1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 71 /// qualification. 72 /// FIXME: address space qualification? 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 76 } 77 78 /// Returns the canonical formal type of the given C++ method. 79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 80 return MD->getType()->getCanonicalTypeUnqualified() 81 .getAs<FunctionProtoType>(); 82 } 83 84 /// Returns the "extra-canonicalized" return type, which discards 85 /// qualifiers on the return type. Codegen doesn't care about them, 86 /// and it makes ABI code a little easier to be able to assume that 87 /// all parameter and return types are top-level unqualified. 88 static CanQualType GetReturnType(QualType RetTy) { 89 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 90 } 91 92 /// Arrange the argument and result information for a value of the given 93 /// unprototyped freestanding function type. 94 const CGFunctionInfo & 95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 96 // When translating an unprototyped function type, always use a 97 // variadic type. 98 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 99 /*instanceMethod=*/false, 100 /*chainCall=*/false, None, 101 FTNP->getExtInfo(), {}, RequiredArgs(0)); 102 } 103 104 static void addExtParameterInfosForCall( 105 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 const FunctionProtoType *proto, 107 unsigned prefixArgs, 108 unsigned totalArgs) { 109 assert(proto->hasExtParameterInfos()); 110 assert(paramInfos.size() <= prefixArgs); 111 assert(proto->getNumParams() + prefixArgs <= totalArgs); 112 113 paramInfos.reserve(totalArgs); 114 115 // Add default infos for any prefix args that don't already have infos. 116 paramInfos.resize(prefixArgs); 117 118 // Add infos for the prototype. 119 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 120 paramInfos.push_back(ParamInfo); 121 // pass_object_size params have no parameter info. 122 if (ParamInfo.hasPassObjectSize()) 123 paramInfos.emplace_back(); 124 } 125 126 assert(paramInfos.size() <= totalArgs && 127 "Did we forget to insert pass_object_size args?"); 128 // Add default infos for the variadic and/or suffix arguments. 129 paramInfos.resize(totalArgs); 130 } 131 132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 134 static void appendParameterTypes(const CodeGenTypes &CGT, 135 SmallVectorImpl<CanQualType> &prefix, 136 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 137 CanQual<FunctionProtoType> FPT) { 138 // Fast path: don't touch param info if we don't need to. 139 if (!FPT->hasExtParameterInfos()) { 140 assert(paramInfos.empty() && 141 "We have paramInfos, but the prototype doesn't?"); 142 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 143 return; 144 } 145 146 unsigned PrefixSize = prefix.size(); 147 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 148 // parameters; the only thing that can change this is the presence of 149 // pass_object_size. So, we preallocate for the common case. 150 prefix.reserve(prefix.size() + FPT->getNumParams()); 151 152 auto ExtInfos = FPT->getExtParameterInfos(); 153 assert(ExtInfos.size() == FPT->getNumParams()); 154 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 155 prefix.push_back(FPT->getParamType(I)); 156 if (ExtInfos[I].hasPassObjectSize()) 157 prefix.push_back(CGT.getContext().getSizeType()); 158 } 159 160 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 161 prefix.size()); 162 } 163 164 /// Arrange the LLVM function layout for a value of the given function 165 /// type, on top of any implicit parameters already stored. 166 static const CGFunctionInfo & 167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 168 SmallVectorImpl<CanQualType> &prefix, 169 CanQual<FunctionProtoType> FTP, 170 const FunctionDecl *FD) { 171 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 172 RequiredArgs Required = 173 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 174 // FIXME: Kill copy. 175 appendParameterTypes(CGT, prefix, paramInfos, FTP); 176 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 177 178 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 179 /*chainCall=*/false, prefix, 180 FTP->getExtInfo(), paramInfos, 181 Required); 182 } 183 184 /// Arrange the argument and result information for a value of the 185 /// given freestanding function type. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 188 const FunctionDecl *FD) { 189 SmallVector<CanQualType, 16> argTypes; 190 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 191 FTP, FD); 192 } 193 194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 195 // Set the appropriate calling convention for the Function. 196 if (D->hasAttr<StdCallAttr>()) 197 return CC_X86StdCall; 198 199 if (D->hasAttr<FastCallAttr>()) 200 return CC_X86FastCall; 201 202 if (D->hasAttr<RegCallAttr>()) 203 return CC_X86RegCall; 204 205 if (D->hasAttr<ThisCallAttr>()) 206 return CC_X86ThisCall; 207 208 if (D->hasAttr<VectorCallAttr>()) 209 return CC_X86VectorCall; 210 211 if (D->hasAttr<PascalAttr>()) 212 return CC_X86Pascal; 213 214 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 215 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 216 217 if (D->hasAttr<IntelOclBiccAttr>()) 218 return CC_IntelOclBicc; 219 220 if (D->hasAttr<MSABIAttr>()) 221 return IsWindows ? CC_C : CC_Win64; 222 223 if (D->hasAttr<SysVABIAttr>()) 224 return IsWindows ? CC_X86_64SysV : CC_C; 225 226 if (D->hasAttr<PreserveMostAttr>()) 227 return CC_PreserveMost; 228 229 if (D->hasAttr<PreserveAllAttr>()) 230 return CC_PreserveAll; 231 232 return CC_C; 233 } 234 235 /// Arrange the argument and result information for a call to an 236 /// unknown C++ non-static member function of the given abstract type. 237 /// (Zero value of RD means we don't have any meaningful "this" argument type, 238 /// so fall back to a generic pointer type). 239 /// The member function must be an ordinary function, i.e. not a 240 /// constructor or destructor. 241 const CGFunctionInfo & 242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 243 const FunctionProtoType *FTP, 244 const CXXMethodDecl *MD) { 245 SmallVector<CanQualType, 16> argTypes; 246 247 // Add the 'this' pointer. 248 if (RD) 249 argTypes.push_back(GetThisType(Context, RD)); 250 else 251 argTypes.push_back(Context.VoidPtrTy); 252 253 return ::arrangeLLVMFunctionInfo( 254 *this, true, argTypes, 255 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 256 } 257 258 /// Arrange the argument and result information for a declaration or 259 /// definition of the given C++ non-static member function. The 260 /// member function must be an ordinary function, i.e. not a 261 /// constructor or destructor. 262 const CGFunctionInfo & 263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 264 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 265 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 266 267 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 268 269 if (MD->isInstance()) { 270 // The abstract case is perfectly fine. 271 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 272 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 273 } 274 275 return arrangeFreeFunctionType(prototype, MD); 276 } 277 278 bool CodeGenTypes::inheritingCtorHasParams( 279 const InheritedConstructor &Inherited, CXXCtorType Type) { 280 // Parameters are unnecessary if we're constructing a base class subobject 281 // and the inherited constructor lives in a virtual base. 282 return Type == Ctor_Complete || 283 !Inherited.getShadowDecl()->constructsVirtualBase() || 284 !Target.getCXXABI().hasConstructorVariants(); 285 } 286 287 const CGFunctionInfo & 288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 289 StructorType Type) { 290 291 SmallVector<CanQualType, 16> argTypes; 292 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 293 argTypes.push_back(GetThisType(Context, MD->getParent())); 294 295 bool PassParams = true; 296 297 GlobalDecl GD; 298 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 299 GD = GlobalDecl(CD, toCXXCtorType(Type)); 300 301 // A base class inheriting constructor doesn't get forwarded arguments 302 // needed to construct a virtual base (or base class thereof). 303 if (auto Inherited = CD->getInheritedConstructor()) 304 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 305 } else { 306 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 307 GD = GlobalDecl(DD, toCXXDtorType(Type)); 308 } 309 310 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 311 312 // Add the formal parameters. 313 if (PassParams) 314 appendParameterTypes(*this, argTypes, paramInfos, FTP); 315 316 CGCXXABI::AddedStructorArgs AddedArgs = 317 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 318 if (!paramInfos.empty()) { 319 // Note: prefix implies after the first param. 320 if (AddedArgs.Prefix) 321 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 322 FunctionProtoType::ExtParameterInfo{}); 323 if (AddedArgs.Suffix) 324 paramInfos.append(AddedArgs.Suffix, 325 FunctionProtoType::ExtParameterInfo{}); 326 } 327 328 RequiredArgs required = 329 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 330 : RequiredArgs::All); 331 332 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 333 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 334 ? argTypes.front() 335 : TheCXXABI.hasMostDerivedReturn(GD) 336 ? CGM.getContext().VoidPtrTy 337 : Context.VoidTy; 338 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 339 /*chainCall=*/false, argTypes, extInfo, 340 paramInfos, required); 341 } 342 343 static SmallVector<CanQualType, 16> 344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 345 SmallVector<CanQualType, 16> argTypes; 346 for (auto &arg : args) 347 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 348 return argTypes; 349 } 350 351 static SmallVector<CanQualType, 16> 352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 353 SmallVector<CanQualType, 16> argTypes; 354 for (auto &arg : args) 355 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 356 return argTypes; 357 } 358 359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 360 getExtParameterInfosForCall(const FunctionProtoType *proto, 361 unsigned prefixArgs, unsigned totalArgs) { 362 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 363 if (proto->hasExtParameterInfos()) { 364 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 365 } 366 return result; 367 } 368 369 /// Arrange a call to a C++ method, passing the given arguments. 370 /// 371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 372 /// parameter. 373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 374 /// args. 375 /// PassProtoArgs indicates whether `args` has args for the parameters in the 376 /// given CXXConstructorDecl. 377 const CGFunctionInfo & 378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 379 const CXXConstructorDecl *D, 380 CXXCtorType CtorKind, 381 unsigned ExtraPrefixArgs, 382 unsigned ExtraSuffixArgs, 383 bool PassProtoArgs) { 384 // FIXME: Kill copy. 385 SmallVector<CanQualType, 16> ArgTypes; 386 for (const auto &Arg : args) 387 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 388 389 // +1 for implicit this, which should always be args[0]. 390 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 391 392 CanQual<FunctionProtoType> FPT = GetFormalType(D); 393 RequiredArgs Required = 394 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 395 GlobalDecl GD(D, CtorKind); 396 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 397 ? ArgTypes.front() 398 : TheCXXABI.hasMostDerivedReturn(GD) 399 ? CGM.getContext().VoidPtrTy 400 : Context.VoidTy; 401 402 FunctionType::ExtInfo Info = FPT->getExtInfo(); 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 404 // If the prototype args are elided, we should only have ABI-specific args, 405 // which never have param info. 406 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 407 // ABI-specific suffix arguments are treated the same as variadic arguments. 408 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 409 ArgTypes.size()); 410 } 411 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 412 /*chainCall=*/false, ArgTypes, Info, 413 ParamInfos, Required); 414 } 415 416 /// Arrange the argument and result information for the declaration or 417 /// definition of the given function. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 420 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 421 if (MD->isInstance()) 422 return arrangeCXXMethodDeclaration(MD); 423 424 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 425 426 assert(isa<FunctionType>(FTy)); 427 428 // When declaring a function without a prototype, always use a 429 // non-variadic type. 430 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 431 return arrangeLLVMFunctionInfo( 432 noProto->getReturnType(), /*instanceMethod=*/false, 433 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 434 } 435 436 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 437 } 438 439 /// Arrange the argument and result information for the declaration or 440 /// definition of an Objective-C method. 441 const CGFunctionInfo & 442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 443 // It happens that this is the same as a call with no optional 444 // arguments, except also using the formal 'self' type. 445 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 446 } 447 448 /// Arrange the argument and result information for the function type 449 /// through which to perform a send to the given Objective-C method, 450 /// using the given receiver type. The receiver type is not always 451 /// the 'self' type of the method or even an Objective-C pointer type. 452 /// This is *not* the right method for actually performing such a 453 /// message send, due to the possibility of optional arguments. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 456 QualType receiverType) { 457 SmallVector<CanQualType, 16> argTys; 458 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 459 argTys.push_back(Context.getCanonicalParamType(receiverType)); 460 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 461 // FIXME: Kill copy? 462 for (const auto *I : MD->parameters()) { 463 argTys.push_back(Context.getCanonicalParamType(I->getType())); 464 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 465 I->hasAttr<NoEscapeAttr>()); 466 extParamInfos.push_back(extParamInfo); 467 } 468 469 FunctionType::ExtInfo einfo; 470 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 471 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 472 473 if (getContext().getLangOpts().ObjCAutoRefCount && 474 MD->hasAttr<NSReturnsRetainedAttr>()) 475 einfo = einfo.withProducesResult(true); 476 477 RequiredArgs required = 478 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 479 480 return arrangeLLVMFunctionInfo( 481 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 482 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 483 } 484 485 const CGFunctionInfo & 486 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 487 const CallArgList &args) { 488 auto argTypes = getArgTypesForCall(Context, args); 489 FunctionType::ExtInfo einfo; 490 491 return arrangeLLVMFunctionInfo( 492 GetReturnType(returnType), /*instanceMethod=*/false, 493 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 494 } 495 496 const CGFunctionInfo & 497 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 498 // FIXME: Do we need to handle ObjCMethodDecl? 499 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 500 501 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 502 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 503 504 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 505 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 506 507 return arrangeFunctionDeclaration(FD); 508 } 509 510 /// Arrange a thunk that takes 'this' as the first parameter followed by 511 /// varargs. Return a void pointer, regardless of the actual return type. 512 /// The body of the thunk will end in a musttail call to a function of the 513 /// correct type, and the caller will bitcast the function to the correct 514 /// prototype. 515 const CGFunctionInfo & 516 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 517 assert(MD->isVirtual() && "only methods have thunks"); 518 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 519 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 520 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 521 /*chainCall=*/false, ArgTys, 522 FTP->getExtInfo(), {}, RequiredArgs(1)); 523 } 524 525 const CGFunctionInfo & 526 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 527 CXXCtorType CT) { 528 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 529 530 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 531 SmallVector<CanQualType, 2> ArgTys; 532 const CXXRecordDecl *RD = CD->getParent(); 533 ArgTys.push_back(GetThisType(Context, RD)); 534 if (CT == Ctor_CopyingClosure) 535 ArgTys.push_back(*FTP->param_type_begin()); 536 if (RD->getNumVBases() > 0) 537 ArgTys.push_back(Context.IntTy); 538 CallingConv CC = Context.getDefaultCallingConvention( 539 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 540 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 541 /*chainCall=*/false, ArgTys, 542 FunctionType::ExtInfo(CC), {}, 543 RequiredArgs::All); 544 } 545 546 /// Arrange a call as unto a free function, except possibly with an 547 /// additional number of formal parameters considered required. 548 static const CGFunctionInfo & 549 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 550 CodeGenModule &CGM, 551 const CallArgList &args, 552 const FunctionType *fnType, 553 unsigned numExtraRequiredArgs, 554 bool chainCall) { 555 assert(args.size() >= numExtraRequiredArgs); 556 557 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 558 559 // In most cases, there are no optional arguments. 560 RequiredArgs required = RequiredArgs::All; 561 562 // If we have a variadic prototype, the required arguments are the 563 // extra prefix plus the arguments in the prototype. 564 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 565 if (proto->isVariadic()) 566 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 567 568 if (proto->hasExtParameterInfos()) 569 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 570 args.size()); 571 572 // If we don't have a prototype at all, but we're supposed to 573 // explicitly use the variadic convention for unprototyped calls, 574 // treat all of the arguments as required but preserve the nominal 575 // possibility of variadics. 576 } else if (CGM.getTargetCodeGenInfo() 577 .isNoProtoCallVariadic(args, 578 cast<FunctionNoProtoType>(fnType))) { 579 required = RequiredArgs(args.size()); 580 } 581 582 // FIXME: Kill copy. 583 SmallVector<CanQualType, 16> argTypes; 584 for (const auto &arg : args) 585 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 586 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 587 /*instanceMethod=*/false, chainCall, 588 argTypes, fnType->getExtInfo(), paramInfos, 589 required); 590 } 591 592 /// Figure out the rules for calling a function with the given formal 593 /// type using the given arguments. The arguments are necessary 594 /// because the function might be unprototyped, in which case it's 595 /// target-dependent in crazy ways. 596 const CGFunctionInfo & 597 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 598 const FunctionType *fnType, 599 bool chainCall) { 600 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 601 chainCall ? 1 : 0, chainCall); 602 } 603 604 /// A block function is essentially a free function with an 605 /// extra implicit argument. 