1068     }
1069     }
1070 
1071     if (Attrs)
1072       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs));
1073     ++Index;
1074   }
1075   if (FuncAttrs)
1076     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
1077 }
1078 
1079 /// An argument came in as a promoted argument; demote it back to its
1080 /// declared type.
1081 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1082                                          const VarDecl *var,
1083                                          llvm::Value *value) {
1084   llvm::Type *varType = CGF.ConvertType(var->getType());
1085 
1086   // This can happen with promotions that actually don't change the
1087   // underlying type, like the enum promotions.
1088   if (value->getType() == varType) return value;
1089 
1090   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1091          && "unexpected promotion type");
1092 
1093   if (isa<llvm::IntegerType>(varType))
1094     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1095 
1096   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1097 }
1098 
1099 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1100                                          llvm::Function *Fn,
1101                                          const FunctionArgList &Args) {
1102   // If this is an implicit-return-zero function, go ahead and
1103   // initialize the return value.  TODO: it might be nice to have
1104   // a more general mechanism for this that didn't require synthesized
1105   // return statements.
1106   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
1107     if (FD->hasImplicitReturnZero()) {
1108       QualType RetTy = FD->getResultType().getUnqualifiedType();
1109       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1110       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1111       Builder.CreateStore(Zero, ReturnValue);
1112     }
1113   }
1114 
1115   // FIXME: We no longer need the types from FunctionArgList; lift up and
1116   // simplify.
1117 
1118   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1119   llvm::Function::arg_iterator AI = Fn->arg_begin();
1120 
1121   // Name the struct return argument.
1122   if (CGM.ReturnTypeUsesSRet(FI)) {
1123     AI->setName("agg.result");
1124     AI->addAttr(llvm::Attribute::NoAlias);
1125     ++AI;
1126   }
1127 
1128   assert(FI.arg_size() == Args.size() &&
1129          "Mismatch between function signature & arguments.");
1130   unsigned ArgNo = 1;
1131   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1132   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1133        i != e; ++i, ++info_it, ++ArgNo) {
1134     const VarDecl *Arg = *i;
1135     QualType Ty = info_it->type;
1136     const ABIArgInfo &ArgI = info_it->info;
1137 
1138     bool isPromoted =
1139       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1140 
1141     switch (ArgI.getKind()) {
1142     case ABIArgInfo::Indirect: {
1143       llvm::Value *V = AI;
1144 
1145       if (hasAggregateLLVMType(Ty)) {
1146         // Aggregates and complex variables are accessed by reference.  All we
1147         // need to do is realign the value, if requested
1148         if (ArgI.getIndirectRealign()) {
1149           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1150 
1151           // Copy from the incoming argument pointer to the temporary with the
1152           // appropriate alignment.
1153           //
1154           // FIXME: We should have a common utility for generating an aggregate
1155           // copy.
1156           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1157           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1158           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1159           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1160           Builder.CreateMemCpy(Dst,
1161                                Src,
1162                                llvm::ConstantInt::get(IntPtrTy,
1163                                                       Size.getQuantity()),
1164                                ArgI.getIndirectAlign(),
1165                                false);
1166           V = AlignedTemp;
1167         }
1168       } else {
1169         // Load scalar value from indirect argument.
1170         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1171         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1172 
1173         if (isPromoted)
1174           V = emitArgumentDemotion(*this, Arg, V);
1175       }
1176       EmitParmDecl(*Arg, V, ArgNo);
1177       break;
1178     }
1179 
1180     case ABIArgInfo::Extend:
1181     case ABIArgInfo::Direct: {
1182       // Skip the dummy padding argument.
1183       if (ArgI.getPaddingType())
1184         ++AI;
1185 
1186       // If we have the trivial case, handle it with no muss and fuss.
1187       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1188           ArgI.getCoerceToType() == ConvertType(Ty) &&
1189           ArgI.getDirectOffset() == 0) {
1190         assert(AI != Fn->arg_end() && "Argument mismatch!");
1191         llvm::Value *V = AI;
1192 
1193         if (Arg->getType().isRestrictQualified())
1194           AI->addAttr(llvm::Attribute::NoAlias);
1195 
1196         // Ensure the argument is the correct type.
1197         if (V->getType() != ArgI.getCoerceToType())
1198           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1199 
1200         if (isPromoted)
1201           V = emitArgumentDemotion(*this, Arg, V);
1202 
1203         EmitParmDecl(*Arg, V, ArgNo);
1204         break;
1205       }
1206 
1207       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1208 
1209       // The alignment we need to use is the max of the requested alignment for
1210       // the argument plus the alignment required by our access code below.
1211       unsigned AlignmentToUse =
1212         CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
1213       AlignmentToUse = std::max(AlignmentToUse,
1214                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1215 
1216       Alloca->setAlignment(AlignmentToUse);
1217       llvm::Value *V = Alloca;
1218       llvm::Value *Ptr = V;    // Pointer to store into.
