1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "CGCXXABI.h" 17 #include "ABIInfo.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Attributes.h" 27 #include "llvm/Support/CallSite.h" 28 #include "llvm/Target/TargetData.h" 29 #include "llvm/InlineAsm.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 using namespace clang; 32 using namespace CodeGen; 33 34 /***/ 35 36 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 37 switch (CC) { 38 default: return llvm::CallingConv::C; 39 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 40 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 41 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 42 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 43 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 44 // TODO: add support for CC_X86Pascal to llvm 45 } 46 } 47 48 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 49 /// qualification. 50 /// FIXME: address space qualification? 51 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 52 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 53 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 54 } 55 56 /// Returns the canonical formal type of the given C++ method. 57 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 58 return MD->getType()->getCanonicalTypeUnqualified() 59 .getAs<FunctionProtoType>(); 60 } 61 62 /// Returns the "extra-canonicalized" return type, which discards 63 /// qualifiers on the return type. Codegen doesn't care about them, 64 /// and it makes ABI code a little easier to be able to assume that 65 /// all parameter and return types are top-level unqualified. 66 static CanQualType GetReturnType(QualType RetTy) { 67 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 68 } 69 70 /// Arrange the argument and result information for a value of the given 71 /// unprototyped freestanding function type. 72 const CGFunctionInfo & 73 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 74 // When translating an unprototyped function type, always use a 75 // variadic type. 76 return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(), 77 ArrayRef<CanQualType>(), 78 FTNP->getExtInfo(), 79 RequiredArgs(0)); 80 } 81 82 /// Arrange the LLVM function layout for a value of the given function 83 /// type, on top of any implicit parameters already stored. Use the 84 /// given ExtInfo instead of the ExtInfo from the function type. 85 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT, 86 SmallVectorImpl<CanQualType> &prefix, 87 CanQual<FunctionProtoType> FTP, 88 FunctionType::ExtInfo extInfo) { 89 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 90 // FIXME: Kill copy. 91 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 92 prefix.push_back(FTP->getArgType(i)); 93 CanQualType resultType = FTP->getResultType().getUnqualifiedType(); 94 return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required); 95 } 96 97 /// Arrange the argument and result information for a free function (i.e. 98 /// not a C++ or ObjC instance method) of the given type. 99 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT, 100 SmallVectorImpl<CanQualType> &prefix, 101 CanQual<FunctionProtoType> FTP) { 102 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo()); 103 } 104 105 /// Given the formal ext-info of a C++ instance method, adjust it 106 /// according to the C++ ABI in effect. 107 static void adjustCXXMethodInfo(CodeGenTypes &CGT, 108 FunctionType::ExtInfo &extInfo, 109 bool isVariadic) { 110 if (extInfo.getCC() == CC_Default) { 111 CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic); 112 extInfo = extInfo.withCallingConv(CC); 113 } 114 } 115 116 /// Arrange the argument and result information for a free function (i.e. 117 /// not a C++ or ObjC instance method) of the given type. 118 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT, 119 SmallVectorImpl<CanQualType> &prefix, 120 CanQual<FunctionProtoType> FTP) { 121 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 122 adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic()); 123 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo); 124 } 125 126 /// Arrange the argument and result information for a value of the 127 /// given freestanding function type. 128 const CGFunctionInfo & 129 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 130 SmallVector<CanQualType, 16> argTypes; 131 return ::arrangeFreeFunctionType(*this, argTypes, FTP); 132 } 133 134 static CallingConv getCallingConventionForDecl(const Decl *D) { 135 // Set the appropriate calling convention for the Function. 136 if (D->hasAttr<StdCallAttr>()) 137 return CC_X86StdCall; 138 139 if (D->hasAttr<FastCallAttr>()) 140 return CC_X86FastCall; 141 142 if (D->hasAttr<ThisCallAttr>()) 143 return CC_X86ThisCall; 144 145 if (D->hasAttr<PascalAttr>()) 146 return CC_X86Pascal; 147 148 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 149 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 150 151 return CC_C; 152 } 153 154 /// Arrange the argument and result information for a call to an 155 /// unknown C++ non-static member function of the given abstract type. 156 /// The member function must be an ordinary function, i.e. not a 157 /// constructor or destructor. 158 const CGFunctionInfo & 159 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 160 const FunctionProtoType *FTP) { 161 SmallVector<CanQualType, 16> argTypes; 162 163 // Add the 'this' pointer. 164 argTypes.push_back(GetThisType(Context, RD)); 165 166 return ::arrangeCXXMethodType(*this, argTypes, 167 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 168 } 169 170 /// Arrange the argument and result information for a declaration or 171 /// definition of the given C++ non-static member function. The 172 /// member function must be an ordinary function, i.e. not a 173 /// constructor or destructor. 174 const CGFunctionInfo & 175 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 176 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); 177 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 178 179 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 180 181 if (MD->isInstance()) { 182 // The abstract case is perfectly fine. 183 return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr()); 184 } 185 186 return arrangeFreeFunctionType(prototype); 187 } 188 189 /// Arrange the argument and result information for a declaration 190 /// or definition to the given constructor variant. 191 const CGFunctionInfo & 192 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D, 193 CXXCtorType ctorKind) { 194 SmallVector<CanQualType, 16> argTypes; 195 argTypes.push_back(GetThisType(Context, D->getParent())); 196 CanQualType resultType = Context.VoidTy; 197 198 TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes); 199 200 CanQual<FunctionProtoType> FTP = GetFormalType(D); 201 202 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size()); 203 204 // Add the formal parameters. 205 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 206 argTypes.push_back(FTP->getArgType(i)); 207 208 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 209 adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic()); 210 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required); 211 } 212 213 /// Arrange the argument and result information for a declaration, 214 /// definition, or call to the given destructor variant. It so 215 /// happens that all three cases produce the same information. 216 const CGFunctionInfo & 217 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D, 218 CXXDtorType dtorKind) { 219 SmallVector<CanQualType, 2> argTypes; 220 argTypes.push_back(GetThisType(Context, D->getParent())); 221 CanQualType resultType = Context.VoidTy; 222 223 TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes); 224 225 CanQual<FunctionProtoType> FTP = GetFormalType(D); 226 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); 227 assert(FTP->isVariadic() == 0 && "dtor with formal parameters"); 228 229 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 230 adjustCXXMethodInfo(*this, extInfo, false); 231 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, 232 RequiredArgs::All); 233 } 234 235 /// Arrange the argument and result information for the declaration or 236 /// definition of the given function. 237 const CGFunctionInfo & 238 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 239 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 240 if (MD->isInstance()) 241 return arrangeCXXMethodDeclaration(MD); 242 243 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 244 245 assert(isa<FunctionType>(FTy)); 246 247 // When declaring a function without a prototype, always use a 248 // non-variadic type. 249 if (isa<FunctionNoProtoType>(FTy)) { 250 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 251 return arrangeLLVMFunctionInfo(noProto->getResultType(), 252 ArrayRef<CanQualType>(), 253 noProto->getExtInfo(), 254 RequiredArgs::All); 255 } 256 257 assert(isa<FunctionProtoType>(FTy)); 258 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 259 } 260 261 /// Arrange the argument and result information for the declaration or 262 /// definition of an Objective-C method. 263 const CGFunctionInfo & 264 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 265 // It happens that this is the same as a call with no optional 266 // arguments, except also using the formal 'self' type. 267 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 268 } 269 270 /// Arrange the argument and result information for the function type 271 /// through which to perform a send to the given Objective-C method, 272 /// using the given receiver type. The receiver type is not always 273 /// the 'self' type of the method or even an Objective-C pointer type. 274 /// This is *not* the right method for actually performing such a 275 /// message send, due to the possibility of optional arguments. 