1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 63 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 64 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 65 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 66 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 67 case CC_Swift: return llvm::CallingConv::Swift; 68 } 69 } 70 71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 72 /// qualification. Either or both of RD and MD may be null. A null RD indicates 73 /// that there is no meaningful 'this' type, and a null MD can occur when 74 /// calling a method pointer. 75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 76 const CXXMethodDecl *MD) { 77 QualType RecTy; 78 if (RD) 79 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 80 else 81 RecTy = Context.VoidTy; 82 83 if (MD) 84 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 85 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 86 } 87 88 /// Returns the canonical formal type of the given C++ method. 89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 90 return MD->getType()->getCanonicalTypeUnqualified() 91 .getAs<FunctionProtoType>(); 92 } 93 94 /// Returns the "extra-canonicalized" return type, which discards 95 /// qualifiers on the return type. Codegen doesn't care about them, 96 /// and it makes ABI code a little easier to be able to assume that 97 /// all parameter and return types are top-level unqualified. 98 static CanQualType GetReturnType(QualType RetTy) { 99 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 100 } 101 102 /// Arrange the argument and result information for a value of the given 103 /// unprototyped freestanding function type. 104 const CGFunctionInfo & 105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 106 // When translating an unprototyped function type, always use a 107 // variadic type. 108 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 109 /*instanceMethod=*/false, 110 /*chainCall=*/false, None, 111 FTNP->getExtInfo(), {}, RequiredArgs(0)); 112 } 113 114 static void addExtParameterInfosForCall( 115 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 116 const FunctionProtoType *proto, 117 unsigned prefixArgs, 118 unsigned totalArgs) { 119 assert(proto->hasExtParameterInfos()); 120 assert(paramInfos.size() <= prefixArgs); 121 assert(proto->getNumParams() + prefixArgs <= totalArgs); 122 123 paramInfos.reserve(totalArgs); 124 125 // Add default infos for any prefix args that don't already have infos. 126 paramInfos.resize(prefixArgs); 127 128 // Add infos for the prototype. 129 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 130 paramInfos.push_back(ParamInfo); 131 // pass_object_size params have no parameter info. 132 if (ParamInfo.hasPassObjectSize()) 133 paramInfos.emplace_back(); 134 } 135 136 assert(paramInfos.size() <= totalArgs && 137 "Did we forget to insert pass_object_size args?"); 138 // Add default infos for the variadic and/or suffix arguments. 139 paramInfos.resize(totalArgs); 140 } 141 142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 144 static void appendParameterTypes(const CodeGenTypes &CGT, 145 SmallVectorImpl<CanQualType> &prefix, 146 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 147 CanQual<FunctionProtoType> FPT) { 148 // Fast path: don't touch param info if we don't need to. 149 if (!FPT->hasExtParameterInfos()) { 150 assert(paramInfos.empty() && 151 "We have paramInfos, but the prototype doesn't?"); 152 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 153 return; 154 } 155 156 unsigned PrefixSize = prefix.size(); 157 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 158 // parameters; the only thing that can change this is the presence of 159 // pass_object_size. So, we preallocate for the common case. 160 prefix.reserve(prefix.size() + FPT->getNumParams()); 161 162 auto ExtInfos = FPT->getExtParameterInfos(); 163 assert(ExtInfos.size() == FPT->getNumParams()); 164 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 165 prefix.push_back(FPT->getParamType(I)); 166 if (ExtInfos[I].hasPassObjectSize()) 167 prefix.push_back(CGT.getContext().getSizeType()); 168 } 169 170 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 171 prefix.size()); 172 } 173 174 /// Arrange the LLVM function layout for a value of the given function 175 /// type, on top of any implicit parameters already stored. 176 static const CGFunctionInfo & 177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 178 SmallVectorImpl<CanQualType> &prefix, 179 CanQual<FunctionProtoType> FTP) { 180 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 181 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 182 // FIXME: Kill copy. 183 appendParameterTypes(CGT, prefix, paramInfos, FTP); 184 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 185 186 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 187 /*chainCall=*/false, prefix, 188 FTP->getExtInfo(), paramInfos, 189 Required); 190 } 191 192 /// Arrange the argument and result information for a value of the 193 /// given freestanding function type. 194 const CGFunctionInfo & 195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 196 SmallVector<CanQualType, 16> argTypes; 197 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 198 FTP); 199 } 200 201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 202 // Set the appropriate calling convention for the Function. 203 if (D->hasAttr<StdCallAttr>()) 204 return CC_X86StdCall; 205 206 if (D->hasAttr<FastCallAttr>()) 207 return CC_X86FastCall; 208 209 if (D->hasAttr<RegCallAttr>()) 210 return CC_X86RegCall; 211 212 if (D->hasAttr<ThisCallAttr>()) 213 return CC_X86ThisCall; 214 215 if (D->hasAttr<VectorCallAttr>()) 216 return CC_X86VectorCall; 217 218 if (D->hasAttr<PascalAttr>()) 219 return CC_X86Pascal; 220 221 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 222 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 223 224 if (D->hasAttr<AArch64VectorPcsAttr>()) 225 return CC_AArch64VectorCall; 226 227 if (D->hasAttr<IntelOclBiccAttr>()) 228 return CC_IntelOclBicc; 229 230 if (D->hasAttr<MSABIAttr>()) 231 return IsWindows ? CC_C : CC_Win64; 232 233 if (D->hasAttr<SysVABIAttr>()) 234 return IsWindows ? CC_X86_64SysV : CC_C; 235 236 if (D->hasAttr<PreserveMostAttr>()) 237 return CC_PreserveMost; 238 239 if (D->hasAttr<PreserveAllAttr>()) 240 return CC_PreserveAll; 241 242 return CC_C; 243 } 244 245 /// Arrange the argument and result information for a call to an 246 /// unknown C++ non-static member function of the given abstract type. 247 /// (A null RD means we don't have any meaningful "this" argument type, 248 /// so fall back to a generic pointer type). 249 /// The member function must be an ordinary function, i.e. not a 250 /// constructor or destructor. 251 const CGFunctionInfo & 252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 253 const FunctionProtoType *FTP, 254 const CXXMethodDecl *MD) { 255 SmallVector<CanQualType, 16> argTypes; 256 257 // Add the 'this' pointer. 258 argTypes.push_back(DeriveThisType(RD, MD)); 259 260 return ::arrangeLLVMFunctionInfo( 261 *this, true, argTypes, 262 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 263 } 264 265 /// Set calling convention for CUDA/HIP kernel. 266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 267 const FunctionDecl *FD) { 268 if (FD->hasAttr<CUDAGlobalAttr>()) { 269 const FunctionType *FT = FTy->getAs<FunctionType>(); 270 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 271 FTy = FT->getCanonicalTypeUnqualified(); 272 } 273 } 274 275 /// Arrange the argument and result information for a declaration or 276 /// definition of the given C++ non-static member function. The 277 /// member function must be an ordinary function, i.e. not a 278 /// constructor or destructor. 279 const CGFunctionInfo & 280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 281 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 282 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 283 284 CanQualType FT = GetFormalType(MD).getAs<Type>(); 285 setCUDAKernelCallingConvention(FT, CGM, MD); 286 auto prototype = FT.getAs<FunctionProtoType>(); 287 288 if (MD->isInstance()) { 289 // The abstract case is perfectly fine. 290 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 291 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 292 } 293 294 return arrangeFreeFunctionType(prototype); 295 } 296 297 bool CodeGenTypes::inheritingCtorHasParams( 298 const InheritedConstructor &Inherited, CXXCtorType Type) { 299 // Parameters are unnecessary if we're constructing a base class subobject 300 // and the inherited constructor lives in a virtual base. 301 return Type == Ctor_Complete || 302 !Inherited.getShadowDecl()->constructsVirtualBase() || 303 !Target.getCXXABI().hasConstructorVariants(); 304 } 305 306 const CGFunctionInfo & 307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 308 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 309 310 SmallVector<CanQualType, 16> argTypes; 311 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 312 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 313 314 bool PassParams = true; 315 316 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 317 // A base class inheriting constructor doesn't get forwarded arguments 318 // needed to construct a virtual base (or base class thereof). 319 if (auto Inherited = CD->getInheritedConstructor()) 320 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 321 } 322 323 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 324 325 // Add the formal parameters. 326 if (PassParams) 327 appendParameterTypes(*this, argTypes, paramInfos, FTP); 328 329 CGCXXABI::AddedStructorArgCounts AddedArgs = 330 TheCXXABI.buildStructorSignature(GD, argTypes); 331 if (!paramInfos.empty()) { 332 // Note: prefix implies after the first param. 333 if (AddedArgs.Prefix) 334 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 335 FunctionProtoType::ExtParameterInfo{}); 336 if (AddedArgs.Suffix) 337 paramInfos.append(AddedArgs.Suffix, 338 FunctionProtoType::ExtParameterInfo{}); 339 } 340 341 RequiredArgs required = 342 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 343 : RequiredArgs::All); 344 345 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 346 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 347 ? argTypes.front() 348 : TheCXXABI.hasMostDerivedReturn(GD) 349 ? CGM.getContext().VoidPtrTy 350 : Context.VoidTy; 351 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 352 /*chainCall=*/false, argTypes, extInfo, 353 paramInfos, required); 354 } 355 356 static SmallVector<CanQualType, 16> 357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 358 SmallVector<CanQualType, 16> argTypes; 359 for (auto &arg : args) 360 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 361 return argTypes; 362 } 363 364 static SmallVector<CanQualType, 16> 365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 366 SmallVector<CanQualType, 16> argTypes; 367 for (auto &arg : args) 368 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 369 return argTypes; 370 } 371 372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 373 getExtParameterInfosForCall(const FunctionProtoType *proto, 374 unsigned prefixArgs, unsigned totalArgs) { 375 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 376 if (proto->hasExtParameterInfos()) { 377 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 378 } 379 return result; 380 } 381 382 /// Arrange a call to a C++ method, passing the given arguments. 383 /// 384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 385 /// parameter. 386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 387 /// args. 388 /// PassProtoArgs indicates whether `args` has args for the parameters in the 389 /// given CXXConstructorDecl. 390 const CGFunctionInfo & 391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 392 const CXXConstructorDecl *D, 393 CXXCtorType CtorKind, 394 unsigned ExtraPrefixArgs, 395 unsigned ExtraSuffixArgs, 396 bool PassProtoArgs) { 397 // FIXME: Kill copy. 398 SmallVector<CanQualType, 16> ArgTypes; 399 for (const auto &Arg : args) 400 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 401 402 // +1 for implicit this, which should always be args[0]. 403 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 404 405 CanQual<FunctionProtoType> FPT = GetFormalType(D); 406 RequiredArgs Required = PassProtoArgs 407 ? RequiredArgs::forPrototypePlus( 408 FPT, TotalPrefixArgs + ExtraSuffixArgs) 409 : RequiredArgs::All; 410 411 GlobalDecl GD(D, CtorKind); 412 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 413 ? ArgTypes.front() 414 : TheCXXABI.hasMostDerivedReturn(GD) 415 ? CGM.getContext().VoidPtrTy 416 : Context.VoidTy; 417 418 FunctionType::ExtInfo Info = FPT->getExtInfo(); 419 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 420 // If the prototype args are elided, we should only have ABI-specific args, 421 // which never have param info. 422 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 423 // ABI-specific suffix arguments are treated the same as variadic arguments. 424 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 425 ArgTypes.size()); 426 } 427 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 428 /*chainCall=*/false, ArgTypes, Info, 429 ParamInfos, Required); 430 } 431 432 /// Arrange the argument and result information for the declaration or 433 /// definition of the given function. 434 const CGFunctionInfo & 435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 436 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 437 if (MD->isInstance()) 438 return arrangeCXXMethodDeclaration(MD); 439 440 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 441 442 assert(isa<FunctionType>(FTy)); 443 setCUDAKernelCallingConvention(FTy, CGM, FD); 444 445 // When declaring a function without a prototype, always use a 446 // non-variadic type. 447 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 448 return arrangeLLVMFunctionInfo( 449 noProto->getReturnType(), /*instanceMethod=*/false, 450 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 451 } 452 453 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 454 } 455 456 /// Arrange the argument and result information for the declaration or 457 /// definition of an Objective-C method. 458 const CGFunctionInfo & 459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 460 // It happens that this is the same as a call with no optional 461 // arguments, except also using the formal 'self' type. 462 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 463 } 464 465 /// Arrange the argument and result information for the function type 466 /// through which to perform a send to the given Objective-C method, 467 /// using the given receiver type. The receiver type is not always 468 /// the 'self' type of the method or even an Objective-C pointer type. 469 /// This is *not* the right method for actually performing such a 470 /// message send, due to the possibility of optional arguments. 471 const CGFunctionInfo & 472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 473 QualType receiverType) { 474 SmallVector<CanQualType, 16> argTys; 475 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 476 argTys.push_back(Context.getCanonicalParamType(receiverType)); 477 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 478 // FIXME: Kill copy? 479 for (const auto *I : MD->parameters()) { 480 argTys.push_back(Context.getCanonicalParamType(I->getType())); 481 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 482 I->hasAttr<NoEscapeAttr>()); 483 extParamInfos.push_back(extParamInfo); 484 } 485 486 FunctionType::ExtInfo einfo; 487 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 488 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 489 490 if (getContext().getLangOpts().ObjCAutoRefCount && 491 MD->hasAttr<NSReturnsRetainedAttr>()) 492 einfo = einfo.withProducesResult(true); 493 494 RequiredArgs required = 495 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 496 497 return arrangeLLVMFunctionInfo( 498 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 499 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 500 } 501 502 const CGFunctionInfo & 503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 504 const CallArgList &args) { 505 auto argTypes = getArgTypesForCall(Context, args); 506 FunctionType::ExtInfo einfo; 507 508 return arrangeLLVMFunctionInfo( 509 GetReturnType(returnType), /*instanceMethod=*/false, 510 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 511 } 512 513 const CGFunctionInfo & 514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 515 // FIXME: Do we need to handle ObjCMethodDecl? 516 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 517 518 if (isa<CXXConstructorDecl>(GD.getDecl()) || 519 isa<CXXDestructorDecl>(GD.getDecl())) 520 return arrangeCXXStructorDeclaration(GD); 521 522 return arrangeFunctionDeclaration(FD); 523 } 524 525 /// Arrange a thunk that takes 'this' as the first parameter followed by 526 /// varargs. Return a void pointer, regardless of the actual return type. 527 /// The body of the thunk will end in a musttail call to a function of the 528 /// correct type, and the caller will bitcast the function to the correct 529 /// prototype. 530 const CGFunctionInfo & 531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 532 assert(MD->isVirtual() && "only methods have thunks"); 533 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 534 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 535 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 536 /*chainCall=*/false, ArgTys, 537 FTP->getExtInfo(), {}, RequiredArgs(1)); 538 } 539 540 const CGFunctionInfo & 541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 542 CXXCtorType CT) { 543 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 544 545 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 546 SmallVector<CanQualType, 2> ArgTys; 547 const CXXRecordDecl *RD = CD->getParent(); 548 ArgTys.push_back(DeriveThisType(RD, CD)); 549 if (CT == Ctor_CopyingClosure) 550 ArgTys.push_back(*FTP->param_type_begin()); 551 if (RD->getNumVBases() > 0) 552 ArgTys.push_back(Context.IntTy); 553 CallingConv CC = Context.getDefaultCallingConvention( 554 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 555 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 556 /*chainCall=*/false, ArgTys, 557 FunctionType::ExtInfo(CC), {}, 558 RequiredArgs::All); 559 } 560 561 /// Arrange a call as unto a free function, except possibly with an 562 /// additional number of formal parameters considered required. 563 static const CGFunctionInfo & 564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 565 CodeGenModule &CGM, 566 const CallArgList &args, 567 const FunctionType *fnType, 568 unsigned numExtraRequiredArgs, 569 bool chainCall) { 570 assert(args.size() >= numExtraRequiredArgs); 571 572 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 573 574 // In most cases, there are no optional arguments. 575 RequiredArgs required = RequiredArgs::All; 576 577 // If we have a variadic prototype, the required arguments are the 578 // extra prefix plus the arguments in the prototype. 579 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 580 if (proto->isVariadic()) 581 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 582 583 if (proto->hasExtParameterInfos()) 584 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 585 args.size()); 586 587 // If we don't have a prototype at all, but we're supposed to 588 // explicitly use the variadic convention for unprototyped calls, 589 // treat all of the arguments as required but preserve the nominal 590 // possibility of variadics. 591 } else if (CGM.getTargetCodeGenInfo() 592 .isNoProtoCallVariadic(args, 593 cast<FunctionNoProtoType>(fnType))) { 594 required = RequiredArgs(args.size()); 595 } 596 597 // FIXME: Kill copy. 598 SmallVector<CanQualType, 16> argTypes; 599 for (const auto &arg : args) 600 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 601 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 602 /*instanceMethod=*/false, chainCall, 603 argTypes, fnType->getExtInfo(), paramInfos, 604 required); 605 } 606 607 /// Figure out the rules for calling a function with the given formal 608 /// type using the given arguments. The arguments are necessary 609 /// because the function might be unprototyped, in which case it's 610 /// target-dependent in crazy ways. 611 const CGFunctionInfo & 612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 613 const FunctionType *fnType, 614 bool chainCall) { 615 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 616 chainCall ? 1 : 0, chainCall); 617 } 618 619 /// A block function is essentially a free function with an 620 /// extra implicit argument. 621 const CGFunctionInfo & 622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 623 const FunctionType *fnType) { 624 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 625 /*chainCall=*/false); 626 } 627 628 const CGFunctionInfo & 629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 630 const FunctionArgList ¶ms) { 631 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 632 auto argTypes = getArgTypesForDeclaration(Context, params); 633 634 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 635 /*instanceMethod*/ false, /*chainCall*/ false, 636 argTypes, proto->getExtInfo(), paramInfos, 637 RequiredArgs::forPrototypePlus(proto, 1)); 638 } 639 640 const CGFunctionInfo & 641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 642 const CallArgList &args) { 643 // FIXME: Kill copy. 644 SmallVector<CanQualType, 16> argTypes; 645 for (const auto &Arg : args) 646 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 647 return arrangeLLVMFunctionInfo( 648 GetReturnType(resultType), /*instanceMethod=*/false, 649 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 650 /*paramInfos=*/ {}, RequiredArgs::All); 651 } 652 653 const CGFunctionInfo & 654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 655 const FunctionArgList &args) { 656 auto argTypes = getArgTypesForDeclaration(Context, args); 657 658 return arrangeLLVMFunctionInfo( 659 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 660 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 661 } 662 663 const CGFunctionInfo & 664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 665 ArrayRef<CanQualType> argTypes) { 666 return arrangeLLVMFunctionInfo( 667 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 668 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 669 } 670 671 /// Arrange a call to a C++ method, passing the given arguments. 672 /// 673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 674 /// does not count `this`. 675 const CGFunctionInfo & 676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 677 const FunctionProtoType *proto, 678 RequiredArgs required, 679 unsigned numPrefixArgs) { 680 assert(numPrefixArgs + 1 <= args.size() && 681 "Emitting a call with less args than the required prefix?"); 682 // Add one to account for `this`. It's a bit awkward here, but we don't count 683 // `this` in similar places elsewhere. 