1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification. Either or both of RD and MD may be null. A null RD indicates
73 /// that there is no meaningful 'this' type, and a null MD can occur when
74 /// calling a method pointer.
75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
76                                          const CXXMethodDecl *MD) {
77   QualType RecTy;
78   if (RD)
79     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
80   else
81     RecTy = Context.VoidTy;
82 
83   if (MD)
84     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
85   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
86 }
87 
88 /// Returns the canonical formal type of the given C++ method.
89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
90   return MD->getType()->getCanonicalTypeUnqualified()
91            .getAs<FunctionProtoType>();
92 }
93 
94 /// Returns the "extra-canonicalized" return type, which discards
95 /// qualifiers on the return type.  Codegen doesn't care about them,
96 /// and it makes ABI code a little easier to be able to assume that
97 /// all parameter and return types are top-level unqualified.
98 static CanQualType GetReturnType(QualType RetTy) {
99   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
100 }
101 
102 /// Arrange the argument and result information for a value of the given
103 /// unprototyped freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
106   // When translating an unprototyped function type, always use a
107   // variadic type.
108   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
109                                  /*instanceMethod=*/false,
110                                  /*chainCall=*/false, None,
111                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
112 }
113 
114 static void addExtParameterInfosForCall(
115          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
116                                         const FunctionProtoType *proto,
117                                         unsigned prefixArgs,
118                                         unsigned totalArgs) {
119   assert(proto->hasExtParameterInfos());
120   assert(paramInfos.size() <= prefixArgs);
121   assert(proto->getNumParams() + prefixArgs <= totalArgs);
122 
123   paramInfos.reserve(totalArgs);
124 
125   // Add default infos for any prefix args that don't already have infos.
126   paramInfos.resize(prefixArgs);
127 
128   // Add infos for the prototype.
129   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
130     paramInfos.push_back(ParamInfo);
131     // pass_object_size params have no parameter info.
132     if (ParamInfo.hasPassObjectSize())
133       paramInfos.emplace_back();
134   }
135 
136   assert(paramInfos.size() <= totalArgs &&
137          "Did we forget to insert pass_object_size args?");
138   // Add default infos for the variadic and/or suffix arguments.
139   paramInfos.resize(totalArgs);
140 }
141 
142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
144 static void appendParameterTypes(const CodeGenTypes &CGT,
145                                  SmallVectorImpl<CanQualType> &prefix,
146               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
147                                  CanQual<FunctionProtoType> FPT) {
148   // Fast path: don't touch param info if we don't need to.
149   if (!FPT->hasExtParameterInfos()) {
150     assert(paramInfos.empty() &&
151            "We have paramInfos, but the prototype doesn't?");
152     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
153     return;
154   }
155 
156   unsigned PrefixSize = prefix.size();
157   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
158   // parameters; the only thing that can change this is the presence of
159   // pass_object_size. So, we preallocate for the common case.
160   prefix.reserve(prefix.size() + FPT->getNumParams());
161 
162   auto ExtInfos = FPT->getExtParameterInfos();
163   assert(ExtInfos.size() == FPT->getNumParams());
164   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
165     prefix.push_back(FPT->getParamType(I));
166     if (ExtInfos[I].hasPassObjectSize())
167       prefix.push_back(CGT.getContext().getSizeType());
168   }
169 
170   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
171                               prefix.size());
172 }
173 
174 /// Arrange the LLVM function layout for a value of the given function
175 /// type, on top of any implicit parameters already stored.
176 static const CGFunctionInfo &
177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
178                         SmallVectorImpl<CanQualType> &prefix,
179                         CanQual<FunctionProtoType> FTP) {
180   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
181   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
182   // FIXME: Kill copy.
183   appendParameterTypes(CGT, prefix, paramInfos, FTP);
184   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
185 
186   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
187                                      /*chainCall=*/false, prefix,
188                                      FTP->getExtInfo(), paramInfos,
189                                      Required);
190 }
191 
192 /// Arrange the argument and result information for a value of the
193 /// given freestanding function type.
194 const CGFunctionInfo &
195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
196   SmallVector<CanQualType, 16> argTypes;
197   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
198                                    FTP);
199 }
200 
201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
202   // Set the appropriate calling convention for the Function.
203   if (D->hasAttr<StdCallAttr>())
204     return CC_X86StdCall;
205 
206   if (D->hasAttr<FastCallAttr>())
207     return CC_X86FastCall;
208 
209   if (D->hasAttr<RegCallAttr>())
210     return CC_X86RegCall;
211 
212   if (D->hasAttr<ThisCallAttr>())
213     return CC_X86ThisCall;
214 
215   if (D->hasAttr<VectorCallAttr>())
216     return CC_X86VectorCall;
217 
218   if (D->hasAttr<PascalAttr>())
219     return CC_X86Pascal;
220 
221   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
222     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
223 
224   if (D->hasAttr<AArch64VectorPcsAttr>())
225     return CC_AArch64VectorCall;
226 
227   if (D->hasAttr<IntelOclBiccAttr>())
228     return CC_IntelOclBicc;
229 
230   if (D->hasAttr<MSABIAttr>())
231     return IsWindows ? CC_C : CC_Win64;
232 
233   if (D->hasAttr<SysVABIAttr>())
234     return IsWindows ? CC_X86_64SysV : CC_C;
235 
236   if (D->hasAttr<PreserveMostAttr>())
237     return CC_PreserveMost;
238 
239   if (D->hasAttr<PreserveAllAttr>())
240     return CC_PreserveAll;
241 
242   return CC_C;
243 }
244 
245 /// Arrange the argument and result information for a call to an
246 /// unknown C++ non-static member function of the given abstract type.
247 /// (A null RD means we don't have any meaningful "this" argument type,
248 ///  so fall back to a generic pointer type).
249 /// The member function must be an ordinary function, i.e. not a
250 /// constructor or destructor.
251 const CGFunctionInfo &
252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
253                                    const FunctionProtoType *FTP,
254                                    const CXXMethodDecl *MD) {
255   SmallVector<CanQualType, 16> argTypes;
256 
257   // Add the 'this' pointer.
258   argTypes.push_back(DeriveThisType(RD, MD));
259 
260   return ::arrangeLLVMFunctionInfo(
261       *this, true, argTypes,
262       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
263 }
264 
265 /// Set calling convention for CUDA/HIP kernel.
266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
267                                            const FunctionDecl *FD) {
268   if (FD->hasAttr<CUDAGlobalAttr>()) {
269     const FunctionType *FT = FTy->getAs<FunctionType>();
270     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
271     FTy = FT->getCanonicalTypeUnqualified();
272   }
273 }
274 
275 /// Arrange the argument and result information for a declaration or
276 /// definition of the given C++ non-static member function.  The
277 /// member function must be an ordinary function, i.e. not a
278 /// constructor or destructor.
279 const CGFunctionInfo &
280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
281   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
282   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
283 
284   CanQualType FT = GetFormalType(MD).getAs<Type>();
285   setCUDAKernelCallingConvention(FT, CGM, MD);
286   auto prototype = FT.getAs<FunctionProtoType>();
287 
288   if (MD->isInstance()) {
289     // The abstract case is perfectly fine.
290     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
291     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
292   }
293 
294   return arrangeFreeFunctionType(prototype);
295 }
296 
297 bool CodeGenTypes::inheritingCtorHasParams(
298     const InheritedConstructor &Inherited, CXXCtorType Type) {
299   // Parameters are unnecessary if we're constructing a base class subobject
300   // and the inherited constructor lives in a virtual base.
301   return Type == Ctor_Complete ||
302          !Inherited.getShadowDecl()->constructsVirtualBase() ||
303          !Target.getCXXABI().hasConstructorVariants();
304 }
305 
306 const CGFunctionInfo &
307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
308   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
309 
310   SmallVector<CanQualType, 16> argTypes;
311   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
312   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
313 
314   bool PassParams = true;
315 
316   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317     // A base class inheriting constructor doesn't get forwarded arguments
318     // needed to construct a virtual base (or base class thereof).
319     if (auto Inherited = CD->getInheritedConstructor())
320       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
321   }
322 
323   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
324 
325   // Add the formal parameters.