276 const CGFunctionInfo & 277 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 278 QualType receiverType) { 279 SmallVector<CanQualType, 16> argTys; 280 argTys.push_back(Context.getCanonicalParamType(receiverType)); 281 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 282 // FIXME: Kill copy? 283 for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), 284 e = MD->param_end(); i != e; ++i) { 285 argTys.push_back(Context.getCanonicalParamType((*i)->getType())); 286 } 287 288 FunctionType::ExtInfo einfo; 289 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); 290 291 if (getContext().getLangOpts().ObjCAutoRefCount && 292 MD->hasAttr<NSReturnsRetainedAttr>()) 293 einfo = einfo.withProducesResult(true); 294 295 RequiredArgs required = 296 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 297 298 return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys, 299 einfo, required); 300 } 301 302 const CGFunctionInfo & 303 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 304 // FIXME: Do we need to handle ObjCMethodDecl? 305 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 306 307 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 308 return arrangeCXXConstructorDeclaration(CD, GD.getCtorType()); 309 310 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 311 return arrangeCXXDestructor(DD, GD.getDtorType()); 312 313 return arrangeFunctionDeclaration(FD); 314 } 315 316 /// Figure out the rules for calling a function with the given formal 317 /// type using the given arguments. The arguments are necessary 318 /// because the function might be unprototyped, in which case it's 319 /// target-dependent in crazy ways. 320 const CGFunctionInfo & 321 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 322 const FunctionType *fnType) { 323 RequiredArgs required = RequiredArgs::All; 324 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 325 if (proto->isVariadic()) 326 required = RequiredArgs(proto->getNumArgs()); 327 } else if (CGM.getTargetCodeGenInfo() 328 .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) { 329 required = RequiredArgs(0); 330 } 331 332 return arrangeFreeFunctionCall(fnType->getResultType(), args, 333 fnType->getExtInfo(), required); 334 } 335 336 const CGFunctionInfo & 337 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 338 const CallArgList &args, 339 FunctionType::ExtInfo info, 340 RequiredArgs required) { 341 // FIXME: Kill copy. 342 SmallVector<CanQualType, 16> argTypes; 343 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 344 i != e; ++i) 345 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 346 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 347 required); 348 } 349 350 /// Arrange a call to a C++ method, passing the given arguments. 351 const CGFunctionInfo & 352 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 353 const FunctionProtoType *FPT, 354 RequiredArgs required) { 355 // FIXME: Kill copy. 356 SmallVector<CanQualType, 16> argTypes; 357 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 358 i != e; ++i) 359 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 360 361 FunctionType::ExtInfo info = FPT->getExtInfo(); 362 adjustCXXMethodInfo(*this, info, FPT->isVariadic()); 363 return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()), 364 argTypes, info, required); 365 } 366 367 const CGFunctionInfo & 368 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType, 369 const FunctionArgList &args, 370 const FunctionType::ExtInfo &info, 371 bool isVariadic) { 372 // FIXME: Kill copy. 373 SmallVector<CanQualType, 16> argTypes; 374 for (FunctionArgList::const_iterator i = args.begin(), e = args.end(); 375 i != e; ++i) 376 argTypes.push_back(Context.getCanonicalParamType((*i)->getType())); 377 378 RequiredArgs required = 379 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 380 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 381 required); 382 } 383 384 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 385 return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(), 386 FunctionType::ExtInfo(), RequiredArgs::All); 387 } 388 389 /// Arrange the argument and result information for an abstract value 390 /// of a given function type. This is the method which all of the 391 /// above functions ultimately defer to. 392 const CGFunctionInfo & 393 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 394 ArrayRef<CanQualType> argTypes, 395 FunctionType::ExtInfo info, 396 RequiredArgs required) { 397 #ifndef NDEBUG 398 for (ArrayRef<CanQualType>::const_iterator 399 I = argTypes.begin(), E = argTypes.end(); I != E; ++I) 400 assert(I->isCanonicalAsParam()); 401 #endif 402 403 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 404 405 // Lookup or create unique function info. 406 llvm::FoldingSetNodeID ID; 407 CGFunctionInfo::Profile(ID, info, required, resultType, argTypes); 408 409 void *insertPos = 0; 410 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 411 if (FI) 412 return *FI; 413 414 // Construct the function info. We co-allocate the ArgInfos. 415 FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required); 416 FunctionInfos.InsertNode(FI, insertPos); 417 418 bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted; 419 assert(inserted && "Recursively being processed?"); 420 421 // Compute ABI information. 422 getABIInfo().computeInfo(*FI); 423 424 // Loop over all of the computed argument and return value info. If any of 425 // them are direct or extend without a specified coerce type, specify the 426 // default now. 427 ABIArgInfo &retInfo = FI->getReturnInfo(); 428 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0) 429 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 430 431 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); 432 I != E; ++I) 433 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) 434 I->info.setCoerceToType(ConvertType(I->type)); 435 436 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 437 assert(erased && "Not in set?"); 438 439 return *FI; 440 } 441 442 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 443 const FunctionType::ExtInfo &info, 444 CanQualType resultType, 445 ArrayRef<CanQualType> argTypes, 446 RequiredArgs required) { 447 void *buffer = operator new(sizeof(CGFunctionInfo) + 448 sizeof(ArgInfo) * (argTypes.size() + 1)); 449 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 450 FI->CallingConvention = llvmCC; 451 FI->EffectiveCallingConvention = llvmCC; 452 FI->ASTCallingConvention = info.getCC(); 453 FI->NoReturn = info.getNoReturn(); 454 FI->ReturnsRetained = info.getProducesResult(); 455 FI->Required = required; 456 FI->HasRegParm = info.getHasRegParm(); 457 FI->RegParm = info.getRegParm(); 458 FI->NumArgs = argTypes.size(); 459 FI->getArgsBuffer()[0].type = resultType; 460 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 461 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 462 return FI; 463 } 464 465 /***/ 466 467 void CodeGenTypes::GetExpandedTypes(QualType type, 468 SmallVectorImpl<llvm::Type*> &expandedTypes) { 469 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { 470 uint64_t NumElts = AT->getSize().getZExtValue(); 471 for (uint64_t Elt = 0; Elt < NumElts; ++Elt) 472 GetExpandedTypes(AT->getElementType(), expandedTypes); 473 } else if (const RecordType *RT = type->getAs<RecordType>()) { 474 const RecordDecl *RD = RT->getDecl(); 475 assert(!RD->hasFlexibleArrayMember() && 476 "Cannot expand structure with flexible array."); 477 if (RD->isUnion()) { 478 // Unions can be here only in degenerative cases - all the fields are same 479 // after flattening. Thus we have to use the "largest" field. 480 const FieldDecl *LargestFD = 0; 481 CharUnits UnionSize = CharUnits::Zero(); 482 483 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 484 i != e; ++i) { 485 const FieldDecl *FD = *i; 486 assert(!FD->isBitField() && 487 "Cannot expand structure with bit-field members."); 488 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 489 if (UnionSize < FieldSize) { 490 UnionSize = FieldSize; 491 LargestFD = FD; 492 } 493 } 494 if (LargestFD) 495 GetExpandedTypes(LargestFD->getType(), expandedTypes); 496 } else { 497 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 498 i != e; ++i) { 499 assert(!i->isBitField() && 500 "Cannot expand structure with bit-field members."); 501 GetExpandedTypes(i->getType(), expandedTypes); 502 } 503 } 504 } else if (const ComplexType *CT = type->getAs<ComplexType>()) { 505 llvm::Type *EltTy = ConvertType(CT->getElementType()); 506 expandedTypes.push_back(EltTy); 507 expandedTypes.push_back(EltTy); 508 } else 509 expandedTypes.push_back(ConvertType(type)); 510 } 511 512 llvm::Function::arg_iterator 513 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 514 llvm::Function::arg_iterator AI) { 515 assert(LV.isSimple() && 516 "Unexpected non-simple lvalue during struct expansion."); 517 518 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 519 unsigned NumElts = AT->getSize().getZExtValue(); 520 QualType EltTy = AT->getElementType(); 521 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 522 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt); 523 LValue LV = MakeAddrLValue(EltAddr, EltTy); 524 AI = ExpandTypeFromArgs(EltTy, LV, AI); 525 } 526 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 527 RecordDecl *RD = RT->getDecl(); 528 if (RD->isUnion()) { 529 // Unions can be here only in degenerative cases - all the fields are same 530 // after flattening. Thus we have to use the "largest" field. 531 const FieldDecl *LargestFD = 0; 532 CharUnits UnionSize = CharUnits::Zero(); 533 534 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 535 i != e; ++i) { 536 const FieldDecl *FD = *i; 537 assert(!FD->isBitField() && 538 "Cannot expand structure with bit-field members."); 539 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 540 if (UnionSize < FieldSize) { 541 UnionSize = FieldSize; 542 LargestFD = FD; 543 } 544 } 545 if (LargestFD) { 546 // FIXME: What are the right qualifiers here? 547 LValue SubLV = EmitLValueForField(LV, LargestFD); 548 AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI); 549 } 550 } else { 551 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 552 i != e; ++i) { 553 FieldDecl *FD = *i; 554 QualType FT = FD->getType(); 555 556 // FIXME: What are the right qualifiers here? 557 LValue SubLV = EmitLValueForField(LV, FD); 558 AI = ExpandTypeFromArgs(FT, SubLV, AI); 559 } 560 } 561 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 562 QualType EltTy = CT->getElementType(); 563 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real"); 564 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); 565 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag"); 566 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); 567 } else { 568 EmitStoreThroughLValue(RValue::get(AI), LV); 569 ++AI; 570 } 571 572 return AI; 573 } 574 575 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 576 /// accessing some number of bytes out of it, try to gep into the struct to get 577 /// at its inner goodness. Dive as deep as possible without entering an element 578 /// with an in-memory size smaller than DstSize. 