1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include <sstream>
36 using namespace clang;
37 using namespace CodeGen;
38 
39 /***/
40 
41 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
42   switch (CC) {
43   default: return llvm::CallingConv::C;
44   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
45   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
46   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
47   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
48   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
49   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
50   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
51   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
52   // TODO: Add support for __pascal to LLVM.
53   case CC_X86Pascal: return llvm::CallingConv::C;
54   // TODO: Add support for __vectorcall to LLVM.
55   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
56   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
57   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
58   }
59 }
60 
61 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
62 /// qualification.
63 /// FIXME: address space qualification?
64 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
65   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
66   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
67 }
68 
69 /// Returns the canonical formal type of the given C++ method.
70 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
71   return MD->getType()->getCanonicalTypeUnqualified()
72            .getAs<FunctionProtoType>();
73 }
74 
75 /// Returns the "extra-canonicalized" return type, which discards
76 /// qualifiers on the return type.  Codegen doesn't care about them,
77 /// and it makes ABI code a little easier to be able to assume that
78 /// all parameter and return types are top-level unqualified.
79 static CanQualType GetReturnType(QualType RetTy) {
80   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
81 }
82 
83 /// Arrange the argument and result information for a value of the given
84 /// unprototyped freestanding function type.
85 const CGFunctionInfo &
86 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
87   // When translating an unprototyped function type, always use a
88   // variadic type.
89   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
90                                  /*instanceMethod=*/false,
91                                  /*chainCall=*/false, None,
92                                  FTNP->getExtInfo(), RequiredArgs(0));
93 }
94 
95 /// Arrange the LLVM function layout for a value of the given function
96 /// type, on top of any implicit parameters already stored.
97 static const CGFunctionInfo &
98 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
99                         SmallVectorImpl<CanQualType> &prefix,
100                         CanQual<FunctionProtoType> FTP) {
101   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
102   // FIXME: Kill copy.
103   prefix.append(FTP->param_type_begin(), FTP->param_type_end());
104   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
105   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
106                                      /*chainCall=*/false, prefix,
107                                      FTP->getExtInfo(), required);
108 }
109 
110 /// Arrange the argument and result information for a value of the
111 /// given freestanding function type.
112 const CGFunctionInfo &
113 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
114   SmallVector<CanQualType, 16> argTypes;
115   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
116                                    FTP);
117 }
118 
119 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
120   // Set the appropriate calling convention for the Function.
121   if (D->hasAttr<StdCallAttr>())
122     return CC_X86StdCall;
123 
124   if (D->hasAttr<FastCallAttr>())
125     return CC_X86FastCall;
126 
127   if (D->hasAttr<ThisCallAttr>())
128     return CC_X86ThisCall;
129 
130   if (D->hasAttr<VectorCallAttr>())
131     return CC_X86VectorCall;
132 
133   if (D->hasAttr<PascalAttr>())
134     return CC_X86Pascal;
135 
136   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
137     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
138 
139   if (D->hasAttr<IntelOclBiccAttr>())
140     return CC_IntelOclBicc;
141 
142   if (D->hasAttr<MSABIAttr>())
143     return IsWindows ? CC_C : CC_X86_64Win64;
144 
145   if (D->hasAttr<SysVABIAttr>())
146     return IsWindows ? CC_X86_64SysV : CC_C;
147 
148   return CC_C;
149 }
150 
151 /// Arrange the argument and result information for a call to an
152 /// unknown C++ non-static member function of the given abstract type.
153 /// (Zero value of RD means we don't have any meaningful "this" argument type,
154 ///  so fall back to a generic pointer type).
155 /// The member function must be an ordinary function, i.e. not a
156 /// constructor or destructor.
157 const CGFunctionInfo &
158 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
159                                    const FunctionProtoType *FTP) {
160   SmallVector<CanQualType, 16> argTypes;
161 
162   // Add the 'this' pointer.
163   if (RD)
164     argTypes.push_back(GetThisType(Context, RD));
165   else
166     argTypes.push_back(Context.VoidPtrTy);
167 
168   return ::arrangeLLVMFunctionInfo(
169       *this, true, argTypes,
170       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
171 }
172 
173 /// Arrange the argument and result information for a declaration or
174 /// definition of the given C++ non-static member function.  The
175 /// member function must be an ordinary function, i.e. not a
176 /// constructor or destructor.
177 const CGFunctionInfo &
178 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
179   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
180   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
181 
182   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
183 
184   if (MD->isInstance()) {
185     // The abstract case is perfectly fine.
186     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
187     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
188   }
189 
190   return arrangeFreeFunctionType(prototype);
191 }
192 
193 const CGFunctionInfo &
194 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
195                                             StructorType Type) {
196 
197   SmallVector<CanQualType, 16> argTypes;
198   argTypes.push_back(GetThisType(Context, MD->getParent()));
199 
200   GlobalDecl GD;
201   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
202     GD = GlobalDecl(CD, toCXXCtorType(Type));
203   } else {
204     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
205     GD = GlobalDecl(DD, toCXXDtorType(Type));
206   }
207 
208   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
209 
210   // Add the formal parameters.
211   argTypes.append(FTP->param_type_begin(), FTP->param_type_end());
212 
213   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
214 
215   RequiredArgs required =
216       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
217 
218   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
219   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
220                                ? argTypes.front()
221                                : TheCXXABI.hasMostDerivedReturn(GD)
222                                      ? CGM.getContext().VoidPtrTy
223                                      : Context.VoidTy;
224   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
225                                  /*chainCall=*/false, argTypes, extInfo,
226                                  required);
227 }
228 
229 /// Arrange a call to a C++ method, passing the given arguments.
230 const CGFunctionInfo &
231 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
232                                         const CXXConstructorDecl *D,
233                                         CXXCtorType CtorKind,
234                                         unsigned ExtraArgs) {
235   // FIXME: Kill copy.
236   SmallVector<CanQualType, 16> ArgTypes;
237   for (const auto &Arg : args)
238     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
239 
240   CanQual<FunctionProtoType> FPT = GetFormalType(D);
241   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
242   GlobalDecl GD(D, CtorKind);
243   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
244                                ? ArgTypes.front()
245                                : TheCXXABI.hasMostDerivedReturn(GD)
246                                      ? CGM.getContext().VoidPtrTy
247                                      : Context.VoidTy;
248 
249   FunctionType::ExtInfo Info = FPT->getExtInfo();
250   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
251                                  /*chainCall=*/false, ArgTypes, Info,
252                                  Required);
253 }
254 
255 /// Arrange the argument and result information for the declaration or
256 /// definition of the given function.
257 const CGFunctionInfo &
258 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
259   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
260     if (MD->isInstance())
261       return arrangeCXXMethodDeclaration(MD);
262 
263   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
264 
265   assert(isa<FunctionType>(FTy));
266 
267   // When declaring a function without a prototype, always use a
268   // non-variadic type.
269   if (isa<FunctionNoProtoType>(FTy)) {
270     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
271     return arrangeLLVMFunctionInfo(
272         noProto->getReturnType(), /*instanceMethod=*/false,
273         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
274   }
275 
276   assert(isa<FunctionProtoType>(FTy));
277   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
278 }
279 
280 /// Arrange the argument and result information for the declaration or
281 /// definition of an Objective-C method.
282 const CGFunctionInfo &
283 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
284   // It happens that this is the same as a call with no optional
285   // arguments, except also using the formal 'self' type.
286   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
287 }
288 
289 /// Arrange the argument and result information for the function type
290 /// through which to perform a send to the given Objective-C method,
291 /// using the given receiver type.  The receiver type is not always
292 /// the 'self' type of the method or even an Objective-C pointer type.
293 /// This is *not* the right method for actually performing such a
294 /// message send, due to the possibility of optional arguments.
295 const CGFunctionInfo &
296 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
297                                               QualType receiverType) {
298   SmallVector<CanQualType, 16> argTys;
299   argTys.push_back(Context.getCanonicalParamType(receiverType));
300   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
301   // FIXME: Kill copy?
302   for (const auto *I : MD->params()) {
303     argTys.push_back(Context.getCanonicalParamType(I->getType()));
304   }
305 
306   FunctionType::ExtInfo einfo;
307   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
308   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
309 
310   if (getContext().getLangOpts().ObjCAutoRefCount &&
311       MD->hasAttr<NSReturnsRetainedAttr>())
312     einfo = einfo.withProducesResult(true);
313 
314   RequiredArgs required =
315     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
316 
317   return arrangeLLVMFunctionInfo(
318       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
319       /*chainCall=*/false, argTys, einfo, required);
320 }
321 
322 const CGFunctionInfo &
323 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
324   // FIXME: Do we need to handle ObjCMethodDecl?
325   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
326 
327   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
328     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
329 
330   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
331     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
332 
333   return arrangeFunctionDeclaration(FD);
334 }
335 
336 /// Arrange a thunk that takes 'this' as the first parameter followed by
337 /// varargs.  Return a void pointer, regardless of the actual return type.
338 /// The body of the thunk will end in a musttail call to a function of the
339 /// correct type, and the caller will bitcast the function to the correct
340 /// prototype.
341 const CGFunctionInfo &
342 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
343   assert(MD->isVirtual() && "only virtual memptrs have thunks");
344   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
345   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
346   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
347                                  /*chainCall=*/false, ArgTys,
348                                  FTP->getExtInfo(), RequiredArgs(1));
349 }
350 
351 const CGFunctionInfo &
352 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
353                                    CXXCtorType CT) {
354   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
355 
356   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
357   SmallVector<CanQualType, 2> ArgTys;
358   const CXXRecordDecl *RD = CD->getParent();
359   ArgTys.push_back(GetThisType(Context, RD));
360   if (CT == Ctor_CopyingClosure)
361     ArgTys.push_back(*FTP->param_type_begin());
362   if (RD->getNumVBases() > 0)
363     ArgTys.push_back(Context.IntTy);
364   CallingConv CC = Context.getDefaultCallingConvention(
365       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
366   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
367                                  /*chainCall=*/false, ArgTys,
368                                  FunctionType::ExtInfo(CC), RequiredArgs::All);
369 }
370 
371 /// Arrange a call as unto a free function, except possibly with an
372 /// additional number of formal parameters considered required.
373 static const CGFunctionInfo &
374 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
375                             CodeGenModule &CGM,
376                             const CallArgList &args,
377                             const FunctionType *fnType,
378                             unsigned numExtraRequiredArgs,
379                             bool chainCall) {
380   assert(args.size() >= numExtraRequiredArgs);
381 
382   // In most cases, there are no optional arguments.
383   RequiredArgs required = RequiredArgs::All;
384 
385   // If we have a variadic prototype, the required arguments are the
386   // extra prefix plus the arguments in the prototype.
387   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
388     if (proto->isVariadic())
389       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
390 
391   // If we don't have a prototype at all, but we're supposed to
392   // explicitly use the variadic convention for unprototyped calls,
393   // treat all of the arguments as required but preserve the nominal
394   // possibility of variadics.
395   } else if (CGM.getTargetCodeGenInfo()
396                 .isNoProtoCallVariadic(args,
397                                        cast<FunctionNoProtoType>(fnType))) {
398     required = RequiredArgs(args.size());
399   }
400 
401   // FIXME: Kill copy.
402   SmallVector<CanQualType, 16> argTypes;
403   for (const auto &arg : args)
404     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
405   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
406                                      /*instanceMethod=*/false, chainCall,
407                                      argTypes, fnType->getExtInfo(), required);
408 }
409 
410 /// Figure out the rules for calling a function with the given formal
411 /// type using the given arguments.  The arguments are necessary
412 /// because the function might be unprototyped, in which case it's
413 /// target-dependent in crazy ways.
414 const CGFunctionInfo &
415 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
416                                       const FunctionType *fnType,
417                                       bool chainCall) {
418   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
419                                      chainCall ? 1 : 0, chainCall);
420 }
421 
422 /// A block function call is essentially a free-function call with an
423 /// extra implicit argument.
424 const CGFunctionInfo &
425 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
426                                        const FunctionType *fnType) {
427   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
428                                      /*chainCall=*/false);
429 }
430 
431 const CGFunctionInfo &
432 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
433                                       const CallArgList &args,
434                                       FunctionType::ExtInfo info,
435                                       RequiredArgs required) {
436   // FIXME: Kill copy.
437   SmallVector<CanQualType, 16> argTypes;
438   for (const auto &Arg : args)
439     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
440   return arrangeLLVMFunctionInfo(
441       GetReturnType(resultType), /*instanceMethod=*/false,
442       /*chainCall=*/false, argTypes, info, required);
443 }
444 
445 /// Arrange a call to a C++ method, passing the given arguments.
446 const CGFunctionInfo &
447 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
448                                    const FunctionProtoType *FPT,
449                                    RequiredArgs required) {
450   // FIXME: Kill copy.
451   SmallVector<CanQualType, 16> argTypes;
452   for (const auto &Arg : args)
453     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
454 
455   FunctionType::ExtInfo info = FPT->getExtInfo();
456   return arrangeLLVMFunctionInfo(
457       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
458       /*chainCall=*/false, argTypes, info, required);
459 }
460 
461 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
462     QualType resultType, const FunctionArgList &args,
463     const FunctionType::ExtInfo &info, bool isVariadic) {
464   // FIXME: Kill copy.
465   SmallVector<CanQualType, 16> argTypes;
466   for (auto Arg : args)
467     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
468 
469   RequiredArgs required =
470     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
471   return arrangeLLVMFunctionInfo(
472       GetReturnType(resultType), /*instanceMethod=*/false,
473       /*chainCall=*/false, argTypes, info, required);
474 }
475 
476 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
477   return arrangeLLVMFunctionInfo(
478       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
479       None, FunctionType::ExtInfo(), RequiredArgs::All);
480 }
481 
482 /// Arrange the argument and result information for an abstract value
483 /// of a given function type.  This is the method which all of the
484 /// above functions ultimately defer to.
