1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Analysis/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69 
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
71 /// qualification.
72 /// FIXME: address space qualification?
73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
74   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
75   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
76 }
77 
78 /// Returns the canonical formal type of the given C++ method.
79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
80   return MD->getType()->getCanonicalTypeUnqualified()
81            .getAs<FunctionProtoType>();
82 }
83 
84 /// Returns the "extra-canonicalized" return type, which discards
85 /// qualifiers on the return type.  Codegen doesn't care about them,
86 /// and it makes ABI code a little easier to be able to assume that
87 /// all parameter and return types are top-level unqualified.
88 static CanQualType GetReturnType(QualType RetTy) {
89   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
90 }
91 
92 /// Arrange the argument and result information for a value of the given
93 /// unprototyped freestanding function type.
94 const CGFunctionInfo &
95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
96   // When translating an unprototyped function type, always use a
97   // variadic type.
98   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
99                                  /*instanceMethod=*/false,
100                                  /*chainCall=*/false, None,
101                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
102 }
103 
104 static void addExtParameterInfosForCall(
105          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
106                                         const FunctionProtoType *proto,
107                                         unsigned prefixArgs,
108                                         unsigned totalArgs) {
109   assert(proto->hasExtParameterInfos());
110   assert(paramInfos.size() <= prefixArgs);
111   assert(proto->getNumParams() + prefixArgs <= totalArgs);
112 
113   paramInfos.reserve(totalArgs);
114 
115   // Add default infos for any prefix args that don't already have infos.
116   paramInfos.resize(prefixArgs);
117 
118   // Add infos for the prototype.
119   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
120     paramInfos.push_back(ParamInfo);
121     // pass_object_size params have no parameter info.
122     if (ParamInfo.hasPassObjectSize())
123       paramInfos.emplace_back();
124   }
125 
126   assert(paramInfos.size() <= totalArgs &&
127          "Did we forget to insert pass_object_size args?");
128   // Add default infos for the variadic and/or suffix arguments.
129   paramInfos.resize(totalArgs);
130 }
131 
132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
134 static void appendParameterTypes(const CodeGenTypes &CGT,
135                                  SmallVectorImpl<CanQualType> &prefix,
136               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
137                                  CanQual<FunctionProtoType> FPT) {
138   // Fast path: don't touch param info if we don't need to.
139   if (!FPT->hasExtParameterInfos()) {
140     assert(paramInfos.empty() &&
141            "We have paramInfos, but the prototype doesn't?");
142     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
143     return;
144   }
145 
146   unsigned PrefixSize = prefix.size();
147   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
148   // parameters; the only thing that can change this is the presence of
149   // pass_object_size. So, we preallocate for the common case.
150   prefix.reserve(prefix.size() + FPT->getNumParams());
151 
152   auto ExtInfos = FPT->getExtParameterInfos();
153   assert(ExtInfos.size() == FPT->getNumParams());
154   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
155     prefix.push_back(FPT->getParamType(I));
156     if (ExtInfos[I].hasPassObjectSize())
157       prefix.push_back(CGT.getContext().getSizeType());
158   }
159 
160   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
161                               prefix.size());
162 }
163 
164 /// Arrange the LLVM function layout for a value of the given function
165 /// type, on top of any implicit parameters already stored.
166 static const CGFunctionInfo &
167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
168                         SmallVectorImpl<CanQualType> &prefix,
169                         CanQual<FunctionProtoType> FTP,
170                         const FunctionDecl *FD) {
171   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
172   RequiredArgs Required =
173       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
174   // FIXME: Kill copy.
175   appendParameterTypes(CGT, prefix, paramInfos, FTP);
176   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
177 
178   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
179                                      /*chainCall=*/false, prefix,
180                                      FTP->getExtInfo(), paramInfos,
181                                      Required);
182 }
183 
184 /// Arrange the argument and result information for a value of the
185 /// given freestanding function type.
186 const CGFunctionInfo &
187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
188                                       const FunctionDecl *FD) {
189   SmallVector<CanQualType, 16> argTypes;
190   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
191                                    FTP, FD);
192 }
193 
194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
195   // Set the appropriate calling convention for the Function.
196   if (D->hasAttr<StdCallAttr>())
197     return CC_X86StdCall;
198 
199   if (D->hasAttr<FastCallAttr>())
200     return CC_X86FastCall;
201 
202   if (D->hasAttr<RegCallAttr>())
203     return CC_X86RegCall;
204 
205   if (D->hasAttr<ThisCallAttr>())
206     return CC_X86ThisCall;
207 
208   if (D->hasAttr<VectorCallAttr>())
209     return CC_X86VectorCall;
210 
211   if (D->hasAttr<PascalAttr>())
212     return CC_X86Pascal;
213 
214   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
215     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
216 
217   if (D->hasAttr<IntelOclBiccAttr>())
218     return CC_IntelOclBicc;
219 
220   if (D->hasAttr<MSABIAttr>())
221     return IsWindows ? CC_C : CC_Win64;
222 
223   if (D->hasAttr<SysVABIAttr>())
224     return IsWindows ? CC_X86_64SysV : CC_C;
225 
226   if (D->hasAttr<PreserveMostAttr>())
227     return CC_PreserveMost;
228 
229   if (D->hasAttr<PreserveAllAttr>())
230     return CC_PreserveAll;
231 
232   return CC_C;
233 }
234 
235 /// Arrange the argument and result information for a call to an
236 /// unknown C++ non-static member function of the given abstract type.
237 /// (Zero value of RD means we don't have any meaningful "this" argument type,
238 ///  so fall back to a generic pointer type).
239 /// The member function must be an ordinary function, i.e. not a
240 /// constructor or destructor.
241 const CGFunctionInfo &
242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
243                                    const FunctionProtoType *FTP,
244                                    const CXXMethodDecl *MD) {
245   SmallVector<CanQualType, 16> argTypes;
246 
247   // Add the 'this' pointer.
248   if (RD)
249     argTypes.push_back(GetThisType(Context, RD));
250   else
251     argTypes.push_back(Context.VoidPtrTy);
252 
253   return ::arrangeLLVMFunctionInfo(
254       *this, true, argTypes,
255       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
256 }
257 
258 /// Arrange the argument and result information for a declaration or
259 /// definition of the given C++ non-static member function.  The
260 /// member function must be an ordinary function, i.e. not a
261 /// constructor or destructor.
262 const CGFunctionInfo &
263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
264   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
265   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
266 
267   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
268 
269   if (MD->isInstance()) {
270     // The abstract case is perfectly fine.
271     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
272     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
273   }
274 
275   return arrangeFreeFunctionType(prototype, MD);
276 }
277 
278 bool CodeGenTypes::inheritingCtorHasParams(
279     const InheritedConstructor &Inherited, CXXCtorType Type) {
280   // Parameters are unnecessary if we're constructing a base class subobject
281   // and the inherited constructor lives in a virtual base.
282   return Type == Ctor_Complete ||
283          !Inherited.getShadowDecl()->constructsVirtualBase() ||
284          !Target.getCXXABI().hasConstructorVariants();
285   }
286 
287 const CGFunctionInfo &
288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
289                                             StructorType Type) {
290 
291   SmallVector<CanQualType, 16> argTypes;
292   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
293   argTypes.push_back(GetThisType(Context, MD->getParent()));
294 
295   bool PassParams = true;
296 
297   GlobalDecl GD;
298   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
299     GD = GlobalDecl(CD, toCXXCtorType(Type));
300 
301     // A base class inheriting constructor doesn't get forwarded arguments
302     // needed to construct a virtual base (or base class thereof).
303     if (auto Inherited = CD->getInheritedConstructor())
304       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
305   } else {
306     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
307     GD = GlobalDecl(DD, toCXXDtorType(Type));
308   }
309 
310   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
311 
312   // Add the formal parameters.
313   if (PassParams)
314     appendParameterTypes(*this, argTypes, paramInfos, FTP);
315 
316   CGCXXABI::AddedStructorArgs AddedArgs =
317       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
318   if (!paramInfos.empty()) {
319     // Note: prefix implies after the first param.
320     if (AddedArgs.Prefix)
321       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
322                         FunctionProtoType::ExtParameterInfo{});
323     if (AddedArgs.Suffix)
324       paramInfos.append(AddedArgs.Suffix,
325                         FunctionProtoType::ExtParameterInfo{});
326   }
327 
328   RequiredArgs required =
329       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
330                                       : RequiredArgs::All);
331 
332   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
333   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
334                                ? argTypes.front()
335                                : TheCXXABI.hasMostDerivedReturn(GD)
336                                      ? CGM.getContext().VoidPtrTy
337                                      : Context.VoidTy;
338   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
339                                  /*chainCall=*/false, argTypes, extInfo,
340                                  paramInfos, required);
341 }
342 
343 static SmallVector<CanQualType, 16>
344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
345   SmallVector<CanQualType, 16> argTypes;
346   for (auto &arg : args)
347     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
348   return argTypes;
349 }
350 
351 static SmallVector<CanQualType, 16>
352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
353   SmallVector<CanQualType, 16> argTypes;
354   for (auto &arg : args)
355     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
356   return argTypes;
357 }
358 
359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
360 getExtParameterInfosForCall(const FunctionProtoType *proto,
361                             unsigned prefixArgs, unsigned totalArgs) {
362   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
363   if (proto->hasExtParameterInfos()) {
364     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
365   }
366   return result;
367 }
368 
369 /// Arrange a call to a C++ method, passing the given arguments.
370 ///
371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
372 /// parameter.
373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
374 /// args.
375 /// PassProtoArgs indicates whether `args` has args for the parameters in the
376 /// given CXXConstructorDecl.
377 const CGFunctionInfo &
378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
379                                         const CXXConstructorDecl *D,
380                                         CXXCtorType CtorKind,
381                                         unsigned ExtraPrefixArgs,
382                                         unsigned ExtraSuffixArgs,
383                                         bool PassProtoArgs) {
384   // FIXME: Kill copy.
385   SmallVector<CanQualType, 16> ArgTypes;
386   for (const auto &Arg : args)
387     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
388 
389   // +1 for implicit this, which should always be args[0].
390   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
391 
392   CanQual<FunctionProtoType> FPT = GetFormalType(D);
393   RequiredArgs Required =
394       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
395   GlobalDecl GD(D, CtorKind);
396   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
397                                ? ArgTypes.front()
398                                : TheCXXABI.hasMostDerivedReturn(GD)
399                                      ? CGM.getContext().VoidPtrTy
400                                      : Context.VoidTy;
401 
402   FunctionType::ExtInfo Info = FPT->getExtInfo();
403   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
404   // If the prototype args are elided, we should only have ABI-specific args,
405   // which never have param info.
406   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
407     // ABI-specific suffix arguments are treated the same as variadic arguments.
408     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
409                                 ArgTypes.size());
410   }
411   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
412                                  /*chainCall=*/false, ArgTypes, Info,
413                                  ParamInfos, Required);
414 }
415 
416 /// Arrange the argument and result information for the declaration or
417 /// definition of the given function.
418 const CGFunctionInfo &
419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
420   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
421     if (MD->isInstance())
422       return arrangeCXXMethodDeclaration(MD);
423 
424   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
425 
426   assert(isa<FunctionType>(FTy));
427 
428   // When declaring a function without a prototype, always use a
429   // non-variadic type.
430   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
431     return arrangeLLVMFunctionInfo(
432         noProto->getReturnType(), /*instanceMethod=*/false,
433         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
434   }
435 
436   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
437 }
438 
439 /// Arrange the argument and result information for the declaration or
440 /// definition of an Objective-C method.
441 const CGFunctionInfo &
442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
443   // It happens that this is the same as a call with no optional
444   // arguments, except also using the formal 'self' type.
445   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
446 }
447 
448 /// Arrange the argument and result information for the function type
449 /// through which to perform a send to the given Objective-C method,
450 /// using the given receiver type.  The receiver type is not always
451 /// the 'self' type of the method or even an Objective-C pointer type.
452 /// This is *not* the right method for actually performing such a
453 /// message send, due to the possibility of optional arguments.
454 const CGFunctionInfo &
455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
456                                               QualType receiverType) {
457   SmallVector<CanQualType, 16> argTys;
458   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
459   argTys.push_back(Context.getCanonicalParamType(receiverType));
460   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
461   // FIXME: Kill copy?
462   for (const auto *I : MD->parameters()) {
463     argTys.push_back(Context.getCanonicalParamType(I->getType()));
464     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
465         I->hasAttr<NoEscapeAttr>());
466     extParamInfos.push_back(extParamInfo);
467   }
468 
469   FunctionType::ExtInfo einfo;
470   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
471   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
472 
473   if (getContext().getLangOpts().ObjCAutoRefCount &&
474       MD->hasAttr<NSReturnsRetainedAttr>())
475     einfo = einfo.withProducesResult(true);
476 
477   RequiredArgs required =
478     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
479 
480   return arrangeLLVMFunctionInfo(
481       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
482       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
483 }
484 
485 const CGFunctionInfo &
486 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
487                                                  const CallArgList &args) {
488   auto argTypes = getArgTypesForCall(Context, args);
489   FunctionType::ExtInfo einfo;
490 
491   return arrangeLLVMFunctionInfo(
492       GetReturnType(returnType), /*instanceMethod=*/false,
493       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
494 }
495 
496 const CGFunctionInfo &
497 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
498   // FIXME: Do we need to handle ObjCMethodDecl?
499   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
500 
501   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
502     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
503 
504   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
505     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
506 
507   return arrangeFunctionDeclaration(FD);
508 }
509 
510 /// Arrange a thunk that takes 'this' as the first parameter followed by
511 /// varargs.  Return a void pointer, regardless of the actual return type.
512 /// The body of the thunk will end in a musttail call to a function of the
513 /// correct type, and the caller will bitcast the function to the correct
514 /// prototype.
515 const CGFunctionInfo &
516 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
517   assert(MD->isVirtual() && "only methods have thunks");
518   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
519   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
520   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
521                                  /*chainCall=*/false, ArgTys,
522                                  FTP->getExtInfo(), {}, RequiredArgs(1));
523 }
524 
525 const CGFunctionInfo &
526 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
527                                    CXXCtorType CT) {
528   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
529 
530   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
531   SmallVector<CanQualType, 2> ArgTys;
532   const CXXRecordDecl *RD = CD->getParent();
533   ArgTys.push_back(GetThisType(Context, RD));
534   if (CT == Ctor_CopyingClosure)
535     ArgTys.push_back(*FTP->param_type_begin());
536   if (RD->getNumVBases() > 0)
537     ArgTys.push_back(Context.IntTy);
538   CallingConv CC = Context.getDefaultCallingConvention(
539       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
540   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
541                                  /*chainCall=*/false, ArgTys,
542                                  FunctionType::ExtInfo(CC), {},
543                                  RequiredArgs::All);
544 }
545 
546 /// Arrange a call as unto a free function, except possibly with an
547 /// additional number of formal parameters considered required.
548 static const CGFunctionInfo &
549 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
550                             CodeGenModule &CGM,
551                             const CallArgList &args,
552                             const FunctionType *fnType,
553                             unsigned numExtraRequiredArgs,
554                             bool chainCall) {
555   assert(args.size() >= numExtraRequiredArgs);
556 
557   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
558 
559   // In most cases, there are no optional arguments.
560   RequiredArgs required = RequiredArgs::All;
561 
562   // If we have a variadic prototype, the required arguments are the
563   // extra prefix plus the arguments in the prototype.
564   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
565     if (proto->isVariadic())
566       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
567 
568     if (proto->hasExtParameterInfos())
569       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
570                                   args.size());
571 
572   // If we don't have a prototype at all, but we're supposed to
573   // explicitly use the variadic convention for unprototyped calls,
574   // treat all of the arguments as required but preserve the nominal
575   // possibility of variadics.
576   } else if (CGM.getTargetCodeGenInfo()
577                 .isNoProtoCallVariadic(args,
578                                        cast<FunctionNoProtoType>(fnType))) {
579     required = RequiredArgs(args.size());
580   }
581 
582   // FIXME: Kill copy.
583   SmallVector<CanQualType, 16> argTypes;
584   for (const auto &arg : args)
585     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
586   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
587                                      /*instanceMethod=*/false, chainCall,
588                                      argTypes, fnType->getExtInfo(), paramInfos,
589                                      required);
590 }
591 
592 /// Figure out the rules for calling a function with the given formal
593 /// type using the given arguments.  The arguments are necessary
594 /// because the function might be unprototyped, in which case it's
595 /// target-dependent in crazy ways.
596 const CGFunctionInfo &
597 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
598                                       const FunctionType *fnType,
599                                       bool chainCall) {
600   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
601                                      chainCall ? 1 : 0, chainCall);
602 }
603 
604 /// A block function is essentially a free function with an
605 /// extra implicit argument.
606 const CGFunctionInfo &
607 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
608                                        const FunctionType *fnType) {
609   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
610                                      /*chainCall=*/false);
611 }
612 
613 const CGFunctionInfo &
614 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
615                                               const FunctionArgList &params) {
616   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
617   auto argTypes = getArgTypesForDeclaration(Context, params);
618 
619   return arrangeLLVMFunctionInfo(
620       GetReturnType(proto->getReturnType()),
621       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
622       proto->getExtInfo(), paramInfos,
623       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
624 }
625 
626 const CGFunctionInfo &
627 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
628                                          const CallArgList &args) {
629   // FIXME: Kill copy.