684 auto paramInfos = 685 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 686 687 // FIXME: Kill copy. 688 auto argTypes = getArgTypesForCall(Context, args); 689 690 FunctionType::ExtInfo info = proto->getExtInfo(); 691 return arrangeLLVMFunctionInfo( 692 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 693 /*chainCall=*/false, argTypes, info, paramInfos, required); 694 } 695 696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 697 return arrangeLLVMFunctionInfo( 698 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 699 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 700 } 701 702 const CGFunctionInfo & 703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 704 const CallArgList &args) { 705 assert(signature.arg_size() <= args.size()); 706 if (signature.arg_size() == args.size()) 707 return signature; 708 709 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 710 auto sigParamInfos = signature.getExtParameterInfos(); 711 if (!sigParamInfos.empty()) { 712 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 713 paramInfos.resize(args.size()); 714 } 715 716 auto argTypes = getArgTypesForCall(Context, args); 717 718 assert(signature.getRequiredArgs().allowsOptionalArgs()); 719 return arrangeLLVMFunctionInfo(signature.getReturnType(), 720 signature.isInstanceMethod(), 721 signature.isChainCall(), 722 argTypes, 723 signature.getExtInfo(), 724 paramInfos, 725 signature.getRequiredArgs()); 726 } 727 728 namespace clang { 729 namespace CodeGen { 730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 731 } 732 } 733 734 /// Arrange the argument and result information for an abstract value 735 /// of a given function type. This is the method which all of the 736 /// above functions ultimately defer to. 737 const CGFunctionInfo & 738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 739 bool instanceMethod, 740 bool chainCall, 741 ArrayRef<CanQualType> argTypes, 742 FunctionType::ExtInfo info, 743 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 744 RequiredArgs required) { 745 assert(llvm::all_of(argTypes, 746 [](CanQualType T) { return T.isCanonicalAsParam(); })); 747 748 // Lookup or create unique function info. 749 llvm::FoldingSetNodeID ID; 750 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 751 required, resultType, argTypes); 752 753 void *insertPos = nullptr; 754 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 755 if (FI) 756 return *FI; 757 758 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 759 760 // Construct the function info. We co-allocate the ArgInfos. 761 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 762 paramInfos, resultType, argTypes, required); 763 FunctionInfos.InsertNode(FI, insertPos); 764 765 bool inserted = FunctionsBeingProcessed.insert(FI).second; 766 (void)inserted; 767 assert(inserted && "Recursively being processed?"); 768 769 // Compute ABI information. 770 if (CC == llvm::CallingConv::SPIR_KERNEL) { 771 // Force target independent argument handling for the host visible 772 // kernel functions. 773 computeSPIRKernelABIInfo(CGM, *FI); 774 } else if (info.getCC() == CC_Swift) { 775 swiftcall::computeABIInfo(CGM, *FI); 776 } else { 777 getABIInfo().computeInfo(*FI); 778 } 779 780 // Loop over all of the computed argument and return value info. If any of 781 // them are direct or extend without a specified coerce type, specify the 782 // default now. 783 ABIArgInfo &retInfo = FI->getReturnInfo(); 784 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 785 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 786 787 for (auto &I : FI->arguments()) 788 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 789 I.info.setCoerceToType(ConvertType(I.type)); 790 791 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 792 assert(erased && "Not in set?"); 793 794 return *FI; 795 } 796 797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 798 bool instanceMethod, 799 bool chainCall, 800 const FunctionType::ExtInfo &info, 801 ArrayRef<ExtParameterInfo> paramInfos, 802 CanQualType resultType, 803 ArrayRef<CanQualType> argTypes, 804 RequiredArgs required) { 805 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 806 assert(!required.allowsOptionalArgs() || 807 required.getNumRequiredArgs() <= argTypes.size()); 808 809 void *buffer = 810 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 811 argTypes.size() + 1, paramInfos.size())); 812 813 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 814 FI->CallingConvention = llvmCC; 815 FI->EffectiveCallingConvention = llvmCC; 816 FI->ASTCallingConvention = info.getCC(); 817 FI->InstanceMethod = instanceMethod; 818 FI->ChainCall = chainCall; 819 FI->CmseNSCall = info.getCmseNSCall(); 820 FI->NoReturn = info.getNoReturn(); 821 FI->ReturnsRetained = info.getProducesResult(); 822 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 823 FI->NoCfCheck = info.getNoCfCheck(); 824 FI->Required = required; 825 FI->HasRegParm = info.getHasRegParm(); 826 FI->RegParm = info.getRegParm(); 827 FI->ArgStruct = nullptr; 828 FI->ArgStructAlign = 0; 829 FI->NumArgs = argTypes.size(); 830 FI->HasExtParameterInfos = !paramInfos.empty(); 831 FI->getArgsBuffer()[0].type = resultType; 832 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 833 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 834 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 835 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 836 return FI; 837 } 838 839 /***/ 840 841 namespace { 842 // ABIArgInfo::Expand implementation. 843 844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 845 struct TypeExpansion { 846 enum TypeExpansionKind { 847 // Elements of constant arrays are expanded recursively. 848 TEK_ConstantArray, 849 // Record fields are expanded recursively (but if record is a union, only 850 // the field with the largest size is expanded). 851 TEK_Record, 852 // For complex types, real and imaginary parts are expanded recursively. 853 TEK_Complex, 854 // All other types are not expandable. 855 TEK_None 856 }; 857 858 const TypeExpansionKind Kind; 859 860 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 861 virtual ~TypeExpansion() {} 862 }; 863 864 struct ConstantArrayExpansion : TypeExpansion { 865 QualType EltTy; 866 uint64_t NumElts; 867 868 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 869 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 870 static bool classof(const TypeExpansion *TE) { 871 return TE->Kind == TEK_ConstantArray; 872 } 873 }; 874 875 struct RecordExpansion : TypeExpansion { 876 SmallVector<const CXXBaseSpecifier *, 1> Bases; 877 878 SmallVector<const FieldDecl *, 1> Fields; 879 880 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 881 SmallVector<const FieldDecl *, 1> &&Fields) 882 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 883 Fields(std::move(Fields)) {} 884 static bool classof(const TypeExpansion *TE) { 885 return TE->Kind == TEK_Record; 886 } 887 }; 888 889 struct ComplexExpansion : TypeExpansion { 890 QualType EltTy; 891 892 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 893 static bool classof(const TypeExpansion *TE) { 894 return TE->Kind == TEK_Complex; 895 } 896 }; 897 898 struct NoExpansion : TypeExpansion { 899 NoExpansion() : TypeExpansion(TEK_None) {} 900 static bool classof(const TypeExpansion *TE) { 901 return TE->Kind == TEK_None; 902 } 903 }; 904 } // namespace 905 906 static std::unique_ptr<TypeExpansion> 907 getTypeExpansion(QualType Ty, const ASTContext &Context) { 908 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 909 return std::make_unique<ConstantArrayExpansion>( 910 AT->getElementType(), AT->getSize().getZExtValue()); 911 } 912 if (const RecordType *RT = Ty->getAs<RecordType>()) { 913 SmallVector<const CXXBaseSpecifier *, 1> Bases; 914 SmallVector<const FieldDecl *, 1> Fields; 915 const RecordDecl *RD = RT->getDecl(); 916 assert(!RD->hasFlexibleArrayMember() && 917 "Cannot expand structure with flexible array."); 918 if (RD->isUnion()) { 919 // Unions can be here only in degenerative cases - all the fields are same 920 // after flattening. Thus we have to use the "largest" field. 921 const FieldDecl *LargestFD = nullptr; 922 CharUnits UnionSize = CharUnits::Zero(); 923 924 for (const auto *FD : RD->fields()) { 925 if (FD->isZeroLengthBitField(Context)) 926 continue; 927 assert(!FD->isBitField() && 928 "Cannot expand structure with bit-field members."); 929 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 930 if (UnionSize < FieldSize) { 931 UnionSize = FieldSize; 932 LargestFD = FD; 933 } 934 } 935 if (LargestFD) 936 Fields.push_back(LargestFD); 937 } else { 938 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 939 assert(!CXXRD->isDynamicClass() && 940 "cannot expand vtable pointers in dynamic classes"); 941 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 942 Bases.push_back(&BS); 943 } 944 945 for (const auto *FD : RD->fields()) { 946 if (FD->isZeroLengthBitField(Context)) 947 continue; 948 assert(!FD->isBitField() && 949 "Cannot expand structure with bit-field members."); 950 Fields.push_back(FD); 951 } 952 } 953 return std::make_unique<RecordExpansion>(std::move(Bases), 954 std::move(Fields)); 955 } 956 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 957 return std::make_unique<ComplexExpansion>(CT->getElementType()); 958 } 959 return std::make_unique<NoExpansion>(); 960 } 961 962 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 963 auto Exp = getTypeExpansion(Ty, Context); 964 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 965 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 966 } 967 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 968 int Res = 0; 969 for (auto BS : RExp->Bases) 970 Res += getExpansionSize(BS->getType(), Context); 971 for (auto FD : RExp->Fields) 972 Res += getExpansionSize(FD->getType(), Context); 973 return Res; 974 } 975 if (isa<ComplexExpansion>(Exp.get())) 976 return 2; 977 assert(isa<NoExpansion>(Exp.get())); 978 return 1; 979 } 980 981 void 982 CodeGenTypes::getExpandedTypes(QualType Ty, 983 SmallVectorImpl<llvm::Type *>::iterator &TI) { 984 auto Exp = getTypeExpansion(Ty, Context); 985 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 986 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 987 getExpandedTypes(CAExp->EltTy, TI); 988 } 989 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 990 for (auto BS : RExp->Bases) 991 getExpandedTypes(BS->getType(), TI); 992 for (auto FD : RExp->Fields) 993 getExpandedTypes(FD->getType(), TI); 994 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 995 llvm::Type *EltTy = ConvertType(CExp->EltTy); 996 *TI++ = EltTy; 997 *TI++ = EltTy; 998 } else { 999 assert(isa<NoExpansion>(Exp.get())); 1000 *TI++ = ConvertType(Ty); 1001 } 1002 } 1003 1004 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1005 ConstantArrayExpansion *CAE, 1006 Address BaseAddr, 1007 llvm::function_ref<void(Address)> Fn) { 1008 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1009 CharUnits EltAlign = 1010 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1011 1012 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1013 llvm::Value *EltAddr = 1014 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1015 Fn(Address(EltAddr, EltAlign)); 1016 } 1017 } 1018 1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1020 llvm::Function::arg_iterator &AI) { 1021 assert(LV.isSimple() && 1022 "Unexpected non-simple lvalue during struct expansion."); 1023 1024 auto Exp = getTypeExpansion(Ty, getContext()); 1025 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1026 forConstantArrayExpansion( 1027 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1028 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1029 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1030 }); 1031 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1032 Address This = LV.getAddress(*this); 1033 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1034 // Perform a single step derived-to-base conversion. 1035 Address Base = 1036 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1037 /*NullCheckValue=*/false, SourceLocation()); 1038 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1039 1040 // Recurse onto bases. 1041 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1042 } 1043 for (auto FD : RExp->Fields) { 1044 // FIXME: What are the right qualifiers here? 1045 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1046 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1047 } 1048 } else if (isa<ComplexExpansion>(Exp.get())) { 1049 auto realValue = &*AI++; 1050 auto imagValue = &*AI++; 1051 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1052 } else { 1053 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1054 // primitive store. 1055 assert(isa<NoExpansion>(Exp.get())); 1056 if (LV.isBitField()) 1057 EmitStoreThroughLValue(RValue::get(&*AI++), LV); 1058 else 1059 EmitStoreOfScalar(&*AI++, LV); 1060 } 1061 } 1062 1063 void CodeGenFunction::ExpandTypeToArgs( 1064 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1065 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1066 auto Exp = getTypeExpansion(Ty, getContext()); 1067 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1068 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1069 : Arg.getKnownRValue().getAggregateAddress(); 1070 forConstantArrayExpansion( 1071 *this, CAExp, Addr, [&](Address EltAddr) { 1072 CallArg EltArg = CallArg( 1073 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1074 CAExp->EltTy); 1075 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1076 IRCallArgPos); 1077 }); 1078 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1079 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1080 : Arg.getKnownRValue().getAggregateAddress(); 1081 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1082 // Perform a single step derived-to-base conversion. 1083 Address Base = 1084 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1085 /*NullCheckValue=*/false, SourceLocation()); 1086 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1087 1088 // Recurse onto bases. 1089 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1090 IRCallArgPos); 1091 } 1092 1093 LValue LV = MakeAddrLValue(This, Ty); 1094 for (auto FD : RExp->Fields) { 1095 CallArg FldArg = 1096 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1097 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1098 IRCallArgPos); 1099 } 1100 } else if (isa<ComplexExpansion>(Exp.get())) { 1101 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1102 IRCallArgs[IRCallArgPos++] = CV.first; 1103 IRCallArgs[IRCallArgPos++] = CV.second; 1104 } else { 1105 assert(isa<NoExpansion>(Exp.get())); 1106 auto RV = Arg.getKnownRValue(); 1107 assert(RV.isScalar() && 1108 "Unexpected non-scalar rvalue during struct expansion."); 1109 1110 // Insert a bitcast as needed. 1111 llvm::Value *V = RV.getScalarVal(); 1112 if (IRCallArgPos < IRFuncTy->getNumParams() && 1113 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1114 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1115 1116 IRCallArgs[IRCallArgPos++] = V; 1117 } 1118 } 1119 1120 /// Create a temporary allocation for the purposes of coercion. 1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1122 CharUnits MinAlign, 1123 const Twine &Name = "tmp") { 1124 // Don't use an alignment that's worse than what LLVM would prefer. 1125 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1126 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1127 1128 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1129 } 1130 1131 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1132 /// accessing some number of bytes out of it, try to gep into the struct to get 1133 /// at its inner goodness. Dive as deep as possible without entering an element 1134 /// with an in-memory size smaller than DstSize. 1135 static Address 1136 EnterStructPointerForCoercedAccess(Address SrcPtr, 1137 llvm::StructType *SrcSTy, 1138 uint64_t DstSize, CodeGenFunction &CGF) { 1139 // We can't dive into a zero-element struct. 1140 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1141 1142 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1143 1144 // If the first elt is at least as large as what we're looking for, or if the 1145 // first element is the same size as the whole struct, we can enter it. The 1146 // comparison must be made on the store size and not the alloca size. Using 1147 // the alloca size may overstate the size of the load. 1148 uint64_t FirstEltSize = 1149 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1150 if (FirstEltSize < DstSize && 1151 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1152 return SrcPtr; 1153 1154 // GEP into the first element. 1155 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1156 1157 // If the first element is a struct, recurse. 1158 llvm::Type *SrcTy = SrcPtr.getElementType(); 1159 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1160 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1161 1162 return SrcPtr; 1163 } 1164 1165 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1166 /// are either integers or pointers. This does a truncation of the value if it 1167 /// is too large or a zero extension if it is too small. 1168 /// 1169 /// This behaves as if the value were coerced through memory, so on big-endian 1170 /// targets the high bits are preserved in a truncation, while little-endian 1171 /// targets preserve the low bits. 1172 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1173 llvm::Type *Ty, 1174 CodeGenFunction &CGF) { 1175 if (Val->getType() == Ty) 1176 return Val; 1177 1178 if (isa<llvm::PointerType>(Val->getType())) { 1179 // If this is Pointer->Pointer avoid conversion to and from int. 1180 if (isa<llvm::PointerType>(Ty)) 1181 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1182 1183 // Convert the pointer to an integer so we can play with its width. 1184 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1185 } 1186 1187 llvm::Type *DestIntTy = Ty; 1188 if (isa<llvm::PointerType>(DestIntTy)) 1189 DestIntTy = CGF.IntPtrTy; 1190 1191 if (Val->getType() != DestIntTy) { 1192 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1193 if (DL.isBigEndian()) { 1194 // Preserve the high bits on big-endian targets. 1195 // That is what memory coercion does. 1196 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1197 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1198 1199 if (SrcSize > DstSize) { 1200 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1201 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1202 } else { 1203 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1204 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1205 } 1206 } else { 1207 // Little-endian targets preserve the low bits. No shifts required. 1208 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1209 } 1210 } 1211 1212 if (isa<llvm::PointerType>(Ty)) 1213 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1214 return Val; 1215 } 1216 1217 1218 1219 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1220 /// a pointer to an object of type \arg Ty, known to be aligned to 1221 /// \arg SrcAlign bytes. 1222 /// 1223 /// This safely handles the case when the src type is smaller than the 1224 /// destination type; in this situation the values of bits which not 1225 /// present in the src are undefined. 1226 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1227 CodeGenFunction &CGF) { 1228 llvm::Type *SrcTy = Src.getElementType(); 1229 1230 // If SrcTy and Ty are the same, just do a load. 1231 if (SrcTy == Ty) 1232 return CGF.Builder.CreateLoad(Src); 1233 1234 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1235 1236 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1237 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1238 DstSize.getFixedSize(), CGF); 1239 SrcTy = Src.getElementType(); 1240 } 1241 1242 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1243 1244 // If the source and destination are integer or pointer types, just do an 1245 // extension or truncation to the desired type. 1246 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1247 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1248 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1249 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1250 } 1251 1252 // If load is legal, just bitcast the src pointer. 1253 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1254 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1255 // Generally SrcSize is never greater than DstSize, since this means we are 1256 // losing bits. However, this can happen in cases where the structure has 1257 // additional padding, for example due to a user specified alignment. 1258 // 1259 // FIXME: Assert that we aren't truncating non-padding bits when have access 1260 // to that information. 1261 Src = CGF.Builder.CreateBitCast(Src, 1262 Ty->getPointerTo(Src.getAddressSpace())); 1263 return CGF.Builder.CreateLoad(Src); 1264 } 1265 1266 // Otherwise do coercion through memory. This is stupid, but simple. 1267 Address Tmp = 1268 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1269 CGF.Builder.CreateMemCpy( 1270 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1271 Src.getAlignment().getAsAlign(), 1272 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1273 return CGF.Builder.CreateLoad(Tmp); 1274 } 1275 1276 // Function to store a first-class aggregate into memory. We prefer to 1277 // store the elements rather than the aggregate to be more friendly to 1278 // fast-isel. 1279 // FIXME: Do we need to recurse here? 1280 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1281 bool DestIsVolatile) { 1282 // Prefer scalar stores to first-class aggregate stores. 1283 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1284 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1285 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1286 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1287 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1288 } 1289 } else { 1290 Builder.CreateStore(Val, Dest, DestIsVolatile); 1291 } 1292 } 1293 1294 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1295 /// where the source and destination may have different types. The 1296 /// destination is known to be aligned to \arg DstAlign bytes. 1297 /// 1298 /// This safely handles the case when the src type is larger than the 1299 /// destination type; the upper bits of the src will be lost. 1300 static void CreateCoercedStore(llvm::Value *Src, 1301 Address Dst, 1302 bool DstIsVolatile, 1303 CodeGenFunction &CGF) { 1304 llvm::Type *SrcTy = Src->getType(); 1305 llvm::Type *DstTy = Dst.getElementType(); 1306 if (SrcTy == DstTy) { 1307 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1308 return; 1309 } 1310 1311 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1312 1313 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1314 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1315 SrcSize.getFixedSize(), CGF); 1316 DstTy = Dst.getElementType(); 1317 } 1318 1319 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1320 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1321 if (SrcPtrTy && DstPtrTy && 1322 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1323 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1324 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1325 return; 1326 } 1327 1328 // If the source and destination are integer or pointer types, just do an 1329 // extension or truncation to the desired type. 1330 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1331 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1332 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1333 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1334 return; 1335 } 1336 1337 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1338 1339 // If store is legal, just bitcast the src pointer. 