485 const CGFunctionInfo &
486 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
487                                       bool instanceMethod,
488                                       bool chainCall,
489                                       ArrayRef<CanQualType> argTypes,
490                                       FunctionType::ExtInfo info,
491                                       RequiredArgs required) {
492   assert(std::all_of(argTypes.begin(), argTypes.end(),
493                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
494 
495   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
496 
497   // Lookup or create unique function info.
498   llvm::FoldingSetNodeID ID;
499   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
500                           resultType, argTypes);
501 
502   void *insertPos = nullptr;
503   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
504   if (FI)
505     return *FI;
506 
507   // Construct the function info.  We co-allocate the ArgInfos.
508   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
509                               resultType, argTypes, required);
510   FunctionInfos.InsertNode(FI, insertPos);
511 
512   bool inserted = FunctionsBeingProcessed.insert(FI).second;
513   (void)inserted;
514   assert(inserted && "Recursively being processed?");
515 
516   // Compute ABI information.
517   getABIInfo().computeInfo(*FI);
518 
519   // Loop over all of the computed argument and return value info.  If any of
520   // them are direct or extend without a specified coerce type, specify the
521   // default now.
522   ABIArgInfo &retInfo = FI->getReturnInfo();
523   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
524     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
525 
526   for (auto &I : FI->arguments())
527     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
528       I.info.setCoerceToType(ConvertType(I.type));
529 
530   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
531   assert(erased && "Not in set?");
532 
533   return *FI;
534 }
535 
536 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
537                                        bool instanceMethod,
538                                        bool chainCall,
539                                        const FunctionType::ExtInfo &info,
540                                        CanQualType resultType,
541                                        ArrayRef<CanQualType> argTypes,
542                                        RequiredArgs required) {
543   void *buffer = operator new(sizeof(CGFunctionInfo) +
544                               sizeof(ArgInfo) * (argTypes.size() + 1));
545   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
546   FI->CallingConvention = llvmCC;
547   FI->EffectiveCallingConvention = llvmCC;
548   FI->ASTCallingConvention = info.getCC();
549   FI->InstanceMethod = instanceMethod;
550   FI->ChainCall = chainCall;
551   FI->NoReturn = info.getNoReturn();
552   FI->ReturnsRetained = info.getProducesResult();
553   FI->Required = required;
554   FI->HasRegParm = info.getHasRegParm();
555   FI->RegParm = info.getRegParm();
556   FI->ArgStruct = nullptr;
557   FI->NumArgs = argTypes.size();
558   FI->getArgsBuffer()[0].type = resultType;
559   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
560     FI->getArgsBuffer()[i + 1].type = argTypes[i];
561   return FI;
562 }
563 
564 /***/
565 
566 namespace {
567 // ABIArgInfo::Expand implementation.
568 
569 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
570 struct TypeExpansion {
571   enum TypeExpansionKind {
572     // Elements of constant arrays are expanded recursively.
573     TEK_ConstantArray,
574     // Record fields are expanded recursively (but if record is a union, only
575     // the field with the largest size is expanded).
576     TEK_Record,
577     // For complex types, real and imaginary parts are expanded recursively.
578     TEK_Complex,
579     // All other types are not expandable.
580     TEK_None
581   };
582 
583   const TypeExpansionKind Kind;
584 
585   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
586   virtual ~TypeExpansion() {}
587 };
588 
589 struct ConstantArrayExpansion : TypeExpansion {
590   QualType EltTy;
591   uint64_t NumElts;
592 
593   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
594       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
595   static bool classof(const TypeExpansion *TE) {
596     return TE->Kind == TEK_ConstantArray;
597   }
598 };
599 
600 struct RecordExpansion : TypeExpansion {
601   SmallVector<const CXXBaseSpecifier *, 1> Bases;
602 
603   SmallVector<const FieldDecl *, 1> Fields;
604 
605   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
606                   SmallVector<const FieldDecl *, 1> &&Fields)
607       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
608   static bool classof(const TypeExpansion *TE) {
609     return TE->Kind == TEK_Record;
610   }
611 };
612 
613 struct ComplexExpansion : TypeExpansion {
614   QualType EltTy;
615 
616   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
617   static bool classof(const TypeExpansion *TE) {
618     return TE->Kind == TEK_Complex;
619   }
620 };
621 
622 struct NoExpansion : TypeExpansion {
623   NoExpansion() : TypeExpansion(TEK_None) {}
624   static bool classof(const TypeExpansion *TE) {
625     return TE->Kind == TEK_None;
626   }
627 };
628 }  // namespace
629 
630 static std::unique_ptr<TypeExpansion>
631 getTypeExpansion(QualType Ty, const ASTContext &Context) {
632   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
633     return llvm::make_unique<ConstantArrayExpansion>(
634         AT->getElementType(), AT->getSize().getZExtValue());
635   }
636   if (const RecordType *RT = Ty->getAs<RecordType>()) {
637     SmallVector<const CXXBaseSpecifier *, 1> Bases;
638     SmallVector<const FieldDecl *, 1> Fields;
639     const RecordDecl *RD = RT->getDecl();
640     assert(!RD->hasFlexibleArrayMember() &&
641            "Cannot expand structure with flexible array.");
642     if (RD->isUnion()) {
643       // Unions can be here only in degenerative cases - all the fields are same
644       // after flattening. Thus we have to use the "largest" field.
645       const FieldDecl *LargestFD = nullptr;
646       CharUnits UnionSize = CharUnits::Zero();
647 
648       for (const auto *FD : RD->fields()) {
649         // Skip zero length bitfields.
650         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
651           continue;
652         assert(!FD->isBitField() &&
653                "Cannot expand structure with bit-field members.");
654         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
655         if (UnionSize < FieldSize) {
656           UnionSize = FieldSize;
657           LargestFD = FD;
658         }
659       }
660       if (LargestFD)
661         Fields.push_back(LargestFD);
662     } else {
663       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
664         assert(!CXXRD->isDynamicClass() &&
665                "cannot expand vtable pointers in dynamic classes");
666         for (const CXXBaseSpecifier &BS : CXXRD->bases())
667           Bases.push_back(&BS);
668       }
669 
670       for (const auto *FD : RD->fields()) {
671         // Skip zero length bitfields.
672         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
673           continue;
674         assert(!FD->isBitField() &&
675                "Cannot expand structure with bit-field members.");
676         Fields.push_back(FD);
677       }
678     }
679     return llvm::make_unique<RecordExpansion>(std::move(Bases),
680                                               std::move(Fields));
681   }
682   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
683     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
684   }
685   return llvm::make_unique<NoExpansion>();
686 }
687 
688 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
689   auto Exp = getTypeExpansion(Ty, Context);
690   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
691     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
692   }
693   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
694     int Res = 0;
695     for (auto BS : RExp->Bases)
696       Res += getExpansionSize(BS->getType(), Context);
697     for (auto FD : RExp->Fields)
698       Res += getExpansionSize(FD->getType(), Context);
699     return Res;
700   }
701   if (isa<ComplexExpansion>(Exp.get()))
702     return 2;
703   assert(isa<NoExpansion>(Exp.get()));
704   return 1;
705 }
706 
707 void
708 CodeGenTypes::getExpandedTypes(QualType Ty,
709                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
710   auto Exp = getTypeExpansion(Ty, Context);
711   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
712     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
713       getExpandedTypes(CAExp->EltTy, TI);
714     }
715   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
716     for (auto BS : RExp->Bases)
717       getExpandedTypes(BS->getType(), TI);
718     for (auto FD : RExp->Fields)
719       getExpandedTypes(FD->getType(), TI);
720   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
721     llvm::Type *EltTy = ConvertType(CExp->EltTy);
722     *TI++ = EltTy;
723     *TI++ = EltTy;
724   } else {
725     assert(isa<NoExpansion>(Exp.get()));
726     *TI++ = ConvertType(Ty);
727   }
728 }
729 
730 void CodeGenFunction::ExpandTypeFromArgs(
731     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
732   assert(LV.isSimple() &&
733          "Unexpected non-simple lvalue during struct expansion.");
734 
735   auto Exp = getTypeExpansion(Ty, getContext());
736   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
737     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
738       llvm::Value *EltAddr =
739           Builder.CreateConstGEP2_32(nullptr, LV.getAddress(), 0, i);
740       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
741       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
742     }
743   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
744     llvm::Value *This = LV.getAddress();
745     for (const CXXBaseSpecifier *BS : RExp->Bases) {
746       // Perform a single step derived-to-base conversion.
747       llvm::Value *Base =
748           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
749                                 /*NullCheckValue=*/false, SourceLocation());
750       LValue SubLV = MakeAddrLValue(Base, BS->getType());
751 
752       // Recurse onto bases.
753       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
754     }
755     for (auto FD : RExp->Fields) {
756       // FIXME: What are the right qualifiers here?
757       LValue SubLV = EmitLValueForField(LV, FD);
758       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
759     }
760   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
761     llvm::Value *RealAddr =
762         Builder.CreateStructGEP(nullptr, LV.getAddress(), 0, "real");
763     EmitStoreThroughLValue(RValue::get(*AI++),
764                            MakeAddrLValue(RealAddr, CExp->EltTy));
765     llvm::Value *ImagAddr =
766         Builder.CreateStructGEP(nullptr, LV.getAddress(), 1, "imag");
767     EmitStoreThroughLValue(RValue::get(*AI++),
768                            MakeAddrLValue(ImagAddr, CExp->EltTy));
769   } else {
770     assert(isa<NoExpansion>(Exp.get()));
771     EmitStoreThroughLValue(RValue::get(*AI++), LV);
772   }
773 }
774 
775 void CodeGenFunction::ExpandTypeToArgs(
776     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
777     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
778   auto Exp = getTypeExpansion(Ty, getContext());
779   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
780     llvm::Value *Addr = RV.getAggregateAddr();
781     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
782       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(nullptr, Addr, 0, i);
783       RValue EltRV =
784           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
785       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
786     }
787   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
788     llvm::Value *This = RV.getAggregateAddr();
789     for (const CXXBaseSpecifier *BS : RExp->Bases) {
790       // Perform a single step derived-to-base conversion.
791       llvm::Value *Base =
792           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
793                                 /*NullCheckValue=*/false, SourceLocation());
794       RValue BaseRV = RValue::getAggregate(Base);
795 
796       // Recurse onto bases.
797       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
798                        IRCallArgPos);
799     }
800 
801     LValue LV = MakeAddrLValue(This, Ty);
802     for (auto FD : RExp->Fields) {
803       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
804       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
805                        IRCallArgPos);
806     }
807   } else if (isa<ComplexExpansion>(Exp.get())) {
808     ComplexPairTy CV = RV.getComplexVal();
809     IRCallArgs[IRCallArgPos++] = CV.first;
810     IRCallArgs[IRCallArgPos++] = CV.second;
811   } else {
812     assert(isa<NoExpansion>(Exp.get()));
813     assert(RV.isScalar() &&
814            "Unexpected non-scalar rvalue during struct expansion.");
815 
816     // Insert a bitcast as needed.
817     llvm::Value *V = RV.getScalarVal();
818     if (IRCallArgPos < IRFuncTy->getNumParams() &&
819         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
820       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
821 
822     IRCallArgs[IRCallArgPos++] = V;
823   }
824 }
825 
826 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
827 /// accessing some number of bytes out of it, try to gep into the struct to get
828 /// at its inner goodness.  Dive as deep as possible without entering an element
829 /// with an in-memory size smaller than DstSize.
830 static llvm::Value *
831 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
832                                    llvm::StructType *SrcSTy,
833                                    uint64_t DstSize, CodeGenFunction &CGF) {
834   // We can't dive into a zero-element struct.
835   if (SrcSTy->getNumElements() == 0) return SrcPtr;
836 
837   llvm::Type *FirstElt = SrcSTy->getElementType(0);
838 
839   // If the first elt is at least as large as what we're looking for, or if the
840   // first element is the same size as the whole struct, we can enter it. The
841   // comparison must be made on the store size and not the alloca size. Using
842   // the alloca size may overstate the size of the load.
843   uint64_t FirstEltSize =
844     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
845   if (FirstEltSize < DstSize &&
846       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
847     return SrcPtr;
848 
849   // GEP into the first element.
850   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcSTy, SrcPtr, 0, 0, "coerce.dive");
851 
852   // If the first element is a struct, recurse.
853   llvm::Type *SrcTy =
854     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
855   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
856     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
857 
858   return SrcPtr;
859 }
860 
861 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
862 /// are either integers or pointers.  This does a truncation of the value if it
863 /// is too large or a zero extension if it is too small.
864 ///
865 /// This behaves as if the value were coerced through memory, so on big-endian
866 /// targets the high bits are preserved in a truncation, while little-endian
867 /// targets preserve the low bits.
868 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
869                                              llvm::Type *Ty,
870                                              CodeGenFunction &CGF) {
871   if (Val->getType() == Ty)
872     return Val;
873 
874   if (isa<llvm::PointerType>(Val->getType())) {
875     // If this is Pointer->Pointer avoid conversion to and from int.
876     if (isa<llvm::PointerType>(Ty))
877       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
878 
879     // Convert the pointer to an integer so we can play with its width.
880     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
881   }
882 
883   llvm::Type *DestIntTy = Ty;
884   if (isa<llvm::PointerType>(DestIntTy))
885     DestIntTy = CGF.IntPtrTy;
886 
887   if (Val->getType() != DestIntTy) {
888     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
889     if (DL.isBigEndian()) {
890       // Preserve the high bits on big-endian targets.
891       // That is what memory coercion does.
892       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
893       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
894 
895       if (SrcSize > DstSize) {
896         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
897         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
898       } else {
899         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
900         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
901       }
902     } else {
903       // Little-endian targets preserve the low bits. No shifts required.
904       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
905     }
906   }
907 
908   if (isa<llvm::PointerType>(Ty))
909     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
910   return Val;
911 }
912 
913 
914 
915 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
916 /// a pointer to an object of type \arg Ty.
917 ///
918 /// This safely handles the case when the src type is smaller than the
919 /// destination type; in this situation the values of bits which not
920 /// present in the src are undefined.