630   SmallVector<CanQualType, 16> argTypes;
631   for (const auto &Arg : args)
632     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
633   return arrangeLLVMFunctionInfo(
634       GetReturnType(resultType), /*instanceMethod=*/false,
635       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
636       /*paramInfos=*/ {}, RequiredArgs::All);
637 }
638 
639 const CGFunctionInfo &
640 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
641                                                 const FunctionArgList &args) {
642   auto argTypes = getArgTypesForDeclaration(Context, args);
643 
644   return arrangeLLVMFunctionInfo(
645       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
646       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
647 }
648 
649 const CGFunctionInfo &
650 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
651                                               ArrayRef<CanQualType> argTypes) {
652   return arrangeLLVMFunctionInfo(
653       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
654       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
655 }
656 
657 /// Arrange a call to a C++ method, passing the given arguments.
658 ///
659 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
660 /// does not count `this`.
661 const CGFunctionInfo &
662 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
663                                    const FunctionProtoType *proto,
664                                    RequiredArgs required,
665                                    unsigned numPrefixArgs) {
666   assert(numPrefixArgs + 1 <= args.size() &&
667          "Emitting a call with less args than the required prefix?");
668   // Add one to account for `this`. It's a bit awkward here, but we don't count
669   // `this` in similar places elsewhere.
670   auto paramInfos =
671     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
672 
673   // FIXME: Kill copy.
674   auto argTypes = getArgTypesForCall(Context, args);
675 
676   FunctionType::ExtInfo info = proto->getExtInfo();
677   return arrangeLLVMFunctionInfo(
678       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
679       /*chainCall=*/false, argTypes, info, paramInfos, required);
680 }
681 
682 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
683   return arrangeLLVMFunctionInfo(
684       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
685       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
686 }
687 
688 const CGFunctionInfo &
689 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
690                           const CallArgList &args) {
691   assert(signature.arg_size() <= args.size());
692   if (signature.arg_size() == args.size())
693     return signature;
694 
695   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
696   auto sigParamInfos = signature.getExtParameterInfos();
697   if (!sigParamInfos.empty()) {
698     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
699     paramInfos.resize(args.size());
700   }
701 
702   auto argTypes = getArgTypesForCall(Context, args);
703 
704   assert(signature.getRequiredArgs().allowsOptionalArgs());
705   return arrangeLLVMFunctionInfo(signature.getReturnType(),
706                                  signature.isInstanceMethod(),
707                                  signature.isChainCall(),
708                                  argTypes,
709                                  signature.getExtInfo(),
710                                  paramInfos,
711                                  signature.getRequiredArgs());
712 }
713 
714 namespace clang {
715 namespace CodeGen {
716 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
717 }
718 }
719 
720 /// Arrange the argument and result information for an abstract value
721 /// of a given function type.  This is the method which all of the
722 /// above functions ultimately defer to.
723 const CGFunctionInfo &
724 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
725                                       bool instanceMethod,
726                                       bool chainCall,
727                                       ArrayRef<CanQualType> argTypes,
728                                       FunctionType::ExtInfo info,
729                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
730                                       RequiredArgs required) {
731   assert(std::all_of(argTypes.begin(), argTypes.end(),
732                      [](CanQualType T) { return T.isCanonicalAsParam(); }));
733 
734   // Lookup or create unique function info.
735   llvm::FoldingSetNodeID ID;
736   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
737                           required, resultType, argTypes);
738 
739   void *insertPos = nullptr;
740   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
741   if (FI)
742     return *FI;
743 
744   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
745 
746   // Construct the function info.  We co-allocate the ArgInfos.
747   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
748                               paramInfos, resultType, argTypes, required);
749   FunctionInfos.InsertNode(FI, insertPos);
750 
751   bool inserted = FunctionsBeingProcessed.insert(FI).second;
752   (void)inserted;
753   assert(inserted && "Recursively being processed?");
754 
755   // Compute ABI information.
756   if (CC == llvm::CallingConv::SPIR_KERNEL) {
757     // Force target independent argument handling for the host visible
758     // kernel functions.
759     computeSPIRKernelABIInfo(CGM, *FI);
760   } else if (info.getCC() == CC_Swift) {
761     swiftcall::computeABIInfo(CGM, *FI);
762   } else {
763     getABIInfo().computeInfo(*FI);
764   }
765 
766   // Loop over all of the computed argument and return value info.  If any of
767   // them are direct or extend without a specified coerce type, specify the
768   // default now.
769   ABIArgInfo &retInfo = FI->getReturnInfo();
770   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
771     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
772 
773   for (auto &I : FI->arguments())
774     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
775       I.info.setCoerceToType(ConvertType(I.type));
776 
777   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
778   assert(erased && "Not in set?");
779 
780   return *FI;
781 }
782 
783 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
784                                        bool instanceMethod,
785                                        bool chainCall,
786                                        const FunctionType::ExtInfo &info,
787                                        ArrayRef<ExtParameterInfo> paramInfos,
788                                        CanQualType resultType,
789                                        ArrayRef<CanQualType> argTypes,
790                                        RequiredArgs required) {
791   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
792 
793   void *buffer =
794     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
795                                   argTypes.size() + 1, paramInfos.size()));
796 
797   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
798   FI->CallingConvention = llvmCC;
799   FI->EffectiveCallingConvention = llvmCC;
800   FI->ASTCallingConvention = info.getCC();
801   FI->InstanceMethod = instanceMethod;
802   FI->ChainCall = chainCall;
803   FI->NoReturn = info.getNoReturn();
804   FI->ReturnsRetained = info.getProducesResult();
805   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
806   FI->NoCfCheck = info.getNoCfCheck();
807   FI->Required = required;
808   FI->HasRegParm = info.getHasRegParm();
809   FI->RegParm = info.getRegParm();
810   FI->ArgStruct = nullptr;
811   FI->ArgStructAlign = 0;
812   FI->NumArgs = argTypes.size();
813   FI->HasExtParameterInfos = !paramInfos.empty();
814   FI->getArgsBuffer()[0].type = resultType;
815   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
816     FI->getArgsBuffer()[i + 1].type = argTypes[i];
817   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
818     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
819   return FI;
820 }
821 
822 /***/
823 
824 namespace {
825 // ABIArgInfo::Expand implementation.
826 
827 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
828 struct TypeExpansion {
829   enum TypeExpansionKind {
830     // Elements of constant arrays are expanded recursively.
831     TEK_ConstantArray,
832     // Record fields are expanded recursively (but if record is a union, only
833     // the field with the largest size is expanded).
834     TEK_Record,
835     // For complex types, real and imaginary parts are expanded recursively.
836     TEK_Complex,
837     // All other types are not expandable.
838     TEK_None
839   };
840 
841   const TypeExpansionKind Kind;
842 
843   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
844   virtual ~TypeExpansion() {}
845 };
846 
847 struct ConstantArrayExpansion : TypeExpansion {
848   QualType EltTy;
849   uint64_t NumElts;
850 
851   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
852       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
853   static bool classof(const TypeExpansion *TE) {
854     return TE->Kind == TEK_ConstantArray;
855   }
856 };
857 
858 struct RecordExpansion : TypeExpansion {
859   SmallVector<const CXXBaseSpecifier *, 1> Bases;
860 
861   SmallVector<const FieldDecl *, 1> Fields;
862 
863   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
864                   SmallVector<const FieldDecl *, 1> &&Fields)
865       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
866         Fields(std::move(Fields)) {}
867   static bool classof(const TypeExpansion *TE) {
868     return TE->Kind == TEK_Record;
869   }
870 };
871 
872 struct ComplexExpansion : TypeExpansion {
873   QualType EltTy;
874 
875   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
876   static bool classof(const TypeExpansion *TE) {
877     return TE->Kind == TEK_Complex;
878   }
879 };
880 
881 struct NoExpansion : TypeExpansion {
882   NoExpansion() : TypeExpansion(TEK_None) {}
883   static bool classof(const TypeExpansion *TE) {
884     return TE->Kind == TEK_None;
885   }
886 };
887 }  // namespace
888 
889 static std::unique_ptr<TypeExpansion>
890 getTypeExpansion(QualType Ty, const ASTContext &Context) {
891   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
892     return llvm::make_unique<ConstantArrayExpansion>(
893         AT->getElementType(), AT->getSize().getZExtValue());
894   }
895   if (const RecordType *RT = Ty->getAs<RecordType>()) {
896     SmallVector<const CXXBaseSpecifier *, 1> Bases;
897     SmallVector<const FieldDecl *, 1> Fields;
898     const RecordDecl *RD = RT->getDecl();
899     assert(!RD->hasFlexibleArrayMember() &&
900            "Cannot expand structure with flexible array.");
901     if (RD->isUnion()) {
902       // Unions can be here only in degenerative cases - all the fields are same
903       // after flattening. Thus we have to use the "largest" field.
904       const FieldDecl *LargestFD = nullptr;
905       CharUnits UnionSize = CharUnits::Zero();
906 
907       for (const auto *FD : RD->fields()) {
908         if (FD->isZeroLengthBitField(Context))
909           continue;
910         assert(!FD->isBitField() &&
911                "Cannot expand structure with bit-field members.");
912         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
913         if (UnionSize < FieldSize) {
914           UnionSize = FieldSize;
915           LargestFD = FD;
916         }
917       }
918       if (LargestFD)
919         Fields.push_back(LargestFD);
920     } else {
921       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
922         assert(!CXXRD->isDynamicClass() &&
923                "cannot expand vtable pointers in dynamic classes");
924         for (const CXXBaseSpecifier &BS : CXXRD->bases())
925           Bases.push_back(&BS);
926       }
927 
928       for (const auto *FD : RD->fields()) {
929         if (FD->isZeroLengthBitField(Context))
930           continue;
931         assert(!FD->isBitField() &&
932                "Cannot expand structure with bit-field members.");
933         Fields.push_back(FD);
934       }
935     }
936     return llvm::make_unique<RecordExpansion>(std::move(Bases),
937                                               std::move(Fields));
938   }
939   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
940     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
941   }
942   return llvm::make_unique<NoExpansion>();
943 }
944 
945 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
946   auto Exp = getTypeExpansion(Ty, Context);
947   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
948     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
949   }
950   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
951     int Res = 0;
952     for (auto BS : RExp->Bases)
953       Res += getExpansionSize(BS->getType(), Context);
954     for (auto FD : RExp->Fields)
955       Res += getExpansionSize(FD->getType(), Context);
956     return Res;
957   }
958   if (isa<ComplexExpansion>(Exp.get()))
959     return 2;
960   assert(isa<NoExpansion>(Exp.get()));
961   return 1;
962 }
963 
964 void
965 CodeGenTypes::getExpandedTypes(QualType Ty,
966                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
967   auto Exp = getTypeExpansion(Ty, Context);
968   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
969     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
970       getExpandedTypes(CAExp->EltTy, TI);
971     }
972   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
973     for (auto BS : RExp->Bases)
974       getExpandedTypes(BS->getType(), TI);
975     for (auto FD : RExp->Fields)
976       getExpandedTypes(FD->getType(), TI);
977   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
978     llvm::Type *EltTy = ConvertType(CExp->EltTy);
979     *TI++ = EltTy;
980     *TI++ = EltTy;
981   } else {
982     assert(isa<NoExpansion>(Exp.get()));
983     *TI++ = ConvertType(Ty);
984   }
985 }
986 
987 static void forConstantArrayExpansion(CodeGenFunction &CGF,
988                                       ConstantArrayExpansion *CAE,
989                                       Address BaseAddr,
990                                       llvm::function_ref<void(Address)> Fn) {
991   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
992   CharUnits EltAlign =
993     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
994 
995   for (int i = 0, n = CAE->NumElts; i < n; i++) {
996     llvm::Value *EltAddr =
997       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
998     Fn(Address(EltAddr, EltAlign));
999   }
1000 }
1001 
1002 void CodeGenFunction::ExpandTypeFromArgs(
1003     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1004   assert(LV.isSimple() &&
1005          "Unexpected non-simple lvalue during struct expansion.");
1006 
1007   auto Exp = getTypeExpansion(Ty, getContext());
1008   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1009     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1010                               [&](Address EltAddr) {
1011       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1012       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1013     });
1014   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1015     Address This = LV.getAddress();
1016     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1017       // Perform a single step derived-to-base conversion.
1018       Address Base =
1019           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1020                                 /*NullCheckValue=*/false, SourceLocation());
1021       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1022 
1023       // Recurse onto bases.
1024       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1025     }
1026     for (auto FD : RExp->Fields) {
1027       // FIXME: What are the right qualifiers here?
1028       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1029       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1030     }
1031   } else if (isa<ComplexExpansion>(Exp.get())) {
1032     auto realValue = *AI++;
1033     auto imagValue = *AI++;
1034     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1035   } else {
1036     assert(isa<NoExpansion>(Exp.get()));
1037     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1038   }
1039 }
1040 
1041 void CodeGenFunction::ExpandTypeToArgs(
1042     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1043     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1044   auto Exp = getTypeExpansion(Ty, getContext());
1045   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1046     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1047                                    : Arg.getKnownRValue().getAggregateAddress();
1048     forConstantArrayExpansion(
1049         *this, CAExp, Addr, [&](Address EltAddr) {
1050           CallArg EltArg = CallArg(
1051               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1052               CAExp->EltTy);
1053           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1054                            IRCallArgPos);
1055         });
1056   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1057     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1058                                    : Arg.getKnownRValue().getAggregateAddress();
1059     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1060       // Perform a single step derived-to-base conversion.
1061       Address Base =
1062           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1063                                 /*NullCheckValue=*/false, SourceLocation());
1064       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1065 
1066       // Recurse onto bases.
1067       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1068                        IRCallArgPos);
1069     }
1070 
1071     LValue LV = MakeAddrLValue(This, Ty);
1072     for (auto FD : RExp->Fields) {
1073       CallArg FldArg =
1074           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1075       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1076                        IRCallArgPos);
1077     }
1078   } else if (isa<ComplexExpansion>(Exp.get())) {
1079     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1080     IRCallArgs[IRCallArgPos++] = CV.first;
1081     IRCallArgs[IRCallArgPos++] = CV.second;
1082   } else {
1083     assert(isa<NoExpansion>(Exp.get()));
1084     auto RV = Arg.getKnownRValue();
1085     assert(RV.isScalar() &&
1086            "Unexpected non-scalar rvalue during struct expansion.");
1087 
1088     // Insert a bitcast as needed.
1089     llvm::Value *V = RV.getScalarVal();
1090     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1091         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1092       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1093 
1094     IRCallArgs[IRCallArgPos++] = V;
1095   }
1096 }
1097 
1098 /// Create a temporary allocation for the purposes of coercion.
1099 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1100                                            CharUnits MinAlign) {
1101   // Don't use an alignment that's worse than what LLVM would prefer.
1102   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1103   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1104 
1105   return CGF.CreateTempAlloca(Ty, Align);
1106 }
1107 
1108 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1109 /// accessing some number of bytes out of it, try to gep into the struct to get
1110 /// at its inner goodness.  Dive as deep as possible without entering an element
1111 /// with an in-memory size smaller than DstSize.
1112 static Address
1113 EnterStructPointerForCoercedAccess(Address SrcPtr,
1114                                    llvm::StructType *SrcSTy,
1115                                    uint64_t DstSize, CodeGenFunction &CGF) {
1116   // We can't dive into a zero-element struct.
1117   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1118 
1119   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1120 
1121   // If the first elt is at least as large as what we're looking for, or if the
1122   // first element is the same size as the whole struct, we can enter it. The
1123   // comparison must be made on the store size and not the alloca size. Using
1124   // the alloca size may overstate the size of the load.
1125   uint64_t FirstEltSize =
1126     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1127   if (FirstEltSize < DstSize &&
1128       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1129     return SrcPtr;
1130 
1131   // GEP into the first element.
1132   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1133 
1134   // If the first element is a struct, recurse.
1135   llvm::Type *SrcTy = SrcPtr.getElementType();
1136   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1137     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1138 
1139   return SrcPtr;
1140 }
1141 
1142 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1143 /// are either integers or pointers.  This does a truncation of the value if it
1144 /// is too large or a zero extension if it is too small.
1145 ///
1146 /// This behaves as if the value were coerced through memory, so on big-endian
1147 /// targets the high bits are preserved in a truncation, while little-endian
1148 /// targets preserve the low bits.
1149 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1150                                              llvm::Type *Ty,
1151                                              CodeGenFunction &CGF) {
1152   if (Val->getType() == Ty)
1153     return Val;
1154 
1155   if (isa<llvm::PointerType>(Val->getType())) {
1156     // If this is Pointer->Pointer avoid conversion to and from int.
1157     if (isa<llvm::PointerType>(Ty))
1158       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1159 
1160     // Convert the pointer to an integer so we can play with its width.
1161     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1162   }
1163 
1164   llvm::Type *DestIntTy = Ty;
1165   if (isa<llvm::PointerType>(DestIntTy))
1166     DestIntTy = CGF.IntPtrTy;
1167 
1168   if (Val->getType() != DestIntTy) {
1169     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1170     if (DL.isBigEndian()) {
1171       // Preserve the high bits on big-endian targets.
1172       // That is what memory coercion does.