326   if (PassParams)
327     appendParameterTypes(*this, argTypes, paramInfos, FTP);
328 
329   CGCXXABI::AddedStructorArgCounts AddedArgs =
330       TheCXXABI.buildStructorSignature(GD, argTypes);
331   if (!paramInfos.empty()) {
332     // Note: prefix implies after the first param.
333     if (AddedArgs.Prefix)
334       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
335                         FunctionProtoType::ExtParameterInfo{});
336     if (AddedArgs.Suffix)
337       paramInfos.append(AddedArgs.Suffix,
338                         FunctionProtoType::ExtParameterInfo{});
339   }
340 
341   RequiredArgs required =
342       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
343                                       : RequiredArgs::All);
344 
345   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
346   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
347                                ? argTypes.front()
348                                : TheCXXABI.hasMostDerivedReturn(GD)
349                                      ? CGM.getContext().VoidPtrTy
350                                      : Context.VoidTy;
351   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
352                                  /*chainCall=*/false, argTypes, extInfo,
353                                  paramInfos, required);
354 }
355 
356 static SmallVector<CanQualType, 16>
357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
358   SmallVector<CanQualType, 16> argTypes;
359   for (auto &arg : args)
360     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
361   return argTypes;
362 }
363 
364 static SmallVector<CanQualType, 16>
365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
366   SmallVector<CanQualType, 16> argTypes;
367   for (auto &arg : args)
368     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
369   return argTypes;
370 }
371 
372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
373 getExtParameterInfosForCall(const FunctionProtoType *proto,
374                             unsigned prefixArgs, unsigned totalArgs) {
375   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
376   if (proto->hasExtParameterInfos()) {
377     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
378   }
379   return result;
380 }
381 
382 /// Arrange a call to a C++ method, passing the given arguments.
383 ///
384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
385 /// parameter.
386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
387 /// args.
388 /// PassProtoArgs indicates whether `args` has args for the parameters in the
389 /// given CXXConstructorDecl.
390 const CGFunctionInfo &
391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
392                                         const CXXConstructorDecl *D,
393                                         CXXCtorType CtorKind,
394                                         unsigned ExtraPrefixArgs,
395                                         unsigned ExtraSuffixArgs,
396                                         bool PassProtoArgs) {
397   // FIXME: Kill copy.
398   SmallVector<CanQualType, 16> ArgTypes;
399   for (const auto &Arg : args)
400     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
401 
402   // +1 for implicit this, which should always be args[0].
403   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
404 
405   CanQual<FunctionProtoType> FPT = GetFormalType(D);
406   RequiredArgs Required = PassProtoArgs
407                               ? RequiredArgs::forPrototypePlus(
408                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
409                               : RequiredArgs::All;
410 
411   GlobalDecl GD(D, CtorKind);
412   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
413                                ? ArgTypes.front()
414                                : TheCXXABI.hasMostDerivedReturn(GD)
415                                      ? CGM.getContext().VoidPtrTy
416                                      : Context.VoidTy;
417 
418   FunctionType::ExtInfo Info = FPT->getExtInfo();
419   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
420   // If the prototype args are elided, we should only have ABI-specific args,
421   // which never have param info.
422   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
423     // ABI-specific suffix arguments are treated the same as variadic arguments.
424     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
425                                 ArgTypes.size());
426   }
427   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
428                                  /*chainCall=*/false, ArgTypes, Info,
429                                  ParamInfos, Required);
430 }
431 
432 /// Arrange the argument and result information for the declaration or
433 /// definition of the given function.
434 const CGFunctionInfo &
435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
436   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
437     if (MD->isInstance())
438       return arrangeCXXMethodDeclaration(MD);
439 
440   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
441 
442   assert(isa<FunctionType>(FTy));
443   setCUDAKernelCallingConvention(FTy, CGM, FD);
444 
445   // When declaring a function without a prototype, always use a
446   // non-variadic type.
447   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
448     return arrangeLLVMFunctionInfo(
449         noProto->getReturnType(), /*instanceMethod=*/false,
450         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
451   }
452 
453   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
454 }
455 
456 /// Arrange the argument and result information for the declaration or
457 /// definition of an Objective-C method.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
460   // It happens that this is the same as a call with no optional
461   // arguments, except also using the formal 'self' type.
462   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
463 }
464 
465 /// Arrange the argument and result information for the function type
466 /// through which to perform a send to the given Objective-C method,
467 /// using the given receiver type.  The receiver type is not always
468 /// the 'self' type of the method or even an Objective-C pointer type.
469 /// This is *not* the right method for actually performing such a
470 /// message send, due to the possibility of optional arguments.
471 const CGFunctionInfo &
472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
473                                               QualType receiverType) {
474   SmallVector<CanQualType, 16> argTys;
475   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
476   argTys.push_back(Context.getCanonicalParamType(receiverType));
477   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
478   // FIXME: Kill copy?
479   for (const auto *I : MD->parameters()) {
480     argTys.push_back(Context.getCanonicalParamType(I->getType()));
481     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
482         I->hasAttr<NoEscapeAttr>());
483     extParamInfos.push_back(extParamInfo);
484   }
485 
486   FunctionType::ExtInfo einfo;
487   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
488   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
489 
490   if (getContext().getLangOpts().ObjCAutoRefCount &&
491       MD->hasAttr<NSReturnsRetainedAttr>())
492     einfo = einfo.withProducesResult(true);
493 
494   RequiredArgs required =
495     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
496 
497   return arrangeLLVMFunctionInfo(
498       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
499       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
500 }
501 
502 const CGFunctionInfo &
503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
504                                                  const CallArgList &args) {
505   auto argTypes = getArgTypesForCall(Context, args);
506   FunctionType::ExtInfo einfo;
507 
508   return arrangeLLVMFunctionInfo(
509       GetReturnType(returnType), /*instanceMethod=*/false,
510       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
511 }
512 
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
515   // FIXME: Do we need to handle ObjCMethodDecl?
516   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
517 
518   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
519       isa<CXXDestructorDecl>(GD.getDecl()))
520     return arrangeCXXStructorDeclaration(GD);
521 
522   return arrangeFunctionDeclaration(FD);
523 }
524 
525 /// Arrange a thunk that takes 'this' as the first parameter followed by
526 /// varargs.  Return a void pointer, regardless of the actual return type.
527 /// The body of the thunk will end in a musttail call to a function of the
528 /// correct type, and the caller will bitcast the function to the correct
529 /// prototype.
530 const CGFunctionInfo &
531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
532   assert(MD->isVirtual() && "only methods have thunks");
533   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
534   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
535   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
536                                  /*chainCall=*/false, ArgTys,
537                                  FTP->getExtInfo(), {}, RequiredArgs(1));
538 }
539 
540 const CGFunctionInfo &
541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
542                                    CXXCtorType CT) {
543   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
544 
545   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
546   SmallVector<CanQualType, 2> ArgTys;
547   const CXXRecordDecl *RD = CD->getParent();
548   ArgTys.push_back(DeriveThisType(RD, CD));
549   if (CT == Ctor_CopyingClosure)
550     ArgTys.push_back(*FTP->param_type_begin());
551   if (RD->getNumVBases() > 0)
552     ArgTys.push_back(Context.IntTy);
553   CallingConv CC = Context.getDefaultCallingConvention(
554       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
555   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
556                                  /*chainCall=*/false, ArgTys,
557                                  FunctionType::ExtInfo(CC), {},
558                                  RequiredArgs::All);
559 }
560 
561 /// Arrange a call as unto a free function, except possibly with an
562 /// additional number of formal parameters considered required.
563 static const CGFunctionInfo &
564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
565                             CodeGenModule &CGM,
566                             const CallArgList &args,
567                             const FunctionType *fnType,
568                             unsigned numExtraRequiredArgs,
569                             bool chainCall) {
570   assert(args.size() >= numExtraRequiredArgs);
571 
572   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
573 
574   // In most cases, there are no optional arguments.
575   RequiredArgs required = RequiredArgs::All;
576 
577   // If we have a variadic prototype, the required arguments are the
578   // extra prefix plus the arguments in the prototype.
