1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 using namespace clang; 37 using namespace CodeGen; 38 39 /***/ 40 41 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 42 switch (CC) { 43 default: return llvm::CallingConv::C; 44 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 45 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 46 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 47 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 48 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 49 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 50 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 51 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 52 // TODO: Add support for __pascal to LLVM. 53 case CC_X86Pascal: return llvm::CallingConv::C; 54 // TODO: Add support for __vectorcall to LLVM. 55 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 56 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 57 case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL; 58 } 59 } 60 61 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 62 /// qualification. 63 /// FIXME: address space qualification? 64 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 65 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 66 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 67 } 68 69 /// Returns the canonical formal type of the given C++ method. 70 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 71 return MD->getType()->getCanonicalTypeUnqualified() 72 .getAs<FunctionProtoType>(); 73 } 74 75 /// Returns the "extra-canonicalized" return type, which discards 76 /// qualifiers on the return type. Codegen doesn't care about them, 77 /// and it makes ABI code a little easier to be able to assume that 78 /// all parameter and return types are top-level unqualified. 79 static CanQualType GetReturnType(QualType RetTy) { 80 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 81 } 82 83 /// Arrange the argument and result information for a value of the given 84 /// unprototyped freestanding function type. 85 const CGFunctionInfo & 86 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 87 // When translating an unprototyped function type, always use a 88 // variadic type. 89 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 90 /*instanceMethod=*/false, 91 /*chainCall=*/false, None, 92 FTNP->getExtInfo(), RequiredArgs(0)); 93 } 94 95 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in 96 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 97 static void appendParameterTypes(const CodeGenTypes &CGT, 98 SmallVectorImpl<CanQualType> &prefix, 99 const CanQual<FunctionProtoType> &FPT, 100 const FunctionDecl *FD) { 101 // Fast path: unknown target. 102 if (FD == nullptr) { 103 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 104 return; 105 } 106 107 // In the vast majority cases, we'll have precisely FPT->getNumParams() 108 // parameters; the only thing that can change this is the presence of 109 // pass_object_size. So, we preallocate for the common case. 110 prefix.reserve(prefix.size() + FPT->getNumParams()); 111 112 assert(FD->getNumParams() == FPT->getNumParams()); 113 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 114 prefix.push_back(FPT->getParamType(I)); 115 if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>()) 116 prefix.push_back(CGT.getContext().getSizeType()); 117 } 118 } 119 120 /// Arrange the LLVM function layout for a value of the given function 121 /// type, on top of any implicit parameters already stored. 122 static const CGFunctionInfo & 123 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 124 SmallVectorImpl<CanQualType> &prefix, 125 CanQual<FunctionProtoType> FTP, 126 const FunctionDecl *FD) { 127 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 128 // FIXME: Kill copy. 129 appendParameterTypes(CGT, prefix, FTP, FD); 130 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 131 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 132 /*chainCall=*/false, prefix, 133 FTP->getExtInfo(), required); 134 } 135 136 /// Arrange the argument and result information for a value of the 137 /// given freestanding function type. 138 const CGFunctionInfo & 139 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 140 const FunctionDecl *FD) { 141 SmallVector<CanQualType, 16> argTypes; 142 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 143 FTP, FD); 144 } 145 146 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 147 // Set the appropriate calling convention for the Function. 148 if (D->hasAttr<StdCallAttr>()) 149 return CC_X86StdCall; 150 151 if (D->hasAttr<FastCallAttr>()) 152 return CC_X86FastCall; 153 154 if (D->hasAttr<ThisCallAttr>()) 155 return CC_X86ThisCall; 156 157 if (D->hasAttr<VectorCallAttr>()) 158 return CC_X86VectorCall; 159 160 if (D->hasAttr<PascalAttr>()) 161 return CC_X86Pascal; 162 163 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 164 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 165 166 if (D->hasAttr<IntelOclBiccAttr>()) 167 return CC_IntelOclBicc; 168 169 if (D->hasAttr<MSABIAttr>()) 170 return IsWindows ? CC_C : CC_X86_64Win64; 171 172 if (D->hasAttr<SysVABIAttr>()) 173 return IsWindows ? CC_X86_64SysV : CC_C; 174 175 return CC_C; 176 } 177 178 /// Arrange the argument and result information for a call to an 179 /// unknown C++ non-static member function of the given abstract type. 180 /// (Zero value of RD means we don't have any meaningful "this" argument type, 181 /// so fall back to a generic pointer type). 182 /// The member function must be an ordinary function, i.e. not a 183 /// constructor or destructor. 184 const CGFunctionInfo & 185 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 186 const FunctionProtoType *FTP, 187 const CXXMethodDecl *MD) { 188 SmallVector<CanQualType, 16> argTypes; 189 190 // Add the 'this' pointer. 191 if (RD) 192 argTypes.push_back(GetThisType(Context, RD)); 193 else 194 argTypes.push_back(Context.VoidPtrTy); 195 196 return ::arrangeLLVMFunctionInfo( 197 *this, true, argTypes, 198 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 199 } 200 201 /// Arrange the argument and result information for a declaration or 202 /// definition of the given C++ non-static member function. The 203 /// member function must be an ordinary function, i.e. not a 204 /// constructor or destructor. 205 const CGFunctionInfo & 206 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 207 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 208 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 209 210 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 211 212 if (MD->isInstance()) { 213 // The abstract case is perfectly fine. 214 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 215 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 216 } 217 218 return arrangeFreeFunctionType(prototype, MD); 219 } 220 221 const CGFunctionInfo & 222 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 223 StructorType Type) { 224 225 SmallVector<CanQualType, 16> argTypes; 226 argTypes.push_back(GetThisType(Context, MD->getParent())); 227 228 GlobalDecl GD; 229 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 230 GD = GlobalDecl(CD, toCXXCtorType(Type)); 231 } else { 232 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 233 GD = GlobalDecl(DD, toCXXDtorType(Type)); 234 } 235 236 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 237 238 // Add the formal parameters. 239 appendParameterTypes(*this, argTypes, FTP, MD); 240 241 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 242 243 RequiredArgs required = 244 (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All); 245 246 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 247 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 248 ? argTypes.front() 249 : TheCXXABI.hasMostDerivedReturn(GD) 250 ? CGM.getContext().VoidPtrTy 251 : Context.VoidTy; 252 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 253 /*chainCall=*/false, argTypes, extInfo, 254 required); 255 } 256 257 /// Arrange a call to a C++ method, passing the given arguments. 258 const CGFunctionInfo & 259 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 260 const CXXConstructorDecl *D, 261 CXXCtorType CtorKind, 262 unsigned ExtraArgs) { 263 // FIXME: Kill copy. 264 SmallVector<CanQualType, 16> ArgTypes; 265 for (const auto &Arg : args) 266 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 267 268 CanQual<FunctionProtoType> FPT = GetFormalType(D); 269 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs); 270 GlobalDecl GD(D, CtorKind); 271 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 272 ? ArgTypes.front() 273 : TheCXXABI.hasMostDerivedReturn(GD) 274 ? CGM.getContext().VoidPtrTy 275 : Context.VoidTy; 276 277 FunctionType::ExtInfo Info = FPT->getExtInfo(); 278 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 279 /*chainCall=*/false, ArgTypes, Info, 280 Required); 281 } 282 283 /// Arrange the argument and result information for the declaration or 284 /// definition of the given function. 285 const CGFunctionInfo & 286 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 287 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 288 if (MD->isInstance()) 289 return arrangeCXXMethodDeclaration(MD); 290 291 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 292 293 assert(isa<FunctionType>(FTy)); 294 295 // When declaring a function without a prototype, always use a 296 // non-variadic type. 297 if (isa<FunctionNoProtoType>(FTy)) { 298 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 299 return arrangeLLVMFunctionInfo( 300 noProto->getReturnType(), /*instanceMethod=*/false, 301 /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All); 302 } 303 304 assert(isa<FunctionProtoType>(FTy)); 305 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD); 306 } 307 308 /// Arrange the argument and result information for the declaration or 309 /// definition of an Objective-C method. 310 const CGFunctionInfo & 311 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 312 // It happens that this is the same as a call with no optional 313 // arguments, except also using the formal 'self' type. 314 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 315 } 316 317 /// Arrange the argument and result information for the function type 318 /// through which to perform a send to the given Objective-C method, 319 /// using the given receiver type. The receiver type is not always 320 /// the 'self' type of the method or even an Objective-C pointer type. 321 /// This is *not* the right method for actually performing such a 322 /// message send, due to the possibility of optional arguments. 323 const CGFunctionInfo & 324 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 325 QualType receiverType) { 326 SmallVector<CanQualType, 16> argTys; 327 argTys.push_back(Context.getCanonicalParamType(receiverType)); 328 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 329 // FIXME: Kill copy? 330 for (const auto *I : MD->params()) { 331 argTys.push_back(Context.getCanonicalParamType(I->getType())); 332 } 333 334 FunctionType::ExtInfo einfo; 335 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 336 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 337 338 if (getContext().getLangOpts().ObjCAutoRefCount && 339 MD->hasAttr<NSReturnsRetainedAttr>()) 340 einfo = einfo.withProducesResult(true); 341 342 RequiredArgs required = 343 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 344 345 return arrangeLLVMFunctionInfo( 346 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 347 /*chainCall=*/false, argTys, einfo, required); 348 } 349 350 const CGFunctionInfo & 351 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 352 // FIXME: Do we need to handle ObjCMethodDecl? 353 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 354 355 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 356 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 357 358 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 359 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 360 361 return arrangeFunctionDeclaration(FD); 362 } 363 364 /// Arrange a thunk that takes 'this' as the first parameter followed by 365 /// varargs. Return a void pointer, regardless of the actual return type. 366 /// The body of the thunk will end in a musttail call to a function of the 367 /// correct type, and the caller will bitcast the function to the correct 368 /// prototype. 369 const CGFunctionInfo & 370 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 371 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 372 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 373 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 374 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 375 /*chainCall=*/false, ArgTys, 376 FTP->getExtInfo(), RequiredArgs(1)); 377 } 378 379 const CGFunctionInfo & 380 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 381 CXXCtorType CT) { 382 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 383 384 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 385 SmallVector<CanQualType, 2> ArgTys; 386 const CXXRecordDecl *RD = CD->getParent(); 387 ArgTys.push_back(GetThisType(Context, RD)); 388 if (CT == Ctor_CopyingClosure) 389 ArgTys.push_back(*FTP->param_type_begin()); 390 if (RD->getNumVBases() > 0) 391 ArgTys.push_back(Context.IntTy); 392 CallingConv CC = Context.getDefaultCallingConvention( 393 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 394 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 395 /*chainCall=*/false, ArgTys, 396 FunctionType::ExtInfo(CC), RequiredArgs::All); 397 } 398 399 /// Arrange a call as unto a free function, except possibly with an 400 /// additional number of formal parameters considered required. 401 static const CGFunctionInfo & 402 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 403 CodeGenModule &CGM, 404 const CallArgList &args, 405 const FunctionType *fnType, 406 unsigned numExtraRequiredArgs, 407 bool chainCall) { 408 assert(args.size() >= numExtraRequiredArgs); 409 410 // In most cases, there are no optional arguments. 411 RequiredArgs required = RequiredArgs::All; 412 413 // If we have a variadic prototype, the required arguments are the 414 // extra prefix plus the arguments in the prototype. 415 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 416 if (proto->isVariadic()) 417 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 418 419 // If we don't have a prototype at all, but we're supposed to 420 // explicitly use the variadic convention for unprototyped calls, 421 // treat all of the arguments as required but preserve the nominal 422 // possibility of variadics. 423 } else if (CGM.getTargetCodeGenInfo() 424 .isNoProtoCallVariadic(args, 425 cast<FunctionNoProtoType>(fnType))) { 426 required = RequiredArgs(args.size()); 427 } 428 429 // FIXME: Kill copy. 430 SmallVector<CanQualType, 16> argTypes; 431 for (const auto &arg : args) 432 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 433 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 434 /*instanceMethod=*/false, chainCall, 435 argTypes, fnType->getExtInfo(), required); 436 } 437 438 /// Figure out the rules for calling a function with the given formal 439 /// type using the given arguments. The arguments are necessary 440 /// because the function might be unprototyped, in which case it's 441 /// target-dependent in crazy ways. 442 const CGFunctionInfo & 443 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 444 const FunctionType *fnType, 445 bool chainCall) { 446 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 447 chainCall ? 1 : 0, chainCall); 448 } 449 450 /// A block function call is essentially a free-function call with an 451 /// extra implicit argument. 452 const CGFunctionInfo & 453 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 454 const FunctionType *fnType) { 455 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 456 /*chainCall=*/false); 457 } 458 459 const CGFunctionInfo & 460 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 461 const CallArgList &args, 462 FunctionType::ExtInfo info, 463 RequiredArgs required) { 464 // FIXME: Kill copy. 465 SmallVector<CanQualType, 16> argTypes; 466 for (const auto &Arg : args) 467 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 468 return arrangeLLVMFunctionInfo( 469 GetReturnType(resultType), /*instanceMethod=*/false, 470 /*chainCall=*/false, argTypes, info, required); 471 } 472 473 /// Arrange a call to a C++ method, passing the given arguments. 