1173       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1174       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1175 
1176       if (SrcSize > DstSize) {
1177         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1178         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1179       } else {
1180         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1181         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1182       }
1183     } else {
1184       // Little-endian targets preserve the low bits. No shifts required.
1185       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1186     }
1187   }
1188 
1189   if (isa<llvm::PointerType>(Ty))
1190     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1191   return Val;
1192 }
1193 
1194 
1195 
1196 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1197 /// a pointer to an object of type \arg Ty, known to be aligned to
1198 /// \arg SrcAlign bytes.
1199 ///
1200 /// This safely handles the case when the src type is smaller than the
1201 /// destination type; in this situation the values of bits which not
1202 /// present in the src are undefined.
1203 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1204                                       CodeGenFunction &CGF) {
1205   llvm::Type *SrcTy = Src.getElementType();
1206 
1207   // If SrcTy and Ty are the same, just do a load.
1208   if (SrcTy == Ty)
1209     return CGF.Builder.CreateLoad(Src);
1210 
1211   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1212 
1213   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1214     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1215     SrcTy = Src.getType()->getElementType();
1216   }
1217 
1218   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1219 
1220   // If the source and destination are integer or pointer types, just do an
1221   // extension or truncation to the desired type.
1222   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1223       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1224     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1225     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1226   }
1227 
1228   // If load is legal, just bitcast the src pointer.
1229   if (SrcSize >= DstSize) {
1230     // Generally SrcSize is never greater than DstSize, since this means we are
1231     // losing bits. However, this can happen in cases where the structure has
1232     // additional padding, for example due to a user specified alignment.
1233     //
1234     // FIXME: Assert that we aren't truncating non-padding bits when have access
1235     // to that information.
1236     Src = CGF.Builder.CreateBitCast(Src,
1237                                     Ty->getPointerTo(Src.getAddressSpace()));
1238     return CGF.Builder.CreateLoad(Src);
1239   }
1240 
1241   // Otherwise do coercion through memory. This is stupid, but simple.
1242   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1243   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy);
1244   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.AllocaInt8PtrTy);
1245   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1246       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1247       false);
1248   return CGF.Builder.CreateLoad(Tmp);
1249 }
1250 
1251 // Function to store a first-class aggregate into memory.  We prefer to
1252 // store the elements rather than the aggregate to be more friendly to
1253 // fast-isel.
1254 // FIXME: Do we need to recurse here?
1255 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1256                           Address Dest, bool DestIsVolatile) {
1257   // Prefer scalar stores to first-class aggregate stores.
1258   if (llvm::StructType *STy =
1259         dyn_cast<llvm::StructType>(Val->getType())) {
1260     const llvm::StructLayout *Layout =
1261       CGF.CGM.getDataLayout().getStructLayout(STy);
1262 
1263     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1264       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1265       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1266       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1267       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1268     }
1269   } else {
1270     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1271   }
1272 }
1273 
1274 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1275 /// where the source and destination may have different types.  The
1276 /// destination is known to be aligned to \arg DstAlign bytes.
1277 ///
1278 /// This safely handles the case when the src type is larger than the
1279 /// destination type; the upper bits of the src will be lost.
1280 static void CreateCoercedStore(llvm::Value *Src,
1281                                Address Dst,
1282                                bool DstIsVolatile,
1283                                CodeGenFunction &CGF) {
1284   llvm::Type *SrcTy = Src->getType();
1285   llvm::Type *DstTy = Dst.getType()->getElementType();
1286   if (SrcTy == DstTy) {
1287     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1288     return;
1289   }
1290 
1291   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1292 
1293   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1294     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1295     DstTy = Dst.getType()->getElementType();
1296   }
1297 
1298   // If the source and destination are integer or pointer types, just do an
1299   // extension or truncation to the desired type.
1300   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1301       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1302     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1303     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1304     return;
1305   }
1306 
1307   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1308 
1309   // If store is legal, just bitcast the src pointer.
1310   if (SrcSize <= DstSize) {
1311     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1312     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1313   } else {
1314     // Otherwise do coercion through memory. This is stupid, but
1315     // simple.
1316 
1317     // Generally SrcSize is never greater than DstSize, since this means we are
1318     // losing bits. However, this can happen in cases where the structure has
1319     // additional padding, for example due to a user specified alignment.
1320     //
1321     // FIXME: Assert that we aren't truncating non-padding bits when have access
1322     // to that information.
1323     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1324     CGF.Builder.CreateStore(Src, Tmp);
1325     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy);
1326     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.AllocaInt8PtrTy);
1327     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1328         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1329         false);
1330   }
1331 }
1332 
1333 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1334                                    const ABIArgInfo &info) {
1335   if (unsigned offset = info.getDirectOffset()) {
1336     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1337     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1338                                              CharUnits::fromQuantity(offset));
1339     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1340   }
1341   return addr;
1342 }
1343 
1344 namespace {
1345 
1346 /// Encapsulates information about the way function arguments from
1347 /// CGFunctionInfo should be passed to actual LLVM IR function.
1348 class ClangToLLVMArgMapping {
1349   static const unsigned InvalidIndex = ~0U;
1350   unsigned InallocaArgNo;
1351   unsigned SRetArgNo;
1352   unsigned TotalIRArgs;
1353 
1354   /// Arguments of LLVM IR function corresponding to single Clang argument.
1355   struct IRArgs {
1356     unsigned PaddingArgIndex;
1357     // Argument is expanded to IR arguments at positions
1358     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1359     unsigned FirstArgIndex;
1360     unsigned NumberOfArgs;
1361 
1362     IRArgs()
1363         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1364           NumberOfArgs(0) {}
1365   };
1366 
1367   SmallVector<IRArgs, 8> ArgInfo;
1368 
1369 public:
1370   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1371                         bool OnlyRequiredArgs = false)
1372       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1373         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1374     construct(Context, FI, OnlyRequiredArgs);
1375   }
1376 
1377   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1378   unsigned getInallocaArgNo() const {
1379     assert(hasInallocaArg());
1380     return InallocaArgNo;
1381   }
1382 
1383   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1384   unsigned getSRetArgNo() const {
1385     assert(hasSRetArg());
1386     return SRetArgNo;
1387   }
1388 
1389   unsigned totalIRArgs() const { return TotalIRArgs; }
1390 
1391   bool hasPaddingArg(unsigned ArgNo) const {
1392     assert(ArgNo < ArgInfo.size());
1393     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1394   }
1395   unsigned getPaddingArgNo(unsigned ArgNo) const {
1396     assert(hasPaddingArg(ArgNo));
1397     return ArgInfo[ArgNo].PaddingArgIndex;
1398   }
1399 
1400   /// Returns index of first IR argument corresponding to ArgNo, and their
1401   /// quantity.
1402   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1403     assert(ArgNo < ArgInfo.size());
1404     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1405                           ArgInfo[ArgNo].NumberOfArgs);
1406   }
1407 
1408 private:
1409   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1410                  bool OnlyRequiredArgs);
1411 };
1412 
1413 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1414                                       const CGFunctionInfo &FI,
1415                                       bool OnlyRequiredArgs) {
1416   unsigned IRArgNo = 0;
1417   bool SwapThisWithSRet = false;
1418   const ABIArgInfo &RetAI = FI.getReturnInfo();
1419 
1420   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1421     SwapThisWithSRet = RetAI.isSRetAfterThis();
1422     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1423   }
1424 
1425   unsigned ArgNo = 0;
1426   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1427   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1428        ++I, ++ArgNo) {
1429     assert(I != FI.arg_end());
1430     QualType ArgType = I->type;
1431     const ABIArgInfo &AI = I->info;
1432     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1433     auto &IRArgs = ArgInfo[ArgNo];
1434 
1435     if (AI.getPaddingType())
1436       IRArgs.PaddingArgIndex = IRArgNo++;
1437 
1438     switch (AI.getKind()) {
1439     case ABIArgInfo::Extend:
1440     case ABIArgInfo::Direct: {
1441       // FIXME: handle sseregparm someday...
1442       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1443       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1444         IRArgs.NumberOfArgs = STy->getNumElements();
1445       } else {
1446         IRArgs.NumberOfArgs = 1;
1447       }
1448       break;
1449     }
1450     case ABIArgInfo::Indirect:
1451       IRArgs.NumberOfArgs = 1;
1452       break;
1453     case ABIArgInfo::Ignore:
1454     case ABIArgInfo::InAlloca:
1455       // ignore and inalloca doesn't have matching LLVM parameters.
1456       IRArgs.NumberOfArgs = 0;
1457       break;
1458     case ABIArgInfo::CoerceAndExpand:
1459       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1460       break;
1461     case ABIArgInfo::Expand:
1462       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1463       break;
1464     }
1465 
1466     if (IRArgs.NumberOfArgs > 0) {
1467       IRArgs.FirstArgIndex = IRArgNo;
1468       IRArgNo += IRArgs.NumberOfArgs;
1469     }
1470 
1471     // Skip over the sret parameter when it comes second.  We already handled it
1472     // above.
1473     if (IRArgNo == 1 && SwapThisWithSRet)
1474       IRArgNo++;
1475   }
1476   assert(ArgNo == ArgInfo.size());
1477 
1478   if (FI.usesInAlloca())
1479     InallocaArgNo = IRArgNo++;
1480 
1481   TotalIRArgs = IRArgNo;
1482 }
1483 }  // namespace
1484 
1485 /***/
1486 
1487 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1488   const auto &RI = FI.getReturnInfo();
1489   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1490 }
1491 
1492 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1493   return ReturnTypeUsesSRet(FI) &&
1494          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1495 }
1496 
1497 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1498   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1499     switch (BT->getKind()) {
1500     default:
1501       return false;
1502     case BuiltinType::Float:
1503       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1504     case BuiltinType::Double:
1505       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1506     case BuiltinType::LongDouble:
1507       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1508     }
1509   }
1510 
1511   return false;
1512 }
1513 
1514 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1515   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1516     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1517       if (BT->getKind() == BuiltinType::LongDouble)
1518         return getTarget().useObjCFP2RetForComplexLongDouble();
1519     }
1520   }
1521 
1522   return false;
1523 }
1524 
1525 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1526   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1527   return GetFunctionType(FI);
1528 }
1529 
1530 llvm::FunctionType *
1531 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1532 
1533   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1534   (void)Inserted;
1535   assert(Inserted && "Recursively being processed?");
1536 
1537   llvm::Type *resultType = nullptr;
1538   const ABIArgInfo &retAI = FI.getReturnInfo();
1539   switch (retAI.getKind()) {
1540   case ABIArgInfo::Expand:
1541     llvm_unreachable("Invalid ABI kind for return argument");
1542 
1543   case ABIArgInfo::Extend:
1544   case ABIArgInfo::Direct:
1545     resultType = retAI.getCoerceToType();
1546     break;
1547 
1548   case ABIArgInfo::InAlloca:
1549     if (retAI.getInAllocaSRet()) {
1550       // sret things on win32 aren't void, they return the sret pointer.
1551       QualType ret = FI.getReturnType();
1552       llvm::Type *ty = ConvertType(ret);
1553       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1554       resultType = llvm::PointerType::get(ty, addressSpace);
1555     } else {
1556       resultType = llvm::Type::getVoidTy(getLLVMContext());
1557     }
1558     break;
1559 
1560   case ABIArgInfo::Indirect:
1561   case ABIArgInfo::Ignore:
1562     resultType = llvm::Type::getVoidTy(getLLVMContext());
1563     break;
1564 
1565   case ABIArgInfo::CoerceAndExpand:
1566     resultType = retAI.getUnpaddedCoerceAndExpandType();
1567     break;
1568   }
1569 
1570   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1571   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1572 
1573   // Add type for sret argument.
1574   if (IRFunctionArgs.hasSRetArg()) {
1575     QualType Ret = FI.getReturnType();
1576     llvm::Type *Ty = ConvertType(Ret);
1577     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1578     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1579         llvm::PointerType::get(Ty, AddressSpace);
1580   }
1581 
1582   // Add type for inalloca argument.
1583   if (IRFunctionArgs.hasInallocaArg()) {
1584     auto ArgStruct = FI.getArgStruct();
1585     assert(ArgStruct);
1586     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1587   }
1588 
1589   // Add in all of the required arguments.
1590   unsigned ArgNo = 0;
1591   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1592                                      ie = it + FI.getNumRequiredArgs();
1593   for (; it != ie; ++it, ++ArgNo) {
1594     const ABIArgInfo &ArgInfo = it->info;
1595 
1596     // Insert a padding type to ensure proper alignment.
1597     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1598       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1599           ArgInfo.getPaddingType();
1600 
1601     unsigned FirstIRArg, NumIRArgs;
1602     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1603 
1604     switch (ArgInfo.getKind()) {
1605     case ABIArgInfo::Ignore:
1606     case ABIArgInfo::InAlloca:
1607       assert(NumIRArgs == 0);
1608       break;
1609 
1610     case ABIArgInfo::Indirect: {
1611       assert(NumIRArgs == 1);
1612       // indirect arguments are always on the stack, which is alloca addr space.
1613       llvm::Type *LTy = ConvertTypeForMem(it->type);
1614       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1615           CGM.getDataLayout().getAllocaAddrSpace());
1616       break;
1617     }
1618 
1619     case ABIArgInfo::Extend:
1620     case ABIArgInfo::Direct: {
1621       // Fast-isel and the optimizer generally like scalar values better than
1622       // FCAs, so we flatten them if this is safe to do for this argument.
1623       llvm::Type *argType = ArgInfo.getCoerceToType();
1624       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1625       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1626         assert(NumIRArgs == st->getNumElements());
1627         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1628           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1629       } else {
1630         assert(NumIRArgs == 1);
1631         ArgTypes[FirstIRArg] = argType;
1632       }
1633       break;
1634     }
1635 
1636     case ABIArgInfo::CoerceAndExpand: {
1637       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1638       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1639         *ArgTypesIter++ = EltTy;
1640       }
1641       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1642       break;
1643     }
1644 
1645     case ABIArgInfo::Expand:
1646       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1647       getExpandedTypes(it->type, ArgTypesIter);
1648       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1649       break;
1650     }
1651   }
1652 
1653   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1654   assert(Erased && "Not in set?");
1655 
1656   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1657 }
1658 
1659 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1660   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1661   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1662 
1663   if (!isFuncTypeConvertible(FPT))
1664     return llvm::StructType::get(getLLVMContext());
1665 
1666   const CGFunctionInfo *Info;
1667   if (isa<CXXDestructorDecl>(MD))
1668     Info =
1669         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1670   else
1671     Info = &arrangeCXXMethodDeclaration(MD);
1672   return GetFunctionType(*Info);
1673 }
1674 
1675 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1676                                                llvm::AttrBuilder &FuncAttrs,
1677                                                const FunctionProtoType *FPT) {
1678   if (!FPT)
1679     return;
1680 
1681   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1682       FPT->isNothrow(Ctx))
1683     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1684 }
1685 
1686 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1687                                                bool AttrOnCallSite,
1688                                                llvm::AttrBuilder &FuncAttrs) {
1689   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1690   if (!HasOptnone) {
1691     if (CodeGenOpts.OptimizeSize)
1692       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1693     if (CodeGenOpts.OptimizeSize == 2)
1694       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1695   }
1696 
1697   if (CodeGenOpts.DisableRedZone)
1698     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1699   if (CodeGenOpts.NoImplicitFloat)
1700     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1701 
1702   if (AttrOnCallSite) {
1703     // Attributes that should go on the call site only.
1704     if (!CodeGenOpts.SimplifyLibCalls ||
1705         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1706       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1707     if (!CodeGenOpts.TrapFuncName.empty())
1708       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1709   } else {
1710     // Attributes that should go on the function, but not the call site.
1711     if (!CodeGenOpts.DisableFPElim) {
1712       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1713     } else if (CodeGenOpts.OmitLeafFramePointer) {
1714       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1715       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1716     } else {
1717       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1718       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1719     }
1720 
1721     FuncAttrs.addAttribute("less-precise-fpmad",
1722                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1723 
1724     if (!CodeGenOpts.FPDenormalMode.empty())
1725       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1726 
1727     FuncAttrs.addAttribute("no-trapping-math",
1728                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1729 
1730     // TODO: Are these all needed?
1731     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1732     FuncAttrs.addAttribute("no-infs-fp-math",
1733                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1734     FuncAttrs.addAttribute("no-nans-fp-math",
1735                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1736     FuncAttrs.addAttribute("unsafe-fp-math",
1737                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1738     FuncAttrs.addAttribute("use-soft-float",
1739                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1740     FuncAttrs.addAttribute("stack-protector-buffer-size",
1741                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1742     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1743                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1744     FuncAttrs.addAttribute(
1745         "correctly-rounded-divide-sqrt-fp-math",
1746         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1747 
1748     // TODO: Reciprocal estimate codegen options should apply to instructions?
1749     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1750     if (!Recips.empty())
1751       FuncAttrs.addAttribute("reciprocal-estimates",
1752                              llvm::join(Recips, ","));
1753 
1754     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1755         CodeGenOpts.PreferVectorWidth != "none")
1756       FuncAttrs.addAttribute("prefer-vector-width",
1757                              CodeGenOpts.PreferVectorWidth);
1758 
1759     if (CodeGenOpts.StackRealignment)
1760       FuncAttrs.addAttribute("stackrealign");
1761     if (CodeGenOpts.Backchain)
1762       FuncAttrs.addAttribute("backchain");
1763   }
1764 
1765   if (getLangOpts().assumeFunctionsAreConvergent()) {
1766     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1767     // convergent (meaning, they may call an intrinsically convergent op, such
1768     // as __syncthreads() / barrier(), and so can't have certain optimizations
1769     // applied around them).  LLVM will remove this attribute where it safely
1770     // can.
