1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 63 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 64 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 65 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 66 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 67 case CC_Swift: return llvm::CallingConv::Swift; 68 } 69 } 70 71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 72 /// qualification. Either or both of RD and MD may be null. A null RD indicates 73 /// that there is no meaningful 'this' type, and a null MD can occur when 74 /// calling a method pointer. 75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 76 const CXXMethodDecl *MD) { 77 QualType RecTy; 78 if (RD) 79 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 80 else 81 RecTy = Context.VoidTy; 82 83 if (MD) 84 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 85 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 86 } 87 88 /// Returns the canonical formal type of the given C++ method. 89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 90 return MD->getType()->getCanonicalTypeUnqualified() 91 .getAs<FunctionProtoType>(); 92 } 93 94 /// Returns the "extra-canonicalized" return type, which discards 95 /// qualifiers on the return type. Codegen doesn't care about them, 96 /// and it makes ABI code a little easier to be able to assume that 97 /// all parameter and return types are top-level unqualified. 98 static CanQualType GetReturnType(QualType RetTy) { 99 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 100 } 101 102 /// Arrange the argument and result information for a value of the given 103 /// unprototyped freestanding function type. 104 const CGFunctionInfo & 105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 106 // When translating an unprototyped function type, always use a 107 // variadic type. 108 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 109 /*instanceMethod=*/false, 110 /*chainCall=*/false, None, 111 FTNP->getExtInfo(), {}, RequiredArgs(0)); 112 } 113 114 static void addExtParameterInfosForCall( 115 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 116 const FunctionProtoType *proto, 117 unsigned prefixArgs, 118 unsigned totalArgs) { 119 assert(proto->hasExtParameterInfos()); 120 assert(paramInfos.size() <= prefixArgs); 121 assert(proto->getNumParams() + prefixArgs <= totalArgs); 122 123 paramInfos.reserve(totalArgs); 124 125 // Add default infos for any prefix args that don't already have infos. 126 paramInfos.resize(prefixArgs); 127 128 // Add infos for the prototype. 129 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 130 paramInfos.push_back(ParamInfo); 131 // pass_object_size params have no parameter info. 132 if (ParamInfo.hasPassObjectSize()) 133 paramInfos.emplace_back(); 134 } 135 136 assert(paramInfos.size() <= totalArgs && 137 "Did we forget to insert pass_object_size args?"); 138 // Add default infos for the variadic and/or suffix arguments. 139 paramInfos.resize(totalArgs); 140 } 141 142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 144 static void appendParameterTypes(const CodeGenTypes &CGT, 145 SmallVectorImpl<CanQualType> &prefix, 146 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 147 CanQual<FunctionProtoType> FPT) { 148 // Fast path: don't touch param info if we don't need to. 149 if (!FPT->hasExtParameterInfos()) { 150 assert(paramInfos.empty() && 151 "We have paramInfos, but the prototype doesn't?"); 152 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 153 return; 154 } 155 156 unsigned PrefixSize = prefix.size(); 157 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 158 // parameters; the only thing that can change this is the presence of 159 // pass_object_size. So, we preallocate for the common case. 160 prefix.reserve(prefix.size() + FPT->getNumParams()); 161 162 auto ExtInfos = FPT->getExtParameterInfos(); 163 assert(ExtInfos.size() == FPT->getNumParams()); 164 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 165 prefix.push_back(FPT->getParamType(I)); 166 if (ExtInfos[I].hasPassObjectSize()) 167 prefix.push_back(CGT.getContext().getSizeType()); 168 } 169 170 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 171 prefix.size()); 172 } 173 174 /// Arrange the LLVM function layout for a value of the given function 175 /// type, on top of any implicit parameters already stored. 176 static const CGFunctionInfo & 177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 178 SmallVectorImpl<CanQualType> &prefix, 179 CanQual<FunctionProtoType> FTP) { 180 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 181 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 182 // FIXME: Kill copy. 183 appendParameterTypes(CGT, prefix, paramInfos, FTP); 184 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 185 186 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 187 /*chainCall=*/false, prefix, 188 FTP->getExtInfo(), paramInfos, 189 Required); 190 } 191 192 /// Arrange the argument and result information for a value of the 193 /// given freestanding function type. 194 const CGFunctionInfo & 195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 196 SmallVector<CanQualType, 16> argTypes; 197 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 198 FTP); 199 } 200 201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 202 // Set the appropriate calling convention for the Function. 203 if (D->hasAttr<StdCallAttr>()) 204 return CC_X86StdCall; 205 206 if (D->hasAttr<FastCallAttr>()) 207 return CC_X86FastCall; 208 209 if (D->hasAttr<RegCallAttr>()) 210 return CC_X86RegCall; 211 212 if (D->hasAttr<ThisCallAttr>()) 213 return CC_X86ThisCall; 214 215 if (D->hasAttr<VectorCallAttr>()) 216 return CC_X86VectorCall; 217 218 if (D->hasAttr<PascalAttr>()) 219 return CC_X86Pascal; 220 221 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 222 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 223 224 if (D->hasAttr<AArch64VectorPcsAttr>()) 225 return CC_AArch64VectorCall; 226 227 if (D->hasAttr<IntelOclBiccAttr>()) 228 return CC_IntelOclBicc; 229 230 if (D->hasAttr<MSABIAttr>()) 231 return IsWindows ? CC_C : CC_Win64; 232 233 if (D->hasAttr<SysVABIAttr>()) 234 return IsWindows ? CC_X86_64SysV : CC_C; 235 236 if (D->hasAttr<PreserveMostAttr>()) 237 return CC_PreserveMost; 238 239 if (D->hasAttr<PreserveAllAttr>()) 240 return CC_PreserveAll; 241 242 return CC_C; 243 } 244 245 /// Arrange the argument and result information for a call to an 246 /// unknown C++ non-static member function of the given abstract type. 247 /// (A null RD means we don't have any meaningful "this" argument type, 248 /// so fall back to a generic pointer type). 249 /// The member function must be an ordinary function, i.e. not a 250 /// constructor or destructor. 251 const CGFunctionInfo & 252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 253 const FunctionProtoType *FTP, 254 const CXXMethodDecl *MD) { 255 SmallVector<CanQualType, 16> argTypes; 256 257 // Add the 'this' pointer. 258 argTypes.push_back(DeriveThisType(RD, MD)); 259 260 return ::arrangeLLVMFunctionInfo( 261 *this, true, argTypes, 262 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 263 } 264 265 /// Set calling convention for CUDA/HIP kernel. 266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 267 const FunctionDecl *FD) { 268 if (FD->hasAttr<CUDAGlobalAttr>()) { 269 const FunctionType *FT = FTy->getAs<FunctionType>(); 270 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 271 FTy = FT->getCanonicalTypeUnqualified(); 272 } 273 } 274 275 /// Arrange the argument and result information for a declaration or 276 /// definition of the given C++ non-static member function. The 277 /// member function must be an ordinary function, i.e. not a 278 /// constructor or destructor. 279 const CGFunctionInfo & 280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 281 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 282 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 283 284 CanQualType FT = GetFormalType(MD).getAs<Type>(); 285 setCUDAKernelCallingConvention(FT, CGM, MD); 286 auto prototype = FT.getAs<FunctionProtoType>(); 287 288 if (MD->isInstance()) { 289 // The abstract case is perfectly fine. 290 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 291 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 292 } 293 294 return arrangeFreeFunctionType(prototype); 295 } 296 297 bool CodeGenTypes::inheritingCtorHasParams( 298 const InheritedConstructor &Inherited, CXXCtorType Type) { 299 // Parameters are unnecessary if we're constructing a base class subobject 300 // and the inherited constructor lives in a virtual base. 301 return Type == Ctor_Complete || 302 !Inherited.getShadowDecl()->constructsVirtualBase() || 303 !Target.getCXXABI().hasConstructorVariants(); 304 } 305 306 const CGFunctionInfo & 307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 308 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 309 310 SmallVector<CanQualType, 16> argTypes; 311 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 312 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 313 314 bool PassParams = true; 315 316 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 317 // A base class inheriting constructor doesn't get forwarded arguments 318 // needed to construct a virtual base (or base class thereof). 319 if (auto Inherited = CD->getInheritedConstructor()) 320 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 321 } 322 323 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 324 325 // Add the formal parameters. 326 if (PassParams) 327 appendParameterTypes(*this, argTypes, paramInfos, FTP); 328 329 CGCXXABI::AddedStructorArgCounts AddedArgs = 330 TheCXXABI.buildStructorSignature(GD, argTypes); 331 if (!paramInfos.empty()) { 332 // Note: prefix implies after the first param. 333 if (AddedArgs.Prefix) 334 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 335 FunctionProtoType::ExtParameterInfo{}); 336 if (AddedArgs.Suffix) 337 paramInfos.append(AddedArgs.Suffix, 338 FunctionProtoType::ExtParameterInfo{}); 339 } 340 341 RequiredArgs required = 342 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 343 : RequiredArgs::All); 344 345 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 346 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 347 ? argTypes.front() 348 : TheCXXABI.hasMostDerivedReturn(GD) 349 ? CGM.getContext().VoidPtrTy 350 : Context.VoidTy; 351 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 352 /*chainCall=*/false, argTypes, extInfo, 353 paramInfos, required); 354 } 355 356 static SmallVector<CanQualType, 16> 357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 358 SmallVector<CanQualType, 16> argTypes; 359 for (auto &arg : args) 360 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 361 return argTypes; 362 } 363 364 static SmallVector<CanQualType, 16> 365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 366 SmallVector<CanQualType, 16> argTypes; 367 for (auto &arg : args) 368 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 369 return argTypes; 370 } 371 372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 373 getExtParameterInfosForCall(const FunctionProtoType *proto, 374 unsigned prefixArgs, unsigned totalArgs) { 375 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 376 if (proto->hasExtParameterInfos()) { 377 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 378 } 379 return result; 380 } 381 382 /// Arrange a call to a C++ method, passing the given arguments. 383 /// 384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 385 /// parameter. 386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 387 /// args. 388 /// PassProtoArgs indicates whether `args` has args for the parameters in the 389 /// given CXXConstructorDecl. 390 const CGFunctionInfo & 391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 392 const CXXConstructorDecl *D, 393 CXXCtorType CtorKind, 394 unsigned ExtraPrefixArgs, 395 unsigned ExtraSuffixArgs, 396 bool PassProtoArgs) { 397 // FIXME: Kill copy. 398 SmallVector<CanQualType, 16> ArgTypes; 399 for (const auto &Arg : args) 400 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 401 402 // +1 for implicit this, which should always be args[0]. 403 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 404 405 CanQual<FunctionProtoType> FPT = GetFormalType(D); 406 RequiredArgs Required = PassProtoArgs 407 ? RequiredArgs::forPrototypePlus( 408 FPT, TotalPrefixArgs + ExtraSuffixArgs) 409 : RequiredArgs::All; 410 411 GlobalDecl GD(D, CtorKind); 412 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 413 ? ArgTypes.front() 414 : TheCXXABI.hasMostDerivedReturn(GD) 415 ? CGM.getContext().VoidPtrTy 416 : Context.VoidTy; 417 418 FunctionType::ExtInfo Info = FPT->getExtInfo(); 419 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 420 // If the prototype args are elided, we should only have ABI-specific args, 421 // which never have param info. 422 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 423 // ABI-specific suffix arguments are treated the same as variadic arguments. 424 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 425 ArgTypes.size()); 426 } 427 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 428 /*chainCall=*/false, ArgTypes, Info, 429 ParamInfos, Required); 430 } 431 432 /// Arrange the argument and result information for the declaration or 433 /// definition of the given function. 434 const CGFunctionInfo & 435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 436 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 437 if (MD->isInstance()) 438 return arrangeCXXMethodDeclaration(MD); 439 440 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 441 442 assert(isa<FunctionType>(FTy)); 443 setCUDAKernelCallingConvention(FTy, CGM, FD); 444 445 // When declaring a function without a prototype, always use a 446 // non-variadic type. 447 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 448 return arrangeLLVMFunctionInfo( 449 noProto->getReturnType(), /*instanceMethod=*/false, 450 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 451 } 452 453 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 454 } 455 456 /// Arrange the argument and result information for the declaration or 457 /// definition of an Objective-C method. 458 const CGFunctionInfo & 459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 460 // It happens that this is the same as a call with no optional 461 // arguments, except also using the formal 'self' type. 462 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 463 } 464 465 /// Arrange the argument and result information for the function type 466 /// through which to perform a send to the given Objective-C method, 467 /// using the given receiver type. The receiver type is not always 468 /// the 'self' type of the method or even an Objective-C pointer type. 469 /// This is *not* the right method for actually performing such a 470 /// message send, due to the possibility of optional arguments. 471 const CGFunctionInfo & 472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 473 QualType receiverType) { 474 SmallVector<CanQualType, 16> argTys; 475 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 476 argTys.push_back(Context.getCanonicalParamType(receiverType)); 477 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 478 // FIXME: Kill copy? 479 for (const auto *I : MD->parameters()) { 480 argTys.push_back(Context.getCanonicalParamType(I->getType())); 481 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 482 I->hasAttr<NoEscapeAttr>()); 483 extParamInfos.push_back(extParamInfo); 484 } 485 486 FunctionType::ExtInfo einfo; 487 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 488 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 489 490 if (getContext().getLangOpts().ObjCAutoRefCount && 491 MD->hasAttr<NSReturnsRetainedAttr>()) 492 einfo = einfo.withProducesResult(true); 493 494 RequiredArgs required = 495 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 496 497 return arrangeLLVMFunctionInfo( 498 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 499 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 500 } 501 502 const CGFunctionInfo & 503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 504 const CallArgList &args) { 505 auto argTypes = getArgTypesForCall(Context, args); 506 FunctionType::ExtInfo einfo; 507 508 return arrangeLLVMFunctionInfo( 509 GetReturnType(returnType), /*instanceMethod=*/false, 510 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 511 } 512 513 const CGFunctionInfo & 514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 515 // FIXME: Do we need to handle ObjCMethodDecl? 516 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 517 518 if (isa<CXXConstructorDecl>(GD.getDecl()) || 519 isa<CXXDestructorDecl>(GD.getDecl())) 520 return arrangeCXXStructorDeclaration(GD); 521 522 return arrangeFunctionDeclaration(FD); 523 } 524 525 /// Arrange a thunk that takes 'this' as the first parameter followed by 526 /// varargs. Return a void pointer, regardless of the actual return type. 527 /// The body of the thunk will end in a musttail call to a function of the 528 /// correct type, and the caller will bitcast the function to the correct 529 /// prototype. 530 const CGFunctionInfo & 531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 532 assert(MD->isVirtual() && "only methods have thunks"); 533 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 534 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 535 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 536 /*chainCall=*/false, ArgTys, 537 FTP->getExtInfo(), {}, RequiredArgs(1)); 538 } 539 540 const CGFunctionInfo & 541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 542 CXXCtorType CT) { 543 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 544 545 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 546 SmallVector<CanQualType, 2> ArgTys; 547 const CXXRecordDecl *RD = CD->getParent(); 548 ArgTys.push_back(DeriveThisType(RD, CD)); 549 if (CT == Ctor_CopyingClosure) 550 ArgTys.push_back(*FTP->param_type_begin()); 551 if (RD->getNumVBases() > 0) 552 ArgTys.push_back(Context.IntTy); 553 CallingConv CC = Context.getDefaultCallingConvention( 554 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 555 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 556 /*chainCall=*/false, ArgTys, 557 FunctionType::ExtInfo(CC), {}, 558 RequiredArgs::All); 559 } 560 561 /// Arrange a call as unto a free function, except possibly with an 562 /// additional number of formal parameters considered required. 563 static const CGFunctionInfo & 564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 565 CodeGenModule &CGM, 566 const CallArgList &args, 567 const FunctionType *fnType, 568 unsigned numExtraRequiredArgs, 569 bool chainCall) { 570 assert(args.size() >= numExtraRequiredArgs); 571 572 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 573 574 // In most cases, there are no optional arguments. 575 RequiredArgs required = RequiredArgs::All; 576 577 // If we have a variadic prototype, the required arguments are the 578 // extra prefix plus the arguments in the prototype. 579 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 580 if (proto->isVariadic()) 581 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 582 583 if (proto->hasExtParameterInfos()) 584 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 585 args.size()); 586 587 // If we don't have a prototype at all, but we're supposed to 588 // explicitly use the variadic convention for unprototyped calls, 589 // treat all of the arguments as required but preserve the nominal 590 // possibility of variadics. 591 } else if (CGM.getTargetCodeGenInfo() 592 .isNoProtoCallVariadic(args, 593 cast<FunctionNoProtoType>(fnType))) { 594 required = RequiredArgs(args.size()); 595 } 596 597 // FIXME: Kill copy. 598 SmallVector<CanQualType, 16> argTypes; 599 for (const auto &arg : args) 600 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 601 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 602 /*instanceMethod=*/false, chainCall, 603 argTypes, fnType->getExtInfo(), paramInfos, 604 required); 605 } 606 607 /// Figure out the rules for calling a function with the given formal 608 /// type using the given arguments. The arguments are necessary 609 /// because the function might be unprototyped, in which case it's 610 /// target-dependent in crazy ways. 611 const CGFunctionInfo & 612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 613 const FunctionType *fnType, 614 bool chainCall) { 615 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 616 chainCall ? 1 : 0, chainCall); 617 } 618 619 /// A block function is essentially a free function with an 620 /// extra implicit argument. 621 const CGFunctionInfo & 622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 623 const FunctionType *fnType) { 624 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 625 /*chainCall=*/false); 626 } 627 628 const CGFunctionInfo & 629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 630 const FunctionArgList ¶ms) { 631 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 632 auto argTypes = getArgTypesForDeclaration(Context, params); 633 634 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 635 /*instanceMethod*/ false, /*chainCall*/ false, 636 argTypes, proto->getExtInfo(), paramInfos, 637 RequiredArgs::forPrototypePlus(proto, 1)); 638 } 639 640 const CGFunctionInfo & 641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 642 const CallArgList &args) { 643 // FIXME: Kill copy. 644 SmallVector<CanQualType, 16> argTypes; 645 for (const auto &Arg : args) 646 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 647 return arrangeLLVMFunctionInfo( 648 GetReturnType(resultType), /*instanceMethod=*/false, 649 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 650 /*paramInfos=*/ {}, RequiredArgs::All); 651 } 652 653 const CGFunctionInfo & 654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 655 const FunctionArgList &args) { 656 auto argTypes = getArgTypesForDeclaration(Context, args); 657 658 return arrangeLLVMFunctionInfo( 659 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 660 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 661 } 662 663 const CGFunctionInfo & 664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 665 ArrayRef<CanQualType> argTypes) { 666 return arrangeLLVMFunctionInfo( 667 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 668 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 669 } 670 671 /// Arrange a call to a C++ method, passing the given arguments. 672 /// 673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 674 /// does not count `this`. 675 const CGFunctionInfo & 676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 677 const FunctionProtoType *proto, 678 RequiredArgs required, 679 unsigned numPrefixArgs) { 680 assert(numPrefixArgs + 1 <= args.size() && 681 "Emitting a call with less args than the required prefix?"); 682 // Add one to account for `this`. It's a bit awkward here, but we don't count 683 // `this` in similar places elsewhere. 