1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 using namespace clang;
37 using namespace CodeGen;
38 
39 /***/
40 
41 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
42   switch (CC) {
43   default: return llvm::CallingConv::C;
44   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
45   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
46   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
47   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
48   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
49   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
50   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
51   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
52   // TODO: Add support for __pascal to LLVM.
53   case CC_X86Pascal: return llvm::CallingConv::C;
54   // TODO: Add support for __vectorcall to LLVM.
55   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
56   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
57   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
58   }
59 }
60 
61 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
62 /// qualification.
63 /// FIXME: address space qualification?
64 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
65   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
66   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
67 }
68 
69 /// Returns the canonical formal type of the given C++ method.
70 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
71   return MD->getType()->getCanonicalTypeUnqualified()
72            .getAs<FunctionProtoType>();
73 }
74 
75 /// Returns the "extra-canonicalized" return type, which discards
76 /// qualifiers on the return type.  Codegen doesn't care about them,
77 /// and it makes ABI code a little easier to be able to assume that
78 /// all parameter and return types are top-level unqualified.
79 static CanQualType GetReturnType(QualType RetTy) {
80   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
81 }
82 
83 /// Arrange the argument and result information for a value of the given
84 /// unprototyped freestanding function type.
85 const CGFunctionInfo &
86 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
87   // When translating an unprototyped function type, always use a
88   // variadic type.
89   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
90                                  /*instanceMethod=*/false,
91                                  /*chainCall=*/false, None,
92                                  FTNP->getExtInfo(), RequiredArgs(0));
93 }
94 
95 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in
96 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
97 static void appendParameterTypes(const CodeGenTypes &CGT,
98                                  SmallVectorImpl<CanQualType> &prefix,
99                                  const CanQual<FunctionProtoType> &FPT,
100                                  const FunctionDecl *FD) {
101   // Fast path: unknown target.
102   if (FD == nullptr) {
103     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
104     return;
105   }
106 
107   // In the vast majority cases, we'll have precisely FPT->getNumParams()
108   // parameters; the only thing that can change this is the presence of
109   // pass_object_size. So, we preallocate for the common case.
110   prefix.reserve(prefix.size() + FPT->getNumParams());
111 
112   assert(FD->getNumParams() == FPT->getNumParams());
113   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
114     prefix.push_back(FPT->getParamType(I));
115     if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>())
116       prefix.push_back(CGT.getContext().getSizeType());
117   }
118 }
119 
120 /// Arrange the LLVM function layout for a value of the given function
121 /// type, on top of any implicit parameters already stored.
122 static const CGFunctionInfo &
123 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
124                         SmallVectorImpl<CanQualType> &prefix,
125                         CanQual<FunctionProtoType> FTP,
126                         const FunctionDecl *FD) {
127   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
128   // FIXME: Kill copy.
129   appendParameterTypes(CGT, prefix, FTP, FD);
130   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
131   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
132                                      /*chainCall=*/false, prefix,
133                                      FTP->getExtInfo(), required);
134 }
135 
136 /// Arrange the argument and result information for a value of the
137 /// given freestanding function type.
138 const CGFunctionInfo &
139 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
140                                       const FunctionDecl *FD) {
141   SmallVector<CanQualType, 16> argTypes;
142   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
143                                    FTP, FD);
144 }
145 
146 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
147   // Set the appropriate calling convention for the Function.
148   if (D->hasAttr<StdCallAttr>())
149     return CC_X86StdCall;
150 
151   if (D->hasAttr<FastCallAttr>())
152     return CC_X86FastCall;
153 
154   if (D->hasAttr<ThisCallAttr>())
155     return CC_X86ThisCall;
156 
157   if (D->hasAttr<VectorCallAttr>())
158     return CC_X86VectorCall;
159 
160   if (D->hasAttr<PascalAttr>())
161     return CC_X86Pascal;
162 
163   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
164     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
165 
166   if (D->hasAttr<IntelOclBiccAttr>())
167     return CC_IntelOclBicc;
168 
169   if (D->hasAttr<MSABIAttr>())
170     return IsWindows ? CC_C : CC_X86_64Win64;
171 
172   if (D->hasAttr<SysVABIAttr>())
173     return IsWindows ? CC_X86_64SysV : CC_C;
174 
175   return CC_C;
176 }
177 
178 /// Arrange the argument and result information for a call to an
179 /// unknown C++ non-static member function of the given abstract type.
180 /// (Zero value of RD means we don't have any meaningful "this" argument type,
181 ///  so fall back to a generic pointer type).
182 /// The member function must be an ordinary function, i.e. not a
183 /// constructor or destructor.
184 const CGFunctionInfo &
185 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
186                                    const FunctionProtoType *FTP,
187                                    const CXXMethodDecl *MD) {
188   SmallVector<CanQualType, 16> argTypes;
189 
190   // Add the 'this' pointer.
191   if (RD)
192     argTypes.push_back(GetThisType(Context, RD));
193   else
194     argTypes.push_back(Context.VoidPtrTy);
195 
196   return ::arrangeLLVMFunctionInfo(
197       *this, true, argTypes,
198       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
199 }
200 
201 /// Arrange the argument and result information for a declaration or
202 /// definition of the given C++ non-static member function.  The
203 /// member function must be an ordinary function, i.e. not a
204 /// constructor or destructor.
205 const CGFunctionInfo &
206 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
207   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
208   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
209 
210   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
211 
212   if (MD->isInstance()) {
213     // The abstract case is perfectly fine.
214     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
215     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
216   }
217 
218   return arrangeFreeFunctionType(prototype, MD);
219 }
220 
221 const CGFunctionInfo &
222 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
223                                             StructorType Type) {
224 
225   SmallVector<CanQualType, 16> argTypes;
226   argTypes.push_back(GetThisType(Context, MD->getParent()));
227 
228   GlobalDecl GD;
229   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
230     GD = GlobalDecl(CD, toCXXCtorType(Type));
231   } else {
232     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
233     GD = GlobalDecl(DD, toCXXDtorType(Type));
234   }
235 
236   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
237 
238   // Add the formal parameters.
239   appendParameterTypes(*this, argTypes, FTP, MD);
240 
241   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
242 
243   RequiredArgs required =
244       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
245 
246   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
247   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
248                                ? argTypes.front()
249                                : TheCXXABI.hasMostDerivedReturn(GD)
250                                      ? CGM.getContext().VoidPtrTy
251                                      : Context.VoidTy;
252   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
253                                  /*chainCall=*/false, argTypes, extInfo,
254                                  required);
255 }
256 
257 /// Arrange a call to a C++ method, passing the given arguments.
258 const CGFunctionInfo &
259 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
260                                         const CXXConstructorDecl *D,
261                                         CXXCtorType CtorKind,
262                                         unsigned ExtraArgs) {
263   // FIXME: Kill copy.
264   SmallVector<CanQualType, 16> ArgTypes;
265   for (const auto &Arg : args)
266     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
267 
268   CanQual<FunctionProtoType> FPT = GetFormalType(D);
269   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
270   GlobalDecl GD(D, CtorKind);
271   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
272                                ? ArgTypes.front()
273                                : TheCXXABI.hasMostDerivedReturn(GD)
274                                      ? CGM.getContext().VoidPtrTy
275                                      : Context.VoidTy;
276 
277   FunctionType::ExtInfo Info = FPT->getExtInfo();
278   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
279                                  /*chainCall=*/false, ArgTypes, Info,
280                                  Required);
281 }
282 
283 /// Arrange the argument and result information for the declaration or
284 /// definition of the given function.
285 const CGFunctionInfo &
286 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
287   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
288     if (MD->isInstance())
289       return arrangeCXXMethodDeclaration(MD);
290 
291   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
292 
293   assert(isa<FunctionType>(FTy));
294 
295   // When declaring a function without a prototype, always use a
296   // non-variadic type.
297   if (isa<FunctionNoProtoType>(FTy)) {
298     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
299     return arrangeLLVMFunctionInfo(
300         noProto->getReturnType(), /*instanceMethod=*/false,
301         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
302   }
303 
304   assert(isa<FunctionProtoType>(FTy));
305   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD);
306 }
307 
308 /// Arrange the argument and result information for the declaration or
309 /// definition of an Objective-C method.
310 const CGFunctionInfo &
311 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
312   // It happens that this is the same as a call with no optional
313   // arguments, except also using the formal 'self' type.
314   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
315 }
316 
317 /// Arrange the argument and result information for the function type
318 /// through which to perform a send to the given Objective-C method,
319 /// using the given receiver type.  The receiver type is not always
320 /// the 'self' type of the method or even an Objective-C pointer type.
321 /// This is *not* the right method for actually performing such a
322 /// message send, due to the possibility of optional arguments.
323 const CGFunctionInfo &
324 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
325                                               QualType receiverType) {
326   SmallVector<CanQualType, 16> argTys;
327   argTys.push_back(Context.getCanonicalParamType(receiverType));
328   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
329   // FIXME: Kill copy?
330   for (const auto *I : MD->params()) {
331     argTys.push_back(Context.getCanonicalParamType(I->getType()));
332   }
333 
334   FunctionType::ExtInfo einfo;
335   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
336   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
337 
338   if (getContext().getLangOpts().ObjCAutoRefCount &&
339       MD->hasAttr<NSReturnsRetainedAttr>())
340     einfo = einfo.withProducesResult(true);
341 
342   RequiredArgs required =
343     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
344 
345   return arrangeLLVMFunctionInfo(
346       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
347       /*chainCall=*/false, argTys, einfo, required);
348 }
349 
350 const CGFunctionInfo &
351 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
352   // FIXME: Do we need to handle ObjCMethodDecl?
353   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
354 
355   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
356     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
357 
358   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
359     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
360 
361   return arrangeFunctionDeclaration(FD);
362 }
363 
364 /// Arrange a thunk that takes 'this' as the first parameter followed by
365 /// varargs.  Return a void pointer, regardless of the actual return type.
366 /// The body of the thunk will end in a musttail call to a function of the
367 /// correct type, and the caller will bitcast the function to the correct
368 /// prototype.
369 const CGFunctionInfo &
370 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
371   assert(MD->isVirtual() && "only virtual memptrs have thunks");
372   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
373   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
374   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
375                                  /*chainCall=*/false, ArgTys,
376                                  FTP->getExtInfo(), RequiredArgs(1));
377 }
378 
379 const CGFunctionInfo &
380 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
381                                    CXXCtorType CT) {
382   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
383 
384   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
385   SmallVector<CanQualType, 2> ArgTys;
386   const CXXRecordDecl *RD = CD->getParent();
387   ArgTys.push_back(GetThisType(Context, RD));
388   if (CT == Ctor_CopyingClosure)
389     ArgTys.push_back(*FTP->param_type_begin());
390   if (RD->getNumVBases() > 0)
391     ArgTys.push_back(Context.IntTy);
392   CallingConv CC = Context.getDefaultCallingConvention(
393       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
394   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
395                                  /*chainCall=*/false, ArgTys,
396                                  FunctionType::ExtInfo(CC), RequiredArgs::All);
397 }
398 
399 /// Arrange a call as unto a free function, except possibly with an
400 /// additional number of formal parameters considered required.
401 static const CGFunctionInfo &
402 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
403                             CodeGenModule &CGM,
404                             const CallArgList &args,
405                             const FunctionType *fnType,
406                             unsigned numExtraRequiredArgs,
407                             bool chainCall) {
408   assert(args.size() >= numExtraRequiredArgs);
409 
410   // In most cases, there are no optional arguments.
411   RequiredArgs required = RequiredArgs::All;
412 
413   // If we have a variadic prototype, the required arguments are the
414   // extra prefix plus the arguments in the prototype.
415   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
416     if (proto->isVariadic())
417       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
418 
419   // If we don't have a prototype at all, but we're supposed to
420   // explicitly use the variadic convention for unprototyped calls,
421   // treat all of the arguments as required but preserve the nominal
422   // possibility of variadics.
423   } else if (CGM.getTargetCodeGenInfo()
424                 .isNoProtoCallVariadic(args,
425                                        cast<FunctionNoProtoType>(fnType))) {
426     required = RequiredArgs(args.size());
427   }
428 
429   // FIXME: Kill copy.
430   SmallVector<CanQualType, 16> argTypes;
431   for (const auto &arg : args)
432     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
433   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
434                                      /*instanceMethod=*/false, chainCall,
435                                      argTypes, fnType->getExtInfo(), required);
436 }
437 
438 /// Figure out the rules for calling a function with the given formal
439 /// type using the given arguments.  The arguments are necessary
440 /// because the function might be unprototyped, in which case it's
441 /// target-dependent in crazy ways.
442 const CGFunctionInfo &
443 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
444                                       const FunctionType *fnType,
445                                       bool chainCall) {
446   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
447                                      chainCall ? 1 : 0, chainCall);
448 }
449 
450 /// A block function call is essentially a free-function call with an
451 /// extra implicit argument.
452 const CGFunctionInfo &
453 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
454                                        const FunctionType *fnType) {
455   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
456                                      /*chainCall=*/false);
457 }
458 
459 const CGFunctionInfo &
460 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
461                                       const CallArgList &args,
462                                       FunctionType::ExtInfo info,
463                                       RequiredArgs required) {
464   // FIXME: Kill copy.
465   SmallVector<CanQualType, 16> argTypes;
466   for (const auto &Arg : args)
467     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
468   return arrangeLLVMFunctionInfo(
469       GetReturnType(resultType), /*instanceMethod=*/false,
470       /*chainCall=*/false, argTypes, info, required);
471 }
472 
473 /// Arrange a call to a C++ method, passing the given arguments.
474 const CGFunctionInfo &
475 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
476                                    const FunctionProtoType *FPT,
477                                    RequiredArgs required) {
478   // FIXME: Kill copy.
479   SmallVector<CanQualType, 16> argTypes;
480   for (const auto &Arg : args)
481     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
482 
483   FunctionType::ExtInfo info = FPT->getExtInfo();
484   return arrangeLLVMFunctionInfo(
485       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
486       /*chainCall=*/false, argTypes, info, required);
487 }
488 
489 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
490     QualType resultType, const FunctionArgList &args,
491     const FunctionType::ExtInfo &info, bool isVariadic) {
492   // FIXME: Kill copy.