1771     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1772   }
1773 
1774   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1775     // Exceptions aren't supported in CUDA device code.
1776     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1777 
1778     // Respect -fcuda-flush-denormals-to-zero.
1779     if (getLangOpts().CUDADeviceFlushDenormalsToZero)
1780       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1781   }
1782 }
1783 
1784 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1785   llvm::AttrBuilder FuncAttrs;
1786   ConstructDefaultFnAttrList(F.getName(),
1787                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1788                              /* AttrOnCallsite = */ false, FuncAttrs);
1789   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1790 }
1791 
1792 void CodeGenModule::ConstructAttributeList(
1793     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1794     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1795   llvm::AttrBuilder FuncAttrs;
1796   llvm::AttrBuilder RetAttrs;
1797 
1798   CallingConv = FI.getEffectiveCallingConvention();
1799   if (FI.isNoReturn())
1800     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1801 
1802   // If we have information about the function prototype, we can learn
1803   // attributes form there.
1804   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1805                                      CalleeInfo.getCalleeFunctionProtoType());
1806 
1807   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1808 
1809   bool HasOptnone = false;
1810   // FIXME: handle sseregparm someday...
1811   if (TargetDecl) {
1812     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1813       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1814     if (TargetDecl->hasAttr<NoThrowAttr>())
1815       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1816     if (TargetDecl->hasAttr<NoReturnAttr>())
1817       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1818     if (TargetDecl->hasAttr<ColdAttr>())
1819       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1820     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1821       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1822     if (TargetDecl->hasAttr<ConvergentAttr>())
1823       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1824 
1825     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1826       AddAttributesFromFunctionProtoType(
1827           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1828       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1829       // These attributes are not inherited by overloads.
1830       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1831       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1832         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1833     }
1834 
1835     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1836     if (TargetDecl->hasAttr<ConstAttr>()) {
1837       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1838       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1839     } else if (TargetDecl->hasAttr<PureAttr>()) {
1840       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1841       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1842     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1843       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1844       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1845     }
1846     if (TargetDecl->hasAttr<RestrictAttr>())
1847       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1848     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1849       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1850     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1851       FuncAttrs.addAttribute("no_caller_saved_registers");
1852     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1853       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1854 
1855     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1856     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1857       Optional<unsigned> NumElemsParam;
1858       if (AllocSize->getNumElemsParam().isValid())
1859         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1860       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1861                                  NumElemsParam);
1862     }
1863   }
1864 
1865   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1866 
1867   if (CodeGenOpts.EnableSegmentedStacks &&
1868       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1869     FuncAttrs.addAttribute("split-stack");
1870 
1871   // Add NonLazyBind attribute to function declarations when -fno-plt
1872   // is used.
1873   if (TargetDecl && CodeGenOpts.NoPLT) {
1874     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1875       if (!Fn->isDefined() && !AttrOnCallSite) {
1876         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1877       }
1878     }
1879   }
1880 
1881   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1882     if (getLangOpts().OpenCLVersion <= 120) {
1883       // OpenCL v1.2 Work groups are always uniform
1884       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1885     } else {
1886       // OpenCL v2.0 Work groups may be whether uniform or not.
1887       // '-cl-uniform-work-group-size' compile option gets a hint
1888       // to the compiler that the global work-size be a multiple of
1889       // the work-group size specified to clEnqueueNDRangeKernel
1890       // (i.e. work groups are uniform).
1891       FuncAttrs.addAttribute("uniform-work-group-size",
1892                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1893     }
1894   }
1895 
1896   if (!AttrOnCallSite) {
1897     bool DisableTailCalls = false;
1898 
1899     if (CodeGenOpts.DisableTailCalls)
1900       DisableTailCalls = true;
1901     else if (TargetDecl) {
1902       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1903           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1904         DisableTailCalls = true;
1905       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1906         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1907           if (!BD->doesNotEscape())
1908             DisableTailCalls = true;
1909       }
1910     }
1911 
1912     FuncAttrs.addAttribute("disable-tail-calls",
1913                            llvm::toStringRef(DisableTailCalls));
1914     GetCPUAndFeaturesAttributes(TargetDecl, FuncAttrs);
1915   }
1916 
1917   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1918 
1919   QualType RetTy = FI.getReturnType();
1920   const ABIArgInfo &RetAI = FI.getReturnInfo();
1921   switch (RetAI.getKind()) {
1922   case ABIArgInfo::Extend:
1923     if (RetAI.isSignExt())
1924       RetAttrs.addAttribute(llvm::Attribute::SExt);
1925     else
1926       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1927     LLVM_FALLTHROUGH;
1928   case ABIArgInfo::Direct:
1929     if (RetAI.getInReg())
1930       RetAttrs.addAttribute(llvm::Attribute::InReg);
1931     break;
1932   case ABIArgInfo::Ignore:
1933     break;
1934 
1935   case ABIArgInfo::InAlloca:
1936   case ABIArgInfo::Indirect: {
1937     // inalloca and sret disable readnone and readonly
1938     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1939       .removeAttribute(llvm::Attribute::ReadNone);
1940     break;
1941   }
1942 
1943   case ABIArgInfo::CoerceAndExpand:
1944     break;
1945 
1946   case ABIArgInfo::Expand:
1947     llvm_unreachable("Invalid ABI kind for return argument");
1948   }
1949 
1950   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1951     QualType PTy = RefTy->getPointeeType();
1952     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1953       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1954                                         .getQuantity());
1955     else if (getContext().getTargetAddressSpace(PTy) == 0)
1956       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1957   }
1958 
1959   bool hasUsedSRet = false;
1960   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
1961 
1962   // Attach attributes to sret.
1963   if (IRFunctionArgs.hasSRetArg()) {
1964     llvm::AttrBuilder SRETAttrs;
1965     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1966     hasUsedSRet = true;
1967     if (RetAI.getInReg())
1968       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1969     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
1970         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
1971   }
1972 
1973   // Attach attributes to inalloca argument.
1974   if (IRFunctionArgs.hasInallocaArg()) {
1975     llvm::AttrBuilder Attrs;
1976     Attrs.addAttribute(llvm::Attribute::InAlloca);
1977     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
1978         llvm::AttributeSet::get(getLLVMContext(), Attrs);
1979   }
1980 
1981   unsigned ArgNo = 0;
1982   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1983                                           E = FI.arg_end();
1984        I != E; ++I, ++ArgNo) {
1985     QualType ParamType = I->type;
1986     const ABIArgInfo &AI = I->info;
1987     llvm::AttrBuilder Attrs;
1988 
1989     // Add attribute for padding argument, if necessary.
1990     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1991       if (AI.getPaddingInReg()) {
1992         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1993             llvm::AttributeSet::get(
1994                 getLLVMContext(),
1995                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
1996       }
1997     }
1998 
1999     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2000     // have the corresponding parameter variable.  It doesn't make
2001     // sense to do it here because parameters are so messed up.
2002     switch (AI.getKind()) {
2003     case ABIArgInfo::Extend:
2004       if (AI.isSignExt())
2005         Attrs.addAttribute(llvm::Attribute::SExt);
2006       else
2007         Attrs.addAttribute(llvm::Attribute::ZExt);
2008       LLVM_FALLTHROUGH;
2009     case ABIArgInfo::Direct:
2010       if (ArgNo == 0 && FI.isChainCall())
2011         Attrs.addAttribute(llvm::Attribute::Nest);
2012       else if (AI.getInReg())
2013         Attrs.addAttribute(llvm::Attribute::InReg);
2014       break;
2015 
2016     case ABIArgInfo::Indirect: {
2017       if (AI.getInReg())
2018         Attrs.addAttribute(llvm::Attribute::InReg);
2019 
2020       if (AI.getIndirectByVal())
2021         Attrs.addAttribute(llvm::Attribute::ByVal);
2022 
2023       CharUnits Align = AI.getIndirectAlign();
2024 
2025       // In a byval argument, it is important that the required
2026       // alignment of the type is honored, as LLVM might be creating a
2027       // *new* stack object, and needs to know what alignment to give
2028       // it. (Sometimes it can deduce a sensible alignment on its own,
2029       // but not if clang decides it must emit a packed struct, or the
2030       // user specifies increased alignment requirements.)
2031       //
2032       // This is different from indirect *not* byval, where the object
2033       // exists already, and the align attribute is purely
2034       // informative.
2035       assert(!Align.isZero());
2036 
2037       // For now, only add this when we have a byval argument.
2038       // TODO: be less lazy about updating test cases.
2039       if (AI.getIndirectByVal())
2040         Attrs.addAlignmentAttr(Align.getQuantity());
2041 
2042       // byval disables readnone and readonly.
2043       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2044         .removeAttribute(llvm::Attribute::ReadNone);
2045       break;
2046     }
2047     case ABIArgInfo::Ignore:
2048     case ABIArgInfo::Expand:
2049     case ABIArgInfo::CoerceAndExpand:
2050       break;
2051 
2052     case ABIArgInfo::InAlloca:
2053       // inalloca disables readnone and readonly.
2054       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2055           .removeAttribute(llvm::Attribute::ReadNone);
2056       continue;
2057     }
2058 
2059     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2060       QualType PTy = RefTy->getPointeeType();
2061       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2062         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2063                                        .getQuantity());
2064       else if (getContext().getTargetAddressSpace(PTy) == 0)
2065         Attrs.addAttribute(llvm::Attribute::NonNull);
2066     }
2067 
2068     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2069     case ParameterABI::Ordinary:
2070       break;
2071 
2072     case ParameterABI::SwiftIndirectResult: {
2073       // Add 'sret' if we haven't already used it for something, but
2074       // only if the result is void.
2075       if (!hasUsedSRet && RetTy->isVoidType()) {
2076         Attrs.addAttribute(llvm::Attribute::StructRet);
2077         hasUsedSRet = true;
2078       }
2079 
2080       // Add 'noalias' in either case.
2081       Attrs.addAttribute(llvm::Attribute::NoAlias);
2082 
2083       // Add 'dereferenceable' and 'alignment'.
2084       auto PTy = ParamType->getPointeeType();
2085       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2086         auto info = getContext().getTypeInfoInChars(PTy);
2087         Attrs.addDereferenceableAttr(info.first.getQuantity());
2088         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2089                                                  info.second.getQuantity()));
2090       }
2091       break;
2092     }
2093 
2094     case ParameterABI::SwiftErrorResult:
2095       Attrs.addAttribute(llvm::Attribute::SwiftError);
2096       break;
2097 
2098     case ParameterABI::SwiftContext:
2099       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2100       break;
2101     }
2102 
2103     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2104       Attrs.addAttribute(llvm::Attribute::NoCapture);
2105 
2106     if (Attrs.hasAttributes()) {
2107       unsigned FirstIRArg, NumIRArgs;
2108       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2109       for (unsigned i = 0; i < NumIRArgs; i++)
2110         ArgAttrs[FirstIRArg + i] =
2111             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2112     }
2113   }
2114   assert(ArgNo == FI.arg_size());
2115 
2116   AttrList = llvm::AttributeList::get(
2117       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2118       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2119 }
2120 
2121 /// An argument came in as a promoted argument; demote it back to its
2122 /// declared type.
2123 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2124                                          const VarDecl *var,
2125                                          llvm::Value *value) {
2126   llvm::Type *varType = CGF.ConvertType(var->getType());
2127 
2128   // This can happen with promotions that actually don't change the
2129   // underlying type, like the enum promotions.
2130   if (value->getType() == varType) return value;
2131 
2132   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2133          && "unexpected promotion type");
2134 
2135   if (isa<llvm::IntegerType>(varType))
2136     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2137 
2138   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2139 }
2140 
2141 /// Returns the attribute (either parameter attribute, or function
2142 /// attribute), which declares argument ArgNo to be non-null.
2143 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2144                                          QualType ArgType, unsigned ArgNo) {
2145   // FIXME: __attribute__((nonnull)) can also be applied to:
2146   //   - references to pointers, where the pointee is known to be
2147   //     nonnull (apparently a Clang extension)
2148   //   - transparent unions containing pointers
2149   // In the former case, LLVM IR cannot represent the constraint. In
2150   // the latter case, we have no guarantee that the transparent union
2151   // is in fact passed as a pointer.
2152   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2153     return nullptr;
2154   // First, check attribute on parameter itself.
2155   if (PVD) {
2156     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2157       return ParmNNAttr;
2158   }
2159   // Check function attributes.
2160   if (!FD)
2161     return nullptr;
2162   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2163     if (NNAttr->isNonNull(ArgNo))
2164       return NNAttr;
2165   }
2166   return nullptr;
2167 }
2168 
2169 namespace {
2170   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2171     Address Temp;
2172     Address Arg;
2173     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2174     void Emit(CodeGenFunction &CGF, Flags flags) override {
2175       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2176       CGF.Builder.CreateStore(errorValue, Arg);
2177     }
2178   };
2179 }
2180 
2181 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2182                                          llvm::Function *Fn,
2183                                          const FunctionArgList &Args) {
2184   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2185     // Naked functions don't have prologues.
2186     return;
2187 
2188   // If this is an implicit-return-zero function, go ahead and
2189   // initialize the return value.  TODO: it might be nice to have
2190   // a more general mechanism for this that didn't require synthesized
2191   // return statements.
2192   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2193     if (FD->hasImplicitReturnZero()) {
2194       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2195       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2196       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2197       Builder.CreateStore(Zero, ReturnValue);
2198     }
2199   }
2200 
2201   // FIXME: We no longer need the types from FunctionArgList; lift up and
2202   // simplify.
2203 
2204   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2205   // Flattened function arguments.
2206   SmallVector<llvm::Value *, 16> FnArgs;
2207   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2208   for (auto &Arg : Fn->args()) {
2209     FnArgs.push_back(&Arg);
2210   }
2211   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2212 
2213   // If we're using inalloca, all the memory arguments are GEPs off of the last
2214   // parameter, which is a pointer to the complete memory area.
2215   Address ArgStruct = Address::invalid();
2216   const llvm::StructLayout *ArgStructLayout = nullptr;
2217   if (IRFunctionArgs.hasInallocaArg()) {
2218     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2219     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2220                         FI.getArgStructAlignment());
2221 
2222     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2223   }
2224 
2225   // Name the struct return parameter.
2226   if (IRFunctionArgs.hasSRetArg()) {
2227     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2228     AI->setName("agg.result");
2229     AI->addAttr(llvm::Attribute::NoAlias);
2230   }
2231 
2232   // Track if we received the parameter as a pointer (indirect, byval, or
2233   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2234   // into a local alloca for us.
2235   SmallVector<ParamValue, 16> ArgVals;
2236   ArgVals.reserve(Args.size());
2237 
2238   // Create a pointer value for every parameter declaration.  This usually
2239   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2240   // any cleanups or do anything that might unwind.  We do that separately, so
2241   // we can push the cleanups in the correct order for the ABI.
2242   assert(FI.arg_size() == Args.size() &&
2243          "Mismatch between function signature & arguments.");
2244   unsigned ArgNo = 0;
2245   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2246   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2247        i != e; ++i, ++info_it, ++ArgNo) {
2248     const VarDecl *Arg = *i;
2249     const ABIArgInfo &ArgI = info_it->info;
2250 
2251     bool isPromoted =
2252       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2253     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2254     // the parameter is promoted. In this case we convert to
2255     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2256     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2257     assert(hasScalarEvaluationKind(Ty) ==
2258            hasScalarEvaluationKind(Arg->getType()));
2259 
2260     unsigned FirstIRArg, NumIRArgs;
2261     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2262 
2263     switch (ArgI.getKind()) {
2264     case ABIArgInfo::InAlloca: {
2265       assert(NumIRArgs == 0);
2266       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2267       CharUnits FieldOffset =
2268         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2269       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2270                                           Arg->getName());
2271       ArgVals.push_back(ParamValue::forIndirect(V));
2272       break;
2273     }
2274 
2275     case ABIArgInfo::Indirect: {
2276       assert(NumIRArgs == 1);
2277       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2278 
2279       if (!hasScalarEvaluationKind(Ty)) {
2280         // Aggregates and complex variables are accessed by reference.  All we
2281         // need to do is realign the value, if requested.
2282         Address V = ParamAddr;
2283         if (ArgI.getIndirectRealign()) {
2284           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2285 
2286           // Copy from the incoming argument pointer to the temporary with the
2287           // appropriate alignment.
2288           //
2289           // FIXME: We should have a common utility for generating an aggregate
2290           // copy.
2291           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2292           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2293           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2294           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2295           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2296           V = AlignedTemp;
2297         }
2298         ArgVals.push_back(ParamValue::forIndirect(V));
2299       } else {
2300         // Load scalar value from indirect argument.