606 const CGFunctionInfo & 607 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 608 const FunctionType *fnType) { 609 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 610 /*chainCall=*/false); 611 } 612 613 const CGFunctionInfo & 614 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 615 const FunctionArgList ¶ms) { 616 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 617 auto argTypes = getArgTypesForDeclaration(Context, params); 618 619 return arrangeLLVMFunctionInfo( 620 GetReturnType(proto->getReturnType()), 621 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 622 proto->getExtInfo(), paramInfos, 623 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 624 } 625 626 const CGFunctionInfo & 627 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 628 const CallArgList &args) { 629 // FIXME: Kill copy. 630 SmallVector<CanQualType, 16> argTypes; 631 for (const auto &Arg : args) 632 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 633 return arrangeLLVMFunctionInfo( 634 GetReturnType(resultType), /*instanceMethod=*/false, 635 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 636 /*paramInfos=*/ {}, RequiredArgs::All); 637 } 638 639 const CGFunctionInfo & 640 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 641 const FunctionArgList &args) { 642 auto argTypes = getArgTypesForDeclaration(Context, args); 643 644 return arrangeLLVMFunctionInfo( 645 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 646 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 647 } 648 649 const CGFunctionInfo & 650 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 651 ArrayRef<CanQualType> argTypes) { 652 return arrangeLLVMFunctionInfo( 653 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 654 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 655 } 656 657 /// Arrange a call to a C++ method, passing the given arguments. 658 /// 659 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 660 /// does not count `this`. 661 const CGFunctionInfo & 662 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 663 const FunctionProtoType *proto, 664 RequiredArgs required, 665 unsigned numPrefixArgs) { 666 assert(numPrefixArgs + 1 <= args.size() && 667 "Emitting a call with less args than the required prefix?"); 668 // Add one to account for `this`. It's a bit awkward here, but we don't count 669 // `this` in similar places elsewhere. 670 auto paramInfos = 671 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 672 673 // FIXME: Kill copy. 674 auto argTypes = getArgTypesForCall(Context, args); 675 676 FunctionType::ExtInfo info = proto->getExtInfo(); 677 return arrangeLLVMFunctionInfo( 678 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 679 /*chainCall=*/false, argTypes, info, paramInfos, required); 680 } 681 682 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 683 return arrangeLLVMFunctionInfo( 684 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 685 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 686 } 687 688 const CGFunctionInfo & 689 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 690 const CallArgList &args) { 691 assert(signature.arg_size() <= args.size()); 692 if (signature.arg_size() == args.size()) 693 return signature; 694 695 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 696 auto sigParamInfos = signature.getExtParameterInfos(); 697 if (!sigParamInfos.empty()) { 698 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 699 paramInfos.resize(args.size()); 700 } 701 702 auto argTypes = getArgTypesForCall(Context, args); 703 704 assert(signature.getRequiredArgs().allowsOptionalArgs()); 705 return arrangeLLVMFunctionInfo(signature.getReturnType(), 706 signature.isInstanceMethod(), 707 signature.isChainCall(), 708 argTypes, 709 signature.getExtInfo(), 710 paramInfos, 711 signature.getRequiredArgs()); 712 } 713 714 namespace clang { 715 namespace CodeGen { 716 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 717 } 718 } 719 720 /// Arrange the argument and result information for an abstract value 721 /// of a given function type. This is the method which all of the 722 /// above functions ultimately defer to. 723 const CGFunctionInfo & 724 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 725 bool instanceMethod, 726 bool chainCall, 727 ArrayRef<CanQualType> argTypes, 728 FunctionType::ExtInfo info, 729 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 730 RequiredArgs required) { 731 assert(std::all_of(argTypes.begin(), argTypes.end(), 732 [](CanQualType T) { return T.isCanonicalAsParam(); })); 733 734 // Lookup or create unique function info. 735 llvm::FoldingSetNodeID ID; 736 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 737 required, resultType, argTypes); 738 739 void *insertPos = nullptr; 740 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 741 if (FI) 742 return *FI; 743 744 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 745 746 // Construct the function info. We co-allocate the ArgInfos. 747 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 748 paramInfos, resultType, argTypes, required); 749 FunctionInfos.InsertNode(FI, insertPos); 750 751 bool inserted = FunctionsBeingProcessed.insert(FI).second; 752 (void)inserted; 753 assert(inserted && "Recursively being processed?"); 754 755 // Compute ABI information. 756 if (CC == llvm::CallingConv::SPIR_KERNEL) { 757 // Force target independent argument handling for the host visible 758 // kernel functions. 759 computeSPIRKernelABIInfo(CGM, *FI); 760 } else if (info.getCC() == CC_Swift) { 761 swiftcall::computeABIInfo(CGM, *FI); 762 } else { 763 getABIInfo().computeInfo(*FI); 764 } 765 766 // Loop over all of the computed argument and return value info. If any of 767 // them are direct or extend without a specified coerce type, specify the 768 // default now. 769 ABIArgInfo &retInfo = FI->getReturnInfo(); 770 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 771 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 772 773 for (auto &I : FI->arguments()) 774 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 775 I.info.setCoerceToType(ConvertType(I.type)); 776 777 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 778 assert(erased && "Not in set?"); 779 780 return *FI; 781 } 782 783 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 784 bool instanceMethod, 785 bool chainCall, 786 const FunctionType::ExtInfo &info, 787 ArrayRef<ExtParameterInfo> paramInfos, 788 CanQualType resultType, 789 ArrayRef<CanQualType> argTypes, 790 RequiredArgs required) { 791 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 792 793 void *buffer = 794 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 795 argTypes.size() + 1, paramInfos.size())); 796 797 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 798 FI->CallingConvention = llvmCC; 799 FI->EffectiveCallingConvention = llvmCC; 800 FI->ASTCallingConvention = info.getCC(); 801 FI->InstanceMethod = instanceMethod; 802 FI->ChainCall = chainCall; 803 FI->NoReturn = info.getNoReturn(); 804 FI->ReturnsRetained = info.getProducesResult(); 805 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 806 FI->NoCfCheck = info.getNoCfCheck(); 807 FI->Required = required; 808 FI->HasRegParm = info.getHasRegParm(); 809 FI->RegParm = info.getRegParm(); 810 FI->ArgStruct = nullptr; 811 FI->ArgStructAlign = 0; 812 FI->NumArgs = argTypes.size(); 813 FI->HasExtParameterInfos = !paramInfos.empty(); 814 FI->getArgsBuffer()[0].type = resultType; 815 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 816 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 817 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 818 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 819 return FI; 820 } 821 822 /***/ 823 824 namespace { 825 // ABIArgInfo::Expand implementation. 826 827 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 828 struct TypeExpansion { 829 enum TypeExpansionKind { 830 // Elements of constant arrays are expanded recursively. 831 TEK_ConstantArray, 832 // Record fields are expanded recursively (but if record is a union, only 833 // the field with the largest size is expanded). 834 TEK_Record, 835 // For complex types, real and imaginary parts are expanded recursively. 836 TEK_Complex, 837 // All other types are not expandable. 838 TEK_None 839 }; 840 841 const TypeExpansionKind Kind; 842 843 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 844 virtual ~TypeExpansion() {} 845 }; 846 847 struct ConstantArrayExpansion : TypeExpansion { 848 QualType EltTy; 849 uint64_t NumElts; 850 851 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 852 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 853 static bool classof(const TypeExpansion *TE) { 854 return TE->Kind == TEK_ConstantArray; 855 } 856 }; 857 858 struct RecordExpansion : TypeExpansion { 859 SmallVector<const CXXBaseSpecifier *, 1> Bases; 860 861 SmallVector<const FieldDecl *, 1> Fields; 862 863 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 864 SmallVector<const FieldDecl *, 1> &&Fields) 865 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 866 Fields(std::move(Fields)) {} 867 static bool classof(const TypeExpansion *TE) { 868 return TE->Kind == TEK_Record; 869 } 870 }; 871 872 struct ComplexExpansion : TypeExpansion { 873 QualType EltTy; 874 875 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 876 static bool classof(const TypeExpansion *TE) { 877 return TE->Kind == TEK_Complex; 878 } 879 }; 880 881 struct NoExpansion : TypeExpansion { 882 NoExpansion() : TypeExpansion(TEK_None) {} 883 static bool classof(const TypeExpansion *TE) { 884 return TE->Kind == TEK_None; 885 } 886 }; 887 } // namespace 888 889 static std::unique_ptr<TypeExpansion> 890 getTypeExpansion(QualType Ty, const ASTContext &Context) { 891 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 892 return llvm::make_unique<ConstantArrayExpansion>( 893 AT->getElementType(), AT->getSize().getZExtValue()); 894 } 895 if (const RecordType *RT = Ty->getAs<RecordType>()) { 896 SmallVector<const CXXBaseSpecifier *, 1> Bases; 897 SmallVector<const FieldDecl *, 1> Fields; 898 const RecordDecl *RD = RT->getDecl(); 899 assert(!RD->hasFlexibleArrayMember() && 900 "Cannot expand structure with flexible array."); 901 if (RD->isUnion()) { 902 // Unions can be here only in degenerative cases - all the fields are same 903 // after flattening. Thus we have to use the "largest" field. 904 const FieldDecl *LargestFD = nullptr; 905 CharUnits UnionSize = CharUnits::Zero(); 906 907 for (const auto *FD : RD->fields()) { 908 if (FD->isZeroLengthBitField(Context)) 909 continue; 910 assert(!FD->isBitField() && 911 "Cannot expand structure with bit-field members."); 912 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 913 if (UnionSize < FieldSize) { 914 UnionSize = FieldSize; 915 LargestFD = FD; 916 } 917 } 918 if (LargestFD) 919 Fields.push_back(LargestFD); 920 } else { 921 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 922 assert(!CXXRD->isDynamicClass() && 923 "cannot expand vtable pointers in dynamic classes"); 924 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 925 Bases.push_back(&BS); 926 } 927 928 for (const auto *FD : RD->fields()) { 929 if (FD->isZeroLengthBitField(Context)) 930 continue; 931 assert(!FD->isBitField() && 932 "Cannot expand structure with bit-field members."); 933 Fields.push_back(FD); 934 } 935 } 936 return llvm::make_unique<RecordExpansion>(std::move(Bases), 937 std::move(Fields)); 938 } 939 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 940 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 941 } 942 return llvm::make_unique<NoExpansion>(); 943 } 944 945 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 946 auto Exp = getTypeExpansion(Ty, Context); 947 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 948 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 949 } 950 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 951 int Res = 0; 952 for (auto BS : RExp->Bases) 953 Res += getExpansionSize(BS->getType(), Context); 954 for (auto FD : RExp->Fields) 955 Res += getExpansionSize(FD->getType(), Context); 956 return Res; 957 } 958 if (isa<ComplexExpansion>(Exp.get())) 959 return 2; 960 assert(isa<NoExpansion>(Exp.get())); 961 return 1; 962 } 963 964 void 965 CodeGenTypes::getExpandedTypes(QualType Ty, 966 SmallVectorImpl<llvm::Type *>::iterator &TI) { 967 auto Exp = getTypeExpansion(Ty, Context); 968 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 969 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 970 getExpandedTypes(CAExp->EltTy, TI); 971 } 972 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 973 for (auto BS : RExp->Bases) 974 getExpandedTypes(BS->getType(), TI); 975 for (auto FD : RExp->Fields) 976 getExpandedTypes(FD->getType(), TI); 977 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 978 llvm::Type *EltTy = ConvertType(CExp->EltTy); 979 *TI++ = EltTy; 980 *TI++ = EltTy; 981 } else { 982 assert(isa<NoExpansion>(Exp.get())); 983 *TI++ = ConvertType(Ty); 984 } 985 } 986 987 static void forConstantArrayExpansion(CodeGenFunction &CGF, 988 ConstantArrayExpansion *CAE, 989 Address BaseAddr, 990 llvm::function_ref<void(Address)> Fn) { 991 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 992 CharUnits EltAlign = 993 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 994 995 for (int i = 0, n = CAE->NumElts; i < n; i++) { 996 llvm::Value *EltAddr = 997 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 998 Fn(Address(EltAddr, EltAlign)); 999 } 1000 } 1001 1002 void CodeGenFunction::ExpandTypeFromArgs( 1003 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1004 assert(LV.isSimple() && 1005 "Unexpected non-simple lvalue during struct expansion."); 1006 1007 auto Exp = getTypeExpansion(Ty, getContext()); 1008 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1009 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1010 [&](Address EltAddr) { 1011 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1012 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1013 }); 1014 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1015 Address This = LV.getAddress(); 1016 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1017 // Perform a single step derived-to-base conversion. 1018 Address Base = 1019 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1020 /*NullCheckValue=*/false, SourceLocation()); 1021 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1022 1023 // Recurse onto bases. 1024 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1025 } 1026 for (auto FD : RExp->Fields) { 1027 // FIXME: What are the right qualifiers here? 1028 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1029 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1030 } 1031 } else if (isa<ComplexExpansion>(Exp.get())) { 1032 auto realValue = *AI++; 1033 auto imagValue = *AI++; 1034 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1035 } else { 1036 assert(isa<NoExpansion>(Exp.get())); 1037 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1038 } 1039 } 1040 1041 void CodeGenFunction::ExpandTypeToArgs( 1042 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1043 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1044 auto Exp = getTypeExpansion(Ty, getContext()); 1045 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1046 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1047 : Arg.getKnownRValue().getAggregateAddress(); 1048 forConstantArrayExpansion( 1049 *this, CAExp, Addr, [&](Address EltAddr) { 1050 CallArg EltArg = CallArg( 1051 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1052 CAExp->EltTy); 1053 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1054 IRCallArgPos); 1055 }); 1056 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1057 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1058 : Arg.getKnownRValue().getAggregateAddress(); 1059 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1060 // Perform a single step derived-to-base conversion. 1061 Address Base = 1062 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1063 /*NullCheckValue=*/false, SourceLocation()); 1064 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1065 1066 // Recurse onto bases. 1067 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1068 IRCallArgPos); 1069 } 1070 1071 LValue LV = MakeAddrLValue(This, Ty); 1072 for (auto FD : RExp->Fields) { 1073 CallArg FldArg = 1074 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1075 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1076 IRCallArgPos); 1077 } 1078 } else if (isa<ComplexExpansion>(Exp.get())) { 1079 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1080 IRCallArgs[IRCallArgPos++] = CV.first; 1081 IRCallArgs[IRCallArgPos++] = CV.second; 1082 } else { 1083 assert(isa<NoExpansion>(Exp.get())); 1084 auto RV = Arg.getKnownRValue(); 1085 assert(RV.isScalar() && 1086 "Unexpected non-scalar rvalue during struct expansion."); 1087 1088 // Insert a bitcast as needed. 1089 llvm::Value *V = RV.getScalarVal(); 1090 if (IRCallArgPos < IRFuncTy->getNumParams() && 1091 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1092 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1093 1094 IRCallArgs[IRCallArgPos++] = V; 1095 } 1096 } 1097 1098 /// Create a temporary allocation for the purposes of coercion. 1099 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1100 CharUnits MinAlign) { 1101 // Don't use an alignment that's worse than what LLVM would prefer. 1102 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1103 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1104 1105 return CGF.CreateTempAlloca(Ty, Align); 1106 } 1107 1108 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1109 /// accessing some number of bytes out of it, try to gep into the struct to get 1110 /// at its inner goodness. Dive as deep as possible without entering an element 1111 /// with an in-memory size smaller than DstSize. 1112 static Address 1113 EnterStructPointerForCoercedAccess(Address SrcPtr, 1114 llvm::StructType *SrcSTy, 1115 uint64_t DstSize, CodeGenFunction &CGF) { 1116 // We can't dive into a zero-element struct. 1117 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1118 1119 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1120 1121 // If the first elt is at least as large as what we're looking for, or if the 1122 // first element is the same size as the whole struct, we can enter it. The 1123 // comparison must be made on the store size and not the alloca size. Using 1124 // the alloca size may overstate the size of the load. 1125 uint64_t FirstEltSize = 1126 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1127 if (FirstEltSize < DstSize && 1128 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1129 return SrcPtr; 1130 1131 // GEP into the first element. 1132 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1133 1134 // If the first element is a struct, recurse. 1135 llvm::Type *SrcTy = SrcPtr.getElementType(); 1136 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1137 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1138 1139 return SrcPtr; 1140 } 1141 1142 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1143 /// are either integers or pointers. This does a truncation of the value if it 1144 /// is too large or a zero extension if it is too small. 1145 /// 1146 /// This behaves as if the value were coerced through memory, so on big-endian 1147 /// targets the high bits are preserved in a truncation, while little-endian 1148 /// targets preserve the low bits. 1149 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1150 llvm::Type *Ty, 1151 CodeGenFunction &CGF) { 1152 if (Val->getType() == Ty) 1153 return Val; 1154 1155 if (isa<llvm::PointerType>(Val->getType())) { 1156 // If this is Pointer->Pointer avoid conversion to and from int. 1157 if (isa<llvm::PointerType>(Ty)) 1158 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1159 1160 // Convert the pointer to an integer so we can play with its width. 1161 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1162 } 1163 1164 llvm::Type *DestIntTy = Ty; 1165 if (isa<llvm::PointerType>(DestIntTy)) 1166 DestIntTy = CGF.IntPtrTy; 1167 1168 if (Val->getType() != DestIntTy) { 1169 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1170 if (DL.isBigEndian()) { 1171 // Preserve the high bits on big-endian targets. 1172 // That is what memory coercion does. 1173 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1174 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1175 1176 if (SrcSize > DstSize) { 1177 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1178 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1179 } else { 1180 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1181 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1182 } 1183 } else { 1184 // Little-endian targets preserve the low bits. No shifts required. 