493   SmallVector<CanQualType, 16> argTypes;
494   for (auto Arg : args)
495     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
496 
497   RequiredArgs required =
498     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
499   return arrangeLLVMFunctionInfo(
500       GetReturnType(resultType), /*instanceMethod=*/false,
501       /*chainCall=*/false, argTypes, info, required);
502 }
503 
504 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
505   return arrangeLLVMFunctionInfo(
506       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
507       None, FunctionType::ExtInfo(), RequiredArgs::All);
508 }
509 
510 /// Arrange the argument and result information for an abstract value
511 /// of a given function type.  This is the method which all of the
512 /// above functions ultimately defer to.
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
515                                       bool instanceMethod,
516                                       bool chainCall,
517                                       ArrayRef<CanQualType> argTypes,
518                                       FunctionType::ExtInfo info,
519                                       RequiredArgs required) {
520   assert(std::all_of(argTypes.begin(), argTypes.end(),
521                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
522 
523   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
524 
525   // Lookup or create unique function info.
526   llvm::FoldingSetNodeID ID;
527   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
528                           resultType, argTypes);
529 
530   void *insertPos = nullptr;
531   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
532   if (FI)
533     return *FI;
534 
535   // Construct the function info.  We co-allocate the ArgInfos.
536   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
537                               resultType, argTypes, required);
538   FunctionInfos.InsertNode(FI, insertPos);
539 
540   bool inserted = FunctionsBeingProcessed.insert(FI).second;
541   (void)inserted;
542   assert(inserted && "Recursively being processed?");
543 
544   // Compute ABI information.
545   getABIInfo().computeInfo(*FI);
546 
547   // Loop over all of the computed argument and return value info.  If any of
548   // them are direct or extend without a specified coerce type, specify the
549   // default now.
550   ABIArgInfo &retInfo = FI->getReturnInfo();
551   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
552     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
553 
554   for (auto &I : FI->arguments())
555     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
556       I.info.setCoerceToType(ConvertType(I.type));
557 
558   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
559   assert(erased && "Not in set?");
560 
561   return *FI;
562 }
563 
564 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
565                                        bool instanceMethod,
566                                        bool chainCall,
567                                        const FunctionType::ExtInfo &info,
568                                        CanQualType resultType,
569                                        ArrayRef<CanQualType> argTypes,
570                                        RequiredArgs required) {
571   void *buffer = operator new(sizeof(CGFunctionInfo) +
572                               sizeof(ArgInfo) * (argTypes.size() + 1));
573   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
574   FI->CallingConvention = llvmCC;
575   FI->EffectiveCallingConvention = llvmCC;
576   FI->ASTCallingConvention = info.getCC();
577   FI->InstanceMethod = instanceMethod;
578   FI->ChainCall = chainCall;
579   FI->NoReturn = info.getNoReturn();
580   FI->ReturnsRetained = info.getProducesResult();
581   FI->Required = required;
582   FI->HasRegParm = info.getHasRegParm();
583   FI->RegParm = info.getRegParm();
584   FI->ArgStruct = nullptr;
585   FI->ArgStructAlign = 0;
586   FI->NumArgs = argTypes.size();
587   FI->getArgsBuffer()[0].type = resultType;
588   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
589     FI->getArgsBuffer()[i + 1].type = argTypes[i];
590   return FI;
591 }
592 
593 /***/
594 
595 namespace {
596 // ABIArgInfo::Expand implementation.
597 
598 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
599 struct TypeExpansion {
600   enum TypeExpansionKind {
601     // Elements of constant arrays are expanded recursively.
602     TEK_ConstantArray,
603     // Record fields are expanded recursively (but if record is a union, only
604     // the field with the largest size is expanded).
605     TEK_Record,
606     // For complex types, real and imaginary parts are expanded recursively.
607     TEK_Complex,
608     // All other types are not expandable.
609     TEK_None
610   };
611 
612   const TypeExpansionKind Kind;
613 
614   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
615   virtual ~TypeExpansion() {}
616 };
617 
618 struct ConstantArrayExpansion : TypeExpansion {
619   QualType EltTy;
620   uint64_t NumElts;
621 
622   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
623       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
624   static bool classof(const TypeExpansion *TE) {
625     return TE->Kind == TEK_ConstantArray;
626   }
627 };
628 
629 struct RecordExpansion : TypeExpansion {
630   SmallVector<const CXXBaseSpecifier *, 1> Bases;
631 
632   SmallVector<const FieldDecl *, 1> Fields;
633 
634   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
635                   SmallVector<const FieldDecl *, 1> &&Fields)
636       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
637   static bool classof(const TypeExpansion *TE) {
638     return TE->Kind == TEK_Record;
639   }
640 };
641 
642 struct ComplexExpansion : TypeExpansion {
643   QualType EltTy;
644 
645   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
646   static bool classof(const TypeExpansion *TE) {
647     return TE->Kind == TEK_Complex;
648   }
649 };
650 
651 struct NoExpansion : TypeExpansion {
652   NoExpansion() : TypeExpansion(TEK_None) {}
653   static bool classof(const TypeExpansion *TE) {
654     return TE->Kind == TEK_None;
655   }
656 };
657 }  // namespace
658 
659 static std::unique_ptr<TypeExpansion>
660 getTypeExpansion(QualType Ty, const ASTContext &Context) {
661   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
662     return llvm::make_unique<ConstantArrayExpansion>(
663         AT->getElementType(), AT->getSize().getZExtValue());
664   }
665   if (const RecordType *RT = Ty->getAs<RecordType>()) {
666     SmallVector<const CXXBaseSpecifier *, 1> Bases;
667     SmallVector<const FieldDecl *, 1> Fields;
668     const RecordDecl *RD = RT->getDecl();
669     assert(!RD->hasFlexibleArrayMember() &&
670            "Cannot expand structure with flexible array.");
671     if (RD->isUnion()) {
672       // Unions can be here only in degenerative cases - all the fields are same
673       // after flattening. Thus we have to use the "largest" field.
674       const FieldDecl *LargestFD = nullptr;
675       CharUnits UnionSize = CharUnits::Zero();
676 
677       for (const auto *FD : RD->fields()) {
678         // Skip zero length bitfields.
679         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
680           continue;
681         assert(!FD->isBitField() &&
682                "Cannot expand structure with bit-field members.");
683         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
684         if (UnionSize < FieldSize) {
685           UnionSize = FieldSize;
686           LargestFD = FD;
687         }
688       }
689       if (LargestFD)
690         Fields.push_back(LargestFD);
691     } else {
692       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
693         assert(!CXXRD->isDynamicClass() &&
694                "cannot expand vtable pointers in dynamic classes");
695         for (const CXXBaseSpecifier &BS : CXXRD->bases())
696           Bases.push_back(&BS);
697       }
698 
699       for (const auto *FD : RD->fields()) {
700         // Skip zero length bitfields.
701         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
702           continue;
703         assert(!FD->isBitField() &&
704                "Cannot expand structure with bit-field members.");
705         Fields.push_back(FD);
706       }
707     }
708     return llvm::make_unique<RecordExpansion>(std::move(Bases),
709                                               std::move(Fields));
710   }
711   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
712     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
713   }
714   return llvm::make_unique<NoExpansion>();
715 }
716 
717 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
718   auto Exp = getTypeExpansion(Ty, Context);
719   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
720     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
721   }
722   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
723     int Res = 0;
724     for (auto BS : RExp->Bases)
725       Res += getExpansionSize(BS->getType(), Context);
726     for (auto FD : RExp->Fields)
727       Res += getExpansionSize(FD->getType(), Context);
728     return Res;
729   }
730   if (isa<ComplexExpansion>(Exp.get()))
731     return 2;
732   assert(isa<NoExpansion>(Exp.get()));
733   return 1;
734 }
735 
736 void
737 CodeGenTypes::getExpandedTypes(QualType Ty,
738                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
739   auto Exp = getTypeExpansion(Ty, Context);
740   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
741     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
742       getExpandedTypes(CAExp->EltTy, TI);
743     }
744   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
745     for (auto BS : RExp->Bases)
746       getExpandedTypes(BS->getType(), TI);
747     for (auto FD : RExp->Fields)
748       getExpandedTypes(FD->getType(), TI);
749   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
750     llvm::Type *EltTy = ConvertType(CExp->EltTy);
751     *TI++ = EltTy;
752     *TI++ = EltTy;
753   } else {
754     assert(isa<NoExpansion>(Exp.get()));
755     *TI++ = ConvertType(Ty);
756   }
757 }
758 
759 static void forConstantArrayExpansion(CodeGenFunction &CGF,
760                                       ConstantArrayExpansion *CAE,
761                                       Address BaseAddr,
762                                       llvm::function_ref<void(Address)> Fn) {
763   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
764   CharUnits EltAlign =
765     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
766 
767   for (int i = 0, n = CAE->NumElts; i < n; i++) {
768     llvm::Value *EltAddr =
769       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
770     Fn(Address(EltAddr, EltAlign));
771   }
772 }
773 
774 void CodeGenFunction::ExpandTypeFromArgs(
775     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
776   assert(LV.isSimple() &&
777          "Unexpected non-simple lvalue during struct expansion.");
778 
779   auto Exp = getTypeExpansion(Ty, getContext());
780   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
781     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
782                               [&](Address EltAddr) {
783       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
784       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
785     });
786   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
787     Address This = LV.getAddress();
788     for (const CXXBaseSpecifier *BS : RExp->Bases) {
789       // Perform a single step derived-to-base conversion.
790       Address Base =
791           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
792                                 /*NullCheckValue=*/false, SourceLocation());
793       LValue SubLV = MakeAddrLValue(Base, BS->getType());
794 
795       // Recurse onto bases.
796       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
797     }
798     for (auto FD : RExp->Fields) {
799       // FIXME: What are the right qualifiers here?
800       LValue SubLV = EmitLValueForField(LV, FD);
801       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
802     }
803   } else if (isa<ComplexExpansion>(Exp.get())) {
804     auto realValue = *AI++;
805     auto imagValue = *AI++;
806     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
807   } else {
808     assert(isa<NoExpansion>(Exp.get()));
809     EmitStoreThroughLValue(RValue::get(*AI++), LV);
810   }
811 }
812 
813 void CodeGenFunction::ExpandTypeToArgs(
814     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
815     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
816   auto Exp = getTypeExpansion(Ty, getContext());
817   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
818     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
819                               [&](Address EltAddr) {
820       RValue EltRV =
821           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
822       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
823     });
824   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
825     Address This = RV.getAggregateAddress();
826     for (const CXXBaseSpecifier *BS : RExp->Bases) {
827       // Perform a single step derived-to-base conversion.
828       Address Base =
829           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
830                                 /*NullCheckValue=*/false, SourceLocation());
831       RValue BaseRV = RValue::getAggregate(Base);
832 
833       // Recurse onto bases.
834       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
835                        IRCallArgPos);
836     }
837 
838     LValue LV = MakeAddrLValue(This, Ty);
839     for (auto FD : RExp->Fields) {
840       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
841       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
842                        IRCallArgPos);
843     }
844   } else if (isa<ComplexExpansion>(Exp.get())) {
845     ComplexPairTy CV = RV.getComplexVal();
846     IRCallArgs[IRCallArgPos++] = CV.first;
847     IRCallArgs[IRCallArgPos++] = CV.second;
848   } else {
849     assert(isa<NoExpansion>(Exp.get()));
850     assert(RV.isScalar() &&
851            "Unexpected non-scalar rvalue during struct expansion.");
852 
853     // Insert a bitcast as needed.
854     llvm::Value *V = RV.getScalarVal();
855     if (IRCallArgPos < IRFuncTy->getNumParams() &&
856         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
857       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
858 
859     IRCallArgs[IRCallArgPos++] = V;
860   }
861 }
862 
863 /// Create a temporary allocation for the purposes of coercion.
864 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
865                                            CharUnits MinAlign) {
866   // Don't use an alignment that's worse than what LLVM would prefer.
867   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
868   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
869 
870   return CGF.CreateTempAlloca(Ty, Align);
871 }
872 
873 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
874 /// accessing some number of bytes out of it, try to gep into the struct to get
875 /// at its inner goodness.  Dive as deep as possible without entering an element
876 /// with an in-memory size smaller than DstSize.
877 static Address
878 EnterStructPointerForCoercedAccess(Address SrcPtr,
879                                    llvm::StructType *SrcSTy,
880                                    uint64_t DstSize, CodeGenFunction &CGF) {
881   // We can't dive into a zero-element struct.
882   if (SrcSTy->getNumElements() == 0) return SrcPtr;
883 
884   llvm::Type *FirstElt = SrcSTy->getElementType(0);
885 
886   // If the first elt is at least as large as what we're looking for, or if the
887   // first element is the same size as the whole struct, we can enter it. The
888   // comparison must be made on the store size and not the alloca size. Using
889   // the alloca size may overstate the size of the load.
890   uint64_t FirstEltSize =
891     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
892   if (FirstEltSize < DstSize &&
893       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
894     return SrcPtr;
895 
896   // GEP into the first element.
897   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
898 
899   // If the first element is a struct, recurse.
900   llvm::Type *SrcTy = SrcPtr.getElementType();
901   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
902     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
903 
904   return SrcPtr;
905 }
906 
907 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
908 /// are either integers or pointers.  This does a truncation of the value if it
909 /// is too large or a zero extension if it is too small.
910 ///
911 /// This behaves as if the value were coerced through memory, so on big-endian
912 /// targets the high bits are preserved in a truncation, while little-endian
913 /// targets preserve the low bits.
914 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
915                                              llvm::Type *Ty,
916                                              CodeGenFunction &CGF) {
917   if (Val->getType() == Ty)
918     return Val;
919 
920   if (isa<llvm::PointerType>(Val->getType())) {
921     // If this is Pointer->Pointer avoid conversion to and from int.
922     if (isa<llvm::PointerType>(Ty))
923       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
924 
925     // Convert the pointer to an integer so we can play with its width.
926     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
927   }
928 
929   llvm::Type *DestIntTy = Ty;
930   if (isa<llvm::PointerType>(DestIntTy))
931     DestIntTy = CGF.IntPtrTy;
932 
933   if (Val->getType() != DestIntTy) {
934     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
935     if (DL.isBigEndian()) {
936       // Preserve the high bits on big-endian targets.