1219 
1220       // If the value is offset in memory, apply the offset now.
1221       if (unsigned Offs = ArgI.getDirectOffset()) {
1222         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1223         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1224         Ptr = Builder.CreateBitCast(Ptr,
1225                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1226       }
1227 
1228       // If the coerce-to type is a first class aggregate, we flatten it and
1229       // pass the elements. Either way is semantically identical, but fast-isel
1230       // and the optimizer generally likes scalar values better than FCAs.
1231       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1232       if (STy && STy->getNumElements() > 1) {
1233         uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy);
1234         llvm::Type *DstTy =
1235           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1236         uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy);
1237 
1238         if (SrcSize <= DstSize) {
1239           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1240 
1241           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1242             assert(AI != Fn->arg_end() && "Argument mismatch!");
1243             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1244             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1245             Builder.CreateStore(AI++, EltPtr);
1246           }
1247         } else {
1248           llvm::AllocaInst *TempAlloca =
1249             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1250           TempAlloca->setAlignment(AlignmentToUse);
1251           llvm::Value *TempV = TempAlloca;
1252 
1253           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1254             assert(AI != Fn->arg_end() && "Argument mismatch!");
1255             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1256             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1257             Builder.CreateStore(AI++, EltPtr);
1258           }
1259 
1260           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1261         }
1262       } else {
1263         // Simple case, just do a coerced store of the argument into the alloca.
1264         assert(AI != Fn->arg_end() && "Argument mismatch!");
1265         AI->setName(Arg->getName() + ".coerce");
1266         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1267       }
1268 
1269 
1270       // Match to what EmitParmDecl is expecting for this type.
1271       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1272         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1273         if (isPromoted)
1274           V = emitArgumentDemotion(*this, Arg, V);
1275       }
1276       EmitParmDecl(*Arg, V, ArgNo);
1277       continue;  // Skip ++AI increment, already done.
1278     }
1279 
1280     case ABIArgInfo::Expand: {
1281       // If this structure was expanded into multiple arguments then
1282       // we need to create a temporary and reconstruct it from the
1283       // arguments.
1284       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1285       CharUnits Align = getContext().getDeclAlign(Arg);
1286       Alloca->setAlignment(Align.getQuantity());
1287       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1288       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1289       EmitParmDecl(*Arg, Alloca, ArgNo);
1290 
1291       // Name the arguments used in expansion and increment AI.
1292       unsigned Index = 0;
1293       for (; AI != End; ++AI, ++Index)
1294         AI->setName(Arg->getName() + "." + Twine(Index));
1295       continue;
1296     }
1297 
1298     case ABIArgInfo::Ignore:
1299       // Initialize the local variable appropriately.
1300       if (hasAggregateLLVMType(Ty))
1301         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1302       else
1303         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1304                      ArgNo);
1305 
1306       // Skip increment, no matching LLVM parameter.
1307       continue;
1308     }
1309 
1310     ++AI;
1311   }
1312   assert(AI == Fn->arg_end() && "Argument mismatch!");
1313 }
1314 
1315 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1316   while (insn->use_empty()) {
1317     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1318     if (!bitcast) return;
1319 
1320     // This is "safe" because we would have used a ConstantExpr otherwise.
1321     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1322     bitcast->eraseFromParent();
1323   }
1324 }
1325 
1326 /// Try to emit a fused autorelease of a return result.
1327 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1328                                                     llvm::Value *result) {
1329   // We must be immediately followed the cast.
1330   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1331   if (BB->empty()) return 0;
1332   if (&BB->back() != result) return 0;
1333 
1334   llvm::Type *resultType = result->getType();
1335 
1336   // result is in a BasicBlock and is therefore an Instruction.
1337   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1338 
1339   SmallVector<llvm::Instruction*,4> insnsToKill;
1340 
1341   // Look for:
1342   //  %generator = bitcast %type1* %generator2 to %type2*
1343   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1344     // We would have emitted this as a constant if the operand weren't
1345     // an Instruction.
1346     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1347 
1348     // Require the generator to be immediately followed by the cast.
1349     if (generator->getNextNode() != bitcast)
1350       return 0;
1351 
1352     insnsToKill.push_back(bitcast);
1353   }
1354 
1355   // Look for:
1356   //   %generator = call i8* @objc_retain(i8* %originalResult)
1357   // or
1358   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1359   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1360   if (!call) return 0;
1361 
1362   bool doRetainAutorelease;
1363 
1364   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1365     doRetainAutorelease = true;
1366   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1367                                           .objc_retainAutoreleasedReturnValue) {
1368     doRetainAutorelease = false;
1369 
1370     // Look for an inline asm immediately preceding the call and kill it, too.