579   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
580     if (proto->isVariadic())
581       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
582 
583     if (proto->hasExtParameterInfos())
584       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
585                                   args.size());
586 
587   // If we don't have a prototype at all, but we're supposed to
588   // explicitly use the variadic convention for unprototyped calls,
589   // treat all of the arguments as required but preserve the nominal
590   // possibility of variadics.
591   } else if (CGM.getTargetCodeGenInfo()
592                 .isNoProtoCallVariadic(args,
593                                        cast<FunctionNoProtoType>(fnType))) {
594     required = RequiredArgs(args.size());
595   }
596 
597   // FIXME: Kill copy.
598   SmallVector<CanQualType, 16> argTypes;
599   for (const auto &arg : args)
600     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
601   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
602                                      /*instanceMethod=*/false, chainCall,
603                                      argTypes, fnType->getExtInfo(), paramInfos,
604                                      required);
605 }
606 
607 /// Figure out the rules for calling a function with the given formal
608 /// type using the given arguments.  The arguments are necessary
609 /// because the function might be unprototyped, in which case it's
610 /// target-dependent in crazy ways.
611 const CGFunctionInfo &
612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
613                                       const FunctionType *fnType,
614                                       bool chainCall) {
615   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
616                                      chainCall ? 1 : 0, chainCall);
617 }
618 
619 /// A block function is essentially a free function with an
620 /// extra implicit argument.
621 const CGFunctionInfo &
622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
623                                        const FunctionType *fnType) {
624   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
625                                      /*chainCall=*/false);
626 }
627 
628 const CGFunctionInfo &
629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
630                                               const FunctionArgList &params) {
631   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
632   auto argTypes = getArgTypesForDeclaration(Context, params);
633 
634   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
635                                  /*instanceMethod*/ false, /*chainCall*/ false,
636                                  argTypes, proto->getExtInfo(), paramInfos,
637                                  RequiredArgs::forPrototypePlus(proto, 1));
638 }
639 
640 const CGFunctionInfo &
641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
642                                          const CallArgList &args) {
643   // FIXME: Kill copy.
644   SmallVector<CanQualType, 16> argTypes;
645   for (const auto &Arg : args)
646     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
647   return arrangeLLVMFunctionInfo(
648       GetReturnType(resultType), /*instanceMethod=*/false,
649       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
650       /*paramInfos=*/ {}, RequiredArgs::All);
651 }
652 
653 const CGFunctionInfo &
654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
655                                                 const FunctionArgList &args) {
656   auto argTypes = getArgTypesForDeclaration(Context, args);
657 
658   return arrangeLLVMFunctionInfo(
659       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
660       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
661 }
662 
663 const CGFunctionInfo &
664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
665                                               ArrayRef<CanQualType> argTypes) {
666   return arrangeLLVMFunctionInfo(
667       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
668       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
669 }
670 
671 /// Arrange a call to a C++ method, passing the given arguments.
672 ///
673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
674 /// does not count `this`.
675 const CGFunctionInfo &
676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
677                                    const FunctionProtoType *proto,
678                                    RequiredArgs required,
679                                    unsigned numPrefixArgs) {
680   assert(numPrefixArgs + 1 <= args.size() &&
681          "Emitting a call with less args than the required prefix?");
682   // Add one to account for `this`. It's a bit awkward here, but we don't count
683   // `this` in similar places elsewhere.
684   auto paramInfos =
685     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
686 
687   // FIXME: Kill copy.
688   auto argTypes = getArgTypesForCall(Context, args);
689 
690   FunctionType::ExtInfo info = proto->getExtInfo();
691   return arrangeLLVMFunctionInfo(
692       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
693       /*chainCall=*/false, argTypes, info, paramInfos, required);
694 }
695 
696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
697   return arrangeLLVMFunctionInfo(
698       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
699       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
700 }
701 
702 const CGFunctionInfo &
703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
704                           const CallArgList &args) {
705   assert(signature.arg_size() <= args.size());
706   if (signature.arg_size() == args.size())
707     return signature;
708 
709   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
710   auto sigParamInfos = signature.getExtParameterInfos();
711   if (!sigParamInfos.empty()) {
712     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
713     paramInfos.resize(args.size());
714   }
715 
716   auto argTypes = getArgTypesForCall(Context, args);
717 
718   assert(signature.getRequiredArgs().allowsOptionalArgs());
719   return arrangeLLVMFunctionInfo(signature.getReturnType(),
720                                  signature.isInstanceMethod(),
721                                  signature.isChainCall(),
722                                  argTypes,
723                                  signature.getExtInfo(),
724                                  paramInfos,
725                                  signature.getRequiredArgs());
726 }
727 
728 namespace clang {
729 namespace CodeGen {
730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
731 }
732 }
733 
734 /// Arrange the argument and result information for an abstract value
735 /// of a given function type.  This is the method which all of the
736 /// above functions ultimately defer to.
737 const CGFunctionInfo &
738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
739                                       bool instanceMethod,
740                                       bool chainCall,
741                                       ArrayRef<CanQualType> argTypes,
742                                       FunctionType::ExtInfo info,
743                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
744                                       RequiredArgs required) {
745   assert(llvm::all_of(argTypes,
746                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
747 
748   // Lookup or create unique function info.
749   llvm::FoldingSetNodeID ID;
750   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
751                           required, resultType, argTypes);
752 
753   void *insertPos = nullptr;
754   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
755   if (FI)
756     return *FI;
757 
758   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
759 
760   // Construct the function info.  We co-allocate the ArgInfos.
761   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
762                               paramInfos, resultType, argTypes, required);
763   FunctionInfos.InsertNode(FI, insertPos);
764 
765   bool inserted = FunctionsBeingProcessed.insert(FI).second;
766   (void)inserted;
767   assert(inserted && "Recursively being processed?");
768 
769   // Compute ABI information.
770   if (CC == llvm::CallingConv::SPIR_KERNEL) {
771     // Force target independent argument handling for the host visible
772     // kernel functions.
773     computeSPIRKernelABIInfo(CGM, *FI);
774   } else if (info.getCC() == CC_Swift) {
775     swiftcall::computeABIInfo(CGM, *FI);
776   } else {
777     getABIInfo().computeInfo(*FI);
778   }
779 
780   // Loop over all of the computed argument and return value info.  If any of
781   // them are direct or extend without a specified coerce type, specify the
782   // default now.
783   ABIArgInfo &retInfo = FI->getReturnInfo();
784   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
785     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
786 
787   for (auto &I : FI->arguments())
788     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
789       I.info.setCoerceToType(ConvertType(I.type));
790 
791   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
792   assert(erased && "Not in set?");
793 
794   return *FI;
795 }
796 
797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
798                                        bool instanceMethod,
799                                        bool chainCall,
800                                        const FunctionType::ExtInfo &info,
801                                        ArrayRef<ExtParameterInfo> paramInfos,
802                                        CanQualType resultType,
803                                        ArrayRef<CanQualType> argTypes,
804                                        RequiredArgs required) {
805   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
806   assert(!required.allowsOptionalArgs() ||
807          required.getNumRequiredArgs() <= argTypes.size());
808 
809   void *buffer =
810     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
811                                   argTypes.size() + 1, paramInfos.size()));
812 
813   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
814   FI->CallingConvention = llvmCC;
815   FI->EffectiveCallingConvention = llvmCC;
816   FI->ASTCallingConvention = info.getCC();
817   FI->InstanceMethod = instanceMethod;
818   FI->ChainCall = chainCall;
819   FI->CmseNSCall = info.getCmseNSCall();
820   FI->NoReturn = info.getNoReturn();
821   FI->ReturnsRetained = info.getProducesResult();
822   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
823   FI->NoCfCheck = info.getNoCfCheck();
824   FI->Required = required;
825   FI->HasRegParm = info.getHasRegParm();
826   FI->RegParm = info.getRegParm();
827   FI->ArgStruct = nullptr;
828   FI->ArgStructAlign = 0;
829   FI->NumArgs = argTypes.size();
830   FI->HasExtParameterInfos = !paramInfos.empty();
831   FI->getArgsBuffer()[0].type = resultType;
832   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
833     FI->getArgsBuffer()[i + 1].type = argTypes[i];
834   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
835     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
836   return FI;
837 }
838 
839 /***/
840 
841 namespace {
842 // ABIArgInfo::Expand implementation.