937       // That is what memory coercion does.
938       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
939       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
940 
941       if (SrcSize > DstSize) {
942         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
943         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
944       } else {
945         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
946         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
947       }
948     } else {
949       // Little-endian targets preserve the low bits. No shifts required.
950       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
951     }
952   }
953 
954   if (isa<llvm::PointerType>(Ty))
955     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
956   return Val;
957 }
958 
959 
960 
961 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
962 /// a pointer to an object of type \arg Ty, known to be aligned to
963 /// \arg SrcAlign bytes.
964 ///
965 /// This safely handles the case when the src type is smaller than the
966 /// destination type; in this situation the values of bits which not
967 /// present in the src are undefined.
968 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
969                                       CodeGenFunction &CGF) {
970   llvm::Type *SrcTy = Src.getElementType();
971 
972   // If SrcTy and Ty are the same, just do a load.
973   if (SrcTy == Ty)
974     return CGF.Builder.CreateLoad(Src);
975 
976   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
977 
978   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
979     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
980     SrcTy = Src.getType()->getElementType();
981   }
982 
983   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
984 
985   // If the source and destination are integer or pointer types, just do an
986   // extension or truncation to the desired type.
987   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
988       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
989     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
990     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
991   }
992 
993   // If load is legal, just bitcast the src pointer.
994   if (SrcSize >= DstSize) {
995     // Generally SrcSize is never greater than DstSize, since this means we are
996     // losing bits. However, this can happen in cases where the structure has
997     // additional padding, for example due to a user specified alignment.
998     //
999     // FIXME: Assert that we aren't truncating non-padding bits when have access
1000     // to that information.
1001     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
1002     return CGF.Builder.CreateLoad(Src);
1003   }
1004 
1005   // Otherwise do coercion through memory. This is stupid, but simple.
1006   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1007   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1008   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
1009   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1010       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1011       false);
1012   return CGF.Builder.CreateLoad(Tmp);
1013 }
1014 
1015 // Function to store a first-class aggregate into memory.  We prefer to
1016 // store the elements rather than the aggregate to be more friendly to
1017 // fast-isel.
1018 // FIXME: Do we need to recurse here?
1019 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1020                           Address Dest, bool DestIsVolatile) {
1021   // Prefer scalar stores to first-class aggregate stores.
1022   if (llvm::StructType *STy =
1023         dyn_cast<llvm::StructType>(Val->getType())) {
1024     const llvm::StructLayout *Layout =
1025       CGF.CGM.getDataLayout().getStructLayout(STy);
1026 
1027     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1028       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1029       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1030       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1031       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1032     }
1033   } else {
1034     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1035   }
1036 }
1037 
1038 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1039 /// where the source and destination may have different types.  The
1040 /// destination is known to be aligned to \arg DstAlign bytes.
1041 ///
1042 /// This safely handles the case when the src type is larger than the
1043 /// destination type; the upper bits of the src will be lost.
1044 static void CreateCoercedStore(llvm::Value *Src,
1045                                Address Dst,
1046                                bool DstIsVolatile,
1047                                CodeGenFunction &CGF) {
1048   llvm::Type *SrcTy = Src->getType();
1049   llvm::Type *DstTy = Dst.getType()->getElementType();
1050   if (SrcTy == DstTy) {
1051     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1052     return;
1053   }
1054 
1055   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1056 
1057   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1058     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1059     DstTy = Dst.getType()->getElementType();
1060   }
1061 
1062   // If the source and destination are integer or pointer types, just do an
1063   // extension or truncation to the desired type.
1064   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1065       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1066     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1067     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1068     return;
1069   }
1070 
1071   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1072 
1073   // If store is legal, just bitcast the src pointer.
1074   if (SrcSize <= DstSize) {
1075     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1076     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1077   } else {
1078     // Otherwise do coercion through memory. This is stupid, but
1079     // simple.
1080 
1081     // Generally SrcSize is never greater than DstSize, since this means we are
1082     // losing bits. However, this can happen in cases where the structure has
1083     // additional padding, for example due to a user specified alignment.
1084     //
1085     // FIXME: Assert that we aren't truncating non-padding bits when have access
1086     // to that information.
1087     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1088     CGF.Builder.CreateStore(Src, Tmp);
1089     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1090     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1091     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1092         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1093         false);
1094   }
1095 }
1096 
1097 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1098                                    const ABIArgInfo &info) {
1099   if (unsigned offset = info.getDirectOffset()) {
1100     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1101     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1102                                              CharUnits::fromQuantity(offset));
1103     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1104   }
1105   return addr;
1106 }
1107 
1108 namespace {
1109 
1110 /// Encapsulates information about the way function arguments from
1111 /// CGFunctionInfo should be passed to actual LLVM IR function.
1112 class ClangToLLVMArgMapping {
1113   static const unsigned InvalidIndex = ~0U;
1114   unsigned InallocaArgNo;
1115   unsigned SRetArgNo;
1116   unsigned TotalIRArgs;
1117 
1118   /// Arguments of LLVM IR function corresponding to single Clang argument.
1119   struct IRArgs {
1120     unsigned PaddingArgIndex;
1121     // Argument is expanded to IR arguments at positions
1122     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1123     unsigned FirstArgIndex;
1124     unsigned NumberOfArgs;
1125 
1126     IRArgs()
1127         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1128           NumberOfArgs(0) {}
1129   };
1130 
1131   SmallVector<IRArgs, 8> ArgInfo;
1132 
1133 public:
1134   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1135                         bool OnlyRequiredArgs = false)
1136       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1137         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1138     construct(Context, FI, OnlyRequiredArgs);
1139   }
1140 
1141   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1142   unsigned getInallocaArgNo() const {
1143     assert(hasInallocaArg());
1144     return InallocaArgNo;
1145   }
1146 
1147   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1148   unsigned getSRetArgNo() const {
1149     assert(hasSRetArg());
1150     return SRetArgNo;
1151   }
1152 
1153   unsigned totalIRArgs() const { return TotalIRArgs; }
1154 
1155   bool hasPaddingArg(unsigned ArgNo) const {
1156     assert(ArgNo < ArgInfo.size());
1157     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1158   }
1159   unsigned getPaddingArgNo(unsigned ArgNo) const {
1160     assert(hasPaddingArg(ArgNo));
1161     return ArgInfo[ArgNo].PaddingArgIndex;
1162   }
1163 
1164   /// Returns index of first IR argument corresponding to ArgNo, and their
1165   /// quantity.
1166   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1167     assert(ArgNo < ArgInfo.size());
1168     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1169                           ArgInfo[ArgNo].NumberOfArgs);
1170   }
1171 
1172 private:
1173   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1174                  bool OnlyRequiredArgs);
1175 };
1176 
1177 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1178                                       const CGFunctionInfo &FI,
1179                                       bool OnlyRequiredArgs) {
1180   unsigned IRArgNo = 0;
1181   bool SwapThisWithSRet = false;
1182   const ABIArgInfo &RetAI = FI.getReturnInfo();
1183 
1184   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1185     SwapThisWithSRet = RetAI.isSRetAfterThis();
1186     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1187   }
1188 
1189   unsigned ArgNo = 0;
1190   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1191   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1192        ++I, ++ArgNo) {
1193     assert(I != FI.arg_end());
1194     QualType ArgType = I->type;
1195     const ABIArgInfo &AI = I->info;
1196     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1197     auto &IRArgs = ArgInfo[ArgNo];
1198 
1199     if (AI.getPaddingType())
1200       IRArgs.PaddingArgIndex = IRArgNo++;
1201 
1202     switch (AI.getKind()) {
1203     case ABIArgInfo::Extend:
1204     case ABIArgInfo::Direct: {
1205       // FIXME: handle sseregparm someday...
1206       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1207       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1208         IRArgs.NumberOfArgs = STy->getNumElements();
1209       } else {
1210         IRArgs.NumberOfArgs = 1;
1211       }
1212       break;
1213     }
1214     case ABIArgInfo::Indirect:
1215       IRArgs.NumberOfArgs = 1;
1216       break;
1217     case ABIArgInfo::Ignore:
1218     case ABIArgInfo::InAlloca:
1219       // ignore and inalloca doesn't have matching LLVM parameters.
1220       IRArgs.NumberOfArgs = 0;
1221       break;
1222     case ABIArgInfo::Expand: {
1223       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1224       break;
1225     }
1226     }
1227 
1228     if (IRArgs.NumberOfArgs > 0) {
1229       IRArgs.FirstArgIndex = IRArgNo;
1230       IRArgNo += IRArgs.NumberOfArgs;
1231     }
1232 
1233     // Skip over the sret parameter when it comes second.  We already handled it
1234     // above.
1235     if (IRArgNo == 1 && SwapThisWithSRet)
1236       IRArgNo++;
1237   }
1238   assert(ArgNo == ArgInfo.size());
1239 
1240   if (FI.usesInAlloca())
1241     InallocaArgNo = IRArgNo++;
1242 
1243   TotalIRArgs = IRArgNo;
1244 }
1245 }  // namespace
1246 
1247 /***/
1248 
1249 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1250   return FI.getReturnInfo().isIndirect();
1251 }
1252 
1253 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1254   return ReturnTypeUsesSRet(FI) &&
1255          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1256 }
1257 
1258 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1259   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1260     switch (BT->getKind()) {
1261     default:
1262       return false;
1263     case BuiltinType::Float:
1264       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1265     case BuiltinType::Double:
1266       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1267     case BuiltinType::LongDouble:
1268       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1269     }
1270   }
1271 
1272   return false;
1273 }
1274 
1275 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1276   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1277     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1278       if (BT->getKind() == BuiltinType::LongDouble)
1279         return getTarget().useObjCFP2RetForComplexLongDouble();
1280     }
1281   }
1282 
1283   return false;
1284 }
1285 
1286 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1287   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1288   return GetFunctionType(FI);
1289 }
1290 
1291 llvm::FunctionType *
1292 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1293 
1294   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1295   (void)Inserted;
1296   assert(Inserted && "Recursively being processed?");
1297 
1298   llvm::Type *resultType = nullptr;
1299   const ABIArgInfo &retAI = FI.getReturnInfo();
1300   switch (retAI.getKind()) {
1301   case ABIArgInfo::Expand:
1302     llvm_unreachable("Invalid ABI kind for return argument");
1303 
1304   case ABIArgInfo::Extend:
1305   case ABIArgInfo::Direct:
1306     resultType = retAI.getCoerceToType();
1307     break;
1308 
1309   case ABIArgInfo::InAlloca:
1310     if (retAI.getInAllocaSRet()) {
1311       // sret things on win32 aren't void, they return the sret pointer.
1312       QualType ret = FI.getReturnType();
1313       llvm::Type *ty = ConvertType(ret);
1314       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1315       resultType = llvm::PointerType::get(ty, addressSpace);
1316     } else {
1317       resultType = llvm::Type::getVoidTy(getLLVMContext());
1318     }
1319     break;
1320 
1321   case ABIArgInfo::Indirect:
1322   case ABIArgInfo::Ignore:
1323     resultType = llvm::Type::getVoidTy(getLLVMContext());
1324     break;
1325   }
1326 
1327   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1328   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1329 
1330   // Add type for sret argument.
1331   if (IRFunctionArgs.hasSRetArg()) {
1332     QualType Ret = FI.getReturnType();
1333     llvm::Type *Ty = ConvertType(Ret);
1334     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1335     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1336         llvm::PointerType::get(Ty, AddressSpace);
1337   }
1338 
1339   // Add type for inalloca argument.
1340   if (IRFunctionArgs.hasInallocaArg()) {
1341     auto ArgStruct = FI.getArgStruct();
1342     assert(ArgStruct);
1343     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1344   }
1345 
1346   // Add in all of the required arguments.
1347   unsigned ArgNo = 0;
1348   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1349                                      ie = it + FI.getNumRequiredArgs();
1350   for (; it != ie; ++it, ++ArgNo) {
1351     const ABIArgInfo &ArgInfo = it->info;
1352 
1353     // Insert a padding type to ensure proper alignment.
1354     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1355       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1356           ArgInfo.getPaddingType();
1357 
1358     unsigned FirstIRArg, NumIRArgs;
1359     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1360 
1361     switch (ArgInfo.getKind()) {
1362     case ABIArgInfo::Ignore:
1363     case ABIArgInfo::InAlloca:
1364       assert(NumIRArgs == 0);
1365       break;
1366 
1367     case ABIArgInfo::Indirect: {
1368       assert(NumIRArgs == 1);
1369       // indirect arguments are always on the stack, which is addr space #0.
1370       llvm::Type *LTy = ConvertTypeForMem(it->type);
1371       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1372       break;
1373     }
1374 
1375     case ABIArgInfo::Extend:
1376     case ABIArgInfo::Direct: {
1377       // Fast-isel and the optimizer generally like scalar values better than
1378       // FCAs, so we flatten them if this is safe to do for this argument.
1379       llvm::Type *argType = ArgInfo.getCoerceToType();
1380       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1381       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1382         assert(NumIRArgs == st->getNumElements());
1383         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1384           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1385       } else {
1386         assert(NumIRArgs == 1);
1387         ArgTypes[FirstIRArg] = argType;
1388       }
1389       break;
1390     }
1391 
1392     case ABIArgInfo::Expand:
1393       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1394       getExpandedTypes(it->type, ArgTypesIter);
1395       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1396       break;
1397     }
1398   }
1399 
1400   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1401   assert(Erased && "Not in set?");
1402 
1403   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1404 }
1405 
1406 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1407   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1408   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1409 
1410   if (!isFuncTypeConvertible(FPT))
1411     return llvm::StructType::get(getLLVMContext());
1412 
1413   const CGFunctionInfo *Info;
1414   if (isa<CXXDestructorDecl>(MD))
1415     Info =
1416         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1417   else
1418     Info = &arrangeCXXMethodDeclaration(MD);
1419   return GetFunctionType(*Info);
1420 }
1421 
1422 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1423                                                llvm::AttrBuilder &FuncAttrs,
1424                                                const FunctionProtoType *FPT) {
1425   if (!FPT)
1426     return;
1427 
1428   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1429       FPT->isNothrow(Ctx))
1430     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1431 }
1432 
1433 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1434                                            CGCalleeInfo CalleeInfo,
1435                                            AttributeListType &PAL,
1436                                            unsigned &CallingConv,
1437                                            bool AttrOnCallSite) {
1438   llvm::AttrBuilder FuncAttrs;
1439   llvm::AttrBuilder RetAttrs;
1440   bool HasOptnone = false;
1441 
1442   CallingConv = FI.getEffectiveCallingConvention();
1443 
1444   if (FI.isNoReturn())
1445     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1446 
1447   // If we have information about the function prototype, we can learn
1448   // attributes form there.