1340 if (isa<llvm::ScalableVectorType>(SrcTy) || 1341 isa<llvm::ScalableVectorType>(DstTy) || 1342 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1343 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1344 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1345 } else { 1346 // Otherwise do coercion through memory. This is stupid, but 1347 // simple. 1348 1349 // Generally SrcSize is never greater than DstSize, since this means we are 1350 // losing bits. However, this can happen in cases where the structure has 1351 // additional padding, for example due to a user specified alignment. 1352 // 1353 // FIXME: Assert that we aren't truncating non-padding bits when have access 1354 // to that information. 1355 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1356 CGF.Builder.CreateStore(Src, Tmp); 1357 CGF.Builder.CreateMemCpy( 1358 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1359 Tmp.getAlignment().getAsAlign(), 1360 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1361 } 1362 } 1363 1364 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1365 const ABIArgInfo &info) { 1366 if (unsigned offset = info.getDirectOffset()) { 1367 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1368 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1369 CharUnits::fromQuantity(offset)); 1370 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1371 } 1372 return addr; 1373 } 1374 1375 namespace { 1376 1377 /// Encapsulates information about the way function arguments from 1378 /// CGFunctionInfo should be passed to actual LLVM IR function. 1379 class ClangToLLVMArgMapping { 1380 static const unsigned InvalidIndex = ~0U; 1381 unsigned InallocaArgNo; 1382 unsigned SRetArgNo; 1383 unsigned TotalIRArgs; 1384 1385 /// Arguments of LLVM IR function corresponding to single Clang argument. 1386 struct IRArgs { 1387 unsigned PaddingArgIndex; 1388 // Argument is expanded to IR arguments at positions 1389 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1390 unsigned FirstArgIndex; 1391 unsigned NumberOfArgs; 1392 1393 IRArgs() 1394 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1395 NumberOfArgs(0) {} 1396 }; 1397 1398 SmallVector<IRArgs, 8> ArgInfo; 1399 1400 public: 1401 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1402 bool OnlyRequiredArgs = false) 1403 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1404 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1405 construct(Context, FI, OnlyRequiredArgs); 1406 } 1407 1408 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1409 unsigned getInallocaArgNo() const { 1410 assert(hasInallocaArg()); 1411 return InallocaArgNo; 1412 } 1413 1414 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1415 unsigned getSRetArgNo() const { 1416 assert(hasSRetArg()); 1417 return SRetArgNo; 1418 } 1419 1420 unsigned totalIRArgs() const { return TotalIRArgs; } 1421 1422 bool hasPaddingArg(unsigned ArgNo) const { 1423 assert(ArgNo < ArgInfo.size()); 1424 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1425 } 1426 unsigned getPaddingArgNo(unsigned ArgNo) const { 1427 assert(hasPaddingArg(ArgNo)); 1428 return ArgInfo[ArgNo].PaddingArgIndex; 1429 } 1430 1431 /// Returns index of first IR argument corresponding to ArgNo, and their 1432 /// quantity. 1433 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1434 assert(ArgNo < ArgInfo.size()); 1435 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1436 ArgInfo[ArgNo].NumberOfArgs); 1437 } 1438 1439 private: 1440 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1441 bool OnlyRequiredArgs); 1442 }; 1443 1444 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1445 const CGFunctionInfo &FI, 1446 bool OnlyRequiredArgs) { 1447 unsigned IRArgNo = 0; 1448 bool SwapThisWithSRet = false; 1449 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1450 1451 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1452 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1453 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1454 } 1455 1456 unsigned ArgNo = 0; 1457 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1458 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1459 ++I, ++ArgNo) { 1460 assert(I != FI.arg_end()); 1461 QualType ArgType = I->type; 1462 const ABIArgInfo &AI = I->info; 1463 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1464 auto &IRArgs = ArgInfo[ArgNo]; 1465 1466 if (AI.getPaddingType()) 1467 IRArgs.PaddingArgIndex = IRArgNo++; 1468 1469 switch (AI.getKind()) { 1470 case ABIArgInfo::Extend: 1471 case ABIArgInfo::Direct: { 1472 // FIXME: handle sseregparm someday... 1473 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1474 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1475 IRArgs.NumberOfArgs = STy->getNumElements(); 1476 } else { 1477 IRArgs.NumberOfArgs = 1; 1478 } 1479 break; 1480 } 1481 case ABIArgInfo::Indirect: 1482 case ABIArgInfo::IndirectAliased: 1483 IRArgs.NumberOfArgs = 1; 1484 break; 1485 case ABIArgInfo::Ignore: 1486 case ABIArgInfo::InAlloca: 1487 // ignore and inalloca doesn't have matching LLVM parameters. 1488 IRArgs.NumberOfArgs = 0; 1489 break; 1490 case ABIArgInfo::CoerceAndExpand: 1491 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1492 break; 1493 case ABIArgInfo::Expand: 1494 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1495 break; 1496 } 1497 1498 if (IRArgs.NumberOfArgs > 0) { 1499 IRArgs.FirstArgIndex = IRArgNo; 1500 IRArgNo += IRArgs.NumberOfArgs; 1501 } 1502 1503 // Skip over the sret parameter when it comes second. We already handled it 1504 // above. 1505 if (IRArgNo == 1 && SwapThisWithSRet) 1506 IRArgNo++; 1507 } 1508 assert(ArgNo == ArgInfo.size()); 1509 1510 if (FI.usesInAlloca()) 1511 InallocaArgNo = IRArgNo++; 1512 1513 TotalIRArgs = IRArgNo; 1514 } 1515 } // namespace 1516 1517 /***/ 1518 1519 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1520 const auto &RI = FI.getReturnInfo(); 1521 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1522 } 1523 1524 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1525 return ReturnTypeUsesSRet(FI) && 1526 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1527 } 1528 1529 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1530 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1531 switch (BT->getKind()) { 1532 default: 1533 return false; 1534 case BuiltinType::Float: 1535 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1536 case BuiltinType::Double: 1537 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1538 case BuiltinType::LongDouble: 1539 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1540 } 1541 } 1542 1543 return false; 1544 } 1545 1546 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1547 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1548 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1549 if (BT->getKind() == BuiltinType::LongDouble) 1550 return getTarget().useObjCFP2RetForComplexLongDouble(); 1551 } 1552 } 1553 1554 return false; 1555 } 1556 1557 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1558 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1559 return GetFunctionType(FI); 1560 } 1561 1562 llvm::FunctionType * 1563 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1564 1565 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1566 (void)Inserted; 1567 assert(Inserted && "Recursively being processed?"); 1568 1569 llvm::Type *resultType = nullptr; 1570 const ABIArgInfo &retAI = FI.getReturnInfo(); 1571 switch (retAI.getKind()) { 1572 case ABIArgInfo::Expand: 1573 case ABIArgInfo::IndirectAliased: 1574 llvm_unreachable("Invalid ABI kind for return argument"); 1575 1576 case ABIArgInfo::Extend: 1577 case ABIArgInfo::Direct: 1578 resultType = retAI.getCoerceToType(); 1579 break; 1580 1581 case ABIArgInfo::InAlloca: 1582 if (retAI.getInAllocaSRet()) { 1583 // sret things on win32 aren't void, they return the sret pointer. 1584 QualType ret = FI.getReturnType(); 1585 llvm::Type *ty = ConvertType(ret); 1586 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1587 resultType = llvm::PointerType::get(ty, addressSpace); 1588 } else { 1589 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1590 } 1591 break; 1592 1593 case ABIArgInfo::Indirect: 1594 case ABIArgInfo::Ignore: 1595 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1596 break; 1597 1598 case ABIArgInfo::CoerceAndExpand: 1599 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1600 break; 1601 } 1602 1603 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1604 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1605 1606 // Add type for sret argument. 1607 if (IRFunctionArgs.hasSRetArg()) { 1608 QualType Ret = FI.getReturnType(); 1609 llvm::Type *Ty = ConvertType(Ret); 1610 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1611 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1612 llvm::PointerType::get(Ty, AddressSpace); 1613 } 1614 1615 // Add type for inalloca argument. 1616 if (IRFunctionArgs.hasInallocaArg()) { 1617 auto ArgStruct = FI.getArgStruct(); 1618 assert(ArgStruct); 1619 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1620 } 1621 1622 // Add in all of the required arguments. 1623 unsigned ArgNo = 0; 1624 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1625 ie = it + FI.getNumRequiredArgs(); 1626 for (; it != ie; ++it, ++ArgNo) { 1627 const ABIArgInfo &ArgInfo = it->info; 1628 1629 // Insert a padding type to ensure proper alignment. 1630 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1631 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1632 ArgInfo.getPaddingType(); 1633 1634 unsigned FirstIRArg, NumIRArgs; 1635 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1636 1637 switch (ArgInfo.getKind()) { 1638 case ABIArgInfo::Ignore: 1639 case ABIArgInfo::InAlloca: 1640 assert(NumIRArgs == 0); 1641 break; 1642 1643 case ABIArgInfo::Indirect: { 1644 assert(NumIRArgs == 1); 1645 // indirect arguments are always on the stack, which is alloca addr space. 1646 llvm::Type *LTy = ConvertTypeForMem(it->type); 1647 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1648 CGM.getDataLayout().getAllocaAddrSpace()); 1649 break; 1650 } 1651 case ABIArgInfo::IndirectAliased: { 1652 assert(NumIRArgs == 1); 1653 llvm::Type *LTy = ConvertTypeForMem(it->type); 1654 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1655 break; 1656 } 1657 case ABIArgInfo::Extend: 1658 case ABIArgInfo::Direct: { 1659 // Fast-isel and the optimizer generally like scalar values better than 1660 // FCAs, so we flatten them if this is safe to do for this argument. 1661 llvm::Type *argType = ArgInfo.getCoerceToType(); 1662 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1663 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1664 assert(NumIRArgs == st->getNumElements()); 1665 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1666 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1667 } else { 1668 assert(NumIRArgs == 1); 1669 ArgTypes[FirstIRArg] = argType; 1670 } 1671 break; 1672 } 1673 1674 case ABIArgInfo::CoerceAndExpand: { 1675 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1676 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1677 *ArgTypesIter++ = EltTy; 1678 } 1679 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1680 break; 1681 } 1682 1683 case ABIArgInfo::Expand: 1684 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1685 getExpandedTypes(it->type, ArgTypesIter); 1686 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1687 break; 1688 } 1689 } 1690 1691 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1692 assert(Erased && "Not in set?"); 1693 1694 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1695 } 1696 1697 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1698 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1699 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1700 1701 if (!isFuncTypeConvertible(FPT)) 1702 return llvm::StructType::get(getLLVMContext()); 1703 1704 return GetFunctionType(GD); 1705 } 1706 1707 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1708 llvm::AttrBuilder &FuncAttrs, 1709 const FunctionProtoType *FPT) { 1710 if (!FPT) 1711 return; 1712 1713 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1714 FPT->isNothrow()) 1715 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1716 } 1717 1718 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1719 bool HasOptnone, 1720 bool AttrOnCallSite, 1721 llvm::AttrBuilder &FuncAttrs) { 1722 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1723 if (!HasOptnone) { 1724 if (CodeGenOpts.OptimizeSize) 1725 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1726 if (CodeGenOpts.OptimizeSize == 2) 1727 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1728 } 1729 1730 if (CodeGenOpts.DisableRedZone) 1731 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1732 if (CodeGenOpts.IndirectTlsSegRefs) 1733 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1734 if (CodeGenOpts.NoImplicitFloat) 1735 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1736 1737 if (AttrOnCallSite) { 1738 // Attributes that should go on the call site only. 1739 if (!CodeGenOpts.SimplifyLibCalls || 1740 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1741 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1742 if (!CodeGenOpts.TrapFuncName.empty()) 1743 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1744 } else { 1745 StringRef FpKind; 1746 switch (CodeGenOpts.getFramePointer()) { 1747 case CodeGenOptions::FramePointerKind::None: 1748 FpKind = "none"; 1749 break; 1750 case CodeGenOptions::FramePointerKind::NonLeaf: 1751 FpKind = "non-leaf"; 1752 break; 1753 case CodeGenOptions::FramePointerKind::All: 1754 FpKind = "all"; 1755 break; 1756 } 1757 FuncAttrs.addAttribute("frame-pointer", FpKind); 1758 1759 FuncAttrs.addAttribute("less-precise-fpmad", 1760 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1761 1762 if (CodeGenOpts.NullPointerIsValid) 1763 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1764 1765 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1766 FuncAttrs.addAttribute("denormal-fp-math", 1767 CodeGenOpts.FPDenormalMode.str()); 1768 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1769 FuncAttrs.addAttribute( 1770 "denormal-fp-math-f32", 1771 CodeGenOpts.FP32DenormalMode.str()); 1772 } 1773 1774 FuncAttrs.addAttribute("no-trapping-math", 1775 llvm::toStringRef(LangOpts.getFPExceptionMode() == 1776 LangOptions::FPE_Ignore)); 1777 1778 // Strict (compliant) code is the default, so only add this attribute to 1779 // indicate that we are trying to workaround a problem case. 1780 if (!CodeGenOpts.StrictFloatCastOverflow) 1781 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1782 1783 // TODO: Are these all needed? 1784 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1785 FuncAttrs.addAttribute("no-infs-fp-math", 1786 llvm::toStringRef(LangOpts.NoHonorInfs)); 1787 FuncAttrs.addAttribute("no-nans-fp-math", 1788 llvm::toStringRef(LangOpts.NoHonorNaNs)); 1789 FuncAttrs.addAttribute("unsafe-fp-math", 1790 llvm::toStringRef(LangOpts.UnsafeFPMath)); 1791 FuncAttrs.addAttribute("use-soft-float", 1792 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1793 FuncAttrs.addAttribute("stack-protector-buffer-size", 1794 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1795 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1796 llvm::toStringRef(LangOpts.NoSignedZero)); 1797 FuncAttrs.addAttribute( 1798 "correctly-rounded-divide-sqrt-fp-math", 1799 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1800 1801 // TODO: Reciprocal estimate codegen options should apply to instructions? 1802 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1803 if (!Recips.empty()) 1804 FuncAttrs.addAttribute("reciprocal-estimates", 1805 llvm::join(Recips, ",")); 1806 1807 if (!CodeGenOpts.PreferVectorWidth.empty() && 1808 CodeGenOpts.PreferVectorWidth != "none") 1809 FuncAttrs.addAttribute("prefer-vector-width", 1810 CodeGenOpts.PreferVectorWidth); 1811 1812 if (CodeGenOpts.StackRealignment) 1813 FuncAttrs.addAttribute("stackrealign"); 1814 if (CodeGenOpts.Backchain) 1815 FuncAttrs.addAttribute("backchain"); 1816 if (CodeGenOpts.EnableSegmentedStacks) 1817 FuncAttrs.addAttribute("split-stack"); 1818 1819 if (CodeGenOpts.SpeculativeLoadHardening) 1820 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1821 } 1822 1823 if (getLangOpts().assumeFunctionsAreConvergent()) { 1824 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1825 // convergent (meaning, they may call an intrinsically convergent op, such 1826 // as __syncthreads() / barrier(), and so can't have certain optimizations 1827 // applied around them). LLVM will remove this attribute where it safely 1828 // can. 1829 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1830 } 1831 1832 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1833 // Exceptions aren't supported in CUDA device code. 1834 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1835 } 1836 1837 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1838 StringRef Var, Value; 1839 std::tie(Var, Value) = Attr.split('='); 1840 FuncAttrs.addAttribute(Var, Value); 1841 } 1842 } 1843 1844 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1845 llvm::AttrBuilder FuncAttrs; 1846 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1847 /* AttrOnCallSite = */ false, FuncAttrs); 1848 // TODO: call GetCPUAndFeaturesAttributes? 1849 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1850 } 1851 1852 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1853 llvm::AttrBuilder &attrs) { 1854 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1855 /*for call*/ false, attrs); 1856 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1857 } 1858 1859 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1860 const LangOptions &LangOpts, 1861 const NoBuiltinAttr *NBA = nullptr) { 1862 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1863 SmallString<32> AttributeName; 1864 AttributeName += "no-builtin-"; 1865 AttributeName += BuiltinName; 1866 FuncAttrs.addAttribute(AttributeName); 1867 }; 1868 1869 // First, handle the language options passed through -fno-builtin. 1870 if (LangOpts.NoBuiltin) { 1871 // -fno-builtin disables them all. 1872 FuncAttrs.addAttribute("no-builtins"); 1873 return; 1874 } 1875 1876 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1877 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1878 1879 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1880 // the source. 1881 if (!NBA) 1882 return; 1883 1884 // If there is a wildcard in the builtin names specified through the 1885 // attribute, disable them all. 1886 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1887 FuncAttrs.addAttribute("no-builtins"); 1888 return; 1889 } 1890 1891 // And last, add the rest of the builtin names. 1892 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1893 } 1894 1895 /// Construct the IR attribute list of a function or call. 1896 /// 1897 /// When adding an attribute, please consider where it should be handled: 1898 /// 1899 /// - getDefaultFunctionAttributes is for attributes that are essentially 1900 /// part of the global target configuration (but perhaps can be 1901 /// overridden on a per-function basis). Adding attributes there 1902 /// will cause them to also be set in frontends that build on Clang's 1903 /// target-configuration logic, as well as for code defined in library 1904 /// modules such as CUDA's libdevice. 1905 /// 1906 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 1907 /// and adds declaration-specific, convention-specific, and 1908 /// frontend-specific logic. The last is of particular importance: 1909 /// attributes that restrict how the frontend generates code must be 1910 /// added here rather than getDefaultFunctionAttributes. 1911 /// 1912 void CodeGenModule::ConstructAttributeList( 1913 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1914 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1915 llvm::AttrBuilder FuncAttrs; 1916 llvm::AttrBuilder RetAttrs; 1917 1918 // Collect function IR attributes from the CC lowering. 1919 // We'll collect the paramete and result attributes later. 1920 CallingConv = FI.getEffectiveCallingConvention(); 1921 if (FI.isNoReturn()) 1922 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1923 if (FI.isCmseNSCall()) 1924 FuncAttrs.addAttribute("cmse_nonsecure_call"); 1925 1926 // Collect function IR attributes from the callee prototype if we have one. 1927 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1928 CalleeInfo.getCalleeFunctionProtoType()); 1929 1930 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1931 1932 bool HasOptnone = false; 1933 // The NoBuiltinAttr attached to the target FunctionDecl. 1934 const NoBuiltinAttr *NBA = nullptr; 1935 1936 // Collect function IR attributes based on declaration-specific 1937 // information. 1938 // FIXME: handle sseregparm someday... 1939 if (TargetDecl) { 1940 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1941 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1942 if (TargetDecl->hasAttr<NoThrowAttr>()) 1943 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1944 if (TargetDecl->hasAttr<NoReturnAttr>()) 1945 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1946 if (TargetDecl->hasAttr<ColdAttr>()) 1947 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1948 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1949 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1950 if (TargetDecl->hasAttr<ConvergentAttr>()) 1951 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1952 1953 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1954 AddAttributesFromFunctionProtoType( 1955 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1956 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 1957 // A sane operator new returns a non-aliasing pointer. 1958 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 1959 if (getCodeGenOpts().AssumeSaneOperatorNew && 1960 (Kind == OO_New || Kind == OO_Array_New)) 1961 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1962 } 1963 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1964 const bool IsVirtualCall = MD && MD->isVirtual(); 1965 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1966 // virtual function. These attributes are not inherited by overloads. 1967 if (!(AttrOnCallSite && IsVirtualCall)) { 1968 if (Fn->isNoReturn()) 1969 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1970 NBA = Fn->getAttr<NoBuiltinAttr>(); 1971 } 1972 } 1973 1974 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1975 if (TargetDecl->hasAttr<ConstAttr>()) { 1976 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1977 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1978 } else if (TargetDecl->hasAttr<PureAttr>()) { 1979 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1980 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1981 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1982 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1983 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1984 } 1985 if (TargetDecl->hasAttr<RestrictAttr>()) 1986 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1987 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1988 !CodeGenOpts.NullPointerIsValid) 1989 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1990 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1991 FuncAttrs.addAttribute("no_caller_saved_registers"); 1992 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1993 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1994 1995 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1996 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1997 Optional<unsigned> NumElemsParam; 1998 if (AllocSize->getNumElemsParam().isValid()) 1999 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2000 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2001 NumElemsParam); 2002 } 2003 2004 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2005 if (getLangOpts().OpenCLVersion <= 120) { 2006 // OpenCL v1.2 Work groups are always uniform 2007 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2008 } else { 2009 // OpenCL v2.0 Work groups may be whether uniform or not. 2010 // '-cl-uniform-work-group-size' compile option gets a hint 2011 // to the compiler that the global work-size be a multiple of 2012 // the work-group size specified to clEnqueueNDRangeKernel 2013 // (i.e. work groups are uniform). 