1371     llvm::Instruction *prev = call->getPrevNode();
1372     if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev))
1373       if (asmCall->getCalledValue()
1374             == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker)
1375         insnsToKill.push_back(prev);
1376   } else {
1377     return 0;
1378   }
1379 
1380   result = call->getArgOperand(0);
1381   insnsToKill.push_back(call);
1382 
1383   // Keep killing bitcasts, for sanity.  Note that we no longer care
1384   // about precise ordering as long as there's exactly one use.
1385   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1386     if (!bitcast->hasOneUse()) break;
1387     insnsToKill.push_back(bitcast);
1388     result = bitcast->getOperand(0);
1389   }
1390 
1391   // Delete all the unnecessary instructions, from latest to earliest.
1392   for (SmallVectorImpl<llvm::Instruction*>::iterator
1393          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1394     (*i)->eraseFromParent();
1395 
1396   // Do the fused retain/autorelease if we were asked to.
1397   if (doRetainAutorelease)
1398     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1399 
1400   // Cast back to the result type.
1401   return CGF.Builder.CreateBitCast(result, resultType);
1402 }
1403 
1404 /// If this is a +1 of the value of an immutable 'self', remove it.
1405 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1406                                           llvm::Value *result) {
1407   // This is only applicable to a method with an immutable 'self'.
1408   const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl);
1409   if (!method) return 0;
1410   const VarDecl *self = method->getSelfDecl();
1411   if (!self->getType().isConstQualified()) return 0;
1412 
1413   // Look for a retain call.
1414   llvm::CallInst *retainCall =
1415     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1416   if (!retainCall ||
1417       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1418     return 0;
1419 
1420   // Look for an ordinary load of 'self'.
1421   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1422   llvm::LoadInst *load =
1423     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1424   if (!load || load->isAtomic() || load->isVolatile() ||
1425       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1426     return 0;
1427 
1428   // Okay!  Burn it all down.  This relies for correctness on the
1429   // assumption that the retain is emitted as part of the return and
1430   // that thereafter everything is used "linearly".
1431   llvm::Type *resultType = result->getType();
1432   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1433   assert(retainCall->use_empty());
1434   retainCall->eraseFromParent();
1435   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1436 
1437   return CGF.Builder.CreateBitCast(load, resultType);
1438 }
1439 
1440 /// Emit an ARC autorelease of the result of a function.
1441 ///
1442 /// \return the value to actually return from the function
1443 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1444                                             llvm::Value *result) {
1445   // If we're returning 'self', kill the initial retain.  This is a
1446   // heuristic attempt to "encourage correctness" in the really unfortunate
1447   // case where we have a return of self during a dealloc and we desperately
1448   // need to avoid the possible autorelease.
1449   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1450     return self;
1451 
1452   // At -O0, try to emit a fused retain/autorelease.
1453   if (CGF.shouldUseFusedARCCalls())
1454     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1455       return fused;
1456 
1457   return CGF.EmitARCAutoreleaseReturnValue(result);
1458 }
1459 
1460 /// Heuristically search for a dominating store to the return-value slot.
1461 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1462   // If there are multiple uses of the return-value slot, just check
1463   // for something immediately preceding the IP.  Sometimes this can
1464   // happen with how we generate implicit-returns; it can also happen
1465   // with noreturn cleanups.
1466   if (!CGF.ReturnValue->hasOneUse()) {
1467     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1468     if (IP->empty()) return 0;
1469     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1470     if (!store) return 0;
1471     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1472     assert(!store->isAtomic() && !store->isVolatile()); // see below
1473     return store;
1474   }
1475 
1476   llvm::StoreInst *store =
1477     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1478   if (!store) return 0;
1479 
1480   // These aren't actually possible for non-coerced returns, and we
1481   // only care about non-coerced returns on this code path.
1482   assert(!store->isAtomic() && !store->isVolatile());
1483 
1484   // Now do a first-and-dirty dominance check: just walk up the
1485   // single-predecessors chain from the current insertion point.
1486   llvm::BasicBlock *StoreBB = store->getParent();
1487   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1488   while (IP != StoreBB) {
1489     if (!(IP = IP->getSinglePredecessor()))
1490       return 0;
1491   }
1492 
1493   // Okay, the store's basic block dominates the insertion point; we
1494   // can do our thing.
1495   return store;
1496 }
1497 
1498 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1499   // Functions with no result always return void.
1500   if (ReturnValue == 0) {
1501     Builder.CreateRetVoid();
1502     return;
1503   }
1504 
1505   llvm::DebugLoc RetDbgLoc;
1506   llvm::Value *RV = 0;
1507   QualType RetTy = FI.getReturnType();
1508   const ABIArgInfo &RetAI = FI.getReturnInfo();
1509 
1510   switch (RetAI.getKind()) {
1511   case ABIArgInfo::Indirect: {
1512     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1513     if (RetTy->isAnyComplexType()) {
1514       ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1515       StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1516     } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1517       // Do nothing; aggregrates get evaluated directly into the destination.