474 const CGFunctionInfo & 475 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 476 const FunctionProtoType *FPT, 477 RequiredArgs required) { 478 // FIXME: Kill copy. 479 SmallVector<CanQualType, 16> argTypes; 480 for (const auto &Arg : args) 481 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 482 483 FunctionType::ExtInfo info = FPT->getExtInfo(); 484 return arrangeLLVMFunctionInfo( 485 GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true, 486 /*chainCall=*/false, argTypes, info, required); 487 } 488 489 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration( 490 QualType resultType, const FunctionArgList &args, 491 const FunctionType::ExtInfo &info, bool isVariadic) { 492 // FIXME: Kill copy. 493 SmallVector<CanQualType, 16> argTypes; 494 for (auto Arg : args) 495 argTypes.push_back(Context.getCanonicalParamType(Arg->getType())); 496 497 RequiredArgs required = 498 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 499 return arrangeLLVMFunctionInfo( 500 GetReturnType(resultType), /*instanceMethod=*/false, 501 /*chainCall=*/false, argTypes, info, required); 502 } 503 504 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 505 return arrangeLLVMFunctionInfo( 506 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 507 None, FunctionType::ExtInfo(), RequiredArgs::All); 508 } 509 510 /// Arrange the argument and result information for an abstract value 511 /// of a given function type. This is the method which all of the 512 /// above functions ultimately defer to. 513 const CGFunctionInfo & 514 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 515 bool instanceMethod, 516 bool chainCall, 517 ArrayRef<CanQualType> argTypes, 518 FunctionType::ExtInfo info, 519 RequiredArgs required) { 520 assert(std::all_of(argTypes.begin(), argTypes.end(), 521 std::mem_fun_ref(&CanQualType::isCanonicalAsParam))); 522 523 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 524 525 // Lookup or create unique function info. 526 llvm::FoldingSetNodeID ID; 527 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required, 528 resultType, argTypes); 529 530 void *insertPos = nullptr; 531 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 532 if (FI) 533 return *FI; 534 535 // Construct the function info. We co-allocate the ArgInfos. 536 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 537 resultType, argTypes, required); 538 FunctionInfos.InsertNode(FI, insertPos); 539 540 bool inserted = FunctionsBeingProcessed.insert(FI).second; 541 (void)inserted; 542 assert(inserted && "Recursively being processed?"); 543 544 // Compute ABI information. 545 getABIInfo().computeInfo(*FI); 546 547 // Loop over all of the computed argument and return value info. If any of 548 // them are direct or extend without a specified coerce type, specify the 549 // default now. 550 ABIArgInfo &retInfo = FI->getReturnInfo(); 551 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 552 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 553 554 for (auto &I : FI->arguments()) 555 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 556 I.info.setCoerceToType(ConvertType(I.type)); 557 558 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 559 assert(erased && "Not in set?"); 560 561 return *FI; 562 } 563 564 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 565 bool instanceMethod, 566 bool chainCall, 567 const FunctionType::ExtInfo &info, 568 CanQualType resultType, 569 ArrayRef<CanQualType> argTypes, 570 RequiredArgs required) { 571 void *buffer = operator new(sizeof(CGFunctionInfo) + 572 sizeof(ArgInfo) * (argTypes.size() + 1)); 573 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 574 FI->CallingConvention = llvmCC; 575 FI->EffectiveCallingConvention = llvmCC; 576 FI->ASTCallingConvention = info.getCC(); 577 FI->InstanceMethod = instanceMethod; 578 FI->ChainCall = chainCall; 579 FI->NoReturn = info.getNoReturn(); 580 FI->ReturnsRetained = info.getProducesResult(); 581 FI->Required = required; 582 FI->HasRegParm = info.getHasRegParm(); 583 FI->RegParm = info.getRegParm(); 584 FI->ArgStruct = nullptr; 585 FI->ArgStructAlign = 0; 586 FI->NumArgs = argTypes.size(); 587 FI->getArgsBuffer()[0].type = resultType; 588 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 589 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 590 return FI; 591 } 592 593 /***/ 594 595 namespace { 596 // ABIArgInfo::Expand implementation. 597 598 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 599 struct TypeExpansion { 600 enum TypeExpansionKind { 601 // Elements of constant arrays are expanded recursively. 602 TEK_ConstantArray, 603 // Record fields are expanded recursively (but if record is a union, only 604 // the field with the largest size is expanded). 605 TEK_Record, 606 // For complex types, real and imaginary parts are expanded recursively. 607 TEK_Complex, 608 // All other types are not expandable. 609 TEK_None 610 }; 611 612 const TypeExpansionKind Kind; 613 614 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 615 virtual ~TypeExpansion() {} 616 }; 617 618 struct ConstantArrayExpansion : TypeExpansion { 619 QualType EltTy; 620 uint64_t NumElts; 621 622 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 623 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 624 static bool classof(const TypeExpansion *TE) { 625 return TE->Kind == TEK_ConstantArray; 626 } 627 }; 628 629 struct RecordExpansion : TypeExpansion { 630 SmallVector<const CXXBaseSpecifier *, 1> Bases; 631 632 SmallVector<const FieldDecl *, 1> Fields; 633 634 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 635 SmallVector<const FieldDecl *, 1> &&Fields) 636 : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {} 637 static bool classof(const TypeExpansion *TE) { 638 return TE->Kind == TEK_Record; 639 } 640 }; 641 642 struct ComplexExpansion : TypeExpansion { 643 QualType EltTy; 644 645 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 646 static bool classof(const TypeExpansion *TE) { 647 return TE->Kind == TEK_Complex; 648 } 649 }; 650 651 struct NoExpansion : TypeExpansion { 652 NoExpansion() : TypeExpansion(TEK_None) {} 653 static bool classof(const TypeExpansion *TE) { 654 return TE->Kind == TEK_None; 655 } 656 }; 657 } // namespace 658 659 static std::unique_ptr<TypeExpansion> 660 getTypeExpansion(QualType Ty, const ASTContext &Context) { 661 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 662 return llvm::make_unique<ConstantArrayExpansion>( 663 AT->getElementType(), AT->getSize().getZExtValue()); 664 } 665 if (const RecordType *RT = Ty->getAs<RecordType>()) { 666 SmallVector<const CXXBaseSpecifier *, 1> Bases; 667 SmallVector<const FieldDecl *, 1> Fields; 668 const RecordDecl *RD = RT->getDecl(); 669 assert(!RD->hasFlexibleArrayMember() && 670 "Cannot expand structure with flexible array."); 671 if (RD->isUnion()) { 672 // Unions can be here only in degenerative cases - all the fields are same 673 // after flattening. Thus we have to use the "largest" field. 674 const FieldDecl *LargestFD = nullptr; 675 CharUnits UnionSize = CharUnits::Zero(); 676 677 for (const auto *FD : RD->fields()) { 678 // Skip zero length bitfields. 679 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 680 continue; 681 assert(!FD->isBitField() && 682 "Cannot expand structure with bit-field members."); 683 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 684 if (UnionSize < FieldSize) { 685 UnionSize = FieldSize; 686 LargestFD = FD; 687 } 688 } 689 if (LargestFD) 690 Fields.push_back(LargestFD); 691 } else { 692 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 693 assert(!CXXRD->isDynamicClass() && 694 "cannot expand vtable pointers in dynamic classes"); 695 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 696 Bases.push_back(&BS); 697 } 698 699 for (const auto *FD : RD->fields()) { 700 // Skip zero length bitfields. 701 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 702 continue; 703 assert(!FD->isBitField() && 704 "Cannot expand structure with bit-field members."); 705 Fields.push_back(FD); 706 } 707 } 708 return llvm::make_unique<RecordExpansion>(std::move(Bases), 709 std::move(Fields)); 710 } 711 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 712 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 713 } 714 return llvm::make_unique<NoExpansion>(); 715 } 716 717 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 718 auto Exp = getTypeExpansion(Ty, Context); 719 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 720 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 721 } 722 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 723 int Res = 0; 724 for (auto BS : RExp->Bases) 725 Res += getExpansionSize(BS->getType(), Context); 726 for (auto FD : RExp->Fields) 727 Res += getExpansionSize(FD->getType(), Context); 728 return Res; 729 } 730 if (isa<ComplexExpansion>(Exp.get())) 731 return 2; 732 assert(isa<NoExpansion>(Exp.get())); 733 return 1; 734 } 735 736 void 737 CodeGenTypes::getExpandedTypes(QualType Ty, 738 SmallVectorImpl<llvm::Type *>::iterator &TI) { 739 auto Exp = getTypeExpansion(Ty, Context); 740 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 741 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 742 getExpandedTypes(CAExp->EltTy, TI); 743 } 744 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 745 for (auto BS : RExp->Bases) 746 getExpandedTypes(BS->getType(), TI); 747 for (auto FD : RExp->Fields) 748 getExpandedTypes(FD->getType(), TI); 749 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 750 llvm::Type *EltTy = ConvertType(CExp->EltTy); 751 *TI++ = EltTy; 752 *TI++ = EltTy; 753 } else { 754 assert(isa<NoExpansion>(Exp.get())); 755 *TI++ = ConvertType(Ty); 756 } 757 } 758 759 static void forConstantArrayExpansion(CodeGenFunction &CGF, 760 ConstantArrayExpansion *CAE, 761 Address BaseAddr, 762 llvm::function_ref<void(Address)> Fn) { 763 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 764 CharUnits EltAlign = 765 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 766 767 for (int i = 0, n = CAE->NumElts; i < n; i++) { 768 llvm::Value *EltAddr = 769 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 770 Fn(Address(EltAddr, EltAlign)); 771 } 772 } 773 774 void CodeGenFunction::ExpandTypeFromArgs( 775 QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) { 776 assert(LV.isSimple() && 777 "Unexpected non-simple lvalue during struct expansion."); 778 779 auto Exp = getTypeExpansion(Ty, getContext()); 780 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 781 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 782 [&](Address EltAddr) { 783 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 784 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 785 }); 786 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 787 Address This = LV.getAddress(); 788 for (const CXXBaseSpecifier *BS : RExp->Bases) { 789 // Perform a single step derived-to-base conversion. 790 Address Base = 791 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 792 /*NullCheckValue=*/false, SourceLocation()); 793 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 794 795 // Recurse onto bases. 796 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 797 } 798 for (auto FD : RExp->Fields) { 799 // FIXME: What are the right qualifiers here? 800 LValue SubLV = EmitLValueForField(LV, FD); 801 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 802 } 803 } else if (isa<ComplexExpansion>(Exp.get())) { 804 auto realValue = *AI++; 805 auto imagValue = *AI++; 806 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 807 } else { 808 assert(isa<NoExpansion>(Exp.get())); 809 EmitStoreThroughLValue(RValue::get(*AI++), LV); 810 } 811 } 812 813 void CodeGenFunction::ExpandTypeToArgs( 814 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 815 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 816 auto Exp = getTypeExpansion(Ty, getContext()); 817 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 818 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 819 [&](Address EltAddr) { 820 RValue EltRV = 821 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 822 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 823 }); 824 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 825 Address This = RV.getAggregateAddress(); 826 for (const CXXBaseSpecifier *BS : RExp->Bases) { 827 // Perform a single step derived-to-base conversion. 828 Address Base = 829 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 830 /*NullCheckValue=*/false, SourceLocation()); 831 RValue BaseRV = RValue::getAggregate(Base); 832 833 // Recurse onto bases. 834 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 835 IRCallArgPos); 836 } 837 838 LValue LV = MakeAddrLValue(This, Ty); 839 for (auto FD : RExp->Fields) { 840 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 841 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 842 IRCallArgPos); 843 } 844 } else if (isa<ComplexExpansion>(Exp.get())) { 845 ComplexPairTy CV = RV.getComplexVal(); 846 IRCallArgs[IRCallArgPos++] = CV.first; 847 IRCallArgs[IRCallArgPos++] = CV.second; 848 } else { 849 assert(isa<NoExpansion>(Exp.get())); 850 assert(RV.isScalar() && 851 "Unexpected non-scalar rvalue during struct expansion."); 852 853 // Insert a bitcast as needed. 854 llvm::Value *V = RV.getScalarVal(); 855 if (IRCallArgPos < IRFuncTy->getNumParams() && 856 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 857 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 858 859 IRCallArgs[IRCallArgPos++] = V; 860 } 861 } 862 863 /// Create a temporary allocation for the purposes of coercion. 864 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 865 CharUnits MinAlign) { 866 // Don't use an alignment that's worse than what LLVM would prefer. 867 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 868 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 869 870 return CGF.CreateTempAlloca(Ty, Align); 871 } 872 873 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 874 /// accessing some number of bytes out of it, try to gep into the struct to get 875 /// at its inner goodness. Dive as deep as possible without entering an element 876 /// with an in-memory size smaller than DstSize. 877 static Address 878 EnterStructPointerForCoercedAccess(Address SrcPtr, 879 llvm::StructType *SrcSTy, 880 uint64_t DstSize, CodeGenFunction &CGF) { 881 // We can't dive into a zero-element struct. 882 if (SrcSTy->getNumElements() == 0) return SrcPtr; 883 884 llvm::Type *FirstElt = SrcSTy->getElementType(0); 885 886 // If the first elt is at least as large as what we're looking for, or if the 887 // first element is the same size as the whole struct, we can enter it. The 888 // comparison must be made on the store size and not the alloca size. Using 889 // the alloca size may overstate the size of the load. 890 uint64_t FirstEltSize = 891 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 892 if (FirstEltSize < DstSize && 893 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 894 return SrcPtr; 895 896 // GEP into the first element. 897 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 898 899 // If the first element is a struct, recurse. 900 llvm::Type *SrcTy = SrcPtr.getElementType(); 901 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 902 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 903 904 return SrcPtr; 905 } 906 907 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 908 /// are either integers or pointers. This does a truncation of the value if it 909 /// is too large or a zero extension if it is too small. 910 /// 911 /// This behaves as if the value were coerced through memory, so on big-endian 912 /// targets the high bits are preserved in a truncation, while little-endian 913 /// targets preserve the low bits. 914 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 915 llvm::Type *Ty, 916 CodeGenFunction &CGF) { 917 if (Val->getType() == Ty) 918 return Val; 919 920 if (isa<llvm::PointerType>(Val->getType())) { 921 // If this is Pointer->Pointer avoid conversion to and from int. 922 if (isa<llvm::PointerType>(Ty)) 923 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 924 925 // Convert the pointer to an integer so we can play with its width. 926 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 927 } 928 929 llvm::Type *DestIntTy = Ty; 930 if (isa<llvm::PointerType>(DestIntTy)) 931 DestIntTy = CGF.IntPtrTy; 932 933 if (Val->getType() != DestIntTy) { 934 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 935 if (DL.isBigEndian()) { 936 // Preserve the high bits on big-endian targets. 