2014 FuncAttrs.addAttribute("uniform-work-group-size", 2015 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2016 } 2017 } 2018 } 2019 2020 // Attach "no-builtins" attributes to: 2021 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2022 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2023 // The attributes can come from: 2024 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2025 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2026 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2027 2028 // Collect function IR attributes based on global settiings. 2029 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2030 2031 // Override some default IR attributes based on declaration-specific 2032 // information. 2033 if (TargetDecl) { 2034 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2035 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2036 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2037 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2038 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2039 FuncAttrs.removeAttribute("split-stack"); 2040 2041 // Add NonLazyBind attribute to function declarations when -fno-plt 2042 // is used. 2043 // FIXME: what if we just haven't processed the function definition 2044 // yet, or if it's an external definition like C99 inline? 2045 if (CodeGenOpts.NoPLT) { 2046 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2047 if (!Fn->isDefined() && !AttrOnCallSite) { 2048 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2049 } 2050 } 2051 } 2052 } 2053 2054 // Collect non-call-site function IR attributes from declaration-specific 2055 // information. 2056 if (!AttrOnCallSite) { 2057 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2058 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2059 2060 // Whether tail calls are enabled. 2061 auto shouldDisableTailCalls = [&] { 2062 // Should this be honored in getDefaultFunctionAttributes? 2063 if (CodeGenOpts.DisableTailCalls) 2064 return true; 2065 2066 if (!TargetDecl) 2067 return false; 2068 2069 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2070 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2071 return true; 2072 2073 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2074 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2075 if (!BD->doesNotEscape()) 2076 return true; 2077 } 2078 2079 return false; 2080 }; 2081 FuncAttrs.addAttribute("disable-tail-calls", 2082 llvm::toStringRef(shouldDisableTailCalls())); 2083 2084 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2085 // handles these separately to set them based on the global defaults. 2086 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2087 } 2088 2089 // Collect attributes from arguments and return values. 2090 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2091 2092 QualType RetTy = FI.getReturnType(); 2093 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2094 switch (RetAI.getKind()) { 2095 case ABIArgInfo::Extend: 2096 if (RetAI.isSignExt()) 2097 RetAttrs.addAttribute(llvm::Attribute::SExt); 2098 else 2099 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2100 LLVM_FALLTHROUGH; 2101 case ABIArgInfo::Direct: 2102 if (RetAI.getInReg()) 2103 RetAttrs.addAttribute(llvm::Attribute::InReg); 2104 break; 2105 case ABIArgInfo::Ignore: 2106 break; 2107 2108 case ABIArgInfo::InAlloca: 2109 case ABIArgInfo::Indirect: { 2110 // inalloca and sret disable readnone and readonly 2111 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2112 .removeAttribute(llvm::Attribute::ReadNone); 2113 break; 2114 } 2115 2116 case ABIArgInfo::CoerceAndExpand: 2117 break; 2118 2119 case ABIArgInfo::Expand: 2120 case ABIArgInfo::IndirectAliased: 2121 llvm_unreachable("Invalid ABI kind for return argument"); 2122 } 2123 2124 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2125 QualType PTy = RefTy->getPointeeType(); 2126 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2127 RetAttrs.addDereferenceableAttr( 2128 getMinimumObjectSize(PTy).getQuantity()); 2129 if (getContext().getTargetAddressSpace(PTy) == 0 && 2130 !CodeGenOpts.NullPointerIsValid) 2131 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2132 if (PTy->isObjectType()) { 2133 llvm::Align Alignment = 2134 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2135 RetAttrs.addAlignmentAttr(Alignment); 2136 } 2137 } 2138 2139 bool hasUsedSRet = false; 2140 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2141 2142 // Attach attributes to sret. 2143 if (IRFunctionArgs.hasSRetArg()) { 2144 llvm::AttrBuilder SRETAttrs; 2145 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2146 hasUsedSRet = true; 2147 if (RetAI.getInReg()) 2148 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2149 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2150 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2151 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2152 } 2153 2154 // Attach attributes to inalloca argument. 2155 if (IRFunctionArgs.hasInallocaArg()) { 2156 llvm::AttrBuilder Attrs; 2157 Attrs.addAttribute(llvm::Attribute::InAlloca); 2158 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2159 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2160 } 2161 2162 unsigned ArgNo = 0; 2163 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2164 E = FI.arg_end(); 2165 I != E; ++I, ++ArgNo) { 2166 QualType ParamType = I->type; 2167 const ABIArgInfo &AI = I->info; 2168 llvm::AttrBuilder Attrs; 2169 2170 // Add attribute for padding argument, if necessary. 2171 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2172 if (AI.getPaddingInReg()) { 2173 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2174 llvm::AttributeSet::get( 2175 getLLVMContext(), 2176 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2177 } 2178 } 2179 2180 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2181 // have the corresponding parameter variable. It doesn't make 2182 // sense to do it here because parameters are so messed up. 2183 switch (AI.getKind()) { 2184 case ABIArgInfo::Extend: 2185 if (AI.isSignExt()) 2186 Attrs.addAttribute(llvm::Attribute::SExt); 2187 else 2188 Attrs.addAttribute(llvm::Attribute::ZExt); 2189 LLVM_FALLTHROUGH; 2190 case ABIArgInfo::Direct: 2191 if (ArgNo == 0 && FI.isChainCall()) 2192 Attrs.addAttribute(llvm::Attribute::Nest); 2193 else if (AI.getInReg()) 2194 Attrs.addAttribute(llvm::Attribute::InReg); 2195 break; 2196 2197 case ABIArgInfo::Indirect: { 2198 if (AI.getInReg()) 2199 Attrs.addAttribute(llvm::Attribute::InReg); 2200 2201 if (AI.getIndirectByVal()) 2202 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2203 2204 // TODO: We could add the byref attribute if not byval, but it would 2205 // require updating many testcases. 2206 2207 CharUnits Align = AI.getIndirectAlign(); 2208 2209 // In a byval argument, it is important that the required 2210 // alignment of the type is honored, as LLVM might be creating a 2211 // *new* stack object, and needs to know what alignment to give 2212 // it. (Sometimes it can deduce a sensible alignment on its own, 2213 // but not if clang decides it must emit a packed struct, or the 2214 // user specifies increased alignment requirements.) 2215 // 2216 // This is different from indirect *not* byval, where the object 2217 // exists already, and the align attribute is purely 2218 // informative. 2219 assert(!Align.isZero()); 2220 2221 // For now, only add this when we have a byval argument. 2222 // TODO: be less lazy about updating test cases. 2223 if (AI.getIndirectByVal()) 2224 Attrs.addAlignmentAttr(Align.getQuantity()); 2225 2226 // byval disables readnone and readonly. 2227 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2228 .removeAttribute(llvm::Attribute::ReadNone); 2229 2230 break; 2231 } 2232 case ABIArgInfo::IndirectAliased: { 2233 CharUnits Align = AI.getIndirectAlign(); 2234 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2235 Attrs.addAlignmentAttr(Align.getQuantity()); 2236 break; 2237 } 2238 case ABIArgInfo::Ignore: 2239 case ABIArgInfo::Expand: 2240 case ABIArgInfo::CoerceAndExpand: 2241 break; 2242 2243 case ABIArgInfo::InAlloca: 2244 // inalloca disables readnone and readonly. 2245 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2246 .removeAttribute(llvm::Attribute::ReadNone); 2247 continue; 2248 } 2249 2250 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2251 QualType PTy = RefTy->getPointeeType(); 2252 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2253 Attrs.addDereferenceableAttr( 2254 getMinimumObjectSize(PTy).getQuantity()); 2255 if (getContext().getTargetAddressSpace(PTy) == 0 && 2256 !CodeGenOpts.NullPointerIsValid) 2257 Attrs.addAttribute(llvm::Attribute::NonNull); 2258 if (PTy->isObjectType()) { 2259 llvm::Align Alignment = 2260 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2261 Attrs.addAlignmentAttr(Alignment); 2262 } 2263 } 2264 2265 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2266 case ParameterABI::Ordinary: 2267 break; 2268 2269 case ParameterABI::SwiftIndirectResult: { 2270 // Add 'sret' if we haven't already used it for something, but 2271 // only if the result is void. 2272 if (!hasUsedSRet && RetTy->isVoidType()) { 2273 Attrs.addAttribute(llvm::Attribute::StructRet); 2274 hasUsedSRet = true; 2275 } 2276 2277 // Add 'noalias' in either case. 2278 Attrs.addAttribute(llvm::Attribute::NoAlias); 2279 2280 // Add 'dereferenceable' and 'alignment'. 2281 auto PTy = ParamType->getPointeeType(); 2282 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2283 auto info = getContext().getTypeInfoInChars(PTy); 2284 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2285 Attrs.addAlignmentAttr(info.second.getAsAlign()); 2286 } 2287 break; 2288 } 2289 2290 case ParameterABI::SwiftErrorResult: 2291 Attrs.addAttribute(llvm::Attribute::SwiftError); 2292 break; 2293 2294 case ParameterABI::SwiftContext: 2295 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2296 break; 2297 } 2298 2299 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2300 Attrs.addAttribute(llvm::Attribute::NoCapture); 2301 2302 if (Attrs.hasAttributes()) { 2303 unsigned FirstIRArg, NumIRArgs; 2304 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2305 for (unsigned i = 0; i < NumIRArgs; i++) 2306 ArgAttrs[FirstIRArg + i] = 2307 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2308 } 2309 } 2310 assert(ArgNo == FI.arg_size()); 2311 2312 AttrList = llvm::AttributeList::get( 2313 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2314 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2315 } 2316 2317 /// An argument came in as a promoted argument; demote it back to its 2318 /// declared type. 2319 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2320 const VarDecl *var, 2321 llvm::Value *value) { 2322 llvm::Type *varType = CGF.ConvertType(var->getType()); 2323 2324 // This can happen with promotions that actually don't change the 2325 // underlying type, like the enum promotions. 2326 if (value->getType() == varType) return value; 2327 2328 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2329 && "unexpected promotion type"); 2330 2331 if (isa<llvm::IntegerType>(varType)) 2332 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2333 2334 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2335 } 2336 2337 /// Returns the attribute (either parameter attribute, or function 2338 /// attribute), which declares argument ArgNo to be non-null. 2339 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2340 QualType ArgType, unsigned ArgNo) { 2341 // FIXME: __attribute__((nonnull)) can also be applied to: 2342 // - references to pointers, where the pointee is known to be 2343 // nonnull (apparently a Clang extension) 2344 // - transparent unions containing pointers 2345 // In the former case, LLVM IR cannot represent the constraint. In 2346 // the latter case, we have no guarantee that the transparent union 2347 // is in fact passed as a pointer. 2348 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2349 return nullptr; 2350 // First, check attribute on parameter itself. 2351 if (PVD) { 2352 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2353 return ParmNNAttr; 2354 } 2355 // Check function attributes. 2356 if (!FD) 2357 return nullptr; 2358 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2359 if (NNAttr->isNonNull(ArgNo)) 2360 return NNAttr; 2361 } 2362 return nullptr; 2363 } 2364 2365 namespace { 2366 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2367 Address Temp; 2368 Address Arg; 2369 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2370 void Emit(CodeGenFunction &CGF, Flags flags) override { 2371 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2372 CGF.Builder.CreateStore(errorValue, Arg); 2373 } 2374 }; 2375 } 2376 2377 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2378 llvm::Function *Fn, 2379 const FunctionArgList &Args) { 2380 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2381 // Naked functions don't have prologues. 2382 return; 2383 2384 // If this is an implicit-return-zero function, go ahead and 2385 // initialize the return value. TODO: it might be nice to have 2386 // a more general mechanism for this that didn't require synthesized 2387 // return statements. 2388 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2389 if (FD->hasImplicitReturnZero()) { 2390 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2391 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2392 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2393 Builder.CreateStore(Zero, ReturnValue); 2394 } 2395 } 2396 2397 // FIXME: We no longer need the types from FunctionArgList; lift up and 2398 // simplify. 2399 2400 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2401 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2402 2403 // If we're using inalloca, all the memory arguments are GEPs off of the last 2404 // parameter, which is a pointer to the complete memory area. 2405 Address ArgStruct = Address::invalid(); 2406 if (IRFunctionArgs.hasInallocaArg()) { 2407 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2408 FI.getArgStructAlignment()); 2409 2410 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2411 } 2412 2413 // Name the struct return parameter. 2414 if (IRFunctionArgs.hasSRetArg()) { 2415 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2416 AI->setName("agg.result"); 2417 AI->addAttr(llvm::Attribute::NoAlias); 2418 } 2419 2420 // Track if we received the parameter as a pointer (indirect, byval, or 2421 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2422 // into a local alloca for us. 2423 SmallVector<ParamValue, 16> ArgVals; 2424 ArgVals.reserve(Args.size()); 2425 2426 // Create a pointer value for every parameter declaration. This usually 2427 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2428 // any cleanups or do anything that might unwind. We do that separately, so 2429 // we can push the cleanups in the correct order for the ABI. 2430 assert(FI.arg_size() == Args.size() && 2431 "Mismatch between function signature & arguments."); 2432 unsigned ArgNo = 0; 2433 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2434 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2435 i != e; ++i, ++info_it, ++ArgNo) { 2436 const VarDecl *Arg = *i; 2437 const ABIArgInfo &ArgI = info_it->info; 2438 2439 bool isPromoted = 2440 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2441 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2442 // the parameter is promoted. In this case we convert to 2443 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2444 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2445 assert(hasScalarEvaluationKind(Ty) == 2446 hasScalarEvaluationKind(Arg->getType())); 2447 2448 unsigned FirstIRArg, NumIRArgs; 2449 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2450 2451 switch (ArgI.getKind()) { 2452 case ABIArgInfo::InAlloca: { 2453 assert(NumIRArgs == 0); 2454 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2455 Address V = 2456 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2457 if (ArgI.getInAllocaIndirect()) 2458 V = Address(Builder.CreateLoad(V), 2459 getContext().getTypeAlignInChars(Ty)); 2460 ArgVals.push_back(ParamValue::forIndirect(V)); 2461 break; 2462 } 2463 2464 case ABIArgInfo::Indirect: 2465 case ABIArgInfo::IndirectAliased: { 2466 assert(NumIRArgs == 1); 2467 Address ParamAddr = 2468 Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign()); 2469 2470 if (!hasScalarEvaluationKind(Ty)) { 2471 // Aggregates and complex variables are accessed by reference. All we 2472 // need to do is realign the value, if requested. Also, if the address 2473 // may be aliased, copy it to ensure that the parameter variable is 2474 // mutable and has a unique adress, as C requires. 2475 Address V = ParamAddr; 2476 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2477 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2478 2479 // Copy from the incoming argument pointer to the temporary with the 2480 // appropriate alignment. 2481 // 2482 // FIXME: We should have a common utility for generating an aggregate 2483 // copy. 2484 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2485 Builder.CreateMemCpy( 2486 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2487 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2488 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2489 V = AlignedTemp; 2490 } 2491 ArgVals.push_back(ParamValue::forIndirect(V)); 2492 } else { 2493 // Load scalar value from indirect argument. 2494 llvm::Value *V = 2495 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2496 2497 if (isPromoted) 2498 V = emitArgumentDemotion(*this, Arg, V); 2499 ArgVals.push_back(ParamValue::forDirect(V)); 2500 } 2501 break; 2502 } 2503 2504 case ABIArgInfo::Extend: 2505 case ABIArgInfo::Direct: { 2506 auto AI = Fn->getArg(FirstIRArg); 2507 llvm::Type *LTy = ConvertType(Arg->getType()); 2508 2509 // Prepare parameter attributes. So far, only attributes for pointer 2510 // parameters are prepared. See 2511 // http://llvm.org/docs/LangRef.html#paramattrs. 2512 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2513 ArgI.getCoerceToType()->isPointerTy()) { 2514 assert(NumIRArgs == 1); 2515 2516 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2517 // Set `nonnull` attribute if any. 2518 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2519 PVD->getFunctionScopeIndex()) && 2520 !CGM.getCodeGenOpts().NullPointerIsValid) 2521 AI->addAttr(llvm::Attribute::NonNull); 2522 2523 QualType OTy = PVD->getOriginalType(); 2524 if (const auto *ArrTy = 2525 getContext().getAsConstantArrayType(OTy)) { 2526 // A C99 array parameter declaration with the static keyword also 2527 // indicates dereferenceability, and if the size is constant we can 2528 // use the dereferenceable attribute (which requires the size in 2529 // bytes). 2530 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2531 QualType ETy = ArrTy->getElementType(); 2532 llvm::Align Alignment = 2533 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2534 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2535 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2536 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2537 ArrSize) { 2538 llvm::AttrBuilder Attrs; 2539 Attrs.addDereferenceableAttr( 2540 getContext().getTypeSizeInChars(ETy).getQuantity() * 2541 ArrSize); 2542 AI->addAttrs(Attrs); 2543 } else if (getContext().getTargetInfo().getNullPointerValue( 2544 ETy.getAddressSpace()) == 0 && 2545 !CGM.getCodeGenOpts().NullPointerIsValid) { 2546 AI->addAttr(llvm::Attribute::NonNull); 2547 } 2548 } 2549 } else if (const auto *ArrTy = 2550 getContext().getAsVariableArrayType(OTy)) { 2551 // For C99 VLAs with the static keyword, we don't know the size so 2552 // we can't use the dereferenceable attribute, but in addrspace(0) 2553 // we know that it must be nonnull. 2554 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2555 QualType ETy = ArrTy->getElementType(); 2556 llvm::Align Alignment = 2557 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2558 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2559 if (!getContext().getTargetAddressSpace(ETy) && 2560 !CGM.getCodeGenOpts().NullPointerIsValid) 2561 AI->addAttr(llvm::Attribute::NonNull); 2562 } 2563 } 2564 2565 // Set `align` attribute if any. 2566 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2567 if (!AVAttr) 2568 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2569 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2570 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2571 // If alignment-assumption sanitizer is enabled, we do *not* add 2572 // alignment attribute here, but emit normal alignment assumption, 2573 // so the UBSAN check could function. 2574 llvm::ConstantInt *AlignmentCI = 2575 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2576 unsigned AlignmentInt = 2577 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2578 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2579 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2580 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr( 2581 llvm::Align(AlignmentInt))); 2582 } 2583 } 2584 } 2585 2586 // Set 'noalias' if an argument type has the `restrict` qualifier. 2587 if (Arg->getType().isRestrictQualified()) 2588 AI->addAttr(llvm::Attribute::NoAlias); 2589 } 2590 2591 // Prepare the argument value. If we have the trivial case, handle it 2592 // with no muss and fuss. 2593 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2594 ArgI.getCoerceToType() == ConvertType(Ty) && 2595 ArgI.getDirectOffset() == 0) { 2596 assert(NumIRArgs == 1); 2597 2598 // LLVM expects swifterror parameters to be used in very restricted 2599 // ways. Copy the value into a less-restricted temporary. 2600 llvm::Value *V = AI; 2601 if (FI.getExtParameterInfo(ArgNo).getABI() 2602 == ParameterABI::SwiftErrorResult) { 2603 QualType pointeeTy = Ty->getPointeeType(); 2604 assert(pointeeTy->isPointerType()); 2605 Address temp = 2606 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2607 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2608 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2609 Builder.CreateStore(incomingErrorValue, temp); 2610 V = temp.getPointer(); 2611 2612 // Push a cleanup to copy the value back at the end of the function. 2613 // The convention does not guarantee that the value will be written 2614 // back if the function exits with an unwind exception. 