921 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
922                                       llvm::Type *Ty,
923                                       CodeGenFunction &CGF) {
924   llvm::Type *SrcTy =
925     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
926 
927   // If SrcTy and Ty are the same, just do a load.
928   if (SrcTy == Ty)
929     return CGF.Builder.CreateLoad(SrcPtr);
930 
931   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
932 
933   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
934     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
935     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
936   }
937 
938   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
939 
940   // If the source and destination are integer or pointer types, just do an
941   // extension or truncation to the desired type.
942   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
943       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
944     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
945     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
946   }
947 
948   // If load is legal, just bitcast the src pointer.
949   if (SrcSize >= DstSize) {
950     // Generally SrcSize is never greater than DstSize, since this means we are
951     // losing bits. However, this can happen in cases where the structure has
952     // additional padding, for example due to a user specified alignment.
953     //
954     // FIXME: Assert that we aren't truncating non-padding bits when have access
955     // to that information.
956     llvm::Value *Casted =
957       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
958     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
959     // FIXME: Use better alignment / avoid requiring aligned load.
960     Load->setAlignment(1);
961     return Load;
962   }
963 
964   // Otherwise do coercion through memory. This is stupid, but
965   // simple.
966   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
967   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
968   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
969   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
970   // FIXME: Use better alignment.
971   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
972       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
973       1, false);
974   return CGF.Builder.CreateLoad(Tmp);
975 }
976 
977 // Function to store a first-class aggregate into memory.  We prefer to
978 // store the elements rather than the aggregate to be more friendly to
979 // fast-isel.
980 // FIXME: Do we need to recurse here?
981 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
982                           llvm::Value *DestPtr, bool DestIsVolatile,
983                           bool LowAlignment) {
984   // Prefer scalar stores to first-class aggregate stores.
985   if (llvm::StructType *STy =
986         dyn_cast<llvm::StructType>(Val->getType())) {
987     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
988       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(STy, DestPtr, 0, i);
989       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
990       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
991                                                     DestIsVolatile);
992       if (LowAlignment)
993         SI->setAlignment(1);
994     }
995   } else {
996     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
997     if (LowAlignment)
998       SI->setAlignment(1);
999   }
1000 }
1001 
1002 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1003 /// where the source and destination may have different types.
1004 ///
1005 /// This safely handles the case when the src type is larger than the
1006 /// destination type; the upper bits of the src will be lost.
1007 static void CreateCoercedStore(llvm::Value *Src,
1008                                llvm::Value *DstPtr,
1009                                bool DstIsVolatile,
1010                                CodeGenFunction &CGF) {
1011   llvm::Type *SrcTy = Src->getType();
1012   llvm::Type *DstTy =
1013     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1014   if (SrcTy == DstTy) {
1015     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
1016     return;
1017   }
1018 
1019   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1020 
1021   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1022     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
1023     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1024   }
1025 
1026   // If the source and destination are integer or pointer types, just do an
1027   // extension or truncation to the desired type.
1028   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1029       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1030     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1031     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
1032     return;
1033   }
1034 
1035   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1036 
1037   // If store is legal, just bitcast the src pointer.
1038   if (SrcSize <= DstSize) {
1039     llvm::Value *Casted =
1040       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
1041     // FIXME: Use better alignment / avoid requiring aligned store.
1042     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
1043   } else {
1044     // Otherwise do coercion through memory. This is stupid, but
1045     // simple.
1046 
1047     // Generally SrcSize is never greater than DstSize, since this means we are
1048     // losing bits. However, this can happen in cases where the structure has
1049     // additional padding, for example due to a user specified alignment.
1050     //
1051     // FIXME: Assert that we aren't truncating non-padding bits when have access
1052     // to that information.
1053     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
1054     CGF.Builder.CreateStore(Src, Tmp);
1055     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
1056     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
1057     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
1058     // FIXME: Use better alignment.
1059     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1060         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1061         1, false);
1062   }
1063 }
1064 
1065 namespace {
1066 
1067 /// Encapsulates information about the way function arguments from
1068 /// CGFunctionInfo should be passed to actual LLVM IR function.
1069 class ClangToLLVMArgMapping {
1070   static const unsigned InvalidIndex = ~0U;
1071   unsigned InallocaArgNo;
1072   unsigned SRetArgNo;
1073   unsigned TotalIRArgs;
1074 
1075   /// Arguments of LLVM IR function corresponding to single Clang argument.
1076   struct IRArgs {
1077     unsigned PaddingArgIndex;
1078     // Argument is expanded to IR arguments at positions
1079     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1080     unsigned FirstArgIndex;
1081     unsigned NumberOfArgs;
1082 
1083     IRArgs()
1084         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1085           NumberOfArgs(0) {}
1086   };
1087 
1088   SmallVector<IRArgs, 8> ArgInfo;
1089 
1090 public:
1091   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1092                         bool OnlyRequiredArgs = false)
1093       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1094         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1095     construct(Context, FI, OnlyRequiredArgs);
1096   }
1097 
1098   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1099   unsigned getInallocaArgNo() const {
1100     assert(hasInallocaArg());
1101     return InallocaArgNo;
1102   }
1103 
1104   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1105   unsigned getSRetArgNo() const {
1106     assert(hasSRetArg());
1107     return SRetArgNo;
1108   }
1109 
1110   unsigned totalIRArgs() const { return TotalIRArgs; }
1111 
1112   bool hasPaddingArg(unsigned ArgNo) const {
1113     assert(ArgNo < ArgInfo.size());
1114     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1115   }
1116   unsigned getPaddingArgNo(unsigned ArgNo) const {
1117     assert(hasPaddingArg(ArgNo));
1118     return ArgInfo[ArgNo].PaddingArgIndex;
1119   }
1120 
1121   /// Returns index of first IR argument corresponding to ArgNo, and their
1122   /// quantity.
1123   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1124     assert(ArgNo < ArgInfo.size());
1125     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1126                           ArgInfo[ArgNo].NumberOfArgs);
1127   }
1128 
1129 private:
1130   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1131                  bool OnlyRequiredArgs);
1132 };
1133 
1134 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1135                                       const CGFunctionInfo &FI,
1136                                       bool OnlyRequiredArgs) {
1137   unsigned IRArgNo = 0;
1138   bool SwapThisWithSRet = false;
1139   const ABIArgInfo &RetAI = FI.getReturnInfo();
1140 
1141   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1142     SwapThisWithSRet = RetAI.isSRetAfterThis();
1143     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1144   }
1145 
1146   unsigned ArgNo = 0;
1147   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1148   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1149        ++I, ++ArgNo) {
1150     assert(I != FI.arg_end());
1151     QualType ArgType = I->type;
1152     const ABIArgInfo &AI = I->info;
1153     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1154     auto &IRArgs = ArgInfo[ArgNo];
1155 
1156     if (AI.getPaddingType())
1157       IRArgs.PaddingArgIndex = IRArgNo++;
1158 
1159     switch (AI.getKind()) {
1160     case ABIArgInfo::Extend:
1161     case ABIArgInfo::Direct: {
1162       // FIXME: handle sseregparm someday...
1163       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1164       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1165         IRArgs.NumberOfArgs = STy->getNumElements();
1166       } else {
1167         IRArgs.NumberOfArgs = 1;
1168       }
1169       break;
1170     }
1171     case ABIArgInfo::Indirect:
1172       IRArgs.NumberOfArgs = 1;
1173       break;
1174     case ABIArgInfo::Ignore:
1175     case ABIArgInfo::InAlloca:
1176       // ignore and inalloca doesn't have matching LLVM parameters.
1177       IRArgs.NumberOfArgs = 0;
1178       break;
1179     case ABIArgInfo::Expand: {
1180       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1181       break;
1182     }
1183     }
1184 
1185     if (IRArgs.NumberOfArgs > 0) {
1186       IRArgs.FirstArgIndex = IRArgNo;
1187       IRArgNo += IRArgs.NumberOfArgs;
1188     }
1189 
1190     // Skip over the sret parameter when it comes second.  We already handled it
1191     // above.
1192     if (IRArgNo == 1 && SwapThisWithSRet)
1193       IRArgNo++;
1194   }
1195   assert(ArgNo == ArgInfo.size());
1196 
1197   if (FI.usesInAlloca())
1198     InallocaArgNo = IRArgNo++;
1199 
1200   TotalIRArgs = IRArgNo;
1201 }
1202 }  // namespace
1203 
1204 /***/
1205 
1206 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1207   return FI.getReturnInfo().isIndirect();
1208 }
1209 
1210 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1211   return ReturnTypeUsesSRet(FI) &&
1212          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1213 }
1214 
1215 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1216   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1217     switch (BT->getKind()) {
1218     default:
1219       return false;
1220     case BuiltinType::Float:
1221       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1222     case BuiltinType::Double:
1223       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1224     case BuiltinType::LongDouble:
1225       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1226     }
1227   }
1228 
1229   return false;
1230 }
1231 
1232 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1233   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1234     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1235       if (BT->getKind() == BuiltinType::LongDouble)
1236         return getTarget().useObjCFP2RetForComplexLongDouble();
1237     }
1238   }
1239 
1240   return false;
1241 }
1242 
1243 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1244   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1245   return GetFunctionType(FI);
1246 }
1247 
1248 llvm::FunctionType *
1249 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1250 
1251   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1252   (void)Inserted;
1253   assert(Inserted && "Recursively being processed?");
1254 
1255   llvm::Type *resultType = nullptr;
1256   const ABIArgInfo &retAI = FI.getReturnInfo();
1257   switch (retAI.getKind()) {
1258   case ABIArgInfo::Expand:
1259     llvm_unreachable("Invalid ABI kind for return argument");
1260 
1261   case ABIArgInfo::Extend:
1262   case ABIArgInfo::Direct:
1263     resultType = retAI.getCoerceToType();
1264     break;
1265 
1266   case ABIArgInfo::InAlloca:
1267     if (retAI.getInAllocaSRet()) {
1268       // sret things on win32 aren't void, they return the sret pointer.
1269       QualType ret = FI.getReturnType();
1270       llvm::Type *ty = ConvertType(ret);
1271       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1272       resultType = llvm::PointerType::get(ty, addressSpace);
1273     } else {
1274       resultType = llvm::Type::getVoidTy(getLLVMContext());
1275     }
1276     break;
1277 
1278   case ABIArgInfo::Indirect: {
1279     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
1280     resultType = llvm::Type::getVoidTy(getLLVMContext());
1281     break;
1282   }
1283 
1284   case ABIArgInfo::Ignore:
1285     resultType = llvm::Type::getVoidTy(getLLVMContext());
1286     break;
1287   }
1288 
1289   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1290   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1291 
1292   // Add type for sret argument.
1293   if (IRFunctionArgs.hasSRetArg()) {
1294     QualType Ret = FI.getReturnType();
1295     llvm::Type *Ty = ConvertType(Ret);
1296     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1297     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1298         llvm::PointerType::get(Ty, AddressSpace);
1299   }
1300 
1301   // Add type for inalloca argument.
1302   if (IRFunctionArgs.hasInallocaArg()) {
1303     auto ArgStruct = FI.getArgStruct();
1304     assert(ArgStruct);
1305     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1306   }
1307 
1308   // Add in all of the required arguments.
1309   unsigned ArgNo = 0;
1310   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1311                                      ie = it + FI.getNumRequiredArgs();
1312   for (; it != ie; ++it, ++ArgNo) {
1313     const ABIArgInfo &ArgInfo = it->info;
1314 
1315     // Insert a padding type to ensure proper alignment.
1316     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1317       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1318           ArgInfo.getPaddingType();
1319 
1320     unsigned FirstIRArg, NumIRArgs;
1321     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1322 
1323     switch (ArgInfo.getKind()) {
1324     case ABIArgInfo::Ignore:
1325     case ABIArgInfo::InAlloca:
1326       assert(NumIRArgs == 0);
1327       break;
1328 
1329     case ABIArgInfo::Indirect: {
1330       assert(NumIRArgs == 1);
1331       // indirect arguments are always on the stack, which is addr space #0.
1332       llvm::Type *LTy = ConvertTypeForMem(it->type);
1333       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1334       break;
1335     }
1336 
1337     case ABIArgInfo::Extend:
1338     case ABIArgInfo::Direct: {
1339       // Fast-isel and the optimizer generally like scalar values better than
1340       // FCAs, so we flatten them if this is safe to do for this argument.
1341       llvm::Type *argType = ArgInfo.getCoerceToType();
1342       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1343       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1344         assert(NumIRArgs == st->getNumElements());
1345         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1346           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1347       } else {
1348         assert(NumIRArgs == 1);
1349         ArgTypes[FirstIRArg] = argType;
1350       }
1351       break;
1352     }
1353 
1354     case ABIArgInfo::Expand:
1355       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1356       getExpandedTypes(it->type, ArgTypesIter);
1357       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1358       break;
1359     }
1360   }
1361 
1362   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1363   assert(Erased && "Not in set?");
1364 
1365   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1366 }
1367 
1368 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1369   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1370   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1371 
1372   if (!isFuncTypeConvertible(FPT))
1373     return llvm::StructType::get(getLLVMContext());
1374 
1375   const CGFunctionInfo *Info;
1376   if (isa<CXXDestructorDecl>(MD))
1377     Info =
1378         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1379   else
1380     Info = &arrangeCXXMethodDeclaration(MD);
1381   return GetFunctionType(*Info);
1382 }
1383 
1384 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1385                                            const Decl *TargetDecl,
1386                                            AttributeListType &PAL,
1387                                            unsigned &CallingConv,
1388                                            bool AttrOnCallSite) {
1389   llvm::AttrBuilder FuncAttrs;
1390   llvm::AttrBuilder RetAttrs;
1391   bool HasOptnone = false;
1392 
1393   CallingConv = FI.getEffectiveCallingConvention();
1394 
1395   if (FI.isNoReturn())
1396     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1397 
1398   // FIXME: handle sseregparm someday...