1518     } else {
1519       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1520                         false, Alignment, RetTy);
1521     }
1522     break;
1523   }
1524 
1525   case ABIArgInfo::Extend:
1526   case ABIArgInfo::Direct:
1527     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1528         RetAI.getDirectOffset() == 0) {
1529       // The internal return value temp always will have pointer-to-return-type
1530       // type, just do a load.
1531 
1532       // If there is a dominating store to ReturnValue, we can elide
1533       // the load, zap the store, and usually zap the alloca.
1534       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1535         // Get the stored value and nuke the now-dead store.
1536         RetDbgLoc = SI->getDebugLoc();
1537         RV = SI->getValueOperand();
1538         SI->eraseFromParent();
1539 
1540         // If that was the only use of the return value, nuke it as well now.
1541         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1542           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1543           ReturnValue = 0;
1544         }
1545 
1546       // Otherwise, we have to do a simple load.
1547       } else {
1548         RV = Builder.CreateLoad(ReturnValue);
1549       }
1550     } else {
1551       llvm::Value *V = ReturnValue;
1552       // If the value is offset in memory, apply the offset now.
1553       if (unsigned Offs = RetAI.getDirectOffset()) {
1554         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1555         V = Builder.CreateConstGEP1_32(V, Offs);
1556         V = Builder.CreateBitCast(V,
1557                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1558       }
1559 
1560       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1561     }
1562 
1563     // In ARC, end functions that return a retainable type with a call
1564     // to objc_autoreleaseReturnValue.
1565     if (AutoreleaseResult) {
1566       assert(getLangOpts().ObjCAutoRefCount &&
1567              !FI.isReturnsRetained() &&
1568              RetTy->isObjCRetainableType());
1569       RV = emitAutoreleaseOfResult(*this, RV);
1570     }
1571 
1572     break;
1573 
1574   case ABIArgInfo::Ignore:
1575     break;
1576 
1577   case ABIArgInfo::Expand:
1578     llvm_unreachable("Invalid ABI kind for return argument");
1579   }
1580 
1581   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1582   if (!RetDbgLoc.isUnknown())
1583     Ret->setDebugLoc(RetDbgLoc);
1584 }
1585 
1586 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1587                                           const VarDecl *param) {
1588   // StartFunction converted the ABI-lowered parameter(s) into a
1589   // local alloca.  We need to turn that into an r-value suitable
1590   // for EmitCall.
1591   llvm::Value *local = GetAddrOfLocalVar(param);
1592 
1593   QualType type = param->getType();
1594 
1595   // For the most part, we just need to load the alloca, except:
1596   // 1) aggregate r-values are actually pointers to temporaries, and
1597   // 2) references to aggregates are pointers directly to the aggregate.
1598   // I don't know why references to non-aggregates are different here.
1599   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1600     if (hasAggregateLLVMType(ref->getPointeeType()))
1601       return args.add(RValue::getAggregate(local), type);
1602 
1603     // Locals which are references to scalars are represented
1604     // with allocas holding the pointer.
1605     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1606   }
1607 
1608   if (type->isAnyComplexType()) {
1609     ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1610     return args.add(RValue::getComplex(complex), type);
1611   }
1612 
1613   if (hasAggregateLLVMType(type))
1614     return args.add(RValue::getAggregate(local), type);
1615 
1616   unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1617   llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1618   return args.add(RValue::get(value), type);
1619 }
1620 
1621 static bool isProvablyNull(llvm::Value *addr) {
1622   return isa<llvm::ConstantPointerNull>(addr);
1623 }
1624 
1625 static bool isProvablyNonNull(llvm::Value *addr) {
1626   return isa<llvm::AllocaInst>(addr);
1627 }
1628 
1629 /// Emit the actual writing-back of a writeback.
1630 static void emitWriteback(CodeGenFunction &CGF,
1631                           const CallArgList::Writeback &writeback) {
1632   llvm::Value *srcAddr = writeback.Address;
1633   assert(!isProvablyNull(srcAddr) &&
1634          "shouldn't have writeback for provably null argument");
1635 
1636   llvm::BasicBlock *contBB = 0;
1637 
1638   // If the argument wasn't provably non-null, we need to null check
1639   // before doing the store.
1640   bool provablyNonNull = isProvablyNonNull(srcAddr);
1641   if (!provablyNonNull) {
1642     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1643     contBB = CGF.createBasicBlock("icr.done");
1644 
1645     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1646     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1647     CGF.EmitBlock(writebackBB);
1648   }
1649 
1650   // Load the value to writeback.
1651   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1652 
1653   // Cast it back, in case we're writing an id to a Foo* or something.
1654   value = CGF.Builder.CreateBitCast(value,
1655                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1656                             "icr.writeback-cast");
1657 
1658   // Perform the writeback.