2301         llvm::Value *V =
2302           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
2303 
2304         if (isPromoted)
2305           V = emitArgumentDemotion(*this, Arg, V);
2306         ArgVals.push_back(ParamValue::forDirect(V));
2307       }
2308       break;
2309     }
2310 
2311     case ABIArgInfo::Extend:
2312     case ABIArgInfo::Direct: {
2313 
2314       // If we have the trivial case, handle it with no muss and fuss.
2315       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2316           ArgI.getCoerceToType() == ConvertType(Ty) &&
2317           ArgI.getDirectOffset() == 0) {
2318         assert(NumIRArgs == 1);
2319         llvm::Value *V = FnArgs[FirstIRArg];
2320         auto AI = cast<llvm::Argument>(V);
2321 
2322         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2323           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2324                              PVD->getFunctionScopeIndex()))
2325             AI->addAttr(llvm::Attribute::NonNull);
2326 
2327           QualType OTy = PVD->getOriginalType();
2328           if (const auto *ArrTy =
2329               getContext().getAsConstantArrayType(OTy)) {
2330             // A C99 array parameter declaration with the static keyword also
2331             // indicates dereferenceability, and if the size is constant we can
2332             // use the dereferenceable attribute (which requires the size in
2333             // bytes).
2334             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2335               QualType ETy = ArrTy->getElementType();
2336               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2337               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2338                   ArrSize) {
2339                 llvm::AttrBuilder Attrs;
2340                 Attrs.addDereferenceableAttr(
2341                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2342                 AI->addAttrs(Attrs);
2343               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
2344                 AI->addAttr(llvm::Attribute::NonNull);
2345               }
2346             }
2347           } else if (const auto *ArrTy =
2348                      getContext().getAsVariableArrayType(OTy)) {
2349             // For C99 VLAs with the static keyword, we don't know the size so
2350             // we can't use the dereferenceable attribute, but in addrspace(0)
2351             // we know that it must be nonnull.
2352             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2353                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
2354               AI->addAttr(llvm::Attribute::NonNull);
2355           }
2356 
2357           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2358           if (!AVAttr)
2359             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2360               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2361           if (AVAttr) {
2362             llvm::Value *AlignmentValue =
2363               EmitScalarExpr(AVAttr->getAlignment());
2364             llvm::ConstantInt *AlignmentCI =
2365               cast<llvm::ConstantInt>(AlignmentValue);
2366             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2367                                           +llvm::Value::MaximumAlignment);
2368             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2369           }
2370         }
2371 
2372         if (Arg->getType().isRestrictQualified())
2373           AI->addAttr(llvm::Attribute::NoAlias);
2374 
2375         // LLVM expects swifterror parameters to be used in very restricted
2376         // ways.  Copy the value into a less-restricted temporary.
2377         if (FI.getExtParameterInfo(ArgNo).getABI()
2378               == ParameterABI::SwiftErrorResult) {
2379           QualType pointeeTy = Ty->getPointeeType();
2380           assert(pointeeTy->isPointerType());
2381           Address temp =
2382             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2383           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2384           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2385           Builder.CreateStore(incomingErrorValue, temp);
2386           V = temp.getPointer();
2387 
2388           // Push a cleanup to copy the value back at the end of the function.
2389           // The convention does not guarantee that the value will be written
2390           // back if the function exits with an unwind exception.
2391           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2392         }
2393 
2394         // Ensure the argument is the correct type.
2395         if (V->getType() != ArgI.getCoerceToType())
2396           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2397 
2398         if (isPromoted)
2399           V = emitArgumentDemotion(*this, Arg, V);
2400 
2401         // Because of merging of function types from multiple decls it is
2402         // possible for the type of an argument to not match the corresponding
2403         // type in the function type. Since we are codegening the callee
2404         // in here, add a cast to the argument type.
2405         llvm::Type *LTy = ConvertType(Arg->getType());
2406         if (V->getType() != LTy)
2407           V = Builder.CreateBitCast(V, LTy);
2408 
2409         ArgVals.push_back(ParamValue::forDirect(V));
2410         break;
2411       }
2412 
2413       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2414                                      Arg->getName());
2415 
2416       // Pointer to store into.
2417       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2418 
2419       // Fast-isel and the optimizer generally like scalar values better than
2420       // FCAs, so we flatten them if this is safe to do for this argument.
2421       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2422       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2423           STy->getNumElements() > 1) {
2424         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2425         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2426         llvm::Type *DstTy = Ptr.getElementType();
2427         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2428 
2429         Address AddrToStoreInto = Address::invalid();
2430         if (SrcSize <= DstSize) {
2431           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2432         } else {
2433           AddrToStoreInto =
2434             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2435         }
2436 
2437         assert(STy->getNumElements() == NumIRArgs);
2438         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2439           auto AI = FnArgs[FirstIRArg + i];
2440           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2441           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2442           Address EltPtr =
2443             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2444           Builder.CreateStore(AI, EltPtr);
2445         }
2446 
2447         if (SrcSize > DstSize) {
2448           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2449         }
2450 
2451       } else {
2452         // Simple case, just do a coerced store of the argument into the alloca.
2453         assert(NumIRArgs == 1);
2454         auto AI = FnArgs[FirstIRArg];
2455         AI->setName(Arg->getName() + ".coerce");
2456         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2457       }
2458 
2459       // Match to what EmitParmDecl is expecting for this type.
2460       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2461         llvm::Value *V =
2462           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2463         if (isPromoted)
2464           V = emitArgumentDemotion(*this, Arg, V);
2465         ArgVals.push_back(ParamValue::forDirect(V));
2466       } else {
2467         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2468       }
2469       break;
2470     }
2471 
2472     case ABIArgInfo::CoerceAndExpand: {
2473       // Reconstruct into a temporary.
2474       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2475       ArgVals.push_back(ParamValue::forIndirect(alloca));
2476 
2477       auto coercionType = ArgI.getCoerceAndExpandType();
2478       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2479       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2480 
2481       unsigned argIndex = FirstIRArg;
2482       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2483         llvm::Type *eltType = coercionType->getElementType(i);
2484         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2485           continue;
2486 
2487         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2488         auto elt = FnArgs[argIndex++];
2489         Builder.CreateStore(elt, eltAddr);
2490       }
2491       assert(argIndex == FirstIRArg + NumIRArgs);
2492       break;
2493     }
2494 
2495     case ABIArgInfo::Expand: {
2496       // If this structure was expanded into multiple arguments then
2497       // we need to create a temporary and reconstruct it from the
2498       // arguments.
2499       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2500       LValue LV = MakeAddrLValue(Alloca, Ty);
2501       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2502 
2503       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2504       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2505       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2506       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2507         auto AI = FnArgs[FirstIRArg + i];
2508         AI->setName(Arg->getName() + "." + Twine(i));
2509       }
2510       break;
2511     }
2512 
2513     case ABIArgInfo::Ignore:
2514       assert(NumIRArgs == 0);
2515       // Initialize the local variable appropriately.
2516       if (!hasScalarEvaluationKind(Ty)) {
2517         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2518       } else {
2519         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2520         ArgVals.push_back(ParamValue::forDirect(U));
2521       }
2522       break;
2523     }
2524   }
2525 
2526   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2527     for (int I = Args.size() - 1; I >= 0; --I)
2528       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2529   } else {
2530     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2531       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2532   }
2533 }
2534 
2535 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2536   while (insn->use_empty()) {
2537     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2538     if (!bitcast) return;
2539 
2540     // This is "safe" because we would have used a ConstantExpr otherwise.
2541     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2542     bitcast->eraseFromParent();
2543   }
2544 }
2545 
2546 /// Try to emit a fused autorelease of a return result.
2547 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2548                                                     llvm::Value *result) {
2549   // We must be immediately followed the cast.
2550   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2551   if (BB->empty()) return nullptr;
2552   if (&BB->back() != result) return nullptr;
2553 
2554   llvm::Type *resultType = result->getType();
2555 
2556   // result is in a BasicBlock and is therefore an Instruction.
2557   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2558 
2559   SmallVector<llvm::Instruction *, 4> InstsToKill;
2560 
2561   // Look for:
2562   //  %generator = bitcast %type1* %generator2 to %type2*
2563   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2564     // We would have emitted this as a constant if the operand weren't
2565     // an Instruction.
2566     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2567 
2568     // Require the generator to be immediately followed by the cast.
2569     if (generator->getNextNode() != bitcast)
2570       return nullptr;
2571 
2572     InstsToKill.push_back(bitcast);
2573   }
2574 
2575   // Look for:
2576   //   %generator = call i8* @objc_retain(i8* %originalResult)
2577   // or
2578   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2579   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2580   if (!call) return nullptr;
2581 
2582   bool doRetainAutorelease;
2583 
2584   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2585     doRetainAutorelease = true;
2586   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2587                                           .objc_retainAutoreleasedReturnValue) {
2588     doRetainAutorelease = false;
2589 
2590     // If we emitted an assembly marker for this call (and the
2591     // ARCEntrypoints field should have been set if so), go looking
2592     // for that call.  If we can't find it, we can't do this
2593     // optimization.  But it should always be the immediately previous
2594     // instruction, unless we needed bitcasts around the call.
2595     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2596       llvm::Instruction *prev = call->getPrevNode();
2597       assert(prev);
2598       if (isa<llvm::BitCastInst>(prev)) {
2599         prev = prev->getPrevNode();
2600         assert(prev);
2601       }
2602       assert(isa<llvm::CallInst>(prev));
2603       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2604                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2605       InstsToKill.push_back(prev);
2606     }
2607   } else {
2608     return nullptr;
2609   }
2610 
2611   result = call->getArgOperand(0);
2612   InstsToKill.push_back(call);
2613 
2614   // Keep killing bitcasts, for sanity.  Note that we no longer care
2615   // about precise ordering as long as there's exactly one use.
2616   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2617     if (!bitcast->hasOneUse()) break;
2618     InstsToKill.push_back(bitcast);
2619     result = bitcast->getOperand(0);
2620   }
2621 
2622   // Delete all the unnecessary instructions, from latest to earliest.
2623   for (auto *I : InstsToKill)
2624     I->eraseFromParent();
2625 
2626   // Do the fused retain/autorelease if we were asked to.
2627   if (doRetainAutorelease)
2628     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2629 
2630   // Cast back to the result type.
2631   return CGF.Builder.CreateBitCast(result, resultType);
2632 }
2633 
2634 /// If this is a +1 of the value of an immutable 'self', remove it.
2635 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2636                                           llvm::Value *result) {
2637   // This is only applicable to a method with an immutable 'self'.
2638   const ObjCMethodDecl *method =
2639     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2640   if (!method) return nullptr;
2641   const VarDecl *self = method->getSelfDecl();
2642   if (!self->getType().isConstQualified()) return nullptr;
2643 
2644   // Look for a retain call.
2645   llvm::CallInst *retainCall =
2646     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2647   if (!retainCall ||
2648       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2649     return nullptr;
2650 
2651   // Look for an ordinary load of 'self'.
2652   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2653   llvm::LoadInst *load =
2654     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2655   if (!load || load->isAtomic() || load->isVolatile() ||
2656       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2657     return nullptr;
2658 
2659   // Okay!  Burn it all down.  This relies for correctness on the
2660   // assumption that the retain is emitted as part of the return and
2661   // that thereafter everything is used "linearly".
2662   llvm::Type *resultType = result->getType();
2663   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2664   assert(retainCall->use_empty());
2665   retainCall->eraseFromParent();
2666   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2667 
2668   return CGF.Builder.CreateBitCast(load, resultType);
2669 }
2670 
2671 /// Emit an ARC autorelease of the result of a function.
2672 ///
2673 /// \return the value to actually return from the function
2674 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2675                                             llvm::Value *result) {
2676   // If we're returning 'self', kill the initial retain.  This is a
2677   // heuristic attempt to "encourage correctness" in the really unfortunate
2678   // case where we have a return of self during a dealloc and we desperately
2679   // need to avoid the possible autorelease.
2680   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2681     return self;
2682 
2683   // At -O0, try to emit a fused retain/autorelease.
2684   if (CGF.shouldUseFusedARCCalls())
2685     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2686       return fused;
2687 
2688   return CGF.EmitARCAutoreleaseReturnValue(result);
2689 }
2690 
2691 /// Heuristically search for a dominating store to the return-value slot.
2692 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2693   // Check if a User is a store which pointerOperand is the ReturnValue.
2694   // We are looking for stores to the ReturnValue, not for stores of the
2695   // ReturnValue to some other location.
2696   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2697     auto *SI = dyn_cast<llvm::StoreInst>(U);
2698     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2699       return nullptr;
2700     // These aren't actually possible for non-coerced returns, and we
2701     // only care about non-coerced returns on this code path.
2702     assert(!SI->isAtomic() && !SI->isVolatile());
2703     return SI;
2704   };
2705   // If there are multiple uses of the return-value slot, just check
2706   // for something immediately preceding the IP.  Sometimes this can
2707   // happen with how we generate implicit-returns; it can also happen
2708   // with noreturn cleanups.
2709   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2710     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2711     if (IP->empty()) return nullptr;
2712     llvm::Instruction *I = &IP->back();
2713 
2714     // Skip lifetime markers
2715     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2716                                             IE = IP->rend();
2717          II != IE; ++II) {
2718       if (llvm::IntrinsicInst *Intrinsic =
2719               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2720         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2721           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2722           ++II;
2723           if (II == IE)
2724             break;
2725           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2726             continue;
2727         }
2728       }
2729       I = &*II;
2730       break;
2731     }
2732 
2733     return GetStoreIfValid(I);
2734   }
2735 
2736   llvm::StoreInst *store =
2737       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2738   if (!store) return nullptr;
2739 
2740   // Now do a first-and-dirty dominance check: just walk up the
2741   // single-predecessors chain from the current insertion point.
2742   llvm::BasicBlock *StoreBB = store->getParent();
2743   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2744   while (IP != StoreBB) {
2745     if (!(IP = IP->getSinglePredecessor()))
2746       return nullptr;
2747   }
2748 
2749   // Okay, the store's basic block dominates the insertion point; we
2750   // can do our thing.
2751   return store;
2752 }
2753 
2754 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2755                                          bool EmitRetDbgLoc,
2756                                          SourceLocation EndLoc) {
2757   if (FI.isNoReturn()) {
2758     // Noreturn functions don't return.
2759     EmitUnreachable(EndLoc);
2760     return;
2761   }
2762 
2763   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2764     // Naked functions don't have epilogues.
2765     Builder.CreateUnreachable();
2766     return;
2767   }
2768 
2769   // Functions with no result always return void.
2770   if (!ReturnValue.isValid()) {
2771     Builder.CreateRetVoid();
2772     return;
2773   }
2774 
2775   llvm::DebugLoc RetDbgLoc;
2776   llvm::Value *RV = nullptr;
2777   QualType RetTy = FI.getReturnType();
2778   const ABIArgInfo &RetAI = FI.getReturnInfo();
2779 
2780   switch (RetAI.getKind()) {
2781   case ABIArgInfo::InAlloca:
2782     // Aggregrates get evaluated directly into the destination.  Sometimes we
2783     // need to return the sret value in a register, though.
2784     assert(hasAggregateEvaluationKind(RetTy));
2785     if (RetAI.getInAllocaSRet()) {
2786       llvm::Function::arg_iterator EI = CurFn->arg_end();
2787       --EI;
2788       llvm::Value *ArgStruct = &*EI;
2789       llvm::Value *SRet = Builder.CreateStructGEP(
2790           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2791       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2792     }
2793     break;
2794 
2795   case ABIArgInfo::Indirect: {
2796     auto AI = CurFn->arg_begin();
2797     if (RetAI.isSRetAfterThis())
2798       ++AI;
2799     switch (getEvaluationKind(RetTy)) {
2800     case TEK_Complex: {
2801       ComplexPairTy RT =
2802         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2803       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2804                          /*isInit*/ true);
2805       break;
2806     }
2807     case TEK_Aggregate:
2808       // Do nothing; aggregrates get evaluated directly into the destination.
2809       break;
2810     case TEK_Scalar:
2811       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2812                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2813                         /*isInit*/ true);
2814       break;
2815     }
2816     break;
2817   }
2818 
2819   case ABIArgInfo::Extend:
2820   case ABIArgInfo::Direct:
2821     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2822         RetAI.getDirectOffset() == 0) {
2823       // The internal return value temp always will have pointer-to-return-type
2824       // type, just do a load.
2825 
2826       // If there is a dominating store to ReturnValue, we can elide
2827       // the load, zap the store, and usually zap the alloca.
2828       if (llvm::StoreInst *SI =
2829               findDominatingStoreToReturnValue(*this)) {
2830         // Reuse the debug location from the store unless there is
2831         // cleanup code to be emitted between the store and return
2832         // instruction.
2833         if (EmitRetDbgLoc && !AutoreleaseResult)
2834           RetDbgLoc = SI->getDebugLoc();
2835         // Get the stored value and nuke the now-dead store.
2836         RV = SI->getValueOperand();
2837         SI->eraseFromParent();
2838 
2839         // If that was the only use of the return value, nuke it as well now.
2840         auto returnValueInst = ReturnValue.getPointer();
2841         if (returnValueInst->use_empty()) {
2842           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2843             alloca->eraseFromParent();
2844             ReturnValue = Address::invalid();
2845           }
2846         }
2847 
2848       // Otherwise, we have to do a simple load.
2849       } else {
2850         RV = Builder.CreateLoad(ReturnValue);
2851       }
2852     } else {
2853       // If the value is offset in memory, apply the offset now.