843 
844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
845 struct TypeExpansion {
846   enum TypeExpansionKind {
847     // Elements of constant arrays are expanded recursively.
848     TEK_ConstantArray,
849     // Record fields are expanded recursively (but if record is a union, only
850     // the field with the largest size is expanded).
851     TEK_Record,
852     // For complex types, real and imaginary parts are expanded recursively.
853     TEK_Complex,
854     // All other types are not expandable.
855     TEK_None
856   };
857 
858   const TypeExpansionKind Kind;
859 
860   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
861   virtual ~TypeExpansion() {}
862 };
863 
864 struct ConstantArrayExpansion : TypeExpansion {
865   QualType EltTy;
866   uint64_t NumElts;
867 
868   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
869       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
870   static bool classof(const TypeExpansion *TE) {
871     return TE->Kind == TEK_ConstantArray;
872   }
873 };
874 
875 struct RecordExpansion : TypeExpansion {
876   SmallVector<const CXXBaseSpecifier *, 1> Bases;
877 
878   SmallVector<const FieldDecl *, 1> Fields;
879 
880   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
881                   SmallVector<const FieldDecl *, 1> &&Fields)
882       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
883         Fields(std::move(Fields)) {}
884   static bool classof(const TypeExpansion *TE) {
885     return TE->Kind == TEK_Record;
886   }
887 };
888 
889 struct ComplexExpansion : TypeExpansion {
890   QualType EltTy;
891 
892   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_Complex;
895   }
896 };
897 
898 struct NoExpansion : TypeExpansion {
899   NoExpansion() : TypeExpansion(TEK_None) {}
900   static bool classof(const TypeExpansion *TE) {
901     return TE->Kind == TEK_None;
902   }
903 };
904 }  // namespace
905 
906 static std::unique_ptr<TypeExpansion>
907 getTypeExpansion(QualType Ty, const ASTContext &Context) {
908   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
909     return std::make_unique<ConstantArrayExpansion>(
910         AT->getElementType(), AT->getSize().getZExtValue());
911   }
912   if (const RecordType *RT = Ty->getAs<RecordType>()) {
913     SmallVector<const CXXBaseSpecifier *, 1> Bases;
914     SmallVector<const FieldDecl *, 1> Fields;
915     const RecordDecl *RD = RT->getDecl();
916     assert(!RD->hasFlexibleArrayMember() &&
917            "Cannot expand structure with flexible array.");
918     if (RD->isUnion()) {
919       // Unions can be here only in degenerative cases - all the fields are same
920       // after flattening. Thus we have to use the "largest" field.
921       const FieldDecl *LargestFD = nullptr;
922       CharUnits UnionSize = CharUnits::Zero();
923 
924       for (const auto *FD : RD->fields()) {
925         if (FD->isZeroLengthBitField(Context))
926           continue;
927         assert(!FD->isBitField() &&
928                "Cannot expand structure with bit-field members.");
929         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
930         if (UnionSize < FieldSize) {
931           UnionSize = FieldSize;
932           LargestFD = FD;
933         }
934       }
935       if (LargestFD)
936         Fields.push_back(LargestFD);
937     } else {
938       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
939         assert(!CXXRD->isDynamicClass() &&
940                "cannot expand vtable pointers in dynamic classes");
941         for (const CXXBaseSpecifier &BS : CXXRD->bases())
942           Bases.push_back(&BS);
943       }
944 
945       for (const auto *FD : RD->fields()) {
946         if (FD->isZeroLengthBitField(Context))
947           continue;
948         assert(!FD->isBitField() &&
949                "Cannot expand structure with bit-field members.");
950         Fields.push_back(FD);
951       }
952     }
953     return std::make_unique<RecordExpansion>(std::move(Bases),
954                                               std::move(Fields));
955   }
956   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
957     return std::make_unique<ComplexExpansion>(CT->getElementType());
958   }
959   return std::make_unique<NoExpansion>();
960 }
961 
962 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
963   auto Exp = getTypeExpansion(Ty, Context);
964   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
965     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
966   }
967   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
968     int Res = 0;
969     for (auto BS : RExp->Bases)
970       Res += getExpansionSize(BS->getType(), Context);
971     for (auto FD : RExp->Fields)
972       Res += getExpansionSize(FD->getType(), Context);
973     return Res;
974   }
975   if (isa<ComplexExpansion>(Exp.get()))
976     return 2;
977   assert(isa<NoExpansion>(Exp.get()));
978   return 1;
979 }
980 
981 void
982 CodeGenTypes::getExpandedTypes(QualType Ty,
983                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
984   auto Exp = getTypeExpansion(Ty, Context);
985   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
986     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
987       getExpandedTypes(CAExp->EltTy, TI);
988     }
989   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     for (auto BS : RExp->Bases)
991       getExpandedTypes(BS->getType(), TI);
992     for (auto FD : RExp->Fields)
993       getExpandedTypes(FD->getType(), TI);
994   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
995     llvm::Type *EltTy = ConvertType(CExp->EltTy);
996     *TI++ = EltTy;
997     *TI++ = EltTy;
998   } else {
999     assert(isa<NoExpansion>(Exp.get()));
1000     *TI++ = ConvertType(Ty);
1001   }
1002 }
1003 
1004 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1005                                       ConstantArrayExpansion *CAE,
1006                                       Address BaseAddr,
1007                                       llvm::function_ref<void(Address)> Fn) {
1008   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1009   CharUnits EltAlign =
1010     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1011 
1012   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1013     llvm::Value *EltAddr =
1014       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1015     Fn(Address(EltAddr, EltAlign));
1016   }
1017 }
1018 
1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1020                                          llvm::Function::arg_iterator &AI) {
1021   assert(LV.isSimple() &&
1022          "Unexpected non-simple lvalue during struct expansion.");
1023 
1024   auto Exp = getTypeExpansion(Ty, getContext());
1025   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1026     forConstantArrayExpansion(
1027         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1028           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1029           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1030         });
1031   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1032     Address This = LV.getAddress(*this);
1033     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1034       // Perform a single step derived-to-base conversion.
1035       Address Base =
1036           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1037                                 /*NullCheckValue=*/false, SourceLocation());
1038       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1039 
1040       // Recurse onto bases.
1041       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1042     }
1043     for (auto FD : RExp->Fields) {
1044       // FIXME: What are the right qualifiers here?
1045       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1046       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1047     }
1048   } else if (isa<ComplexExpansion>(Exp.get())) {
1049     auto realValue = &*AI++;
1050     auto imagValue = &*AI++;
1051     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1052   } else {
1053     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1054     // primitive store.
1055     assert(isa<NoExpansion>(Exp.get()));
1056     if (LV.isBitField())
1057       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1058     else
1059       EmitStoreOfScalar(&*AI++, LV);
1060   }
1061 }
1062 
1063 void CodeGenFunction::ExpandTypeToArgs(
1064     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1065     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1066   auto Exp = getTypeExpansion(Ty, getContext());
1067   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1068     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1069                                    : Arg.getKnownRValue().getAggregateAddress();
1070     forConstantArrayExpansion(
1071         *this, CAExp, Addr, [&](Address EltAddr) {
1072           CallArg EltArg = CallArg(
1073               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1074               CAExp->EltTy);
1075           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1076                            IRCallArgPos);
1077         });
1078   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1079     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1080                                    : Arg.getKnownRValue().getAggregateAddress();
1081     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1082       // Perform a single step derived-to-base conversion.
1083       Address Base =
1084           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1085                                 /*NullCheckValue=*/false, SourceLocation());
1086       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1087 
1088       // Recurse onto bases.
1089       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1090                        IRCallArgPos);
1091     }
1092 
1093     LValue LV = MakeAddrLValue(This, Ty);
1094     for (auto FD : RExp->Fields) {
1095       CallArg FldArg =
1096           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1097       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1098                        IRCallArgPos);
1099     }
1100   } else if (isa<ComplexExpansion>(Exp.get())) {
1101     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1102     IRCallArgs[IRCallArgPos++] = CV.first;
1103     IRCallArgs[IRCallArgPos++] = CV.second;
1104   } else {
1105     assert(isa<NoExpansion>(Exp.get()));
1106     auto RV = Arg.getKnownRValue();
1107     assert(RV.isScalar() &&
1108            "Unexpected non-scalar rvalue during struct expansion.");
1109 
1110     // Insert a bitcast as needed.