1659   QualType srcAddrType = writeback.AddressType;
1660   CGF.EmitStoreThroughLValue(RValue::get(value),
1661                              CGF.MakeAddrLValue(srcAddr, srcAddrType));
1662 
1663   // Jump to the continuation block.
1664   if (!provablyNonNull)
1665     CGF.EmitBlock(contBB);
1666 }
1667 
1668 static void emitWritebacks(CodeGenFunction &CGF,
1669                            const CallArgList &args) {
1670   for (CallArgList::writeback_iterator
1671          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1672     emitWriteback(CGF, *i);
1673 }
1674 
1675 /// Emit an argument that's being passed call-by-writeback.  That is,
1676 /// we are passing the address of
1677 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1678                              const ObjCIndirectCopyRestoreExpr *CRE) {
1679   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1680 
1681   // The dest and src types don't necessarily match in LLVM terms
1682   // because of the crazy ObjC compatibility rules.
1683 
1684   llvm::PointerType *destType =
1685     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1686 
1687   // If the address is a constant null, just pass the appropriate null.
1688   if (isProvablyNull(srcAddr)) {
1689     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1690              CRE->getType());
1691     return;
1692   }
1693 
1694   QualType srcAddrType =
1695     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1696 
1697   // Create the temporary.
1698   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1699                                            "icr.temp");
1700 
1701   // Zero-initialize it if we're not doing a copy-initialization.
1702   bool shouldCopy = CRE->shouldCopy();
1703   if (!shouldCopy) {
1704     llvm::Value *null =
1705       llvm::ConstantPointerNull::get(
1706         cast<llvm::PointerType>(destType->getElementType()));
1707     CGF.Builder.CreateStore(null, temp);
1708   }
1709 
1710   llvm::BasicBlock *contBB = 0;
1711 
1712   // If the address is *not* known to be non-null, we need to switch.
1713   llvm::Value *finalArgument;
1714 
1715   bool provablyNonNull = isProvablyNonNull(srcAddr);
1716   if (provablyNonNull) {
1717     finalArgument = temp;
1718   } else {
1719     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1720 
1721     finalArgument = CGF.Builder.CreateSelect(isNull,
1722                                    llvm::ConstantPointerNull::get(destType),
1723                                              temp, "icr.argument");
1724 
1725     // If we need to copy, then the load has to be conditional, which
1726     // means we need control flow.
1727     if (shouldCopy) {
1728       contBB = CGF.createBasicBlock("icr.cont");
1729       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1730       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1731       CGF.EmitBlock(copyBB);
1732     }
1733   }
1734 
1735   // Perform a copy if necessary.
1736   if (shouldCopy) {
1737     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1738     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1739     assert(srcRV.isScalar());
1740 
1741     llvm::Value *src = srcRV.getScalarVal();
1742     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1743                                     "icr.cast");
1744 
1745     // Use an ordinary store, not a store-to-lvalue.
1746     CGF.Builder.CreateStore(src, temp);
1747   }
1748 
1749   // Finish the control flow if we needed it.
1750   if (shouldCopy && !provablyNonNull)
1751     CGF.EmitBlock(contBB);
1752 
1753   args.addWriteback(srcAddr, srcAddrType, temp);
1754   args.add(RValue::get(finalArgument), CRE->getType());
1755 }
1756 
1757 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1758                                   QualType type) {
1759   if (const ObjCIndirectCopyRestoreExpr *CRE
1760         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1761     assert(getContext().getLangOpts().ObjCAutoRefCount);
1762     assert(getContext().hasSameType(E->getType(), type));
1763     return emitWritebackArg(*this, args, CRE);
1764   }
1765 
1766   assert(type->isReferenceType() == E->isGLValue() &&
1767          "reference binding to unmaterialized r-value!");
1768 
1769   if (E->isGLValue()) {
1770     assert(E->getObjectKind() == OK_Ordinary);
1771     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1772                     type);
1773   }
1774 
1775   if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1776       isa<ImplicitCastExpr>(E) &&
1777       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1778     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1779     assert(L.isSimple());
1780     args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1781     return;
1782   }
1783 
1784   args.add(EmitAnyExprToTemp(E), type);
1785 }
1786 
1787 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1788 // optimizer it can aggressively ignore unwind edges.
1789 void
1790 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
1791   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1792       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1793     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
1794                       CGM.getNoObjCARCExceptionsMetadata());
1795 }
1796 
1797 /// Emits a call or invoke instruction to the given function, depending
1798 /// on the current state of the EH stack.
1799 llvm::CallSite
1800 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1801                                   ArrayRef<llvm::Value *> Args,
1802                                   const Twine &Name) {
1803   llvm::BasicBlock *InvokeDest = getInvokeDest();
1804 
1805   llvm::Instruction *Inst;
1806   if (!InvokeDest)
1807     Inst = Builder.CreateCall(Callee, Args, Name);
1808   else {
1809     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1810     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
1811     EmitBlock(ContBB);
1812   }
1813 
1814   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1815   // optimizer it can aggressively ignore unwind edges.