2854       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2855 
2856       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2857     }
2858 
2859     // In ARC, end functions that return a retainable type with a call
2860     // to objc_autoreleaseReturnValue.
2861     if (AutoreleaseResult) {
2862 #ifndef NDEBUG
2863       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2864       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2865       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2866       // CurCodeDecl or BlockInfo.
2867       QualType RT;
2868 
2869       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2870         RT = FD->getReturnType();
2871       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2872         RT = MD->getReturnType();
2873       else if (isa<BlockDecl>(CurCodeDecl))
2874         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2875       else
2876         llvm_unreachable("Unexpected function/method type");
2877 
2878       assert(getLangOpts().ObjCAutoRefCount &&
2879              !FI.isReturnsRetained() &&
2880              RT->isObjCRetainableType());
2881 #endif
2882       RV = emitAutoreleaseOfResult(*this, RV);
2883     }
2884 
2885     break;
2886 
2887   case ABIArgInfo::Ignore:
2888     break;
2889 
2890   case ABIArgInfo::CoerceAndExpand: {
2891     auto coercionType = RetAI.getCoerceAndExpandType();
2892     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2893 
2894     // Load all of the coerced elements out into results.
2895     llvm::SmallVector<llvm::Value*, 4> results;
2896     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2897     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2898       auto coercedEltType = coercionType->getElementType(i);
2899       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2900         continue;
2901 
2902       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2903       auto elt = Builder.CreateLoad(eltAddr);
2904       results.push_back(elt);
2905     }
2906 
2907     // If we have one result, it's the single direct result type.
2908     if (results.size() == 1) {
2909       RV = results[0];
2910 
2911     // Otherwise, we need to make a first-class aggregate.
2912     } else {
2913       // Construct a return type that lacks padding elements.
2914       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2915 
2916       RV = llvm::UndefValue::get(returnType);
2917       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2918         RV = Builder.CreateInsertValue(RV, results[i], i);
2919       }
2920     }
2921     break;
2922   }
2923 
2924   case ABIArgInfo::Expand:
2925     llvm_unreachable("Invalid ABI kind for return argument");
2926   }
2927 
2928   llvm::Instruction *Ret;
2929   if (RV) {
2930     EmitReturnValueCheck(RV);
2931     Ret = Builder.CreateRet(RV);
2932   } else {
2933     Ret = Builder.CreateRetVoid();
2934   }
2935 
2936   if (RetDbgLoc)
2937     Ret->setDebugLoc(std::move(RetDbgLoc));
2938 }
2939 
2940 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2941   // A current decl may not be available when emitting vtable thunks.
2942   if (!CurCodeDecl)
2943     return;
2944 
2945   ReturnsNonNullAttr *RetNNAttr = nullptr;
2946   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2947     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
2948 
2949   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
2950     return;
2951 
2952   // Prefer the returns_nonnull attribute if it's present.
2953   SourceLocation AttrLoc;
2954   SanitizerMask CheckKind;
2955   SanitizerHandler Handler;
2956   if (RetNNAttr) {
2957     assert(!requiresReturnValueNullabilityCheck() &&
2958            "Cannot check nullability and the nonnull attribute");
2959     AttrLoc = RetNNAttr->getLocation();
2960     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
2961     Handler = SanitizerHandler::NonnullReturn;
2962   } else {
2963     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
2964       if (auto *TSI = DD->getTypeSourceInfo())
2965         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
2966           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
2967     CheckKind = SanitizerKind::NullabilityReturn;
2968     Handler = SanitizerHandler::NullabilityReturn;
2969   }
2970 
2971   SanitizerScope SanScope(this);
2972 
2973   // Make sure the "return" source location is valid. If we're checking a
2974   // nullability annotation, make sure the preconditions for the check are met.
2975   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
2976   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
2977   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
2978   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
2979   if (requiresReturnValueNullabilityCheck())
2980     CanNullCheck =
2981         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
2982   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
2983   EmitBlock(Check);
2984 
2985   // Now do the null check.
2986   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
2987   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
2988   llvm::Value *DynamicData[] = {SLocPtr};
2989   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
2990 
2991   EmitBlock(NoCheck);
2992 
2993 #ifndef NDEBUG
2994   // The return location should not be used after the check has been emitted.
2995   ReturnLocation = Address::invalid();
2996 #endif
2997 }
2998 
2999 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3000   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3001   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3002 }
3003 
3004 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3005                                           QualType Ty) {
3006   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3007   // placeholders.
3008   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3009   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3010   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3011 
3012   // FIXME: When we generate this IR in one pass, we shouldn't need
3013   // this win32-specific alignment hack.
3014   CharUnits Align = CharUnits::fromQuantity(4);
3015   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3016 
3017   return AggValueSlot::forAddr(Address(Placeholder, Align),
3018                                Ty.getQualifiers(),
3019                                AggValueSlot::IsNotDestructed,
3020                                AggValueSlot::DoesNotNeedGCBarriers,
3021                                AggValueSlot::IsNotAliased,
3022                                AggValueSlot::DoesNotOverlap);
3023 }
3024 
3025 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3026                                           const VarDecl *param,
3027                                           SourceLocation loc) {
3028   // StartFunction converted the ABI-lowered parameter(s) into a
3029   // local alloca.  We need to turn that into an r-value suitable
3030   // for EmitCall.
3031   Address local = GetAddrOfLocalVar(param);
3032 
3033   QualType type = param->getType();
3034 
3035   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
3036          "cannot emit delegate call arguments for inalloca arguments!");
3037 
3038   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3039   // but the argument needs to be the original pointer.
3040   if (type->isReferenceType()) {
3041     args.add(RValue::get(Builder.CreateLoad(local)), type);
3042 
3043   // In ARC, move out of consumed arguments so that the release cleanup
3044   // entered by StartFunction doesn't cause an over-release.  This isn't
3045   // optimal -O0 code generation, but it should get cleaned up when
3046   // optimization is enabled.  This also assumes that delegate calls are
3047   // performed exactly once for a set of arguments, but that should be safe.
3048   } else if (getLangOpts().ObjCAutoRefCount &&
3049              param->hasAttr<NSConsumedAttr>() &&
3050              type->isObjCRetainableType()) {
3051     llvm::Value *ptr = Builder.CreateLoad(local);
3052     auto null =
3053       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3054     Builder.CreateStore(null, local);
3055     args.add(RValue::get(ptr), type);
3056 
3057   // For the most part, we just need to load the alloca, except that
3058   // aggregate r-values are actually pointers to temporaries.
3059   } else {
3060     args.add(convertTempToRValue(local, type, loc), type);
3061   }
3062 }
3063 
3064 static bool isProvablyNull(llvm::Value *addr) {
3065   return isa<llvm::ConstantPointerNull>(addr);
3066 }
3067 
3068 /// Emit the actual writing-back of a writeback.
3069 static void emitWriteback(CodeGenFunction &CGF,
3070                           const CallArgList::Writeback &writeback) {
3071   const LValue &srcLV = writeback.Source;
3072   Address srcAddr = srcLV.getAddress();
3073   assert(!isProvablyNull(srcAddr.getPointer()) &&
3074          "shouldn't have writeback for provably null argument");
3075 
3076   llvm::BasicBlock *contBB = nullptr;
3077 
3078   // If the argument wasn't provably non-null, we need to null check
3079   // before doing the store.
3080   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3081                                               CGF.CGM.getDataLayout());
3082   if (!provablyNonNull) {
3083     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3084     contBB = CGF.createBasicBlock("icr.done");
3085 
3086     llvm::Value *isNull =
3087       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3088     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3089     CGF.EmitBlock(writebackBB);
3090   }
3091 
3092   // Load the value to writeback.
3093   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3094 
3095   // Cast it back, in case we're writing an id to a Foo* or something.
3096   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3097                                     "icr.writeback-cast");
3098 
3099   // Perform the writeback.
3100 
3101   // If we have a "to use" value, it's something we need to emit a use
3102   // of.  This has to be carefully threaded in: if it's done after the
3103   // release it's potentially undefined behavior (and the optimizer
3104   // will ignore it), and if it happens before the retain then the
3105   // optimizer could move the release there.
3106   if (writeback.ToUse) {
3107     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3108 
3109     // Retain the new value.  No need to block-copy here:  the block's
3110     // being passed up the stack.
3111     value = CGF.EmitARCRetainNonBlock(value);
3112 
3113     // Emit the intrinsic use here.
3114     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3115 
3116     // Load the old value (primitively).
3117     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3118 
3119     // Put the new value in place (primitively).
3120     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3121 
3122     // Release the old value.
3123     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3124 
3125   // Otherwise, we can just do a normal lvalue store.
3126   } else {
3127     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3128   }
3129 
3130   // Jump to the continuation block.
3131   if (!provablyNonNull)
3132     CGF.EmitBlock(contBB);
3133 }
3134 
3135 static void emitWritebacks(CodeGenFunction &CGF,
3136                            const CallArgList &args) {
3137   for (const auto &I : args.writebacks())
3138     emitWriteback(CGF, I);
3139 }
3140 
3141 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3142                                             const CallArgList &CallArgs) {
3143   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3144     CallArgs.getCleanupsToDeactivate();
3145   // Iterate in reverse to increase the likelihood of popping the cleanup.
3146   for (const auto &I : llvm::reverse(Cleanups)) {
3147     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3148     I.IsActiveIP->eraseFromParent();
3149   }
3150 }
3151 
3152 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3153   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3154     if (uop->getOpcode() == UO_AddrOf)
3155       return uop->getSubExpr();
3156   return nullptr;
3157 }
3158 
3159 /// Emit an argument that's being passed call-by-writeback.  That is,
3160 /// we are passing the address of an __autoreleased temporary; it
3161 /// might be copy-initialized with the current value of the given
3162 /// address, but it will definitely be copied out of after the call.
3163 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3164                              const ObjCIndirectCopyRestoreExpr *CRE) {
3165   LValue srcLV;
3166 
3167   // Make an optimistic effort to emit the address as an l-value.
3168   // This can fail if the argument expression is more complicated.
3169   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3170     srcLV = CGF.EmitLValue(lvExpr);
3171 
3172   // Otherwise, just emit it as a scalar.
3173   } else {
3174     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3175 
3176     QualType srcAddrType =
3177       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3178     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3179   }
3180   Address srcAddr = srcLV.getAddress();
3181 
3182   // The dest and src types don't necessarily match in LLVM terms
3183   // because of the crazy ObjC compatibility rules.
3184 
3185   llvm::PointerType *destType =
3186     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3187 
3188   // If the address is a constant null, just pass the appropriate null.
3189   if (isProvablyNull(srcAddr.getPointer())) {
3190     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3191              CRE->getType());
3192     return;
3193   }
3194 
3195   // Create the temporary.
3196   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3197                                       CGF.getPointerAlign(),
3198                                       "icr.temp");
3199   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3200   // and that cleanup will be conditional if we can't prove that the l-value
3201   // isn't null, so we need to register a dominating point so that the cleanups
3202   // system will make valid IR.
3203   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3204 
3205   // Zero-initialize it if we're not doing a copy-initialization.
3206   bool shouldCopy = CRE->shouldCopy();
3207   if (!shouldCopy) {
3208     llvm::Value *null =
3209       llvm::ConstantPointerNull::get(
3210         cast<llvm::PointerType>(destType->getElementType()));
3211     CGF.Builder.CreateStore(null, temp);
3212   }
3213 
3214   llvm::BasicBlock *contBB = nullptr;
3215   llvm::BasicBlock *originBB = nullptr;
3216 
3217   // If the address is *not* known to be non-null, we need to switch.
3218   llvm::Value *finalArgument;
3219 
3220   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3221                                               CGF.CGM.getDataLayout());
3222   if (provablyNonNull) {
3223     finalArgument = temp.getPointer();
3224   } else {
3225     llvm::Value *isNull =
3226       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3227 
3228     finalArgument = CGF.Builder.CreateSelect(isNull,
3229                                    llvm::ConstantPointerNull::get(destType),
3230                                              temp.getPointer(), "icr.argument");
3231 
3232     // If we need to copy, then the load has to be conditional, which
3233     // means we need control flow.
3234     if (shouldCopy) {
3235       originBB = CGF.Builder.GetInsertBlock();
3236       contBB = CGF.createBasicBlock("icr.cont");
3237       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3238       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3239       CGF.EmitBlock(copyBB);
3240       condEval.begin(CGF);
3241     }
3242   }
3243 
3244   llvm::Value *valueToUse = nullptr;
3245 
3246   // Perform a copy if necessary.
3247   if (shouldCopy) {
3248     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3249     assert(srcRV.isScalar());
3250 
3251     llvm::Value *src = srcRV.getScalarVal();
3252     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3253                                     "icr.cast");
3254 
3255     // Use an ordinary store, not a store-to-lvalue.
3256     CGF.Builder.CreateStore(src, temp);
3257 
3258     // If optimization is enabled, and the value was held in a
3259     // __strong variable, we need to tell the optimizer that this
3260     // value has to stay alive until we're doing the store back.
3261     // This is because the temporary is effectively unretained,
3262     // and so otherwise we can violate the high-level semantics.
3263     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3264         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3265       valueToUse = src;
3266     }
3267   }
3268 
3269   // Finish the control flow if we needed it.
3270   if (shouldCopy && !provablyNonNull) {
3271     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3272     CGF.EmitBlock(contBB);
3273 
3274     // Make a phi for the value to intrinsically use.
3275     if (valueToUse) {
3276       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3277                                                       "icr.to-use");
3278       phiToUse->addIncoming(valueToUse, copyBB);
3279       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3280                             originBB);
3281       valueToUse = phiToUse;
3282     }
3283 
3284     condEval.end(CGF);
3285   }
3286 
3287   args.addWriteback(srcLV, temp, valueToUse);
3288   args.add(RValue::get(finalArgument), CRE->getType());
3289 }
3290 
3291 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3292   assert(!StackBase);
3293 
3294   // Save the stack.
3295   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3296   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3297 }
3298 
3299 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3300   if (StackBase) {
3301     // Restore the stack after the call.
3302     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3303     CGF.Builder.CreateCall(F, StackBase);
3304   }
3305 }
3306 
3307 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3308                                           SourceLocation ArgLoc,
3309                                           AbstractCallee AC,
3310                                           unsigned ParmNum) {
3311   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3312                          SanOpts.has(SanitizerKind::NullabilityArg)))
3313     return;
3314 
3315   // The param decl may be missing in a variadic function.
3316   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3317   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3318 
3319   // Prefer the nonnull attribute if it's present.
3320   const NonNullAttr *NNAttr = nullptr;
3321   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3322     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3323 
3324   bool CanCheckNullability = false;
3325   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3326     auto Nullability = PVD->getType()->getNullability(getContext());
3327     CanCheckNullability = Nullability &&
3328                           *Nullability == NullabilityKind::NonNull &&
3329                           PVD->getTypeSourceInfo();
3330   }
3331 
3332   if (!NNAttr && !CanCheckNullability)
3333     return;
3334 
3335   SourceLocation AttrLoc;
3336   SanitizerMask CheckKind;
3337   SanitizerHandler Handler;
3338   if (NNAttr) {
3339     AttrLoc = NNAttr->getLocation();
3340     CheckKind = SanitizerKind::NonnullAttribute;
3341     Handler = SanitizerHandler::NonnullArg;
3342   } else {
3343     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3344     CheckKind = SanitizerKind::NullabilityArg;
3345     Handler = SanitizerHandler::NullabilityArg;
3346   }
3347 
3348   SanitizerScope SanScope(this);
3349   assert(RV.isScalar());
3350   llvm::Value *V = RV.getScalarVal();
3351   llvm::Value *Cond =
3352       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3353   llvm::Constant *StaticData[] = {
3354       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3355       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3356   };
3357   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3358 }
3359 
3360 void CodeGenFunction::EmitCallArgs(
3361     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3362     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3363     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3364   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3365 
3366   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3367   // because arguments are destroyed left to right in the callee. As a special
3368   // case, there are certain language constructs that require left-to-right
3369   // evaluation, and in those cases we consider the evaluation order requirement
3370   // to trump the "destruction order is reverse construction order" guarantee.
3371   bool LeftToRight =
3372       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3373           ? Order == EvaluationOrder::ForceLeftToRight
3374           : Order != EvaluationOrder::ForceRightToLeft;
3375 
3376   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3377                                          RValue EmittedArg) {
3378     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3379       return;
3380     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3381     if (PS == nullptr)
3382       return;
3383 
3384     const auto &Context = getContext();
3385     auto SizeTy = Context.getSizeType();
3386     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3387     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3388     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3389                                                      EmittedArg.getScalarVal());
3390     Args.add(RValue::get(V), SizeTy);
3391     // If we're emitting args in reverse, be sure to do so with
3392     // pass_object_size, as well.
3393     if (!LeftToRight)
3394       std::swap(Args.back(), *(&Args.back() - 1));
3395   };
3396 
3397   // Insert a stack save if we're going to need any inalloca args.
3398   bool HasInAllocaArgs = false;
3399   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3400     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3401          I != E && !HasInAllocaArgs; ++I)
3402       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3403     if (HasInAllocaArgs) {
3404       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3405       Args.allocateArgumentMemory(*this);
3406     }
3407   }
3408 
3409   // Evaluate each argument in the appropriate order.