579 static llvm::Value * 580 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 581 llvm::StructType *SrcSTy, 582 uint64_t DstSize, CodeGenFunction &CGF) { 583 // We can't dive into a zero-element struct. 584 if (SrcSTy->getNumElements() == 0) return SrcPtr; 585 586 llvm::Type *FirstElt = SrcSTy->getElementType(0); 587 588 // If the first elt is at least as large as what we're looking for, or if the 589 // first element is the same size as the whole struct, we can enter it. 590 uint64_t FirstEltSize = 591 CGF.CGM.getTargetData().getTypeAllocSize(FirstElt); 592 if (FirstEltSize < DstSize && 593 FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy)) 594 return SrcPtr; 595 596 // GEP into the first element. 597 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 598 599 // If the first element is a struct, recurse. 600 llvm::Type *SrcTy = 601 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 602 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 603 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 604 605 return SrcPtr; 606 } 607 608 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 609 /// are either integers or pointers. This does a truncation of the value if it 610 /// is too large or a zero extension if it is too small. 611 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 612 llvm::Type *Ty, 613 CodeGenFunction &CGF) { 614 if (Val->getType() == Ty) 615 return Val; 616 617 if (isa<llvm::PointerType>(Val->getType())) { 618 // If this is Pointer->Pointer avoid conversion to and from int. 619 if (isa<llvm::PointerType>(Ty)) 620 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 621 622 // Convert the pointer to an integer so we can play with its width. 623 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 624 } 625 626 llvm::Type *DestIntTy = Ty; 627 if (isa<llvm::PointerType>(DestIntTy)) 628 DestIntTy = CGF.IntPtrTy; 629 630 if (Val->getType() != DestIntTy) 631 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 632 633 if (isa<llvm::PointerType>(Ty)) 634 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 635 return Val; 636 } 637 638 639 640 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 641 /// a pointer to an object of type \arg Ty. 642 /// 643 /// This safely handles the case when the src type is smaller than the 644 /// destination type; in this situation the values of bits which not 645 /// present in the src are undefined. 646 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 647 llvm::Type *Ty, 648 CodeGenFunction &CGF) { 649 llvm::Type *SrcTy = 650 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 651 652 // If SrcTy and Ty are the same, just do a load. 653 if (SrcTy == Ty) 654 return CGF.Builder.CreateLoad(SrcPtr); 655 656 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); 657 658 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 659 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 660 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 661 } 662 663 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 664 665 // If the source and destination are integer or pointer types, just do an 666 // extension or truncation to the desired type. 667 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 668 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 669 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 670 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 671 } 672 673 // If load is legal, just bitcast the src pointer. 674 if (SrcSize >= DstSize) { 675 // Generally SrcSize is never greater than DstSize, since this means we are 676 // losing bits. However, this can happen in cases where the structure has 677 // additional padding, for example due to a user specified alignment. 678 // 679 // FIXME: Assert that we aren't truncating non-padding bits when have access 680 // to that information. 681 llvm::Value *Casted = 682 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 683 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 684 // FIXME: Use better alignment / avoid requiring aligned load. 685 Load->setAlignment(1); 686 return Load; 687 } 688 689 // Otherwise do coercion through memory. This is stupid, but 690 // simple. 691 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 692 llvm::Value *Casted = 693 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); 694 llvm::StoreInst *Store = 695 CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); 696 // FIXME: Use better alignment / avoid requiring aligned store. 697 Store->setAlignment(1); 698 return CGF.Builder.CreateLoad(Tmp); 699 } 700 701 // Function to store a first-class aggregate into memory. We prefer to 702 // store the elements rather than the aggregate to be more friendly to 703 // fast-isel. 704 // FIXME: Do we need to recurse here? 705 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 706 llvm::Value *DestPtr, bool DestIsVolatile, 707 bool LowAlignment) { 708 // Prefer scalar stores to first-class aggregate stores. 709 if (llvm::StructType *STy = 710 dyn_cast<llvm::StructType>(Val->getType())) { 711 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 712 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 713 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 714 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 715 DestIsVolatile); 716 if (LowAlignment) 717 SI->setAlignment(1); 718 } 719 } else { 720 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 721 if (LowAlignment) 722 SI->setAlignment(1); 723 } 724 } 725 726 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 727 /// where the source and destination may have different types. 728 /// 729 /// This safely handles the case when the src type is larger than the 730 /// destination type; the upper bits of the src will be lost. 731 static void CreateCoercedStore(llvm::Value *Src, 732 llvm::Value *DstPtr, 733 bool DstIsVolatile, 734 CodeGenFunction &CGF) { 735 llvm::Type *SrcTy = Src->getType(); 736 llvm::Type *DstTy = 737 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 738 if (SrcTy == DstTy) { 739 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 740 return; 741 } 742 743 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 744 745 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 746 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 747 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 748 } 749 750 // If the source and destination are integer or pointer types, just do an 751 // extension or truncation to the desired type. 752 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 753 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 754 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 755 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 756 return; 757 } 758 759 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); 760 761 // If store is legal, just bitcast the src pointer. 762 if (SrcSize <= DstSize) { 763 llvm::Value *Casted = 764 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 765 // FIXME: Use better alignment / avoid requiring aligned store. 766 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 767 } else { 768 // Otherwise do coercion through memory. This is stupid, but 769 // simple. 770 771 // Generally SrcSize is never greater than DstSize, since this means we are 772 // losing bits. However, this can happen in cases where the structure has 773 // additional padding, for example due to a user specified alignment. 774 // 775 // FIXME: Assert that we aren't truncating non-padding bits when have access 776 // to that information. 777 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 778 CGF.Builder.CreateStore(Src, Tmp); 779 llvm::Value *Casted = 780 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); 781 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 782 // FIXME: Use better alignment / avoid requiring aligned load. 783 Load->setAlignment(1); 784 CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile); 785 } 786 } 787 788 /***/ 789 790 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 791 return FI.getReturnInfo().isIndirect(); 792 } 793 794 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 795 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 796 switch (BT->getKind()) { 797 default: 798 return false; 799 case BuiltinType::Float: 800 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float); 801 case BuiltinType::Double: 802 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double); 803 case BuiltinType::LongDouble: 804 return getContext().getTargetInfo().useObjCFPRetForRealType( 805 TargetInfo::LongDouble); 806 } 807 } 808 809 return false; 810 } 811 812 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 813 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 814 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 815 if (BT->getKind() == BuiltinType::LongDouble) 816 return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble(); 817 } 818 } 819 820 return false; 821 } 822 823 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 824 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 825 return GetFunctionType(FI); 826 } 827 828 llvm::FunctionType * 829 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 830 831 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; 832 assert(Inserted && "Recursively being processed?"); 833 834 SmallVector<llvm::Type*, 8> argTypes; 835 llvm::Type *resultType = 0; 836 837 const ABIArgInfo &retAI = FI.getReturnInfo(); 838 switch (retAI.getKind()) { 839 case ABIArgInfo::Expand: 840 llvm_unreachable("Invalid ABI kind for return argument"); 841 842 case ABIArgInfo::Extend: 843 case ABIArgInfo::Direct: 844 resultType = retAI.getCoerceToType(); 845 break; 846 847 case ABIArgInfo::Indirect: { 848 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 849 resultType = llvm::Type::getVoidTy(getLLVMContext()); 850 851 QualType ret = FI.getReturnType(); 852 llvm::Type *ty = ConvertType(ret); 853 unsigned addressSpace = Context.getTargetAddressSpace(ret); 854 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 855 break; 856 } 857 858 case ABIArgInfo::Ignore: 859 resultType = llvm::Type::getVoidTy(getLLVMContext()); 860 break; 861 } 862 863 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 864 ie = FI.arg_end(); it != ie; ++it) { 865 const ABIArgInfo &argAI = it->info; 866 867 switch (argAI.getKind()) { 868 case ABIArgInfo::Ignore: 869 break; 870 871 case ABIArgInfo::Indirect: { 872 // indirect arguments are always on the stack, which is addr space #0. 