937 // That is what memory coercion does. 938 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 939 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 940 941 if (SrcSize > DstSize) { 942 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 943 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 944 } else { 945 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 946 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 947 } 948 } else { 949 // Little-endian targets preserve the low bits. No shifts required. 950 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 951 } 952 } 953 954 if (isa<llvm::PointerType>(Ty)) 955 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 956 return Val; 957 } 958 959 960 961 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 962 /// a pointer to an object of type \arg Ty, known to be aligned to 963 /// \arg SrcAlign bytes. 964 /// 965 /// This safely handles the case when the src type is smaller than the 966 /// destination type; in this situation the values of bits which not 967 /// present in the src are undefined. 968 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 969 CodeGenFunction &CGF) { 970 llvm::Type *SrcTy = Src.getElementType(); 971 972 // If SrcTy and Ty are the same, just do a load. 973 if (SrcTy == Ty) 974 return CGF.Builder.CreateLoad(Src); 975 976 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 977 978 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 979 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 980 SrcTy = Src.getType()->getElementType(); 981 } 982 983 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 984 985 // If the source and destination are integer or pointer types, just do an 986 // extension or truncation to the desired type. 987 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 988 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 989 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 990 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 991 } 992 993 // If load is legal, just bitcast the src pointer. 994 if (SrcSize >= DstSize) { 995 // Generally SrcSize is never greater than DstSize, since this means we are 996 // losing bits. However, this can happen in cases where the structure has 997 // additional padding, for example due to a user specified alignment. 998 // 999 // FIXME: Assert that we aren't truncating non-padding bits when have access 1000 // to that information. 1001 Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty)); 1002 return CGF.Builder.CreateLoad(Src); 1003 } 1004 1005 // Otherwise do coercion through memory. This is stupid, but simple. 1006 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1007 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1008 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 1009 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1010 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1011 false); 1012 return CGF.Builder.CreateLoad(Tmp); 1013 } 1014 1015 // Function to store a first-class aggregate into memory. We prefer to 1016 // store the elements rather than the aggregate to be more friendly to 1017 // fast-isel. 1018 // FIXME: Do we need to recurse here? 1019 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1020 Address Dest, bool DestIsVolatile) { 1021 // Prefer scalar stores to first-class aggregate stores. 1022 if (llvm::StructType *STy = 1023 dyn_cast<llvm::StructType>(Val->getType())) { 1024 const llvm::StructLayout *Layout = 1025 CGF.CGM.getDataLayout().getStructLayout(STy); 1026 1027 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1028 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1029 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1030 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1031 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1032 } 1033 } else { 1034 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1035 } 1036 } 1037 1038 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1039 /// where the source and destination may have different types. The 1040 /// destination is known to be aligned to \arg DstAlign bytes. 1041 /// 1042 /// This safely handles the case when the src type is larger than the 1043 /// destination type; the upper bits of the src will be lost. 1044 static void CreateCoercedStore(llvm::Value *Src, 1045 Address Dst, 1046 bool DstIsVolatile, 1047 CodeGenFunction &CGF) { 1048 llvm::Type *SrcTy = Src->getType(); 1049 llvm::Type *DstTy = Dst.getType()->getElementType(); 1050 if (SrcTy == DstTy) { 1051 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1052 return; 1053 } 1054 1055 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1056 1057 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1058 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1059 DstTy = Dst.getType()->getElementType(); 1060 } 1061 1062 // If the source and destination are integer or pointer types, just do an 1063 // extension or truncation to the desired type. 1064 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1065 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1066 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1067 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1068 return; 1069 } 1070 1071 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1072 1073 // If store is legal, just bitcast the src pointer. 1074 if (SrcSize <= DstSize) { 1075 Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy)); 1076 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1077 } else { 1078 // Otherwise do coercion through memory. This is stupid, but 1079 // simple. 1080 1081 // Generally SrcSize is never greater than DstSize, since this means we are 1082 // losing bits. However, this can happen in cases where the structure has 1083 // additional padding, for example due to a user specified alignment. 1084 // 1085 // FIXME: Assert that we aren't truncating non-padding bits when have access 1086 // to that information. 1087 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1088 CGF.Builder.CreateStore(Src, Tmp); 1089 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1090 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1091 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1092 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1093 false); 1094 } 1095 } 1096 1097 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1098 const ABIArgInfo &info) { 1099 if (unsigned offset = info.getDirectOffset()) { 1100 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1101 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1102 CharUnits::fromQuantity(offset)); 1103 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1104 } 1105 return addr; 1106 } 1107 1108 namespace { 1109 1110 /// Encapsulates information about the way function arguments from 1111 /// CGFunctionInfo should be passed to actual LLVM IR function. 1112 class ClangToLLVMArgMapping { 1113 static const unsigned InvalidIndex = ~0U; 1114 unsigned InallocaArgNo; 1115 unsigned SRetArgNo; 1116 unsigned TotalIRArgs; 1117 1118 /// Arguments of LLVM IR function corresponding to single Clang argument. 1119 struct IRArgs { 1120 unsigned PaddingArgIndex; 1121 // Argument is expanded to IR arguments at positions 1122 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1123 unsigned FirstArgIndex; 1124 unsigned NumberOfArgs; 1125 1126 IRArgs() 1127 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1128 NumberOfArgs(0) {} 1129 }; 1130 1131 SmallVector<IRArgs, 8> ArgInfo; 1132 1133 public: 1134 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1135 bool OnlyRequiredArgs = false) 1136 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1137 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1138 construct(Context, FI, OnlyRequiredArgs); 1139 } 1140 1141 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1142 unsigned getInallocaArgNo() const { 1143 assert(hasInallocaArg()); 1144 return InallocaArgNo; 1145 } 1146 1147 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1148 unsigned getSRetArgNo() const { 1149 assert(hasSRetArg()); 1150 return SRetArgNo; 1151 } 1152 1153 unsigned totalIRArgs() const { return TotalIRArgs; } 1154 1155 bool hasPaddingArg(unsigned ArgNo) const { 1156 assert(ArgNo < ArgInfo.size()); 1157 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1158 } 1159 unsigned getPaddingArgNo(unsigned ArgNo) const { 1160 assert(hasPaddingArg(ArgNo)); 1161 return ArgInfo[ArgNo].PaddingArgIndex; 1162 } 1163 1164 /// Returns index of first IR argument corresponding to ArgNo, and their 1165 /// quantity. 1166 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1167 assert(ArgNo < ArgInfo.size()); 1168 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1169 ArgInfo[ArgNo].NumberOfArgs); 1170 } 1171 1172 private: 1173 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1174 bool OnlyRequiredArgs); 1175 }; 1176 1177 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1178 const CGFunctionInfo &FI, 1179 bool OnlyRequiredArgs) { 1180 unsigned IRArgNo = 0; 1181 bool SwapThisWithSRet = false; 1182 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1183 1184 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1185 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1186 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1187 } 1188 1189 unsigned ArgNo = 0; 1190 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1191 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1192 ++I, ++ArgNo) { 1193 assert(I != FI.arg_end()); 1194 QualType ArgType = I->type; 1195 const ABIArgInfo &AI = I->info; 1196 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1197 auto &IRArgs = ArgInfo[ArgNo]; 1198 1199 if (AI.getPaddingType()) 1200 IRArgs.PaddingArgIndex = IRArgNo++; 1201 1202 switch (AI.getKind()) { 1203 case ABIArgInfo::Extend: 1204 case ABIArgInfo::Direct: { 1205 // FIXME: handle sseregparm someday... 1206 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1207 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1208 IRArgs.NumberOfArgs = STy->getNumElements(); 1209 } else { 1210 IRArgs.NumberOfArgs = 1; 1211 } 1212 break; 1213 } 1214 case ABIArgInfo::Indirect: 1215 IRArgs.NumberOfArgs = 1; 1216 break; 1217 case ABIArgInfo::Ignore: 1218 case ABIArgInfo::InAlloca: 1219 // ignore and inalloca doesn't have matching LLVM parameters. 1220 IRArgs.NumberOfArgs = 0; 1221 break; 1222 case ABIArgInfo::Expand: { 1223 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1224 break; 1225 } 1226 } 1227 1228 if (IRArgs.NumberOfArgs > 0) { 1229 IRArgs.FirstArgIndex = IRArgNo; 1230 IRArgNo += IRArgs.NumberOfArgs; 1231 } 1232 1233 // Skip over the sret parameter when it comes second. We already handled it 1234 // above. 1235 if (IRArgNo == 1 && SwapThisWithSRet) 1236 IRArgNo++; 1237 } 1238 assert(ArgNo == ArgInfo.size()); 1239 1240 if (FI.usesInAlloca()) 1241 InallocaArgNo = IRArgNo++; 1242 1243 TotalIRArgs = IRArgNo; 1244 } 1245 } // namespace 1246 1247 /***/ 1248 1249 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1250 return FI.getReturnInfo().isIndirect(); 1251 } 1252 1253 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1254 return ReturnTypeUsesSRet(FI) && 1255 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1256 } 1257 1258 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1259 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1260 switch (BT->getKind()) { 1261 default: 1262 return false; 1263 case BuiltinType::Float: 1264 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1265 case BuiltinType::Double: 1266 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1267 case BuiltinType::LongDouble: 1268 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1269 } 1270 } 1271 1272 return false; 1273 } 1274 1275 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1276 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1277 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1278 if (BT->getKind() == BuiltinType::LongDouble) 1279 return getTarget().useObjCFP2RetForComplexLongDouble(); 1280 } 1281 } 1282 1283 return false; 1284 } 1285 1286 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1287 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1288 return GetFunctionType(FI); 1289 } 1290 1291 llvm::FunctionType * 1292 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1293 1294 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1295 (void)Inserted; 1296 assert(Inserted && "Recursively being processed?"); 1297 1298 llvm::Type *resultType = nullptr; 1299 const ABIArgInfo &retAI = FI.getReturnInfo(); 1300 switch (retAI.getKind()) { 1301 case ABIArgInfo::Expand: 1302 llvm_unreachable("Invalid ABI kind for return argument"); 1303 1304 case ABIArgInfo::Extend: 1305 case ABIArgInfo::Direct: 1306 resultType = retAI.getCoerceToType(); 1307 break; 1308 1309 case ABIArgInfo::InAlloca: 1310 if (retAI.getInAllocaSRet()) { 1311 // sret things on win32 aren't void, they return the sret pointer. 1312 QualType ret = FI.getReturnType(); 1313 llvm::Type *ty = ConvertType(ret); 1314 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1315 resultType = llvm::PointerType::get(ty, addressSpace); 1316 } else { 1317 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1318 } 1319 break; 1320 1321 case ABIArgInfo::Indirect: 1322 case ABIArgInfo::Ignore: 1323 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1324 break; 1325 } 1326 1327 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1328 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1329 1330 // Add type for sret argument. 1331 if (IRFunctionArgs.hasSRetArg()) { 1332 QualType Ret = FI.getReturnType(); 1333 llvm::Type *Ty = ConvertType(Ret); 1334 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1335 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1336 llvm::PointerType::get(Ty, AddressSpace); 1337 } 1338 1339 // Add type for inalloca argument. 1340 if (IRFunctionArgs.hasInallocaArg()) { 1341 auto ArgStruct = FI.getArgStruct(); 1342 assert(ArgStruct); 1343 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1344 } 1345 1346 // Add in all of the required arguments. 1347 unsigned ArgNo = 0; 1348 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1349 ie = it + FI.getNumRequiredArgs(); 1350 for (; it != ie; ++it, ++ArgNo) { 1351 const ABIArgInfo &ArgInfo = it->info; 1352 1353 // Insert a padding type to ensure proper alignment. 1354 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1355 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1356 ArgInfo.getPaddingType(); 1357 1358 unsigned FirstIRArg, NumIRArgs; 1359 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1360 1361 switch (ArgInfo.getKind()) { 1362 case ABIArgInfo::Ignore: 1363 case ABIArgInfo::InAlloca: 1364 assert(NumIRArgs == 0); 1365 break; 1366 1367 case ABIArgInfo::Indirect: { 1368 assert(NumIRArgs == 1); 1369 // indirect arguments are always on the stack, which is addr space #0. 1370 llvm::Type *LTy = ConvertTypeForMem(it->type); 1371 ArgTypes[FirstIRArg] = LTy->getPointerTo(); 1372 break; 1373 } 1374 1375 case ABIArgInfo::Extend: 1376 case ABIArgInfo::Direct: { 1377 // Fast-isel and the optimizer generally like scalar values better than 1378 // FCAs, so we flatten them if this is safe to do for this argument. 1379 llvm::Type *argType = ArgInfo.getCoerceToType(); 1380 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1381 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1382 assert(NumIRArgs == st->getNumElements()); 1383 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1384 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1385 } else { 1386 assert(NumIRArgs == 1); 1387 ArgTypes[FirstIRArg] = argType; 1388 } 1389 break; 1390 } 1391 1392 case ABIArgInfo::Expand: 1393 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1394 getExpandedTypes(it->type, ArgTypesIter); 1395 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1396 break; 1397 } 1398 } 1399 1400 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1401 assert(Erased && "Not in set?"); 1402 1403 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1404 } 1405 1406 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1407 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1408 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1409 1410 if (!isFuncTypeConvertible(FPT)) 1411 return llvm::StructType::get(getLLVMContext()); 1412 1413 const CGFunctionInfo *Info; 1414 if (isa<CXXDestructorDecl>(MD)) 1415 Info = 1416 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1417 else 1418 Info = &arrangeCXXMethodDeclaration(MD); 1419 return GetFunctionType(*Info); 1420 } 1421 1422 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1423 llvm::AttrBuilder &FuncAttrs, 1424 const FunctionProtoType *FPT) { 1425 if (!FPT) 1426 return; 1427 1428 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1429 FPT->isNothrow(Ctx)) 1430 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1431 } 1432 1433 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 1434 CGCalleeInfo CalleeInfo, 1435 AttributeListType &PAL, 1436 unsigned &CallingConv, 1437 bool AttrOnCallSite) { 1438 llvm::AttrBuilder FuncAttrs; 1439 llvm::AttrBuilder RetAttrs; 1440 bool HasOptnone = false; 1441 1442 CallingConv = FI.getEffectiveCallingConvention(); 1443 1444 if (FI.isNoReturn()) 1445 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1446 1447 // If we have information about the function prototype, we can learn 1448 // attributes form there. 