1185 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1186 } 1187 } 1188 1189 if (isa<llvm::PointerType>(Ty)) 1190 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1191 return Val; 1192 } 1193 1194 1195 1196 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1197 /// a pointer to an object of type \arg Ty, known to be aligned to 1198 /// \arg SrcAlign bytes. 1199 /// 1200 /// This safely handles the case when the src type is smaller than the 1201 /// destination type; in this situation the values of bits which not 1202 /// present in the src are undefined. 1203 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1204 CodeGenFunction &CGF) { 1205 llvm::Type *SrcTy = Src.getElementType(); 1206 1207 // If SrcTy and Ty are the same, just do a load. 1208 if (SrcTy == Ty) 1209 return CGF.Builder.CreateLoad(Src); 1210 1211 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1212 1213 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1214 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1215 SrcTy = Src.getType()->getElementType(); 1216 } 1217 1218 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1219 1220 // If the source and destination are integer or pointer types, just do an 1221 // extension or truncation to the desired type. 1222 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1223 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1224 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1225 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1226 } 1227 1228 // If load is legal, just bitcast the src pointer. 1229 if (SrcSize >= DstSize) { 1230 // Generally SrcSize is never greater than DstSize, since this means we are 1231 // losing bits. However, this can happen in cases where the structure has 1232 // additional padding, for example due to a user specified alignment. 1233 // 1234 // FIXME: Assert that we aren't truncating non-padding bits when have access 1235 // to that information. 1236 Src = CGF.Builder.CreateBitCast(Src, 1237 Ty->getPointerTo(Src.getAddressSpace())); 1238 return CGF.Builder.CreateLoad(Src); 1239 } 1240 1241 // Otherwise do coercion through memory. This is stupid, but simple. 1242 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1243 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1244 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.AllocaInt8PtrTy); 1245 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1246 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1247 false); 1248 return CGF.Builder.CreateLoad(Tmp); 1249 } 1250 1251 // Function to store a first-class aggregate into memory. We prefer to 1252 // store the elements rather than the aggregate to be more friendly to 1253 // fast-isel. 1254 // FIXME: Do we need to recurse here? 1255 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1256 Address Dest, bool DestIsVolatile) { 1257 // Prefer scalar stores to first-class aggregate stores. 1258 if (llvm::StructType *STy = 1259 dyn_cast<llvm::StructType>(Val->getType())) { 1260 const llvm::StructLayout *Layout = 1261 CGF.CGM.getDataLayout().getStructLayout(STy); 1262 1263 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1264 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1265 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1266 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1267 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1268 } 1269 } else { 1270 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1271 } 1272 } 1273 1274 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1275 /// where the source and destination may have different types. The 1276 /// destination is known to be aligned to \arg DstAlign bytes. 1277 /// 1278 /// This safely handles the case when the src type is larger than the 1279 /// destination type; the upper bits of the src will be lost. 1280 static void CreateCoercedStore(llvm::Value *Src, 1281 Address Dst, 1282 bool DstIsVolatile, 1283 CodeGenFunction &CGF) { 1284 llvm::Type *SrcTy = Src->getType(); 1285 llvm::Type *DstTy = Dst.getType()->getElementType(); 1286 if (SrcTy == DstTy) { 1287 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1288 return; 1289 } 1290 1291 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1292 1293 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1294 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1295 DstTy = Dst.getType()->getElementType(); 1296 } 1297 1298 // If the source and destination are integer or pointer types, just do an 1299 // extension or truncation to the desired type. 1300 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1301 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1302 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1303 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1304 return; 1305 } 1306 1307 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1308 1309 // If store is legal, just bitcast the src pointer. 1310 if (SrcSize <= DstSize) { 1311 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1312 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1313 } else { 1314 // Otherwise do coercion through memory. This is stupid, but 1315 // simple. 1316 1317 // Generally SrcSize is never greater than DstSize, since this means we are 1318 // losing bits. However, this can happen in cases where the structure has 1319 // additional padding, for example due to a user specified alignment. 1320 // 1321 // FIXME: Assert that we aren't truncating non-padding bits when have access 1322 // to that information. 1323 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1324 CGF.Builder.CreateStore(Src, Tmp); 1325 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1326 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.AllocaInt8PtrTy); 1327 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1328 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1329 false); 1330 } 1331 } 1332 1333 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1334 const ABIArgInfo &info) { 1335 if (unsigned offset = info.getDirectOffset()) { 1336 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1337 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1338 CharUnits::fromQuantity(offset)); 1339 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1340 } 1341 return addr; 1342 } 1343 1344 namespace { 1345 1346 /// Encapsulates information about the way function arguments from 1347 /// CGFunctionInfo should be passed to actual LLVM IR function. 1348 class ClangToLLVMArgMapping { 1349 static const unsigned InvalidIndex = ~0U; 1350 unsigned InallocaArgNo; 1351 unsigned SRetArgNo; 1352 unsigned TotalIRArgs; 1353 1354 /// Arguments of LLVM IR function corresponding to single Clang argument. 1355 struct IRArgs { 1356 unsigned PaddingArgIndex; 1357 // Argument is expanded to IR arguments at positions 1358 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1359 unsigned FirstArgIndex; 1360 unsigned NumberOfArgs; 1361 1362 IRArgs() 1363 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1364 NumberOfArgs(0) {} 1365 }; 1366 1367 SmallVector<IRArgs, 8> ArgInfo; 1368 1369 public: 1370 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1371 bool OnlyRequiredArgs = false) 1372 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1373 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1374 construct(Context, FI, OnlyRequiredArgs); 1375 } 1376 1377 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1378 unsigned getInallocaArgNo() const { 1379 assert(hasInallocaArg()); 1380 return InallocaArgNo; 1381 } 1382 1383 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1384 unsigned getSRetArgNo() const { 1385 assert(hasSRetArg()); 1386 return SRetArgNo; 1387 } 1388 1389 unsigned totalIRArgs() const { return TotalIRArgs; } 1390 1391 bool hasPaddingArg(unsigned ArgNo) const { 1392 assert(ArgNo < ArgInfo.size()); 1393 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1394 } 1395 unsigned getPaddingArgNo(unsigned ArgNo) const { 1396 assert(hasPaddingArg(ArgNo)); 1397 return ArgInfo[ArgNo].PaddingArgIndex; 1398 } 1399 1400 /// Returns index of first IR argument corresponding to ArgNo, and their 1401 /// quantity. 1402 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1403 assert(ArgNo < ArgInfo.size()); 1404 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1405 ArgInfo[ArgNo].NumberOfArgs); 1406 } 1407 1408 private: 1409 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1410 bool OnlyRequiredArgs); 1411 }; 1412 1413 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1414 const CGFunctionInfo &FI, 1415 bool OnlyRequiredArgs) { 1416 unsigned IRArgNo = 0; 1417 bool SwapThisWithSRet = false; 1418 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1419 1420 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1421 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1422 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1423 } 1424 1425 unsigned ArgNo = 0; 1426 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1427 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1428 ++I, ++ArgNo) { 1429 assert(I != FI.arg_end()); 1430 QualType ArgType = I->type; 1431 const ABIArgInfo &AI = I->info; 1432 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1433 auto &IRArgs = ArgInfo[ArgNo]; 1434 1435 if (AI.getPaddingType()) 1436 IRArgs.PaddingArgIndex = IRArgNo++; 1437 1438 switch (AI.getKind()) { 1439 case ABIArgInfo::Extend: 1440 case ABIArgInfo::Direct: { 1441 // FIXME: handle sseregparm someday... 1442 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1443 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1444 IRArgs.NumberOfArgs = STy->getNumElements(); 1445 } else { 1446 IRArgs.NumberOfArgs = 1; 1447 } 1448 break; 1449 } 1450 case ABIArgInfo::Indirect: 1451 IRArgs.NumberOfArgs = 1; 1452 break; 1453 case ABIArgInfo::Ignore: 1454 case ABIArgInfo::InAlloca: 1455 // ignore and inalloca doesn't have matching LLVM parameters. 1456 IRArgs.NumberOfArgs = 0; 1457 break; 1458 case ABIArgInfo::CoerceAndExpand: 1459 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1460 break; 1461 case ABIArgInfo::Expand: 1462 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1463 break; 1464 } 1465 1466 if (IRArgs.NumberOfArgs > 0) { 1467 IRArgs.FirstArgIndex = IRArgNo; 1468 IRArgNo += IRArgs.NumberOfArgs; 1469 } 1470 1471 // Skip over the sret parameter when it comes second. We already handled it 1472 // above. 1473 if (IRArgNo == 1 && SwapThisWithSRet) 1474 IRArgNo++; 1475 } 1476 assert(ArgNo == ArgInfo.size()); 1477 1478 if (FI.usesInAlloca()) 1479 InallocaArgNo = IRArgNo++; 1480 1481 TotalIRArgs = IRArgNo; 1482 } 1483 } // namespace 1484 1485 /***/ 1486 1487 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1488 const auto &RI = FI.getReturnInfo(); 1489 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1490 } 1491 1492 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1493 return ReturnTypeUsesSRet(FI) && 1494 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1495 } 1496 1497 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1498 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1499 switch (BT->getKind()) { 1500 default: 1501 return false; 1502 case BuiltinType::Float: 1503 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1504 case BuiltinType::Double: 1505 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1506 case BuiltinType::LongDouble: 1507 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1508 } 1509 } 1510 1511 return false; 1512 } 1513 1514 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1515 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1516 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1517 if (BT->getKind() == BuiltinType::LongDouble) 1518 return getTarget().useObjCFP2RetForComplexLongDouble(); 1519 } 1520 } 1521 1522 return false; 1523 } 1524 1525 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1526 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1527 return GetFunctionType(FI); 1528 } 1529 1530 llvm::FunctionType * 1531 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1532 1533 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1534 (void)Inserted; 1535 assert(Inserted && "Recursively being processed?"); 1536 1537 llvm::Type *resultType = nullptr; 1538 const ABIArgInfo &retAI = FI.getReturnInfo(); 1539 switch (retAI.getKind()) { 1540 case ABIArgInfo::Expand: 1541 llvm_unreachable("Invalid ABI kind for return argument"); 1542 1543 case ABIArgInfo::Extend: 1544 case ABIArgInfo::Direct: 1545 resultType = retAI.getCoerceToType(); 1546 break; 1547 1548 case ABIArgInfo::InAlloca: 1549 if (retAI.getInAllocaSRet()) { 1550 // sret things on win32 aren't void, they return the sret pointer. 1551 QualType ret = FI.getReturnType(); 1552 llvm::Type *ty = ConvertType(ret); 1553 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1554 resultType = llvm::PointerType::get(ty, addressSpace); 1555 } else { 1556 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1557 } 1558 break; 1559 1560 case ABIArgInfo::Indirect: 1561 case ABIArgInfo::Ignore: 1562 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1563 break; 1564 1565 case ABIArgInfo::CoerceAndExpand: 1566 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1567 break; 1568 } 1569 1570 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1571 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1572 1573 // Add type for sret argument. 1574 if (IRFunctionArgs.hasSRetArg()) { 1575 QualType Ret = FI.getReturnType(); 1576 llvm::Type *Ty = ConvertType(Ret); 1577 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1578 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1579 llvm::PointerType::get(Ty, AddressSpace); 1580 } 1581 1582 // Add type for inalloca argument. 1583 if (IRFunctionArgs.hasInallocaArg()) { 1584 auto ArgStruct = FI.getArgStruct(); 1585 assert(ArgStruct); 1586 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1587 } 1588 1589 // Add in all of the required arguments. 1590 unsigned ArgNo = 0; 1591 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1592 ie = it + FI.getNumRequiredArgs(); 1593 for (; it != ie; ++it, ++ArgNo) { 1594 const ABIArgInfo &ArgInfo = it->info; 1595 1596 // Insert a padding type to ensure proper alignment. 1597 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1598 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1599 ArgInfo.getPaddingType(); 1600 1601 unsigned FirstIRArg, NumIRArgs; 1602 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1603 1604 switch (ArgInfo.getKind()) { 1605 case ABIArgInfo::Ignore: 1606 case ABIArgInfo::InAlloca: 1607 assert(NumIRArgs == 0); 1608 break; 1609 1610 case ABIArgInfo::Indirect: { 1611 assert(NumIRArgs == 1); 1612 // indirect arguments are always on the stack, which is alloca addr space. 1613 llvm::Type *LTy = ConvertTypeForMem(it->type); 1614 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1615 CGM.getDataLayout().getAllocaAddrSpace()); 1616 break; 1617 } 1618 1619 case ABIArgInfo::Extend: 1620 case ABIArgInfo::Direct: { 1621 // Fast-isel and the optimizer generally like scalar values better than 1622 // FCAs, so we flatten them if this is safe to do for this argument. 1623 llvm::Type *argType = ArgInfo.getCoerceToType(); 1624 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1625 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1626 assert(NumIRArgs == st->getNumElements()); 1627 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1628 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1629 } else { 1630 assert(NumIRArgs == 1); 1631 ArgTypes[FirstIRArg] = argType; 1632 } 1633 break; 1634 } 1635 1636 case ABIArgInfo::CoerceAndExpand: { 1637 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1638 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1639 *ArgTypesIter++ = EltTy; 1640 } 1641 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1642 break; 1643 } 1644 1645 case ABIArgInfo::Expand: 1646 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1647 getExpandedTypes(it->type, ArgTypesIter); 1648 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1649 break; 1650 } 1651 } 1652 1653 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1654 assert(Erased && "Not in set?"); 1655 1656 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1657 } 1658 1659 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1660 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1661 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1662 1663 if (!isFuncTypeConvertible(FPT)) 1664 return llvm::StructType::get(getLLVMContext()); 1665 1666 const CGFunctionInfo *Info; 1667 if (isa<CXXDestructorDecl>(MD)) 1668 Info = 1669 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1670 else 1671 Info = &arrangeCXXMethodDeclaration(MD); 1672 return GetFunctionType(*Info); 1673 } 1674 1675 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1676 llvm::AttrBuilder &FuncAttrs, 1677 const FunctionProtoType *FPT) { 1678 if (!FPT) 1679 return; 1680 1681 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1682 FPT->isNothrow()) 1683 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1684 } 1685 1686 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1687 bool AttrOnCallSite, 1688 llvm::AttrBuilder &FuncAttrs) { 1689 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1690 if (!HasOptnone) { 1691 if (CodeGenOpts.OptimizeSize) 1692 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1693 if (CodeGenOpts.OptimizeSize == 2) 1694 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1695 } 1696 1697 if (CodeGenOpts.DisableRedZone) 1698 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1699 if (CodeGenOpts.NoImplicitFloat) 1700 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1701 1702 if (AttrOnCallSite) { 1703 // Attributes that should go on the call site only. 1704 if (!CodeGenOpts.SimplifyLibCalls || 1705 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1706 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1707 if (!CodeGenOpts.TrapFuncName.empty()) 1708 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1709 } else { 1710 // Attributes that should go on the function, but not the call site. 1711 if (!CodeGenOpts.DisableFPElim) { 1712 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1713 } else if (CodeGenOpts.OmitLeafFramePointer) { 1714 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1715 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1716 } else { 1717 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1718 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1719 } 1720 1721 FuncAttrs.addAttribute("less-precise-fpmad", 1722 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1723 1724 if (!CodeGenOpts.FPDenormalMode.empty()) 1725 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1726 1727 FuncAttrs.addAttribute("no-trapping-math", 1728 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1729 1730 // Strict (compliant) code is the default, so only add this attribute to 1731 // indicate that we are trying to workaround a problem case. 1732 if (!CodeGenOpts.StrictFloatCastOverflow) 1733 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1734 1735 // TODO: Are these all needed? 1736 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1737 FuncAttrs.addAttribute("no-infs-fp-math", 1738 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1739 FuncAttrs.addAttribute("no-nans-fp-math", 1740 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1741 FuncAttrs.addAttribute("unsafe-fp-math", 1742 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1743 FuncAttrs.addAttribute("use-soft-float", 1744 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1745 FuncAttrs.addAttribute("stack-protector-buffer-size", 1746 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1747 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1748 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1749 FuncAttrs.addAttribute( 1750 "correctly-rounded-divide-sqrt-fp-math", 1751 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1752 1753 if (getLangOpts().OpenCL) 1754 FuncAttrs.addAttribute("denorms-are-zero", 1755 llvm::toStringRef(CodeGenOpts.FlushDenorm)); 1756 1757 // TODO: Reciprocal estimate codegen options should apply to instructions? 