873 llvm::Type *LTy = ConvertTypeForMem(it->type); 874 argTypes.push_back(LTy->getPointerTo()); 875 break; 876 } 877 878 case ABIArgInfo::Extend: 879 case ABIArgInfo::Direct: { 880 // Insert a padding type to ensure proper alignment. 881 if (llvm::Type *PaddingType = argAI.getPaddingType()) 882 argTypes.push_back(PaddingType); 883 // If the coerce-to type is a first class aggregate, flatten it. Either 884 // way is semantically identical, but fast-isel and the optimizer 885 // generally likes scalar values better than FCAs. 886 llvm::Type *argType = argAI.getCoerceToType(); 887 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { 888 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 889 argTypes.push_back(st->getElementType(i)); 890 } else { 891 argTypes.push_back(argType); 892 } 893 break; 894 } 895 896 case ABIArgInfo::Expand: 897 GetExpandedTypes(it->type, argTypes); 898 break; 899 } 900 } 901 902 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 903 assert(Erased && "Not in set?"); 904 905 return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic()); 906 } 907 908 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 909 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 910 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 911 912 if (!isFuncTypeConvertible(FPT)) 913 return llvm::StructType::get(getLLVMContext()); 914 915 const CGFunctionInfo *Info; 916 if (isa<CXXDestructorDecl>(MD)) 917 Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 918 else 919 Info = &arrangeCXXMethodDeclaration(MD); 920 return GetFunctionType(*Info); 921 } 922 923 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 924 const Decl *TargetDecl, 925 AttributeListType &PAL, 926 unsigned &CallingConv) { 927 llvm::Attributes FuncAttrs; 928 llvm::Attributes RetAttrs; 929 930 CallingConv = FI.getEffectiveCallingConvention(); 931 932 if (FI.isNoReturn()) 933 FuncAttrs |= llvm::Attribute::NoReturn; 934 935 // FIXME: handle sseregparm someday... 936 if (TargetDecl) { 937 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 938 FuncAttrs |= llvm::Attribute::ReturnsTwice; 939 if (TargetDecl->hasAttr<NoThrowAttr>()) 940 FuncAttrs |= llvm::Attribute::NoUnwind; 941 else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 942 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 943 if (FPT && FPT->isNothrow(getContext())) 944 FuncAttrs |= llvm::Attribute::NoUnwind; 945 } 946 947 if (TargetDecl->hasAttr<NoReturnAttr>()) 948 FuncAttrs |= llvm::Attribute::NoReturn; 949 950 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 951 FuncAttrs |= llvm::Attribute::ReturnsTwice; 952 953 // 'const' and 'pure' attribute functions are also nounwind. 954 if (TargetDecl->hasAttr<ConstAttr>()) { 955 FuncAttrs |= llvm::Attribute::ReadNone; 956 FuncAttrs |= llvm::Attribute::NoUnwind; 957 } else if (TargetDecl->hasAttr<PureAttr>()) { 958 FuncAttrs |= llvm::Attribute::ReadOnly; 959 FuncAttrs |= llvm::Attribute::NoUnwind; 960 } 961 if (TargetDecl->hasAttr<MallocAttr>()) 962 RetAttrs |= llvm::Attribute::NoAlias; 963 } 964 965 if (CodeGenOpts.OptimizeSize) 966 FuncAttrs |= llvm::Attribute::OptimizeForSize; 967 if (CodeGenOpts.DisableRedZone) 968 FuncAttrs |= llvm::Attribute::NoRedZone; 969 if (CodeGenOpts.NoImplicitFloat) 970 FuncAttrs |= llvm::Attribute::NoImplicitFloat; 971 972 QualType RetTy = FI.getReturnType(); 973 unsigned Index = 1; 974 const ABIArgInfo &RetAI = FI.getReturnInfo(); 975 switch (RetAI.getKind()) { 976 case ABIArgInfo::Extend: 977 if (RetTy->hasSignedIntegerRepresentation()) 978 RetAttrs |= llvm::Attribute::SExt; 979 else if (RetTy->hasUnsignedIntegerRepresentation()) 980 RetAttrs |= llvm::Attribute::ZExt; 981 break; 982 case ABIArgInfo::Direct: 983 case ABIArgInfo::Ignore: 984 break; 985 986 case ABIArgInfo::Indirect: 987 PAL.push_back(llvm::AttributeWithIndex::get(Index, 988 llvm::Attribute::StructRet)); 989 ++Index; 990 // sret disables readnone and readonly 991 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 992 llvm::Attribute::ReadNone); 993 break; 994 995 case ABIArgInfo::Expand: 996 llvm_unreachable("Invalid ABI kind for return argument"); 997 } 998 999 if (RetAttrs) 1000 PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); 1001 1002 // FIXME: RegParm should be reduced in case of global register variable. 1003 signed RegParm; 1004 if (FI.getHasRegParm()) 1005 RegParm = FI.getRegParm(); 1006 else 1007 RegParm = CodeGenOpts.NumRegisterParameters; 1008 1009 unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0); 1010 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1011 ie = FI.arg_end(); it != ie; ++it) { 1012 QualType ParamType = it->type; 1013 const ABIArgInfo &AI = it->info; 1014 llvm::Attributes Attrs; 1015 1016 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1017 // have the corresponding parameter variable. It doesn't make 1018 // sense to do it here because parameters are so messed up. 1019 switch (AI.getKind()) { 1020 case ABIArgInfo::Extend: 1021 if (ParamType->isSignedIntegerOrEnumerationType()) 1022 Attrs |= llvm::Attribute::SExt; 1023 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 1024 Attrs |= llvm::Attribute::ZExt; 1025 // FALL THROUGH 1026 case ABIArgInfo::Direct: 1027 if (RegParm > 0 && 1028 (ParamType->isIntegerType() || ParamType->isPointerType() || 1029 ParamType->isReferenceType())) { 1030 RegParm -= 1031 (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; 1032 if (RegParm >= 0) 1033 Attrs |= llvm::Attribute::InReg; 1034 } 1035 // FIXME: handle sseregparm someday... 1036 1037 // Increment Index if there is padding. 1038 Index += (AI.getPaddingType() != 0); 1039 1040 if (llvm::StructType *STy = 1041 dyn_cast<llvm::StructType>(AI.getCoerceToType())) 1042 Index += STy->getNumElements()-1; // 1 will be added below. 1043 break; 1044 1045 case ABIArgInfo::Indirect: 1046 if (AI.getIndirectByVal()) 1047 Attrs |= llvm::Attribute::ByVal; 1048 1049 Attrs |= 1050 llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); 1051 // byval disables readnone and readonly. 1052 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 1053 llvm::Attribute::ReadNone); 1054 break; 1055 1056 case ABIArgInfo::Ignore: 1057 // Skip increment, no matching LLVM parameter. 1058 continue; 1059 1060 case ABIArgInfo::Expand: { 1061 SmallVector<llvm::Type*, 8> types; 1062 // FIXME: This is rather inefficient. Do we ever actually need to do 1063 // anything here? The result should be just reconstructed on the other 1064 // side, so extension should be a non-issue. 1065 getTypes().GetExpandedTypes(ParamType, types); 1066 Index += types.size(); 1067 continue; 1068 } 1069 } 1070 1071 if (Attrs) 1072 PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs)); 1073 ++Index; 1074 } 1075 if (FuncAttrs) 1076 PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); 1077 } 1078 1079 /// An argument came in as a promoted argument; demote it back to its 1080 /// declared type. 1081 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1082 const VarDecl *var, 1083 llvm::Value *value) { 1084 llvm::Type *varType = CGF.ConvertType(var->getType()); 1085 1086 // This can happen with promotions that actually don't change the 1087 // underlying type, like the enum promotions. 1088 if (value->getType() == varType) return value; 1089 1090 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1091 && "unexpected promotion type"); 1092 1093 if (isa<llvm::IntegerType>(varType)) 1094 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1095 1096 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1097 } 1098 1099 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1100 llvm::Function *Fn, 1101 const FunctionArgList &Args) { 1102 // If this is an implicit-return-zero function, go ahead and 1103 // initialize the return value. TODO: it might be nice to have 1104 // a more general mechanism for this that didn't require synthesized 1105 // return statements. 1106 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 1107 if (FD->hasImplicitReturnZero()) { 1108 QualType RetTy = FD->getResultType().getUnqualifiedType(); 1109 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1110 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1111 Builder.CreateStore(Zero, ReturnValue); 1112 } 1113 } 1114 1115 // FIXME: We no longer need the types from FunctionArgList; lift up and 1116 // simplify. 1117 1118 // Emit allocs for param decls. Give the LLVM Argument nodes names. 1119 llvm::Function::arg_iterator AI = Fn->arg_begin(); 1120 1121 // Name the struct return argument. 