1449 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1450 CalleeInfo.getCalleeFunctionProtoType()); 1451 1452 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1453 1454 // FIXME: handle sseregparm someday... 1455 if (TargetDecl) { 1456 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1457 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1458 if (TargetDecl->hasAttr<NoThrowAttr>()) 1459 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1460 if (TargetDecl->hasAttr<NoReturnAttr>()) 1461 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1462 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1463 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1464 1465 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1466 AddAttributesFromFunctionProtoType( 1467 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1468 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1469 // These attributes are not inherited by overloads. 1470 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1471 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1472 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1473 } 1474 1475 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1476 if (TargetDecl->hasAttr<ConstAttr>()) { 1477 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1478 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1479 } else if (TargetDecl->hasAttr<PureAttr>()) { 1480 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1481 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1482 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1483 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1484 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1485 } 1486 if (TargetDecl->hasAttr<RestrictAttr>()) 1487 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1488 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1489 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1490 1491 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1492 } 1493 1494 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1495 if (!HasOptnone) { 1496 if (CodeGenOpts.OptimizeSize) 1497 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1498 if (CodeGenOpts.OptimizeSize == 2) 1499 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1500 } 1501 1502 if (CodeGenOpts.DisableRedZone) 1503 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1504 if (CodeGenOpts.NoImplicitFloat) 1505 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1506 if (CodeGenOpts.EnableSegmentedStacks && 1507 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1508 FuncAttrs.addAttribute("split-stack"); 1509 1510 if (AttrOnCallSite) { 1511 // Attributes that should go on the call site only. 1512 if (!CodeGenOpts.SimplifyLibCalls) 1513 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1514 if (!CodeGenOpts.TrapFuncName.empty()) 1515 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1516 } else { 1517 // Attributes that should go on the function, but not the call site. 1518 if (!CodeGenOpts.DisableFPElim) { 1519 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1520 } else if (CodeGenOpts.OmitLeafFramePointer) { 1521 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1522 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1523 } else { 1524 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1525 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1526 } 1527 1528 bool DisableTailCalls = 1529 CodeGenOpts.DisableTailCalls || 1530 (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>()); 1531 FuncAttrs.addAttribute("disable-tail-calls", 1532 llvm::toStringRef(DisableTailCalls)); 1533 1534 FuncAttrs.addAttribute("less-precise-fpmad", 1535 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1536 FuncAttrs.addAttribute("no-infs-fp-math", 1537 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1538 FuncAttrs.addAttribute("no-nans-fp-math", 1539 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1540 FuncAttrs.addAttribute("unsafe-fp-math", 1541 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1542 FuncAttrs.addAttribute("use-soft-float", 1543 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1544 FuncAttrs.addAttribute("stack-protector-buffer-size", 1545 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1546 1547 if (CodeGenOpts.StackRealignment) 1548 FuncAttrs.addAttribute("stackrealign"); 1549 1550 // Add target-cpu and target-features attributes to functions. If 1551 // we have a decl for the function and it has a target attribute then 1552 // parse that and add it to the feature set. 1553 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1554 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1555 if (FD && FD->hasAttr<TargetAttr>()) { 1556 llvm::StringMap<bool> FeatureMap; 1557 getFunctionFeatureMap(FeatureMap, FD); 1558 1559 // Produce the canonical string for this set of features. 1560 std::vector<std::string> Features; 1561 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1562 ie = FeatureMap.end(); 1563 it != ie; ++it) 1564 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1565 1566 // Now add the target-cpu and target-features to the function. 1567 // While we populated the feature map above, we still need to 1568 // get and parse the target attribute so we can get the cpu for 1569 // the function. 1570 const auto *TD = FD->getAttr<TargetAttr>(); 1571 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1572 if (ParsedAttr.second != "") 1573 TargetCPU = ParsedAttr.second; 1574 if (TargetCPU != "") 1575 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1576 if (!Features.empty()) { 1577 std::sort(Features.begin(), Features.end()); 1578 FuncAttrs.addAttribute( 1579 "target-features", 1580 llvm::join(Features.begin(), Features.end(), ",")); 1581 } 1582 } else { 1583 // Otherwise just add the existing target cpu and target features to the 1584 // function. 1585 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1586 if (TargetCPU != "") 1587 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1588 if (!Features.empty()) { 1589 std::sort(Features.begin(), Features.end()); 1590 FuncAttrs.addAttribute( 1591 "target-features", 1592 llvm::join(Features.begin(), Features.end(), ",")); 1593 } 1594 } 1595 } 1596 1597 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1598 1599 QualType RetTy = FI.getReturnType(); 1600 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1601 switch (RetAI.getKind()) { 1602 case ABIArgInfo::Extend: 1603 if (RetTy->hasSignedIntegerRepresentation()) 1604 RetAttrs.addAttribute(llvm::Attribute::SExt); 1605 else if (RetTy->hasUnsignedIntegerRepresentation()) 1606 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1607 // FALL THROUGH 1608 case ABIArgInfo::Direct: 1609 if (RetAI.getInReg()) 1610 RetAttrs.addAttribute(llvm::Attribute::InReg); 1611 break; 1612 case ABIArgInfo::Ignore: 1613 break; 1614 1615 case ABIArgInfo::InAlloca: 1616 case ABIArgInfo::Indirect: { 1617 // inalloca and sret disable readnone and readonly 1618 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1619 .removeAttribute(llvm::Attribute::ReadNone); 1620 break; 1621 } 1622 1623 case ABIArgInfo::Expand: 1624 llvm_unreachable("Invalid ABI kind for return argument"); 1625 } 1626 1627 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1628 QualType PTy = RefTy->getPointeeType(); 1629 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1630 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1631 .getQuantity()); 1632 else if (getContext().getTargetAddressSpace(PTy) == 0) 1633 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1634 } 1635 1636 // Attach return attributes. 1637 if (RetAttrs.hasAttributes()) { 1638 PAL.push_back(llvm::AttributeSet::get( 1639 getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs)); 1640 } 1641 1642 // Attach attributes to sret. 1643 if (IRFunctionArgs.hasSRetArg()) { 1644 llvm::AttrBuilder SRETAttrs; 1645 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1646 if (RetAI.getInReg()) 1647 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1648 PAL.push_back(llvm::AttributeSet::get( 1649 getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs)); 1650 } 1651 1652 // Attach attributes to inalloca argument. 1653 if (IRFunctionArgs.hasInallocaArg()) { 1654 llvm::AttrBuilder Attrs; 1655 Attrs.addAttribute(llvm::Attribute::InAlloca); 1656 PAL.push_back(llvm::AttributeSet::get( 1657 getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs)); 1658 } 1659 1660 unsigned ArgNo = 0; 1661 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1662 E = FI.arg_end(); 1663 I != E; ++I, ++ArgNo) { 1664 QualType ParamType = I->type; 1665 const ABIArgInfo &AI = I->info; 1666 llvm::AttrBuilder Attrs; 1667 1668 // Add attribute for padding argument, if necessary. 1669 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1670 if (AI.getPaddingInReg()) 1671 PAL.push_back(llvm::AttributeSet::get( 1672 getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1, 1673 llvm::Attribute::InReg)); 1674 } 1675 1676 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1677 // have the corresponding parameter variable. It doesn't make 1678 // sense to do it here because parameters are so messed up. 1679 switch (AI.getKind()) { 1680 case ABIArgInfo::Extend: 1681 if (ParamType->isSignedIntegerOrEnumerationType()) 1682 Attrs.addAttribute(llvm::Attribute::SExt); 1683 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1684 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1685 Attrs.addAttribute(llvm::Attribute::SExt); 1686 else 1687 Attrs.addAttribute(llvm::Attribute::ZExt); 1688 } 1689 // FALL THROUGH 1690 case ABIArgInfo::Direct: 1691 if (ArgNo == 0 && FI.isChainCall()) 1692 Attrs.addAttribute(llvm::Attribute::Nest); 1693 else if (AI.getInReg()) 1694 Attrs.addAttribute(llvm::Attribute::InReg); 1695 break; 1696 1697 case ABIArgInfo::Indirect: { 1698 if (AI.getInReg()) 1699 Attrs.addAttribute(llvm::Attribute::InReg); 1700 1701 if (AI.getIndirectByVal()) 1702 Attrs.addAttribute(llvm::Attribute::ByVal); 1703 1704 CharUnits Align = AI.getIndirectAlign(); 1705 1706 // In a byval argument, it is important that the required 1707 // alignment of the type is honored, as LLVM might be creating a 1708 // *new* stack object, and needs to know what alignment to give 1709 // it. (Sometimes it can deduce a sensible alignment on its own, 1710 // but not if clang decides it must emit a packed struct, or the 1711 // user specifies increased alignment requirements.) 1712 // 1713 // This is different from indirect *not* byval, where the object 1714 // exists already, and the align attribute is purely 1715 // informative. 1716 assert(!Align.isZero()); 1717 1718 // For now, only add this when we have a byval argument. 1719 // TODO: be less lazy about updating test cases. 1720 if (AI.getIndirectByVal()) 1721 Attrs.addAlignmentAttr(Align.getQuantity()); 1722 1723 // byval disables readnone and readonly. 1724 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1725 .removeAttribute(llvm::Attribute::ReadNone); 1726 break; 1727 } 1728 case ABIArgInfo::Ignore: 1729 case ABIArgInfo::Expand: 1730 continue; 1731 1732 case ABIArgInfo::InAlloca: 1733 // inalloca disables readnone and readonly. 1734 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1735 .removeAttribute(llvm::Attribute::ReadNone); 1736 continue; 1737 } 1738 1739 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 1740 QualType PTy = RefTy->getPointeeType(); 1741 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1742 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1743 .getQuantity()); 1744 else if (getContext().getTargetAddressSpace(PTy) == 0) 1745 Attrs.addAttribute(llvm::Attribute::NonNull); 1746 } 1747 1748 if (Attrs.hasAttributes()) { 1749 unsigned FirstIRArg, NumIRArgs; 1750 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1751 for (unsigned i = 0; i < NumIRArgs; i++) 1752 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), 1753 FirstIRArg + i + 1, Attrs)); 1754 } 1755 } 1756 assert(ArgNo == FI.arg_size()); 1757 1758 if (FuncAttrs.hasAttributes()) 1759 PAL.push_back(llvm:: 1760 AttributeSet::get(getLLVMContext(), 1761 llvm::AttributeSet::FunctionIndex, 1762 FuncAttrs)); 1763 } 1764 1765 /// An argument came in as a promoted argument; demote it back to its 1766 /// declared type. 1767 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1768 const VarDecl *var, 1769 llvm::Value *value) { 1770 llvm::Type *varType = CGF.ConvertType(var->getType()); 1771 1772 // This can happen with promotions that actually don't change the 1773 // underlying type, like the enum promotions. 1774 if (value->getType() == varType) return value; 1775 1776 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1777 && "unexpected promotion type"); 1778 1779 if (isa<llvm::IntegerType>(varType)) 1780 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1781 1782 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1783 } 1784 1785 /// Returns the attribute (either parameter attribute, or function 1786 /// attribute), which declares argument ArgNo to be non-null. 1787 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 1788 QualType ArgType, unsigned ArgNo) { 1789 // FIXME: __attribute__((nonnull)) can also be applied to: 1790 // - references to pointers, where the pointee is known to be 1791 // nonnull (apparently a Clang extension) 1792 // - transparent unions containing pointers 1793 // In the former case, LLVM IR cannot represent the constraint. In 1794 // the latter case, we have no guarantee that the transparent union 1795 // is in fact passed as a pointer. 1796 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 1797 return nullptr; 1798 // First, check attribute on parameter itself. 1799 if (PVD) { 1800 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 1801 return ParmNNAttr; 1802 } 1803 // Check function attributes. 1804 if (!FD) 1805 return nullptr; 1806 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 1807 if (NNAttr->isNonNull(ArgNo)) 1808 return NNAttr; 1809 } 1810 return nullptr; 1811 } 1812 1813 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1814 llvm::Function *Fn, 1815 const FunctionArgList &Args) { 1816 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 1817 // Naked functions don't have prologues. 1818 return; 1819 1820 // If this is an implicit-return-zero function, go ahead and 1821 // initialize the return value. TODO: it might be nice to have 1822 // a more general mechanism for this that didn't require synthesized 1823 // return statements. 1824 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 1825 if (FD->hasImplicitReturnZero()) { 1826 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 1827 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1828 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1829 Builder.CreateStore(Zero, ReturnValue); 1830 } 1831 } 1832 1833 // FIXME: We no longer need the types from FunctionArgList; lift up and 1834 // simplify. 1835 1836 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 1837 // Flattened function arguments. 1838 SmallVector<llvm::Argument *, 16> FnArgs; 1839 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 1840 for (auto &Arg : Fn->args()) { 1841 FnArgs.push_back(&Arg); 1842 } 1843 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 1844 1845 // If we're using inalloca, all the memory arguments are GEPs off of the last 1846 // parameter, which is a pointer to the complete memory area. 1847 Address ArgStruct = Address::invalid(); 1848 const llvm::StructLayout *ArgStructLayout = nullptr; 1849 if (IRFunctionArgs.hasInallocaArg()) { 1850 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 1851 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 1852 FI.getArgStructAlignment()); 1853 1854 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 1855 } 1856 1857 // Name the struct return parameter. 