684 auto paramInfos = 685 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 686 687 // FIXME: Kill copy. 688 auto argTypes = getArgTypesForCall(Context, args); 689 690 FunctionType::ExtInfo info = proto->getExtInfo(); 691 return arrangeLLVMFunctionInfo( 692 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 693 /*chainCall=*/false, argTypes, info, paramInfos, required); 694 } 695 696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 697 return arrangeLLVMFunctionInfo( 698 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 699 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 700 } 701 702 const CGFunctionInfo & 703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 704 const CallArgList &args) { 705 assert(signature.arg_size() <= args.size()); 706 if (signature.arg_size() == args.size()) 707 return signature; 708 709 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 710 auto sigParamInfos = signature.getExtParameterInfos(); 711 if (!sigParamInfos.empty()) { 712 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 713 paramInfos.resize(args.size()); 714 } 715 716 auto argTypes = getArgTypesForCall(Context, args); 717 718 assert(signature.getRequiredArgs().allowsOptionalArgs()); 719 return arrangeLLVMFunctionInfo(signature.getReturnType(), 720 signature.isInstanceMethod(), 721 signature.isChainCall(), 722 argTypes, 723 signature.getExtInfo(), 724 paramInfos, 725 signature.getRequiredArgs()); 726 } 727 728 namespace clang { 729 namespace CodeGen { 730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 731 } 732 } 733 734 /// Arrange the argument and result information for an abstract value 735 /// of a given function type. This is the method which all of the 736 /// above functions ultimately defer to. 737 const CGFunctionInfo & 738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 739 bool instanceMethod, 740 bool chainCall, 741 ArrayRef<CanQualType> argTypes, 742 FunctionType::ExtInfo info, 743 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 744 RequiredArgs required) { 745 assert(llvm::all_of(argTypes, 746 [](CanQualType T) { return T.isCanonicalAsParam(); })); 747 748 // Lookup or create unique function info. 749 llvm::FoldingSetNodeID ID; 750 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 751 required, resultType, argTypes); 752 753 void *insertPos = nullptr; 754 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 755 if (FI) 756 return *FI; 757 758 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 759 760 // Construct the function info. We co-allocate the ArgInfos. 761 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 762 paramInfos, resultType, argTypes, required); 763 FunctionInfos.InsertNode(FI, insertPos); 764 765 bool inserted = FunctionsBeingProcessed.insert(FI).second; 766 (void)inserted; 767 assert(inserted && "Recursively being processed?"); 768 769 // Compute ABI information. 770 if (CC == llvm::CallingConv::SPIR_KERNEL) { 771 // Force target independent argument handling for the host visible 772 // kernel functions. 773 computeSPIRKernelABIInfo(CGM, *FI); 774 } else if (info.getCC() == CC_Swift) { 775 swiftcall::computeABIInfo(CGM, *FI); 776 } else { 777 getABIInfo().computeInfo(*FI); 778 } 779 780 // Loop over all of the computed argument and return value info. If any of 781 // them are direct or extend without a specified coerce type, specify the 782 // default now. 783 ABIArgInfo &retInfo = FI->getReturnInfo(); 784 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 785 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 786 787 for (auto &I : FI->arguments()) 788 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 789 I.info.setCoerceToType(ConvertType(I.type)); 790 791 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 792 assert(erased && "Not in set?"); 793 794 return *FI; 795 } 796 797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 798 bool instanceMethod, 799 bool chainCall, 800 const FunctionType::ExtInfo &info, 801 ArrayRef<ExtParameterInfo> paramInfos, 802 CanQualType resultType, 803 ArrayRef<CanQualType> argTypes, 804 RequiredArgs required) { 805 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 806 assert(!required.allowsOptionalArgs() || 807 required.getNumRequiredArgs() <= argTypes.size()); 808 809 void *buffer = 810 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 811 argTypes.size() + 1, paramInfos.size())); 812 813 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 814 FI->CallingConvention = llvmCC; 815 FI->EffectiveCallingConvention = llvmCC; 816 FI->ASTCallingConvention = info.getCC(); 817 FI->InstanceMethod = instanceMethod; 818 FI->ChainCall = chainCall; 819 FI->CmseNSCall = info.getCmseNSCall(); 820 FI->NoReturn = info.getNoReturn(); 821 FI->ReturnsRetained = info.getProducesResult(); 822 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 823 FI->NoCfCheck = info.getNoCfCheck(); 824 FI->Required = required; 825 FI->HasRegParm = info.getHasRegParm(); 826 FI->RegParm = info.getRegParm(); 827 FI->ArgStruct = nullptr; 828 FI->ArgStructAlign = 0; 829 FI->NumArgs = argTypes.size(); 830 FI->HasExtParameterInfos = !paramInfos.empty(); 831 FI->getArgsBuffer()[0].type = resultType; 832 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 833 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 834 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 835 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 836 return FI; 837 } 838 839 /***/ 840 841 namespace { 842 // ABIArgInfo::Expand implementation. 843 844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 845 struct TypeExpansion { 846 enum TypeExpansionKind { 847 // Elements of constant arrays are expanded recursively. 848 TEK_ConstantArray, 849 // Record fields are expanded recursively (but if record is a union, only 850 // the field with the largest size is expanded). 851 TEK_Record, 852 // For complex types, real and imaginary parts are expanded recursively. 853 TEK_Complex, 854 // All other types are not expandable. 855 TEK_None 856 }; 857 858 const TypeExpansionKind Kind; 859 860 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 861 virtual ~TypeExpansion() {} 862 }; 863 864 struct ConstantArrayExpansion : TypeExpansion { 865 QualType EltTy; 866 uint64_t NumElts; 867 868 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 869 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 870 static bool classof(const TypeExpansion *TE) { 871 return TE->Kind == TEK_ConstantArray; 872 } 873 }; 874 875 struct RecordExpansion : TypeExpansion { 876 SmallVector<const CXXBaseSpecifier *, 1> Bases; 877 878 SmallVector<const FieldDecl *, 1> Fields; 879 880 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 881 SmallVector<const FieldDecl *, 1> &&Fields) 882 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 883 Fields(std::move(Fields)) {} 884 static bool classof(const TypeExpansion *TE) { 885 return TE->Kind == TEK_Record; 886 } 887 }; 888 889 struct ComplexExpansion : TypeExpansion { 890 QualType EltTy; 891 892 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 893 static bool classof(const TypeExpansion *TE) { 894 return TE->Kind == TEK_Complex; 895 } 896 }; 897 898 struct NoExpansion : TypeExpansion { 899 NoExpansion() : TypeExpansion(TEK_None) {} 900 static bool classof(const TypeExpansion *TE) { 901 return TE->Kind == TEK_None; 902 } 903 }; 904 } // namespace 905 906 static std::unique_ptr<TypeExpansion> 907 getTypeExpansion(QualType Ty, const ASTContext &Context) { 908 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 909 return std::make_unique<ConstantArrayExpansion>( 910 AT->getElementType(), AT->getSize().getZExtValue()); 911 } 912 if (const RecordType *RT = Ty->getAs<RecordType>()) { 913 SmallVector<const CXXBaseSpecifier *, 1> Bases; 914 SmallVector<const FieldDecl *, 1> Fields; 915 const RecordDecl *RD = RT->getDecl(); 916 assert(!RD->hasFlexibleArrayMember() && 917 "Cannot expand structure with flexible array."); 918 if (RD->isUnion()) { 919 // Unions can be here only in degenerative cases - all the fields are same 920 // after flattening. Thus we have to use the "largest" field. 921 const FieldDecl *LargestFD = nullptr; 922 CharUnits UnionSize = CharUnits::Zero(); 923 924 for (const auto *FD : RD->fields()) { 925 if (FD->isZeroLengthBitField(Context)) 926 continue; 927 assert(!FD->isBitField() && 928 "Cannot expand structure with bit-field members."); 929 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 930 if (UnionSize < FieldSize) { 931 UnionSize = FieldSize; 932 LargestFD = FD; 933 } 934 } 935 if (LargestFD) 936 Fields.push_back(LargestFD); 937 } else { 938 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 939 assert(!CXXRD->isDynamicClass() && 940 "cannot expand vtable pointers in dynamic classes"); 941 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 942 Bases.push_back(&BS); 943 } 944 945 for (const auto *FD : RD->fields()) { 946 if (FD->isZeroLengthBitField(Context)) 947 continue; 948 assert(!FD->isBitField() && 949 "Cannot expand structure with bit-field members."); 950 Fields.push_back(FD); 951 } 952 } 953 return std::make_unique<RecordExpansion>(std::move(Bases), 954 std::move(Fields)); 955 } 956 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 957 return std::make_unique<ComplexExpansion>(CT->getElementType()); 958 } 959 return std::make_unique<NoExpansion>(); 960 } 961 962 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 963 auto Exp = getTypeExpansion(Ty, Context); 964 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 965 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 966 } 967 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 968 int Res = 0; 969 for (auto BS : RExp->Bases) 970 Res += getExpansionSize(BS->getType(), Context); 971 for (auto FD : RExp->Fields) 972 Res += getExpansionSize(FD->getType(), Context); 973 return Res; 974 } 975 if (isa<ComplexExpansion>(Exp.get())) 976 return 2; 977 assert(isa<NoExpansion>(Exp.get())); 978 return 1; 979 } 980 981 void 982 CodeGenTypes::getExpandedTypes(QualType Ty, 983 SmallVectorImpl<llvm::Type *>::iterator &TI) { 984 auto Exp = getTypeExpansion(Ty, Context); 985 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 986 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 987 getExpandedTypes(CAExp->EltTy, TI); 988 } 989 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 990 for (auto BS : RExp->Bases) 991 getExpandedTypes(BS->getType(), TI); 992 for (auto FD : RExp->Fields) 993 getExpandedTypes(FD->getType(), TI); 994 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 995 llvm::Type *EltTy = ConvertType(CExp->EltTy); 996 *TI++ = EltTy; 997 *TI++ = EltTy; 998 } else { 999 assert(isa<NoExpansion>(Exp.get())); 1000 *TI++ = ConvertType(Ty); 1001 } 1002 } 1003 1004 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1005 ConstantArrayExpansion *CAE, 1006 Address BaseAddr, 1007 llvm::function_ref<void(Address)> Fn) { 1008 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1009 CharUnits EltAlign = 1010 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1011 1012 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1013 llvm::Value *EltAddr = 1014 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1015 Fn(Address(EltAddr, EltAlign)); 1016 } 1017 } 1018 1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1020 llvm::Function::arg_iterator &AI) { 1021 assert(LV.isSimple() && 1022 "Unexpected non-simple lvalue during struct expansion."); 1023 1024 auto Exp = getTypeExpansion(Ty, getContext()); 1025 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1026 forConstantArrayExpansion( 1027 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1028 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1029 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1030 }); 1031 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1032 Address This = LV.getAddress(*this); 1033 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1034 // Perform a single step derived-to-base conversion. 1035 Address Base = 1036 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1037 /*NullCheckValue=*/false, SourceLocation()); 1038 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1039 1040 // Recurse onto bases. 1041 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1042 } 1043 for (auto FD : RExp->Fields) { 1044 // FIXME: What are the right qualifiers here? 1045 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1046 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1047 } 1048 } else if (isa<ComplexExpansion>(Exp.get())) { 1049 auto realValue = &*AI++; 1050 auto imagValue = &*AI++; 1051 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1052 } else { 1053 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1054 // primitive store. 1055 assert(isa<NoExpansion>(Exp.get())); 1056 if (LV.isBitField()) 1057 EmitStoreThroughLValue(RValue::get(&*AI++), LV); 1058 else 1059 EmitStoreOfScalar(&*AI++, LV); 1060 } 1061 } 1062 1063 void CodeGenFunction::ExpandTypeToArgs( 1064 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1065 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1066 auto Exp = getTypeExpansion(Ty, getContext()); 1067 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1068 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1069 : Arg.getKnownRValue().getAggregateAddress(); 1070 forConstantArrayExpansion( 1071 *this, CAExp, Addr, [&](Address EltAddr) { 1072 CallArg EltArg = CallArg( 1073 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1074 CAExp->EltTy); 1075 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1076 IRCallArgPos); 1077 }); 1078 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1079 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1080 : Arg.getKnownRValue().getAggregateAddress(); 1081 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1082 // Perform a single step derived-to-base conversion. 1083 Address Base = 1084 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1085 /*NullCheckValue=*/false, SourceLocation()); 1086 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1087 1088 // Recurse onto bases. 1089 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1090 IRCallArgPos); 1091 } 1092 1093 LValue LV = MakeAddrLValue(This, Ty); 1094 for (auto FD : RExp->Fields) { 1095 CallArg FldArg = 1096 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1097 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1098 IRCallArgPos); 1099 } 1100 } else if (isa<ComplexExpansion>(Exp.get())) { 1101 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1102 IRCallArgs[IRCallArgPos++] = CV.first; 1103 IRCallArgs[IRCallArgPos++] = CV.second; 1104 } else { 1105 assert(isa<NoExpansion>(Exp.get())); 1106 auto RV = Arg.getKnownRValue(); 1107 assert(RV.isScalar() && 1108 "Unexpected non-scalar rvalue during struct expansion."); 1109 1110 // Insert a bitcast as needed. 1111 llvm::Value *V = RV.getScalarVal(); 1112 if (IRCallArgPos < IRFuncTy->getNumParams() && 1113 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1114 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1115 1116 IRCallArgs[IRCallArgPos++] = V; 1117 } 1118 } 1119 1120 /// Create a temporary allocation for the purposes of coercion. 1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1122 CharUnits MinAlign) { 1123 // Don't use an alignment that's worse than what LLVM would prefer. 1124 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1125 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1126 1127 return CGF.CreateTempAlloca(Ty, Align); 1128 } 1129 1130 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1131 /// accessing some number of bytes out of it, try to gep into the struct to get 1132 /// at its inner goodness. Dive as deep as possible without entering an element 1133 /// with an in-memory size smaller than DstSize. 1134 static Address 1135 EnterStructPointerForCoercedAccess(Address SrcPtr, 1136 llvm::StructType *SrcSTy, 1137 uint64_t DstSize, CodeGenFunction &CGF) { 1138 // We can't dive into a zero-element struct. 1139 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1140 1141 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1142 1143 // If the first elt is at least as large as what we're looking for, or if the 1144 // first element is the same size as the whole struct, we can enter it. The 1145 // comparison must be made on the store size and not the alloca size. Using 1146 // the alloca size may overstate the size of the load. 1147 uint64_t FirstEltSize = 1148 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1149 if (FirstEltSize < DstSize && 1150 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1151 return SrcPtr; 1152 1153 // GEP into the first element. 1154 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1155 1156 // If the first element is a struct, recurse. 1157 llvm::Type *SrcTy = SrcPtr.getElementType(); 1158 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1159 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1160 1161 return SrcPtr; 1162 } 1163 1164 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1165 /// are either integers or pointers. This does a truncation of the value if it 1166 /// is too large or a zero extension if it is too small. 1167 /// 1168 /// This behaves as if the value were coerced through memory, so on big-endian 1169 /// targets the high bits are preserved in a truncation, while little-endian 1170 /// targets preserve the low bits. 1171 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1172 llvm::Type *Ty, 1173 CodeGenFunction &CGF) { 1174 if (Val->getType() == Ty) 1175 return Val; 1176 1177 if (isa<llvm::PointerType>(Val->getType())) { 1178 // If this is Pointer->Pointer avoid conversion to and from int. 1179 if (isa<llvm::PointerType>(Ty)) 1180 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1181 1182 // Convert the pointer to an integer so we can play with its width. 1183 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1184 } 1185 1186 llvm::Type *DestIntTy = Ty; 1187 if (isa<llvm::PointerType>(DestIntTy)) 1188 DestIntTy = CGF.IntPtrTy; 1189 1190 if (Val->getType() != DestIntTy) { 1191 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1192 if (DL.isBigEndian()) { 1193 // Preserve the high bits on big-endian targets. 1194 // That is what memory coercion does. 1195 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1196 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1197 1198 if (SrcSize > DstSize) { 1199 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1200 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1201 } else { 1202 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1203 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1204 } 1205 } else { 1206 // Little-endian targets preserve the low bits. No shifts required. 1207 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1208 } 1209 } 1210 1211 if (isa<llvm::PointerType>(Ty)) 1212 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1213 return Val; 1214 } 1215 1216 1217 1218 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1219 /// a pointer to an object of type \arg Ty, known to be aligned to 1220 /// \arg SrcAlign bytes. 1221 /// 1222 /// This safely handles the case when the src type is smaller than the 1223 /// destination type; in this situation the values of bits which not 1224 /// present in the src are undefined. 1225 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1226 CodeGenFunction &CGF) { 1227 llvm::Type *SrcTy = Src.getElementType(); 1228 1229 // If SrcTy and Ty are the same, just do a load. 1230 if (SrcTy == Ty) 1231 return CGF.Builder.CreateLoad(Src); 1232 1233 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1234 1235 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1236 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1237 SrcTy = Src.getElementType(); 1238 } 1239 1240 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1241 1242 // If the source and destination are integer or pointer types, just do an 1243 // extension or truncation to the desired type. 1244 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1245 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1246 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1247 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1248 } 1249 1250 // If load is legal, just bitcast the src pointer. 1251 if (SrcSize >= DstSize) { 1252 // Generally SrcSize is never greater than DstSize, since this means we are 1253 // losing bits. However, this can happen in cases where the structure has 1254 // additional padding, for example due to a user specified alignment. 1255 // 1256 // FIXME: Assert that we aren't truncating non-padding bits when have access 1257 // to that information. 1258 Src = CGF.Builder.CreateBitCast(Src, 1259 Ty->getPointerTo(Src.getAddressSpace())); 1260 return CGF.Builder.CreateLoad(Src); 1261 } 1262 1263 // Otherwise do coercion through memory. This is stupid, but simple. 1264 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1265 CGF.Builder.CreateMemCpy(Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 1266 Src.getPointer(), Src.getAlignment().getAsAlign(), 1267 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize)); 1268 return CGF.Builder.CreateLoad(Tmp); 1269 } 1270 1271 // Function to store a first-class aggregate into memory. We prefer to 1272 // store the elements rather than the aggregate to be more friendly to 1273 // fast-isel. 1274 // FIXME: Do we need to recurse here? 1275 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1276 bool DestIsVolatile) { 1277 // Prefer scalar stores to first-class aggregate stores. 1278 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1279 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1280 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1281 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1282 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1283 } 1284 } else { 1285 Builder.CreateStore(Val, Dest, DestIsVolatile); 1286 } 1287 } 1288 1289 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1290 /// where the source and destination may have different types. The 1291 /// destination is known to be aligned to \arg DstAlign bytes. 1292 /// 1293 /// This safely handles the case when the src type is larger than the 1294 /// destination type; the upper bits of the src will be lost. 1295 static void CreateCoercedStore(llvm::Value *Src, 1296 Address Dst, 1297 bool DstIsVolatile, 1298 CodeGenFunction &CGF) { 1299 llvm::Type *SrcTy = Src->getType(); 1300 llvm::Type *DstTy = Dst.getElementType(); 1301 if (SrcTy == DstTy) { 1302 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1303 return; 1304 } 1305 1306 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1307 1308 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1309 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1310 DstTy = Dst.getElementType(); 1311 } 1312 1313 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1314 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1315 if (SrcPtrTy && DstPtrTy && 1316 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1317 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1318 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1319 return; 1320 } 1321 1322 // If the source and destination are integer or pointer types, just do an 1323 // extension or truncation to the desired type. 1324 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1325 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1326 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1327 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1328 return; 1329 } 1330 1331 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1332 1333 // If store is legal, just bitcast the src pointer. 