1122 if (CGM.ReturnTypeUsesSRet(FI)) { 1123 AI->setName("agg.result"); 1124 AI->addAttr(llvm::Attribute::NoAlias); 1125 ++AI; 1126 } 1127 1128 assert(FI.arg_size() == Args.size() && 1129 "Mismatch between function signature & arguments."); 1130 unsigned ArgNo = 1; 1131 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1132 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1133 i != e; ++i, ++info_it, ++ArgNo) { 1134 const VarDecl *Arg = *i; 1135 QualType Ty = info_it->type; 1136 const ABIArgInfo &ArgI = info_it->info; 1137 1138 bool isPromoted = 1139 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1140 1141 switch (ArgI.getKind()) { 1142 case ABIArgInfo::Indirect: { 1143 llvm::Value *V = AI; 1144 1145 if (hasAggregateLLVMType(Ty)) { 1146 // Aggregates and complex variables are accessed by reference. All we 1147 // need to do is realign the value, if requested 1148 if (ArgI.getIndirectRealign()) { 1149 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 1150 1151 // Copy from the incoming argument pointer to the temporary with the 1152 // appropriate alignment. 1153 // 1154 // FIXME: We should have a common utility for generating an aggregate 1155 // copy. 1156 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 1157 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1158 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 1159 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 1160 Builder.CreateMemCpy(Dst, 1161 Src, 1162 llvm::ConstantInt::get(IntPtrTy, 1163 Size.getQuantity()), 1164 ArgI.getIndirectAlign(), 1165 false); 1166 V = AlignedTemp; 1167 } 1168 } else { 1169 // Load scalar value from indirect argument. 1170 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1171 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); 1172 1173 if (isPromoted) 1174 V = emitArgumentDemotion(*this, Arg, V); 1175 } 1176 EmitParmDecl(*Arg, V, ArgNo); 1177 break; 1178 } 1179 1180 case ABIArgInfo::Extend: 1181 case ABIArgInfo::Direct: { 1182 // Skip the dummy padding argument. 1183 if (ArgI.getPaddingType()) 1184 ++AI; 1185 1186 // If we have the trivial case, handle it with no muss and fuss. 1187 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1188 ArgI.getCoerceToType() == ConvertType(Ty) && 1189 ArgI.getDirectOffset() == 0) { 1190 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1191 llvm::Value *V = AI; 1192 1193 if (Arg->getType().isRestrictQualified()) 1194 AI->addAttr(llvm::Attribute::NoAlias); 1195 1196 // Ensure the argument is the correct type. 1197 if (V->getType() != ArgI.getCoerceToType()) 1198 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1199 1200 if (isPromoted) 1201 V = emitArgumentDemotion(*this, Arg, V); 1202 1203 EmitParmDecl(*Arg, V, ArgNo); 1204 break; 1205 } 1206 1207 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); 1208 1209 // The alignment we need to use is the max of the requested alignment for 1210 // the argument plus the alignment required by our access code below. 1211 unsigned AlignmentToUse = 1212 CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType()); 1213 AlignmentToUse = std::max(AlignmentToUse, 1214 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1215 1216 Alloca->setAlignment(AlignmentToUse); 1217 llvm::Value *V = Alloca; 1218 llvm::Value *Ptr = V; // Pointer to store into. 1219 1220 // If the value is offset in memory, apply the offset now. 1221 if (unsigned Offs = ArgI.getDirectOffset()) { 1222 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1223 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1224 Ptr = Builder.CreateBitCast(Ptr, 1225 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1226 } 1227 1228 // If the coerce-to type is a first class aggregate, we flatten it and 1229 // pass the elements. Either way is semantically identical, but fast-isel 1230 // and the optimizer generally likes scalar values better than FCAs. 1231 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 1232 if (STy && STy->getNumElements() > 1) { 1233 uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy); 1234 llvm::Type *DstTy = 1235 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 1236 uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy); 1237 1238 if (SrcSize <= DstSize) { 1239 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1240 1241 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1242 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1243 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1244 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1245 Builder.CreateStore(AI++, EltPtr); 1246 } 1247 } else { 1248 llvm::AllocaInst *TempAlloca = 1249 CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); 1250 TempAlloca->setAlignment(AlignmentToUse); 1251 llvm::Value *TempV = TempAlloca; 1252 1253 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1254 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1255 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1256 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i); 1257 Builder.CreateStore(AI++, EltPtr); 1258 } 1259 1260 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); 1261 } 1262 } else { 1263 // Simple case, just do a coerced store of the argument into the alloca. 1264 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1265 AI->setName(Arg->getName() + ".coerce"); 1266 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 1267 } 1268 1269 1270 // Match to what EmitParmDecl is expecting for this type. 1271 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 1272 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); 1273 if (isPromoted) 1274 V = emitArgumentDemotion(*this, Arg, V); 1275 } 1276 EmitParmDecl(*Arg, V, ArgNo); 1277 continue; // Skip ++AI increment, already done. 1278 } 1279 1280 case ABIArgInfo::Expand: { 1281 // If this structure was expanded into multiple arguments then 1282 // we need to create a temporary and reconstruct it from the 1283 // arguments. 1284 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1285 CharUnits Align = getContext().getDeclAlign(Arg); 1286 Alloca->setAlignment(Align.getQuantity()); 1287 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1288 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); 1289 EmitParmDecl(*Arg, Alloca, ArgNo); 1290 1291 // Name the arguments used in expansion and increment AI. 1292 unsigned Index = 0; 1293 for (; AI != End; ++AI, ++Index) 1294 AI->setName(Arg->getName() + "." + Twine(Index)); 1295 continue; 1296 } 1297 1298 case ABIArgInfo::Ignore: 1299 // Initialize the local variable appropriately. 1300 if (hasAggregateLLVMType(Ty)) 1301 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); 1302 else 1303 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), 1304 ArgNo); 1305 1306 // Skip increment, no matching LLVM parameter. 1307 continue; 1308 } 1309 1310 ++AI; 1311 } 1312 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1313 } 1314 1315 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 1316 while (insn->use_empty()) { 1317 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 1318 if (!bitcast) return; 1319 1320 // This is "safe" because we would have used a ConstantExpr otherwise. 1321 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 1322 bitcast->eraseFromParent(); 1323 } 1324 } 1325 1326 /// Try to emit a fused autorelease of a return result. 1327 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1328 llvm::Value *result) { 1329 // We must be immediately followed the cast. 1330 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1331 if (BB->empty()) return 0; 1332 if (&BB->back() != result) return 0; 1333 1334 llvm::Type *resultType = result->getType(); 1335 1336 // result is in a BasicBlock and is therefore an Instruction. 1337 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1338 1339 SmallVector<llvm::Instruction*,4> insnsToKill; 1340 1341 // Look for: 1342 // %generator = bitcast %type1* %generator2 to %type2* 1343 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1344 // We would have emitted this as a constant if the operand weren't 1345 // an Instruction. 1346 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1347 1348 // Require the generator to be immediately followed by the cast. 1349 if (generator->getNextNode() != bitcast) 1350 return 0; 1351 1352 insnsToKill.push_back(bitcast); 1353 } 1354 1355 // Look for: 1356 // %generator = call i8* @objc_retain(i8* %originalResult) 1357 // or 1358 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1359 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1360 if (!call) return 0; 1361 1362 bool doRetainAutorelease; 1363 1364 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1365 doRetainAutorelease = true; 1366 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1367 .objc_retainAutoreleasedReturnValue) { 1368 doRetainAutorelease = false; 1369 1370 // Look for an inline asm immediately preceding the call and kill it, too. 1371 llvm::Instruction *prev = call->getPrevNode(); 1372 if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev)) 1373 if (asmCall->getCalledValue() 1374 == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) 1375 insnsToKill.push_back(prev); 1376 } else { 1377 return 0; 1378 } 1379 1380 result = call->getArgOperand(0); 1381 insnsToKill.push_back(call); 1382 1383 // Keep killing bitcasts, for sanity. Note that we no longer care 1384 // about precise ordering as long as there's exactly one use. 1385 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1386 if (!bitcast->hasOneUse()) break; 1387 insnsToKill.push_back(bitcast); 1388 result = bitcast->getOperand(0); 1389 } 1390 1391 // Delete all the unnecessary instructions, from latest to earliest. 1392 for (SmallVectorImpl<llvm::Instruction*>::iterator 1393 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1394 (*i)->eraseFromParent(); 1395 1396 // Do the fused retain/autorelease if we were asked to. 1397 if (doRetainAutorelease) 1398 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1399 1400 // Cast back to the result type. 1401 return CGF.Builder.CreateBitCast(result, resultType); 1402 } 1403 1404 /// If this is a +1 of the value of an immutable 'self', remove it. 1405 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 1406 llvm::Value *result) { 1407 // This is only applicable to a method with an immutable 'self'. 