1449   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1450                                      CalleeInfo.getCalleeFunctionProtoType());
1451 
1452   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1453 
1454   // FIXME: handle sseregparm someday...
1455   if (TargetDecl) {
1456     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1457       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1458     if (TargetDecl->hasAttr<NoThrowAttr>())
1459       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1460     if (TargetDecl->hasAttr<NoReturnAttr>())
1461       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1462     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1463       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1464 
1465     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1466       AddAttributesFromFunctionProtoType(
1467           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1468       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1469       // These attributes are not inherited by overloads.
1470       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1471       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1472         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1473     }
1474 
1475     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1476     if (TargetDecl->hasAttr<ConstAttr>()) {
1477       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1478       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1479     } else if (TargetDecl->hasAttr<PureAttr>()) {
1480       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1481       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1482     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1483       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1484       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1485     }
1486     if (TargetDecl->hasAttr<RestrictAttr>())
1487       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1488     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1489       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1490 
1491     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1492   }
1493 
1494   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1495   if (!HasOptnone) {
1496     if (CodeGenOpts.OptimizeSize)
1497       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1498     if (CodeGenOpts.OptimizeSize == 2)
1499       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1500   }
1501 
1502   if (CodeGenOpts.DisableRedZone)
1503     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1504   if (CodeGenOpts.NoImplicitFloat)
1505     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1506   if (CodeGenOpts.EnableSegmentedStacks &&
1507       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1508     FuncAttrs.addAttribute("split-stack");
1509 
1510   if (AttrOnCallSite) {
1511     // Attributes that should go on the call site only.
1512     if (!CodeGenOpts.SimplifyLibCalls)
1513       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1514     if (!CodeGenOpts.TrapFuncName.empty())
1515       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1516   } else {
1517     // Attributes that should go on the function, but not the call site.
1518     if (!CodeGenOpts.DisableFPElim) {
1519       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1520     } else if (CodeGenOpts.OmitLeafFramePointer) {
1521       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1522       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1523     } else {
1524       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1525       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1526     }
1527 
1528     bool DisableTailCalls =
1529         CodeGenOpts.DisableTailCalls ||
1530         (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>());
1531     FuncAttrs.addAttribute("disable-tail-calls",
1532                            llvm::toStringRef(DisableTailCalls));
1533 
1534     FuncAttrs.addAttribute("less-precise-fpmad",
1535                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1536     FuncAttrs.addAttribute("no-infs-fp-math",
1537                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1538     FuncAttrs.addAttribute("no-nans-fp-math",
1539                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1540     FuncAttrs.addAttribute("unsafe-fp-math",
1541                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1542     FuncAttrs.addAttribute("use-soft-float",
1543                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1544     FuncAttrs.addAttribute("stack-protector-buffer-size",
1545                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1546 
1547     if (CodeGenOpts.StackRealignment)
1548       FuncAttrs.addAttribute("stackrealign");
1549 
1550     // Add target-cpu and target-features attributes to functions. If
1551     // we have a decl for the function and it has a target attribute then
1552     // parse that and add it to the feature set.
1553     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1554     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1555     if (FD && FD->hasAttr<TargetAttr>()) {
1556       llvm::StringMap<bool> FeatureMap;
1557       getFunctionFeatureMap(FeatureMap, FD);
1558 
1559       // Produce the canonical string for this set of features.
1560       std::vector<std::string> Features;
1561       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1562                                                  ie = FeatureMap.end();
1563            it != ie; ++it)
1564         Features.push_back((it->second ? "+" : "-") + it->first().str());
1565 
1566       // Now add the target-cpu and target-features to the function.
1567       // While we populated the feature map above, we still need to
1568       // get and parse the target attribute so we can get the cpu for
1569       // the function.
1570       const auto *TD = FD->getAttr<TargetAttr>();
1571       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1572       if (ParsedAttr.second != "")
1573         TargetCPU = ParsedAttr.second;
1574       if (TargetCPU != "")
1575         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1576       if (!Features.empty()) {
1577         std::sort(Features.begin(), Features.end());
1578         FuncAttrs.addAttribute(
1579             "target-features",
1580             llvm::join(Features.begin(), Features.end(), ","));
1581       }
1582     } else {
1583       // Otherwise just add the existing target cpu and target features to the
1584       // function.
1585       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1586       if (TargetCPU != "")
1587         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1588       if (!Features.empty()) {
1589         std::sort(Features.begin(), Features.end());
1590         FuncAttrs.addAttribute(
1591             "target-features",
1592             llvm::join(Features.begin(), Features.end(), ","));
1593       }
1594     }
1595   }
1596 
1597   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1598 
1599   QualType RetTy = FI.getReturnType();
1600   const ABIArgInfo &RetAI = FI.getReturnInfo();
1601   switch (RetAI.getKind()) {
1602   case ABIArgInfo::Extend:
1603     if (RetTy->hasSignedIntegerRepresentation())
1604       RetAttrs.addAttribute(llvm::Attribute::SExt);
1605     else if (RetTy->hasUnsignedIntegerRepresentation())
1606       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1607     // FALL THROUGH
1608   case ABIArgInfo::Direct:
1609     if (RetAI.getInReg())
1610       RetAttrs.addAttribute(llvm::Attribute::InReg);
1611     break;
1612   case ABIArgInfo::Ignore:
1613     break;
1614 
1615   case ABIArgInfo::InAlloca:
1616   case ABIArgInfo::Indirect: {
1617     // inalloca and sret disable readnone and readonly
1618     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1619       .removeAttribute(llvm::Attribute::ReadNone);
1620     break;
1621   }
1622 
1623   case ABIArgInfo::Expand:
1624     llvm_unreachable("Invalid ABI kind for return argument");
1625   }
1626 
1627   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1628     QualType PTy = RefTy->getPointeeType();
1629     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1630       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1631                                         .getQuantity());
1632     else if (getContext().getTargetAddressSpace(PTy) == 0)
1633       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1634   }
1635 
1636   // Attach return attributes.
1637   if (RetAttrs.hasAttributes()) {
1638     PAL.push_back(llvm::AttributeSet::get(
1639         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1640   }
1641 
1642   // Attach attributes to sret.
1643   if (IRFunctionArgs.hasSRetArg()) {
1644     llvm::AttrBuilder SRETAttrs;
1645     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1646     if (RetAI.getInReg())
1647       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1648     PAL.push_back(llvm::AttributeSet::get(
1649         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1650   }
1651 
1652   // Attach attributes to inalloca argument.
1653   if (IRFunctionArgs.hasInallocaArg()) {
1654     llvm::AttrBuilder Attrs;
1655     Attrs.addAttribute(llvm::Attribute::InAlloca);
1656     PAL.push_back(llvm::AttributeSet::get(
1657         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1658   }
1659 
1660   unsigned ArgNo = 0;
1661   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1662                                           E = FI.arg_end();
1663        I != E; ++I, ++ArgNo) {
1664     QualType ParamType = I->type;
1665     const ABIArgInfo &AI = I->info;
1666     llvm::AttrBuilder Attrs;
1667 
1668     // Add attribute for padding argument, if necessary.
1669     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1670       if (AI.getPaddingInReg())
1671         PAL.push_back(llvm::AttributeSet::get(
1672             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1673             llvm::Attribute::InReg));
1674     }
1675 
1676     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1677     // have the corresponding parameter variable.  It doesn't make
1678     // sense to do it here because parameters are so messed up.
1679     switch (AI.getKind()) {
1680     case ABIArgInfo::Extend:
1681       if (ParamType->isSignedIntegerOrEnumerationType())
1682         Attrs.addAttribute(llvm::Attribute::SExt);
1683       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1684         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1685           Attrs.addAttribute(llvm::Attribute::SExt);
1686         else
1687           Attrs.addAttribute(llvm::Attribute::ZExt);
1688       }
1689       // FALL THROUGH
1690     case ABIArgInfo::Direct:
1691       if (ArgNo == 0 && FI.isChainCall())
1692         Attrs.addAttribute(llvm::Attribute::Nest);
1693       else if (AI.getInReg())
1694         Attrs.addAttribute(llvm::Attribute::InReg);
1695       break;
1696 
1697     case ABIArgInfo::Indirect: {
1698       if (AI.getInReg())
1699         Attrs.addAttribute(llvm::Attribute::InReg);
1700 
1701       if (AI.getIndirectByVal())
1702         Attrs.addAttribute(llvm::Attribute::ByVal);
1703 
1704       CharUnits Align = AI.getIndirectAlign();
1705 
1706       // In a byval argument, it is important that the required
1707       // alignment of the type is honored, as LLVM might be creating a
1708       // *new* stack object, and needs to know what alignment to give
1709       // it. (Sometimes it can deduce a sensible alignment on its own,
1710       // but not if clang decides it must emit a packed struct, or the
1711       // user specifies increased alignment requirements.)
1712       //
1713       // This is different from indirect *not* byval, where the object
1714       // exists already, and the align attribute is purely
1715       // informative.
1716       assert(!Align.isZero());
1717 
1718       // For now, only add this when we have a byval argument.
1719       // TODO: be less lazy about updating test cases.
1720       if (AI.getIndirectByVal())
1721         Attrs.addAlignmentAttr(Align.getQuantity());
1722 
1723       // byval disables readnone and readonly.
1724       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1725         .removeAttribute(llvm::Attribute::ReadNone);
1726       break;
1727     }
1728     case ABIArgInfo::Ignore:
1729     case ABIArgInfo::Expand:
1730       continue;
1731 
1732     case ABIArgInfo::InAlloca:
1733       // inalloca disables readnone and readonly.
1734       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1735           .removeAttribute(llvm::Attribute::ReadNone);
1736       continue;
1737     }
1738 
1739     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1740       QualType PTy = RefTy->getPointeeType();
1741       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1742         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1743                                        .getQuantity());
1744       else if (getContext().getTargetAddressSpace(PTy) == 0)
1745         Attrs.addAttribute(llvm::Attribute::NonNull);
1746     }
1747 
1748     if (Attrs.hasAttributes()) {
1749       unsigned FirstIRArg, NumIRArgs;
1750       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1751       for (unsigned i = 0; i < NumIRArgs; i++)
1752         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1753                                               FirstIRArg + i + 1, Attrs));
1754     }
1755   }
1756   assert(ArgNo == FI.arg_size());
1757 
1758   if (FuncAttrs.hasAttributes())
1759     PAL.push_back(llvm::
1760                   AttributeSet::get(getLLVMContext(),
1761                                     llvm::AttributeSet::FunctionIndex,
1762                                     FuncAttrs));
1763 }
1764 
1765 /// An argument came in as a promoted argument; demote it back to its
1766 /// declared type.
1767 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1768                                          const VarDecl *var,
1769                                          llvm::Value *value) {
1770   llvm::Type *varType = CGF.ConvertType(var->getType());
1771 
1772   // This can happen with promotions that actually don't change the
1773   // underlying type, like the enum promotions.
1774   if (value->getType() == varType) return value;
1775 
1776   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1777          && "unexpected promotion type");
1778 
1779   if (isa<llvm::IntegerType>(varType))
1780     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1781 
1782   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1783 }
1784 
1785 /// Returns the attribute (either parameter attribute, or function
1786 /// attribute), which declares argument ArgNo to be non-null.
1787 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1788                                          QualType ArgType, unsigned ArgNo) {
1789   // FIXME: __attribute__((nonnull)) can also be applied to:
1790   //   - references to pointers, where the pointee is known to be
1791   //     nonnull (apparently a Clang extension)
1792   //   - transparent unions containing pointers
1793   // In the former case, LLVM IR cannot represent the constraint. In
1794   // the latter case, we have no guarantee that the transparent union
1795   // is in fact passed as a pointer.
1796   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1797     return nullptr;
1798   // First, check attribute on parameter itself.
1799   if (PVD) {
1800     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1801       return ParmNNAttr;
1802   }
1803   // Check function attributes.
1804   if (!FD)
1805     return nullptr;
1806   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1807     if (NNAttr->isNonNull(ArgNo))
1808       return NNAttr;
1809   }
1810   return nullptr;
1811 }
1812 
1813 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1814                                          llvm::Function *Fn,
1815                                          const FunctionArgList &Args) {
1816   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1817     // Naked functions don't have prologues.
1818     return;
1819 
1820   // If this is an implicit-return-zero function, go ahead and
1821   // initialize the return value.  TODO: it might be nice to have
1822   // a more general mechanism for this that didn't require synthesized
1823   // return statements.
1824   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1825     if (FD->hasImplicitReturnZero()) {
1826       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1827       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1828       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1829       Builder.CreateStore(Zero, ReturnValue);
1830     }
1831   }
1832 
1833   // FIXME: We no longer need the types from FunctionArgList; lift up and
1834   // simplify.
1835 
1836   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1837   // Flattened function arguments.
1838   SmallVector<llvm::Argument *, 16> FnArgs;
1839   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1840   for (auto &Arg : Fn->args()) {
1841     FnArgs.push_back(&Arg);
1842   }
1843   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1844 
1845   // If we're using inalloca, all the memory arguments are GEPs off of the last
1846   // parameter, which is a pointer to the complete memory area.
1847   Address ArgStruct = Address::invalid();
1848   const llvm::StructLayout *ArgStructLayout = nullptr;
1849   if (IRFunctionArgs.hasInallocaArg()) {
1850     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
1851     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
1852                         FI.getArgStructAlignment());
1853 
1854     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
1855   }
1856 
1857   // Name the struct return parameter.
1858   if (IRFunctionArgs.hasSRetArg()) {
1859     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1860     AI->setName("agg.result");
1861     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1862                                         llvm::Attribute::NoAlias));
1863   }
1864 
1865   // Track if we received the parameter as a pointer (indirect, byval, or
1866   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1867   // into a local alloca for us.