1858 if (IRFunctionArgs.hasSRetArg()) { 1859 auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()]; 1860 AI->setName("agg.result"); 1861 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1, 1862 llvm::Attribute::NoAlias)); 1863 } 1864 1865 // Track if we received the parameter as a pointer (indirect, byval, or 1866 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 1867 // into a local alloca for us. 1868 SmallVector<ParamValue, 16> ArgVals; 1869 ArgVals.reserve(Args.size()); 1870 1871 // Create a pointer value for every parameter declaration. This usually 1872 // entails copying one or more LLVM IR arguments into an alloca. Don't push 1873 // any cleanups or do anything that might unwind. We do that separately, so 1874 // we can push the cleanups in the correct order for the ABI. 1875 assert(FI.arg_size() == Args.size() && 1876 "Mismatch between function signature & arguments."); 1877 unsigned ArgNo = 0; 1878 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1879 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1880 i != e; ++i, ++info_it, ++ArgNo) { 1881 const VarDecl *Arg = *i; 1882 QualType Ty = info_it->type; 1883 const ABIArgInfo &ArgI = info_it->info; 1884 1885 bool isPromoted = 1886 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1887 1888 unsigned FirstIRArg, NumIRArgs; 1889 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1890 1891 switch (ArgI.getKind()) { 1892 case ABIArgInfo::InAlloca: { 1893 assert(NumIRArgs == 0); 1894 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 1895 CharUnits FieldOffset = 1896 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 1897 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 1898 Arg->getName()); 1899 ArgVals.push_back(ParamValue::forIndirect(V)); 1900 break; 1901 } 1902 1903 case ABIArgInfo::Indirect: { 1904 assert(NumIRArgs == 1); 1905 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 1906 1907 if (!hasScalarEvaluationKind(Ty)) { 1908 // Aggregates and complex variables are accessed by reference. All we 1909 // need to do is realign the value, if requested. 1910 Address V = ParamAddr; 1911 if (ArgI.getIndirectRealign()) { 1912 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 1913 1914 // Copy from the incoming argument pointer to the temporary with the 1915 // appropriate alignment. 1916 // 1917 // FIXME: We should have a common utility for generating an aggregate 1918 // copy. 1919 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1920 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 1921 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 1922 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 1923 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 1924 V = AlignedTemp; 1925 } 1926 ArgVals.push_back(ParamValue::forIndirect(V)); 1927 } else { 1928 // Load scalar value from indirect argument. 1929 llvm::Value *V = 1930 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 1931 1932 if (isPromoted) 1933 V = emitArgumentDemotion(*this, Arg, V); 1934 ArgVals.push_back(ParamValue::forDirect(V)); 1935 } 1936 break; 1937 } 1938 1939 case ABIArgInfo::Extend: 1940 case ABIArgInfo::Direct: { 1941 1942 // If we have the trivial case, handle it with no muss and fuss. 1943 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1944 ArgI.getCoerceToType() == ConvertType(Ty) && 1945 ArgI.getDirectOffset() == 0) { 1946 assert(NumIRArgs == 1); 1947 auto AI = FnArgs[FirstIRArg]; 1948 llvm::Value *V = AI; 1949 1950 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 1951 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 1952 PVD->getFunctionScopeIndex())) 1953 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1954 AI->getArgNo() + 1, 1955 llvm::Attribute::NonNull)); 1956 1957 QualType OTy = PVD->getOriginalType(); 1958 if (const auto *ArrTy = 1959 getContext().getAsConstantArrayType(OTy)) { 1960 // A C99 array parameter declaration with the static keyword also 1961 // indicates dereferenceability, and if the size is constant we can 1962 // use the dereferenceable attribute (which requires the size in 1963 // bytes). 1964 if (ArrTy->getSizeModifier() == ArrayType::Static) { 1965 QualType ETy = ArrTy->getElementType(); 1966 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 1967 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 1968 ArrSize) { 1969 llvm::AttrBuilder Attrs; 1970 Attrs.addDereferenceableAttr( 1971 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 1972 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1973 AI->getArgNo() + 1, Attrs)); 1974 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 1975 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1976 AI->getArgNo() + 1, 1977 llvm::Attribute::NonNull)); 1978 } 1979 } 1980 } else if (const auto *ArrTy = 1981 getContext().getAsVariableArrayType(OTy)) { 1982 // For C99 VLAs with the static keyword, we don't know the size so 1983 // we can't use the dereferenceable attribute, but in addrspace(0) 1984 // we know that it must be nonnull. 1985 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 1986 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 1987 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1988 AI->getArgNo() + 1, 1989 llvm::Attribute::NonNull)); 1990 } 1991 1992 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 1993 if (!AVAttr) 1994 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 1995 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 1996 if (AVAttr) { 1997 llvm::Value *AlignmentValue = 1998 EmitScalarExpr(AVAttr->getAlignment()); 1999 llvm::ConstantInt *AlignmentCI = 2000 cast<llvm::ConstantInt>(AlignmentValue); 2001 unsigned Alignment = 2002 std::min((unsigned) AlignmentCI->getZExtValue(), 2003 +llvm::Value::MaximumAlignment); 2004 2005 llvm::AttrBuilder Attrs; 2006 Attrs.addAlignmentAttr(Alignment); 2007 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2008 AI->getArgNo() + 1, Attrs)); 2009 } 2010 } 2011 2012 if (Arg->getType().isRestrictQualified()) 2013 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2014 AI->getArgNo() + 1, 2015 llvm::Attribute::NoAlias)); 2016 2017 // Ensure the argument is the correct type. 2018 if (V->getType() != ArgI.getCoerceToType()) 2019 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2020 2021 if (isPromoted) 2022 V = emitArgumentDemotion(*this, Arg, V); 2023 2024 if (const CXXMethodDecl *MD = 2025 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 2026 if (MD->isVirtual() && Arg == CXXABIThisDecl) 2027 V = CGM.getCXXABI(). 2028 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V); 2029 } 2030 2031 // Because of merging of function types from multiple decls it is 2032 // possible for the type of an argument to not match the corresponding 2033 // type in the function type. Since we are codegening the callee 2034 // in here, add a cast to the argument type. 2035 llvm::Type *LTy = ConvertType(Arg->getType()); 2036 if (V->getType() != LTy) 2037 V = Builder.CreateBitCast(V, LTy); 2038 2039 ArgVals.push_back(ParamValue::forDirect(V)); 2040 break; 2041 } 2042 2043 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2044 Arg->getName()); 2045 2046 // Pointer to store into. 2047 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2048 2049 // Fast-isel and the optimizer generally like scalar values better than 2050 // FCAs, so we flatten them if this is safe to do for this argument. 2051 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2052 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2053 STy->getNumElements() > 1) { 2054 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2055 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2056 llvm::Type *DstTy = Ptr.getElementType(); 2057 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2058 2059 Address AddrToStoreInto = Address::invalid(); 2060 if (SrcSize <= DstSize) { 2061 AddrToStoreInto = 2062 Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 2063 } else { 2064 AddrToStoreInto = 2065 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2066 } 2067 2068 assert(STy->getNumElements() == NumIRArgs); 2069 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2070 auto AI = FnArgs[FirstIRArg + i]; 2071 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2072 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2073 Address EltPtr = 2074 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2075 Builder.CreateStore(AI, EltPtr); 2076 } 2077 2078 if (SrcSize > DstSize) { 2079 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2080 } 2081 2082 } else { 2083 // Simple case, just do a coerced store of the argument into the alloca. 2084 assert(NumIRArgs == 1); 2085 auto AI = FnArgs[FirstIRArg]; 2086 AI->setName(Arg->getName() + ".coerce"); 2087 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2088 } 2089 2090 // Match to what EmitParmDecl is expecting for this type. 2091 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2092 llvm::Value *V = 2093 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2094 if (isPromoted) 2095 V = emitArgumentDemotion(*this, Arg, V); 2096 ArgVals.push_back(ParamValue::forDirect(V)); 2097 } else { 2098 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2099 } 2100 break; 2101 } 2102 2103 case ABIArgInfo::Expand: { 2104 // If this structure was expanded into multiple arguments then 2105 // we need to create a temporary and reconstruct it from the 2106 // arguments. 2107 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2108 LValue LV = MakeAddrLValue(Alloca, Ty); 2109 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2110 2111 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2112 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2113 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2114 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2115 auto AI = FnArgs[FirstIRArg + i]; 2116 AI->setName(Arg->getName() + "." + Twine(i)); 2117 } 2118 break; 2119 } 2120 2121 case ABIArgInfo::Ignore: 2122 assert(NumIRArgs == 0); 2123 // Initialize the local variable appropriately. 2124 if (!hasScalarEvaluationKind(Ty)) { 2125 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2126 } else { 2127 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2128 ArgVals.push_back(ParamValue::forDirect(U)); 2129 } 2130 break; 2131 } 2132 } 2133 2134 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2135 for (int I = Args.size() - 1; I >= 0; --I) 2136 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2137 } else { 2138 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2139 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2140 } 2141 } 2142 2143 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2144 while (insn->use_empty()) { 2145 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2146 if (!bitcast) return; 2147 2148 // This is "safe" because we would have used a ConstantExpr otherwise. 2149 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2150 bitcast->eraseFromParent(); 2151 } 2152 } 2153 2154 /// Try to emit a fused autorelease of a return result. 2155 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2156 llvm::Value *result) { 2157 // We must be immediately followed the cast. 2158 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2159 if (BB->empty()) return nullptr; 2160 if (&BB->back() != result) return nullptr; 2161 2162 llvm::Type *resultType = result->getType(); 2163 2164 // result is in a BasicBlock and is therefore an Instruction. 2165 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2166 2167 SmallVector<llvm::Instruction*,4> insnsToKill; 2168 2169 // Look for: 2170 // %generator = bitcast %type1* %generator2 to %type2* 2171 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2172 // We would have emitted this as a constant if the operand weren't 2173 // an Instruction. 2174 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2175 2176 // Require the generator to be immediately followed by the cast. 2177 if (generator->getNextNode() != bitcast) 2178 return nullptr; 2179 2180 insnsToKill.push_back(bitcast); 2181 } 2182 2183 // Look for: 2184 // %generator = call i8* @objc_retain(i8* %originalResult) 2185 // or 2186 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2187 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2188 if (!call) return nullptr; 2189 2190 bool doRetainAutorelease; 2191 2192 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2193 doRetainAutorelease = true; 2194 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2195 .objc_retainAutoreleasedReturnValue) { 2196 doRetainAutorelease = false; 2197 2198 // If we emitted an assembly marker for this call (and the 2199 // ARCEntrypoints field should have been set if so), go looking 2200 // for that call. If we can't find it, we can't do this 2201 // optimization. But it should always be the immediately previous 2202 // instruction, unless we needed bitcasts around the call. 2203 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2204 llvm::Instruction *prev = call->getPrevNode(); 2205 assert(prev); 2206 if (isa<llvm::BitCastInst>(prev)) { 2207 prev = prev->getPrevNode(); 2208 assert(prev); 2209 } 2210 assert(isa<llvm::CallInst>(prev)); 2211 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2212 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2213 insnsToKill.push_back(prev); 2214 } 2215 } else { 2216 return nullptr; 2217 } 2218 2219 result = call->getArgOperand(0); 2220 insnsToKill.push_back(call); 2221 2222 // Keep killing bitcasts, for sanity. Note that we no longer care 2223 // about precise ordering as long as there's exactly one use. 2224 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2225 if (!bitcast->hasOneUse()) break; 2226 insnsToKill.push_back(bitcast); 2227 result = bitcast->getOperand(0); 2228 } 2229 2230 // Delete all the unnecessary instructions, from latest to earliest. 2231 for (SmallVectorImpl<llvm::Instruction*>::iterator 2232 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 2233 (*i)->eraseFromParent(); 2234 2235 // Do the fused retain/autorelease if we were asked to. 2236 if (doRetainAutorelease) 2237 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2238 2239 // Cast back to the result type. 2240 return CGF.Builder.CreateBitCast(result, resultType); 2241 } 2242 2243 /// If this is a +1 of the value of an immutable 'self', remove it. 2244 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2245 llvm::Value *result) { 2246 // This is only applicable to a method with an immutable 'self'. 2247 const ObjCMethodDecl *method = 2248 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2249 if (!method) return nullptr; 2250 const VarDecl *self = method->getSelfDecl(); 2251 if (!self->getType().isConstQualified()) return nullptr; 2252 2253 // Look for a retain call. 2254 llvm::CallInst *retainCall = 2255 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2256 if (!retainCall || 2257 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2258 return nullptr; 2259 2260 // Look for an ordinary load of 'self'. 2261 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2262 llvm::LoadInst *load = 2263 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2264 if (!load || load->isAtomic() || load->isVolatile() || 2265 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2266 return nullptr; 2267 2268 // Okay! Burn it all down. This relies for correctness on the 2269 // assumption that the retain is emitted as part of the return and 2270 // that thereafter everything is used "linearly". 2271 llvm::Type *resultType = result->getType(); 2272 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2273 assert(retainCall->use_empty()); 2274 retainCall->eraseFromParent(); 2275 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2276 2277 return CGF.Builder.CreateBitCast(load, resultType); 2278 } 2279 2280 /// Emit an ARC autorelease of the result of a function. 2281 /// 2282 /// \return the value to actually return from the function 2283 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2284 llvm::Value *result) { 2285 // If we're returning 'self', kill the initial retain. This is a 2286 // heuristic attempt to "encourage correctness" in the really unfortunate 2287 // case where we have a return of self during a dealloc and we desperately 2288 // need to avoid the possible autorelease. 2289 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2290 return self; 2291 2292 // At -O0, try to emit a fused retain/autorelease. 