1334 if (SrcSize <= DstSize) { 1335 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1336 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1337 } else { 1338 // Otherwise do coercion through memory. This is stupid, but 1339 // simple. 1340 1341 // Generally SrcSize is never greater than DstSize, since this means we are 1342 // losing bits. However, this can happen in cases where the structure has 1343 // additional padding, for example due to a user specified alignment. 1344 // 1345 // FIXME: Assert that we aren't truncating non-padding bits when have access 1346 // to that information. 1347 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1348 CGF.Builder.CreateStore(Src, Tmp); 1349 CGF.Builder.CreateMemCpy(Dst.getPointer(), Dst.getAlignment().getAsAlign(), 1350 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), 1351 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize)); 1352 } 1353 } 1354 1355 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1356 const ABIArgInfo &info) { 1357 if (unsigned offset = info.getDirectOffset()) { 1358 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1359 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1360 CharUnits::fromQuantity(offset)); 1361 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1362 } 1363 return addr; 1364 } 1365 1366 namespace { 1367 1368 /// Encapsulates information about the way function arguments from 1369 /// CGFunctionInfo should be passed to actual LLVM IR function. 1370 class ClangToLLVMArgMapping { 1371 static const unsigned InvalidIndex = ~0U; 1372 unsigned InallocaArgNo; 1373 unsigned SRetArgNo; 1374 unsigned TotalIRArgs; 1375 1376 /// Arguments of LLVM IR function corresponding to single Clang argument. 1377 struct IRArgs { 1378 unsigned PaddingArgIndex; 1379 // Argument is expanded to IR arguments at positions 1380 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1381 unsigned FirstArgIndex; 1382 unsigned NumberOfArgs; 1383 1384 IRArgs() 1385 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1386 NumberOfArgs(0) {} 1387 }; 1388 1389 SmallVector<IRArgs, 8> ArgInfo; 1390 1391 public: 1392 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1393 bool OnlyRequiredArgs = false) 1394 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1395 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1396 construct(Context, FI, OnlyRequiredArgs); 1397 } 1398 1399 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1400 unsigned getInallocaArgNo() const { 1401 assert(hasInallocaArg()); 1402 return InallocaArgNo; 1403 } 1404 1405 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1406 unsigned getSRetArgNo() const { 1407 assert(hasSRetArg()); 1408 return SRetArgNo; 1409 } 1410 1411 unsigned totalIRArgs() const { return TotalIRArgs; } 1412 1413 bool hasPaddingArg(unsigned ArgNo) const { 1414 assert(ArgNo < ArgInfo.size()); 1415 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1416 } 1417 unsigned getPaddingArgNo(unsigned ArgNo) const { 1418 assert(hasPaddingArg(ArgNo)); 1419 return ArgInfo[ArgNo].PaddingArgIndex; 1420 } 1421 1422 /// Returns index of first IR argument corresponding to ArgNo, and their 1423 /// quantity. 1424 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1425 assert(ArgNo < ArgInfo.size()); 1426 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1427 ArgInfo[ArgNo].NumberOfArgs); 1428 } 1429 1430 private: 1431 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1432 bool OnlyRequiredArgs); 1433 }; 1434 1435 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1436 const CGFunctionInfo &FI, 1437 bool OnlyRequiredArgs) { 1438 unsigned IRArgNo = 0; 1439 bool SwapThisWithSRet = false; 1440 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1441 1442 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1443 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1444 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1445 } 1446 1447 unsigned ArgNo = 0; 1448 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1449 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1450 ++I, ++ArgNo) { 1451 assert(I != FI.arg_end()); 1452 QualType ArgType = I->type; 1453 const ABIArgInfo &AI = I->info; 1454 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1455 auto &IRArgs = ArgInfo[ArgNo]; 1456 1457 if (AI.getPaddingType()) 1458 IRArgs.PaddingArgIndex = IRArgNo++; 1459 1460 switch (AI.getKind()) { 1461 case ABIArgInfo::Extend: 1462 case ABIArgInfo::Direct: { 1463 // FIXME: handle sseregparm someday... 1464 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1465 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1466 IRArgs.NumberOfArgs = STy->getNumElements(); 1467 } else { 1468 IRArgs.NumberOfArgs = 1; 1469 } 1470 break; 1471 } 1472 case ABIArgInfo::Indirect: 1473 case ABIArgInfo::IndirectAliased: 1474 IRArgs.NumberOfArgs = 1; 1475 break; 1476 case ABIArgInfo::Ignore: 1477 case ABIArgInfo::InAlloca: 1478 // ignore and inalloca doesn't have matching LLVM parameters. 1479 IRArgs.NumberOfArgs = 0; 1480 break; 1481 case ABIArgInfo::CoerceAndExpand: 1482 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1483 break; 1484 case ABIArgInfo::Expand: 1485 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1486 break; 1487 } 1488 1489 if (IRArgs.NumberOfArgs > 0) { 1490 IRArgs.FirstArgIndex = IRArgNo; 1491 IRArgNo += IRArgs.NumberOfArgs; 1492 } 1493 1494 // Skip over the sret parameter when it comes second. We already handled it 1495 // above. 1496 if (IRArgNo == 1 && SwapThisWithSRet) 1497 IRArgNo++; 1498 } 1499 assert(ArgNo == ArgInfo.size()); 1500 1501 if (FI.usesInAlloca()) 1502 InallocaArgNo = IRArgNo++; 1503 1504 TotalIRArgs = IRArgNo; 1505 } 1506 } // namespace 1507 1508 /***/ 1509 1510 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1511 const auto &RI = FI.getReturnInfo(); 1512 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1513 } 1514 1515 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1516 return ReturnTypeUsesSRet(FI) && 1517 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1518 } 1519 1520 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1521 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1522 switch (BT->getKind()) { 1523 default: 1524 return false; 1525 case BuiltinType::Float: 1526 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1527 case BuiltinType::Double: 1528 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1529 case BuiltinType::LongDouble: 1530 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1531 } 1532 } 1533 1534 return false; 1535 } 1536 1537 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1538 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1539 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1540 if (BT->getKind() == BuiltinType::LongDouble) 1541 return getTarget().useObjCFP2RetForComplexLongDouble(); 1542 } 1543 } 1544 1545 return false; 1546 } 1547 1548 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1549 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1550 return GetFunctionType(FI); 1551 } 1552 1553 llvm::FunctionType * 1554 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1555 1556 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1557 (void)Inserted; 1558 assert(Inserted && "Recursively being processed?"); 1559 1560 llvm::Type *resultType = nullptr; 1561 const ABIArgInfo &retAI = FI.getReturnInfo(); 1562 switch (retAI.getKind()) { 1563 case ABIArgInfo::Expand: 1564 case ABIArgInfo::IndirectAliased: 1565 llvm_unreachable("Invalid ABI kind for return argument"); 1566 1567 case ABIArgInfo::Extend: 1568 case ABIArgInfo::Direct: 1569 resultType = retAI.getCoerceToType(); 1570 break; 1571 1572 case ABIArgInfo::InAlloca: 1573 if (retAI.getInAllocaSRet()) { 1574 // sret things on win32 aren't void, they return the sret pointer. 1575 QualType ret = FI.getReturnType(); 1576 llvm::Type *ty = ConvertType(ret); 1577 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1578 resultType = llvm::PointerType::get(ty, addressSpace); 1579 } else { 1580 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1581 } 1582 break; 1583 1584 case ABIArgInfo::Indirect: 1585 case ABIArgInfo::Ignore: 1586 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1587 break; 1588 1589 case ABIArgInfo::CoerceAndExpand: 1590 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1591 break; 1592 } 1593 1594 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1595 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1596 1597 // Add type for sret argument. 1598 if (IRFunctionArgs.hasSRetArg()) { 1599 QualType Ret = FI.getReturnType(); 1600 llvm::Type *Ty = ConvertType(Ret); 1601 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1602 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1603 llvm::PointerType::get(Ty, AddressSpace); 1604 } 1605 1606 // Add type for inalloca argument. 1607 if (IRFunctionArgs.hasInallocaArg()) { 1608 auto ArgStruct = FI.getArgStruct(); 1609 assert(ArgStruct); 1610 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1611 } 1612 1613 // Add in all of the required arguments. 1614 unsigned ArgNo = 0; 1615 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1616 ie = it + FI.getNumRequiredArgs(); 1617 for (; it != ie; ++it, ++ArgNo) { 1618 const ABIArgInfo &ArgInfo = it->info; 1619 1620 // Insert a padding type to ensure proper alignment. 1621 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1622 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1623 ArgInfo.getPaddingType(); 1624 1625 unsigned FirstIRArg, NumIRArgs; 1626 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1627 1628 switch (ArgInfo.getKind()) { 1629 case ABIArgInfo::Ignore: 1630 case ABIArgInfo::InAlloca: 1631 assert(NumIRArgs == 0); 1632 break; 1633 1634 case ABIArgInfo::Indirect: { 1635 assert(NumIRArgs == 1); 1636 // indirect arguments are always on the stack, which is alloca addr space. 1637 llvm::Type *LTy = ConvertTypeForMem(it->type); 1638 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1639 CGM.getDataLayout().getAllocaAddrSpace()); 1640 break; 1641 } 1642 case ABIArgInfo::IndirectAliased: { 1643 assert(NumIRArgs == 1); 1644 llvm::Type *LTy = ConvertTypeForMem(it->type); 1645 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1646 break; 1647 } 1648 case ABIArgInfo::Extend: 1649 case ABIArgInfo::Direct: { 1650 // Fast-isel and the optimizer generally like scalar values better than 1651 // FCAs, so we flatten them if this is safe to do for this argument. 1652 llvm::Type *argType = ArgInfo.getCoerceToType(); 1653 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1654 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1655 assert(NumIRArgs == st->getNumElements()); 1656 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1657 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1658 } else { 1659 assert(NumIRArgs == 1); 1660 ArgTypes[FirstIRArg] = argType; 1661 } 1662 break; 1663 } 1664 1665 case ABIArgInfo::CoerceAndExpand: { 1666 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1667 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1668 *ArgTypesIter++ = EltTy; 1669 } 1670 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1671 break; 1672 } 1673 1674 case ABIArgInfo::Expand: 1675 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1676 getExpandedTypes(it->type, ArgTypesIter); 1677 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1678 break; 1679 } 1680 } 1681 1682 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1683 assert(Erased && "Not in set?"); 1684 1685 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1686 } 1687 1688 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1689 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1690 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1691 1692 if (!isFuncTypeConvertible(FPT)) 1693 return llvm::StructType::get(getLLVMContext()); 1694 1695 return GetFunctionType(GD); 1696 } 1697 1698 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1699 llvm::AttrBuilder &FuncAttrs, 1700 const FunctionProtoType *FPT) { 1701 if (!FPT) 1702 return; 1703 1704 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1705 FPT->isNothrow()) 1706 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1707 } 1708 1709 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1710 bool HasOptnone, 1711 bool AttrOnCallSite, 1712 llvm::AttrBuilder &FuncAttrs) { 1713 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1714 if (!HasOptnone) { 1715 if (CodeGenOpts.OptimizeSize) 1716 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1717 if (CodeGenOpts.OptimizeSize == 2) 1718 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1719 } 1720 1721 if (CodeGenOpts.DisableRedZone) 1722 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1723 if (CodeGenOpts.IndirectTlsSegRefs) 1724 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1725 if (CodeGenOpts.NoImplicitFloat) 1726 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1727 1728 if (AttrOnCallSite) { 1729 // Attributes that should go on the call site only. 1730 if (!CodeGenOpts.SimplifyLibCalls || 1731 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1732 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1733 if (!CodeGenOpts.TrapFuncName.empty()) 1734 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1735 } else { 1736 StringRef FpKind; 1737 switch (CodeGenOpts.getFramePointer()) { 1738 case CodeGenOptions::FramePointerKind::None: 1739 FpKind = "none"; 1740 break; 1741 case CodeGenOptions::FramePointerKind::NonLeaf: 1742 FpKind = "non-leaf"; 1743 break; 1744 case CodeGenOptions::FramePointerKind::All: 1745 FpKind = "all"; 1746 break; 1747 } 1748 FuncAttrs.addAttribute("frame-pointer", FpKind); 1749 1750 FuncAttrs.addAttribute("less-precise-fpmad", 1751 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1752 1753 if (CodeGenOpts.NullPointerIsValid) 1754 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1755 1756 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1757 FuncAttrs.addAttribute("denormal-fp-math", 1758 CodeGenOpts.FPDenormalMode.str()); 1759 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1760 FuncAttrs.addAttribute( 1761 "denormal-fp-math-f32", 1762 CodeGenOpts.FP32DenormalMode.str()); 1763 } 1764 1765 FuncAttrs.addAttribute("no-trapping-math", 1766 llvm::toStringRef(LangOpts.getFPExceptionMode() == 1767 LangOptions::FPE_Ignore)); 1768 1769 // Strict (compliant) code is the default, so only add this attribute to 1770 // indicate that we are trying to workaround a problem case. 1771 if (!CodeGenOpts.StrictFloatCastOverflow) 1772 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1773 1774 // TODO: Are these all needed? 1775 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1776 FuncAttrs.addAttribute("no-infs-fp-math", 1777 llvm::toStringRef(LangOpts.NoHonorInfs)); 1778 FuncAttrs.addAttribute("no-nans-fp-math", 1779 llvm::toStringRef(LangOpts.NoHonorNaNs)); 1780 FuncAttrs.addAttribute("unsafe-fp-math", 1781 llvm::toStringRef(LangOpts.UnsafeFPMath)); 1782 FuncAttrs.addAttribute("use-soft-float", 1783 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1784 FuncAttrs.addAttribute("stack-protector-buffer-size", 1785 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1786 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1787 llvm::toStringRef(LangOpts.NoSignedZero)); 1788 FuncAttrs.addAttribute( 1789 "correctly-rounded-divide-sqrt-fp-math", 1790 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1791 1792 // TODO: Reciprocal estimate codegen options should apply to instructions? 1793 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1794 if (!Recips.empty()) 1795 FuncAttrs.addAttribute("reciprocal-estimates", 1796 llvm::join(Recips, ",")); 1797 1798 if (!CodeGenOpts.PreferVectorWidth.empty() && 1799 CodeGenOpts.PreferVectorWidth != "none") 1800 FuncAttrs.addAttribute("prefer-vector-width", 1801 CodeGenOpts.PreferVectorWidth); 1802 1803 if (CodeGenOpts.StackRealignment) 1804 FuncAttrs.addAttribute("stackrealign"); 1805 if (CodeGenOpts.Backchain) 1806 FuncAttrs.addAttribute("backchain"); 1807 if (CodeGenOpts.EnableSegmentedStacks) 1808 FuncAttrs.addAttribute("split-stack"); 1809 1810 if (CodeGenOpts.SpeculativeLoadHardening) 1811 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1812 } 1813 1814 if (getLangOpts().assumeFunctionsAreConvergent()) { 1815 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1816 // convergent (meaning, they may call an intrinsically convergent op, such 1817 // as __syncthreads() / barrier(), and so can't have certain optimizations 1818 // applied around them). LLVM will remove this attribute where it safely 1819 // can. 1820 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1821 } 1822 1823 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1824 // Exceptions aren't supported in CUDA device code. 1825 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1826 } 1827 1828 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1829 StringRef Var, Value; 1830 std::tie(Var, Value) = Attr.split('='); 1831 FuncAttrs.addAttribute(Var, Value); 1832 } 1833 } 1834 1835 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1836 llvm::AttrBuilder FuncAttrs; 1837 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1838 /* AttrOnCallSite = */ false, FuncAttrs); 1839 // TODO: call GetCPUAndFeaturesAttributes? 1840 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1841 } 1842 1843 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1844 llvm::AttrBuilder &attrs) { 1845 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1846 /*for call*/ false, attrs); 1847 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1848 } 1849 1850 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1851 const LangOptions &LangOpts, 1852 const NoBuiltinAttr *NBA = nullptr) { 1853 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1854 SmallString<32> AttributeName; 1855 AttributeName += "no-builtin-"; 1856 AttributeName += BuiltinName; 1857 FuncAttrs.addAttribute(AttributeName); 1858 }; 1859 1860 // First, handle the language options passed through -fno-builtin. 1861 if (LangOpts.NoBuiltin) { 1862 // -fno-builtin disables them all. 1863 FuncAttrs.addAttribute("no-builtins"); 1864 return; 1865 } 1866 1867 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1868 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1869 1870 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1871 // the source. 1872 if (!NBA) 1873 return; 1874 1875 // If there is a wildcard in the builtin names specified through the 1876 // attribute, disable them all. 1877 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1878 FuncAttrs.addAttribute("no-builtins"); 1879 return; 1880 } 1881 1882 // And last, add the rest of the builtin names. 1883 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1884 } 1885 1886 /// Construct the IR attribute list of a function or call. 1887 /// 1888 /// When adding an attribute, please consider where it should be handled: 1889 /// 1890 /// - getDefaultFunctionAttributes is for attributes that are essentially 1891 /// part of the global target configuration (but perhaps can be 1892 /// overridden on a per-function basis). Adding attributes there 1893 /// will cause them to also be set in frontends that build on Clang's 1894 /// target-configuration logic, as well as for code defined in library 1895 /// modules such as CUDA's libdevice. 1896 /// 1897 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 1898 /// and adds declaration-specific, convention-specific, and 1899 /// frontend-specific logic. The last is of particular importance: 1900 /// attributes that restrict how the frontend generates code must be 1901 /// added here rather than getDefaultFunctionAttributes. 1902 /// 1903 void CodeGenModule::ConstructAttributeList( 1904 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1905 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1906 llvm::AttrBuilder FuncAttrs; 1907 llvm::AttrBuilder RetAttrs; 1908 1909 // Collect function IR attributes from the CC lowering. 1910 // We'll collect the paramete and result attributes later. 1911 CallingConv = FI.getEffectiveCallingConvention(); 1912 if (FI.isNoReturn()) 1913 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1914 if (FI.isCmseNSCall()) 1915 FuncAttrs.addAttribute("cmse_nonsecure_call"); 1916 1917 // Collect function IR attributes from the callee prototype if we have one. 1918 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1919 CalleeInfo.getCalleeFunctionProtoType()); 1920 1921 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1922 1923 bool HasOptnone = false; 1924 // The NoBuiltinAttr attached to the target FunctionDecl. 1925 const NoBuiltinAttr *NBA = nullptr; 1926 1927 // Collect function IR attributes based on declaration-specific 1928 // information. 1929 // FIXME: handle sseregparm someday... 1930 if (TargetDecl) { 1931 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1932 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1933 if (TargetDecl->hasAttr<NoThrowAttr>()) 1934 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1935 if (TargetDecl->hasAttr<NoReturnAttr>()) 1936 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1937 if (TargetDecl->hasAttr<ColdAttr>()) 1938 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1939 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1940 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1941 if (TargetDecl->hasAttr<ConvergentAttr>()) 1942 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1943 1944 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1945 AddAttributesFromFunctionProtoType( 1946 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1947 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 1948 // A sane operator new returns a non-aliasing pointer. 1949 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 1950 if (getCodeGenOpts().AssumeSaneOperatorNew && 1951 (Kind == OO_New || Kind == OO_Array_New)) 1952 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1953 } 1954 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1955 const bool IsVirtualCall = MD && MD->isVirtual(); 1956 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1957 // virtual function. These attributes are not inherited by overloads. 1958 if (!(AttrOnCallSite && IsVirtualCall)) { 1959 if (Fn->isNoReturn()) 1960 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1961 NBA = Fn->getAttr<NoBuiltinAttr>(); 1962 } 1963 } 1964 1965 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1966 if (TargetDecl->hasAttr<ConstAttr>()) { 1967 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1968 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1969 } else if (TargetDecl->hasAttr<PureAttr>()) { 1970 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1971 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1972 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1973 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1974 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1975 } 1976 if (TargetDecl->hasAttr<RestrictAttr>()) 1977 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1978 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1979 !CodeGenOpts.NullPointerIsValid) 1980 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1981 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1982 FuncAttrs.addAttribute("no_caller_saved_registers"); 1983 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1984 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1985 1986 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1987 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1988 Optional<unsigned> NumElemsParam; 1989 if (AllocSize->getNumElemsParam().isValid()) 1990 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1991 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1992 NumElemsParam); 1993 } 1994 1995 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1996 if (getLangOpts().OpenCLVersion <= 120) { 1997 // OpenCL v1.2 Work groups are always uniform 1998 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1999 } else { 2000 // OpenCL v2.0 Work groups may be whether uniform or not. 2001 // '-cl-uniform-work-group-size' compile option gets a hint 2002 // to the compiler that the global work-size be a multiple of 2003 // the work-group size specified to clEnqueueNDRangeKernel 2004 // (i.e. work groups are uniform). 