1408 const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl); 1409 if (!method) return 0; 1410 const VarDecl *self = method->getSelfDecl(); 1411 if (!self->getType().isConstQualified()) return 0; 1412 1413 // Look for a retain call. 1414 llvm::CallInst *retainCall = 1415 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 1416 if (!retainCall || 1417 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 1418 return 0; 1419 1420 // Look for an ordinary load of 'self'. 1421 llvm::Value *retainedValue = retainCall->getArgOperand(0); 1422 llvm::LoadInst *load = 1423 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 1424 if (!load || load->isAtomic() || load->isVolatile() || 1425 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 1426 return 0; 1427 1428 // Okay! Burn it all down. This relies for correctness on the 1429 // assumption that the retain is emitted as part of the return and 1430 // that thereafter everything is used "linearly". 1431 llvm::Type *resultType = result->getType(); 1432 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 1433 assert(retainCall->use_empty()); 1434 retainCall->eraseFromParent(); 1435 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 1436 1437 return CGF.Builder.CreateBitCast(load, resultType); 1438 } 1439 1440 /// Emit an ARC autorelease of the result of a function. 1441 /// 1442 /// \return the value to actually return from the function 1443 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1444 llvm::Value *result) { 1445 // If we're returning 'self', kill the initial retain. This is a 1446 // heuristic attempt to "encourage correctness" in the really unfortunate 1447 // case where we have a return of self during a dealloc and we desperately 1448 // need to avoid the possible autorelease. 1449 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 1450 return self; 1451 1452 // At -O0, try to emit a fused retain/autorelease. 1453 if (CGF.shouldUseFusedARCCalls()) 1454 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1455 return fused; 1456 1457 return CGF.EmitARCAutoreleaseReturnValue(result); 1458 } 1459 1460 /// Heuristically search for a dominating store to the return-value slot. 1461 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 1462 // If there are multiple uses of the return-value slot, just check 1463 // for something immediately preceding the IP. Sometimes this can 1464 // happen with how we generate implicit-returns; it can also happen 1465 // with noreturn cleanups. 1466 if (!CGF.ReturnValue->hasOneUse()) { 1467 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1468 if (IP->empty()) return 0; 1469 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); 1470 if (!store) return 0; 1471 if (store->getPointerOperand() != CGF.ReturnValue) return 0; 1472 assert(!store->isAtomic() && !store->isVolatile()); // see below 1473 return store; 1474 } 1475 1476 llvm::StoreInst *store = 1477 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back()); 1478 if (!store) return 0; 1479 1480 // These aren't actually possible for non-coerced returns, and we 1481 // only care about non-coerced returns on this code path. 1482 assert(!store->isAtomic() && !store->isVolatile()); 1483 1484 // Now do a first-and-dirty dominance check: just walk up the 1485 // single-predecessors chain from the current insertion point. 1486 llvm::BasicBlock *StoreBB = store->getParent(); 1487 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1488 while (IP != StoreBB) { 1489 if (!(IP = IP->getSinglePredecessor())) 1490 return 0; 1491 } 1492 1493 // Okay, the store's basic block dominates the insertion point; we 1494 // can do our thing. 1495 return store; 1496 } 1497 1498 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) { 1499 // Functions with no result always return void. 1500 if (ReturnValue == 0) { 1501 Builder.CreateRetVoid(); 1502 return; 1503 } 1504 1505 llvm::DebugLoc RetDbgLoc; 1506 llvm::Value *RV = 0; 1507 QualType RetTy = FI.getReturnType(); 1508 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1509 1510 switch (RetAI.getKind()) { 1511 case ABIArgInfo::Indirect: { 1512 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1513 if (RetTy->isAnyComplexType()) { 1514 ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); 1515 StoreComplexToAddr(RT, CurFn->arg_begin(), false); 1516 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1517 // Do nothing; aggregrates get evaluated directly into the destination. 1518 } else { 1519 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), 1520 false, Alignment, RetTy); 1521 } 1522 break; 1523 } 1524 1525 case ABIArgInfo::Extend: 1526 case ABIArgInfo::Direct: 1527 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1528 RetAI.getDirectOffset() == 0) { 1529 // The internal return value temp always will have pointer-to-return-type 1530 // type, just do a load. 1531 1532 // If there is a dominating store to ReturnValue, we can elide 1533 // the load, zap the store, and usually zap the alloca. 1534 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { 1535 // Get the stored value and nuke the now-dead store. 1536 RetDbgLoc = SI->getDebugLoc(); 1537 RV = SI->getValueOperand(); 1538 SI->eraseFromParent(); 1539 1540 // If that was the only use of the return value, nuke it as well now. 1541 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1542 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1543 ReturnValue = 0; 1544 } 1545 1546 // Otherwise, we have to do a simple load. 1547 } else { 1548 RV = Builder.CreateLoad(ReturnValue); 1549 } 1550 } else { 1551 llvm::Value *V = ReturnValue; 1552 // If the value is offset in memory, apply the offset now. 1553 if (unsigned Offs = RetAI.getDirectOffset()) { 1554 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1555 V = Builder.CreateConstGEP1_32(V, Offs); 1556 V = Builder.CreateBitCast(V, 1557 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1558 } 1559 1560 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1561 } 1562 1563 // In ARC, end functions that return a retainable type with a call 1564 // to objc_autoreleaseReturnValue. 1565 if (AutoreleaseResult) { 1566 assert(getLangOpts().ObjCAutoRefCount && 1567 !FI.isReturnsRetained() && 1568 RetTy->isObjCRetainableType()); 1569 RV = emitAutoreleaseOfResult(*this, RV); 1570 } 1571 1572 break; 1573 1574 case ABIArgInfo::Ignore: 1575 break; 1576 1577 case ABIArgInfo::Expand: 1578 llvm_unreachable("Invalid ABI kind for return argument"); 1579 } 1580 1581 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1582 if (!RetDbgLoc.isUnknown()) 1583 Ret->setDebugLoc(RetDbgLoc); 1584 } 1585 1586 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1587 const VarDecl *param) { 1588 // StartFunction converted the ABI-lowered parameter(s) into a 1589 // local alloca. We need to turn that into an r-value suitable 1590 // for EmitCall. 1591 llvm::Value *local = GetAddrOfLocalVar(param); 1592 1593 QualType type = param->getType(); 1594 1595 // For the most part, we just need to load the alloca, except: 1596 // 1) aggregate r-values are actually pointers to temporaries, and 1597 // 2) references to aggregates are pointers directly to the aggregate. 1598 // I don't know why references to non-aggregates are different here. 1599 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1600 if (hasAggregateLLVMType(ref->getPointeeType())) 1601 return args.add(RValue::getAggregate(local), type); 1602 1603 // Locals which are references to scalars are represented 1604 // with allocas holding the pointer. 1605 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1606 } 1607 1608 if (type->isAnyComplexType()) { 1609 ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false); 1610 return args.add(RValue::getComplex(complex), type); 1611 } 1612 1613 if (hasAggregateLLVMType(type)) 1614 return args.add(RValue::getAggregate(local), type); 1615 1616 unsigned alignment = getContext().getDeclAlign(param).getQuantity(); 1617 llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type); 1618 return args.add(RValue::get(value), type); 1619 } 1620 1621 static bool isProvablyNull(llvm::Value *addr) { 1622 return isa<llvm::ConstantPointerNull>(addr); 1623 } 1624 1625 static bool isProvablyNonNull(llvm::Value *addr) { 1626 return isa<llvm::AllocaInst>(addr); 1627 } 1628 1629 /// Emit the actual writing-back of a writeback. 1630 static void emitWriteback(CodeGenFunction &CGF, 1631 const CallArgList::Writeback &writeback) { 1632 llvm::Value *srcAddr = writeback.Address; 1633 assert(!isProvablyNull(srcAddr) && 1634 "shouldn't have writeback for provably null argument"); 1635 1636 llvm::BasicBlock *contBB = 0; 1637 1638 // If the argument wasn't provably non-null, we need to null check 1639 // before doing the store. 1640 bool provablyNonNull = isProvablyNonNull(srcAddr); 1641 if (!provablyNonNull) { 1642 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 1643 contBB = CGF.createBasicBlock("icr.done"); 1644 1645 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1646 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 1647 CGF.EmitBlock(writebackBB); 1648 } 1649 1650 // Load the value to writeback. 1651 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 1652 1653 // Cast it back, in case we're writing an id to a Foo* or something. 1654 value = CGF.Builder.CreateBitCast(value, 1655 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 1656 "icr.writeback-cast"); 1657 1658 // Perform the writeback. 1659 QualType srcAddrType = writeback.AddressType; 1660 CGF.EmitStoreThroughLValue(RValue::get(value), 1661 CGF.MakeAddrLValue(srcAddr, srcAddrType)); 1662 1663 // Jump to the continuation block. 1664 if (!provablyNonNull) 1665 CGF.EmitBlock(contBB); 1666 } 1667 1668 static void emitWritebacks(CodeGenFunction &CGF, 1669 const CallArgList &args) { 1670 for (CallArgList::writeback_iterator 1671 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) 1672 emitWriteback(CGF, *i); 1673 } 1674 1675 /// Emit an argument that's being passed call-by-writeback. That is, 1676 /// we are passing the address of 1677 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 1678 const ObjCIndirectCopyRestoreExpr *CRE) { 1679 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 1680 1681 // The dest and src types don't necessarily match in LLVM terms 1682 // because of the crazy ObjC compatibility rules. 