2615 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2616 } 2617 2618 // Ensure the argument is the correct type. 2619 if (V->getType() != ArgI.getCoerceToType()) 2620 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2621 2622 if (isPromoted) 2623 V = emitArgumentDemotion(*this, Arg, V); 2624 2625 // Because of merging of function types from multiple decls it is 2626 // possible for the type of an argument to not match the corresponding 2627 // type in the function type. Since we are codegening the callee 2628 // in here, add a cast to the argument type. 2629 llvm::Type *LTy = ConvertType(Arg->getType()); 2630 if (V->getType() != LTy) 2631 V = Builder.CreateBitCast(V, LTy); 2632 2633 ArgVals.push_back(ParamValue::forDirect(V)); 2634 break; 2635 } 2636 2637 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2638 Arg->getName()); 2639 2640 // Pointer to store into. 2641 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2642 2643 // Fast-isel and the optimizer generally like scalar values better than 2644 // FCAs, so we flatten them if this is safe to do for this argument. 2645 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2646 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2647 STy->getNumElements() > 1) { 2648 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2649 llvm::Type *DstTy = Ptr.getElementType(); 2650 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2651 2652 Address AddrToStoreInto = Address::invalid(); 2653 if (SrcSize <= DstSize) { 2654 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2655 } else { 2656 AddrToStoreInto = 2657 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2658 } 2659 2660 assert(STy->getNumElements() == NumIRArgs); 2661 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2662 auto AI = Fn->getArg(FirstIRArg + i); 2663 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2664 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2665 Builder.CreateStore(AI, EltPtr); 2666 } 2667 2668 if (SrcSize > DstSize) { 2669 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2670 } 2671 2672 } else { 2673 // Simple case, just do a coerced store of the argument into the alloca. 2674 assert(NumIRArgs == 1); 2675 auto AI = Fn->getArg(FirstIRArg); 2676 AI->setName(Arg->getName() + ".coerce"); 2677 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2678 } 2679 2680 // Match to what EmitParmDecl is expecting for this type. 2681 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2682 llvm::Value *V = 2683 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2684 if (isPromoted) 2685 V = emitArgumentDemotion(*this, Arg, V); 2686 ArgVals.push_back(ParamValue::forDirect(V)); 2687 } else { 2688 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2689 } 2690 break; 2691 } 2692 2693 case ABIArgInfo::CoerceAndExpand: { 2694 // Reconstruct into a temporary. 2695 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2696 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2697 2698 auto coercionType = ArgI.getCoerceAndExpandType(); 2699 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2700 2701 unsigned argIndex = FirstIRArg; 2702 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2703 llvm::Type *eltType = coercionType->getElementType(i); 2704 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2705 continue; 2706 2707 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2708 auto elt = Fn->getArg(argIndex++); 2709 Builder.CreateStore(elt, eltAddr); 2710 } 2711 assert(argIndex == FirstIRArg + NumIRArgs); 2712 break; 2713 } 2714 2715 case ABIArgInfo::Expand: { 2716 // If this structure was expanded into multiple arguments then 2717 // we need to create a temporary and reconstruct it from the 2718 // arguments. 2719 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2720 LValue LV = MakeAddrLValue(Alloca, Ty); 2721 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2722 2723 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2724 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2725 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2726 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2727 auto AI = Fn->getArg(FirstIRArg + i); 2728 AI->setName(Arg->getName() + "." + Twine(i)); 2729 } 2730 break; 2731 } 2732 2733 case ABIArgInfo::Ignore: 2734 assert(NumIRArgs == 0); 2735 // Initialize the local variable appropriately. 2736 if (!hasScalarEvaluationKind(Ty)) { 2737 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2738 } else { 2739 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2740 ArgVals.push_back(ParamValue::forDirect(U)); 2741 } 2742 break; 2743 } 2744 } 2745 2746 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2747 for (int I = Args.size() - 1; I >= 0; --I) 2748 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2749 } else { 2750 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2751 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2752 } 2753 } 2754 2755 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2756 while (insn->use_empty()) { 2757 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2758 if (!bitcast) return; 2759 2760 // This is "safe" because we would have used a ConstantExpr otherwise. 2761 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2762 bitcast->eraseFromParent(); 2763 } 2764 } 2765 2766 /// Try to emit a fused autorelease of a return result. 2767 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2768 llvm::Value *result) { 2769 // We must be immediately followed the cast. 2770 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2771 if (BB->empty()) return nullptr; 2772 if (&BB->back() != result) return nullptr; 2773 2774 llvm::Type *resultType = result->getType(); 2775 2776 // result is in a BasicBlock and is therefore an Instruction. 2777 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2778 2779 SmallVector<llvm::Instruction *, 4> InstsToKill; 2780 2781 // Look for: 2782 // %generator = bitcast %type1* %generator2 to %type2* 2783 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2784 // We would have emitted this as a constant if the operand weren't 2785 // an Instruction. 2786 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2787 2788 // Require the generator to be immediately followed by the cast. 2789 if (generator->getNextNode() != bitcast) 2790 return nullptr; 2791 2792 InstsToKill.push_back(bitcast); 2793 } 2794 2795 // Look for: 2796 // %generator = call i8* @objc_retain(i8* %originalResult) 2797 // or 2798 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2799 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2800 if (!call) return nullptr; 2801 2802 bool doRetainAutorelease; 2803 2804 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2805 doRetainAutorelease = true; 2806 } else if (call->getCalledOperand() == 2807 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 2808 doRetainAutorelease = false; 2809 2810 // If we emitted an assembly marker for this call (and the 2811 // ARCEntrypoints field should have been set if so), go looking 2812 // for that call. If we can't find it, we can't do this 2813 // optimization. But it should always be the immediately previous 2814 // instruction, unless we needed bitcasts around the call. 2815 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2816 llvm::Instruction *prev = call->getPrevNode(); 2817 assert(prev); 2818 if (isa<llvm::BitCastInst>(prev)) { 2819 prev = prev->getPrevNode(); 2820 assert(prev); 2821 } 2822 assert(isa<llvm::CallInst>(prev)); 2823 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 2824 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2825 InstsToKill.push_back(prev); 2826 } 2827 } else { 2828 return nullptr; 2829 } 2830 2831 result = call->getArgOperand(0); 2832 InstsToKill.push_back(call); 2833 2834 // Keep killing bitcasts, for sanity. Note that we no longer care 2835 // about precise ordering as long as there's exactly one use. 2836 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2837 if (!bitcast->hasOneUse()) break; 2838 InstsToKill.push_back(bitcast); 2839 result = bitcast->getOperand(0); 2840 } 2841 2842 // Delete all the unnecessary instructions, from latest to earliest. 2843 for (auto *I : InstsToKill) 2844 I->eraseFromParent(); 2845 2846 // Do the fused retain/autorelease if we were asked to. 2847 if (doRetainAutorelease) 2848 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2849 2850 // Cast back to the result type. 2851 return CGF.Builder.CreateBitCast(result, resultType); 2852 } 2853 2854 /// If this is a +1 of the value of an immutable 'self', remove it. 2855 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2856 llvm::Value *result) { 2857 // This is only applicable to a method with an immutable 'self'. 2858 const ObjCMethodDecl *method = 2859 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2860 if (!method) return nullptr; 2861 const VarDecl *self = method->getSelfDecl(); 2862 if (!self->getType().isConstQualified()) return nullptr; 2863 2864 // Look for a retain call. 2865 llvm::CallInst *retainCall = 2866 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2867 if (!retainCall || retainCall->getCalledOperand() != 2868 CGF.CGM.getObjCEntrypoints().objc_retain) 2869 return nullptr; 2870 2871 // Look for an ordinary load of 'self'. 2872 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2873 llvm::LoadInst *load = 2874 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2875 if (!load || load->isAtomic() || load->isVolatile() || 2876 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2877 return nullptr; 2878 2879 // Okay! Burn it all down. This relies for correctness on the 2880 // assumption that the retain is emitted as part of the return and 2881 // that thereafter everything is used "linearly". 2882 llvm::Type *resultType = result->getType(); 2883 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2884 assert(retainCall->use_empty()); 2885 retainCall->eraseFromParent(); 2886 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2887 2888 return CGF.Builder.CreateBitCast(load, resultType); 2889 } 2890 2891 /// Emit an ARC autorelease of the result of a function. 2892 /// 2893 /// \return the value to actually return from the function 2894 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2895 llvm::Value *result) { 2896 // If we're returning 'self', kill the initial retain. This is a 2897 // heuristic attempt to "encourage correctness" in the really unfortunate 2898 // case where we have a return of self during a dealloc and we desperately 2899 // need to avoid the possible autorelease. 2900 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2901 return self; 2902 2903 // At -O0, try to emit a fused retain/autorelease. 2904 if (CGF.shouldUseFusedARCCalls()) 2905 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2906 return fused; 2907 2908 return CGF.EmitARCAutoreleaseReturnValue(result); 2909 } 2910 2911 /// Heuristically search for a dominating store to the return-value slot. 2912 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2913 // Check if a User is a store which pointerOperand is the ReturnValue. 2914 // We are looking for stores to the ReturnValue, not for stores of the 2915 // ReturnValue to some other location. 2916 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2917 auto *SI = dyn_cast<llvm::StoreInst>(U); 2918 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2919 return nullptr; 2920 // These aren't actually possible for non-coerced returns, and we 2921 // only care about non-coerced returns on this code path. 2922 assert(!SI->isAtomic() && !SI->isVolatile()); 2923 return SI; 2924 }; 2925 // If there are multiple uses of the return-value slot, just check 2926 // for something immediately preceding the IP. Sometimes this can 2927 // happen with how we generate implicit-returns; it can also happen 2928 // with noreturn cleanups. 2929 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2930 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2931 if (IP->empty()) return nullptr; 2932 llvm::Instruction *I = &IP->back(); 2933 2934 // Skip lifetime markers 2935 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2936 IE = IP->rend(); 2937 II != IE; ++II) { 2938 if (llvm::IntrinsicInst *Intrinsic = 2939 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2940 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2941 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2942 ++II; 2943 if (II == IE) 2944 break; 2945 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2946 continue; 2947 } 2948 } 2949 I = &*II; 2950 break; 2951 } 2952 2953 return GetStoreIfValid(I); 2954 } 2955 2956 llvm::StoreInst *store = 2957 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2958 if (!store) return nullptr; 2959 2960 // Now do a first-and-dirty dominance check: just walk up the 2961 // single-predecessors chain from the current insertion point. 2962 llvm::BasicBlock *StoreBB = store->getParent(); 2963 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2964 while (IP != StoreBB) { 2965 if (!(IP = IP->getSinglePredecessor())) 2966 return nullptr; 2967 } 2968 2969 // Okay, the store's basic block dominates the insertion point; we 2970 // can do our thing. 2971 return store; 2972 } 2973 2974 // Helper functions for EmitCMSEClearRecord 2975 2976 // Set the bits corresponding to a field having width `BitWidth` and located at 2977 // offset `BitOffset` (from the least significant bit) within a storage unit of 2978 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 2979 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 2980 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 2981 int BitWidth, int CharWidth) { 2982 assert(CharWidth <= 64); 2983 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 2984 2985 int Pos = 0; 2986 if (BitOffset >= CharWidth) { 2987 Pos += BitOffset / CharWidth; 2988 BitOffset = BitOffset % CharWidth; 2989 } 2990 2991 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 2992 if (BitOffset + BitWidth >= CharWidth) { 2993 Bits[Pos++] |= (Used << BitOffset) & Used; 2994 BitWidth -= CharWidth - BitOffset; 2995 BitOffset = 0; 2996 } 2997 2998 while (BitWidth >= CharWidth) { 2999 Bits[Pos++] = Used; 3000 BitWidth -= CharWidth; 3001 } 3002 3003 if (BitWidth > 0) 3004 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3005 } 3006 3007 // Set the bits corresponding to a field having width `BitWidth` and located at 3008 // offset `BitOffset` (from the least significant bit) within a storage unit of 3009 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3010 // `Bits` corresponds to one target byte. Use target endian layout. 3011 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3012 int StorageSize, int BitOffset, int BitWidth, 3013 int CharWidth, bool BigEndian) { 3014 3015 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3016 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3017 3018 if (BigEndian) 3019 std::reverse(TmpBits.begin(), TmpBits.end()); 3020 3021 for (uint64_t V : TmpBits) 3022 Bits[StorageOffset++] |= V; 3023 } 3024 3025 static void setUsedBits(CodeGenModule &, QualType, int, 3026 SmallVectorImpl<uint64_t> &); 3027 3028 // Set the bits in `Bits`, which correspond to the value representations of 3029 // the actual members of the record type `RTy`. Note that this function does 3030 // not handle base classes, virtual tables, etc, since they cannot happen in 3031 // CMSE function arguments or return. The bit mask corresponds to the target 3032 // memory layout, i.e. it's endian dependent. 3033 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3034 SmallVectorImpl<uint64_t> &Bits) { 3035 ASTContext &Context = CGM.getContext(); 3036 int CharWidth = Context.getCharWidth(); 3037 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3038 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3039 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3040 3041 int Idx = 0; 3042 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3043 const FieldDecl *F = *I; 3044 3045 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3046 F->getType()->isIncompleteArrayType()) 3047 continue; 3048 3049 if (F->isBitField()) { 3050 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3051 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3052 BFI.StorageSize / CharWidth, BFI.Offset, 3053 BFI.Size, CharWidth, 3054 CGM.getDataLayout().isBigEndian()); 3055 continue; 3056 } 3057 3058 setUsedBits(CGM, F->getType(), 3059 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3060 } 3061 } 3062 3063 // Set the bits in `Bits`, which correspond to the value representations of 3064 // the elements of an array type `ATy`. 3065 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3066 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3067 const ASTContext &Context = CGM.getContext(); 3068 3069 QualType ETy = Context.getBaseElementType(ATy); 3070 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3071 SmallVector<uint64_t, 4> TmpBits(Size); 3072 setUsedBits(CGM, ETy, 0, TmpBits); 3073 3074 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3075 auto Src = TmpBits.begin(); 3076 auto Dst = Bits.begin() + Offset + I * Size; 3077 for (int J = 0; J < Size; ++J) 3078 *Dst++ |= *Src++; 3079 } 3080 } 3081 3082 // Set the bits in `Bits`, which correspond to the value representations of 3083 // the type `QTy`. 3084 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3085 SmallVectorImpl<uint64_t> &Bits) { 3086 if (const auto *RTy = QTy->getAs<RecordType>()) 3087 return setUsedBits(CGM, RTy, Offset, Bits); 3088 3089 ASTContext &Context = CGM.getContext(); 3090 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3091 return setUsedBits(CGM, ATy, Offset, Bits); 3092 3093 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3094 if (Size <= 0) 3095 return; 3096 3097 std::fill_n(Bits.begin() + Offset, Size, 3098 (uint64_t(1) << Context.getCharWidth()) - 1); 3099 } 3100 3101 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3102 int Pos, int Size, int CharWidth, 3103 bool BigEndian) { 3104 assert(Size > 0); 3105 uint64_t Mask = 0; 3106 if (BigEndian) { 3107 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3108 ++P) 3109 Mask = (Mask << CharWidth) | *P; 3110 } else { 3111 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3112 do 3113 Mask = (Mask << CharWidth) | *--P; 3114 while (P != End); 3115 } 3116 return Mask; 3117 } 3118 3119 // Emit code to clear the bits in a record, which aren't a part of any user 3120 // declared member, when the record is a function return. 3121 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3122 llvm::IntegerType *ITy, 3123 QualType QTy) { 3124 assert(Src->getType() == ITy); 3125 assert(ITy->getScalarSizeInBits() <= 64); 3126 3127 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3128 int Size = DataLayout.getTypeStoreSize(ITy); 3129 SmallVector<uint64_t, 4> Bits(Size); 3130 setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits); 3131 3132 int CharWidth = CGM.getContext().getCharWidth(); 3133 uint64_t Mask = 3134 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3135 3136 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3137 } 3138 3139 // Emit code to clear the bits in a record, which aren't a part of any user 3140 // declared member, when the record is a function argument. 3141 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3142 llvm::ArrayType *ATy, 3143 QualType QTy) { 3144 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3145 int Size = DataLayout.getTypeStoreSize(ATy); 3146 SmallVector<uint64_t, 16> Bits(Size); 3147 setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits); 3148 3149 // Clear each element of the LLVM array. 3150 int CharWidth = CGM.getContext().getCharWidth(); 3151 int CharsPerElt = 3152 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3153 int MaskIndex = 0; 3154 llvm::Value *R = llvm::UndefValue::get(ATy); 3155 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3156 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3157 DataLayout.isBigEndian()); 3158 MaskIndex += CharsPerElt; 3159 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3160 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3161 R = Builder.CreateInsertValue(R, T1, I); 3162 } 3163 3164 return R; 3165 } 3166 3167 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3168 bool EmitRetDbgLoc, 3169 SourceLocation EndLoc) { 3170 if (FI.isNoReturn()) { 3171 // Noreturn functions don't return. 3172 EmitUnreachable(EndLoc); 3173 return; 3174 } 3175 3176 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3177 // Naked functions don't have epilogues. 3178 Builder.CreateUnreachable(); 3179 return; 3180 } 3181 3182 // Functions with no result always return void. 3183 if (!ReturnValue.isValid()) { 3184 Builder.CreateRetVoid(); 3185 return; 3186 } 3187 3188 llvm::DebugLoc RetDbgLoc; 3189 llvm::Value *RV = nullptr; 3190 QualType RetTy = FI.getReturnType(); 3191 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3192 3193 switch (RetAI.getKind()) { 3194 case ABIArgInfo::InAlloca: 3195 // Aggregrates get evaluated directly into the destination. Sometimes we 3196 // need to return the sret value in a register, though. 3197 assert(hasAggregateEvaluationKind(RetTy)); 3198 if (RetAI.getInAllocaSRet()) { 3199 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3200 --EI; 3201 llvm::Value *ArgStruct = &*EI; 3202 llvm::Value *SRet = Builder.CreateStructGEP( 3203 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 3204 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 3205 } 3206 break; 3207 3208 case ABIArgInfo::Indirect: { 3209 auto AI = CurFn->arg_begin(); 3210 if (RetAI.isSRetAfterThis()) 3211 ++AI; 3212 switch (getEvaluationKind(RetTy)) { 3213 case TEK_Complex: { 3214 ComplexPairTy RT = 3215 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3216 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3217 /*isInit*/ true); 3218 break; 3219 } 3220 case TEK_Aggregate: 3221 // Do nothing; aggregrates get evaluated directly into the destination. 3222 break; 3223 case TEK_Scalar: 3224 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 3225 MakeNaturalAlignAddrLValue(&*AI, RetTy), 3226 /*isInit*/ true); 3227 break; 3228 } 3229 break; 3230 } 3231 3232 case ABIArgInfo::Extend: 3233 case ABIArgInfo::Direct: 3234 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3235 RetAI.getDirectOffset() == 0) { 3236 // The internal return value temp always will have pointer-to-return-type 3237 // type, just do a load. 3238 3239 // If there is a dominating store to ReturnValue, we can elide 3240 // the load, zap the store, and usually zap the alloca. 3241 if (llvm::StoreInst *SI = 3242 findDominatingStoreToReturnValue(*this)) { 3243 // Reuse the debug location from the store unless there is 3244 // cleanup code to be emitted between the store and return 3245 // instruction. 3246 if (EmitRetDbgLoc && !AutoreleaseResult) 3247 RetDbgLoc = SI->getDebugLoc(); 3248 // Get the stored value and nuke the now-dead store. 3249 RV = SI->getValueOperand(); 3250 SI->eraseFromParent(); 3251 3252 // Otherwise, we have to do a simple load. 3253 } else { 3254 RV = Builder.CreateLoad(ReturnValue); 3255 } 3256 } else { 3257 // If the value is offset in memory, apply the offset now. 3258 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3259 3260 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3261 } 3262 3263 // In ARC, end functions that return a retainable type with a call 3264 // to objc_autoreleaseReturnValue. 3265 if (AutoreleaseResult) { 3266 #ifndef NDEBUG 3267 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3268 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3269 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3270 // CurCodeDecl or BlockInfo. 