1758 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1759 if (!Recips.empty()) 1760 FuncAttrs.addAttribute("reciprocal-estimates", 1761 llvm::join(Recips, ",")); 1762 1763 if (!CodeGenOpts.PreferVectorWidth.empty() && 1764 CodeGenOpts.PreferVectorWidth != "none") 1765 FuncAttrs.addAttribute("prefer-vector-width", 1766 CodeGenOpts.PreferVectorWidth); 1767 1768 if (CodeGenOpts.StackRealignment) 1769 FuncAttrs.addAttribute("stackrealign"); 1770 if (CodeGenOpts.Backchain) 1771 FuncAttrs.addAttribute("backchain"); 1772 } 1773 1774 if (getLangOpts().assumeFunctionsAreConvergent()) { 1775 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1776 // convergent (meaning, they may call an intrinsically convergent op, such 1777 // as __syncthreads() / barrier(), and so can't have certain optimizations 1778 // applied around them). LLVM will remove this attribute where it safely 1779 // can. 1780 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1781 } 1782 1783 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1784 // Exceptions aren't supported in CUDA device code. 1785 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1786 1787 // Respect -fcuda-flush-denormals-to-zero. 1788 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1789 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1790 } 1791 } 1792 1793 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1794 llvm::AttrBuilder FuncAttrs; 1795 ConstructDefaultFnAttrList(F.getName(), 1796 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1797 /* AttrOnCallsite = */ false, FuncAttrs); 1798 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1799 } 1800 1801 void CodeGenModule::ConstructAttributeList( 1802 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1803 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1804 llvm::AttrBuilder FuncAttrs; 1805 llvm::AttrBuilder RetAttrs; 1806 1807 CallingConv = FI.getEffectiveCallingConvention(); 1808 if (FI.isNoReturn()) 1809 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1810 1811 // If we have information about the function prototype, we can learn 1812 // attributes from there. 1813 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1814 CalleeInfo.getCalleeFunctionProtoType()); 1815 1816 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1817 1818 bool HasOptnone = false; 1819 // FIXME: handle sseregparm someday... 1820 if (TargetDecl) { 1821 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1822 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1823 if (TargetDecl->hasAttr<NoThrowAttr>()) 1824 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1825 if (TargetDecl->hasAttr<NoReturnAttr>()) 1826 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1827 if (TargetDecl->hasAttr<ColdAttr>()) 1828 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1829 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1830 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1831 if (TargetDecl->hasAttr<ConvergentAttr>()) 1832 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1833 1834 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1835 AddAttributesFromFunctionProtoType( 1836 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1837 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1838 // These attributes are not inherited by overloads. 1839 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1840 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1841 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1842 } 1843 1844 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1845 if (TargetDecl->hasAttr<ConstAttr>()) { 1846 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1847 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1848 } else if (TargetDecl->hasAttr<PureAttr>()) { 1849 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1850 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1851 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1852 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1853 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1854 } 1855 if (TargetDecl->hasAttr<RestrictAttr>()) 1856 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1857 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1858 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1859 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1860 FuncAttrs.addAttribute("no_caller_saved_registers"); 1861 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1862 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1863 1864 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1865 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1866 Optional<unsigned> NumElemsParam; 1867 if (AllocSize->getNumElemsParam().isValid()) 1868 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1869 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1870 NumElemsParam); 1871 } 1872 } 1873 1874 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1875 1876 if (CodeGenOpts.EnableSegmentedStacks && 1877 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1878 FuncAttrs.addAttribute("split-stack"); 1879 1880 // Add NonLazyBind attribute to function declarations when -fno-plt 1881 // is used. 1882 if (TargetDecl && CodeGenOpts.NoPLT) { 1883 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1884 if (!Fn->isDefined() && !AttrOnCallSite) { 1885 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1886 } 1887 } 1888 } 1889 1890 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1891 if (getLangOpts().OpenCLVersion <= 120) { 1892 // OpenCL v1.2 Work groups are always uniform 1893 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1894 } else { 1895 // OpenCL v2.0 Work groups may be whether uniform or not. 1896 // '-cl-uniform-work-group-size' compile option gets a hint 1897 // to the compiler that the global work-size be a multiple of 1898 // the work-group size specified to clEnqueueNDRangeKernel 1899 // (i.e. work groups are uniform). 1900 FuncAttrs.addAttribute("uniform-work-group-size", 1901 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1902 } 1903 } 1904 1905 if (!AttrOnCallSite) { 1906 bool DisableTailCalls = false; 1907 1908 if (CodeGenOpts.DisableTailCalls) 1909 DisableTailCalls = true; 1910 else if (TargetDecl) { 1911 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1912 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1913 DisableTailCalls = true; 1914 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1915 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1916 if (!BD->doesNotEscape()) 1917 DisableTailCalls = true; 1918 } 1919 } 1920 1921 FuncAttrs.addAttribute("disable-tail-calls", 1922 llvm::toStringRef(DisableTailCalls)); 1923 GetCPUAndFeaturesAttributes(TargetDecl, FuncAttrs); 1924 } 1925 1926 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1927 1928 QualType RetTy = FI.getReturnType(); 1929 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1930 switch (RetAI.getKind()) { 1931 case ABIArgInfo::Extend: 1932 if (RetAI.isSignExt()) 1933 RetAttrs.addAttribute(llvm::Attribute::SExt); 1934 else 1935 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1936 LLVM_FALLTHROUGH; 1937 case ABIArgInfo::Direct: 1938 if (RetAI.getInReg()) 1939 RetAttrs.addAttribute(llvm::Attribute::InReg); 1940 break; 1941 case ABIArgInfo::Ignore: 1942 break; 1943 1944 case ABIArgInfo::InAlloca: 1945 case ABIArgInfo::Indirect: { 1946 // inalloca and sret disable readnone and readonly 1947 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1948 .removeAttribute(llvm::Attribute::ReadNone); 1949 break; 1950 } 1951 1952 case ABIArgInfo::CoerceAndExpand: 1953 break; 1954 1955 case ABIArgInfo::Expand: 1956 llvm_unreachable("Invalid ABI kind for return argument"); 1957 } 1958 1959 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1960 QualType PTy = RefTy->getPointeeType(); 1961 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1962 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1963 .getQuantity()); 1964 else if (getContext().getTargetAddressSpace(PTy) == 0) 1965 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1966 } 1967 1968 bool hasUsedSRet = false; 1969 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 1970 1971 // Attach attributes to sret. 1972 if (IRFunctionArgs.hasSRetArg()) { 1973 llvm::AttrBuilder SRETAttrs; 1974 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1975 hasUsedSRet = true; 1976 if (RetAI.getInReg()) 1977 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1978 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 1979 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 1980 } 1981 1982 // Attach attributes to inalloca argument. 1983 if (IRFunctionArgs.hasInallocaArg()) { 1984 llvm::AttrBuilder Attrs; 1985 Attrs.addAttribute(llvm::Attribute::InAlloca); 1986 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 1987 llvm::AttributeSet::get(getLLVMContext(), Attrs); 1988 } 1989 1990 unsigned ArgNo = 0; 1991 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1992 E = FI.arg_end(); 1993 I != E; ++I, ++ArgNo) { 1994 QualType ParamType = I->type; 1995 const ABIArgInfo &AI = I->info; 1996 llvm::AttrBuilder Attrs; 1997 1998 // Add attribute for padding argument, if necessary. 1999 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2000 if (AI.getPaddingInReg()) { 2001 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2002 llvm::AttributeSet::get( 2003 getLLVMContext(), 2004 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2005 } 2006 } 2007 2008 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2009 // have the corresponding parameter variable. It doesn't make 2010 // sense to do it here because parameters are so messed up. 2011 switch (AI.getKind()) { 2012 case ABIArgInfo::Extend: 2013 if (AI.isSignExt()) 2014 Attrs.addAttribute(llvm::Attribute::SExt); 2015 else 2016 Attrs.addAttribute(llvm::Attribute::ZExt); 2017 LLVM_FALLTHROUGH; 2018 case ABIArgInfo::Direct: 2019 if (ArgNo == 0 && FI.isChainCall()) 2020 Attrs.addAttribute(llvm::Attribute::Nest); 2021 else if (AI.getInReg()) 2022 Attrs.addAttribute(llvm::Attribute::InReg); 2023 break; 2024 2025 case ABIArgInfo::Indirect: { 2026 if (AI.getInReg()) 2027 Attrs.addAttribute(llvm::Attribute::InReg); 2028 2029 if (AI.getIndirectByVal()) 2030 Attrs.addAttribute(llvm::Attribute::ByVal); 2031 2032 CharUnits Align = AI.getIndirectAlign(); 2033 2034 // In a byval argument, it is important that the required 2035 // alignment of the type is honored, as LLVM might be creating a 2036 // *new* stack object, and needs to know what alignment to give 2037 // it. (Sometimes it can deduce a sensible alignment on its own, 2038 // but not if clang decides it must emit a packed struct, or the 2039 // user specifies increased alignment requirements.) 2040 // 2041 // This is different from indirect *not* byval, where the object 2042 // exists already, and the align attribute is purely 2043 // informative. 2044 assert(!Align.isZero()); 2045 2046 // For now, only add this when we have a byval argument. 2047 // TODO: be less lazy about updating test cases. 2048 if (AI.getIndirectByVal()) 2049 Attrs.addAlignmentAttr(Align.getQuantity()); 2050 2051 // byval disables readnone and readonly. 2052 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2053 .removeAttribute(llvm::Attribute::ReadNone); 2054 break; 2055 } 2056 case ABIArgInfo::Ignore: 2057 case ABIArgInfo::Expand: 2058 case ABIArgInfo::CoerceAndExpand: 2059 break; 2060 2061 case ABIArgInfo::InAlloca: 2062 // inalloca disables readnone and readonly. 2063 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2064 .removeAttribute(llvm::Attribute::ReadNone); 2065 continue; 2066 } 2067 2068 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2069 QualType PTy = RefTy->getPointeeType(); 2070 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2071 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2072 .getQuantity()); 2073 else if (getContext().getTargetAddressSpace(PTy) == 0) 2074 Attrs.addAttribute(llvm::Attribute::NonNull); 2075 } 2076 2077 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2078 case ParameterABI::Ordinary: 2079 break; 2080 2081 case ParameterABI::SwiftIndirectResult: { 2082 // Add 'sret' if we haven't already used it for something, but 2083 // only if the result is void. 2084 if (!hasUsedSRet && RetTy->isVoidType()) { 2085 Attrs.addAttribute(llvm::Attribute::StructRet); 2086 hasUsedSRet = true; 2087 } 2088 2089 // Add 'noalias' in either case. 2090 Attrs.addAttribute(llvm::Attribute::NoAlias); 2091 2092 // Add 'dereferenceable' and 'alignment'. 2093 auto PTy = ParamType->getPointeeType(); 2094 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2095 auto info = getContext().getTypeInfoInChars(PTy); 2096 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2097 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2098 info.second.getQuantity())); 2099 } 2100 break; 2101 } 2102 2103 case ParameterABI::SwiftErrorResult: 2104 Attrs.addAttribute(llvm::Attribute::SwiftError); 2105 break; 2106 2107 case ParameterABI::SwiftContext: 2108 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2109 break; 2110 } 2111 2112 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2113 Attrs.addAttribute(llvm::Attribute::NoCapture); 2114 2115 if (Attrs.hasAttributes()) { 2116 unsigned FirstIRArg, NumIRArgs; 2117 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2118 for (unsigned i = 0; i < NumIRArgs; i++) 2119 ArgAttrs[FirstIRArg + i] = 2120 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2121 } 2122 } 2123 assert(ArgNo == FI.arg_size()); 2124 2125 AttrList = llvm::AttributeList::get( 2126 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2127 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2128 } 2129 2130 /// An argument came in as a promoted argument; demote it back to its 2131 /// declared type. 2132 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2133 const VarDecl *var, 2134 llvm::Value *value) { 2135 llvm::Type *varType = CGF.ConvertType(var->getType()); 2136 2137 // This can happen with promotions that actually don't change the 2138 // underlying type, like the enum promotions. 2139 if (value->getType() == varType) return value; 2140 2141 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2142 && "unexpected promotion type"); 2143 2144 if (isa<llvm::IntegerType>(varType)) 2145 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2146 2147 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2148 } 2149 2150 /// Returns the attribute (either parameter attribute, or function 2151 /// attribute), which declares argument ArgNo to be non-null. 2152 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2153 QualType ArgType, unsigned ArgNo) { 2154 // FIXME: __attribute__((nonnull)) can also be applied to: 2155 // - references to pointers, where the pointee is known to be 2156 // nonnull (apparently a Clang extension) 2157 // - transparent unions containing pointers 2158 // In the former case, LLVM IR cannot represent the constraint. In 2159 // the latter case, we have no guarantee that the transparent union 2160 // is in fact passed as a pointer. 2161 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2162 return nullptr; 2163 // First, check attribute on parameter itself. 2164 if (PVD) { 2165 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2166 return ParmNNAttr; 2167 } 2168 // Check function attributes. 2169 if (!FD) 2170 return nullptr; 2171 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2172 if (NNAttr->isNonNull(ArgNo)) 2173 return NNAttr; 2174 } 2175 return nullptr; 2176 } 2177 2178 namespace { 2179 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2180 Address Temp; 2181 Address Arg; 2182 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2183 void Emit(CodeGenFunction &CGF, Flags flags) override { 2184 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2185 CGF.Builder.CreateStore(errorValue, Arg); 2186 } 2187 }; 2188 } 2189 2190 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2191 llvm::Function *Fn, 2192 const FunctionArgList &Args) { 2193 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2194 // Naked functions don't have prologues. 2195 return; 2196 2197 // If this is an implicit-return-zero function, go ahead and 2198 // initialize the return value. TODO: it might be nice to have 2199 // a more general mechanism for this that didn't require synthesized 2200 // return statements. 2201 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2202 if (FD->hasImplicitReturnZero()) { 2203 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2204 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2205 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2206 Builder.CreateStore(Zero, ReturnValue); 2207 } 2208 } 2209 2210 // FIXME: We no longer need the types from FunctionArgList; lift up and 2211 // simplify. 2212 2213 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2214 // Flattened function arguments. 2215 SmallVector<llvm::Value *, 16> FnArgs; 2216 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2217 for (auto &Arg : Fn->args()) { 2218 FnArgs.push_back(&Arg); 2219 } 2220 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2221 2222 // If we're using inalloca, all the memory arguments are GEPs off of the last 2223 // parameter, which is a pointer to the complete memory area. 2224 Address ArgStruct = Address::invalid(); 2225 const llvm::StructLayout *ArgStructLayout = nullptr; 2226 if (IRFunctionArgs.hasInallocaArg()) { 2227 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2228 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2229 FI.getArgStructAlignment()); 2230 2231 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2232 } 2233 2234 // Name the struct return parameter. 2235 if (IRFunctionArgs.hasSRetArg()) { 2236 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2237 AI->setName("agg.result"); 2238 AI->addAttr(llvm::Attribute::NoAlias); 2239 } 2240 2241 // Track if we received the parameter as a pointer (indirect, byval, or 2242 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2243 // into a local alloca for us. 2244 SmallVector<ParamValue, 16> ArgVals; 2245 ArgVals.reserve(Args.size()); 2246 2247 // Create a pointer value for every parameter declaration. This usually 2248 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2249 // any cleanups or do anything that might unwind. We do that separately, so 2250 // we can push the cleanups in the correct order for the ABI. 2251 assert(FI.arg_size() == Args.size() && 2252 "Mismatch between function signature & arguments."); 2253 unsigned ArgNo = 0; 2254 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2255 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2256 i != e; ++i, ++info_it, ++ArgNo) { 2257 const VarDecl *Arg = *i; 2258 const ABIArgInfo &ArgI = info_it->info; 2259 2260 bool isPromoted = 2261 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2262 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2263 // the parameter is promoted. In this case we convert to 2264 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2265 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2266 assert(hasScalarEvaluationKind(Ty) == 2267 hasScalarEvaluationKind(Arg->getType())); 2268 2269 unsigned FirstIRArg, NumIRArgs; 2270 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2271 2272 switch (ArgI.getKind()) { 2273 case ABIArgInfo::InAlloca: { 2274 assert(NumIRArgs == 0); 2275 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2276 CharUnits FieldOffset = 2277 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2278 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2279 Arg->getName()); 2280 ArgVals.push_back(ParamValue::forIndirect(V)); 2281 break; 2282 } 2283 2284 case ABIArgInfo::Indirect: { 2285 assert(NumIRArgs == 1); 2286 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2287 2288 if (!hasScalarEvaluationKind(Ty)) { 2289 // Aggregates and complex variables are accessed by reference. All we 2290 // need to do is realign the value, if requested. 2291 Address V = ParamAddr; 2292 if (ArgI.getIndirectRealign()) { 2293 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2294 2295 // Copy from the incoming argument pointer to the temporary with the 2296 // appropriate alignment. 