1399   if (TargetDecl) {
1400     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1401       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1402     if (TargetDecl->hasAttr<NoThrowAttr>())
1403       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1404     if (TargetDecl->hasAttr<NoReturnAttr>())
1405       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1406     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1407       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1408 
1409     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1410       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1411       if (FPT && FPT->isNothrow(getContext()))
1412         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1413       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1414       // These attributes are not inherited by overloads.
1415       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1416       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1417         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1418     }
1419 
1420     // 'const' and 'pure' attribute functions are also nounwind.
1421     if (TargetDecl->hasAttr<ConstAttr>()) {
1422       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1423       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1424     } else if (TargetDecl->hasAttr<PureAttr>()) {
1425       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1426       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1427     }
1428     if (TargetDecl->hasAttr<RestrictAttr>())
1429       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1430     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1431       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1432 
1433     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1434   }
1435 
1436   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1437   if (!HasOptnone) {
1438     if (CodeGenOpts.OptimizeSize)
1439       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1440     if (CodeGenOpts.OptimizeSize == 2)
1441       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1442   }
1443 
1444   if (CodeGenOpts.DisableRedZone)
1445     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1446   if (CodeGenOpts.NoImplicitFloat)
1447     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1448   if (CodeGenOpts.EnableSegmentedStacks &&
1449       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1450     FuncAttrs.addAttribute("split-stack");
1451 
1452   if (AttrOnCallSite) {
1453     // Attributes that should go on the call site only.
1454     if (!CodeGenOpts.SimplifyLibCalls)
1455       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1456   } else {
1457     // Attributes that should go on the function, but not the call site.
1458     if (!CodeGenOpts.DisableFPElim) {
1459       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1460     } else if (CodeGenOpts.OmitLeafFramePointer) {
1461       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1462       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1463     } else {
1464       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1465       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1466     }
1467 
1468     FuncAttrs.addAttribute("less-precise-fpmad",
1469                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1470     FuncAttrs.addAttribute("no-infs-fp-math",
1471                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1472     FuncAttrs.addAttribute("no-nans-fp-math",
1473                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1474     FuncAttrs.addAttribute("unsafe-fp-math",
1475                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1476     FuncAttrs.addAttribute("use-soft-float",
1477                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1478     FuncAttrs.addAttribute("stack-protector-buffer-size",
1479                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1480 
1481     if (!CodeGenOpts.StackRealignment)
1482       FuncAttrs.addAttribute("no-realign-stack");
1483 
1484     // Add target-cpu and target-features work if they differ from the defaults.
1485     std::string &CPU = getTarget().getTargetOpts().CPU;
1486     if (CPU != "")
1487       FuncAttrs.addAttribute("target-cpu", CPU);
1488 
1489     // TODO: Features gets us the features on the command line including
1490     // feature dependencies. For canonicalization purposes we might want to
1491     // avoid putting features in the target-features set if we know it'll be one
1492     // of the default features in the backend, e.g. corei7-avx and +avx or figure
1493     // out non-explicit dependencies.
1494     std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1495     if (!Features.empty()) {
1496       std::stringstream S;
1497       std::copy(Features.begin(), Features.end(),
1498                 std::ostream_iterator<std::string>(S, ","));
1499       // The drop_back gets rid of the trailing space.
1500       FuncAttrs.addAttribute("target-features",
1501                              StringRef(S.str()).drop_back(1));
1502     }
1503   }
1504 
1505   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1506 
1507   QualType RetTy = FI.getReturnType();
1508   const ABIArgInfo &RetAI = FI.getReturnInfo();
1509   switch (RetAI.getKind()) {
1510   case ABIArgInfo::Extend:
1511     if (RetTy->hasSignedIntegerRepresentation())
1512       RetAttrs.addAttribute(llvm::Attribute::SExt);
1513     else if (RetTy->hasUnsignedIntegerRepresentation())
1514       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1515     // FALL THROUGH
1516   case ABIArgInfo::Direct:
1517     if (RetAI.getInReg())
1518       RetAttrs.addAttribute(llvm::Attribute::InReg);
1519     break;
1520   case ABIArgInfo::Ignore:
1521     break;
1522 
1523   case ABIArgInfo::InAlloca:
1524   case ABIArgInfo::Indirect: {
1525     // inalloca and sret disable readnone and readonly
1526     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1527       .removeAttribute(llvm::Attribute::ReadNone);
1528     break;
1529   }
1530 
1531   case ABIArgInfo::Expand:
1532     llvm_unreachable("Invalid ABI kind for return argument");
1533   }
1534 
1535   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1536     QualType PTy = RefTy->getPointeeType();
1537     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1538       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1539                                         .getQuantity());
1540     else if (getContext().getTargetAddressSpace(PTy) == 0)
1541       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1542   }
1543 
1544   // Attach return attributes.
1545   if (RetAttrs.hasAttributes()) {
1546     PAL.push_back(llvm::AttributeSet::get(
1547         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1548   }
1549 
1550   // Attach attributes to sret.
1551   if (IRFunctionArgs.hasSRetArg()) {
1552     llvm::AttrBuilder SRETAttrs;
1553     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1554     if (RetAI.getInReg())
1555       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1556     PAL.push_back(llvm::AttributeSet::get(
1557         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1558   }
1559 
1560   // Attach attributes to inalloca argument.
1561   if (IRFunctionArgs.hasInallocaArg()) {
1562     llvm::AttrBuilder Attrs;
1563     Attrs.addAttribute(llvm::Attribute::InAlloca);
1564     PAL.push_back(llvm::AttributeSet::get(
1565         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1566   }
1567 
1568   unsigned ArgNo = 0;
1569   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1570                                           E = FI.arg_end();
1571        I != E; ++I, ++ArgNo) {
1572     QualType ParamType = I->type;
1573     const ABIArgInfo &AI = I->info;
1574     llvm::AttrBuilder Attrs;
1575 
1576     // Add attribute for padding argument, if necessary.
1577     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1578       if (AI.getPaddingInReg())
1579         PAL.push_back(llvm::AttributeSet::get(
1580             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1581             llvm::Attribute::InReg));
1582     }
1583 
1584     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1585     // have the corresponding parameter variable.  It doesn't make
1586     // sense to do it here because parameters are so messed up.
1587     switch (AI.getKind()) {
1588     case ABIArgInfo::Extend:
1589       if (ParamType->isSignedIntegerOrEnumerationType())
1590         Attrs.addAttribute(llvm::Attribute::SExt);
1591       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1592         Attrs.addAttribute(llvm::Attribute::ZExt);
1593       // FALL THROUGH
1594     case ABIArgInfo::Direct:
1595       if (ArgNo == 0 && FI.isChainCall())
1596         Attrs.addAttribute(llvm::Attribute::Nest);
1597       else if (AI.getInReg())
1598         Attrs.addAttribute(llvm::Attribute::InReg);
1599       break;
1600 
1601     case ABIArgInfo::Indirect:
1602       if (AI.getInReg())
1603         Attrs.addAttribute(llvm::Attribute::InReg);
1604 
1605       if (AI.getIndirectByVal())
1606         Attrs.addAttribute(llvm::Attribute::ByVal);
1607 
1608       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1609 
1610       // byval disables readnone and readonly.
1611       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1612         .removeAttribute(llvm::Attribute::ReadNone);
1613       break;
1614 
1615     case ABIArgInfo::Ignore:
1616     case ABIArgInfo::Expand:
1617       continue;
1618 
1619     case ABIArgInfo::InAlloca:
1620       // inalloca disables readnone and readonly.
1621       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1622           .removeAttribute(llvm::Attribute::ReadNone);
1623       continue;
1624     }
1625 
1626     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1627       QualType PTy = RefTy->getPointeeType();
1628       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1629         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1630                                        .getQuantity());
1631       else if (getContext().getTargetAddressSpace(PTy) == 0)
1632         Attrs.addAttribute(llvm::Attribute::NonNull);
1633     }
1634 
1635     if (Attrs.hasAttributes()) {
1636       unsigned FirstIRArg, NumIRArgs;
1637       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1638       for (unsigned i = 0; i < NumIRArgs; i++)
1639         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1640                                               FirstIRArg + i + 1, Attrs));
1641     }
1642   }
1643   assert(ArgNo == FI.arg_size());
1644 
1645   if (FuncAttrs.hasAttributes())
1646     PAL.push_back(llvm::
1647                   AttributeSet::get(getLLVMContext(),
1648                                     llvm::AttributeSet::FunctionIndex,
1649                                     FuncAttrs));
1650 }
1651 
1652 /// An argument came in as a promoted argument; demote it back to its
1653 /// declared type.
1654 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1655                                          const VarDecl *var,
1656                                          llvm::Value *value) {
1657   llvm::Type *varType = CGF.ConvertType(var->getType());
1658 
1659   // This can happen with promotions that actually don't change the
1660   // underlying type, like the enum promotions.
1661   if (value->getType() == varType) return value;
1662 
1663   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1664          && "unexpected promotion type");
1665 
1666   if (isa<llvm::IntegerType>(varType))
1667     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1668 
1669   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1670 }
1671 
1672 /// Returns the attribute (either parameter attribute, or function
1673 /// attribute), which declares argument ArgNo to be non-null.
1674 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1675                                          QualType ArgType, unsigned ArgNo) {
1676   // FIXME: __attribute__((nonnull)) can also be applied to:
1677   //   - references to pointers, where the pointee is known to be
1678   //     nonnull (apparently a Clang extension)
1679   //   - transparent unions containing pointers
1680   // In the former case, LLVM IR cannot represent the constraint. In
1681   // the latter case, we have no guarantee that the transparent union
1682   // is in fact passed as a pointer.
1683   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1684     return nullptr;
1685   // First, check attribute on parameter itself.
1686   if (PVD) {
1687     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1688       return ParmNNAttr;
1689   }
1690   // Check function attributes.
1691   if (!FD)
1692     return nullptr;
1693   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1694     if (NNAttr->isNonNull(ArgNo))
1695       return NNAttr;
1696   }
1697   return nullptr;
1698 }
1699 
1700 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1701                                          llvm::Function *Fn,
1702                                          const FunctionArgList &Args) {
1703   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1704     // Naked functions don't have prologues.
1705     return;
1706 
1707   // If this is an implicit-return-zero function, go ahead and
1708   // initialize the return value.  TODO: it might be nice to have
1709   // a more general mechanism for this that didn't require synthesized
1710   // return statements.
1711   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1712     if (FD->hasImplicitReturnZero()) {
1713       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1714       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1715       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1716       Builder.CreateStore(Zero, ReturnValue);
1717     }
1718   }
1719 
1720   // FIXME: We no longer need the types from FunctionArgList; lift up and
1721   // simplify.
1722 
1723   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1724   // Flattened function arguments.
1725   SmallVector<llvm::Argument *, 16> FnArgs;
1726   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1727   for (auto &Arg : Fn->args()) {
1728     FnArgs.push_back(&Arg);
1729   }
1730   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1731 
1732   // If we're using inalloca, all the memory arguments are GEPs off of the last
1733   // parameter, which is a pointer to the complete memory area.
1734   llvm::Value *ArgStruct = nullptr;
1735   if (IRFunctionArgs.hasInallocaArg()) {
1736     ArgStruct = FnArgs[IRFunctionArgs.getInallocaArgNo()];
1737     assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1738   }
1739 
1740   // Name the struct return parameter.
1741   if (IRFunctionArgs.hasSRetArg()) {
1742     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1743     AI->setName("agg.result");
1744     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1745                                         llvm::Attribute::NoAlias));
1746   }
1747 
1748   // Track if we received the parameter as a pointer (indirect, byval, or
1749   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1750   // into a local alloca for us.
1751   enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1752   typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1753   SmallVector<ValueAndIsPtr, 16> ArgVals;
1754   ArgVals.reserve(Args.size());
1755 
1756   // Create a pointer value for every parameter declaration.  This usually
1757   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1758   // any cleanups or do anything that might unwind.  We do that separately, so
1759   // we can push the cleanups in the correct order for the ABI.
1760   assert(FI.arg_size() == Args.size() &&
1761          "Mismatch between function signature & arguments.");
1762   unsigned ArgNo = 0;
1763   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1764   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1765        i != e; ++i, ++info_it, ++ArgNo) {
1766     const VarDecl *Arg = *i;
1767     QualType Ty = info_it->type;
1768     const ABIArgInfo &ArgI = info_it->info;
1769 
1770     bool isPromoted =
1771       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1772 
1773     unsigned FirstIRArg, NumIRArgs;
1774     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1775 
1776     switch (ArgI.getKind()) {
1777     case ABIArgInfo::InAlloca: {
1778       assert(NumIRArgs == 0);
1779       llvm::Value *V =
1780           Builder.CreateStructGEP(FI.getArgStruct(), ArgStruct,
1781                                   ArgI.getInAllocaFieldIndex(), Arg->getName());
1782       ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1783       break;
1784     }
1785 
1786     case ABIArgInfo::Indirect: {
1787       assert(NumIRArgs == 1);
1788       llvm::Value *V = FnArgs[FirstIRArg];
1789 
1790       if (!hasScalarEvaluationKind(Ty)) {
1791         // Aggregates and complex variables are accessed by reference.  All we
1792         // need to do is realign the value, if requested
1793         if (ArgI.getIndirectRealign()) {
1794           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1795 
1796           // Copy from the incoming argument pointer to the temporary with the
1797           // appropriate alignment.
1798           //
1799           // FIXME: We should have a common utility for generating an aggregate
1800           // copy.
1801           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1802           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1803           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1804           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1805           Builder.CreateMemCpy(Dst,
1806                                Src,
1807                                llvm::ConstantInt::get(IntPtrTy,
1808                                                       Size.getQuantity()),
1809                                ArgI.getIndirectAlign(),
1810                                false);
1811           V = AlignedTemp;
1812         }
1813         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1814       } else {
1815         // Load scalar value from indirect argument.
1816         V = EmitLoadOfScalar(V, false, ArgI.getIndirectAlign(), Ty,
1817                              Arg->getLocStart());
1818 
1819         if (isPromoted)
1820           V = emitArgumentDemotion(*this, Arg, V);
1821         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1822       }
1823       break;
1824     }
1825 
1826     case ABIArgInfo::Extend:
1827     case ABIArgInfo::Direct: {
1828 
1829       // If we have the trivial case, handle it with no muss and fuss.