1868   SmallVector<ParamValue, 16> ArgVals;
1869   ArgVals.reserve(Args.size());
1870 
1871   // Create a pointer value for every parameter declaration.  This usually
1872   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1873   // any cleanups or do anything that might unwind.  We do that separately, so
1874   // we can push the cleanups in the correct order for the ABI.
1875   assert(FI.arg_size() == Args.size() &&
1876          "Mismatch between function signature & arguments.");
1877   unsigned ArgNo = 0;
1878   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1879   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1880        i != e; ++i, ++info_it, ++ArgNo) {
1881     const VarDecl *Arg = *i;
1882     QualType Ty = info_it->type;
1883     const ABIArgInfo &ArgI = info_it->info;
1884 
1885     bool isPromoted =
1886       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1887 
1888     unsigned FirstIRArg, NumIRArgs;
1889     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1890 
1891     switch (ArgI.getKind()) {
1892     case ABIArgInfo::InAlloca: {
1893       assert(NumIRArgs == 0);
1894       auto FieldIndex = ArgI.getInAllocaFieldIndex();
1895       CharUnits FieldOffset =
1896         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
1897       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
1898                                           Arg->getName());
1899       ArgVals.push_back(ParamValue::forIndirect(V));
1900       break;
1901     }
1902 
1903     case ABIArgInfo::Indirect: {
1904       assert(NumIRArgs == 1);
1905       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
1906 
1907       if (!hasScalarEvaluationKind(Ty)) {
1908         // Aggregates and complex variables are accessed by reference.  All we
1909         // need to do is realign the value, if requested.
1910         Address V = ParamAddr;
1911         if (ArgI.getIndirectRealign()) {
1912           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
1913 
1914           // Copy from the incoming argument pointer to the temporary with the
1915           // appropriate alignment.
1916           //
1917           // FIXME: We should have a common utility for generating an aggregate
1918           // copy.
1919           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1920           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
1921           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
1922           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
1923           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
1924           V = AlignedTemp;
1925         }
1926         ArgVals.push_back(ParamValue::forIndirect(V));
1927       } else {
1928         // Load scalar value from indirect argument.
1929         llvm::Value *V =
1930           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
1931 
1932         if (isPromoted)
1933           V = emitArgumentDemotion(*this, Arg, V);
1934         ArgVals.push_back(ParamValue::forDirect(V));
1935       }
1936       break;
1937     }
1938 
1939     case ABIArgInfo::Extend:
1940     case ABIArgInfo::Direct: {
1941 
1942       // If we have the trivial case, handle it with no muss and fuss.
1943       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1944           ArgI.getCoerceToType() == ConvertType(Ty) &&
1945           ArgI.getDirectOffset() == 0) {
1946         assert(NumIRArgs == 1);
1947         auto AI = FnArgs[FirstIRArg];
1948         llvm::Value *V = AI;
1949 
1950         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1951           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1952                              PVD->getFunctionScopeIndex()))
1953             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1954                                                 AI->getArgNo() + 1,
1955                                                 llvm::Attribute::NonNull));
1956 
1957           QualType OTy = PVD->getOriginalType();
1958           if (const auto *ArrTy =
1959               getContext().getAsConstantArrayType(OTy)) {
1960             // A C99 array parameter declaration with the static keyword also
1961             // indicates dereferenceability, and if the size is constant we can
1962             // use the dereferenceable attribute (which requires the size in
1963             // bytes).
1964             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1965               QualType ETy = ArrTy->getElementType();
1966               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1967               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1968                   ArrSize) {
1969                 llvm::AttrBuilder Attrs;
1970                 Attrs.addDereferenceableAttr(
1971                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1972                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1973                                                     AI->getArgNo() + 1, Attrs));
1974               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1975                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1976                                                     AI->getArgNo() + 1,
1977                                                     llvm::Attribute::NonNull));
1978               }
1979             }
1980           } else if (const auto *ArrTy =
1981                      getContext().getAsVariableArrayType(OTy)) {
1982             // For C99 VLAs with the static keyword, we don't know the size so
1983             // we can't use the dereferenceable attribute, but in addrspace(0)
1984             // we know that it must be nonnull.
1985             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1986                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1987               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1988                                                   AI->getArgNo() + 1,
1989                                                   llvm::Attribute::NonNull));
1990           }
1991 
1992           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1993           if (!AVAttr)
1994             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1995               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1996           if (AVAttr) {
1997             llvm::Value *AlignmentValue =
1998               EmitScalarExpr(AVAttr->getAlignment());
1999             llvm::ConstantInt *AlignmentCI =
2000               cast<llvm::ConstantInt>(AlignmentValue);
2001             unsigned Alignment =
2002               std::min((unsigned) AlignmentCI->getZExtValue(),
2003                        +llvm::Value::MaximumAlignment);
2004 
2005             llvm::AttrBuilder Attrs;
2006             Attrs.addAlignmentAttr(Alignment);
2007             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2008                                                 AI->getArgNo() + 1, Attrs));
2009           }
2010         }
2011 
2012         if (Arg->getType().isRestrictQualified())
2013           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2014                                               AI->getArgNo() + 1,
2015                                               llvm::Attribute::NoAlias));
2016 
2017         // Ensure the argument is the correct type.
2018         if (V->getType() != ArgI.getCoerceToType())
2019           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2020 
2021         if (isPromoted)
2022           V = emitArgumentDemotion(*this, Arg, V);
2023 
2024         if (const CXXMethodDecl *MD =
2025             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
2026           if (MD->isVirtual() && Arg == CXXABIThisDecl)
2027             V = CGM.getCXXABI().
2028                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
2029         }
2030 
2031         // Because of merging of function types from multiple decls it is
2032         // possible for the type of an argument to not match the corresponding
2033         // type in the function type. Since we are codegening the callee
2034         // in here, add a cast to the argument type.
2035         llvm::Type *LTy = ConvertType(Arg->getType());
2036         if (V->getType() != LTy)
2037           V = Builder.CreateBitCast(V, LTy);
2038 
2039         ArgVals.push_back(ParamValue::forDirect(V));
2040         break;
2041       }
2042 
2043       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2044                                      Arg->getName());
2045 
2046       // Pointer to store into.
2047       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2048 
2049       // Fast-isel and the optimizer generally like scalar values better than
2050       // FCAs, so we flatten them if this is safe to do for this argument.
2051       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2052       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2053           STy->getNumElements() > 1) {
2054         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2055         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2056         llvm::Type *DstTy = Ptr.getElementType();
2057         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2058 
2059         Address AddrToStoreInto = Address::invalid();
2060         if (SrcSize <= DstSize) {
2061           AddrToStoreInto =
2062             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2063         } else {
2064           AddrToStoreInto =
2065             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2066         }
2067 
2068         assert(STy->getNumElements() == NumIRArgs);
2069         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2070           auto AI = FnArgs[FirstIRArg + i];
2071           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2072           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2073           Address EltPtr =
2074             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2075           Builder.CreateStore(AI, EltPtr);
2076         }
2077 
2078         if (SrcSize > DstSize) {
2079           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2080         }
2081 
2082       } else {
2083         // Simple case, just do a coerced store of the argument into the alloca.
2084         assert(NumIRArgs == 1);
2085         auto AI = FnArgs[FirstIRArg];
2086         AI->setName(Arg->getName() + ".coerce");
2087         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2088       }
2089 
2090       // Match to what EmitParmDecl is expecting for this type.
2091       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2092         llvm::Value *V =
2093           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2094         if (isPromoted)
2095           V = emitArgumentDemotion(*this, Arg, V);
2096         ArgVals.push_back(ParamValue::forDirect(V));
2097       } else {
2098         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2099       }
2100       break;
2101     }
2102 
2103     case ABIArgInfo::Expand: {
2104       // If this structure was expanded into multiple arguments then
2105       // we need to create a temporary and reconstruct it from the
2106       // arguments.
2107       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2108       LValue LV = MakeAddrLValue(Alloca, Ty);
2109       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2110 
2111       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2112       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2113       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2114       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2115         auto AI = FnArgs[FirstIRArg + i];
2116         AI->setName(Arg->getName() + "." + Twine(i));
2117       }
2118       break;
2119     }
2120 
2121     case ABIArgInfo::Ignore:
2122       assert(NumIRArgs == 0);
2123       // Initialize the local variable appropriately.
2124       if (!hasScalarEvaluationKind(Ty)) {
2125         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2126       } else {
2127         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2128         ArgVals.push_back(ParamValue::forDirect(U));
2129       }
2130       break;
2131     }
2132   }
2133 
2134   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2135     for (int I = Args.size() - 1; I >= 0; --I)
2136       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2137   } else {
2138     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2139       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2140   }
2141 }
2142 
2143 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2144   while (insn->use_empty()) {
2145     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2146     if (!bitcast) return;
2147 
2148     // This is "safe" because we would have used a ConstantExpr otherwise.
2149     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2150     bitcast->eraseFromParent();
2151   }
2152 }
2153 
2154 /// Try to emit a fused autorelease of a return result.
2155 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2156                                                     llvm::Value *result) {
2157   // We must be immediately followed the cast.
2158   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2159   if (BB->empty()) return nullptr;
2160   if (&BB->back() != result) return nullptr;
2161 
2162   llvm::Type *resultType = result->getType();
2163 
2164   // result is in a BasicBlock and is therefore an Instruction.
2165   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2166 
2167   SmallVector<llvm::Instruction*,4> insnsToKill;
2168 
2169   // Look for:
2170   //  %generator = bitcast %type1* %generator2 to %type2*
2171   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2172     // We would have emitted this as a constant if the operand weren't
2173     // an Instruction.
2174     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2175 
2176     // Require the generator to be immediately followed by the cast.
2177     if (generator->getNextNode() != bitcast)
2178       return nullptr;
2179 
2180     insnsToKill.push_back(bitcast);
2181   }
2182 
2183   // Look for:
2184   //   %generator = call i8* @objc_retain(i8* %originalResult)
2185   // or
2186   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2187   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2188   if (!call) return nullptr;
2189 
2190   bool doRetainAutorelease;
2191 
2192   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2193     doRetainAutorelease = true;
2194   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2195                                           .objc_retainAutoreleasedReturnValue) {
2196     doRetainAutorelease = false;
2197 
2198     // If we emitted an assembly marker for this call (and the
2199     // ARCEntrypoints field should have been set if so), go looking
2200     // for that call.  If we can't find it, we can't do this
2201     // optimization.  But it should always be the immediately previous
2202     // instruction, unless we needed bitcasts around the call.
2203     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2204       llvm::Instruction *prev = call->getPrevNode();
2205       assert(prev);
2206       if (isa<llvm::BitCastInst>(prev)) {
2207         prev = prev->getPrevNode();
2208         assert(prev);
2209       }
2210       assert(isa<llvm::CallInst>(prev));
2211       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2212                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2213       insnsToKill.push_back(prev);
2214     }
2215   } else {
2216     return nullptr;
2217   }
2218 
2219   result = call->getArgOperand(0);
2220   insnsToKill.push_back(call);
2221 
2222   // Keep killing bitcasts, for sanity.  Note that we no longer care
2223   // about precise ordering as long as there's exactly one use.
2224   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2225     if (!bitcast->hasOneUse()) break;
2226     insnsToKill.push_back(bitcast);
2227     result = bitcast->getOperand(0);
2228   }
2229 
2230   // Delete all the unnecessary instructions, from latest to earliest.
2231   for (SmallVectorImpl<llvm::Instruction*>::iterator
2232          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2233     (*i)->eraseFromParent();
2234 
2235   // Do the fused retain/autorelease if we were asked to.
2236   if (doRetainAutorelease)
2237     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2238 
2239   // Cast back to the result type.
2240   return CGF.Builder.CreateBitCast(result, resultType);
2241 }
2242 
2243 /// If this is a +1 of the value of an immutable 'self', remove it.
2244 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2245                                           llvm::Value *result) {
2246   // This is only applicable to a method with an immutable 'self'.
2247   const ObjCMethodDecl *method =
2248     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2249   if (!method) return nullptr;
2250   const VarDecl *self = method->getSelfDecl();
2251   if (!self->getType().isConstQualified()) return nullptr;
2252 
2253   // Look for a retain call.
2254   llvm::CallInst *retainCall =
2255     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2256   if (!retainCall ||
2257       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2258     return nullptr;
2259 
2260   // Look for an ordinary load of 'self'.
2261   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2262   llvm::LoadInst *load =
2263     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2264   if (!load || load->isAtomic() || load->isVolatile() ||
2265       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2266     return nullptr;
2267 
2268   // Okay!  Burn it all down.  This relies for correctness on the
2269   // assumption that the retain is emitted as part of the return and
2270   // that thereafter everything is used "linearly".
2271   llvm::Type *resultType = result->getType();
2272   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2273   assert(retainCall->use_empty());
2274   retainCall->eraseFromParent();
2275   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2276 
2277   return CGF.Builder.CreateBitCast(load, resultType);
2278 }
2279 
2280 /// Emit an ARC autorelease of the result of a function.
2281 ///
2282 /// \return the value to actually return from the function
2283 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2284                                             llvm::Value *result) {
2285   // If we're returning 'self', kill the initial retain.  This is a
2286   // heuristic attempt to "encourage correctness" in the really unfortunate
2287   // case where we have a return of self during a dealloc and we desperately
2288   // need to avoid the possible autorelease.
2289   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2290     return self;
2291 
2292   // At -O0, try to emit a fused retain/autorelease.
2293   if (CGF.shouldUseFusedARCCalls())
2294     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2295       return fused;
2296 
2297   return CGF.EmitARCAutoreleaseReturnValue(result);
2298 }
2299 
2300 /// Heuristically search for a dominating store to the return-value slot.
2301 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2302   // Check if a User is a store which pointerOperand is the ReturnValue.
2303   // We are looking for stores to the ReturnValue, not for stores of the
2304   // ReturnValue to some other location.
2305   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2306     auto *SI = dyn_cast<llvm::StoreInst>(U);
2307     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2308       return nullptr;
2309     // These aren't actually possible for non-coerced returns, and we
2310     // only care about non-coerced returns on this code path.