3410   size_t CallArgsStart = Args.size();
3411   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3412     unsigned Idx = LeftToRight ? I : E - I - 1;
3413     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3414     unsigned InitialArgSize = Args.size();
3415     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3416     // the argument and parameter match or the objc method is parameterized.
3417     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3418             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3419                                                 ArgTypes[Idx]) ||
3420             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3421              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3422            "Argument and parameter types don't match");
3423     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3424     // In particular, we depend on it being the last arg in Args, and the
3425     // objectsize bits depend on there only being one arg if !LeftToRight.
3426     assert(InitialArgSize + 1 == Args.size() &&
3427            "The code below depends on only adding one arg per EmitCallArg");
3428     (void)InitialArgSize;
3429     // Since pointer argument are never emitted as LValue, it is safe to emit
3430     // non-null argument check for r-value only.
3431     if (!Args.back().hasLValue()) {
3432       RValue RVArg = Args.back().getKnownRValue();
3433       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3434                           ParamsToSkip + Idx);
3435       // @llvm.objectsize should never have side-effects and shouldn't need
3436       // destruction/cleanups, so we can safely "emit" it after its arg,
3437       // regardless of right-to-leftness
3438       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3439     }
3440   }
3441 
3442   if (!LeftToRight) {
3443     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3444     // IR function.
3445     std::reverse(Args.begin() + CallArgsStart, Args.end());
3446   }
3447 }
3448 
3449 namespace {
3450 
3451 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3452   DestroyUnpassedArg(Address Addr, QualType Ty)
3453       : Addr(Addr), Ty(Ty) {}
3454 
3455   Address Addr;
3456   QualType Ty;
3457 
3458   void Emit(CodeGenFunction &CGF, Flags flags) override {
3459     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3460     if (DtorKind == QualType::DK_cxx_destructor) {
3461       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3462       assert(!Dtor->isTrivial());
3463       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3464                                 /*Delegating=*/false, Addr);
3465     } else {
3466       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3467     }
3468   }
3469 };
3470 
3471 struct DisableDebugLocationUpdates {
3472   CodeGenFunction &CGF;
3473   bool disabledDebugInfo;
3474   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3475     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3476       CGF.disableDebugInfo();
3477   }
3478   ~DisableDebugLocationUpdates() {
3479     if (disabledDebugInfo)
3480       CGF.enableDebugInfo();
3481   }
3482 };
3483 
3484 } // end anonymous namespace
3485 
3486 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3487   if (!HasLV)
3488     return RV;
3489   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3490   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3491                         LV.isVolatile());
3492   IsUsed = true;
3493   return RValue::getAggregate(Copy.getAddress());
3494 }
3495 
3496 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3497   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3498   if (!HasLV && RV.isScalar())
3499     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true);
3500   else if (!HasLV && RV.isComplex())
3501     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3502   else {
3503     auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3504     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3505     // We assume that call args are never copied into subobjects.
3506     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3507                           HasLV ? LV.isVolatileQualified()
3508                                 : RV.isVolatileQualified());
3509   }
3510   IsUsed = true;
3511 }
3512 
3513 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3514                                   QualType type) {
3515   DisableDebugLocationUpdates Dis(*this, E);
3516   if (const ObjCIndirectCopyRestoreExpr *CRE
3517         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3518     assert(getLangOpts().ObjCAutoRefCount);
3519     return emitWritebackArg(*this, args, CRE);
3520   }
3521 
3522   assert(type->isReferenceType() == E->isGLValue() &&
3523          "reference binding to unmaterialized r-value!");
3524 
3525   if (E->isGLValue()) {
3526     assert(E->getObjectKind() == OK_Ordinary);
3527     return args.add(EmitReferenceBindingToExpr(E), type);
3528   }
3529 
3530   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3531 
3532   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3533   // However, we still have to push an EH-only cleanup in case we unwind before
3534   // we make it to the call.
3535   if (HasAggregateEvalKind && getContext().isParamDestroyedInCallee(type)) {
3536     // If we're using inalloca, use the argument memory.  Otherwise, use a
3537     // temporary.
3538     AggValueSlot Slot;
3539     if (args.isUsingInAlloca())
3540       Slot = createPlaceholderSlot(*this, type);
3541     else
3542       Slot = CreateAggTemp(type, "agg.tmp");
3543 
3544     Slot.setExternallyDestructed();
3545 
3546     EmitAggExpr(E, Slot);
3547     RValue RV = Slot.asRValue();
3548     args.add(RV, type);
3549 
3550     if (type->getAsCXXRecordDecl() || needsEHCleanup(type.isDestructedType())) {
3551       // Create a no-op GEP between the placeholder and the cleanup so we can
3552       // RAUW it successfully.  It also serves as a marker of the first
3553       // instruction where the cleanup is active.
3554       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3555                                               type);
3556       // This unreachable is a temporary marker which will be removed later.
3557       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3558       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3559     }
3560     return;
3561   }
3562 
3563   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3564       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3565     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3566     assert(L.isSimple());
3567     args.addUncopiedAggregate(L, type);
3568     return;
3569   }
3570 
3571   args.add(EmitAnyExprToTemp(E), type);
3572 }
3573 
3574 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3575   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3576   // implicitly widens null pointer constants that are arguments to varargs
3577   // functions to pointer-sized ints.
3578   if (!getTarget().getTriple().isOSWindows())
3579     return Arg->getType();
3580 
3581   if (Arg->getType()->isIntegerType() &&
3582       getContext().getTypeSize(Arg->getType()) <
3583           getContext().getTargetInfo().getPointerWidth(0) &&
3584       Arg->isNullPointerConstant(getContext(),
3585                                  Expr::NPC_ValueDependentIsNotNull)) {
3586     return getContext().getIntPtrType();
3587   }
3588 
3589   return Arg->getType();
3590 }
3591 
3592 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3593 // optimizer it can aggressively ignore unwind edges.
3594 void
3595 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3596   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3597       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3598     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3599                       CGM.getNoObjCARCExceptionsMetadata());
3600 }
3601 
3602 /// Emits a call to the given no-arguments nounwind runtime function.
3603 llvm::CallInst *
3604 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3605                                          const llvm::Twine &name) {
3606   return EmitNounwindRuntimeCall(callee, None, name);
3607 }
3608 
3609 /// Emits a call to the given nounwind runtime function.
3610 llvm::CallInst *
3611 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3612                                          ArrayRef<llvm::Value*> args,
3613                                          const llvm::Twine &name) {
3614   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3615   call->setDoesNotThrow();
3616   return call;
3617 }
3618 
3619 /// Emits a simple call (never an invoke) to the given no-arguments
3620 /// runtime function.
3621 llvm::CallInst *
3622 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3623                                  const llvm::Twine &name) {
3624   return EmitRuntimeCall(callee, None, name);
3625 }
3626 
3627 // Calls which may throw must have operand bundles indicating which funclet
3628 // they are nested within.
3629 SmallVector<llvm::OperandBundleDef, 1>
3630 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3631   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3632   // There is no need for a funclet operand bundle if we aren't inside a
3633   // funclet.
3634   if (!CurrentFuncletPad)
3635     return BundleList;
3636 
3637   // Skip intrinsics which cannot throw.
3638   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3639   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3640     return BundleList;
3641 
3642   BundleList.emplace_back("funclet", CurrentFuncletPad);
3643   return BundleList;
3644 }
3645 
3646 /// Emits a simple call (never an invoke) to the given runtime function.
3647 llvm::CallInst *
3648 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3649                                  ArrayRef<llvm::Value*> args,
3650                                  const llvm::Twine &name) {
3651   llvm::CallInst *call =
3652       Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name);
3653   call->setCallingConv(getRuntimeCC());
3654   return call;
3655 }
3656 
3657 /// Emits a call or invoke to the given noreturn runtime function.
3658 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3659                                                ArrayRef<llvm::Value*> args) {
3660   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3661       getBundlesForFunclet(callee);
3662 
3663   if (getInvokeDest()) {
3664     llvm::InvokeInst *invoke =
3665       Builder.CreateInvoke(callee,
3666                            getUnreachableBlock(),
3667                            getInvokeDest(),
3668                            args,
3669                            BundleList);
3670     invoke->setDoesNotReturn();
3671     invoke->setCallingConv(getRuntimeCC());
3672   } else {
3673     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3674     call->setDoesNotReturn();
3675     call->setCallingConv(getRuntimeCC());
3676     Builder.CreateUnreachable();
3677   }
3678 }
3679 
3680 /// Emits a call or invoke instruction to the given nullary runtime function.
3681 llvm::CallSite
3682 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3683                                          const Twine &name) {
3684   return EmitRuntimeCallOrInvoke(callee, None, name);
3685 }
3686 
3687 /// Emits a call or invoke instruction to the given runtime function.
3688 llvm::CallSite
3689 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3690                                          ArrayRef<llvm::Value*> args,
3691                                          const Twine &name) {
3692   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3693   callSite.setCallingConv(getRuntimeCC());
3694   return callSite;
3695 }
3696 
3697 /// Emits a call or invoke instruction to the given function, depending
3698 /// on the current state of the EH stack.
3699 llvm::CallSite
3700 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3701                                   ArrayRef<llvm::Value *> Args,
3702                                   const Twine &Name) {
3703   llvm::BasicBlock *InvokeDest = getInvokeDest();
3704   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3705       getBundlesForFunclet(Callee);
3706 
3707   llvm::Instruction *Inst;
3708   if (!InvokeDest)
3709     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3710   else {
3711     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3712     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3713                                 Name);
3714     EmitBlock(ContBB);
3715   }
3716 
3717   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3718   // optimizer it can aggressively ignore unwind edges.
3719   if (CGM.getLangOpts().ObjCAutoRefCount)
3720     AddObjCARCExceptionMetadata(Inst);
3721 
3722   return llvm::CallSite(Inst);
3723 }
3724 
3725 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3726                                                   llvm::Value *New) {
3727   DeferredReplacements.push_back(std::make_pair(Old, New));
3728 }
3729 
3730 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3731                                  const CGCallee &Callee,
3732                                  ReturnValueSlot ReturnValue,
3733                                  const CallArgList &CallArgs,
3734                                  llvm::Instruction **callOrInvoke,
3735                                  SourceLocation Loc) {
3736   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3737 
3738   assert(Callee.isOrdinary() || Callee.isVirtual());
3739 
3740   // Handle struct-return functions by passing a pointer to the
3741   // location that we would like to return into.
3742   QualType RetTy = CallInfo.getReturnType();
3743   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3744 
3745   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3746 
3747   // 1. Set up the arguments.
3748 
3749   // If we're using inalloca, insert the allocation after the stack save.
3750   // FIXME: Do this earlier rather than hacking it in here!
3751   Address ArgMemory = Address::invalid();
3752   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3753   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3754     const llvm::DataLayout &DL = CGM.getDataLayout();
3755     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3756     llvm::Instruction *IP = CallArgs.getStackBase();
3757     llvm::AllocaInst *AI;
3758     if (IP) {
3759       IP = IP->getNextNode();
3760       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3761                                 "argmem", IP);
3762     } else {
3763       AI = CreateTempAlloca(ArgStruct, "argmem");
3764     }
3765     auto Align = CallInfo.getArgStructAlignment();
3766     AI->setAlignment(Align.getQuantity());
3767     AI->setUsedWithInAlloca(true);
3768     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3769     ArgMemory = Address(AI, Align);
3770   }
3771 
3772   // Helper function to drill into the inalloca allocation.
3773   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3774     auto FieldOffset =
3775       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3776     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3777   };
3778 
3779   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3780   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3781 
3782   // If the call returns a temporary with struct return, create a temporary
3783   // alloca to hold the result, unless one is given to us.
3784   Address SRetPtr = Address::invalid();
3785   llvm::Value *UnusedReturnSizePtr = nullptr;
3786   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3787     if (!ReturnValue.isNull()) {
3788       SRetPtr = ReturnValue.getValue();
3789     } else {
3790       SRetPtr = CreateMemTemp(RetTy);
3791       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3792         uint64_t size =
3793             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3794         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetPtr.getPointer());
3795       }
3796     }
3797     if (IRFunctionArgs.hasSRetArg()) {
3798       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3799     } else if (RetAI.isInAlloca()) {
3800       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3801       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3802     }
3803   }
3804 
3805   Address swiftErrorTemp = Address::invalid();
3806   Address swiftErrorArg = Address::invalid();
3807 
3808   // Translate all of the arguments as necessary to match the IR lowering.
3809   assert(CallInfo.arg_size() == CallArgs.size() &&
3810          "Mismatch between function signature & arguments.");
3811   unsigned ArgNo = 0;
3812   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3813   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3814        I != E; ++I, ++info_it, ++ArgNo) {
3815     const ABIArgInfo &ArgInfo = info_it->info;
3816 
3817     // Insert a padding argument to ensure proper alignment.
3818     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3819       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3820           llvm::UndefValue::get(ArgInfo.getPaddingType());
3821 
3822     unsigned FirstIRArg, NumIRArgs;
3823     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3824 
3825     switch (ArgInfo.getKind()) {
3826     case ABIArgInfo::InAlloca: {
3827       assert(NumIRArgs == 0);
3828       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3829       if (I->isAggregate()) {
3830         // Replace the placeholder with the appropriate argument slot GEP.
3831         Address Addr = I->hasLValue()
3832                            ? I->getKnownLValue().getAddress()
3833                            : I->getKnownRValue().getAggregateAddress();
3834         llvm::Instruction *Placeholder =
3835             cast<llvm::Instruction>(Addr.getPointer());
3836         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3837         Builder.SetInsertPoint(Placeholder);
3838         Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3839         Builder.restoreIP(IP);
3840         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3841       } else {
3842         // Store the RValue into the argument struct.
3843         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3844         unsigned AS = Addr.getType()->getPointerAddressSpace();
3845         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3846         // There are some cases where a trivial bitcast is not avoidable.  The
3847         // definition of a type later in a translation unit may change it's type
3848         // from {}* to (%struct.foo*)*.
3849         if (Addr.getType() != MemType)
3850           Addr = Builder.CreateBitCast(Addr, MemType);
3851         I->copyInto(*this, Addr);
3852       }
3853       break;
3854     }
3855 
3856     case ABIArgInfo::Indirect: {
3857       assert(NumIRArgs == 1);
3858       if (!I->isAggregate()) {
3859         // Make a temporary alloca to pass the argument.
3860         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
3861                                      "indirect-arg-temp", false);
3862         IRCallArgs[FirstIRArg] = Addr.getPointer();
3863 
3864         I->copyInto(*this, Addr);
3865       } else {
3866         // We want to avoid creating an unnecessary temporary+copy here;
3867         // however, we need one in three cases:
3868         // 1. If the argument is not byval, and we are required to copy the
3869         //    source.  (This case doesn't occur on any common architecture.)
3870         // 2. If the argument is byval, RV is not sufficiently aligned, and
3871         //    we cannot force it to be sufficiently aligned.
3872         // 3. If the argument is byval, but RV is not located in default
3873         //    or alloca address space.
3874         Address Addr = I->hasLValue()
3875                            ? I->getKnownLValue().getAddress()
3876                            : I->getKnownRValue().getAggregateAddress();
3877         llvm::Value *V = Addr.getPointer();
3878         CharUnits Align = ArgInfo.getIndirectAlign();
3879         const llvm::DataLayout *TD = &CGM.getDataLayout();
3880 
3881         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3882                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3883                     TD->getAllocaAddrSpace()) &&
3884                "indirect argument must be in alloca address space");
3885 
3886         bool NeedCopy = false;
3887 
3888         if (Addr.getAlignment() < Align &&
3889             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3890                 Align.getQuantity()) {
3891           NeedCopy = true;
3892         } else if (I->hasLValue()) {
3893           auto LV = I->getKnownLValue();
3894           auto AS = LV.getAddressSpace();
3895           if ((!ArgInfo.getIndirectByVal() &&
3896                (LV.getAlignment() >=
3897                 getContext().getTypeAlignInChars(I->Ty))) ||
3898               (ArgInfo.getIndirectByVal() &&
3899                ((AS != LangAS::Default && AS != LangAS::opencl_private &&
3900                  AS != CGM.getASTAllocaAddressSpace())))) {
3901             NeedCopy = true;
3902           }
3903         }
3904         if (NeedCopy) {
3905           // Create an aligned temporary, and copy to it.
3906           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
3907                                      "byval-temp", false);
3908           IRCallArgs[FirstIRArg] = AI.getPointer();
3909           I->copyInto(*this, AI);
3910         } else {
3911           // Skip the extra memcpy call.
3912           auto *T = V->getType()->getPointerElementType()->getPointerTo(
3913               CGM.getDataLayout().getAllocaAddrSpace());
3914           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
3915               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
3916               true);
3917         }
3918       }
3919       break;
3920     }
3921 
3922     case ABIArgInfo::Ignore:
3923       assert(NumIRArgs == 0);
3924       break;
3925 
3926     case ABIArgInfo::Extend:
3927     case ABIArgInfo::Direct: {
3928       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3929           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3930           ArgInfo.getDirectOffset() == 0) {
3931         assert(NumIRArgs == 1);
3932         llvm::Value *V;
3933         if (!I->isAggregate())
3934           V = I->getKnownRValue().getScalarVal();
3935         else
3936           V = Builder.CreateLoad(
3937               I->hasLValue() ? I->getKnownLValue().getAddress()
3938                              : I->getKnownRValue().getAggregateAddress());
3939 
3940         // Implement swifterror by copying into a new swifterror argument.