3271 QualType RT; 3272 3273 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3274 RT = FD->getReturnType(); 3275 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3276 RT = MD->getReturnType(); 3277 else if (isa<BlockDecl>(CurCodeDecl)) 3278 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3279 else 3280 llvm_unreachable("Unexpected function/method type"); 3281 3282 assert(getLangOpts().ObjCAutoRefCount && 3283 !FI.isReturnsRetained() && 3284 RT->isObjCRetainableType()); 3285 #endif 3286 RV = emitAutoreleaseOfResult(*this, RV); 3287 } 3288 3289 break; 3290 3291 case ABIArgInfo::Ignore: 3292 break; 3293 3294 case ABIArgInfo::CoerceAndExpand: { 3295 auto coercionType = RetAI.getCoerceAndExpandType(); 3296 3297 // Load all of the coerced elements out into results. 3298 llvm::SmallVector<llvm::Value*, 4> results; 3299 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3300 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3301 auto coercedEltType = coercionType->getElementType(i); 3302 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3303 continue; 3304 3305 auto eltAddr = Builder.CreateStructGEP(addr, i); 3306 auto elt = Builder.CreateLoad(eltAddr); 3307 results.push_back(elt); 3308 } 3309 3310 // If we have one result, it's the single direct result type. 3311 if (results.size() == 1) { 3312 RV = results[0]; 3313 3314 // Otherwise, we need to make a first-class aggregate. 3315 } else { 3316 // Construct a return type that lacks padding elements. 3317 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3318 3319 RV = llvm::UndefValue::get(returnType); 3320 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3321 RV = Builder.CreateInsertValue(RV, results[i], i); 3322 } 3323 } 3324 break; 3325 } 3326 case ABIArgInfo::Expand: 3327 case ABIArgInfo::IndirectAliased: 3328 llvm_unreachable("Invalid ABI kind for return argument"); 3329 } 3330 3331 llvm::Instruction *Ret; 3332 if (RV) { 3333 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3334 // For certain return types, clear padding bits, as they may reveal 3335 // sensitive information. 3336 // Small struct/union types are passed as integers. 3337 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3338 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3339 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3340 } 3341 EmitReturnValueCheck(RV); 3342 Ret = Builder.CreateRet(RV); 3343 } else { 3344 Ret = Builder.CreateRetVoid(); 3345 } 3346 3347 if (RetDbgLoc) 3348 Ret->setDebugLoc(std::move(RetDbgLoc)); 3349 } 3350 3351 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3352 // A current decl may not be available when emitting vtable thunks. 3353 if (!CurCodeDecl) 3354 return; 3355 3356 // If the return block isn't reachable, neither is this check, so don't emit 3357 // it. 3358 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3359 return; 3360 3361 ReturnsNonNullAttr *RetNNAttr = nullptr; 3362 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3363 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3364 3365 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3366 return; 3367 3368 // Prefer the returns_nonnull attribute if it's present. 3369 SourceLocation AttrLoc; 3370 SanitizerMask CheckKind; 3371 SanitizerHandler Handler; 3372 if (RetNNAttr) { 3373 assert(!requiresReturnValueNullabilityCheck() && 3374 "Cannot check nullability and the nonnull attribute"); 3375 AttrLoc = RetNNAttr->getLocation(); 3376 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3377 Handler = SanitizerHandler::NonnullReturn; 3378 } else { 3379 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3380 if (auto *TSI = DD->getTypeSourceInfo()) 3381 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3382 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3383 CheckKind = SanitizerKind::NullabilityReturn; 3384 Handler = SanitizerHandler::NullabilityReturn; 3385 } 3386 3387 SanitizerScope SanScope(this); 3388 3389 // Make sure the "return" source location is valid. If we're checking a 3390 // nullability annotation, make sure the preconditions for the check are met. 3391 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3392 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3393 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3394 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3395 if (requiresReturnValueNullabilityCheck()) 3396 CanNullCheck = 3397 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3398 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3399 EmitBlock(Check); 3400 3401 // Now do the null check. 3402 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3403 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3404 llvm::Value *DynamicData[] = {SLocPtr}; 3405 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3406 3407 EmitBlock(NoCheck); 3408 3409 #ifndef NDEBUG 3410 // The return location should not be used after the check has been emitted. 3411 ReturnLocation = Address::invalid(); 3412 #endif 3413 } 3414 3415 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3416 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3417 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3418 } 3419 3420 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3421 QualType Ty) { 3422 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3423 // placeholders. 3424 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3425 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3426 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3427 3428 // FIXME: When we generate this IR in one pass, we shouldn't need 3429 // this win32-specific alignment hack. 3430 CharUnits Align = CharUnits::fromQuantity(4); 3431 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3432 3433 return AggValueSlot::forAddr(Address(Placeholder, Align), 3434 Ty.getQualifiers(), 3435 AggValueSlot::IsNotDestructed, 3436 AggValueSlot::DoesNotNeedGCBarriers, 3437 AggValueSlot::IsNotAliased, 3438 AggValueSlot::DoesNotOverlap); 3439 } 3440 3441 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3442 const VarDecl *param, 3443 SourceLocation loc) { 3444 // StartFunction converted the ABI-lowered parameter(s) into a 3445 // local alloca. We need to turn that into an r-value suitable 3446 // for EmitCall. 3447 Address local = GetAddrOfLocalVar(param); 3448 3449 QualType type = param->getType(); 3450 3451 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3452 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3453 } 3454 3455 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3456 // but the argument needs to be the original pointer. 3457 if (type->isReferenceType()) { 3458 args.add(RValue::get(Builder.CreateLoad(local)), type); 3459 3460 // In ARC, move out of consumed arguments so that the release cleanup 3461 // entered by StartFunction doesn't cause an over-release. This isn't 3462 // optimal -O0 code generation, but it should get cleaned up when 3463 // optimization is enabled. This also assumes that delegate calls are 3464 // performed exactly once for a set of arguments, but that should be safe. 3465 } else if (getLangOpts().ObjCAutoRefCount && 3466 param->hasAttr<NSConsumedAttr>() && 3467 type->isObjCRetainableType()) { 3468 llvm::Value *ptr = Builder.CreateLoad(local); 3469 auto null = 3470 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3471 Builder.CreateStore(null, local); 3472 args.add(RValue::get(ptr), type); 3473 3474 // For the most part, we just need to load the alloca, except that 3475 // aggregate r-values are actually pointers to temporaries. 3476 } else { 3477 args.add(convertTempToRValue(local, type, loc), type); 3478 } 3479 3480 // Deactivate the cleanup for the callee-destructed param that was pushed. 3481 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3482 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3483 param->needsDestruction(getContext())) { 3484 EHScopeStack::stable_iterator cleanup = 3485 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3486 assert(cleanup.isValid() && 3487 "cleanup for callee-destructed param not recorded"); 3488 // This unreachable is a temporary marker which will be removed later. 3489 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3490 args.addArgCleanupDeactivation(cleanup, isActive); 3491 } 3492 } 3493 3494 static bool isProvablyNull(llvm::Value *addr) { 3495 return isa<llvm::ConstantPointerNull>(addr); 3496 } 3497 3498 /// Emit the actual writing-back of a writeback. 3499 static void emitWriteback(CodeGenFunction &CGF, 3500 const CallArgList::Writeback &writeback) { 3501 const LValue &srcLV = writeback.Source; 3502 Address srcAddr = srcLV.getAddress(CGF); 3503 assert(!isProvablyNull(srcAddr.getPointer()) && 3504 "shouldn't have writeback for provably null argument"); 3505 3506 llvm::BasicBlock *contBB = nullptr; 3507 3508 // If the argument wasn't provably non-null, we need to null check 3509 // before doing the store. 3510 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3511 CGF.CGM.getDataLayout()); 3512 if (!provablyNonNull) { 3513 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3514 contBB = CGF.createBasicBlock("icr.done"); 3515 3516 llvm::Value *isNull = 3517 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3518 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3519 CGF.EmitBlock(writebackBB); 3520 } 3521 3522 // Load the value to writeback. 3523 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3524 3525 // Cast it back, in case we're writing an id to a Foo* or something. 3526 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3527 "icr.writeback-cast"); 3528 3529 // Perform the writeback. 3530 3531 // If we have a "to use" value, it's something we need to emit a use 3532 // of. This has to be carefully threaded in: if it's done after the 3533 // release it's potentially undefined behavior (and the optimizer 3534 // will ignore it), and if it happens before the retain then the 3535 // optimizer could move the release there. 3536 if (writeback.ToUse) { 3537 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3538 3539 // Retain the new value. No need to block-copy here: the block's 3540 // being passed up the stack. 3541 value = CGF.EmitARCRetainNonBlock(value); 3542 3543 // Emit the intrinsic use here. 3544 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3545 3546 // Load the old value (primitively). 3547 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3548 3549 // Put the new value in place (primitively). 3550 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3551 3552 // Release the old value. 3553 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3554 3555 // Otherwise, we can just do a normal lvalue store. 3556 } else { 3557 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3558 } 3559 3560 // Jump to the continuation block. 3561 if (!provablyNonNull) 3562 CGF.EmitBlock(contBB); 3563 } 3564 3565 static void emitWritebacks(CodeGenFunction &CGF, 3566 const CallArgList &args) { 3567 for (const auto &I : args.writebacks()) 3568 emitWriteback(CGF, I); 3569 } 3570 3571 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3572 const CallArgList &CallArgs) { 3573 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3574 CallArgs.getCleanupsToDeactivate(); 3575 // Iterate in reverse to increase the likelihood of popping the cleanup. 3576 for (const auto &I : llvm::reverse(Cleanups)) { 3577 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3578 I.IsActiveIP->eraseFromParent(); 3579 } 3580 } 3581 3582 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3583 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3584 if (uop->getOpcode() == UO_AddrOf) 3585 return uop->getSubExpr(); 3586 return nullptr; 3587 } 3588 3589 /// Emit an argument that's being passed call-by-writeback. That is, 3590 /// we are passing the address of an __autoreleased temporary; it 3591 /// might be copy-initialized with the current value of the given 3592 /// address, but it will definitely be copied out of after the call. 3593 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3594 const ObjCIndirectCopyRestoreExpr *CRE) { 3595 LValue srcLV; 3596 3597 // Make an optimistic effort to emit the address as an l-value. 3598 // This can fail if the argument expression is more complicated. 3599 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3600 srcLV = CGF.EmitLValue(lvExpr); 3601 3602 // Otherwise, just emit it as a scalar. 3603 } else { 3604 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3605 3606 QualType srcAddrType = 3607 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3608 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3609 } 3610 Address srcAddr = srcLV.getAddress(CGF); 3611 3612 // The dest and src types don't necessarily match in LLVM terms 3613 // because of the crazy ObjC compatibility rules. 3614 3615 llvm::PointerType *destType = 3616 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3617 3618 // If the address is a constant null, just pass the appropriate null. 3619 if (isProvablyNull(srcAddr.getPointer())) { 3620 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3621 CRE->getType()); 3622 return; 3623 } 3624 3625 // Create the temporary. 3626 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3627 CGF.getPointerAlign(), 3628 "icr.temp"); 3629 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3630 // and that cleanup will be conditional if we can't prove that the l-value 3631 // isn't null, so we need to register a dominating point so that the cleanups 3632 // system will make valid IR. 3633 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3634 3635 // Zero-initialize it if we're not doing a copy-initialization. 3636 bool shouldCopy = CRE->shouldCopy(); 3637 if (!shouldCopy) { 3638 llvm::Value *null = 3639 llvm::ConstantPointerNull::get( 3640 cast<llvm::PointerType>(destType->getElementType())); 3641 CGF.Builder.CreateStore(null, temp); 3642 } 3643 3644 llvm::BasicBlock *contBB = nullptr; 3645 llvm::BasicBlock *originBB = nullptr; 3646 3647 // If the address is *not* known to be non-null, we need to switch. 3648 llvm::Value *finalArgument; 3649 3650 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3651 CGF.CGM.getDataLayout()); 3652 if (provablyNonNull) { 3653 finalArgument = temp.getPointer(); 3654 } else { 3655 llvm::Value *isNull = 3656 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3657 3658 finalArgument = CGF.Builder.CreateSelect(isNull, 3659 llvm::ConstantPointerNull::get(destType), 3660 temp.getPointer(), "icr.argument"); 3661 3662 // If we need to copy, then the load has to be conditional, which 3663 // means we need control flow. 3664 if (shouldCopy) { 3665 originBB = CGF.Builder.GetInsertBlock(); 3666 contBB = CGF.createBasicBlock("icr.cont"); 3667 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3668 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3669 CGF.EmitBlock(copyBB); 3670 condEval.begin(CGF); 3671 } 3672 } 3673 3674 llvm::Value *valueToUse = nullptr; 3675 3676 // Perform a copy if necessary. 3677 if (shouldCopy) { 3678 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3679 assert(srcRV.isScalar()); 3680 3681 llvm::Value *src = srcRV.getScalarVal(); 3682 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3683 "icr.cast"); 3684 3685 // Use an ordinary store, not a store-to-lvalue. 3686 CGF.Builder.CreateStore(src, temp); 3687 3688 // If optimization is enabled, and the value was held in a 3689 // __strong variable, we need to tell the optimizer that this 3690 // value has to stay alive until we're doing the store back. 3691 // This is because the temporary is effectively unretained, 3692 // and so otherwise we can violate the high-level semantics. 3693 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3694 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3695 valueToUse = src; 3696 } 3697 } 3698 3699 // Finish the control flow if we needed it. 3700 if (shouldCopy && !provablyNonNull) { 3701 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3702 CGF.EmitBlock(contBB); 3703 3704 // Make a phi for the value to intrinsically use. 3705 if (valueToUse) { 3706 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3707 "icr.to-use"); 3708 phiToUse->addIncoming(valueToUse, copyBB); 3709 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3710 originBB); 3711 valueToUse = phiToUse; 3712 } 3713 3714 condEval.end(CGF); 3715 } 3716 3717 args.addWriteback(srcLV, temp, valueToUse); 3718 args.add(RValue::get(finalArgument), CRE->getType()); 3719 } 3720 3721 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3722 assert(!StackBase); 3723 3724 // Save the stack. 3725 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3726 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3727 } 3728 3729 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3730 if (StackBase) { 3731 // Restore the stack after the call. 3732 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3733 CGF.Builder.CreateCall(F, StackBase); 3734 } 3735 } 3736 3737 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3738 SourceLocation ArgLoc, 3739 AbstractCallee AC, 3740 unsigned ParmNum) { 3741 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3742 SanOpts.has(SanitizerKind::NullabilityArg))) 3743 return; 3744 3745 // The param decl may be missing in a variadic function. 3746 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3747 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3748 3749 // Prefer the nonnull attribute if it's present. 3750 const NonNullAttr *NNAttr = nullptr; 3751 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3752 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3753 3754 bool CanCheckNullability = false; 3755 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3756 auto Nullability = PVD->getType()->getNullability(getContext()); 3757 CanCheckNullability = Nullability && 3758 *Nullability == NullabilityKind::NonNull && 3759 PVD->getTypeSourceInfo(); 3760 } 3761 3762 if (!NNAttr && !CanCheckNullability) 3763 return; 3764 3765 SourceLocation AttrLoc; 3766 SanitizerMask CheckKind; 3767 SanitizerHandler Handler; 3768 if (NNAttr) { 3769 AttrLoc = NNAttr->getLocation(); 3770 CheckKind = SanitizerKind::NonnullAttribute; 3771 Handler = SanitizerHandler::NonnullArg; 3772 } else { 3773 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3774 CheckKind = SanitizerKind::NullabilityArg; 3775 Handler = SanitizerHandler::NullabilityArg; 3776 } 3777 3778 SanitizerScope SanScope(this); 3779 assert(RV.isScalar()); 3780 llvm::Value *V = RV.getScalarVal(); 3781 llvm::Value *Cond = 3782 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3783 llvm::Constant *StaticData[] = { 3784 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3785 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3786 }; 3787 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3788 } 3789 3790 void CodeGenFunction::EmitCallArgs( 3791 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3792 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3793 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3794 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3795 3796 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3797 // because arguments are destroyed left to right in the callee. As a special 3798 // case, there are certain language constructs that require left-to-right 3799 // evaluation, and in those cases we consider the evaluation order requirement 3800 // to trump the "destruction order is reverse construction order" guarantee. 3801 bool LeftToRight = 3802 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3803 ? Order == EvaluationOrder::ForceLeftToRight 3804 : Order != EvaluationOrder::ForceRightToLeft; 3805 3806 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3807 RValue EmittedArg) { 3808 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3809 return; 3810 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3811 if (PS == nullptr) 3812 return; 3813 3814 const auto &Context = getContext(); 3815 auto SizeTy = Context.getSizeType(); 3816 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3817 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3818 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3819 EmittedArg.getScalarVal(), 3820 PS->isDynamic()); 3821 Args.add(RValue::get(V), SizeTy); 3822 // If we're emitting args in reverse, be sure to do so with 3823 // pass_object_size, as well. 3824 if (!LeftToRight) 3825 std::swap(Args.back(), *(&Args.back() - 1)); 3826 }; 3827 3828 // Insert a stack save if we're going to need any inalloca args. 3829 bool HasInAllocaArgs = false; 3830 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3831 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3832 I != E && !HasInAllocaArgs; ++I) 3833 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3834 if (HasInAllocaArgs) { 3835 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3836 Args.allocateArgumentMemory(*this); 3837 } 3838 } 3839 3840 // Evaluate each argument in the appropriate order. 3841 size_t CallArgsStart = Args.size(); 3842 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3843 unsigned Idx = LeftToRight ? I : E - I - 1; 3844 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3845 unsigned InitialArgSize = Args.size(); 3846 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3847 // the argument and parameter match or the objc method is parameterized. 3848 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3849 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3850 ArgTypes[Idx]) || 3851 (isa<ObjCMethodDecl>(AC.getDecl()) && 3852 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3853 "Argument and parameter types don't match"); 3854 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3855 // In particular, we depend on it being the last arg in Args, and the 3856 // objectsize bits depend on there only being one arg if !LeftToRight. 3857 assert(InitialArgSize + 1 == Args.size() && 3858 "The code below depends on only adding one arg per EmitCallArg"); 3859 (void)InitialArgSize; 3860 // Since pointer argument are never emitted as LValue, it is safe to emit 3861 // non-null argument check for r-value only. 3862 if (!Args.back().hasLValue()) { 3863 RValue RVArg = Args.back().getKnownRValue(); 3864 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3865 ParamsToSkip + Idx); 3866 // @llvm.objectsize should never have side-effects and shouldn't need 3867 // destruction/cleanups, so we can safely "emit" it after its arg, 3868 // regardless of right-to-leftness 3869 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3870 } 3871 } 3872 3873 if (!LeftToRight) { 3874 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3875 // IR function. 