1830       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1831           ArgI.getCoerceToType() == ConvertType(Ty) &&
1832           ArgI.getDirectOffset() == 0) {
1833         assert(NumIRArgs == 1);
1834         auto AI = FnArgs[FirstIRArg];
1835         llvm::Value *V = AI;
1836 
1837         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1838           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1839                              PVD->getFunctionScopeIndex()))
1840             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1841                                                 AI->getArgNo() + 1,
1842                                                 llvm::Attribute::NonNull));
1843 
1844           QualType OTy = PVD->getOriginalType();
1845           if (const auto *ArrTy =
1846               getContext().getAsConstantArrayType(OTy)) {
1847             // A C99 array parameter declaration with the static keyword also
1848             // indicates dereferenceability, and if the size is constant we can
1849             // use the dereferenceable attribute (which requires the size in
1850             // bytes).
1851             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1852               QualType ETy = ArrTy->getElementType();
1853               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1854               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1855                   ArrSize) {
1856                 llvm::AttrBuilder Attrs;
1857                 Attrs.addDereferenceableAttr(
1858                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1859                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1860                                                     AI->getArgNo() + 1, Attrs));
1861               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1862                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1863                                                     AI->getArgNo() + 1,
1864                                                     llvm::Attribute::NonNull));
1865               }
1866             }
1867           } else if (const auto *ArrTy =
1868                      getContext().getAsVariableArrayType(OTy)) {
1869             // For C99 VLAs with the static keyword, we don't know the size so
1870             // we can't use the dereferenceable attribute, but in addrspace(0)
1871             // we know that it must be nonnull.
1872             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1873                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1874               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1875                                                   AI->getArgNo() + 1,
1876                                                   llvm::Attribute::NonNull));
1877           }
1878 
1879           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1880           if (!AVAttr)
1881             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1882               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1883           if (AVAttr) {
1884             llvm::Value *AlignmentValue =
1885               EmitScalarExpr(AVAttr->getAlignment());
1886             llvm::ConstantInt *AlignmentCI =
1887               cast<llvm::ConstantInt>(AlignmentValue);
1888             unsigned Alignment =
1889               std::min((unsigned) AlignmentCI->getZExtValue(),
1890                        +llvm::Value::MaximumAlignment);
1891 
1892             llvm::AttrBuilder Attrs;
1893             Attrs.addAlignmentAttr(Alignment);
1894             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1895                                                 AI->getArgNo() + 1, Attrs));
1896           }
1897         }
1898 
1899         if (Arg->getType().isRestrictQualified())
1900           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1901                                               AI->getArgNo() + 1,
1902                                               llvm::Attribute::NoAlias));
1903 
1904         // Ensure the argument is the correct type.
1905         if (V->getType() != ArgI.getCoerceToType())
1906           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1907 
1908         if (isPromoted)
1909           V = emitArgumentDemotion(*this, Arg, V);
1910 
1911         if (const CXXMethodDecl *MD =
1912             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1913           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1914             V = CGM.getCXXABI().
1915                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1916         }
1917 
1918         // Because of merging of function types from multiple decls it is
1919         // possible for the type of an argument to not match the corresponding
1920         // type in the function type. Since we are codegening the callee
1921         // in here, add a cast to the argument type.
1922         llvm::Type *LTy = ConvertType(Arg->getType());
1923         if (V->getType() != LTy)
1924           V = Builder.CreateBitCast(V, LTy);
1925 
1926         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1927         break;
1928       }
1929 
1930       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1931 
1932       // The alignment we need to use is the max of the requested alignment for
1933       // the argument plus the alignment required by our access code below.
1934       unsigned AlignmentToUse =
1935         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1936       AlignmentToUse = std::max(AlignmentToUse,
1937                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1938 
1939       Alloca->setAlignment(AlignmentToUse);
1940       llvm::Value *V = Alloca;
1941       llvm::Value *Ptr = V;    // Pointer to store into.
1942 
1943       // If the value is offset in memory, apply the offset now.
1944       if (unsigned Offs = ArgI.getDirectOffset()) {
1945         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1946         Ptr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), Ptr, Offs);
1947         Ptr = Builder.CreateBitCast(Ptr,
1948                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1949       }
1950 
1951       // Fast-isel and the optimizer generally like scalar values better than
1952       // FCAs, so we flatten them if this is safe to do for this argument.
1953       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1954       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
1955           STy->getNumElements() > 1) {
1956         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1957         llvm::Type *DstTy =
1958           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1959         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1960 
1961         if (SrcSize <= DstSize) {
1962           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1963 
1964           assert(STy->getNumElements() == NumIRArgs);
1965           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1966             auto AI = FnArgs[FirstIRArg + i];
1967             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1968             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, Ptr, 0, i);
1969             Builder.CreateStore(AI, EltPtr);
1970           }
1971         } else {
1972           llvm::AllocaInst *TempAlloca =
1973             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1974           TempAlloca->setAlignment(AlignmentToUse);
1975           llvm::Value *TempV = TempAlloca;
1976 
1977           assert(STy->getNumElements() == NumIRArgs);
1978           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1979             auto AI = FnArgs[FirstIRArg + i];
1980             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1981             llvm::Value *EltPtr =
1982                 Builder.CreateConstGEP2_32(ArgI.getCoerceToType(), TempV, 0, i);
1983             Builder.CreateStore(AI, EltPtr);
1984           }
1985 
1986           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1987         }
1988       } else {
1989         // Simple case, just do a coerced store of the argument into the alloca.
1990         assert(NumIRArgs == 1);
1991         auto AI = FnArgs[FirstIRArg];
1992         AI->setName(Arg->getName() + ".coerce");
1993         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
1994       }
1995 
1996 
1997       // Match to what EmitParmDecl is expecting for this type.
1998       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1999         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
2000         if (isPromoted)
2001           V = emitArgumentDemotion(*this, Arg, V);
2002         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
2003       } else {
2004         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
2005       }
2006       break;
2007     }
2008 
2009     case ABIArgInfo::Expand: {
2010       // If this structure was expanded into multiple arguments then
2011       // we need to create a temporary and reconstruct it from the
2012       // arguments.
2013       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
2014       CharUnits Align = getContext().getDeclAlign(Arg);
2015       Alloca->setAlignment(Align.getQuantity());
2016       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
2017       ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
2018 
2019       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2020       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2021       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2022       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2023         auto AI = FnArgs[FirstIRArg + i];
2024         AI->setName(Arg->getName() + "." + Twine(i));
2025       }
2026       break;
2027     }
2028 
2029     case ABIArgInfo::Ignore:
2030       assert(NumIRArgs == 0);
2031       // Initialize the local variable appropriately.
2032       if (!hasScalarEvaluationKind(Ty)) {
2033         ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
2034       } else {
2035         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2036         ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
2037       }
2038       break;
2039     }
2040   }
2041 
2042   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2043     for (int I = Args.size() - 1; I >= 0; --I)
2044       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2045                    I + 1);
2046   } else {
2047     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2048       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2049                    I + 1);
2050   }
2051 }
2052 
2053 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2054   while (insn->use_empty()) {
2055     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2056     if (!bitcast) return;
2057 
2058     // This is "safe" because we would have used a ConstantExpr otherwise.
2059     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2060     bitcast->eraseFromParent();
2061   }
2062 }
2063 
2064 /// Try to emit a fused autorelease of a return result.
2065 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2066                                                     llvm::Value *result) {
2067   // We must be immediately followed the cast.
2068   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2069   if (BB->empty()) return nullptr;
2070   if (&BB->back() != result) return nullptr;
2071 
2072   llvm::Type *resultType = result->getType();
2073 
2074   // result is in a BasicBlock and is therefore an Instruction.
2075   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2076 
2077   SmallVector<llvm::Instruction*,4> insnsToKill;
2078 
2079   // Look for:
2080   //  %generator = bitcast %type1* %generator2 to %type2*
2081   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2082     // We would have emitted this as a constant if the operand weren't
2083     // an Instruction.
2084     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2085 
2086     // Require the generator to be immediately followed by the cast.
2087     if (generator->getNextNode() != bitcast)
2088       return nullptr;
2089 
2090     insnsToKill.push_back(bitcast);
2091   }
2092 
2093   // Look for:
2094   //   %generator = call i8* @objc_retain(i8* %originalResult)
2095   // or
2096   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2097   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2098   if (!call) return nullptr;
2099 
2100   bool doRetainAutorelease;
2101 
2102   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
2103     doRetainAutorelease = true;
2104   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
2105                                           .objc_retainAutoreleasedReturnValue) {
2106     doRetainAutorelease = false;
2107 
2108     // If we emitted an assembly marker for this call (and the
2109     // ARCEntrypoints field should have been set if so), go looking
2110     // for that call.  If we can't find it, we can't do this
2111     // optimization.  But it should always be the immediately previous
2112     // instruction, unless we needed bitcasts around the call.
2113     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
2114       llvm::Instruction *prev = call->getPrevNode();
2115       assert(prev);
2116       if (isa<llvm::BitCastInst>(prev)) {
2117         prev = prev->getPrevNode();
2118         assert(prev);
2119       }
2120       assert(isa<llvm::CallInst>(prev));
2121       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2122                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
2123       insnsToKill.push_back(prev);
2124     }
2125   } else {
2126     return nullptr;
2127   }
2128 
2129   result = call->getArgOperand(0);
2130   insnsToKill.push_back(call);
2131 
2132   // Keep killing bitcasts, for sanity.  Note that we no longer care
2133   // about precise ordering as long as there's exactly one use.
2134   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2135     if (!bitcast->hasOneUse()) break;
2136     insnsToKill.push_back(bitcast);
2137     result = bitcast->getOperand(0);
2138   }
2139 
2140   // Delete all the unnecessary instructions, from latest to earliest.
2141   for (SmallVectorImpl<llvm::Instruction*>::iterator
2142          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2143     (*i)->eraseFromParent();
2144 
2145   // Do the fused retain/autorelease if we were asked to.
2146   if (doRetainAutorelease)
2147     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2148 
2149   // Cast back to the result type.
2150   return CGF.Builder.CreateBitCast(result, resultType);
2151 }
2152 
2153 /// If this is a +1 of the value of an immutable 'self', remove it.
2154 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2155                                           llvm::Value *result) {
2156   // This is only applicable to a method with an immutable 'self'.
2157   const ObjCMethodDecl *method =
2158     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2159   if (!method) return nullptr;
2160   const VarDecl *self = method->getSelfDecl();
2161   if (!self->getType().isConstQualified()) return nullptr;
2162 
2163   // Look for a retain call.
2164   llvm::CallInst *retainCall =
2165     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2166   if (!retainCall ||
2167       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
2168     return nullptr;
2169 
2170   // Look for an ordinary load of 'self'.
2171   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2172   llvm::LoadInst *load =
2173     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2174   if (!load || load->isAtomic() || load->isVolatile() ||
2175       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
2176     return nullptr;
2177 
2178   // Okay!  Burn it all down.  This relies for correctness on the
2179   // assumption that the retain is emitted as part of the return and
2180   // that thereafter everything is used "linearly".
2181   llvm::Type *resultType = result->getType();
2182   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2183   assert(retainCall->use_empty());
2184   retainCall->eraseFromParent();
2185   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2186 
2187   return CGF.Builder.CreateBitCast(load, resultType);
2188 }
2189 
2190 /// Emit an ARC autorelease of the result of a function.
2191 ///
2192 /// \return the value to actually return from the function
2193 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2194                                             llvm::Value *result) {
2195   // If we're returning 'self', kill the initial retain.  This is a
2196   // heuristic attempt to "encourage correctness" in the really unfortunate
2197   // case where we have a return of self during a dealloc and we desperately
2198   // need to avoid the possible autorelease.
2199   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2200     return self;
2201 
2202   // At -O0, try to emit a fused retain/autorelease.
2203   if (CGF.shouldUseFusedARCCalls())
2204     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2205       return fused;
2206 
2207   return CGF.EmitARCAutoreleaseReturnValue(result);
2208 }
2209 
2210 /// Heuristically search for a dominating store to the return-value slot.
2211 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2212   // If there are multiple uses of the return-value slot, just check
2213   // for something immediately preceding the IP.  Sometimes this can
2214   // happen with how we generate implicit-returns; it can also happen
2215   // with noreturn cleanups.
2216   if (!CGF.ReturnValue->hasOneUse()) {
2217     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2218     if (IP->empty()) return nullptr;
2219     llvm::Instruction *I = &IP->back();
2220 
2221     // Skip lifetime markers
2222     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2223                                             IE = IP->rend();
2224          II != IE; ++II) {
2225       if (llvm::IntrinsicInst *Intrinsic =
2226               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2227         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2228           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2229           ++II;
2230           if (isa<llvm::BitCastInst>(&*II)) {
2231             if (CastAddr == &*II) {
2232               continue;
2233             }
2234           }
2235         }
2236       }
2237       I = &*II;
2238       break;
2239     }
2240 
2241     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(I);
2242     if (!store) return nullptr;
2243     if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
2244     assert(!store->isAtomic() && !store->isVolatile()); // see below
2245     return store;
2246   }
2247 
2248   llvm::StoreInst *store =
2249     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
2250   if (!store) return nullptr;
2251 
2252   // These aren't actually possible for non-coerced returns, and we
2253   // only care about non-coerced returns on this code path.
2254   assert(!store->isAtomic() && !store->isVolatile());
2255 
2256   // Now do a first-and-dirty dominance check: just walk up the
2257   // single-predecessors chain from the current insertion point.
2258   llvm::BasicBlock *StoreBB = store->getParent();
2259   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2260   while (IP != StoreBB) {
2261     if (!(IP = IP->getSinglePredecessor()))
2262       return nullptr;
2263   }
2264 
2265   // Okay, the store's basic block dominates the insertion point; we
2266   // can do our thing.