1111     llvm::Value *V = RV.getScalarVal();
1112     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1113         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1114       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1115 
1116     IRCallArgs[IRCallArgPos++] = V;
1117   }
1118 }
1119 
1120 /// Create a temporary allocation for the purposes of coercion.
1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1122                                            CharUnits MinAlign,
1123                                            const Twine &Name = "tmp") {
1124   // Don't use an alignment that's worse than what LLVM would prefer.
1125   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1126   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1127 
1128   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1129 }
1130 
1131 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1132 /// accessing some number of bytes out of it, try to gep into the struct to get
1133 /// at its inner goodness.  Dive as deep as possible without entering an element
1134 /// with an in-memory size smaller than DstSize.
1135 static Address
1136 EnterStructPointerForCoercedAccess(Address SrcPtr,
1137                                    llvm::StructType *SrcSTy,
1138                                    uint64_t DstSize, CodeGenFunction &CGF) {
1139   // We can't dive into a zero-element struct.
1140   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1141 
1142   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1143 
1144   // If the first elt is at least as large as what we're looking for, or if the
1145   // first element is the same size as the whole struct, we can enter it. The
1146   // comparison must be made on the store size and not the alloca size. Using
1147   // the alloca size may overstate the size of the load.
1148   uint64_t FirstEltSize =
1149     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1150   if (FirstEltSize < DstSize &&
1151       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1152     return SrcPtr;
1153 
1154   // GEP into the first element.
1155   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1156 
1157   // If the first element is a struct, recurse.
1158   llvm::Type *SrcTy = SrcPtr.getElementType();
1159   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1160     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1161 
1162   return SrcPtr;
1163 }
1164 
1165 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1166 /// are either integers or pointers.  This does a truncation of the value if it
1167 /// is too large or a zero extension if it is too small.
1168 ///
1169 /// This behaves as if the value were coerced through memory, so on big-endian
1170 /// targets the high bits are preserved in a truncation, while little-endian
1171 /// targets preserve the low bits.
1172 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1173                                              llvm::Type *Ty,
1174                                              CodeGenFunction &CGF) {
1175   if (Val->getType() == Ty)
1176     return Val;
1177 
1178   if (isa<llvm::PointerType>(Val->getType())) {
1179     // If this is Pointer->Pointer avoid conversion to and from int.
1180     if (isa<llvm::PointerType>(Ty))
1181       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1182 
1183     // Convert the pointer to an integer so we can play with its width.
1184     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1185   }
1186 
1187   llvm::Type *DestIntTy = Ty;
1188   if (isa<llvm::PointerType>(DestIntTy))
1189     DestIntTy = CGF.IntPtrTy;
1190 
1191   if (Val->getType() != DestIntTy) {
1192     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1193     if (DL.isBigEndian()) {
1194       // Preserve the high bits on big-endian targets.
1195       // That is what memory coercion does.
1196       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1197       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1198 
1199       if (SrcSize > DstSize) {
1200         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1201         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1202       } else {
1203         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1204         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1205       }
1206     } else {
1207       // Little-endian targets preserve the low bits. No shifts required.
1208       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1209     }
1210   }
1211 
1212   if (isa<llvm::PointerType>(Ty))
1213     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1214   return Val;
1215 }
1216 
1217 
1218 
1219 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1220 /// a pointer to an object of type \arg Ty, known to be aligned to
1221 /// \arg SrcAlign bytes.
1222 ///
1223 /// This safely handles the case when the src type is smaller than the
1224 /// destination type; in this situation the values of bits which not
1225 /// present in the src are undefined.
1226 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1227                                       CodeGenFunction &CGF) {
1228   llvm::Type *SrcTy = Src.getElementType();
1229 
1230   // If SrcTy and Ty are the same, just do a load.
1231   if (SrcTy == Ty)
1232     return CGF.Builder.CreateLoad(Src);
1233 
1234   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1235 
1236   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1237     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1238                                              DstSize.getFixedSize(), CGF);
1239     SrcTy = Src.getElementType();
1240   }
1241 
1242   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1243 
1244   // If the source and destination are integer or pointer types, just do an
1245   // extension or truncation to the desired type.
1246   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1247       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1248     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1249     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1250   }
1251 
1252   // If load is legal, just bitcast the src pointer.
1253   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1254       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1255     // Generally SrcSize is never greater than DstSize, since this means we are
1256     // losing bits. However, this can happen in cases where the structure has
1257     // additional padding, for example due to a user specified alignment.
1258     //
1259     // FIXME: Assert that we aren't truncating non-padding bits when have access
1260     // to that information.
1261     Src = CGF.Builder.CreateBitCast(Src,
1262                                     Ty->getPointerTo(Src.getAddressSpace()));
1263     return CGF.Builder.CreateLoad(Src);
1264   }
1265 
1266   // Otherwise do coercion through memory. This is stupid, but simple.
1267   Address Tmp =
1268       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1269   CGF.Builder.CreateMemCpy(
1270       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1271       Src.getAlignment().getAsAlign(),
1272       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1273   return CGF.Builder.CreateLoad(Tmp);
1274 }
1275 
1276 // Function to store a first-class aggregate into memory.  We prefer to
1277 // store the elements rather than the aggregate to be more friendly to
1278 // fast-isel.
1279 // FIXME: Do we need to recurse here?
1280 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1281                                          bool DestIsVolatile) {
1282   // Prefer scalar stores to first-class aggregate stores.
1283   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1284     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1285       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1286       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1287       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1288     }
1289   } else {
1290     Builder.CreateStore(Val, Dest, DestIsVolatile);
1291   }
1292 }
1293 
1294 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1295 /// where the source and destination may have different types.  The
1296 /// destination is known to be aligned to \arg DstAlign bytes.
1297 ///
1298 /// This safely handles the case when the src type is larger than the
1299 /// destination type; the upper bits of the src will be lost.
1300 static void CreateCoercedStore(llvm::Value *Src,
1301                                Address Dst,
1302                                bool DstIsVolatile,
1303                                CodeGenFunction &CGF) {
1304   llvm::Type *SrcTy = Src->getType();
1305   llvm::Type *DstTy = Dst.getElementType();
1306   if (SrcTy == DstTy) {
1307     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1308     return;
1309   }
1310 
1311   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1312 
1313   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1314     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1315                                              SrcSize.getFixedSize(), CGF);
1316     DstTy = Dst.getElementType();
1317   }
1318 
1319   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1320   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1321   if (SrcPtrTy && DstPtrTy &&
1322       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1323     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1324     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1325     return;
1326   }
1327 
1328   // If the source and destination are integer or pointer types, just do an
1329   // extension or truncation to the desired type.
1330   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1331       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1332     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1333     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1334     return;
1335   }
1336 
1337   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1338 
1339   // If store is legal, just bitcast the src pointer.
1340   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1341       isa<llvm::ScalableVectorType>(DstTy) ||
1342       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1343     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1344     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1345   } else {
1346     // Otherwise do coercion through memory. This is stupid, but
1347     // simple.
1348 
1349     // Generally SrcSize is never greater than DstSize, since this means we are
1350     // losing bits. However, this can happen in cases where the structure has
1351     // additional padding, for example due to a user specified alignment.
1352     //
1353     // FIXME: Assert that we aren't truncating non-padding bits when have access
1354     // to that information.
1355     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1356     CGF.Builder.CreateStore(Src, Tmp);
1357     CGF.Builder.CreateMemCpy(
1358         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1359         Tmp.getAlignment().getAsAlign(),
1360         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1361   }
1362 }
1363 
1364 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1365                                    const ABIArgInfo &info) {
1366   if (unsigned offset = info.getDirectOffset()) {
1367     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1368     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1369                                              CharUnits::fromQuantity(offset));
1370     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1371   }
1372   return addr;
1373 }
1374 
1375 namespace {
1376 
1377 /// Encapsulates information about the way function arguments from
1378 /// CGFunctionInfo should be passed to actual LLVM IR function.