2311     assert(!SI->isAtomic() && !SI->isVolatile());
2312     return SI;
2313   };
2314   // If there are multiple uses of the return-value slot, just check
2315   // for something immediately preceding the IP.  Sometimes this can
2316   // happen with how we generate implicit-returns; it can also happen
2317   // with noreturn cleanups.
2318   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2319     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2320     if (IP->empty()) return nullptr;
2321     llvm::Instruction *I = &IP->back();
2322 
2323     // Skip lifetime markers
2324     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2325                                             IE = IP->rend();
2326          II != IE; ++II) {
2327       if (llvm::IntrinsicInst *Intrinsic =
2328               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2329         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2330           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2331           ++II;
2332           if (II == IE)
2333             break;
2334           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2335             continue;
2336         }
2337       }
2338       I = &*II;
2339       break;
2340     }
2341 
2342     return GetStoreIfValid(I);
2343   }
2344 
2345   llvm::StoreInst *store =
2346       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2347   if (!store) return nullptr;
2348 
2349   // Now do a first-and-dirty dominance check: just walk up the
2350   // single-predecessors chain from the current insertion point.
2351   llvm::BasicBlock *StoreBB = store->getParent();
2352   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2353   while (IP != StoreBB) {
2354     if (!(IP = IP->getSinglePredecessor()))
2355       return nullptr;
2356   }
2357 
2358   // Okay, the store's basic block dominates the insertion point; we
2359   // can do our thing.
2360   return store;
2361 }
2362 
2363 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2364                                          bool EmitRetDbgLoc,
2365                                          SourceLocation EndLoc) {
2366   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2367     // Naked functions don't have epilogues.
2368     Builder.CreateUnreachable();
2369     return;
2370   }
2371 
2372   // Functions with no result always return void.
2373   if (!ReturnValue.isValid()) {
2374     Builder.CreateRetVoid();
2375     return;
2376   }
2377 
2378   llvm::DebugLoc RetDbgLoc;
2379   llvm::Value *RV = nullptr;
2380   QualType RetTy = FI.getReturnType();
2381   const ABIArgInfo &RetAI = FI.getReturnInfo();
2382 
2383   switch (RetAI.getKind()) {
2384   case ABIArgInfo::InAlloca:
2385     // Aggregrates get evaluated directly into the destination.  Sometimes we
2386     // need to return the sret value in a register, though.
2387     assert(hasAggregateEvaluationKind(RetTy));
2388     if (RetAI.getInAllocaSRet()) {
2389       llvm::Function::arg_iterator EI = CurFn->arg_end();
2390       --EI;
2391       llvm::Value *ArgStruct = &*EI;
2392       llvm::Value *SRet = Builder.CreateStructGEP(
2393           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2394       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2395     }
2396     break;
2397 
2398   case ABIArgInfo::Indirect: {
2399     auto AI = CurFn->arg_begin();
2400     if (RetAI.isSRetAfterThis())
2401       ++AI;
2402     switch (getEvaluationKind(RetTy)) {
2403     case TEK_Complex: {
2404       ComplexPairTy RT =
2405         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2406       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2407                          /*isInit*/ true);
2408       break;
2409     }
2410     case TEK_Aggregate:
2411       // Do nothing; aggregrates get evaluated directly into the destination.
2412       break;
2413     case TEK_Scalar:
2414       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2415                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2416                         /*isInit*/ true);
2417       break;
2418     }
2419     break;
2420   }
2421 
2422   case ABIArgInfo::Extend:
2423   case ABIArgInfo::Direct:
2424     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2425         RetAI.getDirectOffset() == 0) {
2426       // The internal return value temp always will have pointer-to-return-type
2427       // type, just do a load.
2428 
2429       // If there is a dominating store to ReturnValue, we can elide
2430       // the load, zap the store, and usually zap the alloca.
2431       if (llvm::StoreInst *SI =
2432               findDominatingStoreToReturnValue(*this)) {
2433         // Reuse the debug location from the store unless there is
2434         // cleanup code to be emitted between the store and return
2435         // instruction.
2436         if (EmitRetDbgLoc && !AutoreleaseResult)
2437           RetDbgLoc = SI->getDebugLoc();
2438         // Get the stored value and nuke the now-dead store.
2439         RV = SI->getValueOperand();
2440         SI->eraseFromParent();
2441 
2442         // If that was the only use of the return value, nuke it as well now.
2443         auto returnValueInst = ReturnValue.getPointer();
2444         if (returnValueInst->use_empty()) {
2445           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2446             alloca->eraseFromParent();
2447             ReturnValue = Address::invalid();
2448           }
2449         }
2450 
2451       // Otherwise, we have to do a simple load.
2452       } else {
2453         RV = Builder.CreateLoad(ReturnValue);
2454       }
2455     } else {
2456       // If the value is offset in memory, apply the offset now.
2457       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2458 
2459       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2460     }
2461 
2462     // In ARC, end functions that return a retainable type with a call
2463     // to objc_autoreleaseReturnValue.
2464     if (AutoreleaseResult) {
2465       assert(getLangOpts().ObjCAutoRefCount &&
2466              !FI.isReturnsRetained() &&
2467              RetTy->isObjCRetainableType());
2468       RV = emitAutoreleaseOfResult(*this, RV);
2469     }
2470 
2471     break;
2472 
2473   case ABIArgInfo::Ignore:
2474     break;
2475 
2476   case ABIArgInfo::Expand:
2477     llvm_unreachable("Invalid ABI kind for return argument");
2478   }
2479 
2480   llvm::Instruction *Ret;
2481   if (RV) {
2482     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2483       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
2484         SanitizerScope SanScope(this);
2485         llvm::Value *Cond = Builder.CreateICmpNE(
2486             RV, llvm::Constant::getNullValue(RV->getType()));
2487         llvm::Constant *StaticData[] = {
2488             EmitCheckSourceLocation(EndLoc),
2489             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2490         };
2491         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2492                   "nonnull_return", StaticData, None);
2493       }
2494     }
2495     Ret = Builder.CreateRet(RV);
2496   } else {
2497     Ret = Builder.CreateRetVoid();
2498   }
2499 
2500   if (RetDbgLoc)
2501     Ret->setDebugLoc(std::move(RetDbgLoc));
2502 }
2503 
2504 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2505   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2506   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2507 }
2508 
2509 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2510                                           QualType Ty) {
2511   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2512   // placeholders.
2513   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2514   llvm::Value *Placeholder =
2515     llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2516   Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder);
2517 
2518   // FIXME: When we generate this IR in one pass, we shouldn't need
2519   // this win32-specific alignment hack.
2520   CharUnits Align = CharUnits::fromQuantity(4);
2521 
2522   return AggValueSlot::forAddr(Address(Placeholder, Align),
2523                                Ty.getQualifiers(),
2524                                AggValueSlot::IsNotDestructed,
2525                                AggValueSlot::DoesNotNeedGCBarriers,
2526                                AggValueSlot::IsNotAliased);
2527 }
2528 
2529 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2530                                           const VarDecl *param,
2531                                           SourceLocation loc) {
2532   // StartFunction converted the ABI-lowered parameter(s) into a
2533   // local alloca.  We need to turn that into an r-value suitable
2534   // for EmitCall.
2535   Address local = GetAddrOfLocalVar(param);
2536 
2537   QualType type = param->getType();
2538 
2539   // For the most part, we just need to load the alloca, except:
2540   // 1) aggregate r-values are actually pointers to temporaries, and
2541   // 2) references to non-scalars are pointers directly to the aggregate.
2542   // I don't know why references to scalars are different here.
2543   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2544     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2545       return args.add(RValue::getAggregate(local), type);
2546 
2547     // Locals which are references to scalars are represented
2548     // with allocas holding the pointer.
2549     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2550   }
2551 
2552   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2553          "cannot emit delegate call arguments for inalloca arguments!");
2554 
2555   args.add(convertTempToRValue(local, type, loc), type);
2556 }
2557 
2558 static bool isProvablyNull(llvm::Value *addr) {
2559   return isa<llvm::ConstantPointerNull>(addr);
2560 }
2561 
2562 static bool isProvablyNonNull(llvm::Value *addr) {
2563   return isa<llvm::AllocaInst>(addr);
2564 }
2565 
2566 /// Emit the actual writing-back of a writeback.
2567 static void emitWriteback(CodeGenFunction &CGF,
2568                           const CallArgList::Writeback &writeback) {
2569   const LValue &srcLV = writeback.Source;
2570   Address srcAddr = srcLV.getAddress();
2571   assert(!isProvablyNull(srcAddr.getPointer()) &&
2572          "shouldn't have writeback for provably null argument");
2573 
2574   llvm::BasicBlock *contBB = nullptr;
2575 
2576   // If the argument wasn't provably non-null, we need to null check
2577   // before doing the store.
2578   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2579   if (!provablyNonNull) {
2580     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2581     contBB = CGF.createBasicBlock("icr.done");
2582 
2583     llvm::Value *isNull =
2584       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2585     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2586     CGF.EmitBlock(writebackBB);
2587   }
2588 
2589   // Load the value to writeback.
2590   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2591 
2592   // Cast it back, in case we're writing an id to a Foo* or something.
2593   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
2594                                     "icr.writeback-cast");
2595 
2596   // Perform the writeback.
2597 
2598   // If we have a "to use" value, it's something we need to emit a use
2599   // of.  This has to be carefully threaded in: if it's done after the
2600   // release it's potentially undefined behavior (and the optimizer
2601   // will ignore it), and if it happens before the retain then the
2602   // optimizer could move the release there.
2603   if (writeback.ToUse) {
2604     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2605 
2606     // Retain the new value.  No need to block-copy here:  the block's
2607     // being passed up the stack.
2608     value = CGF.EmitARCRetainNonBlock(value);
2609 
2610     // Emit the intrinsic use here.
2611     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2612 
2613     // Load the old value (primitively).
2614     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2615 
2616     // Put the new value in place (primitively).
2617     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2618 
2619     // Release the old value.
2620     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2621 
2622   // Otherwise, we can just do a normal lvalue store.
2623   } else {
2624     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2625   }
2626 
2627   // Jump to the continuation block.
2628   if (!provablyNonNull)
2629     CGF.EmitBlock(contBB);
2630 }
2631 
2632 static void emitWritebacks(CodeGenFunction &CGF,
2633                            const CallArgList &args) {
2634   for (const auto &I : args.writebacks())
2635     emitWriteback(CGF, I);
2636 }
2637 
2638 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2639                                             const CallArgList &CallArgs) {
2640   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2641   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2642     CallArgs.getCleanupsToDeactivate();
2643   // Iterate in reverse to increase the likelihood of popping the cleanup.
2644   for (const auto &I : llvm::reverse(Cleanups)) {
2645     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
2646     I.IsActiveIP->eraseFromParent();
2647   }
2648 }
2649 
2650 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2651   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2652     if (uop->getOpcode() == UO_AddrOf)
2653       return uop->getSubExpr();
2654   return nullptr;
2655 }
2656 
2657 /// Emit an argument that's being passed call-by-writeback.  That is,
2658 /// we are passing the address of an __autoreleased temporary; it
2659 /// might be copy-initialized with the current value of the given
2660 /// address, but it will definitely be copied out of after the call.
2661 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2662                              const ObjCIndirectCopyRestoreExpr *CRE) {
2663   LValue srcLV;
2664 
2665   // Make an optimistic effort to emit the address as an l-value.
2666   // This can fail if the argument expression is more complicated.
2667   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2668     srcLV = CGF.EmitLValue(lvExpr);
2669 
2670   // Otherwise, just emit it as a scalar.
2671   } else {
2672     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
2673 
2674     QualType srcAddrType =
2675       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2676     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
2677   }
2678   Address srcAddr = srcLV.getAddress();
2679 
2680   // The dest and src types don't necessarily match in LLVM terms
2681   // because of the crazy ObjC compatibility rules.
2682 
2683   llvm::PointerType *destType =
2684     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2685 
2686   // If the address is a constant null, just pass the appropriate null.
2687   if (isProvablyNull(srcAddr.getPointer())) {
2688     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2689              CRE->getType());
2690     return;
2691   }
2692 
2693   // Create the temporary.
2694   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
2695                                       CGF.getPointerAlign(),
2696                                       "icr.temp");
2697   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2698   // and that cleanup will be conditional if we can't prove that the l-value
2699   // isn't null, so we need to register a dominating point so that the cleanups
2700   // system will make valid IR.
2701   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2702 
2703   // Zero-initialize it if we're not doing a copy-initialization.
2704   bool shouldCopy = CRE->shouldCopy();
2705   if (!shouldCopy) {
2706     llvm::Value *null =
2707       llvm::ConstantPointerNull::get(
2708         cast<llvm::PointerType>(destType->getElementType()));
2709     CGF.Builder.CreateStore(null, temp);
2710   }
2711 
2712   llvm::BasicBlock *contBB = nullptr;
2713   llvm::BasicBlock *originBB = nullptr;
2714 
2715   // If the address is *not* known to be non-null, we need to switch.
2716   llvm::Value *finalArgument;
2717 
2718   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2719   if (provablyNonNull) {
2720     finalArgument = temp.getPointer();
2721   } else {
2722     llvm::Value *isNull =
2723       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2724 
2725     finalArgument = CGF.Builder.CreateSelect(isNull,
2726                                    llvm::ConstantPointerNull::get(destType),
2727                                              temp.getPointer(), "icr.argument");
2728 
2729     // If we need to copy, then the load has to be conditional, which
2730     // means we need control flow.
2731     if (shouldCopy) {
2732       originBB = CGF.Builder.GetInsertBlock();
2733       contBB = CGF.createBasicBlock("icr.cont");
2734       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2735       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2736       CGF.EmitBlock(copyBB);
2737       condEval.begin(CGF);
2738     }
2739   }
2740 
2741   llvm::Value *valueToUse = nullptr;
2742 
2743   // Perform a copy if necessary.
2744   if (shouldCopy) {
2745     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2746     assert(srcRV.isScalar());
2747 
2748     llvm::Value *src = srcRV.getScalarVal();
2749     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2750                                     "icr.cast");
2751 
2752     // Use an ordinary store, not a store-to-lvalue.
2753     CGF.Builder.CreateStore(src, temp);
2754 
2755     // If optimization is enabled, and the value was held in a
2756     // __strong variable, we need to tell the optimizer that this
2757     // value has to stay alive until we're doing the store back.