2005 FuncAttrs.addAttribute("uniform-work-group-size", 2006 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2007 } 2008 } 2009 } 2010 2011 // Attach "no-builtins" attributes to: 2012 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2013 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2014 // The attributes can come from: 2015 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2016 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2017 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2018 2019 // Collect function IR attributes based on global settiings. 2020 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2021 2022 // Override some default IR attributes based on declaration-specific 2023 // information. 2024 if (TargetDecl) { 2025 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2026 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2027 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2028 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2029 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2030 FuncAttrs.removeAttribute("split-stack"); 2031 2032 // Add NonLazyBind attribute to function declarations when -fno-plt 2033 // is used. 2034 // FIXME: what if we just haven't processed the function definition 2035 // yet, or if it's an external definition like C99 inline? 2036 if (CodeGenOpts.NoPLT) { 2037 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2038 if (!Fn->isDefined() && !AttrOnCallSite) { 2039 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2040 } 2041 } 2042 } 2043 } 2044 2045 // Collect non-call-site function IR attributes from declaration-specific 2046 // information. 2047 if (!AttrOnCallSite) { 2048 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2049 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2050 2051 // Whether tail calls are enabled. 2052 auto shouldDisableTailCalls = [&] { 2053 // Should this be honored in getDefaultFunctionAttributes? 2054 if (CodeGenOpts.DisableTailCalls) 2055 return true; 2056 2057 if (!TargetDecl) 2058 return false; 2059 2060 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2061 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2062 return true; 2063 2064 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2065 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2066 if (!BD->doesNotEscape()) 2067 return true; 2068 } 2069 2070 return false; 2071 }; 2072 FuncAttrs.addAttribute("disable-tail-calls", 2073 llvm::toStringRef(shouldDisableTailCalls())); 2074 2075 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2076 // handles these separately to set them based on the global defaults. 2077 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2078 } 2079 2080 // Collect attributes from arguments and return values. 2081 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2082 2083 QualType RetTy = FI.getReturnType(); 2084 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2085 switch (RetAI.getKind()) { 2086 case ABIArgInfo::Extend: 2087 if (RetAI.isSignExt()) 2088 RetAttrs.addAttribute(llvm::Attribute::SExt); 2089 else 2090 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2091 LLVM_FALLTHROUGH; 2092 case ABIArgInfo::Direct: 2093 if (RetAI.getInReg()) 2094 RetAttrs.addAttribute(llvm::Attribute::InReg); 2095 break; 2096 case ABIArgInfo::Ignore: 2097 break; 2098 2099 case ABIArgInfo::InAlloca: 2100 case ABIArgInfo::Indirect: { 2101 // inalloca and sret disable readnone and readonly 2102 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2103 .removeAttribute(llvm::Attribute::ReadNone); 2104 break; 2105 } 2106 2107 case ABIArgInfo::CoerceAndExpand: 2108 break; 2109 2110 case ABIArgInfo::Expand: 2111 case ABIArgInfo::IndirectAliased: 2112 llvm_unreachable("Invalid ABI kind for return argument"); 2113 } 2114 2115 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2116 QualType PTy = RefTy->getPointeeType(); 2117 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2118 RetAttrs.addDereferenceableAttr( 2119 getMinimumObjectSize(PTy).getQuantity()); 2120 if (getContext().getTargetAddressSpace(PTy) == 0 && 2121 !CodeGenOpts.NullPointerIsValid) 2122 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2123 if (PTy->isObjectType()) { 2124 llvm::Align Alignment = 2125 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2126 RetAttrs.addAlignmentAttr(Alignment); 2127 } 2128 } 2129 2130 bool hasUsedSRet = false; 2131 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2132 2133 // Attach attributes to sret. 2134 if (IRFunctionArgs.hasSRetArg()) { 2135 llvm::AttrBuilder SRETAttrs; 2136 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2137 hasUsedSRet = true; 2138 if (RetAI.getInReg()) 2139 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2140 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2141 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2142 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2143 } 2144 2145 // Attach attributes to inalloca argument. 2146 if (IRFunctionArgs.hasInallocaArg()) { 2147 llvm::AttrBuilder Attrs; 2148 Attrs.addAttribute(llvm::Attribute::InAlloca); 2149 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2150 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2151 } 2152 2153 unsigned ArgNo = 0; 2154 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2155 E = FI.arg_end(); 2156 I != E; ++I, ++ArgNo) { 2157 QualType ParamType = I->type; 2158 const ABIArgInfo &AI = I->info; 2159 llvm::AttrBuilder Attrs; 2160 2161 // Add attribute for padding argument, if necessary. 2162 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2163 if (AI.getPaddingInReg()) { 2164 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2165 llvm::AttributeSet::get( 2166 getLLVMContext(), 2167 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2168 } 2169 } 2170 2171 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2172 // have the corresponding parameter variable. It doesn't make 2173 // sense to do it here because parameters are so messed up. 2174 switch (AI.getKind()) { 2175 case ABIArgInfo::Extend: 2176 if (AI.isSignExt()) 2177 Attrs.addAttribute(llvm::Attribute::SExt); 2178 else 2179 Attrs.addAttribute(llvm::Attribute::ZExt); 2180 LLVM_FALLTHROUGH; 2181 case ABIArgInfo::Direct: 2182 if (ArgNo == 0 && FI.isChainCall()) 2183 Attrs.addAttribute(llvm::Attribute::Nest); 2184 else if (AI.getInReg()) 2185 Attrs.addAttribute(llvm::Attribute::InReg); 2186 break; 2187 2188 case ABIArgInfo::Indirect: { 2189 if (AI.getInReg()) 2190 Attrs.addAttribute(llvm::Attribute::InReg); 2191 2192 if (AI.getIndirectByVal()) 2193 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2194 2195 // TODO: We could add the byref attribute if not byval, but it would 2196 // require updating many testcases. 2197 2198 CharUnits Align = AI.getIndirectAlign(); 2199 2200 // In a byval argument, it is important that the required 2201 // alignment of the type is honored, as LLVM might be creating a 2202 // *new* stack object, and needs to know what alignment to give 2203 // it. (Sometimes it can deduce a sensible alignment on its own, 2204 // but not if clang decides it must emit a packed struct, or the 2205 // user specifies increased alignment requirements.) 2206 // 2207 // This is different from indirect *not* byval, where the object 2208 // exists already, and the align attribute is purely 2209 // informative. 2210 assert(!Align.isZero()); 2211 2212 // For now, only add this when we have a byval argument. 2213 // TODO: be less lazy about updating test cases. 2214 if (AI.getIndirectByVal()) 2215 Attrs.addAlignmentAttr(Align.getQuantity()); 2216 2217 // byval disables readnone and readonly. 2218 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2219 .removeAttribute(llvm::Attribute::ReadNone); 2220 2221 break; 2222 } 2223 case ABIArgInfo::IndirectAliased: { 2224 CharUnits Align = AI.getIndirectAlign(); 2225 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2226 Attrs.addAlignmentAttr(Align.getQuantity()); 2227 break; 2228 } 2229 case ABIArgInfo::Ignore: 2230 case ABIArgInfo::Expand: 2231 case ABIArgInfo::CoerceAndExpand: 2232 break; 2233 2234 case ABIArgInfo::InAlloca: 2235 // inalloca disables readnone and readonly. 2236 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2237 .removeAttribute(llvm::Attribute::ReadNone); 2238 continue; 2239 } 2240 2241 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2242 QualType PTy = RefTy->getPointeeType(); 2243 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2244 Attrs.addDereferenceableAttr( 2245 getMinimumObjectSize(PTy).getQuantity()); 2246 if (getContext().getTargetAddressSpace(PTy) == 0 && 2247 !CodeGenOpts.NullPointerIsValid) 2248 Attrs.addAttribute(llvm::Attribute::NonNull); 2249 if (PTy->isObjectType()) { 2250 llvm::Align Alignment = 2251 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2252 Attrs.addAlignmentAttr(Alignment); 2253 } 2254 } 2255 2256 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2257 case ParameterABI::Ordinary: 2258 break; 2259 2260 case ParameterABI::SwiftIndirectResult: { 2261 // Add 'sret' if we haven't already used it for something, but 2262 // only if the result is void. 2263 if (!hasUsedSRet && RetTy->isVoidType()) { 2264 Attrs.addAttribute(llvm::Attribute::StructRet); 2265 hasUsedSRet = true; 2266 } 2267 2268 // Add 'noalias' in either case. 2269 Attrs.addAttribute(llvm::Attribute::NoAlias); 2270 2271 // Add 'dereferenceable' and 'alignment'. 2272 auto PTy = ParamType->getPointeeType(); 2273 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2274 auto info = getContext().getTypeInfoInChars(PTy); 2275 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2276 Attrs.addAlignmentAttr(info.second.getAsAlign()); 2277 } 2278 break; 2279 } 2280 2281 case ParameterABI::SwiftErrorResult: 2282 Attrs.addAttribute(llvm::Attribute::SwiftError); 2283 break; 2284 2285 case ParameterABI::SwiftContext: 2286 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2287 break; 2288 } 2289 2290 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2291 Attrs.addAttribute(llvm::Attribute::NoCapture); 2292 2293 if (Attrs.hasAttributes()) { 2294 unsigned FirstIRArg, NumIRArgs; 2295 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2296 for (unsigned i = 0; i < NumIRArgs; i++) 2297 ArgAttrs[FirstIRArg + i] = 2298 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2299 } 2300 } 2301 assert(ArgNo == FI.arg_size()); 2302 2303 AttrList = llvm::AttributeList::get( 2304 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2305 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2306 } 2307 2308 /// An argument came in as a promoted argument; demote it back to its 2309 /// declared type. 2310 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2311 const VarDecl *var, 2312 llvm::Value *value) { 2313 llvm::Type *varType = CGF.ConvertType(var->getType()); 2314 2315 // This can happen with promotions that actually don't change the 2316 // underlying type, like the enum promotions. 2317 if (value->getType() == varType) return value; 2318 2319 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2320 && "unexpected promotion type"); 2321 2322 if (isa<llvm::IntegerType>(varType)) 2323 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2324 2325 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2326 } 2327 2328 /// Returns the attribute (either parameter attribute, or function 2329 /// attribute), which declares argument ArgNo to be non-null. 2330 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2331 QualType ArgType, unsigned ArgNo) { 2332 // FIXME: __attribute__((nonnull)) can also be applied to: 2333 // - references to pointers, where the pointee is known to be 2334 // nonnull (apparently a Clang extension) 2335 // - transparent unions containing pointers 2336 // In the former case, LLVM IR cannot represent the constraint. In 2337 // the latter case, we have no guarantee that the transparent union 2338 // is in fact passed as a pointer. 2339 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2340 return nullptr; 2341 // First, check attribute on parameter itself. 2342 if (PVD) { 2343 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2344 return ParmNNAttr; 2345 } 2346 // Check function attributes. 2347 if (!FD) 2348 return nullptr; 2349 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2350 if (NNAttr->isNonNull(ArgNo)) 2351 return NNAttr; 2352 } 2353 return nullptr; 2354 } 2355 2356 namespace { 2357 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2358 Address Temp; 2359 Address Arg; 2360 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2361 void Emit(CodeGenFunction &CGF, Flags flags) override { 2362 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2363 CGF.Builder.CreateStore(errorValue, Arg); 2364 } 2365 }; 2366 } 2367 2368 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2369 llvm::Function *Fn, 2370 const FunctionArgList &Args) { 2371 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2372 // Naked functions don't have prologues. 2373 return; 2374 2375 // If this is an implicit-return-zero function, go ahead and 2376 // initialize the return value. TODO: it might be nice to have 2377 // a more general mechanism for this that didn't require synthesized 2378 // return statements. 2379 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2380 if (FD->hasImplicitReturnZero()) { 2381 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2382 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2383 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2384 Builder.CreateStore(Zero, ReturnValue); 2385 } 2386 } 2387 2388 // FIXME: We no longer need the types from FunctionArgList; lift up and 2389 // simplify. 2390 2391 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2392 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2393 2394 // If we're using inalloca, all the memory arguments are GEPs off of the last 2395 // parameter, which is a pointer to the complete memory area. 2396 Address ArgStruct = Address::invalid(); 2397 if (IRFunctionArgs.hasInallocaArg()) { 2398 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2399 FI.getArgStructAlignment()); 2400 2401 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2402 } 2403 2404 // Name the struct return parameter. 2405 if (IRFunctionArgs.hasSRetArg()) { 2406 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2407 AI->setName("agg.result"); 2408 AI->addAttr(llvm::Attribute::NoAlias); 2409 } 2410 2411 // Track if we received the parameter as a pointer (indirect, byval, or 2412 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2413 // into a local alloca for us. 2414 SmallVector<ParamValue, 16> ArgVals; 2415 ArgVals.reserve(Args.size()); 2416 2417 // Create a pointer value for every parameter declaration. This usually 2418 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2419 // any cleanups or do anything that might unwind. We do that separately, so 2420 // we can push the cleanups in the correct order for the ABI. 2421 assert(FI.arg_size() == Args.size() && 2422 "Mismatch between function signature & arguments."); 2423 unsigned ArgNo = 0; 2424 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2425 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2426 i != e; ++i, ++info_it, ++ArgNo) { 2427 const VarDecl *Arg = *i; 2428 const ABIArgInfo &ArgI = info_it->info; 2429 2430 bool isPromoted = 2431 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2432 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2433 // the parameter is promoted. In this case we convert to 2434 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2435 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2436 assert(hasScalarEvaluationKind(Ty) == 2437 hasScalarEvaluationKind(Arg->getType())); 2438 2439 unsigned FirstIRArg, NumIRArgs; 2440 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2441 2442 switch (ArgI.getKind()) { 2443 case ABIArgInfo::InAlloca: { 2444 assert(NumIRArgs == 0); 2445 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2446 Address V = 2447 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2448 if (ArgI.getInAllocaIndirect()) 2449 V = Address(Builder.CreateLoad(V), 2450 getContext().getTypeAlignInChars(Ty)); 2451 ArgVals.push_back(ParamValue::forIndirect(V)); 2452 break; 2453 } 2454 2455 case ABIArgInfo::Indirect: 2456 case ABIArgInfo::IndirectAliased: { 2457 assert(NumIRArgs == 1); 2458 Address ParamAddr = 2459 Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign()); 2460 2461 if (!hasScalarEvaluationKind(Ty)) { 2462 // Aggregates and complex variables are accessed by reference. All we 2463 // need to do is realign the value, if requested. Also, if the address 2464 // may be aliased, copy it to ensure that the parameter variable is 2465 // mutable and has a unique adress, as C requires. 2466 Address V = ParamAddr; 2467 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2468 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2469 2470 // Copy from the incoming argument pointer to the temporary with the 2471 // appropriate alignment. 2472 // 2473 // FIXME: We should have a common utility for generating an aggregate 2474 // copy. 2475 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2476 Builder.CreateMemCpy( 2477 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2478 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2479 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2480 V = AlignedTemp; 2481 } 2482 ArgVals.push_back(ParamValue::forIndirect(V)); 2483 } else { 2484 // Load scalar value from indirect argument. 2485 llvm::Value *V = 2486 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2487 2488 if (isPromoted) 2489 V = emitArgumentDemotion(*this, Arg, V); 2490 ArgVals.push_back(ParamValue::forDirect(V)); 2491 } 2492 break; 2493 } 2494 2495 case ABIArgInfo::Extend: 2496 case ABIArgInfo::Direct: { 2497 auto AI = Fn->getArg(FirstIRArg); 2498 llvm::Type *LTy = ConvertType(Arg->getType()); 2499 2500 // Prepare parameter attributes. So far, only attributes for pointer 2501 // parameters are prepared. See 2502 // http://llvm.org/docs/LangRef.html#paramattrs. 2503 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2504 ArgI.getCoerceToType()->isPointerTy()) { 2505 assert(NumIRArgs == 1); 2506 2507 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2508 // Set `nonnull` attribute if any. 2509 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2510 PVD->getFunctionScopeIndex()) && 2511 !CGM.getCodeGenOpts().NullPointerIsValid) 2512 AI->addAttr(llvm::Attribute::NonNull); 2513 2514 QualType OTy = PVD->getOriginalType(); 2515 if (const auto *ArrTy = 2516 getContext().getAsConstantArrayType(OTy)) { 2517 // A C99 array parameter declaration with the static keyword also 2518 // indicates dereferenceability, and if the size is constant we can 2519 // use the dereferenceable attribute (which requires the size in 2520 // bytes). 2521 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2522 QualType ETy = ArrTy->getElementType(); 2523 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2524 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2525 ArrSize) { 2526 llvm::AttrBuilder Attrs; 2527 Attrs.addDereferenceableAttr( 2528 getContext().getTypeSizeInChars(ETy).getQuantity() * 2529 ArrSize); 2530 AI->addAttrs(Attrs); 2531 } else if (getContext().getTargetInfo().getNullPointerValue( 2532 ETy.getAddressSpace()) == 0 && 2533 !CGM.getCodeGenOpts().NullPointerIsValid) { 2534 AI->addAttr(llvm::Attribute::NonNull); 2535 } 2536 } 2537 } else if (const auto *ArrTy = 2538 getContext().getAsVariableArrayType(OTy)) { 2539 // For C99 VLAs with the static keyword, we don't know the size so 2540 // we can't use the dereferenceable attribute, but in addrspace(0) 2541 // we know that it must be nonnull. 2542 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2543 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2544 !CGM.getCodeGenOpts().NullPointerIsValid) 2545 AI->addAttr(llvm::Attribute::NonNull); 2546 } 2547 2548 // Set `align` attribute if any. 2549 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2550 if (!AVAttr) 2551 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2552 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2553 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2554 // If alignment-assumption sanitizer is enabled, we do *not* add 2555 // alignment attribute here, but emit normal alignment assumption, 2556 // so the UBSAN check could function. 2557 llvm::ConstantInt *AlignmentCI = 2558 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2559 unsigned AlignmentInt = 2560 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2561 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2562 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2563 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr( 2564 llvm::Align(AlignmentInt))); 2565 } 2566 } 2567 } 2568 2569 // Set 'noalias' if an argument type has the `restrict` qualifier. 2570 if (Arg->getType().isRestrictQualified()) 2571 AI->addAttr(llvm::Attribute::NoAlias); 2572 } 2573 2574 // Prepare the argument value. If we have the trivial case, handle it 2575 // with no muss and fuss. 2576 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2577 ArgI.getCoerceToType() == ConvertType(Ty) && 2578 ArgI.getDirectOffset() == 0) { 2579 assert(NumIRArgs == 1); 2580 2581 // LLVM expects swifterror parameters to be used in very restricted 2582 // ways. Copy the value into a less-restricted temporary. 2583 llvm::Value *V = AI; 2584 if (FI.getExtParameterInfo(ArgNo).getABI() 2585 == ParameterABI::SwiftErrorResult) { 2586 QualType pointeeTy = Ty->getPointeeType(); 2587 assert(pointeeTy->isPointerType()); 2588 Address temp = 2589 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2590 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2591 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2592 Builder.CreateStore(incomingErrorValue, temp); 2593 V = temp.getPointer(); 2594 2595 // Push a cleanup to copy the value back at the end of the function. 2596 // The convention does not guarantee that the value will be written 2597 // back if the function exits with an unwind exception. 