1816   if (CGM.getLangOpts().ObjCAutoRefCount)
1817     AddObjCARCExceptionMetadata(Inst);
1818 
1819   return Inst;
1820 }
1821 
1822 llvm::CallSite
1823 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1824                                   const Twine &Name) {
1825   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1826 }
1827 
1828 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1829                             llvm::FunctionType *FTy) {
1830   if (ArgNo < FTy->getNumParams())
1831     assert(Elt->getType() == FTy->getParamType(ArgNo));
1832   else
1833     assert(FTy->isVarArg());
1834   ++ArgNo;
1835 }
1836 
1837 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1838                                        SmallVector<llvm::Value*,16> &Args,
1839                                        llvm::FunctionType *IRFuncTy) {
1840   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1841     unsigned NumElts = AT->getSize().getZExtValue();
1842     QualType EltTy = AT->getElementType();
1843     llvm::Value *Addr = RV.getAggregateAddr();
1844     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1845       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1846       LValue LV = MakeAddrLValue(EltAddr, EltTy);
1847       RValue EltRV;
1848       if (EltTy->isAnyComplexType())
1849         // FIXME: Volatile?
1850         EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1851       else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1852         EltRV = LV.asAggregateRValue();
1853       else
1854         EltRV = EmitLoadOfLValue(LV);
1855       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1856     }
1857   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1858     RecordDecl *RD = RT->getDecl();
1859     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1860     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
1861 
1862     if (RD->isUnion()) {
1863       const FieldDecl *LargestFD = 0;
1864       CharUnits UnionSize = CharUnits::Zero();
1865 
1866       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1867            i != e; ++i) {
1868         const FieldDecl *FD = *i;
1869         assert(!FD->isBitField() &&
1870                "Cannot expand structure with bit-field members.");
1871         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
1872         if (UnionSize < FieldSize) {
1873           UnionSize = FieldSize;
1874           LargestFD = FD;
1875         }
1876       }
1877       if (LargestFD) {
1878         RValue FldRV = EmitRValueForField(LV, LargestFD);
1879         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
1880       }
1881     } else {
1882       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1883            i != e; ++i) {
1884         FieldDecl *FD = *i;
1885 
1886         RValue FldRV = EmitRValueForField(LV, FD);
1887         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
1888       }
1889     }
1890   } else if (Ty->isAnyComplexType()) {
1891     ComplexPairTy CV = RV.getComplexVal();
1892     Args.push_back(CV.first);
1893     Args.push_back(CV.second);
1894   } else {
1895     assert(RV.isScalar() &&
1896            "Unexpected non-scalar rvalue during struct expansion.");
1897 
1898     // Insert a bitcast as needed.
1899     llvm::Value *V = RV.getScalarVal();
1900     if (Args.size() < IRFuncTy->getNumParams() &&
1901         V->getType() != IRFuncTy->getParamType(Args.size()))
1902       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1903 
1904     Args.push_back(V);
1905   }
1906 }
1907 
1908 
1909 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1910                                  llvm::Value *Callee,
1911                                  ReturnValueSlot ReturnValue,
1912                                  const CallArgList &CallArgs,
1913                                  const Decl *TargetDecl,
1914                                  llvm::Instruction **callOrInvoke) {
1915   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1916   SmallVector<llvm::Value*, 16> Args;
1917 
1918   // Handle struct-return functions by passing a pointer to the
1919   // location that we would like to return into.
1920   QualType RetTy = CallInfo.getReturnType();
1921   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1922 
1923   // IRArgNo - Keep track of the argument number in the callee we're looking at.
1924   unsigned IRArgNo = 0;
1925   llvm::FunctionType *IRFuncTy =
1926     cast<llvm::FunctionType>(
1927                   cast<llvm::PointerType>(Callee->getType())->getElementType());
1928 
1929   // If the call returns a temporary with struct return, create a temporary
1930   // alloca to hold the result, unless one is given to us.
1931   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1932     llvm::Value *Value = ReturnValue.getValue();
1933     if (!Value)
1934       Value = CreateMemTemp(RetTy);
1935     Args.push_back(Value);
1936     checkArgMatches(Value, IRArgNo, IRFuncTy);
1937   }
1938 
1939   assert(CallInfo.arg_size() == CallArgs.size() &&
1940          "Mismatch between function signature & arguments.");
1941   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1942   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1943        I != E; ++I, ++info_it) {
1944     const ABIArgInfo &ArgInfo = info_it->info;
1945     RValue RV = I->RV;
1946 
1947     unsigned TypeAlign =
1948       getContext().getTypeAlignInChars(I->Ty).getQuantity();
1949     switch (ArgInfo.getKind()) {
1950     case ABIArgInfo::Indirect: {
1951       if (RV.isScalar() || RV.isComplex()) {
1952         // Make a temporary alloca to pass the argument.