2293 if (CGF.shouldUseFusedARCCalls()) 2294 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2295 return fused; 2296 2297 return CGF.EmitARCAutoreleaseReturnValue(result); 2298 } 2299 2300 /// Heuristically search for a dominating store to the return-value slot. 2301 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2302 // Check if a User is a store which pointerOperand is the ReturnValue. 2303 // We are looking for stores to the ReturnValue, not for stores of the 2304 // ReturnValue to some other location. 2305 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2306 auto *SI = dyn_cast<llvm::StoreInst>(U); 2307 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2308 return nullptr; 2309 // These aren't actually possible for non-coerced returns, and we 2310 // only care about non-coerced returns on this code path. 2311 assert(!SI->isAtomic() && !SI->isVolatile()); 2312 return SI; 2313 }; 2314 // If there are multiple uses of the return-value slot, just check 2315 // for something immediately preceding the IP. Sometimes this can 2316 // happen with how we generate implicit-returns; it can also happen 2317 // with noreturn cleanups. 2318 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2319 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2320 if (IP->empty()) return nullptr; 2321 llvm::Instruction *I = &IP->back(); 2322 2323 // Skip lifetime markers 2324 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2325 IE = IP->rend(); 2326 II != IE; ++II) { 2327 if (llvm::IntrinsicInst *Intrinsic = 2328 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2329 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2330 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2331 ++II; 2332 if (II == IE) 2333 break; 2334 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2335 continue; 2336 } 2337 } 2338 I = &*II; 2339 break; 2340 } 2341 2342 return GetStoreIfValid(I); 2343 } 2344 2345 llvm::StoreInst *store = 2346 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2347 if (!store) return nullptr; 2348 2349 // Now do a first-and-dirty dominance check: just walk up the 2350 // single-predecessors chain from the current insertion point. 2351 llvm::BasicBlock *StoreBB = store->getParent(); 2352 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2353 while (IP != StoreBB) { 2354 if (!(IP = IP->getSinglePredecessor())) 2355 return nullptr; 2356 } 2357 2358 // Okay, the store's basic block dominates the insertion point; we 2359 // can do our thing. 2360 return store; 2361 } 2362 2363 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2364 bool EmitRetDbgLoc, 2365 SourceLocation EndLoc) { 2366 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2367 // Naked functions don't have epilogues. 2368 Builder.CreateUnreachable(); 2369 return; 2370 } 2371 2372 // Functions with no result always return void. 2373 if (!ReturnValue.isValid()) { 2374 Builder.CreateRetVoid(); 2375 return; 2376 } 2377 2378 llvm::DebugLoc RetDbgLoc; 2379 llvm::Value *RV = nullptr; 2380 QualType RetTy = FI.getReturnType(); 2381 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2382 2383 switch (RetAI.getKind()) { 2384 case ABIArgInfo::InAlloca: 2385 // Aggregrates get evaluated directly into the destination. Sometimes we 2386 // need to return the sret value in a register, though. 2387 assert(hasAggregateEvaluationKind(RetTy)); 2388 if (RetAI.getInAllocaSRet()) { 2389 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2390 --EI; 2391 llvm::Value *ArgStruct = &*EI; 2392 llvm::Value *SRet = Builder.CreateStructGEP( 2393 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2394 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2395 } 2396 break; 2397 2398 case ABIArgInfo::Indirect: { 2399 auto AI = CurFn->arg_begin(); 2400 if (RetAI.isSRetAfterThis()) 2401 ++AI; 2402 switch (getEvaluationKind(RetTy)) { 2403 case TEK_Complex: { 2404 ComplexPairTy RT = 2405 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2406 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2407 /*isInit*/ true); 2408 break; 2409 } 2410 case TEK_Aggregate: 2411 // Do nothing; aggregrates get evaluated directly into the destination. 2412 break; 2413 case TEK_Scalar: 2414 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2415 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2416 /*isInit*/ true); 2417 break; 2418 } 2419 break; 2420 } 2421 2422 case ABIArgInfo::Extend: 2423 case ABIArgInfo::Direct: 2424 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2425 RetAI.getDirectOffset() == 0) { 2426 // The internal return value temp always will have pointer-to-return-type 2427 // type, just do a load. 2428 2429 // If there is a dominating store to ReturnValue, we can elide 2430 // the load, zap the store, and usually zap the alloca. 2431 if (llvm::StoreInst *SI = 2432 findDominatingStoreToReturnValue(*this)) { 2433 // Reuse the debug location from the store unless there is 2434 // cleanup code to be emitted between the store and return 2435 // instruction. 2436 if (EmitRetDbgLoc && !AutoreleaseResult) 2437 RetDbgLoc = SI->getDebugLoc(); 2438 // Get the stored value and nuke the now-dead store. 2439 RV = SI->getValueOperand(); 2440 SI->eraseFromParent(); 2441 2442 // If that was the only use of the return value, nuke it as well now. 2443 auto returnValueInst = ReturnValue.getPointer(); 2444 if (returnValueInst->use_empty()) { 2445 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2446 alloca->eraseFromParent(); 2447 ReturnValue = Address::invalid(); 2448 } 2449 } 2450 2451 // Otherwise, we have to do a simple load. 2452 } else { 2453 RV = Builder.CreateLoad(ReturnValue); 2454 } 2455 } else { 2456 // If the value is offset in memory, apply the offset now. 2457 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2458 2459 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2460 } 2461 2462 // In ARC, end functions that return a retainable type with a call 2463 // to objc_autoreleaseReturnValue. 2464 if (AutoreleaseResult) { 2465 assert(getLangOpts().ObjCAutoRefCount && 2466 !FI.isReturnsRetained() && 2467 RetTy->isObjCRetainableType()); 2468 RV = emitAutoreleaseOfResult(*this, RV); 2469 } 2470 2471 break; 2472 2473 case ABIArgInfo::Ignore: 2474 break; 2475 2476 case ABIArgInfo::Expand: 2477 llvm_unreachable("Invalid ABI kind for return argument"); 2478 } 2479 2480 llvm::Instruction *Ret; 2481 if (RV) { 2482 if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) { 2483 if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) { 2484 SanitizerScope SanScope(this); 2485 llvm::Value *Cond = Builder.CreateICmpNE( 2486 RV, llvm::Constant::getNullValue(RV->getType())); 2487 llvm::Constant *StaticData[] = { 2488 EmitCheckSourceLocation(EndLoc), 2489 EmitCheckSourceLocation(RetNNAttr->getLocation()), 2490 }; 2491 EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute), 2492 "nonnull_return", StaticData, None); 2493 } 2494 } 2495 Ret = Builder.CreateRet(RV); 2496 } else { 2497 Ret = Builder.CreateRetVoid(); 2498 } 2499 2500 if (RetDbgLoc) 2501 Ret->setDebugLoc(std::move(RetDbgLoc)); 2502 } 2503 2504 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2505 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2506 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2507 } 2508 2509 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2510 QualType Ty) { 2511 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2512 // placeholders. 2513 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2514 llvm::Value *Placeholder = 2515 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo()); 2516 Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder); 2517 2518 // FIXME: When we generate this IR in one pass, we shouldn't need 2519 // this win32-specific alignment hack. 2520 CharUnits Align = CharUnits::fromQuantity(4); 2521 2522 return AggValueSlot::forAddr(Address(Placeholder, Align), 2523 Ty.getQualifiers(), 2524 AggValueSlot::IsNotDestructed, 2525 AggValueSlot::DoesNotNeedGCBarriers, 2526 AggValueSlot::IsNotAliased); 2527 } 2528 2529 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 2530 const VarDecl *param, 2531 SourceLocation loc) { 2532 // StartFunction converted the ABI-lowered parameter(s) into a 2533 // local alloca. We need to turn that into an r-value suitable 2534 // for EmitCall. 2535 Address local = GetAddrOfLocalVar(param); 2536 2537 QualType type = param->getType(); 2538 2539 // For the most part, we just need to load the alloca, except: 2540 // 1) aggregate r-values are actually pointers to temporaries, and 2541 // 2) references to non-scalars are pointers directly to the aggregate. 2542 // I don't know why references to scalars are different here. 2543 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 2544 if (!hasScalarEvaluationKind(ref->getPointeeType())) 2545 return args.add(RValue::getAggregate(local), type); 2546 2547 // Locals which are references to scalars are represented 2548 // with allocas holding the pointer. 2549 return args.add(RValue::get(Builder.CreateLoad(local)), type); 2550 } 2551 2552 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 2553 "cannot emit delegate call arguments for inalloca arguments!"); 2554 2555 args.add(convertTempToRValue(local, type, loc), type); 2556 } 2557 2558 static bool isProvablyNull(llvm::Value *addr) { 2559 return isa<llvm::ConstantPointerNull>(addr); 2560 } 2561 2562 static bool isProvablyNonNull(llvm::Value *addr) { 2563 return isa<llvm::AllocaInst>(addr); 2564 } 2565 2566 /// Emit the actual writing-back of a writeback. 2567 static void emitWriteback(CodeGenFunction &CGF, 2568 const CallArgList::Writeback &writeback) { 2569 const LValue &srcLV = writeback.Source; 2570 Address srcAddr = srcLV.getAddress(); 2571 assert(!isProvablyNull(srcAddr.getPointer()) && 2572 "shouldn't have writeback for provably null argument"); 2573 2574 llvm::BasicBlock *contBB = nullptr; 2575 2576 // If the argument wasn't provably non-null, we need to null check 2577 // before doing the store. 2578 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 2579 if (!provablyNonNull) { 2580 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 2581 contBB = CGF.createBasicBlock("icr.done"); 2582 2583 llvm::Value *isNull = 2584 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2585 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 2586 CGF.EmitBlock(writebackBB); 2587 } 2588 2589 // Load the value to writeback. 2590 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 2591 2592 // Cast it back, in case we're writing an id to a Foo* or something. 2593 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 2594 "icr.writeback-cast"); 2595 2596 // Perform the writeback. 2597 2598 // If we have a "to use" value, it's something we need to emit a use 2599 // of. This has to be carefully threaded in: if it's done after the 2600 // release it's potentially undefined behavior (and the optimizer 2601 // will ignore it), and if it happens before the retain then the 2602 // optimizer could move the release there. 2603 if (writeback.ToUse) { 2604 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 2605 2606 // Retain the new value. No need to block-copy here: the block's 2607 // being passed up the stack. 2608 value = CGF.EmitARCRetainNonBlock(value); 2609 2610 // Emit the intrinsic use here. 2611 CGF.EmitARCIntrinsicUse(writeback.ToUse); 2612 2613 // Load the old value (primitively). 2614 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 2615 2616 // Put the new value in place (primitively). 2617 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 2618 2619 // Release the old value. 2620 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 2621 2622 // Otherwise, we can just do a normal lvalue store. 2623 } else { 2624 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 2625 } 2626 2627 // Jump to the continuation block. 2628 if (!provablyNonNull) 2629 CGF.EmitBlock(contBB); 2630 } 2631 2632 static void emitWritebacks(CodeGenFunction &CGF, 2633 const CallArgList &args) { 2634 for (const auto &I : args.writebacks()) 2635 emitWriteback(CGF, I); 2636 } 2637 2638 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 2639 const CallArgList &CallArgs) { 2640 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 2641 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 2642 CallArgs.getCleanupsToDeactivate(); 2643 // Iterate in reverse to increase the likelihood of popping the cleanup. 2644 for (const auto &I : llvm::reverse(Cleanups)) { 2645 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 2646 I.IsActiveIP->eraseFromParent(); 2647 } 2648 } 2649 2650 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 2651 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 2652 if (uop->getOpcode() == UO_AddrOf) 2653 return uop->getSubExpr(); 2654 return nullptr; 2655 } 2656 2657 /// Emit an argument that's being passed call-by-writeback. That is, 2658 /// we are passing the address of an __autoreleased temporary; it 2659 /// might be copy-initialized with the current value of the given 2660 /// address, but it will definitely be copied out of after the call. 2661 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 2662 const ObjCIndirectCopyRestoreExpr *CRE) { 2663 LValue srcLV; 2664 2665 // Make an optimistic effort to emit the address as an l-value. 2666 // This can fail if the argument expression is more complicated. 2667 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 2668 srcLV = CGF.EmitLValue(lvExpr); 2669 2670 // Otherwise, just emit it as a scalar. 2671 } else { 2672 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 2673 2674 QualType srcAddrType = 2675 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 2676 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 2677 } 2678 Address srcAddr = srcLV.getAddress(); 2679 2680 // The dest and src types don't necessarily match in LLVM terms 2681 // because of the crazy ObjC compatibility rules. 2682 2683 llvm::PointerType *destType = 2684 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 2685 2686 // If the address is a constant null, just pass the appropriate null. 2687 if (isProvablyNull(srcAddr.getPointer())) { 2688 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 2689 CRE->getType()); 2690 return; 2691 } 2692 2693 // Create the temporary. 2694 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 2695 CGF.getPointerAlign(), 2696 "icr.temp"); 2697 // Loading an l-value can introduce a cleanup if the l-value is __weak, 2698 // and that cleanup will be conditional if we can't prove that the l-value 2699 // isn't null, so we need to register a dominating point so that the cleanups 2700 // system will make valid IR. 2701 CodeGenFunction::ConditionalEvaluation condEval(CGF); 2702 2703 // Zero-initialize it if we're not doing a copy-initialization. 2704 bool shouldCopy = CRE->shouldCopy(); 2705 if (!shouldCopy) { 2706 llvm::Value *null = 2707 llvm::ConstantPointerNull::get( 2708 cast<llvm::PointerType>(destType->getElementType())); 2709 CGF.Builder.CreateStore(null, temp); 2710 } 2711 2712 llvm::BasicBlock *contBB = nullptr; 2713 llvm::BasicBlock *originBB = nullptr; 2714 2715 // If the address is *not* known to be non-null, we need to switch. 2716 llvm::Value *finalArgument; 2717 2718 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 2719 if (provablyNonNull) { 2720 finalArgument = temp.getPointer(); 2721 } else { 2722 llvm::Value *isNull = 2723 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2724 2725 finalArgument = CGF.Builder.CreateSelect(isNull, 2726 llvm::ConstantPointerNull::get(destType), 2727 temp.getPointer(), "icr.argument"); 2728 2729 // If we need to copy, then the load has to be conditional, which 2730 // means we need control flow. 2731 if (shouldCopy) { 2732 originBB = CGF.Builder.GetInsertBlock(); 2733 contBB = CGF.createBasicBlock("icr.cont"); 2734 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 2735 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 2736 CGF.EmitBlock(copyBB); 2737 condEval.begin(CGF); 2738 } 2739 } 2740 2741 llvm::Value *valueToUse = nullptr; 2742 2743 // Perform a copy if necessary. 2744 if (shouldCopy) { 2745 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 2746 assert(srcRV.isScalar()); 2747 2748 llvm::Value *src = srcRV.getScalarVal(); 2749 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 2750 "icr.cast"); 2751 2752 // Use an ordinary store, not a store-to-lvalue. 2753 CGF.Builder.CreateStore(src, temp); 2754 2755 // If optimization is enabled, and the value was held in a 2756 // __strong variable, we need to tell the optimizer that this 2757 // value has to stay alive until we're doing the store back. 2758 // This is because the temporary is effectively unretained, 2759 // and so otherwise we can violate the high-level semantics. 