2598 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2599 } 2600 2601 // Ensure the argument is the correct type. 2602 if (V->getType() != ArgI.getCoerceToType()) 2603 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2604 2605 if (isPromoted) 2606 V = emitArgumentDemotion(*this, Arg, V); 2607 2608 // Because of merging of function types from multiple decls it is 2609 // possible for the type of an argument to not match the corresponding 2610 // type in the function type. Since we are codegening the callee 2611 // in here, add a cast to the argument type. 2612 llvm::Type *LTy = ConvertType(Arg->getType()); 2613 if (V->getType() != LTy) 2614 V = Builder.CreateBitCast(V, LTy); 2615 2616 ArgVals.push_back(ParamValue::forDirect(V)); 2617 break; 2618 } 2619 2620 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2621 Arg->getName()); 2622 2623 // Pointer to store into. 2624 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2625 2626 // Fast-isel and the optimizer generally like scalar values better than 2627 // FCAs, so we flatten them if this is safe to do for this argument. 2628 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2629 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2630 STy->getNumElements() > 1) { 2631 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2632 llvm::Type *DstTy = Ptr.getElementType(); 2633 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2634 2635 Address AddrToStoreInto = Address::invalid(); 2636 if (SrcSize <= DstSize) { 2637 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2638 } else { 2639 AddrToStoreInto = 2640 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2641 } 2642 2643 assert(STy->getNumElements() == NumIRArgs); 2644 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2645 auto AI = Fn->getArg(FirstIRArg + i); 2646 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2647 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2648 Builder.CreateStore(AI, EltPtr); 2649 } 2650 2651 if (SrcSize > DstSize) { 2652 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2653 } 2654 2655 } else { 2656 // Simple case, just do a coerced store of the argument into the alloca. 2657 assert(NumIRArgs == 1); 2658 auto AI = Fn->getArg(FirstIRArg); 2659 AI->setName(Arg->getName() + ".coerce"); 2660 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2661 } 2662 2663 // Match to what EmitParmDecl is expecting for this type. 2664 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2665 llvm::Value *V = 2666 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2667 if (isPromoted) 2668 V = emitArgumentDemotion(*this, Arg, V); 2669 ArgVals.push_back(ParamValue::forDirect(V)); 2670 } else { 2671 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2672 } 2673 break; 2674 } 2675 2676 case ABIArgInfo::CoerceAndExpand: { 2677 // Reconstruct into a temporary. 2678 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2679 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2680 2681 auto coercionType = ArgI.getCoerceAndExpandType(); 2682 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2683 2684 unsigned argIndex = FirstIRArg; 2685 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2686 llvm::Type *eltType = coercionType->getElementType(i); 2687 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2688 continue; 2689 2690 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2691 auto elt = Fn->getArg(argIndex++); 2692 Builder.CreateStore(elt, eltAddr); 2693 } 2694 assert(argIndex == FirstIRArg + NumIRArgs); 2695 break; 2696 } 2697 2698 case ABIArgInfo::Expand: { 2699 // If this structure was expanded into multiple arguments then 2700 // we need to create a temporary and reconstruct it from the 2701 // arguments. 2702 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2703 LValue LV = MakeAddrLValue(Alloca, Ty); 2704 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2705 2706 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2707 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2708 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2709 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2710 auto AI = Fn->getArg(FirstIRArg + i); 2711 AI->setName(Arg->getName() + "." + Twine(i)); 2712 } 2713 break; 2714 } 2715 2716 case ABIArgInfo::Ignore: 2717 assert(NumIRArgs == 0); 2718 // Initialize the local variable appropriately. 2719 if (!hasScalarEvaluationKind(Ty)) { 2720 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2721 } else { 2722 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2723 ArgVals.push_back(ParamValue::forDirect(U)); 2724 } 2725 break; 2726 } 2727 } 2728 2729 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2730 for (int I = Args.size() - 1; I >= 0; --I) 2731 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2732 } else { 2733 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2734 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2735 } 2736 } 2737 2738 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2739 while (insn->use_empty()) { 2740 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2741 if (!bitcast) return; 2742 2743 // This is "safe" because we would have used a ConstantExpr otherwise. 2744 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2745 bitcast->eraseFromParent(); 2746 } 2747 } 2748 2749 /// Try to emit a fused autorelease of a return result. 2750 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2751 llvm::Value *result) { 2752 // We must be immediately followed the cast. 2753 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2754 if (BB->empty()) return nullptr; 2755 if (&BB->back() != result) return nullptr; 2756 2757 llvm::Type *resultType = result->getType(); 2758 2759 // result is in a BasicBlock and is therefore an Instruction. 2760 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2761 2762 SmallVector<llvm::Instruction *, 4> InstsToKill; 2763 2764 // Look for: 2765 // %generator = bitcast %type1* %generator2 to %type2* 2766 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2767 // We would have emitted this as a constant if the operand weren't 2768 // an Instruction. 2769 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2770 2771 // Require the generator to be immediately followed by the cast. 2772 if (generator->getNextNode() != bitcast) 2773 return nullptr; 2774 2775 InstsToKill.push_back(bitcast); 2776 } 2777 2778 // Look for: 2779 // %generator = call i8* @objc_retain(i8* %originalResult) 2780 // or 2781 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2782 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2783 if (!call) return nullptr; 2784 2785 bool doRetainAutorelease; 2786 2787 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2788 doRetainAutorelease = true; 2789 } else if (call->getCalledOperand() == 2790 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 2791 doRetainAutorelease = false; 2792 2793 // If we emitted an assembly marker for this call (and the 2794 // ARCEntrypoints field should have been set if so), go looking 2795 // for that call. If we can't find it, we can't do this 2796 // optimization. But it should always be the immediately previous 2797 // instruction, unless we needed bitcasts around the call. 2798 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2799 llvm::Instruction *prev = call->getPrevNode(); 2800 assert(prev); 2801 if (isa<llvm::BitCastInst>(prev)) { 2802 prev = prev->getPrevNode(); 2803 assert(prev); 2804 } 2805 assert(isa<llvm::CallInst>(prev)); 2806 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 2807 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2808 InstsToKill.push_back(prev); 2809 } 2810 } else { 2811 return nullptr; 2812 } 2813 2814 result = call->getArgOperand(0); 2815 InstsToKill.push_back(call); 2816 2817 // Keep killing bitcasts, for sanity. Note that we no longer care 2818 // about precise ordering as long as there's exactly one use. 2819 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2820 if (!bitcast->hasOneUse()) break; 2821 InstsToKill.push_back(bitcast); 2822 result = bitcast->getOperand(0); 2823 } 2824 2825 // Delete all the unnecessary instructions, from latest to earliest. 2826 for (auto *I : InstsToKill) 2827 I->eraseFromParent(); 2828 2829 // Do the fused retain/autorelease if we were asked to. 2830 if (doRetainAutorelease) 2831 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2832 2833 // Cast back to the result type. 2834 return CGF.Builder.CreateBitCast(result, resultType); 2835 } 2836 2837 /// If this is a +1 of the value of an immutable 'self', remove it. 2838 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2839 llvm::Value *result) { 2840 // This is only applicable to a method with an immutable 'self'. 2841 const ObjCMethodDecl *method = 2842 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2843 if (!method) return nullptr; 2844 const VarDecl *self = method->getSelfDecl(); 2845 if (!self->getType().isConstQualified()) return nullptr; 2846 2847 // Look for a retain call. 2848 llvm::CallInst *retainCall = 2849 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2850 if (!retainCall || retainCall->getCalledOperand() != 2851 CGF.CGM.getObjCEntrypoints().objc_retain) 2852 return nullptr; 2853 2854 // Look for an ordinary load of 'self'. 2855 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2856 llvm::LoadInst *load = 2857 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2858 if (!load || load->isAtomic() || load->isVolatile() || 2859 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2860 return nullptr; 2861 2862 // Okay! Burn it all down. This relies for correctness on the 2863 // assumption that the retain is emitted as part of the return and 2864 // that thereafter everything is used "linearly". 2865 llvm::Type *resultType = result->getType(); 2866 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2867 assert(retainCall->use_empty()); 2868 retainCall->eraseFromParent(); 2869 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2870 2871 return CGF.Builder.CreateBitCast(load, resultType); 2872 } 2873 2874 /// Emit an ARC autorelease of the result of a function. 2875 /// 2876 /// \return the value to actually return from the function 2877 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2878 llvm::Value *result) { 2879 // If we're returning 'self', kill the initial retain. This is a 2880 // heuristic attempt to "encourage correctness" in the really unfortunate 2881 // case where we have a return of self during a dealloc and we desperately 2882 // need to avoid the possible autorelease. 2883 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2884 return self; 2885 2886 // At -O0, try to emit a fused retain/autorelease. 2887 if (CGF.shouldUseFusedARCCalls()) 2888 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2889 return fused; 2890 2891 return CGF.EmitARCAutoreleaseReturnValue(result); 2892 } 2893 2894 /// Heuristically search for a dominating store to the return-value slot. 2895 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2896 // Check if a User is a store which pointerOperand is the ReturnValue. 2897 // We are looking for stores to the ReturnValue, not for stores of the 2898 // ReturnValue to some other location. 2899 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2900 auto *SI = dyn_cast<llvm::StoreInst>(U); 2901 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2902 return nullptr; 2903 // These aren't actually possible for non-coerced returns, and we 2904 // only care about non-coerced returns on this code path. 2905 assert(!SI->isAtomic() && !SI->isVolatile()); 2906 return SI; 2907 }; 2908 // If there are multiple uses of the return-value slot, just check 2909 // for something immediately preceding the IP. Sometimes this can 2910 // happen with how we generate implicit-returns; it can also happen 2911 // with noreturn cleanups. 2912 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2913 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2914 if (IP->empty()) return nullptr; 2915 llvm::Instruction *I = &IP->back(); 2916 2917 // Skip lifetime markers 2918 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2919 IE = IP->rend(); 2920 II != IE; ++II) { 2921 if (llvm::IntrinsicInst *Intrinsic = 2922 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2923 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2924 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2925 ++II; 2926 if (II == IE) 2927 break; 2928 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2929 continue; 2930 } 2931 } 2932 I = &*II; 2933 break; 2934 } 2935 2936 return GetStoreIfValid(I); 2937 } 2938 2939 llvm::StoreInst *store = 2940 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2941 if (!store) return nullptr; 2942 2943 // Now do a first-and-dirty dominance check: just walk up the 2944 // single-predecessors chain from the current insertion point. 2945 llvm::BasicBlock *StoreBB = store->getParent(); 2946 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2947 while (IP != StoreBB) { 2948 if (!(IP = IP->getSinglePredecessor())) 2949 return nullptr; 2950 } 2951 2952 // Okay, the store's basic block dominates the insertion point; we 2953 // can do our thing. 2954 return store; 2955 } 2956 2957 // Helper functions for EmitCMSEClearRecord 2958 2959 // Set the bits corresponding to a field having width `BitWidth` and located at 2960 // offset `BitOffset` (from the least significant bit) within a storage unit of 2961 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 2962 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 2963 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 2964 int BitWidth, int CharWidth) { 2965 assert(CharWidth <= 64); 2966 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 2967 2968 int Pos = 0; 2969 if (BitOffset >= CharWidth) { 2970 Pos += BitOffset / CharWidth; 2971 BitOffset = BitOffset % CharWidth; 2972 } 2973 2974 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 2975 if (BitOffset + BitWidth >= CharWidth) { 2976 Bits[Pos++] |= (Used << BitOffset) & Used; 2977 BitWidth -= CharWidth - BitOffset; 2978 BitOffset = 0; 2979 } 2980 2981 while (BitWidth >= CharWidth) { 2982 Bits[Pos++] = Used; 2983 BitWidth -= CharWidth; 2984 } 2985 2986 if (BitWidth > 0) 2987 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 2988 } 2989 2990 // Set the bits corresponding to a field having width `BitWidth` and located at 2991 // offset `BitOffset` (from the least significant bit) within a storage unit of 2992 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 2993 // `Bits` corresponds to one target byte. Use target endian layout. 2994 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 2995 int StorageSize, int BitOffset, int BitWidth, 2996 int CharWidth, bool BigEndian) { 2997 2998 SmallVector<uint64_t, 8> TmpBits(StorageSize); 2999 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3000 3001 if (BigEndian) 3002 std::reverse(TmpBits.begin(), TmpBits.end()); 3003 3004 for (uint64_t V : TmpBits) 3005 Bits[StorageOffset++] |= V; 3006 } 3007 3008 static void setUsedBits(CodeGenModule &, QualType, int, 3009 SmallVectorImpl<uint64_t> &); 3010 3011 // Set the bits in `Bits`, which correspond to the value representations of 3012 // the actual members of the record type `RTy`. Note that this function does 3013 // not handle base classes, virtual tables, etc, since they cannot happen in 3014 // CMSE function arguments or return. The bit mask corresponds to the target 3015 // memory layout, i.e. it's endian dependent. 3016 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3017 SmallVectorImpl<uint64_t> &Bits) { 3018 ASTContext &Context = CGM.getContext(); 3019 int CharWidth = Context.getCharWidth(); 3020 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3021 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3022 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3023 3024 int Idx = 0; 3025 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3026 const FieldDecl *F = *I; 3027 3028 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3029 F->getType()->isIncompleteArrayType()) 3030 continue; 3031 3032 if (F->isBitField()) { 3033 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3034 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3035 BFI.StorageSize / CharWidth, BFI.Offset, 3036 BFI.Size, CharWidth, 3037 CGM.getDataLayout().isBigEndian()); 3038 continue; 3039 } 3040 3041 setUsedBits(CGM, F->getType(), 3042 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3043 } 3044 } 3045 3046 // Set the bits in `Bits`, which correspond to the value representations of 3047 // the elements of an array type `ATy`. 3048 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3049 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3050 const ASTContext &Context = CGM.getContext(); 3051 3052 QualType ETy = Context.getBaseElementType(ATy); 3053 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3054 SmallVector<uint64_t, 4> TmpBits(Size); 3055 setUsedBits(CGM, ETy, 0, TmpBits); 3056 3057 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3058 auto Src = TmpBits.begin(); 3059 auto Dst = Bits.begin() + Offset + I * Size; 3060 for (int J = 0; J < Size; ++J) 3061 *Dst++ |= *Src++; 3062 } 3063 } 3064 3065 // Set the bits in `Bits`, which correspond to the value representations of 3066 // the type `QTy`. 3067 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3068 SmallVectorImpl<uint64_t> &Bits) { 3069 if (const auto *RTy = QTy->getAs<RecordType>()) 3070 return setUsedBits(CGM, RTy, Offset, Bits); 3071 3072 ASTContext &Context = CGM.getContext(); 3073 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3074 return setUsedBits(CGM, ATy, Offset, Bits); 3075 3076 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3077 if (Size <= 0) 3078 return; 3079 3080 std::fill_n(Bits.begin() + Offset, Size, 3081 (uint64_t(1) << Context.getCharWidth()) - 1); 3082 } 3083 3084 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3085 int Pos, int Size, int CharWidth, 3086 bool BigEndian) { 3087 assert(Size > 0); 3088 uint64_t Mask = 0; 3089 if (BigEndian) { 3090 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3091 ++P) 3092 Mask = (Mask << CharWidth) | *P; 3093 } else { 3094 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3095 do 3096 Mask = (Mask << CharWidth) | *--P; 3097 while (P != End); 3098 } 3099 return Mask; 3100 } 3101 3102 // Emit code to clear the bits in a record, which aren't a part of any user 3103 // declared member, when the record is a function return. 3104 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3105 llvm::IntegerType *ITy, 3106 QualType QTy) { 3107 assert(Src->getType() == ITy); 3108 assert(ITy->getScalarSizeInBits() <= 64); 3109 3110 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3111 int Size = DataLayout.getTypeStoreSize(ITy); 3112 SmallVector<uint64_t, 4> Bits(Size); 3113 setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits); 3114 3115 int CharWidth = CGM.getContext().getCharWidth(); 3116 uint64_t Mask = 3117 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3118 3119 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3120 } 3121 3122 // Emit code to clear the bits in a record, which aren't a part of any user 3123 // declared member, when the record is a function argument. 3124 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3125 llvm::ArrayType *ATy, 3126 QualType QTy) { 3127 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3128 int Size = DataLayout.getTypeStoreSize(ATy); 3129 SmallVector<uint64_t, 16> Bits(Size); 3130 setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits); 3131 3132 // Clear each element of the LLVM array. 3133 int CharWidth = CGM.getContext().getCharWidth(); 3134 int CharsPerElt = 3135 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3136 int MaskIndex = 0; 3137 llvm::Value *R = llvm::UndefValue::get(ATy); 3138 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3139 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3140 DataLayout.isBigEndian()); 3141 MaskIndex += CharsPerElt; 3142 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3143 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3144 R = Builder.CreateInsertValue(R, T1, I); 3145 } 3146 3147 return R; 3148 } 3149 3150 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3151 bool EmitRetDbgLoc, 3152 SourceLocation EndLoc) { 3153 if (FI.isNoReturn()) { 3154 // Noreturn functions don't return. 3155 EmitUnreachable(EndLoc); 3156 return; 3157 } 3158 3159 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3160 // Naked functions don't have epilogues. 3161 Builder.CreateUnreachable(); 3162 return; 3163 } 3164 3165 // Functions with no result always return void. 3166 if (!ReturnValue.isValid()) { 3167 Builder.CreateRetVoid(); 3168 return; 3169 } 3170 3171 llvm::DebugLoc RetDbgLoc; 3172 llvm::Value *RV = nullptr; 3173 QualType RetTy = FI.getReturnType(); 3174 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3175 3176 switch (RetAI.getKind()) { 3177 case ABIArgInfo::InAlloca: 3178 // Aggregrates get evaluated directly into the destination. Sometimes we 3179 // need to return the sret value in a register, though. 3180 assert(hasAggregateEvaluationKind(RetTy)); 3181 if (RetAI.getInAllocaSRet()) { 3182 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3183 --EI; 3184 llvm::Value *ArgStruct = &*EI; 3185 llvm::Value *SRet = Builder.CreateStructGEP( 3186 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 3187 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 3188 } 3189 break; 3190 3191 case ABIArgInfo::Indirect: { 3192 auto AI = CurFn->arg_begin(); 3193 if (RetAI.isSRetAfterThis()) 3194 ++AI; 3195 switch (getEvaluationKind(RetTy)) { 3196 case TEK_Complex: { 3197 ComplexPairTy RT = 3198 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3199 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3200 /*isInit*/ true); 3201 break; 3202 } 3203 case TEK_Aggregate: 3204 // Do nothing; aggregrates get evaluated directly into the destination. 3205 break; 3206 case TEK_Scalar: 3207 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 3208 MakeNaturalAlignAddrLValue(&*AI, RetTy), 3209 /*isInit*/ true); 3210 break; 3211 } 3212 break; 3213 } 3214 3215 case ABIArgInfo::Extend: 3216 case ABIArgInfo::Direct: 3217 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3218 RetAI.getDirectOffset() == 0) { 3219 // The internal return value temp always will have pointer-to-return-type 3220 // type, just do a load. 3221 3222 // If there is a dominating store to ReturnValue, we can elide 3223 // the load, zap the store, and usually zap the alloca. 3224 if (llvm::StoreInst *SI = 3225 findDominatingStoreToReturnValue(*this)) { 3226 // Reuse the debug location from the store unless there is 3227 // cleanup code to be emitted between the store and return 3228 // instruction. 3229 if (EmitRetDbgLoc && !AutoreleaseResult) 3230 RetDbgLoc = SI->getDebugLoc(); 3231 // Get the stored value and nuke the now-dead store. 3232 RV = SI->getValueOperand(); 3233 SI->eraseFromParent(); 3234 3235 // Otherwise, we have to do a simple load. 3236 } else { 3237 RV = Builder.CreateLoad(ReturnValue); 3238 } 3239 } else { 3240 // If the value is offset in memory, apply the offset now. 3241 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3242 3243 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3244 } 3245 3246 // In ARC, end functions that return a retainable type with a call 3247 // to objc_autoreleaseReturnValue. 3248 if (AutoreleaseResult) { 3249 #ifndef NDEBUG 3250 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3251 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3252 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3253 // CurCodeDecl or BlockInfo. 