1953         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1954         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1955           AI->setAlignment(ArgInfo.getIndirectAlign());
1956         Args.push_back(AI);
1957 
1958         if (RV.isScalar())
1959           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1960                             TypeAlign, I->Ty);
1961         else
1962           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1963 
1964         // Validate argument match.
1965         checkArgMatches(AI, IRArgNo, IRFuncTy);
1966       } else {
1967         // We want to avoid creating an unnecessary temporary+copy here;
1968         // however, we need one in two cases:
1969         // 1. If the argument is not byval, and we are required to copy the
1970         //    source.  (This case doesn't occur on any common architecture.)
1971         // 2. If the argument is byval, RV is not sufficiently aligned, and
1972         //    we cannot force it to be sufficiently aligned.
1973         llvm::Value *Addr = RV.getAggregateAddr();
1974         unsigned Align = ArgInfo.getIndirectAlign();
1975         const llvm::TargetData *TD = &CGM.getTargetData();
1976         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
1977             (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
1978              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
1979           // Create an aligned temporary, and copy to it.
1980           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1981           if (Align > AI->getAlignment())
1982             AI->setAlignment(Align);
1983           Args.push_back(AI);
1984           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
1985 
1986           // Validate argument match.
1987           checkArgMatches(AI, IRArgNo, IRFuncTy);
1988         } else {
1989           // Skip the extra memcpy call.
1990           Args.push_back(Addr);
1991 
1992           // Validate argument match.
1993           checkArgMatches(Addr, IRArgNo, IRFuncTy);
1994         }
1995       }
1996       break;
1997     }
1998 
1999     case ABIArgInfo::Ignore:
2000       break;
2001 
2002     case ABIArgInfo::Extend:
2003     case ABIArgInfo::Direct: {
2004       // Insert a padding argument to ensure proper alignment.
2005       if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2006         Args.push_back(llvm::UndefValue::get(PaddingType));
2007         ++IRArgNo;
2008       }
2009 
2010       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2011           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2012           ArgInfo.getDirectOffset() == 0) {
2013         llvm::Value *V;
2014         if (RV.isScalar())
2015           V = RV.getScalarVal();
2016         else
2017           V = Builder.CreateLoad(RV.getAggregateAddr());
2018 
2019         // If the argument doesn't match, perform a bitcast to coerce it.  This
2020         // can happen due to trivial type mismatches.
2021         if (IRArgNo < IRFuncTy->getNumParams() &&
2022             V->getType() != IRFuncTy->getParamType(IRArgNo))
2023           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2024         Args.push_back(V);
2025 
2026         checkArgMatches(V, IRArgNo, IRFuncTy);
2027         break;
2028       }
2029 
2030       // FIXME: Avoid the conversion through memory if possible.
2031       llvm::Value *SrcPtr;
2032       if (RV.isScalar()) {
2033         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2034         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
2035       } else if (RV.isComplex()) {
2036         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2037         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
2038       } else
2039         SrcPtr = RV.getAggregateAddr();
2040 
2041       // If the value is offset in memory, apply the offset now.
2042       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2043         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2044         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2045         SrcPtr = Builder.CreateBitCast(SrcPtr,
2046                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2047 
2048       }
2049 
2050       // If the coerce-to type is a first class aggregate, we flatten it and
2051       // pass the elements. Either way is semantically identical, but fast-isel
2052       // and the optimizer generally likes scalar values better than FCAs.
2053       if (llvm::StructType *STy =
2054             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2055         SrcPtr = Builder.CreateBitCast(SrcPtr,
2056                                        llvm::PointerType::getUnqual(STy));
2057         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2058           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2059           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2060           // We don't know what we're loading from.
2061           LI->setAlignment(1);
2062           Args.push_back(LI);
2063 
2064           // Validate argument match.
2065           checkArgMatches(LI, IRArgNo, IRFuncTy);
2066         }
2067       } else {
2068         // In the simple case, just pass the coerced loaded value.
2069         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2070                                          *this));
2071 
2072         // Validate argument match.
2073         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2074       }
2075 
2076       break;
2077     }
2078 
2079     case ABIArgInfo::Expand:
2080       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2081       IRArgNo = Args.size();
2082       break;
2083     }
2084   }
2085 
2086   // If the callee is a bitcast of a function to a varargs pointer to function
2087   // type, check to see if we can remove the bitcast.  This handles some cases
2088   // with unprototyped functions.