2758     // This is because the temporary is effectively unretained,
2759     // and so otherwise we can violate the high-level semantics.
2760     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2761         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2762       valueToUse = src;
2763     }
2764   }
2765 
2766   // Finish the control flow if we needed it.
2767   if (shouldCopy && !provablyNonNull) {
2768     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2769     CGF.EmitBlock(contBB);
2770 
2771     // Make a phi for the value to intrinsically use.
2772     if (valueToUse) {
2773       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2774                                                       "icr.to-use");
2775       phiToUse->addIncoming(valueToUse, copyBB);
2776       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2777                             originBB);
2778       valueToUse = phiToUse;
2779     }
2780 
2781     condEval.end(CGF);
2782   }
2783 
2784   args.addWriteback(srcLV, temp, valueToUse);
2785   args.add(RValue::get(finalArgument), CRE->getType());
2786 }
2787 
2788 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2789   assert(!StackBase && !StackCleanup.isValid());
2790 
2791   // Save the stack.
2792   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2793   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
2794 }
2795 
2796 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2797   if (StackBase) {
2798     // Restore the stack after the call.
2799     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2800     CGF.Builder.CreateCall(F, StackBase);
2801   }
2802 }
2803 
2804 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
2805                                           SourceLocation ArgLoc,
2806                                           const FunctionDecl *FD,
2807                                           unsigned ParmNum) {
2808   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2809     return;
2810   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2811   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2812   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2813   if (!NNAttr)
2814     return;
2815   SanitizerScope SanScope(this);
2816   assert(RV.isScalar());
2817   llvm::Value *V = RV.getScalarVal();
2818   llvm::Value *Cond =
2819       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2820   llvm::Constant *StaticData[] = {
2821       EmitCheckSourceLocation(ArgLoc),
2822       EmitCheckSourceLocation(NNAttr->getLocation()),
2823       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
2824   };
2825   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2826                 "nonnull_arg", StaticData, None);
2827 }
2828 
2829 void CodeGenFunction::EmitCallArgs(
2830     CallArgList &Args, ArrayRef<QualType> ArgTypes,
2831     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
2832     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) {
2833   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
2834 
2835   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) {
2836     if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams())
2837       return;
2838     auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>();
2839     if (PS == nullptr)
2840       return;
2841 
2842     const auto &Context = getContext();
2843     auto SizeTy = Context.getSizeType();
2844     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
2845     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T);
2846     Args.add(RValue::get(V), SizeTy);
2847   };
2848 
2849   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2850   // because arguments are destroyed left to right in the callee.
2851   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2852     // Insert a stack save if we're going to need any inalloca args.
2853     bool HasInAllocaArgs = false;
2854     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2855          I != E && !HasInAllocaArgs; ++I)
2856       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2857     if (HasInAllocaArgs) {
2858       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2859       Args.allocateArgumentMemory(*this);
2860     }
2861 
2862     // Evaluate each argument.
2863     size_t CallArgsStart = Args.size();
2864     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2865       CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2866       EmitCallArg(Args, *Arg, ArgTypes[I]);
2867       EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2868                           CalleeDecl, ParamsToSkip + I);
2869       MaybeEmitImplicitObjectSize(I, *Arg);
2870     }
2871 
2872     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2873     // IR function.
2874     std::reverse(Args.begin() + CallArgsStart, Args.end());
2875     return;
2876   }
2877 
2878   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2879     CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2880     assert(Arg != ArgRange.end());
2881     EmitCallArg(Args, *Arg, ArgTypes[I]);
2882     EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2883                         CalleeDecl, ParamsToSkip + I);
2884     MaybeEmitImplicitObjectSize(I, *Arg);
2885   }
2886 }
2887 
2888 namespace {
2889 
2890 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
2891   DestroyUnpassedArg(Address Addr, QualType Ty)
2892       : Addr(Addr), Ty(Ty) {}
2893 
2894   Address Addr;
2895   QualType Ty;
2896 
2897   void Emit(CodeGenFunction &CGF, Flags flags) override {
2898     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2899     assert(!Dtor->isTrivial());
2900     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2901                               /*Delegating=*/false, Addr);
2902   }
2903 };
2904 
2905 struct DisableDebugLocationUpdates {
2906   CodeGenFunction &CGF;
2907   bool disabledDebugInfo;
2908   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2909     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2910       CGF.disableDebugInfo();
2911   }
2912   ~DisableDebugLocationUpdates() {
2913     if (disabledDebugInfo)
2914       CGF.enableDebugInfo();
2915   }
2916 };
2917 
2918 } // end anonymous namespace
2919 
2920 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2921                                   QualType type) {
2922   DisableDebugLocationUpdates Dis(*this, E);
2923   if (const ObjCIndirectCopyRestoreExpr *CRE
2924         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2925     assert(getLangOpts().ObjCAutoRefCount);
2926     assert(getContext().hasSameType(E->getType(), type));
2927     return emitWritebackArg(*this, args, CRE);
2928   }
2929 
2930   assert(type->isReferenceType() == E->isGLValue() &&
2931          "reference binding to unmaterialized r-value!");
2932 
2933   if (E->isGLValue()) {
2934     assert(E->getObjectKind() == OK_Ordinary);
2935     return args.add(EmitReferenceBindingToExpr(E), type);
2936   }
2937 
2938   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2939 
2940   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2941   // However, we still have to push an EH-only cleanup in case we unwind before
2942   // we make it to the call.
2943   if (HasAggregateEvalKind &&
2944       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2945     // If we're using inalloca, use the argument memory.  Otherwise, use a
2946     // temporary.
2947     AggValueSlot Slot;
2948     if (args.isUsingInAlloca())
2949       Slot = createPlaceholderSlot(*this, type);
2950     else
2951       Slot = CreateAggTemp(type, "agg.tmp");
2952 
2953     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2954     bool DestroyedInCallee =
2955         RD && RD->hasNonTrivialDestructor() &&
2956         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2957     if (DestroyedInCallee)
2958       Slot.setExternallyDestructed();
2959 
2960     EmitAggExpr(E, Slot);
2961     RValue RV = Slot.asRValue();
2962     args.add(RV, type);
2963 
2964     if (DestroyedInCallee) {
2965       // Create a no-op GEP between the placeholder and the cleanup so we can
2966       // RAUW it successfully.  It also serves as a marker of the first
2967       // instruction where the cleanup is active.
2968       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
2969                                               type);
2970       // This unreachable is a temporary marker which will be removed later.
2971       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2972       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2973     }
2974     return;
2975   }
2976 
2977   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2978       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2979     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2980     assert(L.isSimple());
2981     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2982       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2983     } else {
2984       // We can't represent a misaligned lvalue in the CallArgList, so copy
2985       // to an aligned temporary now.
2986       Address tmp = CreateMemTemp(type);
2987       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
2988       args.add(RValue::getAggregate(tmp), type);
2989     }
2990     return;
2991   }
2992 
2993   args.add(EmitAnyExprToTemp(E), type);
2994 }
2995 
2996 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2997   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2998   // implicitly widens null pointer constants that are arguments to varargs
2999   // functions to pointer-sized ints.
3000   if (!getTarget().getTriple().isOSWindows())
3001     return Arg->getType();
3002 
3003   if (Arg->getType()->isIntegerType() &&
3004       getContext().getTypeSize(Arg->getType()) <
3005           getContext().getTargetInfo().getPointerWidth(0) &&
3006       Arg->isNullPointerConstant(getContext(),
3007                                  Expr::NPC_ValueDependentIsNotNull)) {
3008     return getContext().getIntPtrType();
3009   }
3010 
3011   return Arg->getType();
3012 }
3013 
3014 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3015 // optimizer it can aggressively ignore unwind edges.
3016 void
3017 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3018   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3019       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3020     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3021                       CGM.getNoObjCARCExceptionsMetadata());
3022 }
3023 
3024 /// Emits a call to the given no-arguments nounwind runtime function.
3025 llvm::CallInst *
3026 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3027                                          const llvm::Twine &name) {
3028   return EmitNounwindRuntimeCall(callee, None, name);
3029 }
3030 
3031 /// Emits a call to the given nounwind runtime function.
3032 llvm::CallInst *
3033 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3034                                          ArrayRef<llvm::Value*> args,
3035                                          const llvm::Twine &name) {
3036   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3037   call->setDoesNotThrow();
3038   return call;
3039 }
3040 
3041 /// Emits a simple call (never an invoke) to the given no-arguments
3042 /// runtime function.
3043 llvm::CallInst *
3044 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3045                                  const llvm::Twine &name) {
3046   return EmitRuntimeCall(callee, None, name);
3047 }
3048 
3049 /// Emits a simple call (never an invoke) to the given runtime
3050 /// function.
3051 llvm::CallInst *
3052 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3053                                  ArrayRef<llvm::Value*> args,
3054                                  const llvm::Twine &name) {
3055   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
3056   call->setCallingConv(getRuntimeCC());
3057   return call;
3058 }
3059 
3060 /// Emits a call or invoke to the given noreturn runtime function.
3061 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3062                                                ArrayRef<llvm::Value*> args) {
3063   if (getInvokeDest()) {
3064     llvm::InvokeInst *invoke =
3065       Builder.CreateInvoke(callee,
3066                            getUnreachableBlock(),
3067                            getInvokeDest(),
3068                            args);
3069     invoke->setDoesNotReturn();
3070     invoke->setCallingConv(getRuntimeCC());
3071   } else {
3072     llvm::CallInst *call = Builder.CreateCall(callee, args);
3073     call->setDoesNotReturn();
3074     call->setCallingConv(getRuntimeCC());
3075     Builder.CreateUnreachable();
3076   }
3077 }
3078 
3079 /// Emits a call or invoke instruction to the given nullary runtime
3080 /// function.
3081 llvm::CallSite
3082 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3083                                          const Twine &name) {
3084   return EmitRuntimeCallOrInvoke(callee, None, name);
3085 }
3086 
3087 /// Emits a call or invoke instruction to the given runtime function.
3088 llvm::CallSite
3089 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3090                                          ArrayRef<llvm::Value*> args,
3091                                          const Twine &name) {
3092   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3093   callSite.setCallingConv(getRuntimeCC());
3094   return callSite;
3095 }
3096 
3097 /// Emits a call or invoke instruction to the given function, depending
3098 /// on the current state of the EH stack.
3099 llvm::CallSite
3100 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3101                                   ArrayRef<llvm::Value *> Args,
3102                                   const Twine &Name) {
3103   llvm::BasicBlock *InvokeDest = getInvokeDest();
3104 
3105   llvm::Instruction *Inst;
3106   if (!InvokeDest)
3107     Inst = Builder.CreateCall(Callee, Args, Name);
3108   else {
3109     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3110     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
3111     EmitBlock(ContBB);
3112   }
3113 
3114   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3115   // optimizer it can aggressively ignore unwind edges.
3116   if (CGM.getLangOpts().ObjCAutoRefCount)
3117     AddObjCARCExceptionMetadata(Inst);
3118 
3119   return llvm::CallSite(Inst);
3120 }
3121 
3122 /// \brief Store a non-aggregate value to an address to initialize it.  For
3123 /// initialization, a non-atomic store will be used.
3124 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3125                                         LValue Dst) {
3126   if (Src.isScalar())
3127     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3128   else
3129     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3130 }
3131 
3132 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3133                                                   llvm::Value *New) {
3134   DeferredReplacements.push_back(std::make_pair(Old, New));
3135 }
3136 
3137 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3138                                  llvm::Value *Callee,
3139                                  ReturnValueSlot ReturnValue,
3140                                  const CallArgList &CallArgs,
3141                                  CGCalleeInfo CalleeInfo,
3142                                  llvm::Instruction **callOrInvoke) {
3143   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3144 
3145   // Handle struct-return functions by passing a pointer to the
3146   // location that we would like to return into.
3147   QualType RetTy = CallInfo.getReturnType();
3148   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3149 
3150   llvm::FunctionType *IRFuncTy =
3151     cast<llvm::FunctionType>(
3152                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3153 
3154   // If we're using inalloca, insert the allocation after the stack save.
3155   // FIXME: Do this earlier rather than hacking it in here!
3156   Address ArgMemory = Address::invalid();
3157   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3158   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3159     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
3160     llvm::Instruction *IP = CallArgs.getStackBase();
3161     llvm::AllocaInst *AI;
3162     if (IP) {
3163       IP = IP->getNextNode();
3164       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3165     } else {
3166       AI = CreateTempAlloca(ArgStruct, "argmem");
3167     }
3168     auto Align = CallInfo.getArgStructAlignment();
3169     AI->setAlignment(Align.getQuantity());
3170     AI->setUsedWithInAlloca(true);
3171     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3172     ArgMemory = Address(AI, Align);
3173   }
3174 
3175   // Helper function to drill into the inalloca allocation.
3176   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3177     auto FieldOffset =
3178       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3179     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3180   };
3181 
3182   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3183   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3184 
3185   // If the call returns a temporary with struct return, create a temporary
3186   // alloca to hold the result, unless one is given to us.
3187   Address SRetPtr = Address::invalid();
3188   size_t UnusedReturnSize = 0;
3189   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3190     if (!ReturnValue.isNull()) {
3191       SRetPtr = ReturnValue.getValue();
3192     } else {
3193       SRetPtr = CreateMemTemp(RetTy);
3194       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3195         uint64_t size =
3196             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3197         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3198           UnusedReturnSize = size;
3199       }
3200     }
3201     if (IRFunctionArgs.hasSRetArg()) {
3202       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3203     } else {
3204       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3205       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3206     }
3207   }
3208 
3209   assert(CallInfo.arg_size() == CallArgs.size() &&
3210          "Mismatch between function signature & arguments.");
3211   unsigned ArgNo = 0;
3212   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3213   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3214        I != E; ++I, ++info_it, ++ArgNo) {
3215     const ABIArgInfo &ArgInfo = info_it->info;
3216     RValue RV = I->RV;
3217 
3218     // Insert a padding argument to ensure proper alignment.
3219     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3220       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3221           llvm::UndefValue::get(ArgInfo.getPaddingType());
3222 
3223     unsigned FirstIRArg, NumIRArgs;
3224     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3225 
3226     switch (ArgInfo.getKind()) {
3227     case ABIArgInfo::InAlloca: {
3228       assert(NumIRArgs == 0);
3229       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3230       if (RV.isAggregate()) {
3231         // Replace the placeholder with the appropriate argument slot GEP.