1379 class ClangToLLVMArgMapping {
1380   static const unsigned InvalidIndex = ~0U;
1381   unsigned InallocaArgNo;
1382   unsigned SRetArgNo;
1383   unsigned TotalIRArgs;
1384 
1385   /// Arguments of LLVM IR function corresponding to single Clang argument.
1386   struct IRArgs {
1387     unsigned PaddingArgIndex;
1388     // Argument is expanded to IR arguments at positions
1389     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1390     unsigned FirstArgIndex;
1391     unsigned NumberOfArgs;
1392 
1393     IRArgs()
1394         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1395           NumberOfArgs(0) {}
1396   };
1397 
1398   SmallVector<IRArgs, 8> ArgInfo;
1399 
1400 public:
1401   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1402                         bool OnlyRequiredArgs = false)
1403       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1404         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1405     construct(Context, FI, OnlyRequiredArgs);
1406   }
1407 
1408   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1409   unsigned getInallocaArgNo() const {
1410     assert(hasInallocaArg());
1411     return InallocaArgNo;
1412   }
1413 
1414   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1415   unsigned getSRetArgNo() const {
1416     assert(hasSRetArg());
1417     return SRetArgNo;
1418   }
1419 
1420   unsigned totalIRArgs() const { return TotalIRArgs; }
1421 
1422   bool hasPaddingArg(unsigned ArgNo) const {
1423     assert(ArgNo < ArgInfo.size());
1424     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1425   }
1426   unsigned getPaddingArgNo(unsigned ArgNo) const {
1427     assert(hasPaddingArg(ArgNo));
1428     return ArgInfo[ArgNo].PaddingArgIndex;
1429   }
1430 
1431   /// Returns index of first IR argument corresponding to ArgNo, and their
1432   /// quantity.
1433   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1434     assert(ArgNo < ArgInfo.size());
1435     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1436                           ArgInfo[ArgNo].NumberOfArgs);
1437   }
1438 
1439 private:
1440   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1441                  bool OnlyRequiredArgs);
1442 };
1443 
1444 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1445                                       const CGFunctionInfo &FI,
1446                                       bool OnlyRequiredArgs) {
1447   unsigned IRArgNo = 0;
1448   bool SwapThisWithSRet = false;
1449   const ABIArgInfo &RetAI = FI.getReturnInfo();
1450 
1451   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1452     SwapThisWithSRet = RetAI.isSRetAfterThis();
1453     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1454   }
1455 
1456   unsigned ArgNo = 0;
1457   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1458   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1459        ++I, ++ArgNo) {
1460     assert(I != FI.arg_end());
1461     QualType ArgType = I->type;
1462     const ABIArgInfo &AI = I->info;
1463     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1464     auto &IRArgs = ArgInfo[ArgNo];
1465 
1466     if (AI.getPaddingType())
1467       IRArgs.PaddingArgIndex = IRArgNo++;
1468 
1469     switch (AI.getKind()) {
1470     case ABIArgInfo::Extend:
1471     case ABIArgInfo::Direct: {
1472       // FIXME: handle sseregparm someday...
1473       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1474       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1475         IRArgs.NumberOfArgs = STy->getNumElements();
1476       } else {
1477         IRArgs.NumberOfArgs = 1;
1478       }
1479       break;
1480     }
1481     case ABIArgInfo::Indirect:
1482     case ABIArgInfo::IndirectAliased:
1483       IRArgs.NumberOfArgs = 1;
1484       break;
1485     case ABIArgInfo::Ignore:
1486     case ABIArgInfo::InAlloca:
1487       // ignore and inalloca doesn't have matching LLVM parameters.
1488       IRArgs.NumberOfArgs = 0;
1489       break;
1490     case ABIArgInfo::CoerceAndExpand:
1491       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1492       break;
1493     case ABIArgInfo::Expand:
1494       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1495       break;
1496     }
1497 
1498     if (IRArgs.NumberOfArgs > 0) {
1499       IRArgs.FirstArgIndex = IRArgNo;
1500       IRArgNo += IRArgs.NumberOfArgs;
1501     }
1502 
1503     // Skip over the sret parameter when it comes second.  We already handled it
1504     // above.
1505     if (IRArgNo == 1 && SwapThisWithSRet)
1506       IRArgNo++;
1507   }
1508   assert(ArgNo == ArgInfo.size());
1509 
1510   if (FI.usesInAlloca())
1511     InallocaArgNo = IRArgNo++;
1512 
1513   TotalIRArgs = IRArgNo;
1514 }
1515 }  // namespace
1516 
1517 /***/
1518 
1519 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1520   const auto &RI = FI.getReturnInfo();
1521   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1522 }
1523 
1524 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1525   return ReturnTypeUsesSRet(FI) &&
1526          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1527 }
1528 
1529 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1530   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1531     switch (BT->getKind()) {
1532     default:
1533       return false;
1534     case BuiltinType::Float:
1535       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1536     case BuiltinType::Double:
1537       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1538     case BuiltinType::LongDouble:
1539       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1540     }
1541   }
1542 
1543   return false;
1544 }
1545 
1546 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1547   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1548     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1549       if (BT->getKind() == BuiltinType::LongDouble)
1550         return getTarget().useObjCFP2RetForComplexLongDouble();
1551     }
1552   }
1553 
1554   return false;
1555 }
1556 
1557 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1558   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1559   return GetFunctionType(FI);
1560 }
1561 
1562 llvm::FunctionType *
1563 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1564 
1565   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1566   (void)Inserted;
1567   assert(Inserted && "Recursively being processed?");
1568 
1569   llvm::Type *resultType = nullptr;
1570   const ABIArgInfo &retAI = FI.getReturnInfo();
1571   switch (retAI.getKind()) {
1572   case ABIArgInfo::Expand:
1573   case ABIArgInfo::IndirectAliased:
1574     llvm_unreachable("Invalid ABI kind for return argument");
1575 
1576   case ABIArgInfo::Extend:
1577   case ABIArgInfo::Direct:
1578     resultType = retAI.getCoerceToType();
1579     break;
1580 
1581   case ABIArgInfo::InAlloca:
1582     if (retAI.getInAllocaSRet()) {
1583       // sret things on win32 aren't void, they return the sret pointer.
1584       QualType ret = FI.getReturnType();
1585       llvm::Type *ty = ConvertType(ret);
1586       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1587       resultType = llvm::PointerType::get(ty, addressSpace);
1588     } else {
1589       resultType = llvm::Type::getVoidTy(getLLVMContext());
1590     }
1591     break;
1592 
1593   case ABIArgInfo::Indirect:
1594   case ABIArgInfo::Ignore:
1595     resultType = llvm::Type::getVoidTy(getLLVMContext());
1596     break;
1597 
1598   case ABIArgInfo::CoerceAndExpand:
1599     resultType = retAI.getUnpaddedCoerceAndExpandType();
1600     break;
1601   }
1602 
1603   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1604   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1605 
1606   // Add type for sret argument.
1607   if (IRFunctionArgs.hasSRetArg()) {
1608     QualType Ret = FI.getReturnType();
1609     llvm::Type *Ty = ConvertType(Ret);
1610     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1611     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1612         llvm::PointerType::get(Ty, AddressSpace);
1613   }
1614 
1615   // Add type for inalloca argument.
1616   if (IRFunctionArgs.hasInallocaArg()) {
1617     auto ArgStruct = FI.getArgStruct();
1618     assert(ArgStruct);
1619     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1620   }
1621 
1622   // Add in all of the required arguments.
1623   unsigned ArgNo = 0;
1624   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1625                                      ie = it + FI.getNumRequiredArgs();
1626   for (; it != ie; ++it, ++ArgNo) {
1627     const ABIArgInfo &ArgInfo = it->info;
1628 
1629     // Insert a padding type to ensure proper alignment.
1630     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1631       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1632           ArgInfo.getPaddingType();
1633 
1634     unsigned FirstIRArg, NumIRArgs;
1635     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1636 
1637     switch (ArgInfo.getKind()) {
1638     case ABIArgInfo::Ignore:
1639     case ABIArgInfo::InAlloca:
1640       assert(NumIRArgs == 0);
1641       break;
1642 
1643     case ABIArgInfo::Indirect: {
1644       assert(NumIRArgs == 1);
1645       // indirect arguments are always on the stack, which is alloca addr space.