2267   return store;
2268 }
2269 
2270 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2271                                          bool EmitRetDbgLoc,
2272                                          SourceLocation EndLoc) {
2273   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2274     // Naked functions don't have epilogues.
2275     Builder.CreateUnreachable();
2276     return;
2277   }
2278 
2279   // Functions with no result always return void.
2280   if (!ReturnValue) {
2281     Builder.CreateRetVoid();
2282     return;
2283   }
2284 
2285   llvm::DebugLoc RetDbgLoc;
2286   llvm::Value *RV = nullptr;
2287   QualType RetTy = FI.getReturnType();
2288   const ABIArgInfo &RetAI = FI.getReturnInfo();
2289 
2290   switch (RetAI.getKind()) {
2291   case ABIArgInfo::InAlloca:
2292     // Aggregrates get evaluated directly into the destination.  Sometimes we
2293     // need to return the sret value in a register, though.
2294     assert(hasAggregateEvaluationKind(RetTy));
2295     if (RetAI.getInAllocaSRet()) {
2296       llvm::Function::arg_iterator EI = CurFn->arg_end();
2297       --EI;
2298       llvm::Value *ArgStruct = EI;
2299       llvm::Value *SRet = Builder.CreateStructGEP(
2300           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2301       RV = Builder.CreateLoad(SRet, "sret");
2302     }
2303     break;
2304 
2305   case ABIArgInfo::Indirect: {
2306     auto AI = CurFn->arg_begin();
2307     if (RetAI.isSRetAfterThis())
2308       ++AI;
2309     switch (getEvaluationKind(RetTy)) {
2310     case TEK_Complex: {
2311       ComplexPairTy RT =
2312         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
2313                           EndLoc);
2314       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
2315                          /*isInit*/ true);
2316       break;
2317     }
2318     case TEK_Aggregate:
2319       // Do nothing; aggregrates get evaluated directly into the destination.
2320       break;
2321     case TEK_Scalar:
2322       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2323                         MakeNaturalAlignAddrLValue(AI, RetTy),
2324                         /*isInit*/ true);
2325       break;
2326     }
2327     break;
2328   }
2329 
2330   case ABIArgInfo::Extend:
2331   case ABIArgInfo::Direct:
2332     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2333         RetAI.getDirectOffset() == 0) {
2334       // The internal return value temp always will have pointer-to-return-type
2335       // type, just do a load.
2336 
2337       // If there is a dominating store to ReturnValue, we can elide
2338       // the load, zap the store, and usually zap the alloca.
2339       if (llvm::StoreInst *SI =
2340               findDominatingStoreToReturnValue(*this)) {
2341         // Reuse the debug location from the store unless there is
2342         // cleanup code to be emitted between the store and return
2343         // instruction.
2344         if (EmitRetDbgLoc && !AutoreleaseResult)
2345           RetDbgLoc = SI->getDebugLoc();
2346         // Get the stored value and nuke the now-dead store.
2347         RV = SI->getValueOperand();
2348         SI->eraseFromParent();
2349 
2350         // If that was the only use of the return value, nuke it as well now.
2351         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
2352           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
2353           ReturnValue = nullptr;
2354         }
2355 
2356       // Otherwise, we have to do a simple load.
2357       } else {
2358         RV = Builder.CreateLoad(ReturnValue);
2359       }
2360     } else {
2361       llvm::Value *V = ReturnValue;
2362       // If the value is offset in memory, apply the offset now.
2363       if (unsigned Offs = RetAI.getDirectOffset()) {
2364         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
2365         V = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), V, Offs);
2366         V = Builder.CreateBitCast(V,
2367                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2368       }
2369 
2370       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2371     }
2372 
2373     // In ARC, end functions that return a retainable type with a call
2374     // to objc_autoreleaseReturnValue.
2375     if (AutoreleaseResult) {
2376       assert(getLangOpts().ObjCAutoRefCount &&
2377              !FI.isReturnsRetained() &&
2378              RetTy->isObjCRetainableType());
2379       RV = emitAutoreleaseOfResult(*this, RV);
2380     }
2381 
2382     break;
2383 
2384   case ABIArgInfo::Ignore:
2385     break;
2386 
2387   case ABIArgInfo::Expand:
2388     llvm_unreachable("Invalid ABI kind for return argument");
2389   }
2390 
2391   llvm::Instruction *Ret;
2392   if (RV) {
2393     if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2394       if (auto RetNNAttr = CurGD.getDecl()->getAttr<ReturnsNonNullAttr>()) {
2395         SanitizerScope SanScope(this);
2396         llvm::Value *Cond = Builder.CreateICmpNE(
2397             RV, llvm::Constant::getNullValue(RV->getType()));
2398         llvm::Constant *StaticData[] = {
2399             EmitCheckSourceLocation(EndLoc),
2400             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2401         };
2402         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2403                   "nonnull_return", StaticData, None);
2404       }
2405     }
2406     Ret = Builder.CreateRet(RV);
2407   } else {
2408     Ret = Builder.CreateRetVoid();
2409   }
2410 
2411   if (RetDbgLoc)
2412     Ret->setDebugLoc(std::move(RetDbgLoc));
2413 }
2414 
2415 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2416   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2417   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2418 }
2419 
2420 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
2421   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2422   // placeholders.
2423   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2424   llvm::Value *Placeholder =
2425       llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2426   Placeholder = CGF.Builder.CreateLoad(Placeholder);
2427   return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
2428                                Ty.getQualifiers(),
2429                                AggValueSlot::IsNotDestructed,
2430                                AggValueSlot::DoesNotNeedGCBarriers,
2431                                AggValueSlot::IsNotAliased);
2432 }
2433 
2434 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2435                                           const VarDecl *param,
2436                                           SourceLocation loc) {
2437   // StartFunction converted the ABI-lowered parameter(s) into a
2438   // local alloca.  We need to turn that into an r-value suitable
2439   // for EmitCall.
2440   llvm::Value *local = GetAddrOfLocalVar(param);
2441 
2442   QualType type = param->getType();
2443 
2444   // For the most part, we just need to load the alloca, except:
2445   // 1) aggregate r-values are actually pointers to temporaries, and
2446   // 2) references to non-scalars are pointers directly to the aggregate.
2447   // I don't know why references to scalars are different here.
2448   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2449     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2450       return args.add(RValue::getAggregate(local), type);
2451 
2452     // Locals which are references to scalars are represented
2453     // with allocas holding the pointer.
2454     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2455   }
2456 
2457   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2458          "cannot emit delegate call arguments for inalloca arguments!");
2459 
2460   args.add(convertTempToRValue(local, type, loc), type);
2461 }
2462 
2463 static bool isProvablyNull(llvm::Value *addr) {
2464   return isa<llvm::ConstantPointerNull>(addr);
2465 }
2466 
2467 static bool isProvablyNonNull(llvm::Value *addr) {
2468   return isa<llvm::AllocaInst>(addr);
2469 }
2470 
2471 /// Emit the actual writing-back of a writeback.
2472 static void emitWriteback(CodeGenFunction &CGF,
2473                           const CallArgList::Writeback &writeback) {
2474   const LValue &srcLV = writeback.Source;
2475   llvm::Value *srcAddr = srcLV.getAddress();
2476   assert(!isProvablyNull(srcAddr) &&
2477          "shouldn't have writeback for provably null argument");
2478 
2479   llvm::BasicBlock *contBB = nullptr;
2480 
2481   // If the argument wasn't provably non-null, we need to null check
2482   // before doing the store.
2483   bool provablyNonNull = isProvablyNonNull(srcAddr);
2484   if (!provablyNonNull) {
2485     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2486     contBB = CGF.createBasicBlock("icr.done");
2487 
2488     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2489     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2490     CGF.EmitBlock(writebackBB);
2491   }
2492 
2493   // Load the value to writeback.
2494   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2495 
2496   // Cast it back, in case we're writing an id to a Foo* or something.
2497   value = CGF.Builder.CreateBitCast(value,
2498                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
2499                             "icr.writeback-cast");
2500 
2501   // Perform the writeback.
2502 
2503   // If we have a "to use" value, it's something we need to emit a use
2504   // of.  This has to be carefully threaded in: if it's done after the
2505   // release it's potentially undefined behavior (and the optimizer
2506   // will ignore it), and if it happens before the retain then the
2507   // optimizer could move the release there.
2508   if (writeback.ToUse) {
2509     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2510 
2511     // Retain the new value.  No need to block-copy here:  the block's
2512     // being passed up the stack.
2513     value = CGF.EmitARCRetainNonBlock(value);
2514 
2515     // Emit the intrinsic use here.
2516     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2517 
2518     // Load the old value (primitively).
2519     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2520 
2521     // Put the new value in place (primitively).
2522     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2523 
2524     // Release the old value.
2525     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2526 
2527   // Otherwise, we can just do a normal lvalue store.
2528   } else {
2529     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2530   }
2531 
2532   // Jump to the continuation block.
2533   if (!provablyNonNull)
2534     CGF.EmitBlock(contBB);
2535 }
2536 
2537 static void emitWritebacks(CodeGenFunction &CGF,
2538                            const CallArgList &args) {
2539   for (const auto &I : args.writebacks())
2540     emitWriteback(CGF, I);
2541 }
2542 
2543 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2544                                             const CallArgList &CallArgs) {
2545   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2546   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2547     CallArgs.getCleanupsToDeactivate();
2548   // Iterate in reverse to increase the likelihood of popping the cleanup.
2549   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2550          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2551     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2552     I->IsActiveIP->eraseFromParent();
2553   }
2554 }
2555 
2556 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2557   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2558     if (uop->getOpcode() == UO_AddrOf)
2559       return uop->getSubExpr();
2560   return nullptr;
2561 }
2562 
2563 /// Emit an argument that's being passed call-by-writeback.  That is,
2564 /// we are passing the address of
2565 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2566                              const ObjCIndirectCopyRestoreExpr *CRE) {
2567   LValue srcLV;
2568 
2569   // Make an optimistic effort to emit the address as an l-value.
2570   // This can fail if the the argument expression is more complicated.
2571   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2572     srcLV = CGF.EmitLValue(lvExpr);
2573 
2574   // Otherwise, just emit it as a scalar.
2575   } else {
2576     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2577 
2578     QualType srcAddrType =
2579       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2580     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2581   }
2582   llvm::Value *srcAddr = srcLV.getAddress();
2583 
2584   // The dest and src types don't necessarily match in LLVM terms
2585   // because of the crazy ObjC compatibility rules.
2586 
2587   llvm::PointerType *destType =
2588     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2589 
2590   // If the address is a constant null, just pass the appropriate null.
2591   if (isProvablyNull(srcAddr)) {
2592     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2593              CRE->getType());
2594     return;
2595   }
2596 
2597   // Create the temporary.
2598   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2599                                            "icr.temp");
2600   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2601   // and that cleanup will be conditional if we can't prove that the l-value
2602   // isn't null, so we need to register a dominating point so that the cleanups
2603   // system will make valid IR.
2604   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2605 
2606   // Zero-initialize it if we're not doing a copy-initialization.
2607   bool shouldCopy = CRE->shouldCopy();
2608   if (!shouldCopy) {
2609     llvm::Value *null =
2610       llvm::ConstantPointerNull::get(
2611         cast<llvm::PointerType>(destType->getElementType()));
2612     CGF.Builder.CreateStore(null, temp);
2613   }
2614 
2615   llvm::BasicBlock *contBB = nullptr;
2616   llvm::BasicBlock *originBB = nullptr;
2617 
2618   // If the address is *not* known to be non-null, we need to switch.
2619   llvm::Value *finalArgument;
2620 
2621   bool provablyNonNull = isProvablyNonNull(srcAddr);
2622   if (provablyNonNull) {
2623     finalArgument = temp;
2624   } else {
2625     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2626 
2627     finalArgument = CGF.Builder.CreateSelect(isNull,
2628                                    llvm::ConstantPointerNull::get(destType),
2629                                              temp, "icr.argument");
2630 
2631     // If we need to copy, then the load has to be conditional, which
2632     // means we need control flow.
2633     if (shouldCopy) {
2634       originBB = CGF.Builder.GetInsertBlock();
2635       contBB = CGF.createBasicBlock("icr.cont");
2636       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2637       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2638       CGF.EmitBlock(copyBB);
2639       condEval.begin(CGF);
2640     }
2641   }
2642 
2643   llvm::Value *valueToUse = nullptr;
2644 
2645   // Perform a copy if necessary.
2646   if (shouldCopy) {
2647     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2648     assert(srcRV.isScalar());
2649 
2650     llvm::Value *src = srcRV.getScalarVal();
2651     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2652                                     "icr.cast");
2653 
2654     // Use an ordinary store, not a store-to-lvalue.
2655     CGF.Builder.CreateStore(src, temp);
2656 
2657     // If optimization is enabled, and the value was held in a
2658     // __strong variable, we need to tell the optimizer that this
2659     // value has to stay alive until we're doing the store back.
2660     // This is because the temporary is effectively unretained,
2661     // and so otherwise we can violate the high-level semantics.
2662     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2663         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2664       valueToUse = src;
2665     }
2666   }
2667 
2668   // Finish the control flow if we needed it.
2669   if (shouldCopy && !provablyNonNull) {
2670     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2671     CGF.EmitBlock(contBB);
2672 
2673     // Make a phi for the value to intrinsically use.
2674     if (valueToUse) {
2675       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2676                                                       "icr.to-use");
2677       phiToUse->addIncoming(valueToUse, copyBB);
2678       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2679                             originBB);
2680       valueToUse = phiToUse;
2681     }
2682 
2683     condEval.end(CGF);
2684   }
2685 
2686   args.addWriteback(srcLV, temp, valueToUse);
2687   args.add(RValue::get(finalArgument), CRE->getType());
2688 }
2689 
2690 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2691   assert(!StackBase && !StackCleanup.isValid());
2692 
2693   // Save the stack.
2694   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2695   StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
2696 
2697   // Control gets really tied up in landing pads, so we have to spill the
2698   // stacksave to an alloca to avoid violating SSA form.