3254 QualType RT; 3255 3256 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3257 RT = FD->getReturnType(); 3258 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3259 RT = MD->getReturnType(); 3260 else if (isa<BlockDecl>(CurCodeDecl)) 3261 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3262 else 3263 llvm_unreachable("Unexpected function/method type"); 3264 3265 assert(getLangOpts().ObjCAutoRefCount && 3266 !FI.isReturnsRetained() && 3267 RT->isObjCRetainableType()); 3268 #endif 3269 RV = emitAutoreleaseOfResult(*this, RV); 3270 } 3271 3272 break; 3273 3274 case ABIArgInfo::Ignore: 3275 break; 3276 3277 case ABIArgInfo::CoerceAndExpand: { 3278 auto coercionType = RetAI.getCoerceAndExpandType(); 3279 3280 // Load all of the coerced elements out into results. 3281 llvm::SmallVector<llvm::Value*, 4> results; 3282 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3283 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3284 auto coercedEltType = coercionType->getElementType(i); 3285 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3286 continue; 3287 3288 auto eltAddr = Builder.CreateStructGEP(addr, i); 3289 auto elt = Builder.CreateLoad(eltAddr); 3290 results.push_back(elt); 3291 } 3292 3293 // If we have one result, it's the single direct result type. 3294 if (results.size() == 1) { 3295 RV = results[0]; 3296 3297 // Otherwise, we need to make a first-class aggregate. 3298 } else { 3299 // Construct a return type that lacks padding elements. 3300 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3301 3302 RV = llvm::UndefValue::get(returnType); 3303 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3304 RV = Builder.CreateInsertValue(RV, results[i], i); 3305 } 3306 } 3307 break; 3308 } 3309 case ABIArgInfo::Expand: 3310 case ABIArgInfo::IndirectAliased: 3311 llvm_unreachable("Invalid ABI kind for return argument"); 3312 } 3313 3314 llvm::Instruction *Ret; 3315 if (RV) { 3316 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3317 // For certain return types, clear padding bits, as they may reveal 3318 // sensitive information. 3319 // Small struct/union types are passed as integers. 3320 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3321 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3322 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3323 } 3324 EmitReturnValueCheck(RV); 3325 Ret = Builder.CreateRet(RV); 3326 } else { 3327 Ret = Builder.CreateRetVoid(); 3328 } 3329 3330 if (RetDbgLoc) 3331 Ret->setDebugLoc(std::move(RetDbgLoc)); 3332 } 3333 3334 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3335 // A current decl may not be available when emitting vtable thunks. 3336 if (!CurCodeDecl) 3337 return; 3338 3339 // If the return block isn't reachable, neither is this check, so don't emit 3340 // it. 3341 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3342 return; 3343 3344 ReturnsNonNullAttr *RetNNAttr = nullptr; 3345 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3346 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3347 3348 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3349 return; 3350 3351 // Prefer the returns_nonnull attribute if it's present. 3352 SourceLocation AttrLoc; 3353 SanitizerMask CheckKind; 3354 SanitizerHandler Handler; 3355 if (RetNNAttr) { 3356 assert(!requiresReturnValueNullabilityCheck() && 3357 "Cannot check nullability and the nonnull attribute"); 3358 AttrLoc = RetNNAttr->getLocation(); 3359 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3360 Handler = SanitizerHandler::NonnullReturn; 3361 } else { 3362 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3363 if (auto *TSI = DD->getTypeSourceInfo()) 3364 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3365 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3366 CheckKind = SanitizerKind::NullabilityReturn; 3367 Handler = SanitizerHandler::NullabilityReturn; 3368 } 3369 3370 SanitizerScope SanScope(this); 3371 3372 // Make sure the "return" source location is valid. If we're checking a 3373 // nullability annotation, make sure the preconditions for the check are met. 3374 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3375 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3376 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3377 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3378 if (requiresReturnValueNullabilityCheck()) 3379 CanNullCheck = 3380 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3381 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3382 EmitBlock(Check); 3383 3384 // Now do the null check. 3385 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3386 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3387 llvm::Value *DynamicData[] = {SLocPtr}; 3388 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3389 3390 EmitBlock(NoCheck); 3391 3392 #ifndef NDEBUG 3393 // The return location should not be used after the check has been emitted. 3394 ReturnLocation = Address::invalid(); 3395 #endif 3396 } 3397 3398 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3399 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3400 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3401 } 3402 3403 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3404 QualType Ty) { 3405 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3406 // placeholders. 3407 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3408 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3409 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3410 3411 // FIXME: When we generate this IR in one pass, we shouldn't need 3412 // this win32-specific alignment hack. 3413 CharUnits Align = CharUnits::fromQuantity(4); 3414 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3415 3416 return AggValueSlot::forAddr(Address(Placeholder, Align), 3417 Ty.getQualifiers(), 3418 AggValueSlot::IsNotDestructed, 3419 AggValueSlot::DoesNotNeedGCBarriers, 3420 AggValueSlot::IsNotAliased, 3421 AggValueSlot::DoesNotOverlap); 3422 } 3423 3424 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3425 const VarDecl *param, 3426 SourceLocation loc) { 3427 // StartFunction converted the ABI-lowered parameter(s) into a 3428 // local alloca. We need to turn that into an r-value suitable 3429 // for EmitCall. 3430 Address local = GetAddrOfLocalVar(param); 3431 3432 QualType type = param->getType(); 3433 3434 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3435 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3436 } 3437 3438 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3439 // but the argument needs to be the original pointer. 3440 if (type->isReferenceType()) { 3441 args.add(RValue::get(Builder.CreateLoad(local)), type); 3442 3443 // In ARC, move out of consumed arguments so that the release cleanup 3444 // entered by StartFunction doesn't cause an over-release. This isn't 3445 // optimal -O0 code generation, but it should get cleaned up when 3446 // optimization is enabled. This also assumes that delegate calls are 3447 // performed exactly once for a set of arguments, but that should be safe. 3448 } else if (getLangOpts().ObjCAutoRefCount && 3449 param->hasAttr<NSConsumedAttr>() && 3450 type->isObjCRetainableType()) { 3451 llvm::Value *ptr = Builder.CreateLoad(local); 3452 auto null = 3453 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3454 Builder.CreateStore(null, local); 3455 args.add(RValue::get(ptr), type); 3456 3457 // For the most part, we just need to load the alloca, except that 3458 // aggregate r-values are actually pointers to temporaries. 3459 } else { 3460 args.add(convertTempToRValue(local, type, loc), type); 3461 } 3462 3463 // Deactivate the cleanup for the callee-destructed param that was pushed. 3464 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3465 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3466 param->needsDestruction(getContext())) { 3467 EHScopeStack::stable_iterator cleanup = 3468 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3469 assert(cleanup.isValid() && 3470 "cleanup for callee-destructed param not recorded"); 3471 // This unreachable is a temporary marker which will be removed later. 3472 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3473 args.addArgCleanupDeactivation(cleanup, isActive); 3474 } 3475 } 3476 3477 static bool isProvablyNull(llvm::Value *addr) { 3478 return isa<llvm::ConstantPointerNull>(addr); 3479 } 3480 3481 /// Emit the actual writing-back of a writeback. 3482 static void emitWriteback(CodeGenFunction &CGF, 3483 const CallArgList::Writeback &writeback) { 3484 const LValue &srcLV = writeback.Source; 3485 Address srcAddr = srcLV.getAddress(CGF); 3486 assert(!isProvablyNull(srcAddr.getPointer()) && 3487 "shouldn't have writeback for provably null argument"); 3488 3489 llvm::BasicBlock *contBB = nullptr; 3490 3491 // If the argument wasn't provably non-null, we need to null check 3492 // before doing the store. 3493 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3494 CGF.CGM.getDataLayout()); 3495 if (!provablyNonNull) { 3496 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3497 contBB = CGF.createBasicBlock("icr.done"); 3498 3499 llvm::Value *isNull = 3500 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3501 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3502 CGF.EmitBlock(writebackBB); 3503 } 3504 3505 // Load the value to writeback. 3506 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3507 3508 // Cast it back, in case we're writing an id to a Foo* or something. 3509 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3510 "icr.writeback-cast"); 3511 3512 // Perform the writeback. 3513 3514 // If we have a "to use" value, it's something we need to emit a use 3515 // of. This has to be carefully threaded in: if it's done after the 3516 // release it's potentially undefined behavior (and the optimizer 3517 // will ignore it), and if it happens before the retain then the 3518 // optimizer could move the release there. 3519 if (writeback.ToUse) { 3520 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3521 3522 // Retain the new value. No need to block-copy here: the block's 3523 // being passed up the stack. 3524 value = CGF.EmitARCRetainNonBlock(value); 3525 3526 // Emit the intrinsic use here. 3527 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3528 3529 // Load the old value (primitively). 3530 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3531 3532 // Put the new value in place (primitively). 3533 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3534 3535 // Release the old value. 3536 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3537 3538 // Otherwise, we can just do a normal lvalue store. 3539 } else { 3540 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3541 } 3542 3543 // Jump to the continuation block. 3544 if (!provablyNonNull) 3545 CGF.EmitBlock(contBB); 3546 } 3547 3548 static void emitWritebacks(CodeGenFunction &CGF, 3549 const CallArgList &args) { 3550 for (const auto &I : args.writebacks()) 3551 emitWriteback(CGF, I); 3552 } 3553 3554 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3555 const CallArgList &CallArgs) { 3556 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3557 CallArgs.getCleanupsToDeactivate(); 3558 // Iterate in reverse to increase the likelihood of popping the cleanup. 3559 for (const auto &I : llvm::reverse(Cleanups)) { 3560 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3561 I.IsActiveIP->eraseFromParent(); 3562 } 3563 } 3564 3565 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3566 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3567 if (uop->getOpcode() == UO_AddrOf) 3568 return uop->getSubExpr(); 3569 return nullptr; 3570 } 3571 3572 /// Emit an argument that's being passed call-by-writeback. That is, 3573 /// we are passing the address of an __autoreleased temporary; it 3574 /// might be copy-initialized with the current value of the given 3575 /// address, but it will definitely be copied out of after the call. 3576 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3577 const ObjCIndirectCopyRestoreExpr *CRE) { 3578 LValue srcLV; 3579 3580 // Make an optimistic effort to emit the address as an l-value. 3581 // This can fail if the argument expression is more complicated. 3582 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3583 srcLV = CGF.EmitLValue(lvExpr); 3584 3585 // Otherwise, just emit it as a scalar. 3586 } else { 3587 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3588 3589 QualType srcAddrType = 3590 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3591 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3592 } 3593 Address srcAddr = srcLV.getAddress(CGF); 3594 3595 // The dest and src types don't necessarily match in LLVM terms 3596 // because of the crazy ObjC compatibility rules. 3597 3598 llvm::PointerType *destType = 3599 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3600 3601 // If the address is a constant null, just pass the appropriate null. 3602 if (isProvablyNull(srcAddr.getPointer())) { 3603 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3604 CRE->getType()); 3605 return; 3606 } 3607 3608 // Create the temporary. 3609 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3610 CGF.getPointerAlign(), 3611 "icr.temp"); 3612 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3613 // and that cleanup will be conditional if we can't prove that the l-value 3614 // isn't null, so we need to register a dominating point so that the cleanups 3615 // system will make valid IR. 3616 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3617 3618 // Zero-initialize it if we're not doing a copy-initialization. 3619 bool shouldCopy = CRE->shouldCopy(); 3620 if (!shouldCopy) { 3621 llvm::Value *null = 3622 llvm::ConstantPointerNull::get( 3623 cast<llvm::PointerType>(destType->getElementType())); 3624 CGF.Builder.CreateStore(null, temp); 3625 } 3626 3627 llvm::BasicBlock *contBB = nullptr; 3628 llvm::BasicBlock *originBB = nullptr; 3629 3630 // If the address is *not* known to be non-null, we need to switch. 3631 llvm::Value *finalArgument; 3632 3633 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3634 CGF.CGM.getDataLayout()); 3635 if (provablyNonNull) { 3636 finalArgument = temp.getPointer(); 3637 } else { 3638 llvm::Value *isNull = 3639 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3640 3641 finalArgument = CGF.Builder.CreateSelect(isNull, 3642 llvm::ConstantPointerNull::get(destType), 3643 temp.getPointer(), "icr.argument"); 3644 3645 // If we need to copy, then the load has to be conditional, which 3646 // means we need control flow. 3647 if (shouldCopy) { 3648 originBB = CGF.Builder.GetInsertBlock(); 3649 contBB = CGF.createBasicBlock("icr.cont"); 3650 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3651 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3652 CGF.EmitBlock(copyBB); 3653 condEval.begin(CGF); 3654 } 3655 } 3656 3657 llvm::Value *valueToUse = nullptr; 3658 3659 // Perform a copy if necessary. 3660 if (shouldCopy) { 3661 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3662 assert(srcRV.isScalar()); 3663 3664 llvm::Value *src = srcRV.getScalarVal(); 3665 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3666 "icr.cast"); 3667 3668 // Use an ordinary store, not a store-to-lvalue. 3669 CGF.Builder.CreateStore(src, temp); 3670 3671 // If optimization is enabled, and the value was held in a 3672 // __strong variable, we need to tell the optimizer that this 3673 // value has to stay alive until we're doing the store back. 3674 // This is because the temporary is effectively unretained, 3675 // and so otherwise we can violate the high-level semantics. 3676 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3677 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3678 valueToUse = src; 3679 } 3680 } 3681 3682 // Finish the control flow if we needed it. 3683 if (shouldCopy && !provablyNonNull) { 3684 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3685 CGF.EmitBlock(contBB); 3686 3687 // Make a phi for the value to intrinsically use. 3688 if (valueToUse) { 3689 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3690 "icr.to-use"); 3691 phiToUse->addIncoming(valueToUse, copyBB); 3692 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3693 originBB); 3694 valueToUse = phiToUse; 3695 } 3696 3697 condEval.end(CGF); 3698 } 3699 3700 args.addWriteback(srcLV, temp, valueToUse); 3701 args.add(RValue::get(finalArgument), CRE->getType()); 3702 } 3703 3704 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3705 assert(!StackBase); 3706 3707 // Save the stack. 3708 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3709 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3710 } 3711 3712 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3713 if (StackBase) { 3714 // Restore the stack after the call. 3715 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3716 CGF.Builder.CreateCall(F, StackBase); 3717 } 3718 } 3719 3720 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3721 SourceLocation ArgLoc, 3722 AbstractCallee AC, 3723 unsigned ParmNum) { 3724 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3725 SanOpts.has(SanitizerKind::NullabilityArg))) 3726 return; 3727 3728 // The param decl may be missing in a variadic function. 3729 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3730 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3731 3732 // Prefer the nonnull attribute if it's present. 3733 const NonNullAttr *NNAttr = nullptr; 3734 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3735 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3736 3737 bool CanCheckNullability = false; 3738 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3739 auto Nullability = PVD->getType()->getNullability(getContext()); 3740 CanCheckNullability = Nullability && 3741 *Nullability == NullabilityKind::NonNull && 3742 PVD->getTypeSourceInfo(); 3743 } 3744 3745 if (!NNAttr && !CanCheckNullability) 3746 return; 3747 3748 SourceLocation AttrLoc; 3749 SanitizerMask CheckKind; 3750 SanitizerHandler Handler; 3751 if (NNAttr) { 3752 AttrLoc = NNAttr->getLocation(); 3753 CheckKind = SanitizerKind::NonnullAttribute; 3754 Handler = SanitizerHandler::NonnullArg; 3755 } else { 3756 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3757 CheckKind = SanitizerKind::NullabilityArg; 3758 Handler = SanitizerHandler::NullabilityArg; 3759 } 3760 3761 SanitizerScope SanScope(this); 3762 assert(RV.isScalar()); 3763 llvm::Value *V = RV.getScalarVal(); 3764 llvm::Value *Cond = 3765 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3766 llvm::Constant *StaticData[] = { 3767 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3768 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3769 }; 3770 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3771 } 3772 3773 void CodeGenFunction::EmitCallArgs( 3774 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3775 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3776 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3777 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3778 3779 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3780 // because arguments are destroyed left to right in the callee. As a special 3781 // case, there are certain language constructs that require left-to-right 3782 // evaluation, and in those cases we consider the evaluation order requirement 3783 // to trump the "destruction order is reverse construction order" guarantee. 3784 bool LeftToRight = 3785 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3786 ? Order == EvaluationOrder::ForceLeftToRight 3787 : Order != EvaluationOrder::ForceRightToLeft; 3788 3789 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3790 RValue EmittedArg) { 3791 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3792 return; 3793 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3794 if (PS == nullptr) 3795 return; 3796 3797 const auto &Context = getContext(); 3798 auto SizeTy = Context.getSizeType(); 3799 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3800 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3801 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3802 EmittedArg.getScalarVal(), 3803 PS->isDynamic()); 3804 Args.add(RValue::get(V), SizeTy); 3805 // If we're emitting args in reverse, be sure to do so with 3806 // pass_object_size, as well. 3807 if (!LeftToRight) 3808 std::swap(Args.back(), *(&Args.back() - 1)); 3809 }; 3810 3811 // Insert a stack save if we're going to need any inalloca args. 3812 bool HasInAllocaArgs = false; 3813 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3814 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3815 I != E && !HasInAllocaArgs; ++I) 3816 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3817 if (HasInAllocaArgs) { 3818 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3819 Args.allocateArgumentMemory(*this); 3820 } 3821 } 3822 3823 // Evaluate each argument in the appropriate order. 3824 size_t CallArgsStart = Args.size(); 3825 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3826 unsigned Idx = LeftToRight ? I : E - I - 1; 3827 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3828 unsigned InitialArgSize = Args.size(); 3829 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3830 // the argument and parameter match or the objc method is parameterized. 3831 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3832 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3833 ArgTypes[Idx]) || 3834 (isa<ObjCMethodDecl>(AC.getDecl()) && 3835 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3836 "Argument and parameter types don't match"); 3837 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3838 // In particular, we depend on it being the last arg in Args, and the 3839 // objectsize bits depend on there only being one arg if !LeftToRight. 3840 assert(InitialArgSize + 1 == Args.size() && 3841 "The code below depends on only adding one arg per EmitCallArg"); 3842 (void)InitialArgSize; 3843 // Since pointer argument are never emitted as LValue, it is safe to emit 3844 // non-null argument check for r-value only. 3845 if (!Args.back().hasLValue()) { 3846 RValue RVArg = Args.back().getKnownRValue(); 3847 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3848 ParamsToSkip + Idx); 3849 // @llvm.objectsize should never have side-effects and shouldn't need 3850 // destruction/cleanups, so we can safely "emit" it after its arg, 3851 // regardless of right-to-leftness 3852 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3853 } 3854 } 3855 3856 if (!LeftToRight) { 3857 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3858 // IR function. 