2297 // 2298 // FIXME: We should have a common utility for generating an aggregate 2299 // copy. 2300 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2301 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2302 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2303 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2304 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2305 V = AlignedTemp; 2306 } 2307 ArgVals.push_back(ParamValue::forIndirect(V)); 2308 } else { 2309 // Load scalar value from indirect argument. 2310 llvm::Value *V = 2311 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2312 2313 if (isPromoted) 2314 V = emitArgumentDemotion(*this, Arg, V); 2315 ArgVals.push_back(ParamValue::forDirect(V)); 2316 } 2317 break; 2318 } 2319 2320 case ABIArgInfo::Extend: 2321 case ABIArgInfo::Direct: { 2322 2323 // If we have the trivial case, handle it with no muss and fuss. 2324 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2325 ArgI.getCoerceToType() == ConvertType(Ty) && 2326 ArgI.getDirectOffset() == 0) { 2327 assert(NumIRArgs == 1); 2328 llvm::Value *V = FnArgs[FirstIRArg]; 2329 auto AI = cast<llvm::Argument>(V); 2330 2331 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2332 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2333 PVD->getFunctionScopeIndex())) 2334 AI->addAttr(llvm::Attribute::NonNull); 2335 2336 QualType OTy = PVD->getOriginalType(); 2337 if (const auto *ArrTy = 2338 getContext().getAsConstantArrayType(OTy)) { 2339 // A C99 array parameter declaration with the static keyword also 2340 // indicates dereferenceability, and if the size is constant we can 2341 // use the dereferenceable attribute (which requires the size in 2342 // bytes). 2343 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2344 QualType ETy = ArrTy->getElementType(); 2345 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2346 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2347 ArrSize) { 2348 llvm::AttrBuilder Attrs; 2349 Attrs.addDereferenceableAttr( 2350 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2351 AI->addAttrs(Attrs); 2352 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2353 AI->addAttr(llvm::Attribute::NonNull); 2354 } 2355 } 2356 } else if (const auto *ArrTy = 2357 getContext().getAsVariableArrayType(OTy)) { 2358 // For C99 VLAs with the static keyword, we don't know the size so 2359 // we can't use the dereferenceable attribute, but in addrspace(0) 2360 // we know that it must be nonnull. 2361 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2362 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2363 AI->addAttr(llvm::Attribute::NonNull); 2364 } 2365 2366 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2367 if (!AVAttr) 2368 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2369 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2370 if (AVAttr) { 2371 llvm::Value *AlignmentValue = 2372 EmitScalarExpr(AVAttr->getAlignment()); 2373 llvm::ConstantInt *AlignmentCI = 2374 cast<llvm::ConstantInt>(AlignmentValue); 2375 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2376 +llvm::Value::MaximumAlignment); 2377 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2378 } 2379 } 2380 2381 if (Arg->getType().isRestrictQualified()) 2382 AI->addAttr(llvm::Attribute::NoAlias); 2383 2384 // LLVM expects swifterror parameters to be used in very restricted 2385 // ways. Copy the value into a less-restricted temporary. 2386 if (FI.getExtParameterInfo(ArgNo).getABI() 2387 == ParameterABI::SwiftErrorResult) { 2388 QualType pointeeTy = Ty->getPointeeType(); 2389 assert(pointeeTy->isPointerType()); 2390 Address temp = 2391 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2392 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2393 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2394 Builder.CreateStore(incomingErrorValue, temp); 2395 V = temp.getPointer(); 2396 2397 // Push a cleanup to copy the value back at the end of the function. 2398 // The convention does not guarantee that the value will be written 2399 // back if the function exits with an unwind exception. 2400 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2401 } 2402 2403 // Ensure the argument is the correct type. 2404 if (V->getType() != ArgI.getCoerceToType()) 2405 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2406 2407 if (isPromoted) 2408 V = emitArgumentDemotion(*this, Arg, V); 2409 2410 // Because of merging of function types from multiple decls it is 2411 // possible for the type of an argument to not match the corresponding 2412 // type in the function type. Since we are codegening the callee 2413 // in here, add a cast to the argument type. 2414 llvm::Type *LTy = ConvertType(Arg->getType()); 2415 if (V->getType() != LTy) 2416 V = Builder.CreateBitCast(V, LTy); 2417 2418 ArgVals.push_back(ParamValue::forDirect(V)); 2419 break; 2420 } 2421 2422 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2423 Arg->getName()); 2424 2425 // Pointer to store into. 2426 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2427 2428 // Fast-isel and the optimizer generally like scalar values better than 2429 // FCAs, so we flatten them if this is safe to do for this argument. 2430 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2431 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2432 STy->getNumElements() > 1) { 2433 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2434 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2435 llvm::Type *DstTy = Ptr.getElementType(); 2436 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2437 2438 Address AddrToStoreInto = Address::invalid(); 2439 if (SrcSize <= DstSize) { 2440 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2441 } else { 2442 AddrToStoreInto = 2443 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2444 } 2445 2446 assert(STy->getNumElements() == NumIRArgs); 2447 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2448 auto AI = FnArgs[FirstIRArg + i]; 2449 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2450 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2451 Address EltPtr = 2452 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2453 Builder.CreateStore(AI, EltPtr); 2454 } 2455 2456 if (SrcSize > DstSize) { 2457 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2458 } 2459 2460 } else { 2461 // Simple case, just do a coerced store of the argument into the alloca. 2462 assert(NumIRArgs == 1); 2463 auto AI = FnArgs[FirstIRArg]; 2464 AI->setName(Arg->getName() + ".coerce"); 2465 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2466 } 2467 2468 // Match to what EmitParmDecl is expecting for this type. 2469 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2470 llvm::Value *V = 2471 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2472 if (isPromoted) 2473 V = emitArgumentDemotion(*this, Arg, V); 2474 ArgVals.push_back(ParamValue::forDirect(V)); 2475 } else { 2476 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2477 } 2478 break; 2479 } 2480 2481 case ABIArgInfo::CoerceAndExpand: { 2482 // Reconstruct into a temporary. 2483 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2484 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2485 2486 auto coercionType = ArgI.getCoerceAndExpandType(); 2487 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2488 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2489 2490 unsigned argIndex = FirstIRArg; 2491 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2492 llvm::Type *eltType = coercionType->getElementType(i); 2493 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2494 continue; 2495 2496 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2497 auto elt = FnArgs[argIndex++]; 2498 Builder.CreateStore(elt, eltAddr); 2499 } 2500 assert(argIndex == FirstIRArg + NumIRArgs); 2501 break; 2502 } 2503 2504 case ABIArgInfo::Expand: { 2505 // If this structure was expanded into multiple arguments then 2506 // we need to create a temporary and reconstruct it from the 2507 // arguments. 2508 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2509 LValue LV = MakeAddrLValue(Alloca, Ty); 2510 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2511 2512 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2513 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2514 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2515 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2516 auto AI = FnArgs[FirstIRArg + i]; 2517 AI->setName(Arg->getName() + "." + Twine(i)); 2518 } 2519 break; 2520 } 2521 2522 case ABIArgInfo::Ignore: 2523 assert(NumIRArgs == 0); 2524 // Initialize the local variable appropriately. 2525 if (!hasScalarEvaluationKind(Ty)) { 2526 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2527 } else { 2528 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2529 ArgVals.push_back(ParamValue::forDirect(U)); 2530 } 2531 break; 2532 } 2533 } 2534 2535 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2536 for (int I = Args.size() - 1; I >= 0; --I) 2537 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2538 } else { 2539 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2540 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2541 } 2542 } 2543 2544 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2545 while (insn->use_empty()) { 2546 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2547 if (!bitcast) return; 2548 2549 // This is "safe" because we would have used a ConstantExpr otherwise. 2550 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2551 bitcast->eraseFromParent(); 2552 } 2553 } 2554 2555 /// Try to emit a fused autorelease of a return result. 2556 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2557 llvm::Value *result) { 2558 // We must be immediately followed the cast. 2559 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2560 if (BB->empty()) return nullptr; 2561 if (&BB->back() != result) return nullptr; 2562 2563 llvm::Type *resultType = result->getType(); 2564 2565 // result is in a BasicBlock and is therefore an Instruction. 2566 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2567 2568 SmallVector<llvm::Instruction *, 4> InstsToKill; 2569 2570 // Look for: 2571 // %generator = bitcast %type1* %generator2 to %type2* 2572 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2573 // We would have emitted this as a constant if the operand weren't 2574 // an Instruction. 2575 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2576 2577 // Require the generator to be immediately followed by the cast. 2578 if (generator->getNextNode() != bitcast) 2579 return nullptr; 2580 2581 InstsToKill.push_back(bitcast); 2582 } 2583 2584 // Look for: 2585 // %generator = call i8* @objc_retain(i8* %originalResult) 2586 // or 2587 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2588 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2589 if (!call) return nullptr; 2590 2591 bool doRetainAutorelease; 2592 2593 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2594 doRetainAutorelease = true; 2595 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2596 .objc_retainAutoreleasedReturnValue) { 2597 doRetainAutorelease = false; 2598 2599 // If we emitted an assembly marker for this call (and the 2600 // ARCEntrypoints field should have been set if so), go looking 2601 // for that call. If we can't find it, we can't do this 2602 // optimization. But it should always be the immediately previous 2603 // instruction, unless we needed bitcasts around the call. 2604 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2605 llvm::Instruction *prev = call->getPrevNode(); 2606 assert(prev); 2607 if (isa<llvm::BitCastInst>(prev)) { 2608 prev = prev->getPrevNode(); 2609 assert(prev); 2610 } 2611 assert(isa<llvm::CallInst>(prev)); 2612 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2613 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2614 InstsToKill.push_back(prev); 2615 } 2616 } else { 2617 return nullptr; 2618 } 2619 2620 result = call->getArgOperand(0); 2621 InstsToKill.push_back(call); 2622 2623 // Keep killing bitcasts, for sanity. Note that we no longer care 2624 // about precise ordering as long as there's exactly one use. 2625 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2626 if (!bitcast->hasOneUse()) break; 2627 InstsToKill.push_back(bitcast); 2628 result = bitcast->getOperand(0); 2629 } 2630 2631 // Delete all the unnecessary instructions, from latest to earliest. 2632 for (auto *I : InstsToKill) 2633 I->eraseFromParent(); 2634 2635 // Do the fused retain/autorelease if we were asked to. 2636 if (doRetainAutorelease) 2637 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2638 2639 // Cast back to the result type. 2640 return CGF.Builder.CreateBitCast(result, resultType); 2641 } 2642 2643 /// If this is a +1 of the value of an immutable 'self', remove it. 2644 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2645 llvm::Value *result) { 2646 // This is only applicable to a method with an immutable 'self'. 2647 const ObjCMethodDecl *method = 2648 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2649 if (!method) return nullptr; 2650 const VarDecl *self = method->getSelfDecl(); 2651 if (!self->getType().isConstQualified()) return nullptr; 2652 2653 // Look for a retain call. 2654 llvm::CallInst *retainCall = 2655 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2656 if (!retainCall || 2657 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2658 return nullptr; 2659 2660 // Look for an ordinary load of 'self'. 2661 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2662 llvm::LoadInst *load = 2663 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2664 if (!load || load->isAtomic() || load->isVolatile() || 2665 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2666 return nullptr; 2667 2668 // Okay! Burn it all down. This relies for correctness on the 2669 // assumption that the retain is emitted as part of the return and 2670 // that thereafter everything is used "linearly". 2671 llvm::Type *resultType = result->getType(); 2672 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2673 assert(retainCall->use_empty()); 2674 retainCall->eraseFromParent(); 2675 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2676 2677 return CGF.Builder.CreateBitCast(load, resultType); 2678 } 2679 2680 /// Emit an ARC autorelease of the result of a function. 2681 /// 2682 /// \return the value to actually return from the function 2683 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2684 llvm::Value *result) { 2685 // If we're returning 'self', kill the initial retain. This is a 2686 // heuristic attempt to "encourage correctness" in the really unfortunate 2687 // case where we have a return of self during a dealloc and we desperately 2688 // need to avoid the possible autorelease. 2689 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2690 return self; 2691 2692 // At -O0, try to emit a fused retain/autorelease. 2693 if (CGF.shouldUseFusedARCCalls()) 2694 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2695 return fused; 2696 2697 return CGF.EmitARCAutoreleaseReturnValue(result); 2698 } 2699 2700 /// Heuristically search for a dominating store to the return-value slot. 2701 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2702 // Check if a User is a store which pointerOperand is the ReturnValue. 2703 // We are looking for stores to the ReturnValue, not for stores of the 2704 // ReturnValue to some other location. 2705 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2706 auto *SI = dyn_cast<llvm::StoreInst>(U); 2707 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2708 return nullptr; 2709 // These aren't actually possible for non-coerced returns, and we 2710 // only care about non-coerced returns on this code path. 2711 assert(!SI->isAtomic() && !SI->isVolatile()); 2712 return SI; 2713 }; 2714 // If there are multiple uses of the return-value slot, just check 2715 // for something immediately preceding the IP. Sometimes this can 2716 // happen with how we generate implicit-returns; it can also happen 2717 // with noreturn cleanups. 2718 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2719 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2720 if (IP->empty()) return nullptr; 2721 llvm::Instruction *I = &IP->back(); 2722 2723 // Skip lifetime markers 2724 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2725 IE = IP->rend(); 2726 II != IE; ++II) { 2727 if (llvm::IntrinsicInst *Intrinsic = 2728 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2729 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2730 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2731 ++II; 2732 if (II == IE) 2733 break; 2734 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2735 continue; 2736 } 2737 } 2738 I = &*II; 2739 break; 2740 } 2741 2742 return GetStoreIfValid(I); 2743 } 2744 2745 llvm::StoreInst *store = 2746 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2747 if (!store) return nullptr; 2748 2749 // Now do a first-and-dirty dominance check: just walk up the 2750 // single-predecessors chain from the current insertion point. 2751 llvm::BasicBlock *StoreBB = store->getParent(); 2752 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2753 while (IP != StoreBB) { 2754 if (!(IP = IP->getSinglePredecessor())) 2755 return nullptr; 2756 } 2757 2758 // Okay, the store's basic block dominates the insertion point; we 2759 // can do our thing. 2760 return store; 2761 } 2762 2763 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2764 bool EmitRetDbgLoc, 2765 SourceLocation EndLoc) { 2766 if (FI.isNoReturn()) { 2767 // Noreturn functions don't return. 2768 EmitUnreachable(EndLoc); 2769 return; 2770 } 2771 2772 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2773 // Naked functions don't have epilogues. 2774 Builder.CreateUnreachable(); 2775 return; 2776 } 2777 2778 // Functions with no result always return void. 2779 if (!ReturnValue.isValid()) { 2780 Builder.CreateRetVoid(); 2781 return; 2782 } 2783 2784 llvm::DebugLoc RetDbgLoc; 2785 llvm::Value *RV = nullptr; 2786 QualType RetTy = FI.getReturnType(); 2787 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2788 2789 switch (RetAI.getKind()) { 2790 case ABIArgInfo::InAlloca: 2791 // Aggregrates get evaluated directly into the destination. Sometimes we 2792 // need to return the sret value in a register, though. 2793 assert(hasAggregateEvaluationKind(RetTy)); 2794 if (RetAI.getInAllocaSRet()) { 2795 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2796 --EI; 2797 llvm::Value *ArgStruct = &*EI; 2798 llvm::Value *SRet = Builder.CreateStructGEP( 2799 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2800 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2801 } 2802 break; 2803 2804 case ABIArgInfo::Indirect: { 2805 auto AI = CurFn->arg_begin(); 2806 if (RetAI.isSRetAfterThis()) 2807 ++AI; 2808 switch (getEvaluationKind(RetTy)) { 2809 case TEK_Complex: { 2810 ComplexPairTy RT = 2811 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2812 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2813 /*isInit*/ true); 2814 break; 2815 } 2816 case TEK_Aggregate: 2817 // Do nothing; aggregrates get evaluated directly into the destination. 2818 break; 2819 case TEK_Scalar: 2820 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2821 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2822 /*isInit*/ true); 2823 break; 2824 } 2825 break; 2826 } 2827 2828 case ABIArgInfo::Extend: 2829 case ABIArgInfo::Direct: 2830 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2831 RetAI.getDirectOffset() == 0) { 2832 // The internal return value temp always will have pointer-to-return-type 2833 // type, just do a load. 2834 2835 // If there is a dominating store to ReturnValue, we can elide 2836 // the load, zap the store, and usually zap the alloca. 2837 if (llvm::StoreInst *SI = 2838 findDominatingStoreToReturnValue(*this)) { 2839 // Reuse the debug location from the store unless there is 2840 // cleanup code to be emitted between the store and return 2841 // instruction. 