1683 1684 llvm::PointerType *destType = 1685 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 1686 1687 // If the address is a constant null, just pass the appropriate null. 1688 if (isProvablyNull(srcAddr)) { 1689 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 1690 CRE->getType()); 1691 return; 1692 } 1693 1694 QualType srcAddrType = 1695 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 1696 1697 // Create the temporary. 1698 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 1699 "icr.temp"); 1700 1701 // Zero-initialize it if we're not doing a copy-initialization. 1702 bool shouldCopy = CRE->shouldCopy(); 1703 if (!shouldCopy) { 1704 llvm::Value *null = 1705 llvm::ConstantPointerNull::get( 1706 cast<llvm::PointerType>(destType->getElementType())); 1707 CGF.Builder.CreateStore(null, temp); 1708 } 1709 1710 llvm::BasicBlock *contBB = 0; 1711 1712 // If the address is *not* known to be non-null, we need to switch. 1713 llvm::Value *finalArgument; 1714 1715 bool provablyNonNull = isProvablyNonNull(srcAddr); 1716 if (provablyNonNull) { 1717 finalArgument = temp; 1718 } else { 1719 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1720 1721 finalArgument = CGF.Builder.CreateSelect(isNull, 1722 llvm::ConstantPointerNull::get(destType), 1723 temp, "icr.argument"); 1724 1725 // If we need to copy, then the load has to be conditional, which 1726 // means we need control flow. 1727 if (shouldCopy) { 1728 contBB = CGF.createBasicBlock("icr.cont"); 1729 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 1730 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 1731 CGF.EmitBlock(copyBB); 1732 } 1733 } 1734 1735 // Perform a copy if necessary. 1736 if (shouldCopy) { 1737 LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 1738 RValue srcRV = CGF.EmitLoadOfLValue(srcLV); 1739 assert(srcRV.isScalar()); 1740 1741 llvm::Value *src = srcRV.getScalarVal(); 1742 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 1743 "icr.cast"); 1744 1745 // Use an ordinary store, not a store-to-lvalue. 1746 CGF.Builder.CreateStore(src, temp); 1747 } 1748 1749 // Finish the control flow if we needed it. 1750 if (shouldCopy && !provablyNonNull) 1751 CGF.EmitBlock(contBB); 1752 1753 args.addWriteback(srcAddr, srcAddrType, temp); 1754 args.add(RValue::get(finalArgument), CRE->getType()); 1755 } 1756 1757 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 1758 QualType type) { 1759 if (const ObjCIndirectCopyRestoreExpr *CRE 1760 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 1761 assert(getContext().getLangOpts().ObjCAutoRefCount); 1762 assert(getContext().hasSameType(E->getType(), type)); 1763 return emitWritebackArg(*this, args, CRE); 1764 } 1765 1766 assert(type->isReferenceType() == E->isGLValue() && 1767 "reference binding to unmaterialized r-value!"); 1768 1769 if (E->isGLValue()) { 1770 assert(E->getObjectKind() == OK_Ordinary); 1771 return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0), 1772 type); 1773 } 1774 1775 if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() && 1776 isa<ImplicitCastExpr>(E) && 1777 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 1778 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 1779 assert(L.isSimple()); 1780 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 1781 return; 1782 } 1783 1784 args.add(EmitAnyExprToTemp(E), type); 1785 } 1786 1787 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 1788 // optimizer it can aggressively ignore unwind edges. 1789 void 1790 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 1791 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 1792 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 1793 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 1794 CGM.getNoObjCARCExceptionsMetadata()); 1795 } 1796 1797 /// Emits a call or invoke instruction to the given function, depending 1798 /// on the current state of the EH stack. 1799 llvm::CallSite 1800 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1801 ArrayRef<llvm::Value *> Args, 1802 const Twine &Name) { 1803 llvm::BasicBlock *InvokeDest = getInvokeDest(); 1804 1805 llvm::Instruction *Inst; 1806 if (!InvokeDest) 1807 Inst = Builder.CreateCall(Callee, Args, Name); 1808 else { 1809 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 1810 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 1811 EmitBlock(ContBB); 1812 } 1813 1814 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 1815 // optimizer it can aggressively ignore unwind edges. 1816 if (CGM.getLangOpts().ObjCAutoRefCount) 1817 AddObjCARCExceptionMetadata(Inst); 1818 1819 return Inst; 1820 } 1821 1822 llvm::CallSite 1823 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1824 const Twine &Name) { 1825 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); 1826 } 1827 1828 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 1829 llvm::FunctionType *FTy) { 1830 if (ArgNo < FTy->getNumParams()) 1831 assert(Elt->getType() == FTy->getParamType(ArgNo)); 1832 else 1833 assert(FTy->isVarArg()); 1834 ++ArgNo; 1835 } 1836 1837 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 1838 SmallVector<llvm::Value*,16> &Args, 1839 llvm::FunctionType *IRFuncTy) { 1840 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1841 unsigned NumElts = AT->getSize().getZExtValue(); 1842 QualType EltTy = AT->getElementType(); 1843 llvm::Value *Addr = RV.getAggregateAddr(); 1844 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 1845 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 1846 LValue LV = MakeAddrLValue(EltAddr, EltTy); 1847 RValue EltRV; 1848 if (EltTy->isAnyComplexType()) 1849 // FIXME: Volatile? 1850 EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false)); 1851 else if (CodeGenFunction::hasAggregateLLVMType(EltTy)) 1852 EltRV = LV.asAggregateRValue(); 1853 else 1854 EltRV = EmitLoadOfLValue(LV); 1855 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); 1856 } 1857 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 1858 RecordDecl *RD = RT->getDecl(); 1859 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 1860 LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty); 1861 1862 if (RD->isUnion()) { 1863 const FieldDecl *LargestFD = 0; 1864 CharUnits UnionSize = CharUnits::Zero(); 1865 1866 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1867 i != e; ++i) { 1868 const FieldDecl *FD = *i; 1869 assert(!FD->isBitField() && 1870 "Cannot expand structure with bit-field members."); 1871 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 1872 if (UnionSize < FieldSize) { 1873 UnionSize = FieldSize; 1874 LargestFD = FD; 1875 } 1876 } 1877 if (LargestFD) { 1878 RValue FldRV = EmitRValueForField(LV, LargestFD); 1879 ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy); 1880 } 1881 } else { 1882 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1883 i != e; ++i) { 1884 FieldDecl *FD = *i; 1885 1886 RValue FldRV = EmitRValueForField(LV, FD); 1887 ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy); 1888 } 1889 } 1890 } else if (Ty->isAnyComplexType()) { 1891 ComplexPairTy CV = RV.getComplexVal(); 1892 Args.push_back(CV.first); 1893 Args.push_back(CV.second); 1894 } else { 1895 assert(RV.isScalar() && 1896 "Unexpected non-scalar rvalue during struct expansion."); 1897 1898 // Insert a bitcast as needed. 1899 llvm::Value *V = RV.getScalarVal(); 1900 if (Args.size() < IRFuncTy->getNumParams() && 1901 V->getType() != IRFuncTy->getParamType(Args.size())) 1902 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 1903 1904 Args.push_back(V); 1905 } 1906 } 1907 1908 1909 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 1910 llvm::Value *Callee, 1911 ReturnValueSlot ReturnValue, 1912 const CallArgList &CallArgs, 1913 const Decl *TargetDecl, 1914 llvm::Instruction **callOrInvoke) { 1915 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 1916 SmallVector<llvm::Value*, 16> Args; 1917 1918 // Handle struct-return functions by passing a pointer to the 1919 // location that we would like to return into. 1920 QualType RetTy = CallInfo.getReturnType(); 1921 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 1922 1923 // IRArgNo - Keep track of the argument number in the callee we're looking at. 1924 unsigned IRArgNo = 0; 1925 llvm::FunctionType *IRFuncTy = 1926 cast<llvm::FunctionType>( 1927 cast<llvm::PointerType>(Callee->getType())->getElementType()); 1928 1929 // If the call returns a temporary with struct return, create a temporary 1930 // alloca to hold the result, unless one is given to us. 1931 if (CGM.ReturnTypeUsesSRet(CallInfo)) { 1932 llvm::Value *Value = ReturnValue.getValue(); 1933 if (!Value) 1934 Value = CreateMemTemp(RetTy); 1935 Args.push_back(Value); 1936 checkArgMatches(Value, IRArgNo, IRFuncTy); 1937 } 1938 1939 assert(CallInfo.arg_size() == CallArgs.size() && 1940 "Mismatch between function signature & arguments."); 1941 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 1942 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 1943 I != E; ++I, ++info_it) { 1944 const ABIArgInfo &ArgInfo = info_it->info; 1945 RValue RV = I->RV; 1946 1947 unsigned TypeAlign = 1948 getContext().getTypeAlignInChars(I->Ty).getQuantity(); 1949 switch (ArgInfo.getKind()) { 1950 case ABIArgInfo::Indirect: { 1951 if (RV.isScalar() || RV.isComplex()) { 1952 // Make a temporary alloca to pass the argument. 1953 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1954 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 1955 AI->setAlignment(ArgInfo.getIndirectAlign()); 1956 Args.push_back(AI); 1957 1958 if (RV.isScalar()) 1959 EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, 1960 TypeAlign, I->Ty); 1961 else 1962 StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); 1963 1964 // Validate argument match. 1965 checkArgMatches(AI, IRArgNo, IRFuncTy); 1966 } else { 1967 // We want to avoid creating an unnecessary temporary+copy here; 1968 // however, we need one in two cases: 1969 // 1. If the argument is not byval, and we are required to copy the 1970 // source. (This case doesn't occur on any common architecture.) 