1646       llvm::Type *LTy = ConvertTypeForMem(it->type);
1647       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1648           CGM.getDataLayout().getAllocaAddrSpace());
1649       break;
1650     }
1651     case ABIArgInfo::IndirectAliased: {
1652       assert(NumIRArgs == 1);
1653       llvm::Type *LTy = ConvertTypeForMem(it->type);
1654       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1655       break;
1656     }
1657     case ABIArgInfo::Extend:
1658     case ABIArgInfo::Direct: {
1659       // Fast-isel and the optimizer generally like scalar values better than
1660       // FCAs, so we flatten them if this is safe to do for this argument.
1661       llvm::Type *argType = ArgInfo.getCoerceToType();
1662       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1663       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1664         assert(NumIRArgs == st->getNumElements());
1665         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1666           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1667       } else {
1668         assert(NumIRArgs == 1);
1669         ArgTypes[FirstIRArg] = argType;
1670       }
1671       break;
1672     }
1673 
1674     case ABIArgInfo::CoerceAndExpand: {
1675       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1676       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1677         *ArgTypesIter++ = EltTy;
1678       }
1679       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1680       break;
1681     }
1682 
1683     case ABIArgInfo::Expand:
1684       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1685       getExpandedTypes(it->type, ArgTypesIter);
1686       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1687       break;
1688     }
1689   }
1690 
1691   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1692   assert(Erased && "Not in set?");
1693 
1694   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1695 }
1696 
1697 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1698   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1699   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1700 
1701   if (!isFuncTypeConvertible(FPT))
1702     return llvm::StructType::get(getLLVMContext());
1703 
1704   return GetFunctionType(GD);
1705 }
1706 
1707 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1708                                                llvm::AttrBuilder &FuncAttrs,
1709                                                const FunctionProtoType *FPT) {
1710   if (!FPT)
1711     return;
1712 
1713   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1714       FPT->isNothrow())
1715     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1716 }
1717 
1718 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1719                                                  bool HasOptnone,
1720                                                  bool AttrOnCallSite,
1721                                                llvm::AttrBuilder &FuncAttrs) {
1722   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1723   if (!HasOptnone) {
1724     if (CodeGenOpts.OptimizeSize)
1725       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1726     if (CodeGenOpts.OptimizeSize == 2)
1727       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1728   }
1729 
1730   if (CodeGenOpts.DisableRedZone)
1731     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1732   if (CodeGenOpts.IndirectTlsSegRefs)
1733     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1734   if (CodeGenOpts.NoImplicitFloat)
1735     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1736 
1737   if (AttrOnCallSite) {
1738     // Attributes that should go on the call site only.
1739     if (!CodeGenOpts.SimplifyLibCalls ||
1740         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1741       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1742     if (!CodeGenOpts.TrapFuncName.empty())
1743       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1744   } else {
1745     StringRef FpKind;
1746     switch (CodeGenOpts.getFramePointer()) {
1747     case CodeGenOptions::FramePointerKind::None:
1748       FpKind = "none";
1749       break;
1750     case CodeGenOptions::FramePointerKind::NonLeaf:
1751       FpKind = "non-leaf";
1752       break;
1753     case CodeGenOptions::FramePointerKind::All:
1754       FpKind = "all";
1755       break;
1756     }
1757     FuncAttrs.addAttribute("frame-pointer", FpKind);
1758 
1759     FuncAttrs.addAttribute("less-precise-fpmad",
1760                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1761 
1762     if (CodeGenOpts.NullPointerIsValid)
1763       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1764 
1765     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1766       FuncAttrs.addAttribute("denormal-fp-math",
1767                              CodeGenOpts.FPDenormalMode.str());
1768     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1769       FuncAttrs.addAttribute(
1770           "denormal-fp-math-f32",
1771           CodeGenOpts.FP32DenormalMode.str());
1772     }
1773 
1774     FuncAttrs.addAttribute("no-trapping-math",
1775                            llvm::toStringRef(LangOpts.getFPExceptionMode() ==
1776                                              LangOptions::FPE_Ignore));
1777 
1778     // Strict (compliant) code is the default, so only add this attribute to
1779     // indicate that we are trying to workaround a problem case.
1780     if (!CodeGenOpts.StrictFloatCastOverflow)
1781       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1782 
1783     // TODO: Are these all needed?
1784     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1785     FuncAttrs.addAttribute("no-infs-fp-math",
1786                            llvm::toStringRef(LangOpts.NoHonorInfs));
1787     FuncAttrs.addAttribute("no-nans-fp-math",
1788                            llvm::toStringRef(LangOpts.NoHonorNaNs));
1789     FuncAttrs.addAttribute("unsafe-fp-math",
1790                            llvm::toStringRef(LangOpts.UnsafeFPMath));
1791     FuncAttrs.addAttribute("use-soft-float",
1792                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1793     FuncAttrs.addAttribute("stack-protector-buffer-size",
1794                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1795     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1796                            llvm::toStringRef(LangOpts.NoSignedZero));
1797     FuncAttrs.addAttribute(
1798         "correctly-rounded-divide-sqrt-fp-math",
1799         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1800 
1801     // TODO: Reciprocal estimate codegen options should apply to instructions?
1802     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1803     if (!Recips.empty())
1804       FuncAttrs.addAttribute("reciprocal-estimates",
1805                              llvm::join(Recips, ","));
1806 
1807     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1808         CodeGenOpts.PreferVectorWidth != "none")
1809       FuncAttrs.addAttribute("prefer-vector-width",
1810                              CodeGenOpts.PreferVectorWidth);
1811 
1812     if (CodeGenOpts.StackRealignment)
1813       FuncAttrs.addAttribute("stackrealign");
1814     if (CodeGenOpts.Backchain)
1815       FuncAttrs.addAttribute("backchain");
1816     if (CodeGenOpts.EnableSegmentedStacks)
1817       FuncAttrs.addAttribute("split-stack");
1818 
1819     if (CodeGenOpts.SpeculativeLoadHardening)
1820       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1821   }
1822 
1823   if (getLangOpts().assumeFunctionsAreConvergent()) {
1824     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1825     // convergent (meaning, they may call an intrinsically convergent op, such
1826     // as __syncthreads() / barrier(), and so can't have certain optimizations
1827     // applied around them).  LLVM will remove this attribute where it safely
1828     // can.
1829     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1830   }
1831 
1832   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1833     // Exceptions aren't supported in CUDA device code.
1834     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1835   }
1836 
1837   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1838     StringRef Var, Value;
1839     std::tie(Var, Value) = Attr.split('=');
1840     FuncAttrs.addAttribute(Var, Value);
1841   }
1842 }
1843 
1844 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1845   llvm::AttrBuilder FuncAttrs;
1846   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1847                                /* AttrOnCallSite = */ false, FuncAttrs);
1848   // TODO: call GetCPUAndFeaturesAttributes?
1849   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1850 }
1851 
1852 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1853                                                    llvm::AttrBuilder &attrs) {
1854   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1855                                /*for call*/ false, attrs);
1856   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1857 }
1858 
1859 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1860                                    const LangOptions &LangOpts,
1861                                    const NoBuiltinAttr *NBA = nullptr) {
1862   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1863     SmallString<32> AttributeName;
1864     AttributeName += "no-builtin-";
1865     AttributeName += BuiltinName;
1866     FuncAttrs.addAttribute(AttributeName);
1867   };
1868 
1869   // First, handle the language options passed through -fno-builtin.
1870   if (LangOpts.NoBuiltin) {
1871     // -fno-builtin disables them all.
1872     FuncAttrs.addAttribute("no-builtins");
1873     return;
1874   }
1875 
1876   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1877   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1878 
1879   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1880   // the source.
1881   if (!NBA)
1882     return;
1883 
1884   // If there is a wildcard in the builtin names specified through the
1885   // attribute, disable them all.
1886   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1887     FuncAttrs.addAttribute("no-builtins");
1888     return;
1889   }
1890 
1891   // And last, add the rest of the builtin names.
1892   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1893 }
1894 
1895 /// Construct the IR attribute list of a function or call.