2842 if (EmitRetDbgLoc && !AutoreleaseResult) 2843 RetDbgLoc = SI->getDebugLoc(); 2844 // Get the stored value and nuke the now-dead store. 2845 RV = SI->getValueOperand(); 2846 SI->eraseFromParent(); 2847 2848 // If that was the only use of the return value, nuke it as well now. 2849 auto returnValueInst = ReturnValue.getPointer(); 2850 if (returnValueInst->use_empty()) { 2851 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2852 alloca->eraseFromParent(); 2853 ReturnValue = Address::invalid(); 2854 } 2855 } 2856 2857 // Otherwise, we have to do a simple load. 2858 } else { 2859 RV = Builder.CreateLoad(ReturnValue); 2860 } 2861 } else { 2862 // If the value is offset in memory, apply the offset now. 2863 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2864 2865 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2866 } 2867 2868 // In ARC, end functions that return a retainable type with a call 2869 // to objc_autoreleaseReturnValue. 2870 if (AutoreleaseResult) { 2871 #ifndef NDEBUG 2872 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2873 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2874 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2875 // CurCodeDecl or BlockInfo. 2876 QualType RT; 2877 2878 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2879 RT = FD->getReturnType(); 2880 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2881 RT = MD->getReturnType(); 2882 else if (isa<BlockDecl>(CurCodeDecl)) 2883 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2884 else 2885 llvm_unreachable("Unexpected function/method type"); 2886 2887 assert(getLangOpts().ObjCAutoRefCount && 2888 !FI.isReturnsRetained() && 2889 RT->isObjCRetainableType()); 2890 #endif 2891 RV = emitAutoreleaseOfResult(*this, RV); 2892 } 2893 2894 break; 2895 2896 case ABIArgInfo::Ignore: 2897 break; 2898 2899 case ABIArgInfo::CoerceAndExpand: { 2900 auto coercionType = RetAI.getCoerceAndExpandType(); 2901 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2902 2903 // Load all of the coerced elements out into results. 2904 llvm::SmallVector<llvm::Value*, 4> results; 2905 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2906 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2907 auto coercedEltType = coercionType->getElementType(i); 2908 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2909 continue; 2910 2911 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2912 auto elt = Builder.CreateLoad(eltAddr); 2913 results.push_back(elt); 2914 } 2915 2916 // If we have one result, it's the single direct result type. 2917 if (results.size() == 1) { 2918 RV = results[0]; 2919 2920 // Otherwise, we need to make a first-class aggregate. 2921 } else { 2922 // Construct a return type that lacks padding elements. 2923 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2924 2925 RV = llvm::UndefValue::get(returnType); 2926 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2927 RV = Builder.CreateInsertValue(RV, results[i], i); 2928 } 2929 } 2930 break; 2931 } 2932 2933 case ABIArgInfo::Expand: 2934 llvm_unreachable("Invalid ABI kind for return argument"); 2935 } 2936 2937 llvm::Instruction *Ret; 2938 if (RV) { 2939 EmitReturnValueCheck(RV); 2940 Ret = Builder.CreateRet(RV); 2941 } else { 2942 Ret = Builder.CreateRetVoid(); 2943 } 2944 2945 if (RetDbgLoc) 2946 Ret->setDebugLoc(std::move(RetDbgLoc)); 2947 } 2948 2949 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2950 // A current decl may not be available when emitting vtable thunks. 2951 if (!CurCodeDecl) 2952 return; 2953 2954 ReturnsNonNullAttr *RetNNAttr = nullptr; 2955 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2956 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2957 2958 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2959 return; 2960 2961 // Prefer the returns_nonnull attribute if it's present. 2962 SourceLocation AttrLoc; 2963 SanitizerMask CheckKind; 2964 SanitizerHandler Handler; 2965 if (RetNNAttr) { 2966 assert(!requiresReturnValueNullabilityCheck() && 2967 "Cannot check nullability and the nonnull attribute"); 2968 AttrLoc = RetNNAttr->getLocation(); 2969 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 2970 Handler = SanitizerHandler::NonnullReturn; 2971 } else { 2972 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 2973 if (auto *TSI = DD->getTypeSourceInfo()) 2974 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 2975 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 2976 CheckKind = SanitizerKind::NullabilityReturn; 2977 Handler = SanitizerHandler::NullabilityReturn; 2978 } 2979 2980 SanitizerScope SanScope(this); 2981 2982 // Make sure the "return" source location is valid. If we're checking a 2983 // nullability annotation, make sure the preconditions for the check are met. 2984 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 2985 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 2986 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 2987 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 2988 if (requiresReturnValueNullabilityCheck()) 2989 CanNullCheck = 2990 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 2991 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 2992 EmitBlock(Check); 2993 2994 // Now do the null check. 2995 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 2996 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 2997 llvm::Value *DynamicData[] = {SLocPtr}; 2998 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 2999 3000 EmitBlock(NoCheck); 3001 3002 #ifndef NDEBUG 3003 // The return location should not be used after the check has been emitted. 3004 ReturnLocation = Address::invalid(); 3005 #endif 3006 } 3007 3008 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3009 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3010 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3011 } 3012 3013 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3014 QualType Ty) { 3015 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3016 // placeholders. 3017 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3018 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3019 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3020 3021 // FIXME: When we generate this IR in one pass, we shouldn't need 3022 // this win32-specific alignment hack. 3023 CharUnits Align = CharUnits::fromQuantity(4); 3024 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3025 3026 return AggValueSlot::forAddr(Address(Placeholder, Align), 3027 Ty.getQualifiers(), 3028 AggValueSlot::IsNotDestructed, 3029 AggValueSlot::DoesNotNeedGCBarriers, 3030 AggValueSlot::IsNotAliased, 3031 AggValueSlot::DoesNotOverlap); 3032 } 3033 3034 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3035 const VarDecl *param, 3036 SourceLocation loc) { 3037 // StartFunction converted the ABI-lowered parameter(s) into a 3038 // local alloca. We need to turn that into an r-value suitable 3039 // for EmitCall. 3040 Address local = GetAddrOfLocalVar(param); 3041 3042 QualType type = param->getType(); 3043 3044 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 3045 "cannot emit delegate call arguments for inalloca arguments!"); 3046 3047 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3048 // but the argument needs to be the original pointer. 3049 if (type->isReferenceType()) { 3050 args.add(RValue::get(Builder.CreateLoad(local)), type); 3051 3052 // In ARC, move out of consumed arguments so that the release cleanup 3053 // entered by StartFunction doesn't cause an over-release. This isn't 3054 // optimal -O0 code generation, but it should get cleaned up when 3055 // optimization is enabled. This also assumes that delegate calls are 3056 // performed exactly once for a set of arguments, but that should be safe. 3057 } else if (getLangOpts().ObjCAutoRefCount && 3058 param->hasAttr<NSConsumedAttr>() && 3059 type->isObjCRetainableType()) { 3060 llvm::Value *ptr = Builder.CreateLoad(local); 3061 auto null = 3062 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3063 Builder.CreateStore(null, local); 3064 args.add(RValue::get(ptr), type); 3065 3066 // For the most part, we just need to load the alloca, except that 3067 // aggregate r-values are actually pointers to temporaries. 3068 } else { 3069 args.add(convertTempToRValue(local, type, loc), type); 3070 } 3071 3072 // Deactivate the cleanup for the callee-destructed param that was pushed. 3073 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3074 getContext().isParamDestroyedInCallee(type) && type.isDestructedType()) { 3075 EHScopeStack::stable_iterator cleanup = 3076 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3077 assert(cleanup.isValid() && 3078 "cleanup for callee-destructed param not recorded"); 3079 // This unreachable is a temporary marker which will be removed later. 3080 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3081 args.addArgCleanupDeactivation(cleanup, isActive); 3082 } 3083 } 3084 3085 static bool isProvablyNull(llvm::Value *addr) { 3086 return isa<llvm::ConstantPointerNull>(addr); 3087 } 3088 3089 /// Emit the actual writing-back of a writeback. 3090 static void emitWriteback(CodeGenFunction &CGF, 3091 const CallArgList::Writeback &writeback) { 3092 const LValue &srcLV = writeback.Source; 3093 Address srcAddr = srcLV.getAddress(); 3094 assert(!isProvablyNull(srcAddr.getPointer()) && 3095 "shouldn't have writeback for provably null argument"); 3096 3097 llvm::BasicBlock *contBB = nullptr; 3098 3099 // If the argument wasn't provably non-null, we need to null check 3100 // before doing the store. 3101 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3102 CGF.CGM.getDataLayout()); 3103 if (!provablyNonNull) { 3104 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3105 contBB = CGF.createBasicBlock("icr.done"); 3106 3107 llvm::Value *isNull = 3108 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3109 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3110 CGF.EmitBlock(writebackBB); 3111 } 3112 3113 // Load the value to writeback. 3114 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3115 3116 // Cast it back, in case we're writing an id to a Foo* or something. 3117 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3118 "icr.writeback-cast"); 3119 3120 // Perform the writeback. 3121 3122 // If we have a "to use" value, it's something we need to emit a use 3123 // of. This has to be carefully threaded in: if it's done after the 3124 // release it's potentially undefined behavior (and the optimizer 3125 // will ignore it), and if it happens before the retain then the 3126 // optimizer could move the release there. 3127 if (writeback.ToUse) { 3128 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3129 3130 // Retain the new value. No need to block-copy here: the block's 3131 // being passed up the stack. 3132 value = CGF.EmitARCRetainNonBlock(value); 3133 3134 // Emit the intrinsic use here. 3135 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3136 3137 // Load the old value (primitively). 3138 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3139 3140 // Put the new value in place (primitively). 3141 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3142 3143 // Release the old value. 3144 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3145 3146 // Otherwise, we can just do a normal lvalue store. 3147 } else { 3148 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3149 } 3150 3151 // Jump to the continuation block. 3152 if (!provablyNonNull) 3153 CGF.EmitBlock(contBB); 3154 } 3155 3156 static void emitWritebacks(CodeGenFunction &CGF, 3157 const CallArgList &args) { 3158 for (const auto &I : args.writebacks()) 3159 emitWriteback(CGF, I); 3160 } 3161 3162 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3163 const CallArgList &CallArgs) { 3164 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3165 CallArgs.getCleanupsToDeactivate(); 3166 // Iterate in reverse to increase the likelihood of popping the cleanup. 3167 for (const auto &I : llvm::reverse(Cleanups)) { 3168 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3169 I.IsActiveIP->eraseFromParent(); 3170 } 3171 } 3172 3173 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3174 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3175 if (uop->getOpcode() == UO_AddrOf) 3176 return uop->getSubExpr(); 3177 return nullptr; 3178 } 3179 3180 /// Emit an argument that's being passed call-by-writeback. That is, 3181 /// we are passing the address of an __autoreleased temporary; it 3182 /// might be copy-initialized with the current value of the given 3183 /// address, but it will definitely be copied out of after the call. 3184 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3185 const ObjCIndirectCopyRestoreExpr *CRE) { 3186 LValue srcLV; 3187 3188 // Make an optimistic effort to emit the address as an l-value. 3189 // This can fail if the argument expression is more complicated. 3190 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3191 srcLV = CGF.EmitLValue(lvExpr); 3192 3193 // Otherwise, just emit it as a scalar. 3194 } else { 3195 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3196 3197 QualType srcAddrType = 3198 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3199 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3200 } 3201 Address srcAddr = srcLV.getAddress(); 3202 3203 // The dest and src types don't necessarily match in LLVM terms 3204 // because of the crazy ObjC compatibility rules. 3205 3206 llvm::PointerType *destType = 3207 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3208 3209 // If the address is a constant null, just pass the appropriate null. 3210 if (isProvablyNull(srcAddr.getPointer())) { 3211 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3212 CRE->getType()); 3213 return; 3214 } 3215 3216 // Create the temporary. 3217 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3218 CGF.getPointerAlign(), 3219 "icr.temp"); 3220 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3221 // and that cleanup will be conditional if we can't prove that the l-value 3222 // isn't null, so we need to register a dominating point so that the cleanups 3223 // system will make valid IR. 3224 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3225 3226 // Zero-initialize it if we're not doing a copy-initialization. 3227 bool shouldCopy = CRE->shouldCopy(); 3228 if (!shouldCopy) { 3229 llvm::Value *null = 3230 llvm::ConstantPointerNull::get( 3231 cast<llvm::PointerType>(destType->getElementType())); 3232 CGF.Builder.CreateStore(null, temp); 3233 } 3234 3235 llvm::BasicBlock *contBB = nullptr; 3236 llvm::BasicBlock *originBB = nullptr; 3237 3238 // If the address is *not* known to be non-null, we need to switch. 3239 llvm::Value *finalArgument; 3240 3241 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3242 CGF.CGM.getDataLayout()); 3243 if (provablyNonNull) { 3244 finalArgument = temp.getPointer(); 3245 } else { 3246 llvm::Value *isNull = 3247 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3248 3249 finalArgument = CGF.Builder.CreateSelect(isNull, 3250 llvm::ConstantPointerNull::get(destType), 3251 temp.getPointer(), "icr.argument"); 3252 3253 // If we need to copy, then the load has to be conditional, which 3254 // means we need control flow. 3255 if (shouldCopy) { 3256 originBB = CGF.Builder.GetInsertBlock(); 3257 contBB = CGF.createBasicBlock("icr.cont"); 3258 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3259 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3260 CGF.EmitBlock(copyBB); 3261 condEval.begin(CGF); 3262 } 3263 } 3264 3265 llvm::Value *valueToUse = nullptr; 3266 3267 // Perform a copy if necessary. 3268 if (shouldCopy) { 3269 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3270 assert(srcRV.isScalar()); 3271 3272 llvm::Value *src = srcRV.getScalarVal(); 3273 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3274 "icr.cast"); 3275 3276 // Use an ordinary store, not a store-to-lvalue. 3277 CGF.Builder.CreateStore(src, temp); 3278 3279 // If optimization is enabled, and the value was held in a 3280 // __strong variable, we need to tell the optimizer that this 3281 // value has to stay alive until we're doing the store back. 3282 // This is because the temporary is effectively unretained, 3283 // and so otherwise we can violate the high-level semantics. 3284 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3285 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3286 valueToUse = src; 3287 } 3288 } 3289 3290 // Finish the control flow if we needed it. 3291 if (shouldCopy && !provablyNonNull) { 3292 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3293 CGF.EmitBlock(contBB); 3294 3295 // Make a phi for the value to intrinsically use. 3296 if (valueToUse) { 3297 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3298 "icr.to-use"); 3299 phiToUse->addIncoming(valueToUse, copyBB); 3300 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3301 originBB); 3302 valueToUse = phiToUse; 3303 } 3304 3305 condEval.end(CGF); 3306 } 3307 3308 args.addWriteback(srcLV, temp, valueToUse); 3309 args.add(RValue::get(finalArgument), CRE->getType()); 3310 } 3311 3312 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3313 assert(!StackBase); 3314 3315 // Save the stack. 3316 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3317 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3318 } 3319 3320 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3321 if (StackBase) { 3322 // Restore the stack after the call. 3323 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3324 CGF.Builder.CreateCall(F, StackBase); 3325 } 3326 } 3327 3328 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3329 SourceLocation ArgLoc, 3330 AbstractCallee AC, 3331 unsigned ParmNum) { 3332 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3333 SanOpts.has(SanitizerKind::NullabilityArg))) 3334 return; 3335 3336 // The param decl may be missing in a variadic function. 3337 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3338 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3339 3340 // Prefer the nonnull attribute if it's present. 3341 const NonNullAttr *NNAttr = nullptr; 3342 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3343 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3344 3345 bool CanCheckNullability = false; 3346 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3347 auto Nullability = PVD->getType()->getNullability(getContext()); 3348 CanCheckNullability = Nullability && 3349 *Nullability == NullabilityKind::NonNull && 3350 PVD->getTypeSourceInfo(); 3351 } 3352 3353 if (!NNAttr && !CanCheckNullability) 3354 return; 3355 3356 SourceLocation AttrLoc; 3357 SanitizerMask CheckKind; 3358 SanitizerHandler Handler; 3359 if (NNAttr) { 3360 AttrLoc = NNAttr->getLocation(); 3361 CheckKind = SanitizerKind::NonnullAttribute; 3362 Handler = SanitizerHandler::NonnullArg; 3363 } else { 3364 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3365 CheckKind = SanitizerKind::NullabilityArg; 3366 Handler = SanitizerHandler::NullabilityArg; 3367 } 3368 3369 SanitizerScope SanScope(this); 3370 assert(RV.isScalar()); 3371 llvm::Value *V = RV.getScalarVal(); 3372 llvm::Value *Cond = 3373 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3374 llvm::Constant *StaticData[] = { 3375 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3376 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3377 }; 3378 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3379 } 3380 3381 void CodeGenFunction::EmitCallArgs( 3382 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3383 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3384 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3385 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3386 3387 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3388 // because arguments are destroyed left to right in the callee. As a special 3389 // case, there are certain language constructs that require left-to-right 3390 // evaluation, and in those cases we consider the evaluation order requirement 3391 // to trump the "destruction order is reverse construction order" guarantee. 