1971 // 2. If the argument is byval, RV is not sufficiently aligned, and 1972 // we cannot force it to be sufficiently aligned. 1973 llvm::Value *Addr = RV.getAggregateAddr(); 1974 unsigned Align = ArgInfo.getIndirectAlign(); 1975 const llvm::TargetData *TD = &CGM.getTargetData(); 1976 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 1977 (ArgInfo.getIndirectByVal() && TypeAlign < Align && 1978 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) { 1979 // Create an aligned temporary, and copy to it. 1980 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1981 if (Align > AI->getAlignment()) 1982 AI->setAlignment(Align); 1983 Args.push_back(AI); 1984 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 1985 1986 // Validate argument match. 1987 checkArgMatches(AI, IRArgNo, IRFuncTy); 1988 } else { 1989 // Skip the extra memcpy call. 1990 Args.push_back(Addr); 1991 1992 // Validate argument match. 1993 checkArgMatches(Addr, IRArgNo, IRFuncTy); 1994 } 1995 } 1996 break; 1997 } 1998 1999 case ABIArgInfo::Ignore: 2000 break; 2001 2002 case ABIArgInfo::Extend: 2003 case ABIArgInfo::Direct: { 2004 // Insert a padding argument to ensure proper alignment. 2005 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) { 2006 Args.push_back(llvm::UndefValue::get(PaddingType)); 2007 ++IRArgNo; 2008 } 2009 2010 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 2011 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 2012 ArgInfo.getDirectOffset() == 0) { 2013 llvm::Value *V; 2014 if (RV.isScalar()) 2015 V = RV.getScalarVal(); 2016 else 2017 V = Builder.CreateLoad(RV.getAggregateAddr()); 2018 2019 // If the argument doesn't match, perform a bitcast to coerce it. This 2020 // can happen due to trivial type mismatches. 2021 if (IRArgNo < IRFuncTy->getNumParams() && 2022 V->getType() != IRFuncTy->getParamType(IRArgNo)) 2023 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 2024 Args.push_back(V); 2025 2026 checkArgMatches(V, IRArgNo, IRFuncTy); 2027 break; 2028 } 2029 2030 // FIXME: Avoid the conversion through memory if possible. 2031 llvm::Value *SrcPtr; 2032 if (RV.isScalar()) { 2033 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 2034 EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty); 2035 } else if (RV.isComplex()) { 2036 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 2037 StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); 2038 } else 2039 SrcPtr = RV.getAggregateAddr(); 2040 2041 // If the value is offset in memory, apply the offset now. 2042 if (unsigned Offs = ArgInfo.getDirectOffset()) { 2043 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 2044 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 2045 SrcPtr = Builder.CreateBitCast(SrcPtr, 2046 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 2047 2048 } 2049 2050 // If the coerce-to type is a first class aggregate, we flatten it and 2051 // pass the elements. Either way is semantically identical, but fast-isel 2052 // and the optimizer generally likes scalar values better than FCAs. 2053 if (llvm::StructType *STy = 2054 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 2055 SrcPtr = Builder.CreateBitCast(SrcPtr, 2056 llvm::PointerType::getUnqual(STy)); 2057 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2058 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 2059 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 2060 // We don't know what we're loading from. 2061 LI->setAlignment(1); 2062 Args.push_back(LI); 2063 2064 // Validate argument match. 2065 checkArgMatches(LI, IRArgNo, IRFuncTy); 2066 } 2067 } else { 2068 // In the simple case, just pass the coerced loaded value. 2069 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 2070 *this)); 2071 2072 // Validate argument match. 2073 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 2074 } 2075 2076 break; 2077 } 2078 2079 case ABIArgInfo::Expand: 2080 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 2081 IRArgNo = Args.size(); 2082 break; 2083 } 2084 } 2085 2086 // If the callee is a bitcast of a function to a varargs pointer to function 2087 // type, check to see if we can remove the bitcast. This handles some cases 2088 // with unprototyped functions. 2089 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 2090 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 2091 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 2092 llvm::FunctionType *CurFT = 2093 cast<llvm::FunctionType>(CurPT->getElementType()); 2094 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 2095 2096 if (CE->getOpcode() == llvm::Instruction::BitCast && 2097 ActualFT->getReturnType() == CurFT->getReturnType() && 2098 ActualFT->getNumParams() == CurFT->getNumParams() && 2099 ActualFT->getNumParams() == Args.size() && 2100 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 2101 bool ArgsMatch = true; 2102 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 2103 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 2104 ArgsMatch = false; 2105 break; 2106 } 2107 2108 // Strip the cast if we can get away with it. This is a nice cleanup, 2109 // but also allows us to inline the function at -O0 if it is marked 2110 // always_inline. 2111 if (ArgsMatch) 2112 Callee = CalleeF; 2113 } 2114 } 2115 2116 unsigned CallingConv; 2117 CodeGen::AttributeListType AttributeList; 2118 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); 2119 llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList); 2120 2121 llvm::BasicBlock *InvokeDest = 0; 2122 if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) 2123 InvokeDest = getInvokeDest(); 2124 2125 llvm::CallSite CS; 2126 if (!InvokeDest) { 2127 CS = Builder.CreateCall(Callee, Args); 2128 } else { 2129 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 2130 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); 2131 EmitBlock(Cont); 2132 } 2133 if (callOrInvoke) 2134 *callOrInvoke = CS.getInstruction(); 2135 2136 CS.setAttributes(Attrs); 2137 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2138 2139 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2140 // optimizer it can aggressively ignore unwind edges. 2141 if (CGM.getLangOpts().ObjCAutoRefCount) 2142 AddObjCARCExceptionMetadata(CS.getInstruction()); 2143 2144 // If the call doesn't return, finish the basic block and clear the 2145 // insertion point; this allows the rest of IRgen to discard 2146 // unreachable code. 2147 if (CS.doesNotReturn()) { 2148 Builder.CreateUnreachable(); 2149 Builder.ClearInsertionPoint(); 2150 2151 // FIXME: For now, emit a dummy basic block because expr emitters in 2152 // generally are not ready to handle emitting expressions at unreachable 2153 // points. 2154 EnsureInsertPoint(); 2155 2156 // Return a reasonable RValue. 2157 return GetUndefRValue(RetTy); 2158 } 2159 2160 llvm::Instruction *CI = CS.getInstruction(); 2161 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 2162 CI->setName("call"); 2163 2164 // Emit any writebacks immediately. Arguably this should happen 2165 // after any return-value munging. 2166 if (CallArgs.hasWritebacks()) 2167 emitWritebacks(*this, CallArgs); 2168 2169 switch (RetAI.getKind()) { 2170 case ABIArgInfo::Indirect: { 2171 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 2172 if (RetTy->isAnyComplexType()) 2173 return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); 2174 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 2175 return RValue::getAggregate(Args[0]); 2176 return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy)); 2177 } 2178 2179 case ABIArgInfo::Ignore: 2180 // If we are ignoring an argument that had a result, make sure to 2181 // construct the appropriate return value for our caller. 2182 return GetUndefRValue(RetTy); 2183 2184 case ABIArgInfo::Extend: 2185 case ABIArgInfo::Direct: { 2186 llvm::Type *RetIRTy = ConvertType(RetTy); 2187 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 2188 if (RetTy->isAnyComplexType()) { 2189 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 2190 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 2191 return RValue::getComplex(std::make_pair(Real, Imag)); 2192 } 2193 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 2194 llvm::Value *DestPtr = ReturnValue.getValue(); 2195 bool DestIsVolatile = ReturnValue.isVolatile(); 2196 2197 if (!DestPtr) { 2198 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 2199 DestIsVolatile = false; 2200 } 2201 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 2202 return RValue::getAggregate(DestPtr); 2203 } 2204 2205 // If the argument doesn't match, perform a bitcast to coerce it. This 2206 // can happen due to trivial type mismatches. 2207 llvm::Value *V = CI; 2208 if (V->getType() != RetIRTy) 2209 V = Builder.CreateBitCast(V, RetIRTy); 2210 return RValue::get(V); 2211 } 2212 2213 llvm::Value *DestPtr = ReturnValue.getValue(); 2214 bool DestIsVolatile = ReturnValue.isVolatile(); 2215 2216 if (!DestPtr) { 2217 DestPtr = CreateMemTemp(RetTy, "coerce"); 2218 DestIsVolatile = false; 2219 } 2220 2221 // If the value is offset in memory, apply the offset now. 2222 llvm::Value *StorePtr = DestPtr; 2223 if (unsigned Offs = RetAI.getDirectOffset()) { 2224 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 2225 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 2226 StorePtr = Builder.CreateBitCast(StorePtr, 2227 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 2228 } 2229 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 2230 2231 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 2232 if (RetTy->isAnyComplexType()) 2233 return RValue::getComplex(LoadComplexFromAddr(DestPtr, false)); 2234 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 2235 return RValue::getAggregate(DestPtr); 2236 return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy)); 2237 } 2238 2239 case ABIArgInfo::Expand: 2240 llvm_unreachable("Invalid ABI kind for return argument"); 2241 } 2242 2243 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 2244 } 2245 2246 /* VarArg handling */ 2247 2248 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 2249 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 2250 } 2251