3859 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3860 } 3861 } 3862 3863 namespace { 3864 3865 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3866 DestroyUnpassedArg(Address Addr, QualType Ty) 3867 : Addr(Addr), Ty(Ty) {} 3868 3869 Address Addr; 3870 QualType Ty; 3871 3872 void Emit(CodeGenFunction &CGF, Flags flags) override { 3873 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3874 if (DtorKind == QualType::DK_cxx_destructor) { 3875 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3876 assert(!Dtor->isTrivial()); 3877 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3878 /*Delegating=*/false, Addr, Ty); 3879 } else { 3880 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3881 } 3882 } 3883 }; 3884 3885 struct DisableDebugLocationUpdates { 3886 CodeGenFunction &CGF; 3887 bool disabledDebugInfo; 3888 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3889 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3890 CGF.disableDebugInfo(); 3891 } 3892 ~DisableDebugLocationUpdates() { 3893 if (disabledDebugInfo) 3894 CGF.enableDebugInfo(); 3895 } 3896 }; 3897 3898 } // end anonymous namespace 3899 3900 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3901 if (!HasLV) 3902 return RV; 3903 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3904 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3905 LV.isVolatile()); 3906 IsUsed = true; 3907 return RValue::getAggregate(Copy.getAddress(CGF)); 3908 } 3909 3910 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3911 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3912 if (!HasLV && RV.isScalar()) 3913 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 3914 else if (!HasLV && RV.isComplex()) 3915 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3916 else { 3917 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 3918 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3919 // We assume that call args are never copied into subobjects. 3920 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3921 HasLV ? LV.isVolatileQualified() 3922 : RV.isVolatileQualified()); 3923 } 3924 IsUsed = true; 3925 } 3926 3927 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3928 QualType type) { 3929 DisableDebugLocationUpdates Dis(*this, E); 3930 if (const ObjCIndirectCopyRestoreExpr *CRE 3931 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3932 assert(getLangOpts().ObjCAutoRefCount); 3933 return emitWritebackArg(*this, args, CRE); 3934 } 3935 3936 assert(type->isReferenceType() == E->isGLValue() && 3937 "reference binding to unmaterialized r-value!"); 3938 3939 if (E->isGLValue()) { 3940 assert(E->getObjectKind() == OK_Ordinary); 3941 return args.add(EmitReferenceBindingToExpr(E), type); 3942 } 3943 3944 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3945 3946 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3947 // However, we still have to push an EH-only cleanup in case we unwind before 3948 // we make it to the call. 3949 if (HasAggregateEvalKind && 3950 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3951 // If we're using inalloca, use the argument memory. Otherwise, use a 3952 // temporary. 3953 AggValueSlot Slot; 3954 if (args.isUsingInAlloca()) 3955 Slot = createPlaceholderSlot(*this, type); 3956 else 3957 Slot = CreateAggTemp(type, "agg.tmp"); 3958 3959 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3960 if (const auto *RD = type->getAsCXXRecordDecl()) 3961 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3962 else 3963 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3964 3965 if (DestroyedInCallee) 3966 Slot.setExternallyDestructed(); 3967 3968 EmitAggExpr(E, Slot); 3969 RValue RV = Slot.asRValue(); 3970 args.add(RV, type); 3971 3972 if (DestroyedInCallee && NeedsEHCleanup) { 3973 // Create a no-op GEP between the placeholder and the cleanup so we can 3974 // RAUW it successfully. It also serves as a marker of the first 3975 // instruction where the cleanup is active. 3976 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3977 type); 3978 // This unreachable is a temporary marker which will be removed later. 3979 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3980 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3981 } 3982 return; 3983 } 3984 3985 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3986 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3987 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3988 assert(L.isSimple()); 3989 args.addUncopiedAggregate(L, type); 3990 return; 3991 } 3992 3993 args.add(EmitAnyExprToTemp(E), type); 3994 } 3995 3996 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3997 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3998 // implicitly widens null pointer constants that are arguments to varargs 3999 // functions to pointer-sized ints. 4000 if (!getTarget().getTriple().isOSWindows()) 4001 return Arg->getType(); 4002 4003 if (Arg->getType()->isIntegerType() && 4004 getContext().getTypeSize(Arg->getType()) < 4005 getContext().getTargetInfo().getPointerWidth(0) && 4006 Arg->isNullPointerConstant(getContext(), 4007 Expr::NPC_ValueDependentIsNotNull)) { 4008 return getContext().getIntPtrType(); 4009 } 4010 4011 return Arg->getType(); 4012 } 4013 4014 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4015 // optimizer it can aggressively ignore unwind edges. 4016 void 4017 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4018 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4019 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4020 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4021 CGM.getNoObjCARCExceptionsMetadata()); 4022 } 4023 4024 /// Emits a call to the given no-arguments nounwind runtime function. 4025 llvm::CallInst * 4026 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4027 const llvm::Twine &name) { 4028 return EmitNounwindRuntimeCall(callee, None, name); 4029 } 4030 4031 /// Emits a call to the given nounwind runtime function. 4032 llvm::CallInst * 4033 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4034 ArrayRef<llvm::Value *> args, 4035 const llvm::Twine &name) { 4036 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4037 call->setDoesNotThrow(); 4038 return call; 4039 } 4040 4041 /// Emits a simple call (never an invoke) to the given no-arguments 4042 /// runtime function. 4043 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4044 const llvm::Twine &name) { 4045 return EmitRuntimeCall(callee, None, name); 4046 } 4047 4048 // Calls which may throw must have operand bundles indicating which funclet 4049 // they are nested within. 4050 SmallVector<llvm::OperandBundleDef, 1> 4051 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4052 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4053 // There is no need for a funclet operand bundle if we aren't inside a 4054 // funclet. 4055 if (!CurrentFuncletPad) 4056 return BundleList; 4057 4058 // Skip intrinsics which cannot throw. 4059 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4060 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4061 return BundleList; 4062 4063 BundleList.emplace_back("funclet", CurrentFuncletPad); 4064 return BundleList; 4065 } 4066 4067 /// Emits a simple call (never an invoke) to the given runtime function. 4068 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4069 ArrayRef<llvm::Value *> args, 4070 const llvm::Twine &name) { 4071 llvm::CallInst *call = Builder.CreateCall( 4072 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4073 call->setCallingConv(getRuntimeCC()); 4074 return call; 4075 } 4076 4077 /// Emits a call or invoke to the given noreturn runtime function. 4078 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4079 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4080 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4081 getBundlesForFunclet(callee.getCallee()); 4082 4083 if (getInvokeDest()) { 4084 llvm::InvokeInst *invoke = 4085 Builder.CreateInvoke(callee, 4086 getUnreachableBlock(), 4087 getInvokeDest(), 4088 args, 4089 BundleList); 4090 invoke->setDoesNotReturn(); 4091 invoke->setCallingConv(getRuntimeCC()); 4092 } else { 4093 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4094 call->setDoesNotReturn(); 4095 call->setCallingConv(getRuntimeCC()); 4096 Builder.CreateUnreachable(); 4097 } 4098 } 4099 4100 /// Emits a call or invoke instruction to the given nullary runtime function. 4101 llvm::CallBase * 4102 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4103 const Twine &name) { 4104 return EmitRuntimeCallOrInvoke(callee, None, name); 4105 } 4106 4107 /// Emits a call or invoke instruction to the given runtime function. 4108 llvm::CallBase * 4109 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4110 ArrayRef<llvm::Value *> args, 4111 const Twine &name) { 4112 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4113 call->setCallingConv(getRuntimeCC()); 4114 return call; 4115 } 4116 4117 /// Emits a call or invoke instruction to the given function, depending 4118 /// on the current state of the EH stack. 4119 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4120 ArrayRef<llvm::Value *> Args, 4121 const Twine &Name) { 4122 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4123 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4124 getBundlesForFunclet(Callee.getCallee()); 4125 4126 llvm::CallBase *Inst; 4127 if (!InvokeDest) 4128 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4129 else { 4130 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4131 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4132 Name); 4133 EmitBlock(ContBB); 4134 } 4135 4136 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4137 // optimizer it can aggressively ignore unwind edges. 4138 if (CGM.getLangOpts().ObjCAutoRefCount) 4139 AddObjCARCExceptionMetadata(Inst); 4140 4141 return Inst; 4142 } 4143 4144 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4145 llvm::Value *New) { 4146 DeferredReplacements.push_back(std::make_pair(Old, New)); 4147 } 4148 4149 namespace { 4150 4151 /// Specify given \p NewAlign as the alignment of return value attribute. If 4152 /// such attribute already exists, re-set it to the maximal one of two options. 4153 LLVM_NODISCARD llvm::AttributeList 4154 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4155 const llvm::AttributeList &Attrs, 4156 llvm::Align NewAlign) { 4157 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4158 if (CurAlign >= NewAlign) 4159 return Attrs; 4160 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4161 return Attrs 4162 .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex, 4163 llvm::Attribute::AttrKind::Alignment) 4164 .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr); 4165 } 4166 4167 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4168 protected: 4169 CodeGenFunction &CGF; 4170 4171 /// We do nothing if this is, or becomes, nullptr. 4172 const AlignedAttrTy *AA = nullptr; 4173 4174 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4175 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4176 4177 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4178 : CGF(CGF_) { 4179 if (!FuncDecl) 4180 return; 4181 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4182 } 4183 4184 public: 4185 /// If we can, materialize the alignment as an attribute on return value. 4186 LLVM_NODISCARD llvm::AttributeList 4187 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4188 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4189 return Attrs; 4190 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4191 if (!AlignmentCI) 4192 return Attrs; 4193 // We may legitimately have non-power-of-2 alignment here. 4194 // If so, this is UB land, emit it via `@llvm.assume` instead. 4195 if (!AlignmentCI->getValue().isPowerOf2()) 4196 return Attrs; 4197 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4198 CGF.getLLVMContext(), Attrs, 4199 llvm::Align( 4200 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4201 AA = nullptr; // We're done. Disallow doing anything else. 4202 return NewAttrs; 4203 } 4204 4205 /// Emit alignment assumption. 4206 /// This is a general fallback that we take if either there is an offset, 4207 /// or the alignment is variable or we are sanitizing for alignment. 4208 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4209 if (!AA) 4210 return; 4211 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4212 AA->getLocation(), Alignment, OffsetCI); 4213 AA = nullptr; // We're done. Disallow doing anything else. 4214 } 4215 }; 4216 4217 /// Helper data structure to emit `AssumeAlignedAttr`. 4218 class AssumeAlignedAttrEmitter final 4219 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4220 public: 4221 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4222 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4223 if (!AA) 4224 return; 4225 // It is guaranteed that the alignment/offset are constants. 4226 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4227 if (Expr *Offset = AA->getOffset()) { 4228 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4229 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4230 OffsetCI = nullptr; 4231 } 4232 } 4233 }; 4234 4235 /// Helper data structure to emit `AllocAlignAttr`. 4236 class AllocAlignAttrEmitter final 4237 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4238 public: 4239 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4240 const CallArgList &CallArgs) 4241 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4242 if (!AA) 4243 return; 4244 // Alignment may or may not be a constant, and that is okay. 4245 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4246 .getRValue(CGF) 4247 .getScalarVal(); 4248 } 4249 }; 4250 4251 } // namespace 4252 4253 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4254 const CGCallee &Callee, 4255 ReturnValueSlot ReturnValue, 4256 const CallArgList &CallArgs, 4257 llvm::CallBase **callOrInvoke, 4258 SourceLocation Loc) { 4259 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4260 4261 assert(Callee.isOrdinary() || Callee.isVirtual()); 4262 4263 // Handle struct-return functions by passing a pointer to the 4264 // location that we would like to return into. 4265 QualType RetTy = CallInfo.getReturnType(); 4266 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4267 4268 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4269 4270 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4271 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4272 // We can only guarantee that a function is called from the correct 4273 // context/function based on the appropriate target attributes, 4274 // so only check in the case where we have both always_inline and target 4275 // since otherwise we could be making a conditional call after a check for 4276 // the proper cpu features (and it won't cause code generation issues due to 4277 // function based code generation). 4278 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4279 TargetDecl->hasAttr<TargetAttr>()) 4280 checkTargetFeatures(Loc, FD); 4281 4282 // Some architectures (such as x86-64) have the ABI changed based on 4283 // attribute-target/features. Give them a chance to diagnose. 4284 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4285 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4286 } 4287 4288 #ifndef NDEBUG 4289 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4290 // For an inalloca varargs function, we don't expect CallInfo to match the 4291 // function pointer's type, because the inalloca struct a will have extra 4292 // fields in it for the varargs parameters. Code later in this function 4293 // bitcasts the function pointer to the type derived from CallInfo. 4294 // 4295 // In other cases, we assert that the types match up (until pointers stop 4296 // having pointee types). 4297 llvm::Type *TypeFromVal; 4298 if (Callee.isVirtual()) 4299 TypeFromVal = Callee.getVirtualFunctionType(); 4300 else 4301 TypeFromVal = 4302 Callee.getFunctionPointer()->getType()->getPointerElementType(); 4303 assert(IRFuncTy == TypeFromVal); 4304 } 4305 #endif 4306 4307 // 1. Set up the arguments. 4308 4309 // If we're using inalloca, insert the allocation after the stack save. 4310 // FIXME: Do this earlier rather than hacking it in here! 4311 Address ArgMemory = Address::invalid(); 4312 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4313 const llvm::DataLayout &DL = CGM.getDataLayout(); 4314 llvm::Instruction *IP = CallArgs.getStackBase(); 4315 llvm::AllocaInst *AI; 4316 if (IP) { 4317 IP = IP->getNextNode(); 4318 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4319 "argmem", IP); 4320 } else { 4321 AI = CreateTempAlloca(ArgStruct, "argmem"); 4322 } 4323 auto Align = CallInfo.getArgStructAlignment(); 4324 AI->setAlignment(Align.getAsAlign()); 4325 AI->setUsedWithInAlloca(true); 4326 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4327 ArgMemory = Address(AI, Align); 4328 } 4329 4330 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4331 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4332 4333 // If the call returns a temporary with struct return, create a temporary 4334 // alloca to hold the result, unless one is given to us. 4335 Address SRetPtr = Address::invalid(); 4336 Address SRetAlloca = Address::invalid(); 4337 llvm::Value *UnusedReturnSizePtr = nullptr; 4338 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4339 if (!ReturnValue.isNull()) { 4340 SRetPtr = ReturnValue.getValue(); 4341 } else { 4342 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4343 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4344 uint64_t size = 4345 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4346 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4347 } 4348 } 4349 if (IRFunctionArgs.hasSRetArg()) { 4350 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4351 } else if (RetAI.isInAlloca()) { 4352 Address Addr = 4353 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4354 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4355 } 4356 } 4357 4358 Address swiftErrorTemp = Address::invalid(); 4359 Address swiftErrorArg = Address::invalid(); 4360 4361 // When passing arguments using temporary allocas, we need to add the 4362 // appropriate lifetime markers. This vector keeps track of all the lifetime 4363 // markers that need to be ended right after the call. 4364 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4365 4366 // Translate all of the arguments as necessary to match the IR lowering. 4367 assert(CallInfo.arg_size() == CallArgs.size() && 4368 "Mismatch between function signature & arguments."); 4369 unsigned ArgNo = 0; 4370 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4371 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4372 I != E; ++I, ++info_it, ++ArgNo) { 4373 const ABIArgInfo &ArgInfo = info_it->info; 4374 4375 // Insert a padding argument to ensure proper alignment. 4376 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4377 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4378 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4379 4380 unsigned FirstIRArg, NumIRArgs; 4381 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4382 4383 switch (ArgInfo.getKind()) { 4384 case ABIArgInfo::InAlloca: { 4385 assert(NumIRArgs == 0); 4386 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4387 if (I->isAggregate()) { 4388 Address Addr = I->hasLValue() 4389 ? I->getKnownLValue().getAddress(*this) 4390 : I->getKnownRValue().getAggregateAddress(); 4391 llvm::Instruction *Placeholder = 4392 cast<llvm::Instruction>(Addr.getPointer()); 4393 4394 if (!ArgInfo.getInAllocaIndirect()) { 4395 // Replace the placeholder with the appropriate argument slot GEP. 4396 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4397 Builder.SetInsertPoint(Placeholder); 4398 Addr = Builder.CreateStructGEP(ArgMemory, 4399 ArgInfo.getInAllocaFieldIndex()); 4400 Builder.restoreIP(IP); 4401 } else { 4402 // For indirect things such as overaligned structs, replace the 4403 // placeholder with a regular aggregate temporary alloca. Store the 4404 // address of this alloca into the struct. 4405 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4406 Address ArgSlot = Builder.CreateStructGEP( 4407 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4408 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4409 } 4410 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4411 } else if (ArgInfo.getInAllocaIndirect()) { 4412 // Make a temporary alloca and store the address of it into the argument 4413 // struct. 4414 Address Addr = CreateMemTempWithoutCast( 4415 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4416 "indirect-arg-temp"); 4417 I->copyInto(*this, Addr); 4418 Address ArgSlot = 4419 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4420 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4421 } else { 4422 // Store the RValue into the argument struct. 4423 Address Addr = 4424 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4425 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4426 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4427 // There are some cases where a trivial bitcast is not avoidable. The 4428 // definition of a type later in a translation unit may change it's type 4429 // from {}* to (%struct.foo*)*. 4430 if (Addr.getType() != MemType) 4431 Addr = Builder.CreateBitCast(Addr, MemType); 4432 I->copyInto(*this, Addr); 4433 } 4434 break; 4435 } 4436 4437 case ABIArgInfo::Indirect: 4438 case ABIArgInfo::IndirectAliased: { 4439 assert(NumIRArgs == 1); 4440 if (!I->isAggregate()) { 4441 // Make a temporary alloca to pass the argument. 4442 Address Addr = CreateMemTempWithoutCast( 4443 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4444 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4445 4446 I->copyInto(*this, Addr); 4447 } else { 4448 // We want to avoid creating an unnecessary temporary+copy here; 4449 // however, we need one in three cases: 4450 // 1. If the argument is not byval, and we are required to copy the 4451 // source. (This case doesn't occur on any common architecture.) 4452 // 2. If the argument is byval, RV is not sufficiently aligned, and 4453 // we cannot force it to be sufficiently aligned. 4454 // 3. If the argument is byval, but RV is not located in default 4455 // or alloca address space. 4456 Address Addr = I->hasLValue() 4457 ? I->getKnownLValue().getAddress(*this) 4458 : I->getKnownRValue().getAggregateAddress(); 4459 llvm::Value *V = Addr.getPointer(); 4460 CharUnits Align = ArgInfo.getIndirectAlign(); 4461 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4462 4463 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4464 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4465 TD->getAllocaAddrSpace()) && 4466 "indirect argument must be in alloca address space"); 4467 4468 bool NeedCopy = false; 4469 4470 if (Addr.getAlignment() < Align && 4471 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4472 Align.getAsAlign()) { 4473 NeedCopy = true; 4474 } else if (I->hasLValue()) { 4475 auto LV = I->getKnownLValue(); 4476 auto AS = LV.getAddressSpace(); 4477 4478 if (!ArgInfo.getIndirectByVal() || 4479 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4480 NeedCopy = true; 4481 } 4482 if (!getLangOpts().OpenCL) { 4483 if ((ArgInfo.getIndirectByVal() && 4484 (AS != LangAS::Default && 4485 AS != CGM.getASTAllocaAddressSpace()))) { 4486 NeedCopy = true; 4487 } 4488 } 4489 // For OpenCL even if RV is located in default or alloca address space 4490 // we don't want to perform address space cast for it. 4491 else if ((ArgInfo.getIndirectByVal() && 4492 Addr.getType()->getAddressSpace() != IRFuncTy-> 4493 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4494 NeedCopy = true; 4495 } 4496 } 4497 4498 if (NeedCopy) { 4499 // Create an aligned temporary, and copy to it. 4500 Address AI = CreateMemTempWithoutCast( 4501 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4502 IRCallArgs[FirstIRArg] = AI.getPointer(); 4503 4504 // Emit lifetime markers for the temporary alloca. 4505 uint64_t ByvalTempElementSize = 4506 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4507 llvm::Value *LifetimeSize = 4508 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4509 4510 // Add cleanup code to emit the end lifetime marker after the call. 4511 if (LifetimeSize) // In case we disabled lifetime markers. 