3876 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3877 } 3878 } 3879 3880 namespace { 3881 3882 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3883 DestroyUnpassedArg(Address Addr, QualType Ty) 3884 : Addr(Addr), Ty(Ty) {} 3885 3886 Address Addr; 3887 QualType Ty; 3888 3889 void Emit(CodeGenFunction &CGF, Flags flags) override { 3890 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3891 if (DtorKind == QualType::DK_cxx_destructor) { 3892 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3893 assert(!Dtor->isTrivial()); 3894 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3895 /*Delegating=*/false, Addr, Ty); 3896 } else { 3897 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3898 } 3899 } 3900 }; 3901 3902 struct DisableDebugLocationUpdates { 3903 CodeGenFunction &CGF; 3904 bool disabledDebugInfo; 3905 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3906 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3907 CGF.disableDebugInfo(); 3908 } 3909 ~DisableDebugLocationUpdates() { 3910 if (disabledDebugInfo) 3911 CGF.enableDebugInfo(); 3912 } 3913 }; 3914 3915 } // end anonymous namespace 3916 3917 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3918 if (!HasLV) 3919 return RV; 3920 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3921 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3922 LV.isVolatile()); 3923 IsUsed = true; 3924 return RValue::getAggregate(Copy.getAddress(CGF)); 3925 } 3926 3927 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3928 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3929 if (!HasLV && RV.isScalar()) 3930 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 3931 else if (!HasLV && RV.isComplex()) 3932 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3933 else { 3934 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 3935 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3936 // We assume that call args are never copied into subobjects. 3937 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3938 HasLV ? LV.isVolatileQualified() 3939 : RV.isVolatileQualified()); 3940 } 3941 IsUsed = true; 3942 } 3943 3944 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3945 QualType type) { 3946 DisableDebugLocationUpdates Dis(*this, E); 3947 if (const ObjCIndirectCopyRestoreExpr *CRE 3948 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3949 assert(getLangOpts().ObjCAutoRefCount); 3950 return emitWritebackArg(*this, args, CRE); 3951 } 3952 3953 assert(type->isReferenceType() == E->isGLValue() && 3954 "reference binding to unmaterialized r-value!"); 3955 3956 if (E->isGLValue()) { 3957 assert(E->getObjectKind() == OK_Ordinary); 3958 return args.add(EmitReferenceBindingToExpr(E), type); 3959 } 3960 3961 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3962 3963 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3964 // However, we still have to push an EH-only cleanup in case we unwind before 3965 // we make it to the call. 3966 if (HasAggregateEvalKind && 3967 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3968 // If we're using inalloca, use the argument memory. Otherwise, use a 3969 // temporary. 3970 AggValueSlot Slot; 3971 if (args.isUsingInAlloca()) 3972 Slot = createPlaceholderSlot(*this, type); 3973 else 3974 Slot = CreateAggTemp(type, "agg.tmp"); 3975 3976 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3977 if (const auto *RD = type->getAsCXXRecordDecl()) 3978 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3979 else 3980 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3981 3982 if (DestroyedInCallee) 3983 Slot.setExternallyDestructed(); 3984 3985 EmitAggExpr(E, Slot); 3986 RValue RV = Slot.asRValue(); 3987 args.add(RV, type); 3988 3989 if (DestroyedInCallee && NeedsEHCleanup) { 3990 // Create a no-op GEP between the placeholder and the cleanup so we can 3991 // RAUW it successfully. It also serves as a marker of the first 3992 // instruction where the cleanup is active. 3993 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3994 type); 3995 // This unreachable is a temporary marker which will be removed later. 3996 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3997 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3998 } 3999 return; 4000 } 4001 4002 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4003 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4004 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4005 assert(L.isSimple()); 4006 args.addUncopiedAggregate(L, type); 4007 return; 4008 } 4009 4010 args.add(EmitAnyExprToTemp(E), type); 4011 } 4012 4013 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4014 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4015 // implicitly widens null pointer constants that are arguments to varargs 4016 // functions to pointer-sized ints. 4017 if (!getTarget().getTriple().isOSWindows()) 4018 return Arg->getType(); 4019 4020 if (Arg->getType()->isIntegerType() && 4021 getContext().getTypeSize(Arg->getType()) < 4022 getContext().getTargetInfo().getPointerWidth(0) && 4023 Arg->isNullPointerConstant(getContext(), 4024 Expr::NPC_ValueDependentIsNotNull)) { 4025 return getContext().getIntPtrType(); 4026 } 4027 4028 return Arg->getType(); 4029 } 4030 4031 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4032 // optimizer it can aggressively ignore unwind edges. 4033 void 4034 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4035 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4036 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4037 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4038 CGM.getNoObjCARCExceptionsMetadata()); 4039 } 4040 4041 /// Emits a call to the given no-arguments nounwind runtime function. 4042 llvm::CallInst * 4043 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4044 const llvm::Twine &name) { 4045 return EmitNounwindRuntimeCall(callee, None, name); 4046 } 4047 4048 /// Emits a call to the given nounwind runtime function. 4049 llvm::CallInst * 4050 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4051 ArrayRef<llvm::Value *> args, 4052 const llvm::Twine &name) { 4053 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4054 call->setDoesNotThrow(); 4055 return call; 4056 } 4057 4058 /// Emits a simple call (never an invoke) to the given no-arguments 4059 /// runtime function. 4060 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4061 const llvm::Twine &name) { 4062 return EmitRuntimeCall(callee, None, name); 4063 } 4064 4065 // Calls which may throw must have operand bundles indicating which funclet 4066 // they are nested within. 4067 SmallVector<llvm::OperandBundleDef, 1> 4068 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4069 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4070 // There is no need for a funclet operand bundle if we aren't inside a 4071 // funclet. 4072 if (!CurrentFuncletPad) 4073 return BundleList; 4074 4075 // Skip intrinsics which cannot throw. 4076 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4077 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4078 return BundleList; 4079 4080 BundleList.emplace_back("funclet", CurrentFuncletPad); 4081 return BundleList; 4082 } 4083 4084 /// Emits a simple call (never an invoke) to the given runtime function. 4085 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4086 ArrayRef<llvm::Value *> args, 4087 const llvm::Twine &name) { 4088 llvm::CallInst *call = Builder.CreateCall( 4089 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4090 call->setCallingConv(getRuntimeCC()); 4091 return call; 4092 } 4093 4094 /// Emits a call or invoke to the given noreturn runtime function. 4095 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4096 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4097 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4098 getBundlesForFunclet(callee.getCallee()); 4099 4100 if (getInvokeDest()) { 4101 llvm::InvokeInst *invoke = 4102 Builder.CreateInvoke(callee, 4103 getUnreachableBlock(), 4104 getInvokeDest(), 4105 args, 4106 BundleList); 4107 invoke->setDoesNotReturn(); 4108 invoke->setCallingConv(getRuntimeCC()); 4109 } else { 4110 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4111 call->setDoesNotReturn(); 4112 call->setCallingConv(getRuntimeCC()); 4113 Builder.CreateUnreachable(); 4114 } 4115 } 4116 4117 /// Emits a call or invoke instruction to the given nullary runtime function. 4118 llvm::CallBase * 4119 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4120 const Twine &name) { 4121 return EmitRuntimeCallOrInvoke(callee, None, name); 4122 } 4123 4124 /// Emits a call or invoke instruction to the given runtime function. 4125 llvm::CallBase * 4126 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4127 ArrayRef<llvm::Value *> args, 4128 const Twine &name) { 4129 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4130 call->setCallingConv(getRuntimeCC()); 4131 return call; 4132 } 4133 4134 /// Emits a call or invoke instruction to the given function, depending 4135 /// on the current state of the EH stack. 4136 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4137 ArrayRef<llvm::Value *> Args, 4138 const Twine &Name) { 4139 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4140 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4141 getBundlesForFunclet(Callee.getCallee()); 4142 4143 llvm::CallBase *Inst; 4144 if (!InvokeDest) 4145 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4146 else { 4147 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4148 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4149 Name); 4150 EmitBlock(ContBB); 4151 } 4152 4153 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4154 // optimizer it can aggressively ignore unwind edges. 4155 if (CGM.getLangOpts().ObjCAutoRefCount) 4156 AddObjCARCExceptionMetadata(Inst); 4157 4158 return Inst; 4159 } 4160 4161 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4162 llvm::Value *New) { 4163 DeferredReplacements.push_back(std::make_pair(Old, New)); 4164 } 4165 4166 namespace { 4167 4168 /// Specify given \p NewAlign as the alignment of return value attribute. If 4169 /// such attribute already exists, re-set it to the maximal one of two options. 4170 LLVM_NODISCARD llvm::AttributeList 4171 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4172 const llvm::AttributeList &Attrs, 4173 llvm::Align NewAlign) { 4174 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4175 if (CurAlign >= NewAlign) 4176 return Attrs; 4177 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4178 return Attrs 4179 .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex, 4180 llvm::Attribute::AttrKind::Alignment) 4181 .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr); 4182 } 4183 4184 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4185 protected: 4186 CodeGenFunction &CGF; 4187 4188 /// We do nothing if this is, or becomes, nullptr. 4189 const AlignedAttrTy *AA = nullptr; 4190 4191 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4192 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4193 4194 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4195 : CGF(CGF_) { 4196 if (!FuncDecl) 4197 return; 4198 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4199 } 4200 4201 public: 4202 /// If we can, materialize the alignment as an attribute on return value. 4203 LLVM_NODISCARD llvm::AttributeList 4204 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4205 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4206 return Attrs; 4207 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4208 if (!AlignmentCI) 4209 return Attrs; 4210 // We may legitimately have non-power-of-2 alignment here. 4211 // If so, this is UB land, emit it via `@llvm.assume` instead. 4212 if (!AlignmentCI->getValue().isPowerOf2()) 4213 return Attrs; 4214 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4215 CGF.getLLVMContext(), Attrs, 4216 llvm::Align( 4217 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4218 AA = nullptr; // We're done. Disallow doing anything else. 4219 return NewAttrs; 4220 } 4221 4222 /// Emit alignment assumption. 4223 /// This is a general fallback that we take if either there is an offset, 4224 /// or the alignment is variable or we are sanitizing for alignment. 4225 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4226 if (!AA) 4227 return; 4228 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4229 AA->getLocation(), Alignment, OffsetCI); 4230 AA = nullptr; // We're done. Disallow doing anything else. 4231 } 4232 }; 4233 4234 /// Helper data structure to emit `AssumeAlignedAttr`. 4235 class AssumeAlignedAttrEmitter final 4236 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4237 public: 4238 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4239 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4240 if (!AA) 4241 return; 4242 // It is guaranteed that the alignment/offset are constants. 4243 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4244 if (Expr *Offset = AA->getOffset()) { 4245 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4246 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4247 OffsetCI = nullptr; 4248 } 4249 } 4250 }; 4251 4252 /// Helper data structure to emit `AllocAlignAttr`. 4253 class AllocAlignAttrEmitter final 4254 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4255 public: 4256 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4257 const CallArgList &CallArgs) 4258 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4259 if (!AA) 4260 return; 4261 // Alignment may or may not be a constant, and that is okay. 4262 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4263 .getRValue(CGF) 4264 .getScalarVal(); 4265 } 4266 }; 4267 4268 } // namespace 4269 4270 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4271 const CGCallee &Callee, 4272 ReturnValueSlot ReturnValue, 4273 const CallArgList &CallArgs, 4274 llvm::CallBase **callOrInvoke, 4275 SourceLocation Loc) { 4276 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4277 4278 assert(Callee.isOrdinary() || Callee.isVirtual()); 4279 4280 // Handle struct-return functions by passing a pointer to the 4281 // location that we would like to return into. 4282 QualType RetTy = CallInfo.getReturnType(); 4283 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4284 4285 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4286 4287 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4288 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4289 // We can only guarantee that a function is called from the correct 4290 // context/function based on the appropriate target attributes, 4291 // so only check in the case where we have both always_inline and target 4292 // since otherwise we could be making a conditional call after a check for 4293 // the proper cpu features (and it won't cause code generation issues due to 4294 // function based code generation). 4295 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4296 TargetDecl->hasAttr<TargetAttr>()) 4297 checkTargetFeatures(Loc, FD); 4298 4299 // Some architectures (such as x86-64) have the ABI changed based on 4300 // attribute-target/features. Give them a chance to diagnose. 4301 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4302 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4303 } 4304 4305 #ifndef NDEBUG 4306 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4307 // For an inalloca varargs function, we don't expect CallInfo to match the 4308 // function pointer's type, because the inalloca struct a will have extra 4309 // fields in it for the varargs parameters. Code later in this function 4310 // bitcasts the function pointer to the type derived from CallInfo. 4311 // 4312 // In other cases, we assert that the types match up (until pointers stop 4313 // having pointee types). 4314 llvm::Type *TypeFromVal; 4315 if (Callee.isVirtual()) 4316 TypeFromVal = Callee.getVirtualFunctionType(); 4317 else 4318 TypeFromVal = 4319 Callee.getFunctionPointer()->getType()->getPointerElementType(); 4320 assert(IRFuncTy == TypeFromVal); 4321 } 4322 #endif 4323 4324 // 1. Set up the arguments. 4325 4326 // If we're using inalloca, insert the allocation after the stack save. 4327 // FIXME: Do this earlier rather than hacking it in here! 4328 Address ArgMemory = Address::invalid(); 4329 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4330 const llvm::DataLayout &DL = CGM.getDataLayout(); 4331 llvm::Instruction *IP = CallArgs.getStackBase(); 4332 llvm::AllocaInst *AI; 4333 if (IP) { 4334 IP = IP->getNextNode(); 4335 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4336 "argmem", IP); 4337 } else { 4338 AI = CreateTempAlloca(ArgStruct, "argmem"); 4339 } 4340 auto Align = CallInfo.getArgStructAlignment(); 4341 AI->setAlignment(Align.getAsAlign()); 4342 AI->setUsedWithInAlloca(true); 4343 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4344 ArgMemory = Address(AI, Align); 4345 } 4346 4347 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4348 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4349 4350 // If the call returns a temporary with struct return, create a temporary 4351 // alloca to hold the result, unless one is given to us. 4352 Address SRetPtr = Address::invalid(); 4353 Address SRetAlloca = Address::invalid(); 4354 llvm::Value *UnusedReturnSizePtr = nullptr; 4355 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4356 if (!ReturnValue.isNull()) { 4357 SRetPtr = ReturnValue.getValue(); 4358 } else { 4359 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4360 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4361 uint64_t size = 4362 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4363 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4364 } 4365 } 4366 if (IRFunctionArgs.hasSRetArg()) { 4367 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4368 } else if (RetAI.isInAlloca()) { 4369 Address Addr = 4370 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4371 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4372 } 4373 } 4374 4375 Address swiftErrorTemp = Address::invalid(); 4376 Address swiftErrorArg = Address::invalid(); 4377 4378 // When passing arguments using temporary allocas, we need to add the 4379 // appropriate lifetime markers. This vector keeps track of all the lifetime 4380 // markers that need to be ended right after the call. 4381 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4382 4383 // Translate all of the arguments as necessary to match the IR lowering. 4384 assert(CallInfo.arg_size() == CallArgs.size() && 4385 "Mismatch between function signature & arguments."); 4386 unsigned ArgNo = 0; 4387 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4388 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4389 I != E; ++I, ++info_it, ++ArgNo) { 4390 const ABIArgInfo &ArgInfo = info_it->info; 4391 4392 // Insert a padding argument to ensure proper alignment. 4393 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4394 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4395 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4396 4397 unsigned FirstIRArg, NumIRArgs; 4398 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4399 4400 switch (ArgInfo.getKind()) { 4401 case ABIArgInfo::InAlloca: { 4402 assert(NumIRArgs == 0); 4403 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4404 if (I->isAggregate()) { 4405 Address Addr = I->hasLValue() 4406 ? I->getKnownLValue().getAddress(*this) 4407 : I->getKnownRValue().getAggregateAddress(); 4408 llvm::Instruction *Placeholder = 4409 cast<llvm::Instruction>(Addr.getPointer()); 4410 4411 if (!ArgInfo.getInAllocaIndirect()) { 4412 // Replace the placeholder with the appropriate argument slot GEP. 4413 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4414 Builder.SetInsertPoint(Placeholder); 4415 Addr = Builder.CreateStructGEP(ArgMemory, 4416 ArgInfo.getInAllocaFieldIndex()); 4417 Builder.restoreIP(IP); 4418 } else { 4419 // For indirect things such as overaligned structs, replace the 4420 // placeholder with a regular aggregate temporary alloca. Store the 4421 // address of this alloca into the struct. 4422 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4423 Address ArgSlot = Builder.CreateStructGEP( 4424 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4425 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4426 } 4427 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4428 } else if (ArgInfo.getInAllocaIndirect()) { 4429 // Make a temporary alloca and store the address of it into the argument 4430 // struct. 4431 Address Addr = CreateMemTempWithoutCast( 4432 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4433 "indirect-arg-temp"); 4434 I->copyInto(*this, Addr); 4435 Address ArgSlot = 4436 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4437 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4438 } else { 4439 // Store the RValue into the argument struct. 4440 Address Addr = 4441 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4442 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4443 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4444 // There are some cases where a trivial bitcast is not avoidable. The 4445 // definition of a type later in a translation unit may change it's type 4446 // from {}* to (%struct.foo*)*. 4447 if (Addr.getType() != MemType) 4448 Addr = Builder.CreateBitCast(Addr, MemType); 4449 I->copyInto(*this, Addr); 4450 } 4451 break; 4452 } 4453 4454 case ABIArgInfo::Indirect: 4455 case ABIArgInfo::IndirectAliased: { 4456 assert(NumIRArgs == 1); 4457 if (!I->isAggregate()) { 4458 // Make a temporary alloca to pass the argument. 4459 Address Addr = CreateMemTempWithoutCast( 4460 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4461 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4462 4463 I->copyInto(*this, Addr); 4464 } else { 4465 // We want to avoid creating an unnecessary temporary+copy here; 4466 // however, we need one in three cases: 4467 // 1. If the argument is not byval, and we are required to copy the 4468 // source. (This case doesn't occur on any common architecture.) 4469 // 2. If the argument is byval, RV is not sufficiently aligned, and 4470 // we cannot force it to be sufficiently aligned. 4471 // 3. If the argument is byval, but RV is not located in default 4472 // or alloca address space. 4473 Address Addr = I->hasLValue() 4474 ? I->getKnownLValue().getAddress(*this) 4475 : I->getKnownRValue().getAggregateAddress(); 4476 llvm::Value *V = Addr.getPointer(); 4477 CharUnits Align = ArgInfo.getIndirectAlign(); 4478 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4479 4480 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4481 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4482 TD->getAllocaAddrSpace()) && 4483 "indirect argument must be in alloca address space"); 4484 4485 bool NeedCopy = false; 4486 4487 if (Addr.getAlignment() < Align && 4488 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4489 Align.getAsAlign()) { 4490 NeedCopy = true; 4491 } else if (I->hasLValue()) { 4492 auto LV = I->getKnownLValue(); 4493 auto AS = LV.getAddressSpace(); 4494 4495 if (!ArgInfo.getIndirectByVal() || 4496 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4497 NeedCopy = true; 4498 } 4499 if (!getLangOpts().OpenCL) { 4500 if ((ArgInfo.getIndirectByVal() && 4501 (AS != LangAS::Default && 4502 AS != CGM.getASTAllocaAddressSpace()))) { 4503 NeedCopy = true; 4504 } 4505 } 4506 // For OpenCL even if RV is located in default or alloca address space 4507 // we don't want to perform address space cast for it. 4508 else if ((ArgInfo.getIndirectByVal() && 4509 Addr.getType()->getAddressSpace() != IRFuncTy-> 4510 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4511 NeedCopy = true; 4512 } 4513 } 4514 4515 if (NeedCopy) { 4516 // Create an aligned temporary, and copy to it. 4517 Address AI = CreateMemTempWithoutCast( 4518 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4519 IRCallArgs[FirstIRArg] = AI.getPointer(); 4520 4521 // Emit lifetime markers for the temporary alloca. 4522 uint64_t ByvalTempElementSize = 4523 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4524 llvm::Value *LifetimeSize = 4525 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4526 4527 // Add cleanup code to emit the end lifetime marker after the call. 4528 if (LifetimeSize) // In case we disabled lifetime markers. 