3941         // We'll write back in the normal path out of the call.
3942         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
3943               == ParameterABI::SwiftErrorResult) {
3944           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
3945 
3946           QualType pointeeTy = I->Ty->getPointeeType();
3947           swiftErrorArg =
3948             Address(V, getContext().getTypeAlignInChars(pointeeTy));
3949 
3950           swiftErrorTemp =
3951             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3952           V = swiftErrorTemp.getPointer();
3953           cast<llvm::AllocaInst>(V)->setSwiftError(true);
3954 
3955           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
3956           Builder.CreateStore(errorValue, swiftErrorTemp);
3957         }
3958 
3959         // We might have to widen integers, but we should never truncate.
3960         if (ArgInfo.getCoerceToType() != V->getType() &&
3961             V->getType()->isIntegerTy())
3962           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3963 
3964         // If the argument doesn't match, perform a bitcast to coerce it.  This
3965         // can happen due to trivial type mismatches.
3966         if (FirstIRArg < IRFuncTy->getNumParams() &&
3967             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3968           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3969 
3970         IRCallArgs[FirstIRArg] = V;
3971         break;
3972       }
3973 
3974       // FIXME: Avoid the conversion through memory if possible.
3975       Address Src = Address::invalid();
3976       if (!I->isAggregate()) {
3977         Src = CreateMemTemp(I->Ty, "coerce");
3978         I->copyInto(*this, Src);
3979       } else {
3980         Src = I->hasLValue() ? I->getKnownLValue().getAddress()
3981                              : I->getKnownRValue().getAggregateAddress();
3982       }
3983 
3984       // If the value is offset in memory, apply the offset now.
3985       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3986 
3987       // Fast-isel and the optimizer generally like scalar values better than
3988       // FCAs, so we flatten them if this is safe to do for this argument.
3989       llvm::StructType *STy =
3990             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3991       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3992         llvm::Type *SrcTy = Src.getType()->getElementType();
3993         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3994         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3995 
3996         // If the source type is smaller than the destination type of the
3997         // coerce-to logic, copy the source value into a temp alloca the size
3998         // of the destination type to allow loading all of it. The bits past
3999         // the source value are left undef.
4000         if (SrcSize < DstSize) {
4001           Address TempAlloca
4002             = CreateTempAlloca(STy, Src.getAlignment(),
4003                                Src.getName() + ".coerce");
4004           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4005           Src = TempAlloca;
4006         } else {
4007           Src = Builder.CreateBitCast(Src,
4008                                       STy->getPointerTo(Src.getAddressSpace()));
4009         }
4010 
4011         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
4012         assert(NumIRArgs == STy->getNumElements());
4013         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4014           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
4015           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
4016           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4017           IRCallArgs[FirstIRArg + i] = LI;
4018         }
4019       } else {
4020         // In the simple case, just pass the coerced loaded value.
4021         assert(NumIRArgs == 1);
4022         IRCallArgs[FirstIRArg] =
4023           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4024       }
4025 
4026       break;
4027     }
4028 
4029     case ABIArgInfo::CoerceAndExpand: {
4030       auto coercionType = ArgInfo.getCoerceAndExpandType();
4031       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4032 
4033       llvm::Value *tempSize = nullptr;
4034       Address addr = Address::invalid();
4035       if (I->isAggregate()) {
4036         addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4037                               : I->getKnownRValue().getAggregateAddress();
4038 
4039       } else {
4040         RValue RV = I->getKnownRValue();
4041         assert(RV.isScalar()); // complex should always just be direct
4042 
4043         llvm::Type *scalarType = RV.getScalarVal()->getType();
4044         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4045         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4046 
4047         // Materialize to a temporary.
4048         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4049                  CharUnits::fromQuantity(std::max(layout->getAlignment(),
4050                                                   scalarAlign)));
4051         tempSize = EmitLifetimeStart(scalarSize, addr.getPointer());
4052 
4053         Builder.CreateStore(RV.getScalarVal(), addr);
4054       }
4055 
4056       addr = Builder.CreateElementBitCast(addr, coercionType);
4057 
4058       unsigned IRArgPos = FirstIRArg;
4059       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4060         llvm::Type *eltType = coercionType->getElementType(i);
4061         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4062         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4063         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4064         IRCallArgs[IRArgPos++] = elt;
4065       }
4066       assert(IRArgPos == FirstIRArg + NumIRArgs);
4067 
4068       if (tempSize) {
4069         EmitLifetimeEnd(tempSize, addr.getPointer());
4070       }
4071 
4072       break;
4073     }
4074 
4075     case ABIArgInfo::Expand:
4076       unsigned IRArgPos = FirstIRArg;
4077       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4078       assert(IRArgPos == FirstIRArg + NumIRArgs);
4079       break;
4080     }
4081   }
4082 
4083   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4084   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4085 
4086   // If we're using inalloca, set up that argument.
4087   if (ArgMemory.isValid()) {
4088     llvm::Value *Arg = ArgMemory.getPointer();
4089     if (CallInfo.isVariadic()) {
4090       // When passing non-POD arguments by value to variadic functions, we will
4091       // end up with a variadic prototype and an inalloca call site.  In such
4092       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4093       // the callee.
4094       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4095       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4096       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4097     } else {
4098       llvm::Type *LastParamTy =
4099           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4100       if (Arg->getType() != LastParamTy) {
4101 #ifndef NDEBUG
4102         // Assert that these structs have equivalent element types.
4103         llvm::StructType *FullTy = CallInfo.getArgStruct();
4104         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4105             cast<llvm::PointerType>(LastParamTy)->getElementType());
4106         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4107         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4108                                                 DE = DeclaredTy->element_end(),
4109                                                 FI = FullTy->element_begin();
4110              DI != DE; ++DI, ++FI)
4111           assert(*DI == *FI);
4112 #endif
4113         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4114       }
4115     }
4116     assert(IRFunctionArgs.hasInallocaArg());
4117     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4118   }
4119 
4120   // 2. Prepare the function pointer.
4121 
4122   // If the callee is a bitcast of a non-variadic function to have a
4123   // variadic function pointer type, check to see if we can remove the
4124   // bitcast.  This comes up with unprototyped functions.
4125   //
4126   // This makes the IR nicer, but more importantly it ensures that we
4127   // can inline the function at -O0 if it is marked always_inline.
4128   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4129     llvm::FunctionType *CalleeFT =
4130       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4131     if (!CalleeFT->isVarArg())
4132       return Ptr;
4133 
4134     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4135     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4136       return Ptr;
4137 
4138     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4139     if (!OrigFn)
4140       return Ptr;
4141 
4142     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4143 
4144     // If the original type is variadic, or if any of the component types
4145     // disagree, we cannot remove the cast.
4146     if (OrigFT->isVarArg() ||
4147         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4148         OrigFT->getReturnType() != CalleeFT->getReturnType())
4149       return Ptr;
4150 
4151     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4152       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4153         return Ptr;
4154 
4155     return OrigFn;
4156   };
4157   CalleePtr = simplifyVariadicCallee(CalleePtr);
4158 
4159   // 3. Perform the actual call.
4160 
4161   // Deactivate any cleanups that we're supposed to do immediately before
4162   // the call.
4163   if (!CallArgs.getCleanupsToDeactivate().empty())
4164     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4165 
4166   // Assert that the arguments we computed match up.  The IR verifier
4167   // will catch this, but this is a common enough source of problems
4168   // during IRGen changes that it's way better for debugging to catch
4169   // it ourselves here.
4170 #ifndef NDEBUG
4171   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4172   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4173     // Inalloca argument can have different type.
4174     if (IRFunctionArgs.hasInallocaArg() &&
4175         i == IRFunctionArgs.getInallocaArgNo())
4176       continue;
4177     if (i < IRFuncTy->getNumParams())
4178       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4179   }
4180 #endif
4181 
4182   // Compute the calling convention and attributes.
4183   unsigned CallingConv;
4184   llvm::AttributeList Attrs;
4185   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4186                              Callee.getAbstractInfo(), Attrs, CallingConv,
4187                              /*AttrOnCallSite=*/true);
4188 
4189   // Apply some call-site-specific attributes.
4190   // TODO: work this into building the attribute set.
4191 
4192   // Apply always_inline to all calls within flatten functions.
4193   // FIXME: should this really take priority over __try, below?
4194   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4195       !(Callee.getAbstractInfo().getCalleeDecl() &&
4196         Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) {
4197     Attrs =
4198         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4199                            llvm::Attribute::AlwaysInline);
4200   }
4201 
4202   // Disable inlining inside SEH __try blocks.
4203   if (isSEHTryScope()) {
4204     Attrs =
4205         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4206                            llvm::Attribute::NoInline);
4207   }
4208 
4209   // Decide whether to use a call or an invoke.
4210   bool CannotThrow;
4211   if (currentFunctionUsesSEHTry()) {
4212     // SEH cares about asynchronous exceptions, so everything can "throw."
4213     CannotThrow = false;
4214   } else if (isCleanupPadScope() &&
4215              EHPersonality::get(*this).isMSVCXXPersonality()) {
4216     // The MSVC++ personality will implicitly terminate the program if an
4217     // exception is thrown during a cleanup outside of a try/catch.
4218     // We don't need to model anything in IR to get this behavior.
4219     CannotThrow = true;
4220   } else {
4221     // Otherwise, nounwind call sites will never throw.
4222     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4223                                      llvm::Attribute::NoUnwind);
4224   }
4225 
4226   // If we made a temporary, be sure to clean up after ourselves. Note that we
4227   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4228   // pop this cleanup later on. Being eager about this is OK, since this
4229   // temporary is 'invisible' outside of the callee.
4230   if (UnusedReturnSizePtr)
4231     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetPtr,
4232                                          UnusedReturnSizePtr);
4233 
4234   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4235 
4236   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4237       getBundlesForFunclet(CalleePtr);
4238 
4239   // Emit the actual call/invoke instruction.
4240   llvm::CallSite CS;
4241   if (!InvokeDest) {
4242     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4243   } else {
4244     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4245     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4246                               BundleList);
4247     EmitBlock(Cont);
4248   }
4249   llvm::Instruction *CI = CS.getInstruction();
4250   if (callOrInvoke)
4251     *callOrInvoke = CI;
4252 
4253   // Apply the attributes and calling convention.
4254   CS.setAttributes(Attrs);
4255   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4256 
4257   // Apply various metadata.
4258 
4259   if (!CI->getType()->isVoidTy())
4260     CI->setName("call");
4261 
4262   // Insert instrumentation or attach profile metadata at indirect call sites.
4263   // For more details, see the comment before the definition of
4264   // IPVK_IndirectCallTarget in InstrProfData.inc.
4265   if (!CS.getCalledFunction())
4266     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4267                      CI, CalleePtr);
4268 
4269   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4270   // optimizer it can aggressively ignore unwind edges.
4271   if (CGM.getLangOpts().ObjCAutoRefCount)
4272     AddObjCARCExceptionMetadata(CI);
4273 
4274   // Suppress tail calls if requested.
4275   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4276     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4277     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4278       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4279   }
4280 
4281   // 4. Finish the call.
4282 
4283   // If the call doesn't return, finish the basic block and clear the
4284   // insertion point; this allows the rest of IRGen to discard
4285   // unreachable code.
4286   if (CS.doesNotReturn()) {
4287     if (UnusedReturnSizePtr)
4288       PopCleanupBlock();
4289 
4290     // Strip away the noreturn attribute to better diagnose unreachable UB.
4291     if (SanOpts.has(SanitizerKind::Unreachable)) {
4292       if (auto *F = CS.getCalledFunction())
4293         F->removeFnAttr(llvm::Attribute::NoReturn);
4294       CS.removeAttribute(llvm::AttributeList::FunctionIndex,
4295                          llvm::Attribute::NoReturn);
4296     }
4297 
4298     EmitUnreachable(Loc);
4299     Builder.ClearInsertionPoint();
4300 
4301     // FIXME: For now, emit a dummy basic block because expr emitters in
4302     // generally are not ready to handle emitting expressions at unreachable
4303     // points.
4304     EnsureInsertPoint();
4305 
4306     // Return a reasonable RValue.
4307     return GetUndefRValue(RetTy);
4308   }
4309 
4310   // Perform the swifterror writeback.
4311   if (swiftErrorTemp.isValid()) {
4312     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4313     Builder.CreateStore(errorResult, swiftErrorArg);
4314   }
4315 
4316   // Emit any call-associated writebacks immediately.  Arguably this
4317   // should happen after any return-value munging.
4318   if (CallArgs.hasWritebacks())
4319     emitWritebacks(*this, CallArgs);
4320 
4321   // The stack cleanup for inalloca arguments has to run out of the normal
4322   // lexical order, so deactivate it and run it manually here.
4323   CallArgs.freeArgumentMemory(*this);
4324 
4325   // Extract the return value.
4326   RValue Ret = [&] {
4327     switch (RetAI.getKind()) {
4328     case ABIArgInfo::CoerceAndExpand: {
4329       auto coercionType = RetAI.getCoerceAndExpandType();
4330       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4331 
4332       Address addr = SRetPtr;
4333       addr = Builder.CreateElementBitCast(addr, coercionType);
4334 
4335       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4336       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4337 
4338       unsigned unpaddedIndex = 0;
4339       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4340         llvm::Type *eltType = coercionType->getElementType(i);
4341         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4342         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4343         llvm::Value *elt = CI;
4344         if (requiresExtract)
4345           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4346         else
4347           assert(unpaddedIndex == 0);
4348         Builder.CreateStore(elt, eltAddr);
4349       }
4350       // FALLTHROUGH
4351       LLVM_FALLTHROUGH;
4352     }
4353 
4354     case ABIArgInfo::InAlloca:
4355     case ABIArgInfo::Indirect: {
4356       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4357       if (UnusedReturnSizePtr)
4358         PopCleanupBlock();
4359       return ret;
4360     }
4361 
4362     case ABIArgInfo::Ignore:
4363       // If we are ignoring an argument that had a result, make sure to
4364       // construct the appropriate return value for our caller.
4365       return GetUndefRValue(RetTy);
4366 
4367     case ABIArgInfo::Extend:
4368     case ABIArgInfo::Direct: {
4369       llvm::Type *RetIRTy = ConvertType(RetTy);
4370       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4371         switch (getEvaluationKind(RetTy)) {
4372         case TEK_Complex: {
4373           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4374           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4375           return RValue::getComplex(std::make_pair(Real, Imag));
4376         }
4377         case TEK_Aggregate: {
4378           Address DestPtr = ReturnValue.getValue();
4379           bool DestIsVolatile = ReturnValue.isVolatile();
4380 
4381           if (!DestPtr.isValid()) {
4382             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4383             DestIsVolatile = false;
4384           }
4385           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4386           return RValue::getAggregate(DestPtr);
4387         }
4388         case TEK_Scalar: {
4389           // If the argument doesn't match, perform a bitcast to coerce it.  This
4390           // can happen due to trivial type mismatches.
4391           llvm::Value *V = CI;
4392           if (V->getType() != RetIRTy)
4393             V = Builder.CreateBitCast(V, RetIRTy);
4394           return RValue::get(V);
4395         }
4396         }
4397         llvm_unreachable("bad evaluation kind");
4398       }
4399 
4400       Address DestPtr = ReturnValue.getValue();
4401       bool DestIsVolatile = ReturnValue.isVolatile();
4402 
4403       if (!DestPtr.isValid()) {
4404         DestPtr = CreateMemTemp(RetTy, "coerce");
4405         DestIsVolatile = false;
4406       }
4407 
4408       // If the value is offset in memory, apply the offset now.
4409       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4410       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4411 
4412       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4413     }
4414 
4415     case ABIArgInfo::Expand:
4416       llvm_unreachable("Invalid ABI kind for return argument");
4417     }
4418 
4419     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4420   } ();
4421 
4422   // Emit the assume_aligned check on the return value.
4423   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4424   if (Ret.isScalar() && TargetDecl) {
4425     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4426       llvm::Value *OffsetValue = nullptr;
4427       if (const auto *Offset = AA->getOffset())
4428         OffsetValue = EmitScalarExpr(Offset);
4429 
4430       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4431       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4432       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4433                               OffsetValue);
4434     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4435       llvm::Value *ParamVal =
4436           CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue(
4437               *this).getScalarVal();
4438       EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal);
4439     }
4440   }
4441 
4442   return Ret;
4443 }
4444 
4445 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4446   if (isVirtual()) {
4447     const CallExpr *CE = getVirtualCallExpr();
4448     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4449         CGF, getVirtualMethodDecl(), getThisAddress(),
4450         getFunctionType(), CE ? CE->getLocStart() : SourceLocation());
4451   }
4452 
4453   return *this;
4454 }
4455 
4456 /* VarArg handling */
4457 
4458 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4459   VAListAddr = VE->isMicrosoftABI()
4460                  ? EmitMSVAListRef(VE->getSubExpr())
4461                  : EmitVAListRef(VE->getSubExpr());
4462   QualType Ty = VE->getType();
4463   if (VE->isMicrosoftABI())
4464     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4465   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4466 }
4467