3232         llvm::Instruction *Placeholder =
3233             cast<llvm::Instruction>(RV.getAggregatePointer());
3234         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3235         Builder.SetInsertPoint(Placeholder);
3236         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3237         Builder.restoreIP(IP);
3238         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3239       } else {
3240         // Store the RValue into the argument struct.
3241         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3242         unsigned AS = Addr.getType()->getPointerAddressSpace();
3243         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3244         // There are some cases where a trivial bitcast is not avoidable.  The
3245         // definition of a type later in a translation unit may change it's type
3246         // from {}* to (%struct.foo*)*.
3247         if (Addr.getType() != MemType)
3248           Addr = Builder.CreateBitCast(Addr, MemType);
3249         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3250         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3251       }
3252       break;
3253     }
3254 
3255     case ABIArgInfo::Indirect: {
3256       assert(NumIRArgs == 1);
3257       if (RV.isScalar() || RV.isComplex()) {
3258         // Make a temporary alloca to pass the argument.
3259         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3260         IRCallArgs[FirstIRArg] = Addr.getPointer();
3261 
3262         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3263         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3264       } else {
3265         // We want to avoid creating an unnecessary temporary+copy here;
3266         // however, we need one in three cases:
3267         // 1. If the argument is not byval, and we are required to copy the
3268         //    source.  (This case doesn't occur on any common architecture.)
3269         // 2. If the argument is byval, RV is not sufficiently aligned, and
3270         //    we cannot force it to be sufficiently aligned.
3271         // 3. If the argument is byval, but RV is located in an address space
3272         //    different than that of the argument (0).
3273         Address Addr = RV.getAggregateAddress();
3274         CharUnits Align = ArgInfo.getIndirectAlign();
3275         const llvm::DataLayout *TD = &CGM.getDataLayout();
3276         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3277         const unsigned ArgAddrSpace =
3278             (FirstIRArg < IRFuncTy->getNumParams()
3279                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3280                  : 0);
3281         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3282             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3283              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3284                                               Align.getQuantity(), *TD)
3285                < Align.getQuantity()) ||
3286             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3287           // Create an aligned temporary, and copy to it.
3288           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3289           IRCallArgs[FirstIRArg] = AI.getPointer();
3290           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3291         } else {
3292           // Skip the extra memcpy call.
3293           IRCallArgs[FirstIRArg] = Addr.getPointer();
3294         }
3295       }
3296       break;
3297     }
3298 
3299     case ABIArgInfo::Ignore:
3300       assert(NumIRArgs == 0);
3301       break;
3302 
3303     case ABIArgInfo::Extend:
3304     case ABIArgInfo::Direct: {
3305       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3306           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3307           ArgInfo.getDirectOffset() == 0) {
3308         assert(NumIRArgs == 1);
3309         llvm::Value *V;
3310         if (RV.isScalar())
3311           V = RV.getScalarVal();
3312         else
3313           V = Builder.CreateLoad(RV.getAggregateAddress());
3314 
3315         // We might have to widen integers, but we should never truncate.
3316         if (ArgInfo.getCoerceToType() != V->getType() &&
3317             V->getType()->isIntegerTy())
3318           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3319 
3320         // If the argument doesn't match, perform a bitcast to coerce it.  This
3321         // can happen due to trivial type mismatches.
3322         if (FirstIRArg < IRFuncTy->getNumParams() &&
3323             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3324           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3325         IRCallArgs[FirstIRArg] = V;
3326         break;
3327       }
3328 
3329       // FIXME: Avoid the conversion through memory if possible.
3330       Address Src = Address::invalid();
3331       if (RV.isScalar() || RV.isComplex()) {
3332         Src = CreateMemTemp(I->Ty, "coerce");
3333         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3334         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3335       } else {
3336         Src = RV.getAggregateAddress();
3337       }
3338 
3339       // If the value is offset in memory, apply the offset now.
3340       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3341 
3342       // Fast-isel and the optimizer generally like scalar values better than
3343       // FCAs, so we flatten them if this is safe to do for this argument.
3344       llvm::StructType *STy =
3345             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3346       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3347         llvm::Type *SrcTy = Src.getType()->getElementType();
3348         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3349         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3350 
3351         // If the source type is smaller than the destination type of the
3352         // coerce-to logic, copy the source value into a temp alloca the size
3353         // of the destination type to allow loading all of it. The bits past
3354         // the source value are left undef.
3355         if (SrcSize < DstSize) {
3356           Address TempAlloca
3357             = CreateTempAlloca(STy, Src.getAlignment(),
3358                                Src.getName() + ".coerce");
3359           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3360           Src = TempAlloca;
3361         } else {
3362           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3363         }
3364 
3365         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3366         assert(NumIRArgs == STy->getNumElements());
3367         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3368           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3369           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3370           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3371           IRCallArgs[FirstIRArg + i] = LI;
3372         }
3373       } else {
3374         // In the simple case, just pass the coerced loaded value.
3375         assert(NumIRArgs == 1);
3376         IRCallArgs[FirstIRArg] =
3377           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3378       }
3379 
3380       break;
3381     }
3382 
3383     case ABIArgInfo::Expand:
3384       unsigned IRArgPos = FirstIRArg;
3385       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3386       assert(IRArgPos == FirstIRArg + NumIRArgs);
3387       break;
3388     }
3389   }
3390 
3391   if (ArgMemory.isValid()) {
3392     llvm::Value *Arg = ArgMemory.getPointer();
3393     if (CallInfo.isVariadic()) {
3394       // When passing non-POD arguments by value to variadic functions, we will
3395       // end up with a variadic prototype and an inalloca call site.  In such
3396       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3397       // the callee.
3398       unsigned CalleeAS =
3399           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3400       Callee = Builder.CreateBitCast(
3401           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3402     } else {
3403       llvm::Type *LastParamTy =
3404           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3405       if (Arg->getType() != LastParamTy) {
3406 #ifndef NDEBUG
3407         // Assert that these structs have equivalent element types.
3408         llvm::StructType *FullTy = CallInfo.getArgStruct();
3409         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3410             cast<llvm::PointerType>(LastParamTy)->getElementType());
3411         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3412         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3413                                                 DE = DeclaredTy->element_end(),
3414                                                 FI = FullTy->element_begin();
3415              DI != DE; ++DI, ++FI)
3416           assert(*DI == *FI);
3417 #endif
3418         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3419       }
3420     }
3421     assert(IRFunctionArgs.hasInallocaArg());
3422     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3423   }
3424 
3425   if (!CallArgs.getCleanupsToDeactivate().empty())
3426     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3427 
3428   // If the callee is a bitcast of a function to a varargs pointer to function
3429   // type, check to see if we can remove the bitcast.  This handles some cases
3430   // with unprototyped functions.
3431   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3432     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3433       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3434       llvm::FunctionType *CurFT =
3435         cast<llvm::FunctionType>(CurPT->getElementType());
3436       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3437 
3438       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3439           ActualFT->getReturnType() == CurFT->getReturnType() &&
3440           ActualFT->getNumParams() == CurFT->getNumParams() &&
3441           ActualFT->getNumParams() == IRCallArgs.size() &&
3442           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3443         bool ArgsMatch = true;
3444         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3445           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3446             ArgsMatch = false;
3447             break;
3448           }
3449 
3450         // Strip the cast if we can get away with it.  This is a nice cleanup,
3451         // but also allows us to inline the function at -O0 if it is marked
3452         // always_inline.
3453         if (ArgsMatch)
3454           Callee = CalleeF;
3455       }
3456     }
3457 
3458   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3459   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3460     // Inalloca argument can have different type.
3461     if (IRFunctionArgs.hasInallocaArg() &&
3462         i == IRFunctionArgs.getInallocaArgNo())
3463       continue;
3464     if (i < IRFuncTy->getNumParams())
3465       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3466   }
3467 
3468   unsigned CallingConv;
3469   CodeGen::AttributeListType AttributeList;
3470   CGM.ConstructAttributeList(CallInfo, CalleeInfo, AttributeList, CallingConv,
3471                              true);
3472   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3473                                                      AttributeList);
3474 
3475   llvm::BasicBlock *InvokeDest = nullptr;
3476   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3477                           llvm::Attribute::NoUnwind) ||
3478       currentFunctionUsesSEHTry())
3479     InvokeDest = getInvokeDest();
3480 
3481   llvm::CallSite CS;
3482   if (!InvokeDest) {
3483     CS = Builder.CreateCall(Callee, IRCallArgs);
3484   } else {
3485     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3486     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
3487     EmitBlock(Cont);
3488   }
3489   if (callOrInvoke)
3490     *callOrInvoke = CS.getInstruction();
3491 
3492   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3493       !CS.hasFnAttr(llvm::Attribute::NoInline))
3494     Attrs =
3495         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3496                            llvm::Attribute::AlwaysInline);
3497 
3498   // Disable inlining inside SEH __try blocks and cleanup funclets. None of the
3499   // funclet EH personalities that clang supports have tables that are
3500   // expressive enough to describe catching an exception inside a cleanup.
3501   // __CxxFrameHandler3, for example, will terminate the program without
3502   // catching it.
3503   // FIXME: Move this decision to the LLVM inliner. Before we can do that, the
3504   // inliner needs to know if a given call site is part of a cleanuppad.
3505   if (isSEHTryScope() || isCleanupPadScope())
3506     Attrs =
3507         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3508                            llvm::Attribute::NoInline);
3509 
3510   CS.setAttributes(Attrs);
3511   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3512 
3513   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3514   // optimizer it can aggressively ignore unwind edges.
3515   if (CGM.getLangOpts().ObjCAutoRefCount)
3516     AddObjCARCExceptionMetadata(CS.getInstruction());
3517 
3518   // If the call doesn't return, finish the basic block and clear the
3519   // insertion point; this allows the rest of IRgen to discard
3520   // unreachable code.
3521   if (CS.doesNotReturn()) {
3522     if (UnusedReturnSize)
3523       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3524                       SRetPtr.getPointer());
3525 
3526     Builder.CreateUnreachable();
3527     Builder.ClearInsertionPoint();
3528 
3529     // FIXME: For now, emit a dummy basic block because expr emitters in
3530     // generally are not ready to handle emitting expressions at unreachable
3531     // points.
3532     EnsureInsertPoint();
3533 
3534     // Return a reasonable RValue.
3535     return GetUndefRValue(RetTy);
3536   }
3537 
3538   llvm::Instruction *CI = CS.getInstruction();
3539   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3540     CI->setName("call");
3541 
3542   // Emit any writebacks immediately.  Arguably this should happen
3543   // after any return-value munging.
3544   if (CallArgs.hasWritebacks())
3545     emitWritebacks(*this, CallArgs);
3546 
3547   // The stack cleanup for inalloca arguments has to run out of the normal
3548   // lexical order, so deactivate it and run it manually here.
3549   CallArgs.freeArgumentMemory(*this);
3550 
3551   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
3552     const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
3553     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
3554       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
3555   }
3556 
3557   RValue Ret = [&] {
3558     switch (RetAI.getKind()) {
3559     case ABIArgInfo::InAlloca:
3560     case ABIArgInfo::Indirect: {
3561       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3562       if (UnusedReturnSize)
3563         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3564                         SRetPtr.getPointer());
3565       return ret;
3566     }
3567 
3568     case ABIArgInfo::Ignore:
3569       // If we are ignoring an argument that had a result, make sure to
3570       // construct the appropriate return value for our caller.
3571       return GetUndefRValue(RetTy);
3572 
3573     case ABIArgInfo::Extend:
3574     case ABIArgInfo::Direct: {
3575       llvm::Type *RetIRTy = ConvertType(RetTy);
3576       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3577         switch (getEvaluationKind(RetTy)) {
3578         case TEK_Complex: {
3579           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3580           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3581           return RValue::getComplex(std::make_pair(Real, Imag));
3582         }
3583         case TEK_Aggregate: {
3584           Address DestPtr = ReturnValue.getValue();
3585           bool DestIsVolatile = ReturnValue.isVolatile();
3586 
3587           if (!DestPtr.isValid()) {
3588             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3589             DestIsVolatile = false;
3590           }
3591           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
3592           return RValue::getAggregate(DestPtr);
3593         }
3594         case TEK_Scalar: {
3595           // If the argument doesn't match, perform a bitcast to coerce it.  This
3596           // can happen due to trivial type mismatches.
3597           llvm::Value *V = CI;
3598           if (V->getType() != RetIRTy)
3599             V = Builder.CreateBitCast(V, RetIRTy);
3600           return RValue::get(V);
3601         }
3602         }
3603         llvm_unreachable("bad evaluation kind");
3604       }
3605 
3606       Address DestPtr = ReturnValue.getValue();
3607       bool DestIsVolatile = ReturnValue.isVolatile();
3608 
3609       if (!DestPtr.isValid()) {
3610         DestPtr = CreateMemTemp(RetTy, "coerce");
3611         DestIsVolatile = false;
3612       }
3613 
3614       // If the value is offset in memory, apply the offset now.
3615       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
3616       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3617 
3618       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3619     }
3620 
3621     case ABIArgInfo::Expand:
3622       llvm_unreachable("Invalid ABI kind for return argument");
3623     }
3624 
3625     llvm_unreachable("Unhandled ABIArgInfo::Kind");
3626   } ();
3627 
3628   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
3629 
3630   if (Ret.isScalar() && TargetDecl) {
3631     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3632       llvm::Value *OffsetValue = nullptr;
3633       if (const auto *Offset = AA->getOffset())
3634         OffsetValue = EmitScalarExpr(Offset);
3635 
3636       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3637       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3638       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3639                               OffsetValue);
3640     }
3641   }
3642 
3643   return Ret;
3644 }
3645 
3646 /* VarArg handling */
3647 
3648 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
3649   VAListAddr = VE->isMicrosoftABI()
3650                  ? EmitMSVAListRef(VE->getSubExpr())
3651                  : EmitVAListRef(VE->getSubExpr());
3652   QualType Ty = VE->getType();
3653   if (VE->isMicrosoftABI())
3654     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
3655   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
3656 }
3657