2089   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2090     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2091       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2092       llvm::FunctionType *CurFT =
2093         cast<llvm::FunctionType>(CurPT->getElementType());
2094       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2095 
2096       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2097           ActualFT->getReturnType() == CurFT->getReturnType() &&
2098           ActualFT->getNumParams() == CurFT->getNumParams() &&
2099           ActualFT->getNumParams() == Args.size() &&
2100           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2101         bool ArgsMatch = true;
2102         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2103           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2104             ArgsMatch = false;
2105             break;
2106           }
2107 
2108         // Strip the cast if we can get away with it.  This is a nice cleanup,
2109         // but also allows us to inline the function at -O0 if it is marked
2110         // always_inline.
2111         if (ArgsMatch)
2112           Callee = CalleeF;
2113       }
2114     }
2115 
2116   unsigned CallingConv;
2117   CodeGen::AttributeListType AttributeList;
2118   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
2119   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList);
2120 
2121   llvm::BasicBlock *InvokeDest = 0;
2122   if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
2123     InvokeDest = getInvokeDest();
2124 
2125   llvm::CallSite CS;
2126   if (!InvokeDest) {
2127     CS = Builder.CreateCall(Callee, Args);
2128   } else {
2129     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2130     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2131     EmitBlock(Cont);
2132   }
2133   if (callOrInvoke)
2134     *callOrInvoke = CS.getInstruction();
2135 
2136   CS.setAttributes(Attrs);
2137   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2138 
2139   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2140   // optimizer it can aggressively ignore unwind edges.
2141   if (CGM.getLangOpts().ObjCAutoRefCount)
2142     AddObjCARCExceptionMetadata(CS.getInstruction());
2143 
2144   // If the call doesn't return, finish the basic block and clear the
2145   // insertion point; this allows the rest of IRgen to discard
2146   // unreachable code.
2147   if (CS.doesNotReturn()) {
2148     Builder.CreateUnreachable();
2149     Builder.ClearInsertionPoint();
2150 
2151     // FIXME: For now, emit a dummy basic block because expr emitters in
2152     // generally are not ready to handle emitting expressions at unreachable
2153     // points.
2154     EnsureInsertPoint();
2155 
2156     // Return a reasonable RValue.
2157     return GetUndefRValue(RetTy);
2158   }
2159 
2160   llvm::Instruction *CI = CS.getInstruction();
2161   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2162     CI->setName("call");
2163 
2164   // Emit any writebacks immediately.  Arguably this should happen
2165   // after any return-value munging.
2166   if (CallArgs.hasWritebacks())
2167     emitWritebacks(*this, CallArgs);
2168 
2169   switch (RetAI.getKind()) {
2170   case ABIArgInfo::Indirect: {
2171     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2172     if (RetTy->isAnyComplexType())
2173       return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2174     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2175       return RValue::getAggregate(Args[0]);
2176     return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
2177   }
2178 
2179   case ABIArgInfo::Ignore:
2180     // If we are ignoring an argument that had a result, make sure to
2181     // construct the appropriate return value for our caller.
2182     return GetUndefRValue(RetTy);
2183 
2184   case ABIArgInfo::Extend:
2185   case ABIArgInfo::Direct: {
2186     llvm::Type *RetIRTy = ConvertType(RetTy);
2187     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2188       if (RetTy->isAnyComplexType()) {
2189         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2190         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2191         return RValue::getComplex(std::make_pair(Real, Imag));
2192       }
2193       if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2194         llvm::Value *DestPtr = ReturnValue.getValue();
2195         bool DestIsVolatile = ReturnValue.isVolatile();
2196 
2197         if (!DestPtr) {
2198           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2199           DestIsVolatile = false;
2200         }
2201         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2202         return RValue::getAggregate(DestPtr);
2203       }
2204 
2205       // If the argument doesn't match, perform a bitcast to coerce it.  This
2206       // can happen due to trivial type mismatches.
2207       llvm::Value *V = CI;
2208       if (V->getType() != RetIRTy)
2209         V = Builder.CreateBitCast(V, RetIRTy);
2210       return RValue::get(V);
2211     }
2212 
2213     llvm::Value *DestPtr = ReturnValue.getValue();
2214     bool DestIsVolatile = ReturnValue.isVolatile();
2215 
2216     if (!DestPtr) {
2217       DestPtr = CreateMemTemp(RetTy, "coerce");
2218       DestIsVolatile = false;
2219     }
2220 
2221     // If the value is offset in memory, apply the offset now.
2222     llvm::Value *StorePtr = DestPtr;
2223     if (unsigned Offs = RetAI.getDirectOffset()) {
2224       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2225       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2226       StorePtr = Builder.CreateBitCast(StorePtr,
2227                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2228     }
2229     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2230 
2231     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2232     if (RetTy->isAnyComplexType())
2233       return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
2234     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2235       return RValue::getAggregate(DestPtr);
2236     return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
2237   }
2238 
2239   case ABIArgInfo::Expand:
2240     llvm_unreachable("Invalid ABI kind for return argument");
2241   }
2242 
2243   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2244 }
2245 
2246 /* VarArg handling */
2247 
2248 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2249   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2250 }
2251