2760 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 2761 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 2762 valueToUse = src; 2763 } 2764 } 2765 2766 // Finish the control flow if we needed it. 2767 if (shouldCopy && !provablyNonNull) { 2768 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 2769 CGF.EmitBlock(contBB); 2770 2771 // Make a phi for the value to intrinsically use. 2772 if (valueToUse) { 2773 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 2774 "icr.to-use"); 2775 phiToUse->addIncoming(valueToUse, copyBB); 2776 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 2777 originBB); 2778 valueToUse = phiToUse; 2779 } 2780 2781 condEval.end(CGF); 2782 } 2783 2784 args.addWriteback(srcLV, temp, valueToUse); 2785 args.add(RValue::get(finalArgument), CRE->getType()); 2786 } 2787 2788 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 2789 assert(!StackBase && !StackCleanup.isValid()); 2790 2791 // Save the stack. 2792 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 2793 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 2794 } 2795 2796 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 2797 if (StackBase) { 2798 // Restore the stack after the call. 2799 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 2800 CGF.Builder.CreateCall(F, StackBase); 2801 } 2802 } 2803 2804 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 2805 SourceLocation ArgLoc, 2806 const FunctionDecl *FD, 2807 unsigned ParmNum) { 2808 if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD) 2809 return; 2810 auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr; 2811 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 2812 auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo); 2813 if (!NNAttr) 2814 return; 2815 SanitizerScope SanScope(this); 2816 assert(RV.isScalar()); 2817 llvm::Value *V = RV.getScalarVal(); 2818 llvm::Value *Cond = 2819 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 2820 llvm::Constant *StaticData[] = { 2821 EmitCheckSourceLocation(ArgLoc), 2822 EmitCheckSourceLocation(NNAttr->getLocation()), 2823 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 2824 }; 2825 EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute), 2826 "nonnull_arg", StaticData, None); 2827 } 2828 2829 void CodeGenFunction::EmitCallArgs( 2830 CallArgList &Args, ArrayRef<QualType> ArgTypes, 2831 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 2832 const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) { 2833 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 2834 2835 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) { 2836 if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams()) 2837 return; 2838 auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 2839 if (PS == nullptr) 2840 return; 2841 2842 const auto &Context = getContext(); 2843 auto SizeTy = Context.getSizeType(); 2844 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 2845 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T); 2846 Args.add(RValue::get(V), SizeTy); 2847 }; 2848 2849 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 2850 // because arguments are destroyed left to right in the callee. 2851 if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2852 // Insert a stack save if we're going to need any inalloca args. 2853 bool HasInAllocaArgs = false; 2854 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 2855 I != E && !HasInAllocaArgs; ++I) 2856 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 2857 if (HasInAllocaArgs) { 2858 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 2859 Args.allocateArgumentMemory(*this); 2860 } 2861 2862 // Evaluate each argument. 2863 size_t CallArgsStart = Args.size(); 2864 for (int I = ArgTypes.size() - 1; I >= 0; --I) { 2865 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 2866 EmitCallArg(Args, *Arg, ArgTypes[I]); 2867 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 2868 CalleeDecl, ParamsToSkip + I); 2869 MaybeEmitImplicitObjectSize(I, *Arg); 2870 } 2871 2872 // Un-reverse the arguments we just evaluated so they match up with the LLVM 2873 // IR function. 2874 std::reverse(Args.begin() + CallArgsStart, Args.end()); 2875 return; 2876 } 2877 2878 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 2879 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 2880 assert(Arg != ArgRange.end()); 2881 EmitCallArg(Args, *Arg, ArgTypes[I]); 2882 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 2883 CalleeDecl, ParamsToSkip + I); 2884 MaybeEmitImplicitObjectSize(I, *Arg); 2885 } 2886 } 2887 2888 namespace { 2889 2890 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 2891 DestroyUnpassedArg(Address Addr, QualType Ty) 2892 : Addr(Addr), Ty(Ty) {} 2893 2894 Address Addr; 2895 QualType Ty; 2896 2897 void Emit(CodeGenFunction &CGF, Flags flags) override { 2898 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 2899 assert(!Dtor->isTrivial()); 2900 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 2901 /*Delegating=*/false, Addr); 2902 } 2903 }; 2904 2905 struct DisableDebugLocationUpdates { 2906 CodeGenFunction &CGF; 2907 bool disabledDebugInfo; 2908 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 2909 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 2910 CGF.disableDebugInfo(); 2911 } 2912 ~DisableDebugLocationUpdates() { 2913 if (disabledDebugInfo) 2914 CGF.enableDebugInfo(); 2915 } 2916 }; 2917 2918 } // end anonymous namespace 2919 2920 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 2921 QualType type) { 2922 DisableDebugLocationUpdates Dis(*this, E); 2923 if (const ObjCIndirectCopyRestoreExpr *CRE 2924 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 2925 assert(getLangOpts().ObjCAutoRefCount); 2926 assert(getContext().hasSameType(E->getType(), type)); 2927 return emitWritebackArg(*this, args, CRE); 2928 } 2929 2930 assert(type->isReferenceType() == E->isGLValue() && 2931 "reference binding to unmaterialized r-value!"); 2932 2933 if (E->isGLValue()) { 2934 assert(E->getObjectKind() == OK_Ordinary); 2935 return args.add(EmitReferenceBindingToExpr(E), type); 2936 } 2937 2938 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 2939 2940 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 2941 // However, we still have to push an EH-only cleanup in case we unwind before 2942 // we make it to the call. 2943 if (HasAggregateEvalKind && 2944 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2945 // If we're using inalloca, use the argument memory. Otherwise, use a 2946 // temporary. 2947 AggValueSlot Slot; 2948 if (args.isUsingInAlloca()) 2949 Slot = createPlaceholderSlot(*this, type); 2950 else 2951 Slot = CreateAggTemp(type, "agg.tmp"); 2952 2953 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2954 bool DestroyedInCallee = 2955 RD && RD->hasNonTrivialDestructor() && 2956 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 2957 if (DestroyedInCallee) 2958 Slot.setExternallyDestructed(); 2959 2960 EmitAggExpr(E, Slot); 2961 RValue RV = Slot.asRValue(); 2962 args.add(RV, type); 2963 2964 if (DestroyedInCallee) { 2965 // Create a no-op GEP between the placeholder and the cleanup so we can 2966 // RAUW it successfully. It also serves as a marker of the first 2967 // instruction where the cleanup is active. 2968 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 2969 type); 2970 // This unreachable is a temporary marker which will be removed later. 2971 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 2972 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 2973 } 2974 return; 2975 } 2976 2977 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 2978 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 2979 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 2980 assert(L.isSimple()); 2981 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 2982 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 2983 } else { 2984 // We can't represent a misaligned lvalue in the CallArgList, so copy 2985 // to an aligned temporary now. 2986 Address tmp = CreateMemTemp(type); 2987 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 2988 args.add(RValue::getAggregate(tmp), type); 2989 } 2990 return; 2991 } 2992 2993 args.add(EmitAnyExprToTemp(E), type); 2994 } 2995 2996 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 2997 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 2998 // implicitly widens null pointer constants that are arguments to varargs 2999 // functions to pointer-sized ints. 3000 if (!getTarget().getTriple().isOSWindows()) 3001 return Arg->getType(); 3002 3003 if (Arg->getType()->isIntegerType() && 3004 getContext().getTypeSize(Arg->getType()) < 3005 getContext().getTargetInfo().getPointerWidth(0) && 3006 Arg->isNullPointerConstant(getContext(), 3007 Expr::NPC_ValueDependentIsNotNull)) { 3008 return getContext().getIntPtrType(); 3009 } 3010 3011 return Arg->getType(); 3012 } 3013 3014 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3015 // optimizer it can aggressively ignore unwind edges. 3016 void 3017 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3018 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3019 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3020 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3021 CGM.getNoObjCARCExceptionsMetadata()); 3022 } 3023 3024 /// Emits a call to the given no-arguments nounwind runtime function. 3025 llvm::CallInst * 3026 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3027 const llvm::Twine &name) { 3028 return EmitNounwindRuntimeCall(callee, None, name); 3029 } 3030 3031 /// Emits a call to the given nounwind runtime function. 3032 llvm::CallInst * 3033 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3034 ArrayRef<llvm::Value*> args, 3035 const llvm::Twine &name) { 3036 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3037 call->setDoesNotThrow(); 3038 return call; 3039 } 3040 3041 /// Emits a simple call (never an invoke) to the given no-arguments 3042 /// runtime function. 3043 llvm::CallInst * 3044 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3045 const llvm::Twine &name) { 3046 return EmitRuntimeCall(callee, None, name); 3047 } 3048 3049 /// Emits a simple call (never an invoke) to the given runtime 3050 /// function. 3051 llvm::CallInst * 3052 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3053 ArrayRef<llvm::Value*> args, 3054 const llvm::Twine &name) { 3055 llvm::CallInst *call = Builder.CreateCall(callee, args, name); 3056 call->setCallingConv(getRuntimeCC()); 3057 return call; 3058 } 3059 3060 /// Emits a call or invoke to the given noreturn runtime function. 3061 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3062 ArrayRef<llvm::Value*> args) { 3063 if (getInvokeDest()) { 3064 llvm::InvokeInst *invoke = 3065 Builder.CreateInvoke(callee, 3066 getUnreachableBlock(), 3067 getInvokeDest(), 3068 args); 3069 invoke->setDoesNotReturn(); 3070 invoke->setCallingConv(getRuntimeCC()); 3071 } else { 3072 llvm::CallInst *call = Builder.CreateCall(callee, args); 3073 call->setDoesNotReturn(); 3074 call->setCallingConv(getRuntimeCC()); 3075 Builder.CreateUnreachable(); 3076 } 3077 } 3078 3079 /// Emits a call or invoke instruction to the given nullary runtime 3080 /// function. 3081 llvm::CallSite 3082 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3083 const Twine &name) { 3084 return EmitRuntimeCallOrInvoke(callee, None, name); 3085 } 3086 3087 /// Emits a call or invoke instruction to the given runtime function. 3088 llvm::CallSite 3089 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3090 ArrayRef<llvm::Value*> args, 3091 const Twine &name) { 3092 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3093 callSite.setCallingConv(getRuntimeCC()); 3094 return callSite; 3095 } 3096 3097 /// Emits a call or invoke instruction to the given function, depending 3098 /// on the current state of the EH stack. 3099 llvm::CallSite 3100 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3101 ArrayRef<llvm::Value *> Args, 3102 const Twine &Name) { 3103 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3104 3105 llvm::Instruction *Inst; 3106 if (!InvokeDest) 3107 Inst = Builder.CreateCall(Callee, Args, Name); 3108 else { 3109 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3110 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 3111 EmitBlock(ContBB); 3112 } 3113 3114 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3115 // optimizer it can aggressively ignore unwind edges. 3116 if (CGM.getLangOpts().ObjCAutoRefCount) 3117 AddObjCARCExceptionMetadata(Inst); 3118 3119 return llvm::CallSite(Inst); 3120 } 3121 3122 /// \brief Store a non-aggregate value to an address to initialize it. For 3123 /// initialization, a non-atomic store will be used. 3124 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3125 LValue Dst) { 3126 if (Src.isScalar()) 3127 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3128 else 3129 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3130 } 3131 3132 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3133 llvm::Value *New) { 3134 DeferredReplacements.push_back(std::make_pair(Old, New)); 3135 } 3136 3137 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3138 llvm::Value *Callee, 3139 ReturnValueSlot ReturnValue, 3140 const CallArgList &CallArgs, 3141 CGCalleeInfo CalleeInfo, 3142 llvm::Instruction **callOrInvoke) { 3143 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3144 3145 // Handle struct-return functions by passing a pointer to the 3146 // location that we would like to return into. 3147 QualType RetTy = CallInfo.getReturnType(); 3148 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3149 3150 llvm::FunctionType *IRFuncTy = 3151 cast<llvm::FunctionType>( 3152 cast<llvm::PointerType>(Callee->getType())->getElementType()); 3153 3154 // If we're using inalloca, insert the allocation after the stack save. 3155 // FIXME: Do this earlier rather than hacking it in here! 3156 Address ArgMemory = Address::invalid(); 3157 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3158 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3159 ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct); 3160 llvm::Instruction *IP = CallArgs.getStackBase(); 3161 llvm::AllocaInst *AI; 3162 if (IP) { 3163 IP = IP->getNextNode(); 3164 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP); 3165 } else { 3166 AI = CreateTempAlloca(ArgStruct, "argmem"); 3167 } 3168 auto Align = CallInfo.getArgStructAlignment(); 3169 AI->setAlignment(Align.getQuantity()); 3170 AI->setUsedWithInAlloca(true); 3171 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3172 ArgMemory = Address(AI, Align); 3173 } 3174 3175 // Helper function to drill into the inalloca allocation. 3176 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3177 auto FieldOffset = 3178 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3179 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3180 }; 3181 3182 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3183 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3184 3185 // If the call returns a temporary with struct return, create a temporary 3186 // alloca to hold the result, unless one is given to us. 3187 Address SRetPtr = Address::invalid(); 3188 size_t UnusedReturnSize = 0; 3189 if (RetAI.isIndirect() || RetAI.isInAlloca()) { 3190 if (!ReturnValue.isNull()) { 3191 SRetPtr = ReturnValue.getValue(); 3192 } else { 3193 SRetPtr = CreateMemTemp(RetTy); 3194 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3195 uint64_t size = 3196 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3197 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3198 UnusedReturnSize = size; 3199 } 3200 } 3201 if (IRFunctionArgs.hasSRetArg()) { 3202 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3203 } else { 3204 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3205 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3206 } 3207 } 3208 3209 assert(CallInfo.arg_size() == CallArgs.size() && 3210 "Mismatch between function signature & arguments."); 3211 unsigned ArgNo = 0; 3212 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3213 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3214 I != E; ++I, ++info_it, ++ArgNo) { 3215 const ABIArgInfo &ArgInfo = info_it->info; 3216 RValue RV = I->RV; 3217 3218 // Insert a padding argument to ensure proper alignment. 