4512 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4513 4514 // Generate the copy. 4515 I->copyInto(*this, AI); 4516 } else { 4517 // Skip the extra memcpy call. 4518 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4519 CGM.getDataLayout().getAllocaAddrSpace()); 4520 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4521 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4522 true); 4523 } 4524 } 4525 break; 4526 } 4527 4528 case ABIArgInfo::Ignore: 4529 assert(NumIRArgs == 0); 4530 break; 4531 4532 case ABIArgInfo::Extend: 4533 case ABIArgInfo::Direct: { 4534 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4535 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4536 ArgInfo.getDirectOffset() == 0) { 4537 assert(NumIRArgs == 1); 4538 llvm::Value *V; 4539 if (!I->isAggregate()) 4540 V = I->getKnownRValue().getScalarVal(); 4541 else 4542 V = Builder.CreateLoad( 4543 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4544 : I->getKnownRValue().getAggregateAddress()); 4545 4546 // Implement swifterror by copying into a new swifterror argument. 4547 // We'll write back in the normal path out of the call. 4548 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4549 == ParameterABI::SwiftErrorResult) { 4550 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4551 4552 QualType pointeeTy = I->Ty->getPointeeType(); 4553 swiftErrorArg = 4554 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4555 4556 swiftErrorTemp = 4557 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4558 V = swiftErrorTemp.getPointer(); 4559 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4560 4561 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4562 Builder.CreateStore(errorValue, swiftErrorTemp); 4563 } 4564 4565 // We might have to widen integers, but we should never truncate. 4566 if (ArgInfo.getCoerceToType() != V->getType() && 4567 V->getType()->isIntegerTy()) 4568 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4569 4570 // If the argument doesn't match, perform a bitcast to coerce it. This 4571 // can happen due to trivial type mismatches. 4572 if (FirstIRArg < IRFuncTy->getNumParams() && 4573 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4574 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4575 4576 IRCallArgs[FirstIRArg] = V; 4577 break; 4578 } 4579 4580 // FIXME: Avoid the conversion through memory if possible. 4581 Address Src = Address::invalid(); 4582 if (!I->isAggregate()) { 4583 Src = CreateMemTemp(I->Ty, "coerce"); 4584 I->copyInto(*this, Src); 4585 } else { 4586 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4587 : I->getKnownRValue().getAggregateAddress(); 4588 } 4589 4590 // If the value is offset in memory, apply the offset now. 4591 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4592 4593 // Fast-isel and the optimizer generally like scalar values better than 4594 // FCAs, so we flatten them if this is safe to do for this argument. 4595 llvm::StructType *STy = 4596 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4597 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4598 llvm::Type *SrcTy = Src.getElementType(); 4599 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4600 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4601 4602 // If the source type is smaller than the destination type of the 4603 // coerce-to logic, copy the source value into a temp alloca the size 4604 // of the destination type to allow loading all of it. The bits past 4605 // the source value are left undef. 4606 if (SrcSize < DstSize) { 4607 Address TempAlloca 4608 = CreateTempAlloca(STy, Src.getAlignment(), 4609 Src.getName() + ".coerce"); 4610 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4611 Src = TempAlloca; 4612 } else { 4613 Src = Builder.CreateBitCast(Src, 4614 STy->getPointerTo(Src.getAddressSpace())); 4615 } 4616 4617 assert(NumIRArgs == STy->getNumElements()); 4618 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4619 Address EltPtr = Builder.CreateStructGEP(Src, i); 4620 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4621 IRCallArgs[FirstIRArg + i] = LI; 4622 } 4623 } else { 4624 // In the simple case, just pass the coerced loaded value. 4625 assert(NumIRArgs == 1); 4626 llvm::Value *Load = 4627 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4628 4629 if (CallInfo.isCmseNSCall()) { 4630 // For certain parameter types, clear padding bits, as they may reveal 4631 // sensitive information. 4632 // Small struct/union types are passed as integer arrays. 4633 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 4634 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 4635 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 4636 } 4637 IRCallArgs[FirstIRArg] = Load; 4638 } 4639 4640 break; 4641 } 4642 4643 case ABIArgInfo::CoerceAndExpand: { 4644 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4645 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4646 4647 llvm::Value *tempSize = nullptr; 4648 Address addr = Address::invalid(); 4649 Address AllocaAddr = Address::invalid(); 4650 if (I->isAggregate()) { 4651 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4652 : I->getKnownRValue().getAggregateAddress(); 4653 4654 } else { 4655 RValue RV = I->getKnownRValue(); 4656 assert(RV.isScalar()); // complex should always just be direct 4657 4658 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4659 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4660 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4661 4662 // Materialize to a temporary. 4663 addr = CreateTempAlloca( 4664 RV.getScalarVal()->getType(), 4665 CharUnits::fromQuantity(std::max( 4666 (unsigned)layout->getAlignment().value(), scalarAlign)), 4667 "tmp", 4668 /*ArraySize=*/nullptr, &AllocaAddr); 4669 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4670 4671 Builder.CreateStore(RV.getScalarVal(), addr); 4672 } 4673 4674 addr = Builder.CreateElementBitCast(addr, coercionType); 4675 4676 unsigned IRArgPos = FirstIRArg; 4677 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4678 llvm::Type *eltType = coercionType->getElementType(i); 4679 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4680 Address eltAddr = Builder.CreateStructGEP(addr, i); 4681 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4682 IRCallArgs[IRArgPos++] = elt; 4683 } 4684 assert(IRArgPos == FirstIRArg + NumIRArgs); 4685 4686 if (tempSize) { 4687 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4688 } 4689 4690 break; 4691 } 4692 4693 case ABIArgInfo::Expand: { 4694 unsigned IRArgPos = FirstIRArg; 4695 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4696 assert(IRArgPos == FirstIRArg + NumIRArgs); 4697 break; 4698 } 4699 } 4700 } 4701 4702 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4703 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4704 4705 // If we're using inalloca, set up that argument. 4706 if (ArgMemory.isValid()) { 4707 llvm::Value *Arg = ArgMemory.getPointer(); 4708 if (CallInfo.isVariadic()) { 4709 // When passing non-POD arguments by value to variadic functions, we will 4710 // end up with a variadic prototype and an inalloca call site. In such 4711 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4712 // the callee. 4713 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4714 CalleePtr = 4715 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4716 } else { 4717 llvm::Type *LastParamTy = 4718 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4719 if (Arg->getType() != LastParamTy) { 4720 #ifndef NDEBUG 4721 // Assert that these structs have equivalent element types. 4722 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4723 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4724 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4725 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4726 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4727 DE = DeclaredTy->element_end(), 4728 FI = FullTy->element_begin(); 4729 DI != DE; ++DI, ++FI) 4730 assert(*DI == *FI); 4731 #endif 4732 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4733 } 4734 } 4735 assert(IRFunctionArgs.hasInallocaArg()); 4736 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4737 } 4738 4739 // 2. Prepare the function pointer. 4740 4741 // If the callee is a bitcast of a non-variadic function to have a 4742 // variadic function pointer type, check to see if we can remove the 4743 // bitcast. This comes up with unprototyped functions. 4744 // 4745 // This makes the IR nicer, but more importantly it ensures that we 4746 // can inline the function at -O0 if it is marked always_inline. 4747 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4748 llvm::Value *Ptr) -> llvm::Function * { 4749 if (!CalleeFT->isVarArg()) 4750 return nullptr; 4751 4752 // Get underlying value if it's a bitcast 4753 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4754 if (CE->getOpcode() == llvm::Instruction::BitCast) 4755 Ptr = CE->getOperand(0); 4756 } 4757 4758 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4759 if (!OrigFn) 4760 return nullptr; 4761 4762 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4763 4764 // If the original type is variadic, or if any of the component types 4765 // disagree, we cannot remove the cast. 4766 if (OrigFT->isVarArg() || 4767 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4768 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4769 return nullptr; 4770 4771 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4772 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4773 return nullptr; 4774 4775 return OrigFn; 4776 }; 4777 4778 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4779 CalleePtr = OrigFn; 4780 IRFuncTy = OrigFn->getFunctionType(); 4781 } 4782 4783 // 3. Perform the actual call. 4784 4785 // Deactivate any cleanups that we're supposed to do immediately before 4786 // the call. 4787 if (!CallArgs.getCleanupsToDeactivate().empty()) 4788 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4789 4790 // Assert that the arguments we computed match up. The IR verifier 4791 // will catch this, but this is a common enough source of problems 4792 // during IRGen changes that it's way better for debugging to catch 4793 // it ourselves here. 4794 #ifndef NDEBUG 4795 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4796 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4797 // Inalloca argument can have different type. 4798 if (IRFunctionArgs.hasInallocaArg() && 4799 i == IRFunctionArgs.getInallocaArgNo()) 4800 continue; 4801 if (i < IRFuncTy->getNumParams()) 4802 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4803 } 4804 #endif 4805 4806 // Update the largest vector width if any arguments have vector types. 4807 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4808 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4809 LargestVectorWidth = 4810 std::max((uint64_t)LargestVectorWidth, 4811 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4812 } 4813 4814 // Compute the calling convention and attributes. 4815 unsigned CallingConv; 4816 llvm::AttributeList Attrs; 4817 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4818 Callee.getAbstractInfo(), Attrs, CallingConv, 4819 /*AttrOnCallSite=*/true); 4820 4821 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4822 if (FD->usesFPIntrin()) 4823 // All calls within a strictfp function are marked strictfp 4824 Attrs = 4825 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4826 llvm::Attribute::StrictFP); 4827 4828 // Add call-site nomerge attribute if exists. 4829 if (InNoMergeAttributedStmt) 4830 Attrs = 4831 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4832 llvm::Attribute::NoMerge); 4833 4834 // Apply some call-site-specific attributes. 4835 // TODO: work this into building the attribute set. 4836 4837 // Apply always_inline to all calls within flatten functions. 4838 // FIXME: should this really take priority over __try, below? 4839 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4840 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 4841 Attrs = 4842 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4843 llvm::Attribute::AlwaysInline); 4844 } 4845 4846 // Disable inlining inside SEH __try blocks. 4847 if (isSEHTryScope()) { 4848 Attrs = 4849 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4850 llvm::Attribute::NoInline); 4851 } 4852 4853 // Decide whether to use a call or an invoke. 4854 bool CannotThrow; 4855 if (currentFunctionUsesSEHTry()) { 4856 // SEH cares about asynchronous exceptions, so everything can "throw." 4857 CannotThrow = false; 4858 } else if (isCleanupPadScope() && 4859 EHPersonality::get(*this).isMSVCXXPersonality()) { 4860 // The MSVC++ personality will implicitly terminate the program if an 4861 // exception is thrown during a cleanup outside of a try/catch. 4862 // We don't need to model anything in IR to get this behavior. 4863 CannotThrow = true; 4864 } else { 4865 // Otherwise, nounwind call sites will never throw. 4866 CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind); 4867 4868 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 4869 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 4870 CannotThrow = true; 4871 } 4872 4873 // If we made a temporary, be sure to clean up after ourselves. Note that we 4874 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4875 // pop this cleanup later on. Being eager about this is OK, since this 4876 // temporary is 'invisible' outside of the callee. 4877 if (UnusedReturnSizePtr) 4878 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4879 UnusedReturnSizePtr); 4880 4881 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4882 4883 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4884 getBundlesForFunclet(CalleePtr); 4885 4886 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4887 if (FD->usesFPIntrin()) 4888 // All calls within a strictfp function are marked strictfp 4889 Attrs = 4890 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4891 llvm::Attribute::StrictFP); 4892 4893 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 4894 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4895 4896 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 4897 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4898 4899 // Emit the actual call/invoke instruction. 4900 llvm::CallBase *CI; 4901 if (!InvokeDest) { 4902 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 4903 } else { 4904 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4905 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 4906 BundleList); 4907 EmitBlock(Cont); 4908 } 4909 if (callOrInvoke) 4910 *callOrInvoke = CI; 4911 4912 // If this is within a function that has the guard(nocf) attribute and is an 4913 // indirect call, add the "guard_nocf" attribute to this call to indicate that 4914 // Control Flow Guard checks should not be added, even if the call is inlined. 4915 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 4916 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 4917 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 4918 Attrs = Attrs.addAttribute( 4919 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf"); 4920 } 4921 } 4922 4923 // Apply the attributes and calling convention. 4924 CI->setAttributes(Attrs); 4925 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4926 4927 // Apply various metadata. 4928 4929 if (!CI->getType()->isVoidTy()) 4930 CI->setName("call"); 4931 4932 // Update largest vector width from the return type. 4933 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4934 LargestVectorWidth = 4935 std::max((uint64_t)LargestVectorWidth, 4936 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4937 4938 // Insert instrumentation or attach profile metadata at indirect call sites. 4939 // For more details, see the comment before the definition of 4940 // IPVK_IndirectCallTarget in InstrProfData.inc. 4941 if (!CI->getCalledFunction()) 4942 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4943 CI, CalleePtr); 4944 4945 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4946 // optimizer it can aggressively ignore unwind edges. 4947 if (CGM.getLangOpts().ObjCAutoRefCount) 4948 AddObjCARCExceptionMetadata(CI); 4949 4950 // Suppress tail calls if requested. 4951 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4952 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4953 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4954 } 4955 4956 // Add metadata for calls to MSAllocator functions 4957 if (getDebugInfo() && TargetDecl && 4958 TargetDecl->hasAttr<MSAllocatorAttr>()) 4959 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 4960 4961 // 4. Finish the call. 4962 4963 // If the call doesn't return, finish the basic block and clear the 4964 // insertion point; this allows the rest of IRGen to discard 4965 // unreachable code. 4966 if (CI->doesNotReturn()) { 4967 if (UnusedReturnSizePtr) 4968 PopCleanupBlock(); 4969 4970 // Strip away the noreturn attribute to better diagnose unreachable UB. 4971 if (SanOpts.has(SanitizerKind::Unreachable)) { 4972 // Also remove from function since CallBase::hasFnAttr additionally checks 4973 // attributes of the called function. 4974 if (auto *F = CI->getCalledFunction()) 4975 F->removeFnAttr(llvm::Attribute::NoReturn); 4976 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 4977 llvm::Attribute::NoReturn); 4978 4979 // Avoid incompatibility with ASan which relies on the `noreturn` 4980 // attribute to insert handler calls. 4981 if (SanOpts.hasOneOf(SanitizerKind::Address | 4982 SanitizerKind::KernelAddress)) { 4983 SanitizerScope SanScope(this); 4984 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 4985 Builder.SetInsertPoint(CI); 4986 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 4987 llvm::FunctionCallee Fn = 4988 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 4989 EmitNounwindRuntimeCall(Fn); 4990 } 4991 } 4992 4993 EmitUnreachable(Loc); 4994 Builder.ClearInsertionPoint(); 4995 4996 // FIXME: For now, emit a dummy basic block because expr emitters in 4997 // generally are not ready to handle emitting expressions at unreachable 4998 // points. 4999 EnsureInsertPoint(); 5000 5001 // Return a reasonable RValue. 5002 return GetUndefRValue(RetTy); 5003 } 5004 5005 // Perform the swifterror writeback. 5006 if (swiftErrorTemp.isValid()) { 5007 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5008 Builder.CreateStore(errorResult, swiftErrorArg); 5009 } 5010 5011 // Emit any call-associated writebacks immediately. Arguably this 5012 // should happen after any return-value munging. 5013 if (CallArgs.hasWritebacks()) 5014 emitWritebacks(*this, CallArgs); 5015 5016 // The stack cleanup for inalloca arguments has to run out of the normal 5017 // lexical order, so deactivate it and run it manually here. 5018 CallArgs.freeArgumentMemory(*this); 5019 5020 // Extract the return value. 5021 RValue Ret = [&] { 5022 switch (RetAI.getKind()) { 5023 case ABIArgInfo::CoerceAndExpand: { 5024 auto coercionType = RetAI.getCoerceAndExpandType(); 5025 5026 Address addr = SRetPtr; 5027 addr = Builder.CreateElementBitCast(addr, coercionType); 5028 5029 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5030 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5031 5032 unsigned unpaddedIndex = 0; 5033 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5034 llvm::Type *eltType = coercionType->getElementType(i); 5035 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5036 Address eltAddr = Builder.CreateStructGEP(addr, i); 5037 llvm::Value *elt = CI; 5038 if (requiresExtract) 5039 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5040 else 5041 assert(unpaddedIndex == 0); 5042 Builder.CreateStore(elt, eltAddr); 5043 } 5044 // FALLTHROUGH 5045 LLVM_FALLTHROUGH; 5046 } 5047 5048 case ABIArgInfo::InAlloca: 5049 case ABIArgInfo::Indirect: { 5050 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5051 if (UnusedReturnSizePtr) 5052 PopCleanupBlock(); 5053 return ret; 5054 } 5055 5056 case ABIArgInfo::Ignore: 5057 // If we are ignoring an argument that had a result, make sure to 5058 // construct the appropriate return value for our caller. 5059 return GetUndefRValue(RetTy); 5060 5061 case ABIArgInfo::Extend: 5062 case ABIArgInfo::Direct: { 5063 llvm::Type *RetIRTy = ConvertType(RetTy); 5064 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5065 switch (getEvaluationKind(RetTy)) { 5066 case TEK_Complex: { 5067 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5068 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5069 return RValue::getComplex(std::make_pair(Real, Imag)); 5070 } 5071 case TEK_Aggregate: { 5072 Address DestPtr = ReturnValue.getValue(); 5073 bool DestIsVolatile = ReturnValue.isVolatile(); 5074 5075 if (!DestPtr.isValid()) { 5076 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5077 DestIsVolatile = false; 5078 } 5079 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5080 return RValue::getAggregate(DestPtr); 5081 } 5082 case TEK_Scalar: { 5083 // If the argument doesn't match, perform a bitcast to coerce it. This 5084 // can happen due to trivial type mismatches. 5085 llvm::Value *V = CI; 5086 if (V->getType() != RetIRTy) 5087 V = Builder.CreateBitCast(V, RetIRTy); 5088 return RValue::get(V); 5089 } 5090 } 5091 llvm_unreachable("bad evaluation kind"); 5092 } 5093 5094 Address DestPtr = ReturnValue.getValue(); 5095 bool DestIsVolatile = ReturnValue.isVolatile(); 5096 5097 if (!DestPtr.isValid()) { 5098 DestPtr = CreateMemTemp(RetTy, "coerce"); 5099 DestIsVolatile = false; 5100 } 5101 5102 // If the value is offset in memory, apply the offset now. 5103 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5104 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5105 5106 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5107 } 5108 5109 case ABIArgInfo::Expand: 5110 case ABIArgInfo::IndirectAliased: 5111 llvm_unreachable("Invalid ABI kind for return argument"); 5112 } 5113 5114 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5115 } (); 5116 5117 // Emit the assume_aligned check on the return value. 5118 if (Ret.isScalar() && TargetDecl) { 5119 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5120 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5121 } 5122 5123 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5124 // we can't use the full cleanup mechanism. 5125 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5126 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5127 5128 if (!ReturnValue.isExternallyDestructed() && 5129 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5130 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5131 RetTy); 5132 5133 return Ret; 5134 } 5135 5136 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5137 if (isVirtual()) { 5138 const CallExpr *CE = getVirtualCallExpr(); 5139 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5140 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5141 CE ? CE->getBeginLoc() : SourceLocation()); 5142 } 5143 5144 return *this; 5145 } 5146 5147 /* VarArg handling */ 5148 5149 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5150 VAListAddr = VE->isMicrosoftABI() 5151 ? EmitMSVAListRef(VE->getSubExpr()) 5152 : EmitVAListRef(VE->getSubExpr()); 5153 QualType Ty = VE->getType(); 5154 if (VE->isMicrosoftABI()) 5155 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5156 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5157 } 5158