4529 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4530 4531 // Generate the copy. 4532 I->copyInto(*this, AI); 4533 } else { 4534 // Skip the extra memcpy call. 4535 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4536 CGM.getDataLayout().getAllocaAddrSpace()); 4537 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4538 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4539 true); 4540 } 4541 } 4542 break; 4543 } 4544 4545 case ABIArgInfo::Ignore: 4546 assert(NumIRArgs == 0); 4547 break; 4548 4549 case ABIArgInfo::Extend: 4550 case ABIArgInfo::Direct: { 4551 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4552 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4553 ArgInfo.getDirectOffset() == 0) { 4554 assert(NumIRArgs == 1); 4555 llvm::Value *V; 4556 if (!I->isAggregate()) 4557 V = I->getKnownRValue().getScalarVal(); 4558 else 4559 V = Builder.CreateLoad( 4560 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4561 : I->getKnownRValue().getAggregateAddress()); 4562 4563 // Implement swifterror by copying into a new swifterror argument. 4564 // We'll write back in the normal path out of the call. 4565 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4566 == ParameterABI::SwiftErrorResult) { 4567 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4568 4569 QualType pointeeTy = I->Ty->getPointeeType(); 4570 swiftErrorArg = 4571 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4572 4573 swiftErrorTemp = 4574 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4575 V = swiftErrorTemp.getPointer(); 4576 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4577 4578 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4579 Builder.CreateStore(errorValue, swiftErrorTemp); 4580 } 4581 4582 // We might have to widen integers, but we should never truncate. 4583 if (ArgInfo.getCoerceToType() != V->getType() && 4584 V->getType()->isIntegerTy()) 4585 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4586 4587 // If the argument doesn't match, perform a bitcast to coerce it. This 4588 // can happen due to trivial type mismatches. 4589 if (FirstIRArg < IRFuncTy->getNumParams() && 4590 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4591 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4592 4593 IRCallArgs[FirstIRArg] = V; 4594 break; 4595 } 4596 4597 // FIXME: Avoid the conversion through memory if possible. 4598 Address Src = Address::invalid(); 4599 if (!I->isAggregate()) { 4600 Src = CreateMemTemp(I->Ty, "coerce"); 4601 I->copyInto(*this, Src); 4602 } else { 4603 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4604 : I->getKnownRValue().getAggregateAddress(); 4605 } 4606 4607 // If the value is offset in memory, apply the offset now. 4608 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4609 4610 // Fast-isel and the optimizer generally like scalar values better than 4611 // FCAs, so we flatten them if this is safe to do for this argument. 4612 llvm::StructType *STy = 4613 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4614 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4615 llvm::Type *SrcTy = Src.getElementType(); 4616 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4617 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4618 4619 // If the source type is smaller than the destination type of the 4620 // coerce-to logic, copy the source value into a temp alloca the size 4621 // of the destination type to allow loading all of it. The bits past 4622 // the source value are left undef. 4623 if (SrcSize < DstSize) { 4624 Address TempAlloca 4625 = CreateTempAlloca(STy, Src.getAlignment(), 4626 Src.getName() + ".coerce"); 4627 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4628 Src = TempAlloca; 4629 } else { 4630 Src = Builder.CreateBitCast(Src, 4631 STy->getPointerTo(Src.getAddressSpace())); 4632 } 4633 4634 assert(NumIRArgs == STy->getNumElements()); 4635 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4636 Address EltPtr = Builder.CreateStructGEP(Src, i); 4637 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4638 IRCallArgs[FirstIRArg + i] = LI; 4639 } 4640 } else { 4641 // In the simple case, just pass the coerced loaded value. 4642 assert(NumIRArgs == 1); 4643 llvm::Value *Load = 4644 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4645 4646 if (CallInfo.isCmseNSCall()) { 4647 // For certain parameter types, clear padding bits, as they may reveal 4648 // sensitive information. 4649 // Small struct/union types are passed as integer arrays. 4650 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 4651 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 4652 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 4653 } 4654 IRCallArgs[FirstIRArg] = Load; 4655 } 4656 4657 break; 4658 } 4659 4660 case ABIArgInfo::CoerceAndExpand: { 4661 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4662 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4663 4664 llvm::Value *tempSize = nullptr; 4665 Address addr = Address::invalid(); 4666 Address AllocaAddr = Address::invalid(); 4667 if (I->isAggregate()) { 4668 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4669 : I->getKnownRValue().getAggregateAddress(); 4670 4671 } else { 4672 RValue RV = I->getKnownRValue(); 4673 assert(RV.isScalar()); // complex should always just be direct 4674 4675 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4676 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4677 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4678 4679 // Materialize to a temporary. 4680 addr = CreateTempAlloca( 4681 RV.getScalarVal()->getType(), 4682 CharUnits::fromQuantity(std::max( 4683 (unsigned)layout->getAlignment().value(), scalarAlign)), 4684 "tmp", 4685 /*ArraySize=*/nullptr, &AllocaAddr); 4686 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4687 4688 Builder.CreateStore(RV.getScalarVal(), addr); 4689 } 4690 4691 addr = Builder.CreateElementBitCast(addr, coercionType); 4692 4693 unsigned IRArgPos = FirstIRArg; 4694 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4695 llvm::Type *eltType = coercionType->getElementType(i); 4696 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4697 Address eltAddr = Builder.CreateStructGEP(addr, i); 4698 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4699 IRCallArgs[IRArgPos++] = elt; 4700 } 4701 assert(IRArgPos == FirstIRArg + NumIRArgs); 4702 4703 if (tempSize) { 4704 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4705 } 4706 4707 break; 4708 } 4709 4710 case ABIArgInfo::Expand: { 4711 unsigned IRArgPos = FirstIRArg; 4712 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4713 assert(IRArgPos == FirstIRArg + NumIRArgs); 4714 break; 4715 } 4716 } 4717 } 4718 4719 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4720 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4721 4722 // If we're using inalloca, set up that argument. 4723 if (ArgMemory.isValid()) { 4724 llvm::Value *Arg = ArgMemory.getPointer(); 4725 if (CallInfo.isVariadic()) { 4726 // When passing non-POD arguments by value to variadic functions, we will 4727 // end up with a variadic prototype and an inalloca call site. In such 4728 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4729 // the callee. 4730 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4731 CalleePtr = 4732 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4733 } else { 4734 llvm::Type *LastParamTy = 4735 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4736 if (Arg->getType() != LastParamTy) { 4737 #ifndef NDEBUG 4738 // Assert that these structs have equivalent element types. 4739 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4740 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4741 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4742 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4743 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4744 DE = DeclaredTy->element_end(), 4745 FI = FullTy->element_begin(); 4746 DI != DE; ++DI, ++FI) 4747 assert(*DI == *FI); 4748 #endif 4749 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4750 } 4751 } 4752 assert(IRFunctionArgs.hasInallocaArg()); 4753 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4754 } 4755 4756 // 2. Prepare the function pointer. 4757 4758 // If the callee is a bitcast of a non-variadic function to have a 4759 // variadic function pointer type, check to see if we can remove the 4760 // bitcast. This comes up with unprototyped functions. 4761 // 4762 // This makes the IR nicer, but more importantly it ensures that we 4763 // can inline the function at -O0 if it is marked always_inline. 4764 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4765 llvm::Value *Ptr) -> llvm::Function * { 4766 if (!CalleeFT->isVarArg()) 4767 return nullptr; 4768 4769 // Get underlying value if it's a bitcast 4770 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4771 if (CE->getOpcode() == llvm::Instruction::BitCast) 4772 Ptr = CE->getOperand(0); 4773 } 4774 4775 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4776 if (!OrigFn) 4777 return nullptr; 4778 4779 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4780 4781 // If the original type is variadic, or if any of the component types 4782 // disagree, we cannot remove the cast. 4783 if (OrigFT->isVarArg() || 4784 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4785 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4786 return nullptr; 4787 4788 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4789 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4790 return nullptr; 4791 4792 return OrigFn; 4793 }; 4794 4795 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4796 CalleePtr = OrigFn; 4797 IRFuncTy = OrigFn->getFunctionType(); 4798 } 4799 4800 // 3. Perform the actual call. 4801 4802 // Deactivate any cleanups that we're supposed to do immediately before 4803 // the call. 4804 if (!CallArgs.getCleanupsToDeactivate().empty()) 4805 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4806 4807 // Assert that the arguments we computed match up. The IR verifier 4808 // will catch this, but this is a common enough source of problems 4809 // during IRGen changes that it's way better for debugging to catch 4810 // it ourselves here. 4811 #ifndef NDEBUG 4812 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4813 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4814 // Inalloca argument can have different type. 4815 if (IRFunctionArgs.hasInallocaArg() && 4816 i == IRFunctionArgs.getInallocaArgNo()) 4817 continue; 4818 if (i < IRFuncTy->getNumParams()) 4819 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4820 } 4821 #endif 4822 4823 // Update the largest vector width if any arguments have vector types. 4824 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4825 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4826 LargestVectorWidth = 4827 std::max((uint64_t)LargestVectorWidth, 4828 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4829 } 4830 4831 // Compute the calling convention and attributes. 4832 unsigned CallingConv; 4833 llvm::AttributeList Attrs; 4834 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4835 Callee.getAbstractInfo(), Attrs, CallingConv, 4836 /*AttrOnCallSite=*/true); 4837 4838 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4839 if (FD->usesFPIntrin()) 4840 // All calls within a strictfp function are marked strictfp 4841 Attrs = 4842 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4843 llvm::Attribute::StrictFP); 4844 4845 // Add call-site nomerge attribute if exists. 4846 if (InNoMergeAttributedStmt) 4847 Attrs = 4848 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4849 llvm::Attribute::NoMerge); 4850 4851 // Apply some call-site-specific attributes. 4852 // TODO: work this into building the attribute set. 4853 4854 // Apply always_inline to all calls within flatten functions. 4855 // FIXME: should this really take priority over __try, below? 4856 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4857 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 4858 Attrs = 4859 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4860 llvm::Attribute::AlwaysInline); 4861 } 4862 4863 // Disable inlining inside SEH __try blocks. 4864 if (isSEHTryScope()) { 4865 Attrs = 4866 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4867 llvm::Attribute::NoInline); 4868 } 4869 4870 // Decide whether to use a call or an invoke. 4871 bool CannotThrow; 4872 if (currentFunctionUsesSEHTry()) { 4873 // SEH cares about asynchronous exceptions, so everything can "throw." 4874 CannotThrow = false; 4875 } else if (isCleanupPadScope() && 4876 EHPersonality::get(*this).isMSVCXXPersonality()) { 4877 // The MSVC++ personality will implicitly terminate the program if an 4878 // exception is thrown during a cleanup outside of a try/catch. 4879 // We don't need to model anything in IR to get this behavior. 4880 CannotThrow = true; 4881 } else { 4882 // Otherwise, nounwind call sites will never throw. 4883 CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind); 4884 4885 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 4886 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 4887 CannotThrow = true; 4888 } 4889 4890 // If we made a temporary, be sure to clean up after ourselves. Note that we 4891 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4892 // pop this cleanup later on. Being eager about this is OK, since this 4893 // temporary is 'invisible' outside of the callee. 4894 if (UnusedReturnSizePtr) 4895 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4896 UnusedReturnSizePtr); 4897 4898 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4899 4900 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4901 getBundlesForFunclet(CalleePtr); 4902 4903 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4904 if (FD->usesFPIntrin()) 4905 // All calls within a strictfp function are marked strictfp 4906 Attrs = 4907 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4908 llvm::Attribute::StrictFP); 4909 4910 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 4911 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4912 4913 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 4914 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4915 4916 // Emit the actual call/invoke instruction. 4917 llvm::CallBase *CI; 4918 if (!InvokeDest) { 4919 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 4920 } else { 4921 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4922 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 4923 BundleList); 4924 EmitBlock(Cont); 4925 } 4926 if (callOrInvoke) 4927 *callOrInvoke = CI; 4928 4929 // If this is within a function that has the guard(nocf) attribute and is an 4930 // indirect call, add the "guard_nocf" attribute to this call to indicate that 4931 // Control Flow Guard checks should not be added, even if the call is inlined. 4932 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 4933 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 4934 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 4935 Attrs = Attrs.addAttribute( 4936 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf"); 4937 } 4938 } 4939 4940 // Apply the attributes and calling convention. 4941 CI->setAttributes(Attrs); 4942 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4943 4944 // Apply various metadata. 4945 4946 if (!CI->getType()->isVoidTy()) 4947 CI->setName("call"); 4948 4949 // Update largest vector width from the return type. 4950 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4951 LargestVectorWidth = 4952 std::max((uint64_t)LargestVectorWidth, 4953 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4954 4955 // Insert instrumentation or attach profile metadata at indirect call sites. 4956 // For more details, see the comment before the definition of 4957 // IPVK_IndirectCallTarget in InstrProfData.inc. 4958 if (!CI->getCalledFunction()) 4959 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4960 CI, CalleePtr); 4961 4962 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4963 // optimizer it can aggressively ignore unwind edges. 4964 if (CGM.getLangOpts().ObjCAutoRefCount) 4965 AddObjCARCExceptionMetadata(CI); 4966 4967 // Suppress tail calls if requested. 4968 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4969 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4970 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4971 } 4972 4973 // Add metadata for calls to MSAllocator functions 4974 if (getDebugInfo() && TargetDecl && 4975 TargetDecl->hasAttr<MSAllocatorAttr>()) 4976 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 4977 4978 // 4. Finish the call. 4979 4980 // If the call doesn't return, finish the basic block and clear the 4981 // insertion point; this allows the rest of IRGen to discard 4982 // unreachable code. 4983 if (CI->doesNotReturn()) { 4984 if (UnusedReturnSizePtr) 4985 PopCleanupBlock(); 4986 4987 // Strip away the noreturn attribute to better diagnose unreachable UB. 4988 if (SanOpts.has(SanitizerKind::Unreachable)) { 4989 // Also remove from function since CallBase::hasFnAttr additionally checks 4990 // attributes of the called function. 4991 if (auto *F = CI->getCalledFunction()) 4992 F->removeFnAttr(llvm::Attribute::NoReturn); 4993 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 4994 llvm::Attribute::NoReturn); 4995 4996 // Avoid incompatibility with ASan which relies on the `noreturn` 4997 // attribute to insert handler calls. 4998 if (SanOpts.hasOneOf(SanitizerKind::Address | 4999 SanitizerKind::KernelAddress)) { 5000 SanitizerScope SanScope(this); 5001 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5002 Builder.SetInsertPoint(CI); 5003 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5004 llvm::FunctionCallee Fn = 5005 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5006 EmitNounwindRuntimeCall(Fn); 5007 } 5008 } 5009 5010 EmitUnreachable(Loc); 5011 Builder.ClearInsertionPoint(); 5012 5013 // FIXME: For now, emit a dummy basic block because expr emitters in 5014 // generally are not ready to handle emitting expressions at unreachable 5015 // points. 5016 EnsureInsertPoint(); 5017 5018 // Return a reasonable RValue. 5019 return GetUndefRValue(RetTy); 5020 } 5021 5022 // Perform the swifterror writeback. 5023 if (swiftErrorTemp.isValid()) { 5024 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5025 Builder.CreateStore(errorResult, swiftErrorArg); 5026 } 5027 5028 // Emit any call-associated writebacks immediately. Arguably this 5029 // should happen after any return-value munging. 5030 if (CallArgs.hasWritebacks()) 5031 emitWritebacks(*this, CallArgs); 5032 5033 // The stack cleanup for inalloca arguments has to run out of the normal 5034 // lexical order, so deactivate it and run it manually here. 5035 CallArgs.freeArgumentMemory(*this); 5036 5037 // Extract the return value. 5038 RValue Ret = [&] { 5039 switch (RetAI.getKind()) { 5040 case ABIArgInfo::CoerceAndExpand: { 5041 auto coercionType = RetAI.getCoerceAndExpandType(); 5042 5043 Address addr = SRetPtr; 5044 addr = Builder.CreateElementBitCast(addr, coercionType); 5045 5046 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5047 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5048 5049 unsigned unpaddedIndex = 0; 5050 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5051 llvm::Type *eltType = coercionType->getElementType(i); 5052 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5053 Address eltAddr = Builder.CreateStructGEP(addr, i); 5054 llvm::Value *elt = CI; 5055 if (requiresExtract) 5056 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5057 else 5058 assert(unpaddedIndex == 0); 5059 Builder.CreateStore(elt, eltAddr); 5060 } 5061 // FALLTHROUGH 5062 LLVM_FALLTHROUGH; 5063 } 5064 5065 case ABIArgInfo::InAlloca: 5066 case ABIArgInfo::Indirect: { 5067 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5068 if (UnusedReturnSizePtr) 5069 PopCleanupBlock(); 5070 return ret; 5071 } 5072 5073 case ABIArgInfo::Ignore: 5074 // If we are ignoring an argument that had a result, make sure to 5075 // construct the appropriate return value for our caller. 5076 return GetUndefRValue(RetTy); 5077 5078 case ABIArgInfo::Extend: 5079 case ABIArgInfo::Direct: { 5080 llvm::Type *RetIRTy = ConvertType(RetTy); 5081 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5082 switch (getEvaluationKind(RetTy)) { 5083 case TEK_Complex: { 5084 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5085 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5086 return RValue::getComplex(std::make_pair(Real, Imag)); 5087 } 5088 case TEK_Aggregate: { 5089 Address DestPtr = ReturnValue.getValue(); 5090 bool DestIsVolatile = ReturnValue.isVolatile(); 5091 5092 if (!DestPtr.isValid()) { 5093 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5094 DestIsVolatile = false; 5095 } 5096 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5097 return RValue::getAggregate(DestPtr); 5098 } 5099 case TEK_Scalar: { 5100 // If the argument doesn't match, perform a bitcast to coerce it. This 5101 // can happen due to trivial type mismatches. 5102 llvm::Value *V = CI; 5103 if (V->getType() != RetIRTy) 5104 V = Builder.CreateBitCast(V, RetIRTy); 5105 return RValue::get(V); 5106 } 5107 } 5108 llvm_unreachable("bad evaluation kind"); 5109 } 5110 5111 Address DestPtr = ReturnValue.getValue(); 5112 bool DestIsVolatile = ReturnValue.isVolatile(); 5113 5114 if (!DestPtr.isValid()) { 5115 DestPtr = CreateMemTemp(RetTy, "coerce"); 5116 DestIsVolatile = false; 5117 } 5118 5119 // If the value is offset in memory, apply the offset now. 5120 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5121 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5122 5123 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5124 } 5125 5126 case ABIArgInfo::Expand: 5127 case ABIArgInfo::IndirectAliased: 5128 llvm_unreachable("Invalid ABI kind for return argument"); 5129 } 5130 5131 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5132 } (); 5133 5134 // Emit the assume_aligned check on the return value. 5135 if (Ret.isScalar() && TargetDecl) { 5136 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5137 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5138 } 5139 5140 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5141 // we can't use the full cleanup mechanism. 5142 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5143 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5144 5145 if (!ReturnValue.isExternallyDestructed() && 5146 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5147 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5148 RetTy); 5149 5150 return Ret; 5151 } 5152 5153 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5154 if (isVirtual()) { 5155 const CallExpr *CE = getVirtualCallExpr(); 5156 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5157 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5158 CE ? CE->getBeginLoc() : SourceLocation()); 5159 } 5160 5161 return *this; 5162 } 5163 5164 /* VarArg handling */ 5165 5166 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5167 VAListAddr = VE->isMicrosoftABI() 5168 ? EmitMSVAListRef(VE->getSubExpr()) 5169 : EmitVAListRef(VE->getSubExpr()); 5170 QualType Ty = VE->getType(); 5171 if (VE->isMicrosoftABI()) 5172 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5173 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5174 } 5175