3219 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3220 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3221 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3222 3223 unsigned FirstIRArg, NumIRArgs; 3224 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3225 3226 switch (ArgInfo.getKind()) { 3227 case ABIArgInfo::InAlloca: { 3228 assert(NumIRArgs == 0); 3229 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3230 if (RV.isAggregate()) { 3231 // Replace the placeholder with the appropriate argument slot GEP. 3232 llvm::Instruction *Placeholder = 3233 cast<llvm::Instruction>(RV.getAggregatePointer()); 3234 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3235 Builder.SetInsertPoint(Placeholder); 3236 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3237 Builder.restoreIP(IP); 3238 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3239 } else { 3240 // Store the RValue into the argument struct. 3241 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3242 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3243 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3244 // There are some cases where a trivial bitcast is not avoidable. The 3245 // definition of a type later in a translation unit may change it's type 3246 // from {}* to (%struct.foo*)*. 3247 if (Addr.getType() != MemType) 3248 Addr = Builder.CreateBitCast(Addr, MemType); 3249 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3250 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3251 } 3252 break; 3253 } 3254 3255 case ABIArgInfo::Indirect: { 3256 assert(NumIRArgs == 1); 3257 if (RV.isScalar() || RV.isComplex()) { 3258 // Make a temporary alloca to pass the argument. 3259 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3260 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3261 3262 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3263 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3264 } else { 3265 // We want to avoid creating an unnecessary temporary+copy here; 3266 // however, we need one in three cases: 3267 // 1. If the argument is not byval, and we are required to copy the 3268 // source. (This case doesn't occur on any common architecture.) 3269 // 2. If the argument is byval, RV is not sufficiently aligned, and 3270 // we cannot force it to be sufficiently aligned. 3271 // 3. If the argument is byval, but RV is located in an address space 3272 // different than that of the argument (0). 3273 Address Addr = RV.getAggregateAddress(); 3274 CharUnits Align = ArgInfo.getIndirectAlign(); 3275 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3276 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3277 const unsigned ArgAddrSpace = 3278 (FirstIRArg < IRFuncTy->getNumParams() 3279 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3280 : 0); 3281 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3282 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3283 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3284 Align.getQuantity(), *TD) 3285 < Align.getQuantity()) || 3286 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3287 // Create an aligned temporary, and copy to it. 3288 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3289 IRCallArgs[FirstIRArg] = AI.getPointer(); 3290 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3291 } else { 3292 // Skip the extra memcpy call. 3293 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3294 } 3295 } 3296 break; 3297 } 3298 3299 case ABIArgInfo::Ignore: 3300 assert(NumIRArgs == 0); 3301 break; 3302 3303 case ABIArgInfo::Extend: 3304 case ABIArgInfo::Direct: { 3305 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3306 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3307 ArgInfo.getDirectOffset() == 0) { 3308 assert(NumIRArgs == 1); 3309 llvm::Value *V; 3310 if (RV.isScalar()) 3311 V = RV.getScalarVal(); 3312 else 3313 V = Builder.CreateLoad(RV.getAggregateAddress()); 3314 3315 // We might have to widen integers, but we should never truncate. 3316 if (ArgInfo.getCoerceToType() != V->getType() && 3317 V->getType()->isIntegerTy()) 3318 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3319 3320 // If the argument doesn't match, perform a bitcast to coerce it. This 3321 // can happen due to trivial type mismatches. 3322 if (FirstIRArg < IRFuncTy->getNumParams() && 3323 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3324 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3325 IRCallArgs[FirstIRArg] = V; 3326 break; 3327 } 3328 3329 // FIXME: Avoid the conversion through memory if possible. 3330 Address Src = Address::invalid(); 3331 if (RV.isScalar() || RV.isComplex()) { 3332 Src = CreateMemTemp(I->Ty, "coerce"); 3333 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3334 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3335 } else { 3336 Src = RV.getAggregateAddress(); 3337 } 3338 3339 // If the value is offset in memory, apply the offset now. 3340 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3341 3342 // Fast-isel and the optimizer generally like scalar values better than 3343 // FCAs, so we flatten them if this is safe to do for this argument. 3344 llvm::StructType *STy = 3345 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3346 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3347 llvm::Type *SrcTy = Src.getType()->getElementType(); 3348 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3349 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3350 3351 // If the source type is smaller than the destination type of the 3352 // coerce-to logic, copy the source value into a temp alloca the size 3353 // of the destination type to allow loading all of it. The bits past 3354 // the source value are left undef. 3355 if (SrcSize < DstSize) { 3356 Address TempAlloca 3357 = CreateTempAlloca(STy, Src.getAlignment(), 3358 Src.getName() + ".coerce"); 3359 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3360 Src = TempAlloca; 3361 } else { 3362 Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy)); 3363 } 3364 3365 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3366 assert(NumIRArgs == STy->getNumElements()); 3367 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3368 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3369 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3370 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3371 IRCallArgs[FirstIRArg + i] = LI; 3372 } 3373 } else { 3374 // In the simple case, just pass the coerced loaded value. 3375 assert(NumIRArgs == 1); 3376 IRCallArgs[FirstIRArg] = 3377 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3378 } 3379 3380 break; 3381 } 3382 3383 case ABIArgInfo::Expand: 3384 unsigned IRArgPos = FirstIRArg; 3385 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 3386 assert(IRArgPos == FirstIRArg + NumIRArgs); 3387 break; 3388 } 3389 } 3390 3391 if (ArgMemory.isValid()) { 3392 llvm::Value *Arg = ArgMemory.getPointer(); 3393 if (CallInfo.isVariadic()) { 3394 // When passing non-POD arguments by value to variadic functions, we will 3395 // end up with a variadic prototype and an inalloca call site. In such 3396 // cases, we can't do any parameter mismatch checks. Give up and bitcast 3397 // the callee. 3398 unsigned CalleeAS = 3399 cast<llvm::PointerType>(Callee->getType())->getAddressSpace(); 3400 Callee = Builder.CreateBitCast( 3401 Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS)); 3402 } else { 3403 llvm::Type *LastParamTy = 3404 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 3405 if (Arg->getType() != LastParamTy) { 3406 #ifndef NDEBUG 3407 // Assert that these structs have equivalent element types. 3408 llvm::StructType *FullTy = CallInfo.getArgStruct(); 3409 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 3410 cast<llvm::PointerType>(LastParamTy)->getElementType()); 3411 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 3412 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 3413 DE = DeclaredTy->element_end(), 3414 FI = FullTy->element_begin(); 3415 DI != DE; ++DI, ++FI) 3416 assert(*DI == *FI); 3417 #endif 3418 Arg = Builder.CreateBitCast(Arg, LastParamTy); 3419 } 3420 } 3421 assert(IRFunctionArgs.hasInallocaArg()); 3422 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 3423 } 3424 3425 if (!CallArgs.getCleanupsToDeactivate().empty()) 3426 deactivateArgCleanupsBeforeCall(*this, CallArgs); 3427 3428 // If the callee is a bitcast of a function to a varargs pointer to function 3429 // type, check to see if we can remove the bitcast. This handles some cases 3430 // with unprototyped functions. 3431 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 3432 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 3433 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 3434 llvm::FunctionType *CurFT = 3435 cast<llvm::FunctionType>(CurPT->getElementType()); 3436 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 3437 3438 if (CE->getOpcode() == llvm::Instruction::BitCast && 3439 ActualFT->getReturnType() == CurFT->getReturnType() && 3440 ActualFT->getNumParams() == CurFT->getNumParams() && 3441 ActualFT->getNumParams() == IRCallArgs.size() && 3442 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 3443 bool ArgsMatch = true; 3444 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 3445 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 3446 ArgsMatch = false; 3447 break; 3448 } 3449 3450 // Strip the cast if we can get away with it. This is a nice cleanup, 3451 // but also allows us to inline the function at -O0 if it is marked 3452 // always_inline. 3453 if (ArgsMatch) 3454 Callee = CalleeF; 3455 } 3456 } 3457 3458 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 3459 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 3460 // Inalloca argument can have different type. 3461 if (IRFunctionArgs.hasInallocaArg() && 3462 i == IRFunctionArgs.getInallocaArgNo()) 3463 continue; 3464 if (i < IRFuncTy->getNumParams()) 3465 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 3466 } 3467 3468 unsigned CallingConv; 3469 CodeGen::AttributeListType AttributeList; 3470 CGM.ConstructAttributeList(CallInfo, CalleeInfo, AttributeList, CallingConv, 3471 true); 3472 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 3473 AttributeList); 3474 3475 llvm::BasicBlock *InvokeDest = nullptr; 3476 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 3477 llvm::Attribute::NoUnwind) || 3478 currentFunctionUsesSEHTry()) 3479 InvokeDest = getInvokeDest(); 3480 3481 llvm::CallSite CS; 3482 if (!InvokeDest) { 3483 CS = Builder.CreateCall(Callee, IRCallArgs); 3484 } else { 3485 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 3486 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs); 3487 EmitBlock(Cont); 3488 } 3489 if (callOrInvoke) 3490 *callOrInvoke = CS.getInstruction(); 3491 3492 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 3493 !CS.hasFnAttr(llvm::Attribute::NoInline)) 3494 Attrs = 3495 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3496 llvm::Attribute::AlwaysInline); 3497 3498 // Disable inlining inside SEH __try blocks and cleanup funclets. None of the 3499 // funclet EH personalities that clang supports have tables that are 3500 // expressive enough to describe catching an exception inside a cleanup. 3501 // __CxxFrameHandler3, for example, will terminate the program without 3502 // catching it. 3503 // FIXME: Move this decision to the LLVM inliner. Before we can do that, the 3504 // inliner needs to know if a given call site is part of a cleanuppad. 3505 if (isSEHTryScope() || isCleanupPadScope()) 3506 Attrs = 3507 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3508 llvm::Attribute::NoInline); 3509 3510 CS.setAttributes(Attrs); 3511 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 3512 3513 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3514 // optimizer it can aggressively ignore unwind edges. 3515 if (CGM.getLangOpts().ObjCAutoRefCount) 3516 AddObjCARCExceptionMetadata(CS.getInstruction()); 3517 3518 // If the call doesn't return, finish the basic block and clear the 3519 // insertion point; this allows the rest of IRgen to discard 3520 // unreachable code. 3521 if (CS.doesNotReturn()) { 3522 if (UnusedReturnSize) 3523 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3524 SRetPtr.getPointer()); 3525 3526 Builder.CreateUnreachable(); 3527 Builder.ClearInsertionPoint(); 3528 3529 // FIXME: For now, emit a dummy basic block because expr emitters in 3530 // generally are not ready to handle emitting expressions at unreachable 3531 // points. 3532 EnsureInsertPoint(); 3533 3534 // Return a reasonable RValue. 3535 return GetUndefRValue(RetTy); 3536 } 3537 3538 llvm::Instruction *CI = CS.getInstruction(); 3539 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 3540 CI->setName("call"); 3541 3542 // Emit any writebacks immediately. Arguably this should happen 3543 // after any return-value munging. 3544 if (CallArgs.hasWritebacks()) 3545 emitWritebacks(*this, CallArgs); 3546 3547 // The stack cleanup for inalloca arguments has to run out of the normal 3548 // lexical order, so deactivate it and run it manually here. 3549 CallArgs.freeArgumentMemory(*this); 3550 3551 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 3552 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 3553 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 3554 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 3555 } 3556 3557 RValue Ret = [&] { 3558 switch (RetAI.getKind()) { 3559 case ABIArgInfo::InAlloca: 3560 case ABIArgInfo::Indirect: { 3561 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 3562 if (UnusedReturnSize) 3563 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3564 SRetPtr.getPointer()); 3565 return ret; 3566 } 3567 3568 case ABIArgInfo::Ignore: 3569 // If we are ignoring an argument that had a result, make sure to 3570 // construct the appropriate return value for our caller. 3571 return GetUndefRValue(RetTy); 3572 3573 case ABIArgInfo::Extend: 3574 case ABIArgInfo::Direct: { 3575 llvm::Type *RetIRTy = ConvertType(RetTy); 3576 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 3577 switch (getEvaluationKind(RetTy)) { 3578 case TEK_Complex: { 3579 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 3580 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 3581 return RValue::getComplex(std::make_pair(Real, Imag)); 3582 } 3583 case TEK_Aggregate: { 3584 Address DestPtr = ReturnValue.getValue(); 3585 bool DestIsVolatile = ReturnValue.isVolatile(); 3586 3587 if (!DestPtr.isValid()) { 3588 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 3589 DestIsVolatile = false; 3590 } 3591 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 3592 return RValue::getAggregate(DestPtr); 3593 } 3594 case TEK_Scalar: { 3595 // If the argument doesn't match, perform a bitcast to coerce it. This 3596 // can happen due to trivial type mismatches. 3597 llvm::Value *V = CI; 3598 if (V->getType() != RetIRTy) 3599 V = Builder.CreateBitCast(V, RetIRTy); 3600 return RValue::get(V); 3601 } 3602 } 3603 llvm_unreachable("bad evaluation kind"); 3604 } 3605 3606 Address DestPtr = ReturnValue.getValue(); 3607 bool DestIsVolatile = ReturnValue.isVolatile(); 3608 3609 if (!DestPtr.isValid()) { 3610 DestPtr = CreateMemTemp(RetTy, "coerce"); 3611 DestIsVolatile = false; 3612 } 3613 3614 // If the value is offset in memory, apply the offset now. 3615 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 3616 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 3617 3618 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 3619 } 3620 3621 case ABIArgInfo::Expand: 3622 llvm_unreachable("Invalid ABI kind for return argument"); 3623 } 3624 3625 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 3626 } (); 3627 3628 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 3629 3630 if (Ret.isScalar() && TargetDecl) { 3631 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 3632 llvm::Value *OffsetValue = nullptr; 3633 if (const auto *Offset = AA->getOffset()) 3634 OffsetValue = EmitScalarExpr(Offset); 3635 3636 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 3637 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 3638 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 3639 OffsetValue); 3640 } 3641 } 3642 3643 return Ret; 3644 } 3645 3646 /* VarArg handling */ 3647 3648 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 3649 VAListAddr = VE->isMicrosoftABI() 3650 ? EmitMSVAListRef(VE->getSubExpr()) 3651 : EmitVAListRef(VE->getSubExpr()); 3652 QualType Ty = VE->getType(); 3653 if (VE->isMicrosoftABI()) 3654 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 3655 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 3656 } 3657