2699   // TODO: This is dead if we never emit the cleanup.  We should create the
2700   // alloca and store lazily on the first cleanup emission.
2701   StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2702   CGF.Builder.CreateStore(StackBase, StackBaseMem);
2703   CGF.pushStackRestore(EHCleanup, StackBaseMem);
2704   StackCleanup = CGF.EHStack.getInnermostEHScope();
2705   assert(StackCleanup.isValid());
2706 }
2707 
2708 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2709   if (StackBase) {
2710     CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2711     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2712     // We could load StackBase from StackBaseMem, but in the non-exceptional
2713     // case we can skip it.
2714     CGF.Builder.CreateCall(F, StackBase);
2715   }
2716 }
2717 
2718 static void emitNonNullArgCheck(CodeGenFunction &CGF, RValue RV,
2719                                 QualType ArgType, SourceLocation ArgLoc,
2720                                 const FunctionDecl *FD, unsigned ParmNum) {
2721   if (!CGF.SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2722     return;
2723   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2724   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2725   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2726   if (!NNAttr)
2727     return;
2728   CodeGenFunction::SanitizerScope SanScope(&CGF);
2729   assert(RV.isScalar());
2730   llvm::Value *V = RV.getScalarVal();
2731   llvm::Value *Cond =
2732       CGF.Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2733   llvm::Constant *StaticData[] = {
2734       CGF.EmitCheckSourceLocation(ArgLoc),
2735       CGF.EmitCheckSourceLocation(NNAttr->getLocation()),
2736       llvm::ConstantInt::get(CGF.Int32Ty, ArgNo + 1),
2737   };
2738   CGF.EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2739                 "nonnull_arg", StaticData, None);
2740 }
2741 
2742 void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2743                                    ArrayRef<QualType> ArgTypes,
2744                                    CallExpr::const_arg_iterator ArgBeg,
2745                                    CallExpr::const_arg_iterator ArgEnd,
2746                                    const FunctionDecl *CalleeDecl,
2747                                    unsigned ParamsToSkip) {
2748   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2749   // because arguments are destroyed left to right in the callee.
2750   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2751     // Insert a stack save if we're going to need any inalloca args.
2752     bool HasInAllocaArgs = false;
2753     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2754          I != E && !HasInAllocaArgs; ++I)
2755       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2756     if (HasInAllocaArgs) {
2757       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2758       Args.allocateArgumentMemory(*this);
2759     }
2760 
2761     // Evaluate each argument.
2762     size_t CallArgsStart = Args.size();
2763     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2764       CallExpr::const_arg_iterator Arg = ArgBeg + I;
2765       EmitCallArg(Args, *Arg, ArgTypes[I]);
2766       emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2767                           CalleeDecl, ParamsToSkip + I);
2768     }
2769 
2770     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2771     // IR function.
2772     std::reverse(Args.begin() + CallArgsStart, Args.end());
2773     return;
2774   }
2775 
2776   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2777     CallExpr::const_arg_iterator Arg = ArgBeg + I;
2778     assert(Arg != ArgEnd);
2779     EmitCallArg(Args, *Arg, ArgTypes[I]);
2780     emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2781                         CalleeDecl, ParamsToSkip + I);
2782   }
2783 }
2784 
2785 namespace {
2786 
2787 struct DestroyUnpassedArg : EHScopeStack::Cleanup {
2788   DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2789       : Addr(Addr), Ty(Ty) {}
2790 
2791   llvm::Value *Addr;
2792   QualType Ty;
2793 
2794   void Emit(CodeGenFunction &CGF, Flags flags) override {
2795     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2796     assert(!Dtor->isTrivial());
2797     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2798                               /*Delegating=*/false, Addr);
2799   }
2800 };
2801 
2802 }
2803 
2804 struct DisableDebugLocationUpdates {
2805   CodeGenFunction &CGF;
2806   bool disabledDebugInfo;
2807   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2808     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2809       CGF.disableDebugInfo();
2810   }
2811   ~DisableDebugLocationUpdates() {
2812     if (disabledDebugInfo)
2813       CGF.enableDebugInfo();
2814   }
2815 };
2816 
2817 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2818                                   QualType type) {
2819   DisableDebugLocationUpdates Dis(*this, E);
2820   if (const ObjCIndirectCopyRestoreExpr *CRE
2821         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2822     assert(getLangOpts().ObjCAutoRefCount);
2823     assert(getContext().hasSameType(E->getType(), type));
2824     return emitWritebackArg(*this, args, CRE);
2825   }
2826 
2827   assert(type->isReferenceType() == E->isGLValue() &&
2828          "reference binding to unmaterialized r-value!");
2829 
2830   if (E->isGLValue()) {
2831     assert(E->getObjectKind() == OK_Ordinary);
2832     return args.add(EmitReferenceBindingToExpr(E), type);
2833   }
2834 
2835   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2836 
2837   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2838   // However, we still have to push an EH-only cleanup in case we unwind before
2839   // we make it to the call.
2840   if (HasAggregateEvalKind &&
2841       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2842     // If we're using inalloca, use the argument memory.  Otherwise, use a
2843     // temporary.
2844     AggValueSlot Slot;
2845     if (args.isUsingInAlloca())
2846       Slot = createPlaceholderSlot(*this, type);
2847     else
2848       Slot = CreateAggTemp(type, "agg.tmp");
2849 
2850     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2851     bool DestroyedInCallee =
2852         RD && RD->hasNonTrivialDestructor() &&
2853         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2854     if (DestroyedInCallee)
2855       Slot.setExternallyDestructed();
2856 
2857     EmitAggExpr(E, Slot);
2858     RValue RV = Slot.asRValue();
2859     args.add(RV, type);
2860 
2861     if (DestroyedInCallee) {
2862       // Create a no-op GEP between the placeholder and the cleanup so we can
2863       // RAUW it successfully.  It also serves as a marker of the first
2864       // instruction where the cleanup is active.
2865       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2866       // This unreachable is a temporary marker which will be removed later.
2867       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2868       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2869     }
2870     return;
2871   }
2872 
2873   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2874       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2875     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2876     assert(L.isSimple());
2877     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2878       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2879     } else {
2880       // We can't represent a misaligned lvalue in the CallArgList, so copy
2881       // to an aligned temporary now.
2882       llvm::Value *tmp = CreateMemTemp(type);
2883       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2884                         L.getAlignment());
2885       args.add(RValue::getAggregate(tmp), type);
2886     }
2887     return;
2888   }
2889 
2890   args.add(EmitAnyExprToTemp(E), type);
2891 }
2892 
2893 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2894   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2895   // implicitly widens null pointer constants that are arguments to varargs
2896   // functions to pointer-sized ints.
2897   if (!getTarget().getTriple().isOSWindows())
2898     return Arg->getType();
2899 
2900   if (Arg->getType()->isIntegerType() &&
2901       getContext().getTypeSize(Arg->getType()) <
2902           getContext().getTargetInfo().getPointerWidth(0) &&
2903       Arg->isNullPointerConstant(getContext(),
2904                                  Expr::NPC_ValueDependentIsNotNull)) {
2905     return getContext().getIntPtrType();
2906   }
2907 
2908   return Arg->getType();
2909 }
2910 
2911 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2912 // optimizer it can aggressively ignore unwind edges.
2913 void
2914 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2915   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2916       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2917     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2918                       CGM.getNoObjCARCExceptionsMetadata());
2919 }
2920 
2921 /// Emits a call to the given no-arguments nounwind runtime function.
2922 llvm::CallInst *
2923 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2924                                          const llvm::Twine &name) {
2925   return EmitNounwindRuntimeCall(callee, None, name);
2926 }
2927 
2928 /// Emits a call to the given nounwind runtime function.
2929 llvm::CallInst *
2930 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2931                                          ArrayRef<llvm::Value*> args,
2932                                          const llvm::Twine &name) {
2933   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2934   call->setDoesNotThrow();
2935   return call;
2936 }
2937 
2938 /// Emits a simple call (never an invoke) to the given no-arguments
2939 /// runtime function.
2940 llvm::CallInst *
2941 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2942                                  const llvm::Twine &name) {
2943   return EmitRuntimeCall(callee, None, name);
2944 }
2945 
2946 /// Emits a simple call (never an invoke) to the given runtime
2947 /// function.
2948 llvm::CallInst *
2949 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2950                                  ArrayRef<llvm::Value*> args,
2951                                  const llvm::Twine &name) {
2952   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2953   call->setCallingConv(getRuntimeCC());
2954   return call;
2955 }
2956 
2957 /// Emits a call or invoke to the given noreturn runtime function.
2958 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2959                                                ArrayRef<llvm::Value*> args) {
2960   if (getInvokeDest()) {
2961     llvm::InvokeInst *invoke =
2962       Builder.CreateInvoke(callee,
2963                            getUnreachableBlock(),
2964                            getInvokeDest(),
2965                            args);
2966     invoke->setDoesNotReturn();
2967     invoke->setCallingConv(getRuntimeCC());
2968   } else {
2969     llvm::CallInst *call = Builder.CreateCall(callee, args);
2970     call->setDoesNotReturn();
2971     call->setCallingConv(getRuntimeCC());
2972     Builder.CreateUnreachable();
2973   }
2974 }
2975 
2976 /// Emits a call or invoke instruction to the given nullary runtime
2977 /// function.
2978 llvm::CallSite
2979 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2980                                          const Twine &name) {
2981   return EmitRuntimeCallOrInvoke(callee, None, name);
2982 }
2983 
2984 /// Emits a call or invoke instruction to the given runtime function.
2985 llvm::CallSite
2986 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2987                                          ArrayRef<llvm::Value*> args,
2988                                          const Twine &name) {
2989   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2990   callSite.setCallingConv(getRuntimeCC());
2991   return callSite;
2992 }
2993 
2994 llvm::CallSite
2995 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2996                                   const Twine &Name) {
2997   return EmitCallOrInvoke(Callee, None, Name);
2998 }
2999 
3000 /// Emits a call or invoke instruction to the given function, depending
3001 /// on the current state of the EH stack.
3002 llvm::CallSite
3003 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3004                                   ArrayRef<llvm::Value *> Args,
3005                                   const Twine &Name) {
3006   llvm::BasicBlock *InvokeDest = getInvokeDest();
3007 
3008   llvm::Instruction *Inst;
3009   if (!InvokeDest)
3010     Inst = Builder.CreateCall(Callee, Args, Name);
3011   else {
3012     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3013     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
3014     EmitBlock(ContBB);
3015   }
3016 
3017   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3018   // optimizer it can aggressively ignore unwind edges.
3019   if (CGM.getLangOpts().ObjCAutoRefCount)
3020     AddObjCARCExceptionMetadata(Inst);
3021 
3022   return llvm::CallSite(Inst);
3023 }
3024 
3025 /// \brief Store a non-aggregate value to an address to initialize it.  For
3026 /// initialization, a non-atomic store will be used.
3027 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3028                                         LValue Dst) {
3029   if (Src.isScalar())
3030     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3031   else
3032     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3033 }
3034 
3035 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3036                                                   llvm::Value *New) {
3037   DeferredReplacements.push_back(std::make_pair(Old, New));
3038 }
3039 
3040 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3041                                  llvm::Value *Callee,
3042                                  ReturnValueSlot ReturnValue,
3043                                  const CallArgList &CallArgs,
3044                                  const Decl *TargetDecl,
3045                                  llvm::Instruction **callOrInvoke) {
3046   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3047 
3048   // Handle struct-return functions by passing a pointer to the
3049   // location that we would like to return into.
3050   QualType RetTy = CallInfo.getReturnType();
3051   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3052 
3053   llvm::FunctionType *IRFuncTy =
3054     cast<llvm::FunctionType>(
3055                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3056 
3057   // If we're using inalloca, insert the allocation after the stack save.
3058   // FIXME: Do this earlier rather than hacking it in here!
3059   llvm::AllocaInst *ArgMemory = nullptr;
3060   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3061     llvm::Instruction *IP = CallArgs.getStackBase();
3062     llvm::AllocaInst *AI;
3063     if (IP) {
3064       IP = IP->getNextNode();
3065       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3066     } else {
3067       AI = CreateTempAlloca(ArgStruct, "argmem");
3068     }
3069     AI->setUsedWithInAlloca(true);
3070     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3071     ArgMemory = AI;
3072   }
3073 
3074   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3075   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3076 
3077   // If the call returns a temporary with struct return, create a temporary
3078   // alloca to hold the result, unless one is given to us.
3079   llvm::Value *SRetPtr = nullptr;
3080   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3081     SRetPtr = ReturnValue.getValue();
3082     if (!SRetPtr)
3083       SRetPtr = CreateMemTemp(RetTy);
3084     if (IRFunctionArgs.hasSRetArg()) {
3085       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr;
3086     } else {
3087       llvm::Value *Addr =
3088           Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3089                                   RetAI.getInAllocaFieldIndex());
3090       Builder.CreateStore(SRetPtr, Addr);
3091     }
3092   }
3093 
3094   assert(CallInfo.arg_size() == CallArgs.size() &&
3095          "Mismatch between function signature & arguments.");
3096   unsigned ArgNo = 0;
3097   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3098   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3099        I != E; ++I, ++info_it, ++ArgNo) {
3100     const ABIArgInfo &ArgInfo = info_it->info;
3101     RValue RV = I->RV;
3102 
3103     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
3104 
3105     // Insert a padding argument to ensure proper alignment.
3106     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3107       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3108           llvm::UndefValue::get(ArgInfo.getPaddingType());
3109 
3110     unsigned FirstIRArg, NumIRArgs;
3111     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3112 
3113     switch (ArgInfo.getKind()) {
3114     case ABIArgInfo::InAlloca: {
3115       assert(NumIRArgs == 0);
3116       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3117       if (RV.isAggregate()) {
3118         // Replace the placeholder with the appropriate argument slot GEP.