3392 bool LeftToRight = 3393 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3394 ? Order == EvaluationOrder::ForceLeftToRight 3395 : Order != EvaluationOrder::ForceRightToLeft; 3396 3397 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3398 RValue EmittedArg) { 3399 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3400 return; 3401 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3402 if (PS == nullptr) 3403 return; 3404 3405 const auto &Context = getContext(); 3406 auto SizeTy = Context.getSizeType(); 3407 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3408 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3409 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3410 EmittedArg.getScalarVal()); 3411 Args.add(RValue::get(V), SizeTy); 3412 // If we're emitting args in reverse, be sure to do so with 3413 // pass_object_size, as well. 3414 if (!LeftToRight) 3415 std::swap(Args.back(), *(&Args.back() - 1)); 3416 }; 3417 3418 // Insert a stack save if we're going to need any inalloca args. 3419 bool HasInAllocaArgs = false; 3420 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3421 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3422 I != E && !HasInAllocaArgs; ++I) 3423 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3424 if (HasInAllocaArgs) { 3425 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3426 Args.allocateArgumentMemory(*this); 3427 } 3428 } 3429 3430 // Evaluate each argument in the appropriate order. 3431 size_t CallArgsStart = Args.size(); 3432 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3433 unsigned Idx = LeftToRight ? I : E - I - 1; 3434 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3435 unsigned InitialArgSize = Args.size(); 3436 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3437 // the argument and parameter match or the objc method is parameterized. 3438 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3439 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3440 ArgTypes[Idx]) || 3441 (isa<ObjCMethodDecl>(AC.getDecl()) && 3442 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3443 "Argument and parameter types don't match"); 3444 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3445 // In particular, we depend on it being the last arg in Args, and the 3446 // objectsize bits depend on there only being one arg if !LeftToRight. 3447 assert(InitialArgSize + 1 == Args.size() && 3448 "The code below depends on only adding one arg per EmitCallArg"); 3449 (void)InitialArgSize; 3450 // Since pointer argument are never emitted as LValue, it is safe to emit 3451 // non-null argument check for r-value only. 3452 if (!Args.back().hasLValue()) { 3453 RValue RVArg = Args.back().getKnownRValue(); 3454 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3455 ParamsToSkip + Idx); 3456 // @llvm.objectsize should never have side-effects and shouldn't need 3457 // destruction/cleanups, so we can safely "emit" it after its arg, 3458 // regardless of right-to-leftness 3459 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3460 } 3461 } 3462 3463 if (!LeftToRight) { 3464 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3465 // IR function. 3466 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3467 } 3468 } 3469 3470 namespace { 3471 3472 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3473 DestroyUnpassedArg(Address Addr, QualType Ty) 3474 : Addr(Addr), Ty(Ty) {} 3475 3476 Address Addr; 3477 QualType Ty; 3478 3479 void Emit(CodeGenFunction &CGF, Flags flags) override { 3480 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3481 if (DtorKind == QualType::DK_cxx_destructor) { 3482 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3483 assert(!Dtor->isTrivial()); 3484 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3485 /*Delegating=*/false, Addr); 3486 } else { 3487 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3488 } 3489 } 3490 }; 3491 3492 struct DisableDebugLocationUpdates { 3493 CodeGenFunction &CGF; 3494 bool disabledDebugInfo; 3495 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3496 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3497 CGF.disableDebugInfo(); 3498 } 3499 ~DisableDebugLocationUpdates() { 3500 if (disabledDebugInfo) 3501 CGF.enableDebugInfo(); 3502 } 3503 }; 3504 3505 } // end anonymous namespace 3506 3507 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3508 if (!HasLV) 3509 return RV; 3510 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3511 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3512 LV.isVolatile()); 3513 IsUsed = true; 3514 return RValue::getAggregate(Copy.getAddress()); 3515 } 3516 3517 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3518 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3519 if (!HasLV && RV.isScalar()) 3520 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); 3521 else if (!HasLV && RV.isComplex()) 3522 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3523 else { 3524 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3525 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3526 // We assume that call args are never copied into subobjects. 3527 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3528 HasLV ? LV.isVolatileQualified() 3529 : RV.isVolatileQualified()); 3530 } 3531 IsUsed = true; 3532 } 3533 3534 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3535 QualType type) { 3536 DisableDebugLocationUpdates Dis(*this, E); 3537 if (const ObjCIndirectCopyRestoreExpr *CRE 3538 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3539 assert(getLangOpts().ObjCAutoRefCount); 3540 return emitWritebackArg(*this, args, CRE); 3541 } 3542 3543 assert(type->isReferenceType() == E->isGLValue() && 3544 "reference binding to unmaterialized r-value!"); 3545 3546 if (E->isGLValue()) { 3547 assert(E->getObjectKind() == OK_Ordinary); 3548 return args.add(EmitReferenceBindingToExpr(E), type); 3549 } 3550 3551 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3552 3553 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3554 // However, we still have to push an EH-only cleanup in case we unwind before 3555 // we make it to the call. 3556 if (HasAggregateEvalKind && getContext().isParamDestroyedInCallee(type)) { 3557 // If we're using inalloca, use the argument memory. Otherwise, use a 3558 // temporary. 3559 AggValueSlot Slot; 3560 if (args.isUsingInAlloca()) 3561 Slot = createPlaceholderSlot(*this, type); 3562 else 3563 Slot = CreateAggTemp(type, "agg.tmp"); 3564 3565 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3566 if (const auto *RD = type->getAsCXXRecordDecl()) 3567 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3568 else 3569 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3570 3571 if (DestroyedInCallee) 3572 Slot.setExternallyDestructed(); 3573 3574 EmitAggExpr(E, Slot); 3575 RValue RV = Slot.asRValue(); 3576 args.add(RV, type); 3577 3578 if (DestroyedInCallee && NeedsEHCleanup) { 3579 // Create a no-op GEP between the placeholder and the cleanup so we can 3580 // RAUW it successfully. It also serves as a marker of the first 3581 // instruction where the cleanup is active. 3582 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3583 type); 3584 // This unreachable is a temporary marker which will be removed later. 3585 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3586 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3587 } 3588 return; 3589 } 3590 3591 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3592 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3593 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3594 assert(L.isSimple()); 3595 args.addUncopiedAggregate(L, type); 3596 return; 3597 } 3598 3599 args.add(EmitAnyExprToTemp(E), type); 3600 } 3601 3602 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3603 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3604 // implicitly widens null pointer constants that are arguments to varargs 3605 // functions to pointer-sized ints. 3606 if (!getTarget().getTriple().isOSWindows()) 3607 return Arg->getType(); 3608 3609 if (Arg->getType()->isIntegerType() && 3610 getContext().getTypeSize(Arg->getType()) < 3611 getContext().getTargetInfo().getPointerWidth(0) && 3612 Arg->isNullPointerConstant(getContext(), 3613 Expr::NPC_ValueDependentIsNotNull)) { 3614 return getContext().getIntPtrType(); 3615 } 3616 3617 return Arg->getType(); 3618 } 3619 3620 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3621 // optimizer it can aggressively ignore unwind edges. 3622 void 3623 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3624 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3625 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3626 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3627 CGM.getNoObjCARCExceptionsMetadata()); 3628 } 3629 3630 /// Emits a call to the given no-arguments nounwind runtime function. 3631 llvm::CallInst * 3632 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3633 const llvm::Twine &name) { 3634 return EmitNounwindRuntimeCall(callee, None, name); 3635 } 3636 3637 /// Emits a call to the given nounwind runtime function. 3638 llvm::CallInst * 3639 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3640 ArrayRef<llvm::Value*> args, 3641 const llvm::Twine &name) { 3642 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3643 call->setDoesNotThrow(); 3644 return call; 3645 } 3646 3647 /// Emits a simple call (never an invoke) to the given no-arguments 3648 /// runtime function. 3649 llvm::CallInst * 3650 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3651 const llvm::Twine &name) { 3652 return EmitRuntimeCall(callee, None, name); 3653 } 3654 3655 // Calls which may throw must have operand bundles indicating which funclet 3656 // they are nested within. 3657 SmallVector<llvm::OperandBundleDef, 1> 3658 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3659 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3660 // There is no need for a funclet operand bundle if we aren't inside a 3661 // funclet. 3662 if (!CurrentFuncletPad) 3663 return BundleList; 3664 3665 // Skip intrinsics which cannot throw. 3666 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3667 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3668 return BundleList; 3669 3670 BundleList.emplace_back("funclet", CurrentFuncletPad); 3671 return BundleList; 3672 } 3673 3674 /// Emits a simple call (never an invoke) to the given runtime function. 3675 llvm::CallInst * 3676 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3677 ArrayRef<llvm::Value*> args, 3678 const llvm::Twine &name) { 3679 llvm::CallInst *call = 3680 Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); 3681 call->setCallingConv(getRuntimeCC()); 3682 return call; 3683 } 3684 3685 /// Emits a call or invoke to the given noreturn runtime function. 3686 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3687 ArrayRef<llvm::Value*> args) { 3688 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3689 getBundlesForFunclet(callee); 3690 3691 if (getInvokeDest()) { 3692 llvm::InvokeInst *invoke = 3693 Builder.CreateInvoke(callee, 3694 getUnreachableBlock(), 3695 getInvokeDest(), 3696 args, 3697 BundleList); 3698 invoke->setDoesNotReturn(); 3699 invoke->setCallingConv(getRuntimeCC()); 3700 } else { 3701 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3702 call->setDoesNotReturn(); 3703 call->setCallingConv(getRuntimeCC()); 3704 Builder.CreateUnreachable(); 3705 } 3706 } 3707 3708 /// Emits a call or invoke instruction to the given nullary runtime function. 3709 llvm::CallSite 3710 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3711 const Twine &name) { 3712 return EmitRuntimeCallOrInvoke(callee, None, name); 3713 } 3714 3715 /// Emits a call or invoke instruction to the given runtime function. 3716 llvm::CallSite 3717 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3718 ArrayRef<llvm::Value*> args, 3719 const Twine &name) { 3720 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3721 callSite.setCallingConv(getRuntimeCC()); 3722 return callSite; 3723 } 3724 3725 /// Emits a call or invoke instruction to the given function, depending 3726 /// on the current state of the EH stack. 3727 llvm::CallSite 3728 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3729 ArrayRef<llvm::Value *> Args, 3730 const Twine &Name) { 3731 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3732 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3733 getBundlesForFunclet(Callee); 3734 3735 llvm::Instruction *Inst; 3736 if (!InvokeDest) 3737 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3738 else { 3739 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3740 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3741 Name); 3742 EmitBlock(ContBB); 3743 } 3744 3745 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3746 // optimizer it can aggressively ignore unwind edges. 3747 if (CGM.getLangOpts().ObjCAutoRefCount) 3748 AddObjCARCExceptionMetadata(Inst); 3749 3750 return llvm::CallSite(Inst); 3751 } 3752 3753 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3754 llvm::Value *New) { 3755 DeferredReplacements.push_back(std::make_pair(Old, New)); 3756 } 3757 3758 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3759 const CGCallee &Callee, 3760 ReturnValueSlot ReturnValue, 3761 const CallArgList &CallArgs, 3762 llvm::Instruction **callOrInvoke, 3763 SourceLocation Loc) { 3764 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3765 3766 assert(Callee.isOrdinary() || Callee.isVirtual()); 3767 3768 // Handle struct-return functions by passing a pointer to the 3769 // location that we would like to return into. 3770 QualType RetTy = CallInfo.getReturnType(); 3771 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3772 3773 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3774 3775 // 1. Set up the arguments. 3776 3777 // If we're using inalloca, insert the allocation after the stack save. 3778 // FIXME: Do this earlier rather than hacking it in here! 3779 Address ArgMemory = Address::invalid(); 3780 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3781 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3782 const llvm::DataLayout &DL = CGM.getDataLayout(); 3783 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3784 llvm::Instruction *IP = CallArgs.getStackBase(); 3785 llvm::AllocaInst *AI; 3786 if (IP) { 3787 IP = IP->getNextNode(); 3788 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3789 "argmem", IP); 3790 } else { 3791 AI = CreateTempAlloca(ArgStruct, "argmem"); 3792 } 3793 auto Align = CallInfo.getArgStructAlignment(); 3794 AI->setAlignment(Align.getQuantity()); 3795 AI->setUsedWithInAlloca(true); 3796 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3797 ArgMemory = Address(AI, Align); 3798 } 3799 3800 // Helper function to drill into the inalloca allocation. 3801 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3802 auto FieldOffset = 3803 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3804 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3805 }; 3806 3807 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3808 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3809 3810 // If the call returns a temporary with struct return, create a temporary 3811 // alloca to hold the result, unless one is given to us. 3812 Address SRetPtr = Address::invalid(); 3813 llvm::Value *UnusedReturnSizePtr = nullptr; 3814 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3815 if (!ReturnValue.isNull()) { 3816 SRetPtr = ReturnValue.getValue(); 3817 } else { 3818 SRetPtr = CreateMemTemp(RetTy); 3819 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3820 uint64_t size = 3821 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3822 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetPtr.getPointer()); 3823 } 3824 } 3825 if (IRFunctionArgs.hasSRetArg()) { 3826 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3827 } else if (RetAI.isInAlloca()) { 3828 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3829 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3830 } 3831 } 3832 3833 Address swiftErrorTemp = Address::invalid(); 3834 Address swiftErrorArg = Address::invalid(); 3835 3836 // Translate all of the arguments as necessary to match the IR lowering. 3837 assert(CallInfo.arg_size() == CallArgs.size() && 3838 "Mismatch between function signature & arguments."); 3839 unsigned ArgNo = 0; 3840 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3841 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3842 I != E; ++I, ++info_it, ++ArgNo) { 3843 const ABIArgInfo &ArgInfo = info_it->info; 3844 3845 // Insert a padding argument to ensure proper alignment. 3846 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3847 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3848 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3849 3850 unsigned FirstIRArg, NumIRArgs; 3851 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3852 3853 switch (ArgInfo.getKind()) { 3854 case ABIArgInfo::InAlloca: { 3855 assert(NumIRArgs == 0); 3856 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3857 if (I->isAggregate()) { 3858 // Replace the placeholder with the appropriate argument slot GEP. 3859 Address Addr = I->hasLValue() 3860 ? I->getKnownLValue().getAddress() 3861 : I->getKnownRValue().getAggregateAddress(); 3862 llvm::Instruction *Placeholder = 3863 cast<llvm::Instruction>(Addr.getPointer()); 3864 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3865 Builder.SetInsertPoint(Placeholder); 3866 Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3867 Builder.restoreIP(IP); 3868 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3869 } else { 3870 // Store the RValue into the argument struct. 3871 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3872 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3873 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3874 // There are some cases where a trivial bitcast is not avoidable. The 3875 // definition of a type later in a translation unit may change it's type 3876 // from {}* to (%struct.foo*)*. 3877 if (Addr.getType() != MemType) 3878 Addr = Builder.CreateBitCast(Addr, MemType); 3879 I->copyInto(*this, Addr); 3880 } 3881 break; 3882 } 3883 3884 case ABIArgInfo::Indirect: { 3885 assert(NumIRArgs == 1); 3886 if (!I->isAggregate()) { 3887 // Make a temporary alloca to pass the argument. 3888 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3889 "indirect-arg-temp", false); 3890 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3891 3892 I->copyInto(*this, Addr); 3893 } else { 3894 // We want to avoid creating an unnecessary temporary+copy here; 3895 // however, we need one in three cases: 3896 // 1. If the argument is not byval, and we are required to copy the 3897 // source. (This case doesn't occur on any common architecture.) 3898 // 2. If the argument is byval, RV is not sufficiently aligned, and 3899 // we cannot force it to be sufficiently aligned. 3900 // 3. If the argument is byval, but RV is not located in default 3901 // or alloca address space. 3902 Address Addr = I->hasLValue() 3903 ? I->getKnownLValue().getAddress() 3904 : I->getKnownRValue().getAggregateAddress(); 3905 llvm::Value *V = Addr.getPointer(); 3906 CharUnits Align = ArgInfo.getIndirectAlign(); 3907 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3908 3909 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3910 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3911 TD->getAllocaAddrSpace()) && 3912 "indirect argument must be in alloca address space"); 3913 3914 bool NeedCopy = false; 3915 3916 if (Addr.getAlignment() < Align && 3917 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3918 Align.getQuantity()) { 3919 NeedCopy = true; 3920 } else if (I->hasLValue()) { 3921 auto LV = I->getKnownLValue(); 3922 auto AS = LV.getAddressSpace(); 3923 if ((!ArgInfo.getIndirectByVal() && 3924 (LV.getAlignment() >= 3925 getContext().getTypeAlignInChars(I->Ty))) || 3926 (ArgInfo.getIndirectByVal() && 3927 ((AS != LangAS::Default && AS != LangAS::opencl_private && 3928 AS != CGM.getASTAllocaAddressSpace())))) { 3929 NeedCopy = true; 3930 } 3931 } 3932 if (NeedCopy) { 3933 // Create an aligned temporary, and copy to it. 3934 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3935 "byval-temp", false); 3936 IRCallArgs[FirstIRArg] = AI.getPointer(); 3937 I->copyInto(*this, AI); 3938 } else { 3939 // Skip the extra memcpy call. 3940 auto *T = V->getType()->getPointerElementType()->getPointerTo( 3941 CGM.getDataLayout().getAllocaAddrSpace()); 3942 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 3943 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 3944 true); 3945 } 3946 } 3947 break; 3948 } 3949 3950 case ABIArgInfo::Ignore: 3951 assert(NumIRArgs == 0); 3952 break; 3953 3954 case ABIArgInfo::Extend: 3955 case ABIArgInfo::Direct: { 3956 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3957 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3958 ArgInfo.getDirectOffset() == 0) { 3959 assert(NumIRArgs == 1); 3960 llvm::Value *V; 3961 if (!I->isAggregate()) 3962 V = I->getKnownRValue().getScalarVal(); 3963 else 3964 V = Builder.CreateLoad( 3965 I->hasLValue() ? I->getKnownLValue().getAddress() 3966 : I->getKnownRValue().getAggregateAddress()); 3967 3968 // Implement swifterror by copying into a new swifterror argument. 