3119         llvm::Instruction *Placeholder =
3120             cast<llvm::Instruction>(RV.getAggregateAddr());
3121         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3122         Builder.SetInsertPoint(Placeholder);
3123         llvm::Value *Addr =
3124             Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3125                                     ArgInfo.getInAllocaFieldIndex());
3126         Builder.restoreIP(IP);
3127         deferPlaceholderReplacement(Placeholder, Addr);
3128       } else {
3129         // Store the RValue into the argument struct.
3130         llvm::Value *Addr =
3131             Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3132                                     ArgInfo.getInAllocaFieldIndex());
3133         unsigned AS = Addr->getType()->getPointerAddressSpace();
3134         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3135         // There are some cases where a trivial bitcast is not avoidable.  The
3136         // definition of a type later in a translation unit may change it's type
3137         // from {}* to (%struct.foo*)*.
3138         if (Addr->getType() != MemType)
3139           Addr = Builder.CreateBitCast(Addr, MemType);
3140         LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
3141         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3142       }
3143       break;
3144     }
3145 
3146     case ABIArgInfo::Indirect: {
3147       assert(NumIRArgs == 1);
3148       if (RV.isScalar() || RV.isComplex()) {
3149         // Make a temporary alloca to pass the argument.
3150         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3151         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
3152           AI->setAlignment(ArgInfo.getIndirectAlign());
3153         IRCallArgs[FirstIRArg] = AI;
3154 
3155         LValue argLV = MakeAddrLValue(AI, I->Ty, TypeAlign);
3156         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3157       } else {
3158         // We want to avoid creating an unnecessary temporary+copy here;
3159         // however, we need one in three cases:
3160         // 1. If the argument is not byval, and we are required to copy the
3161         //    source.  (This case doesn't occur on any common architecture.)
3162         // 2. If the argument is byval, RV is not sufficiently aligned, and
3163         //    we cannot force it to be sufficiently aligned.
3164         // 3. If the argument is byval, but RV is located in an address space
3165         //    different than that of the argument (0).
3166         llvm::Value *Addr = RV.getAggregateAddr();
3167         unsigned Align = ArgInfo.getIndirectAlign();
3168         const llvm::DataLayout *TD = &CGM.getDataLayout();
3169         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
3170         const unsigned ArgAddrSpace =
3171             (FirstIRArg < IRFuncTy->getNumParams()
3172                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3173                  : 0);
3174         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3175             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
3176              llvm::getOrEnforceKnownAlignment(Addr, Align, *TD) < Align) ||
3177             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3178           // Create an aligned temporary, and copy to it.
3179           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3180           if (Align > AI->getAlignment())
3181             AI->setAlignment(Align);
3182           IRCallArgs[FirstIRArg] = AI;
3183           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3184         } else {
3185           // Skip the extra memcpy call.
3186           IRCallArgs[FirstIRArg] = Addr;
3187         }
3188       }
3189       break;
3190     }
3191 
3192     case ABIArgInfo::Ignore:
3193       assert(NumIRArgs == 0);
3194       break;
3195 
3196     case ABIArgInfo::Extend:
3197     case ABIArgInfo::Direct: {
3198       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3199           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3200           ArgInfo.getDirectOffset() == 0) {
3201         assert(NumIRArgs == 1);
3202         llvm::Value *V;
3203         if (RV.isScalar())
3204           V = RV.getScalarVal();
3205         else
3206           V = Builder.CreateLoad(RV.getAggregateAddr());
3207 
3208         // We might have to widen integers, but we should never truncate.
3209         if (ArgInfo.getCoerceToType() != V->getType() &&
3210             V->getType()->isIntegerTy())
3211           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3212 
3213         // If the argument doesn't match, perform a bitcast to coerce it.  This
3214         // can happen due to trivial type mismatches.
3215         if (FirstIRArg < IRFuncTy->getNumParams() &&
3216             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3217           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3218         IRCallArgs[FirstIRArg] = V;
3219         break;
3220       }
3221 
3222       // FIXME: Avoid the conversion through memory if possible.
3223       llvm::Value *SrcPtr;
3224       if (RV.isScalar() || RV.isComplex()) {
3225         SrcPtr = CreateMemTemp(I->Ty, "coerce");
3226         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
3227         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3228       } else
3229         SrcPtr = RV.getAggregateAddr();
3230 
3231       // If the value is offset in memory, apply the offset now.
3232       if (unsigned Offs = ArgInfo.getDirectOffset()) {
3233         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
3234         SrcPtr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), SrcPtr, Offs);
3235         SrcPtr = Builder.CreateBitCast(SrcPtr,
3236                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
3237 
3238       }
3239 
3240       // Fast-isel and the optimizer generally like scalar values better than
3241       // FCAs, so we flatten them if this is safe to do for this argument.
3242       llvm::StructType *STy =
3243             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3244       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3245         llvm::Type *SrcTy =
3246           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
3247         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3248         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3249 
3250         // If the source type is smaller than the destination type of the
3251         // coerce-to logic, copy the source value into a temp alloca the size
3252         // of the destination type to allow loading all of it. The bits past
3253         // the source value are left undef.
3254         if (SrcSize < DstSize) {
3255           llvm::AllocaInst *TempAlloca
3256             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
3257           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
3258           SrcPtr = TempAlloca;
3259         } else {
3260           SrcPtr = Builder.CreateBitCast(SrcPtr,
3261                                          llvm::PointerType::getUnqual(STy));
3262         }
3263 
3264         assert(NumIRArgs == STy->getNumElements());
3265         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3266           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, SrcPtr, 0, i);
3267           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
3268           // We don't know what we're loading from.
3269           LI->setAlignment(1);
3270           IRCallArgs[FirstIRArg + i] = LI;
3271         }
3272       } else {
3273         // In the simple case, just pass the coerced loaded value.
3274         assert(NumIRArgs == 1);
3275         IRCallArgs[FirstIRArg] =
3276             CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), *this);
3277       }
3278 
3279       break;
3280     }
3281 
3282     case ABIArgInfo::Expand:
3283       unsigned IRArgPos = FirstIRArg;
3284       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3285       assert(IRArgPos == FirstIRArg + NumIRArgs);
3286       break;
3287     }
3288   }
3289 
3290   if (ArgMemory) {
3291     llvm::Value *Arg = ArgMemory;
3292     if (CallInfo.isVariadic()) {
3293       // When passing non-POD arguments by value to variadic functions, we will
3294       // end up with a variadic prototype and an inalloca call site.  In such
3295       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3296       // the callee.
3297       unsigned CalleeAS =
3298           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3299       Callee = Builder.CreateBitCast(
3300           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3301     } else {
3302       llvm::Type *LastParamTy =
3303           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3304       if (Arg->getType() != LastParamTy) {
3305 #ifndef NDEBUG
3306         // Assert that these structs have equivalent element types.
3307         llvm::StructType *FullTy = CallInfo.getArgStruct();
3308         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3309             cast<llvm::PointerType>(LastParamTy)->getElementType());
3310         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3311         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3312                                                 DE = DeclaredTy->element_end(),
3313                                                 FI = FullTy->element_begin();
3314              DI != DE; ++DI, ++FI)
3315           assert(*DI == *FI);
3316 #endif
3317         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3318       }
3319     }
3320     assert(IRFunctionArgs.hasInallocaArg());
3321     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3322   }
3323 
3324   if (!CallArgs.getCleanupsToDeactivate().empty())
3325     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3326 
3327   // If the callee is a bitcast of a function to a varargs pointer to function
3328   // type, check to see if we can remove the bitcast.  This handles some cases
3329   // with unprototyped functions.
3330   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3331     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3332       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3333       llvm::FunctionType *CurFT =
3334         cast<llvm::FunctionType>(CurPT->getElementType());
3335       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3336 
3337       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3338           ActualFT->getReturnType() == CurFT->getReturnType() &&
3339           ActualFT->getNumParams() == CurFT->getNumParams() &&
3340           ActualFT->getNumParams() == IRCallArgs.size() &&
3341           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3342         bool ArgsMatch = true;
3343         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3344           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3345             ArgsMatch = false;
3346             break;
3347           }
3348 
3349         // Strip the cast if we can get away with it.  This is a nice cleanup,
3350         // but also allows us to inline the function at -O0 if it is marked
3351         // always_inline.
3352         if (ArgsMatch)
3353           Callee = CalleeF;
3354       }
3355     }
3356 
3357   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3358   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3359     // Inalloca argument can have different type.
3360     if (IRFunctionArgs.hasInallocaArg() &&
3361         i == IRFunctionArgs.getInallocaArgNo())
3362       continue;
3363     if (i < IRFuncTy->getNumParams())
3364       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3365   }
3366 
3367   unsigned CallingConv;
3368   CodeGen::AttributeListType AttributeList;
3369   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
3370                              CallingConv, true);
3371   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3372                                                      AttributeList);
3373 
3374   llvm::BasicBlock *InvokeDest = nullptr;
3375   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3376                           llvm::Attribute::NoUnwind) ||
3377       currentFunctionUsesSEHTry())
3378     InvokeDest = getInvokeDest();
3379 
3380   llvm::CallSite CS;
3381   if (!InvokeDest) {
3382     CS = Builder.CreateCall(Callee, IRCallArgs);
3383   } else {
3384     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3385     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
3386     EmitBlock(Cont);
3387   }
3388   if (callOrInvoke)
3389     *callOrInvoke = CS.getInstruction();
3390 
3391   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3392       !CS.hasFnAttr(llvm::Attribute::NoInline))
3393     Attrs =
3394         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3395                            llvm::Attribute::AlwaysInline);
3396 
3397   // Disable inlining inside SEH __try blocks.
3398   if (isSEHTryScope())
3399     Attrs =
3400         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3401                            llvm::Attribute::NoInline);
3402 
3403   CS.setAttributes(Attrs);
3404   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3405 
3406   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3407   // optimizer it can aggressively ignore unwind edges.
3408   if (CGM.getLangOpts().ObjCAutoRefCount)
3409     AddObjCARCExceptionMetadata(CS.getInstruction());
3410 
3411   // If the call doesn't return, finish the basic block and clear the
3412   // insertion point; this allows the rest of IRgen to discard
3413   // unreachable code.
3414   if (CS.doesNotReturn()) {
3415     Builder.CreateUnreachable();
3416     Builder.ClearInsertionPoint();
3417 
3418     // FIXME: For now, emit a dummy basic block because expr emitters in
3419     // generally are not ready to handle emitting expressions at unreachable
3420     // points.
3421     EnsureInsertPoint();
3422 
3423     // Return a reasonable RValue.
3424     return GetUndefRValue(RetTy);
3425   }
3426 
3427   llvm::Instruction *CI = CS.getInstruction();
3428   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3429     CI->setName("call");
3430 
3431   // Emit any writebacks immediately.  Arguably this should happen
3432   // after any return-value munging.
3433   if (CallArgs.hasWritebacks())
3434     emitWritebacks(*this, CallArgs);
3435 
3436   // The stack cleanup for inalloca arguments has to run out of the normal
3437   // lexical order, so deactivate it and run it manually here.
3438   CallArgs.freeArgumentMemory(*this);
3439 
3440   RValue Ret = [&] {
3441     switch (RetAI.getKind()) {
3442     case ABIArgInfo::InAlloca:
3443     case ABIArgInfo::Indirect:
3444       return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3445 
3446     case ABIArgInfo::Ignore:
3447       // If we are ignoring an argument that had a result, make sure to
3448       // construct the appropriate return value for our caller.
3449       return GetUndefRValue(RetTy);
3450 
3451     case ABIArgInfo::Extend:
3452     case ABIArgInfo::Direct: {
3453       llvm::Type *RetIRTy = ConvertType(RetTy);
3454       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3455         switch (getEvaluationKind(RetTy)) {
3456         case TEK_Complex: {
3457           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3458           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3459           return RValue::getComplex(std::make_pair(Real, Imag));
3460         }
3461         case TEK_Aggregate: {
3462           llvm::Value *DestPtr = ReturnValue.getValue();
3463           bool DestIsVolatile = ReturnValue.isVolatile();
3464 
3465           if (!DestPtr) {
3466             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3467             DestIsVolatile = false;
3468           }
3469           BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
3470           return RValue::getAggregate(DestPtr);
3471         }
3472         case TEK_Scalar: {
3473           // If the argument doesn't match, perform a bitcast to coerce it.  This
3474           // can happen due to trivial type mismatches.
3475           llvm::Value *V = CI;
3476           if (V->getType() != RetIRTy)
3477             V = Builder.CreateBitCast(V, RetIRTy);
3478           return RValue::get(V);
3479         }
3480         }
3481         llvm_unreachable("bad evaluation kind");
3482       }
3483 
3484       llvm::Value *DestPtr = ReturnValue.getValue();
3485       bool DestIsVolatile = ReturnValue.isVolatile();
3486 
3487       if (!DestPtr) {
3488         DestPtr = CreateMemTemp(RetTy, "coerce");
3489         DestIsVolatile = false;
3490       }
3491 
3492       // If the value is offset in memory, apply the offset now.
3493       llvm::Value *StorePtr = DestPtr;
3494       if (unsigned Offs = RetAI.getDirectOffset()) {
3495         StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
3496         StorePtr =
3497             Builder.CreateConstGEP1_32(Builder.getInt8Ty(), StorePtr, Offs);
3498         StorePtr = Builder.CreateBitCast(StorePtr,
3499                            llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
3500       }
3501       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3502 
3503       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3504     }
3505 
3506     case ABIArgInfo::Expand:
3507       llvm_unreachable("Invalid ABI kind for return argument");
3508     }
3509 
3510     llvm_unreachable("Unhandled ABIArgInfo::Kind");
3511   } ();
3512 
3513   if (Ret.isScalar() && TargetDecl) {
3514     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3515       llvm::Value *OffsetValue = nullptr;
3516       if (const auto *Offset = AA->getOffset())
3517         OffsetValue = EmitScalarExpr(Offset);
3518 
3519       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3520       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3521       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3522                               OffsetValue);
3523     }
3524   }
3525 
3526   return Ret;
3527 }
3528 
3529 /* VarArg handling */
3530 
3531 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
3532   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
3533 }
3534