3969 // We'll write back in the normal path out of the call. 3970 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3971 == ParameterABI::SwiftErrorResult) { 3972 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3973 3974 QualType pointeeTy = I->Ty->getPointeeType(); 3975 swiftErrorArg = 3976 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3977 3978 swiftErrorTemp = 3979 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3980 V = swiftErrorTemp.getPointer(); 3981 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3982 3983 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3984 Builder.CreateStore(errorValue, swiftErrorTemp); 3985 } 3986 3987 // We might have to widen integers, but we should never truncate. 3988 if (ArgInfo.getCoerceToType() != V->getType() && 3989 V->getType()->isIntegerTy()) 3990 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3991 3992 // If the argument doesn't match, perform a bitcast to coerce it. This 3993 // can happen due to trivial type mismatches. 3994 if (FirstIRArg < IRFuncTy->getNumParams() && 3995 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3996 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3997 3998 IRCallArgs[FirstIRArg] = V; 3999 break; 4000 } 4001 4002 // FIXME: Avoid the conversion through memory if possible. 4003 Address Src = Address::invalid(); 4004 if (!I->isAggregate()) { 4005 Src = CreateMemTemp(I->Ty, "coerce"); 4006 I->copyInto(*this, Src); 4007 } else { 4008 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 4009 : I->getKnownRValue().getAggregateAddress(); 4010 } 4011 4012 // If the value is offset in memory, apply the offset now. 4013 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4014 4015 // Fast-isel and the optimizer generally like scalar values better than 4016 // FCAs, so we flatten them if this is safe to do for this argument. 4017 llvm::StructType *STy = 4018 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4019 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4020 llvm::Type *SrcTy = Src.getType()->getElementType(); 4021 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4022 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4023 4024 // If the source type is smaller than the destination type of the 4025 // coerce-to logic, copy the source value into a temp alloca the size 4026 // of the destination type to allow loading all of it. The bits past 4027 // the source value are left undef. 4028 if (SrcSize < DstSize) { 4029 Address TempAlloca 4030 = CreateTempAlloca(STy, Src.getAlignment(), 4031 Src.getName() + ".coerce"); 4032 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4033 Src = TempAlloca; 4034 } else { 4035 Src = Builder.CreateBitCast(Src, 4036 STy->getPointerTo(Src.getAddressSpace())); 4037 } 4038 4039 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 4040 assert(NumIRArgs == STy->getNumElements()); 4041 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4042 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 4043 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 4044 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4045 IRCallArgs[FirstIRArg + i] = LI; 4046 } 4047 } else { 4048 // In the simple case, just pass the coerced loaded value. 4049 assert(NumIRArgs == 1); 4050 IRCallArgs[FirstIRArg] = 4051 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4052 } 4053 4054 break; 4055 } 4056 4057 case ABIArgInfo::CoerceAndExpand: { 4058 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4059 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4060 4061 llvm::Value *tempSize = nullptr; 4062 Address addr = Address::invalid(); 4063 if (I->isAggregate()) { 4064 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4065 : I->getKnownRValue().getAggregateAddress(); 4066 4067 } else { 4068 RValue RV = I->getKnownRValue(); 4069 assert(RV.isScalar()); // complex should always just be direct 4070 4071 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4072 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4073 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4074 4075 // Materialize to a temporary. 4076 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 4077 CharUnits::fromQuantity(std::max(layout->getAlignment(), 4078 scalarAlign))); 4079 tempSize = EmitLifetimeStart(scalarSize, addr.getPointer()); 4080 4081 Builder.CreateStore(RV.getScalarVal(), addr); 4082 } 4083 4084 addr = Builder.CreateElementBitCast(addr, coercionType); 4085 4086 unsigned IRArgPos = FirstIRArg; 4087 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4088 llvm::Type *eltType = coercionType->getElementType(i); 4089 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4090 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4091 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4092 IRCallArgs[IRArgPos++] = elt; 4093 } 4094 assert(IRArgPos == FirstIRArg + NumIRArgs); 4095 4096 if (tempSize) { 4097 EmitLifetimeEnd(tempSize, addr.getPointer()); 4098 } 4099 4100 break; 4101 } 4102 4103 case ABIArgInfo::Expand: 4104 unsigned IRArgPos = FirstIRArg; 4105 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4106 assert(IRArgPos == FirstIRArg + NumIRArgs); 4107 break; 4108 } 4109 } 4110 4111 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4112 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4113 4114 // If we're using inalloca, set up that argument. 4115 if (ArgMemory.isValid()) { 4116 llvm::Value *Arg = ArgMemory.getPointer(); 4117 if (CallInfo.isVariadic()) { 4118 // When passing non-POD arguments by value to variadic functions, we will 4119 // end up with a variadic prototype and an inalloca call site. In such 4120 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4121 // the callee. 4122 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4123 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4124 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4125 } else { 4126 llvm::Type *LastParamTy = 4127 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4128 if (Arg->getType() != LastParamTy) { 4129 #ifndef NDEBUG 4130 // Assert that these structs have equivalent element types. 4131 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4132 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4133 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4134 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4135 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4136 DE = DeclaredTy->element_end(), 4137 FI = FullTy->element_begin(); 4138 DI != DE; ++DI, ++FI) 4139 assert(*DI == *FI); 4140 #endif 4141 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4142 } 4143 } 4144 assert(IRFunctionArgs.hasInallocaArg()); 4145 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4146 } 4147 4148 // 2. Prepare the function pointer. 4149 4150 // If the callee is a bitcast of a non-variadic function to have a 4151 // variadic function pointer type, check to see if we can remove the 4152 // bitcast. This comes up with unprototyped functions. 4153 // 4154 // This makes the IR nicer, but more importantly it ensures that we 4155 // can inline the function at -O0 if it is marked always_inline. 4156 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4157 llvm::FunctionType *CalleeFT = 4158 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4159 if (!CalleeFT->isVarArg()) 4160 return Ptr; 4161 4162 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4163 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4164 return Ptr; 4165 4166 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4167 if (!OrigFn) 4168 return Ptr; 4169 4170 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4171 4172 // If the original type is variadic, or if any of the component types 4173 // disagree, we cannot remove the cast. 4174 if (OrigFT->isVarArg() || 4175 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4176 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4177 return Ptr; 4178 4179 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4180 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4181 return Ptr; 4182 4183 return OrigFn; 4184 }; 4185 CalleePtr = simplifyVariadicCallee(CalleePtr); 4186 4187 // 3. Perform the actual call. 4188 4189 // Deactivate any cleanups that we're supposed to do immediately before 4190 // the call. 4191 if (!CallArgs.getCleanupsToDeactivate().empty()) 4192 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4193 4194 // Assert that the arguments we computed match up. The IR verifier 4195 // will catch this, but this is a common enough source of problems 4196 // during IRGen changes that it's way better for debugging to catch 4197 // it ourselves here. 4198 #ifndef NDEBUG 4199 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4200 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4201 // Inalloca argument can have different type. 4202 if (IRFunctionArgs.hasInallocaArg() && 4203 i == IRFunctionArgs.getInallocaArgNo()) 4204 continue; 4205 if (i < IRFuncTy->getNumParams()) 4206 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4207 } 4208 #endif 4209 4210 // Compute the calling convention and attributes. 4211 unsigned CallingConv; 4212 llvm::AttributeList Attrs; 4213 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4214 Callee.getAbstractInfo(), Attrs, CallingConv, 4215 /*AttrOnCallSite=*/true); 4216 4217 // Apply some call-site-specific attributes. 4218 // TODO: work this into building the attribute set. 4219 4220 // Apply always_inline to all calls within flatten functions. 4221 // FIXME: should this really take priority over __try, below? 4222 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4223 !(Callee.getAbstractInfo().getCalleeDecl() && 4224 Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { 4225 Attrs = 4226 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4227 llvm::Attribute::AlwaysInline); 4228 } 4229 4230 // Disable inlining inside SEH __try blocks. 4231 if (isSEHTryScope()) { 4232 Attrs = 4233 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4234 llvm::Attribute::NoInline); 4235 } 4236 4237 // Decide whether to use a call or an invoke. 4238 bool CannotThrow; 4239 if (currentFunctionUsesSEHTry()) { 4240 // SEH cares about asynchronous exceptions, so everything can "throw." 4241 CannotThrow = false; 4242 } else if (isCleanupPadScope() && 4243 EHPersonality::get(*this).isMSVCXXPersonality()) { 4244 // The MSVC++ personality will implicitly terminate the program if an 4245 // exception is thrown during a cleanup outside of a try/catch. 4246 // We don't need to model anything in IR to get this behavior. 4247 CannotThrow = true; 4248 } else { 4249 // Otherwise, nounwind call sites will never throw. 4250 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4251 llvm::Attribute::NoUnwind); 4252 } 4253 4254 // If we made a temporary, be sure to clean up after ourselves. Note that we 4255 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4256 // pop this cleanup later on. Being eager about this is OK, since this 4257 // temporary is 'invisible' outside of the callee. 4258 if (UnusedReturnSizePtr) 4259 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetPtr, 4260 UnusedReturnSizePtr); 4261 4262 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4263 4264 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4265 getBundlesForFunclet(CalleePtr); 4266 4267 // Emit the actual call/invoke instruction. 4268 llvm::CallSite CS; 4269 if (!InvokeDest) { 4270 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4271 } else { 4272 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4273 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4274 BundleList); 4275 EmitBlock(Cont); 4276 } 4277 llvm::Instruction *CI = CS.getInstruction(); 4278 if (callOrInvoke) 4279 *callOrInvoke = CI; 4280 4281 // Apply the attributes and calling convention. 4282 CS.setAttributes(Attrs); 4283 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4284 4285 // Apply various metadata. 4286 4287 if (!CI->getType()->isVoidTy()) 4288 CI->setName("call"); 4289 4290 // Insert instrumentation or attach profile metadata at indirect call sites. 4291 // For more details, see the comment before the definition of 4292 // IPVK_IndirectCallTarget in InstrProfData.inc. 4293 if (!CS.getCalledFunction()) 4294 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4295 CI, CalleePtr); 4296 4297 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4298 // optimizer it can aggressively ignore unwind edges. 4299 if (CGM.getLangOpts().ObjCAutoRefCount) 4300 AddObjCARCExceptionMetadata(CI); 4301 4302 // Suppress tail calls if requested. 4303 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4304 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4305 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4306 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4307 } 4308 4309 // 4. Finish the call. 4310 4311 // If the call doesn't return, finish the basic block and clear the 4312 // insertion point; this allows the rest of IRGen to discard 4313 // unreachable code. 4314 if (CS.doesNotReturn()) { 4315 if (UnusedReturnSizePtr) 4316 PopCleanupBlock(); 4317 4318 // Strip away the noreturn attribute to better diagnose unreachable UB. 4319 if (SanOpts.has(SanitizerKind::Unreachable)) { 4320 if (auto *F = CS.getCalledFunction()) 4321 F->removeFnAttr(llvm::Attribute::NoReturn); 4322 CS.removeAttribute(llvm::AttributeList::FunctionIndex, 4323 llvm::Attribute::NoReturn); 4324 } 4325 4326 EmitUnreachable(Loc); 4327 Builder.ClearInsertionPoint(); 4328 4329 // FIXME: For now, emit a dummy basic block because expr emitters in 4330 // generally are not ready to handle emitting expressions at unreachable 4331 // points. 4332 EnsureInsertPoint(); 4333 4334 // Return a reasonable RValue. 4335 return GetUndefRValue(RetTy); 4336 } 4337 4338 // Perform the swifterror writeback. 4339 if (swiftErrorTemp.isValid()) { 4340 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4341 Builder.CreateStore(errorResult, swiftErrorArg); 4342 } 4343 4344 // Emit any call-associated writebacks immediately. Arguably this 4345 // should happen after any return-value munging. 4346 if (CallArgs.hasWritebacks()) 4347 emitWritebacks(*this, CallArgs); 4348 4349 // The stack cleanup for inalloca arguments has to run out of the normal 4350 // lexical order, so deactivate it and run it manually here. 4351 CallArgs.freeArgumentMemory(*this); 4352 4353 // Extract the return value. 4354 RValue Ret = [&] { 4355 switch (RetAI.getKind()) { 4356 case ABIArgInfo::CoerceAndExpand: { 4357 auto coercionType = RetAI.getCoerceAndExpandType(); 4358 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4359 4360 Address addr = SRetPtr; 4361 addr = Builder.CreateElementBitCast(addr, coercionType); 4362 4363 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4364 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4365 4366 unsigned unpaddedIndex = 0; 4367 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4368 llvm::Type *eltType = coercionType->getElementType(i); 4369 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4370 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4371 llvm::Value *elt = CI; 4372 if (requiresExtract) 4373 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4374 else 4375 assert(unpaddedIndex == 0); 4376 Builder.CreateStore(elt, eltAddr); 4377 } 4378 // FALLTHROUGH 4379 LLVM_FALLTHROUGH; 4380 } 4381 4382 case ABIArgInfo::InAlloca: 4383 case ABIArgInfo::Indirect: { 4384 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4385 if (UnusedReturnSizePtr) 4386 PopCleanupBlock(); 4387 return ret; 4388 } 4389 4390 case ABIArgInfo::Ignore: 4391 // If we are ignoring an argument that had a result, make sure to 4392 // construct the appropriate return value for our caller. 4393 return GetUndefRValue(RetTy); 4394 4395 case ABIArgInfo::Extend: 4396 case ABIArgInfo::Direct: { 4397 llvm::Type *RetIRTy = ConvertType(RetTy); 4398 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4399 switch (getEvaluationKind(RetTy)) { 4400 case TEK_Complex: { 4401 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4402 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4403 return RValue::getComplex(std::make_pair(Real, Imag)); 4404 } 4405 case TEK_Aggregate: { 4406 Address DestPtr = ReturnValue.getValue(); 4407 bool DestIsVolatile = ReturnValue.isVolatile(); 4408 4409 if (!DestPtr.isValid()) { 4410 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4411 DestIsVolatile = false; 4412 } 4413 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4414 return RValue::getAggregate(DestPtr); 4415 } 4416 case TEK_Scalar: { 4417 // If the argument doesn't match, perform a bitcast to coerce it. This 4418 // can happen due to trivial type mismatches. 4419 llvm::Value *V = CI; 4420 if (V->getType() != RetIRTy) 4421 V = Builder.CreateBitCast(V, RetIRTy); 4422 return RValue::get(V); 4423 } 4424 } 4425 llvm_unreachable("bad evaluation kind"); 4426 } 4427 4428 Address DestPtr = ReturnValue.getValue(); 4429 bool DestIsVolatile = ReturnValue.isVolatile(); 4430 4431 if (!DestPtr.isValid()) { 4432 DestPtr = CreateMemTemp(RetTy, "coerce"); 4433 DestIsVolatile = false; 4434 } 4435 4436 // If the value is offset in memory, apply the offset now. 4437 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4438 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4439 4440 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4441 } 4442 4443 case ABIArgInfo::Expand: 4444 llvm_unreachable("Invalid ABI kind for return argument"); 4445 } 4446 4447 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4448 } (); 4449 4450 // Emit the assume_aligned check on the return value. 4451 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4452 if (Ret.isScalar() && TargetDecl) { 4453 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4454 llvm::Value *OffsetValue = nullptr; 4455 if (const auto *Offset = AA->getOffset()) 4456 OffsetValue = EmitScalarExpr(Offset); 4457 4458 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4459 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4460 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4461 OffsetValue); 4462 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4463 llvm::Value *ParamVal = 4464 CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue( 4465 *this).getScalarVal(); 4466 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4467 } 4468 } 4469 4470 return Ret; 4471 } 4472 4473 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4474 if (isVirtual()) { 4475 const CallExpr *CE = getVirtualCallExpr(); 4476 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4477 CGF, getVirtualMethodDecl(), getThisAddress(), 4478 getFunctionType(), CE ? CE->getLocStart() : SourceLocation()); 4479 } 4480 4481 return *this; 4482 } 4483 4484 /* VarArg handling */ 4485 4486 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4487 VAListAddr = VE->isMicrosoftABI() 4488 ? EmitMSVAListRef(VE->getSubExpr()) 4489 : EmitVAListRef(VE->getSubExpr()); 4490 QualType Ty = VE->getType(); 4491 if (VE->isMicrosoftABI()) 4492 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4493 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4494 } 4495