1896 ///
1897 /// When adding an attribute, please consider where it should be handled:
1898 ///
1899 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1900 ///     part of the global target configuration (but perhaps can be
1901 ///     overridden on a per-function basis).  Adding attributes there
1902 ///     will cause them to also be set in frontends that build on Clang's
1903 ///     target-configuration logic, as well as for code defined in library
1904 ///     modules such as CUDA's libdevice.
1905 ///
1906 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1907 ///     and adds declaration-specific, convention-specific, and
1908 ///     frontend-specific logic.  The last is of particular importance:
1909 ///     attributes that restrict how the frontend generates code must be
1910 ///     added here rather than getDefaultFunctionAttributes.
1911 ///
1912 void CodeGenModule::ConstructAttributeList(
1913     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1914     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1915   llvm::AttrBuilder FuncAttrs;
1916   llvm::AttrBuilder RetAttrs;
1917 
1918   // Collect function IR attributes from the CC lowering.
1919   // We'll collect the paramete and result attributes later.
1920   CallingConv = FI.getEffectiveCallingConvention();
1921   if (FI.isNoReturn())
1922     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1923   if (FI.isCmseNSCall())
1924     FuncAttrs.addAttribute("cmse_nonsecure_call");
1925 
1926   // Collect function IR attributes from the callee prototype if we have one.
1927   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1928                                      CalleeInfo.getCalleeFunctionProtoType());
1929 
1930   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1931 
1932   bool HasOptnone = false;
1933   // The NoBuiltinAttr attached to the target FunctionDecl.
1934   const NoBuiltinAttr *NBA = nullptr;
1935 
1936   // Collect function IR attributes based on declaration-specific
1937   // information.
1938   // FIXME: handle sseregparm someday...
1939   if (TargetDecl) {
1940     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1941       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1942     if (TargetDecl->hasAttr<NoThrowAttr>())
1943       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1944     if (TargetDecl->hasAttr<NoReturnAttr>())
1945       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1946     if (TargetDecl->hasAttr<ColdAttr>())
1947       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1948     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1949       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1950     if (TargetDecl->hasAttr<ConvergentAttr>())
1951       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1952 
1953     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1954       AddAttributesFromFunctionProtoType(
1955           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1956       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1957         // A sane operator new returns a non-aliasing pointer.
1958         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1959         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1960             (Kind == OO_New || Kind == OO_Array_New))
1961           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1962       }
1963       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1964       const bool IsVirtualCall = MD && MD->isVirtual();
1965       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1966       // virtual function. These attributes are not inherited by overloads.
1967       if (!(AttrOnCallSite && IsVirtualCall)) {
1968         if (Fn->isNoReturn())
1969           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1970         NBA = Fn->getAttr<NoBuiltinAttr>();
1971       }
1972     }
1973 
1974     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1975     if (TargetDecl->hasAttr<ConstAttr>()) {
1976       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1977       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1978     } else if (TargetDecl->hasAttr<PureAttr>()) {
1979       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1980       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1981     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1982       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1983       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1984     }
1985     if (TargetDecl->hasAttr<RestrictAttr>())
1986       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1987     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1988         !CodeGenOpts.NullPointerIsValid)
1989       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1990     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1991       FuncAttrs.addAttribute("no_caller_saved_registers");
1992     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1993       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1994 
1995     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1996     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1997       Optional<unsigned> NumElemsParam;
1998       if (AllocSize->getNumElemsParam().isValid())
1999         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2000       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2001                                  NumElemsParam);
2002     }
2003 
2004     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2005       if (getLangOpts().OpenCLVersion <= 120) {
2006         // OpenCL v1.2 Work groups are always uniform
2007         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2008       } else {
2009         // OpenCL v2.0 Work groups may be whether uniform or not.
2010         // '-cl-uniform-work-group-size' compile option gets a hint
2011         // to the compiler that the global work-size be a multiple of
2012         // the work-group size specified to clEnqueueNDRangeKernel
2013         // (i.e. work groups are uniform).
2014         FuncAttrs.addAttribute("uniform-work-group-size",
2015                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2016       }
2017     }
2018   }
2019 
2020   // Attach "no-builtins" attributes to:
2021   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2022   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2023   // The attributes can come from:
2024   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2025   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2026   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2027 
2028   // Collect function IR attributes based on global settiings.
2029   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2030 
2031   // Override some default IR attributes based on declaration-specific
2032   // information.
2033   if (TargetDecl) {
2034     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2035       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2036     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2037       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2038     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2039       FuncAttrs.removeAttribute("split-stack");
2040 
2041     // Add NonLazyBind attribute to function declarations when -fno-plt
2042     // is used.
2043     // FIXME: what if we just haven't processed the function definition
2044     // yet, or if it's an external definition like C99 inline?
2045     if (CodeGenOpts.NoPLT) {
2046       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2047         if (!Fn->isDefined() && !AttrOnCallSite) {
2048           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2049         }
2050       }
2051     }
2052   }
2053 
2054   // Collect non-call-site function IR attributes from declaration-specific
2055   // information.
2056   if (!AttrOnCallSite) {
2057     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2058       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2059 
2060     // Whether tail calls are enabled.
2061     auto shouldDisableTailCalls = [&] {
2062       // Should this be honored in getDefaultFunctionAttributes?
2063       if (CodeGenOpts.DisableTailCalls)
2064         return true;
2065 
2066       if (!TargetDecl)
2067         return false;
2068 
2069       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2070           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2071         return true;
2072 
2073       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2074         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2075           if (!BD->doesNotEscape())
2076             return true;
2077       }
2078 
2079       return false;
2080     };
2081     FuncAttrs.addAttribute("disable-tail-calls",
2082                            llvm::toStringRef(shouldDisableTailCalls()));
2083 
2084     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2085     // handles these separately to set them based on the global defaults.
2086     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2087   }
2088 
2089   // Collect attributes from arguments and return values.
2090   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2091 
2092   QualType RetTy = FI.getReturnType();
2093   const ABIArgInfo &RetAI = FI.getReturnInfo();
2094   switch (RetAI.getKind()) {
2095   case ABIArgInfo::Extend:
2096     if (RetAI.isSignExt())
2097       RetAttrs.addAttribute(llvm::Attribute::SExt);
2098     else
2099       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2100     LLVM_FALLTHROUGH;
2101   case ABIArgInfo::Direct:
2102     if (RetAI.getInReg())
2103       RetAttrs.addAttribute(llvm::Attribute::InReg);
2104     break;
2105   case ABIArgInfo::Ignore:
2106     break;
2107 
2108   case ABIArgInfo::InAlloca:
2109   case ABIArgInfo::Indirect: {
2110     // inalloca and sret disable readnone and readonly
2111     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2112       .removeAttribute(llvm::Attribute::ReadNone);
2113     break;
2114   }
2115 
2116   case ABIArgInfo::CoerceAndExpand:
2117     break;
2118 
2119   case ABIArgInfo::Expand:
2120   case ABIArgInfo::IndirectAliased:
2121     llvm_unreachable("Invalid ABI kind for return argument");
2122   }
2123 
2124   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2125     QualType PTy = RefTy->getPointeeType();
2126     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2127       RetAttrs.addDereferenceableAttr(
2128           getMinimumObjectSize(PTy).getQuantity());
2129     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2130         !CodeGenOpts.NullPointerIsValid)
2131       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2132     if (PTy->isObjectType()) {
2133       llvm::Align Alignment =
2134           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2135       RetAttrs.addAlignmentAttr(Alignment);
2136     }
2137   }
2138 
2139   bool hasUsedSRet = false;
2140   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2141 
2142   // Attach attributes to sret.
2143   if (IRFunctionArgs.hasSRetArg()) {
2144     llvm::AttrBuilder SRETAttrs;
2145     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2146     hasUsedSRet = true;
2147     if (RetAI.getInReg())
2148       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2149     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2150     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2151         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2152   }
2153 
2154   // Attach attributes to inalloca argument.
2155   if (IRFunctionArgs.hasInallocaArg()) {
2156     llvm::AttrBuilder Attrs;
2157     Attrs.addAttribute(llvm::Attribute::InAlloca);
2158     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2159         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2160   }
2161 
2162   unsigned ArgNo = 0;
2163   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2164                                           E = FI.arg_end();
2165        I != E; ++I, ++ArgNo) {
2166     QualType ParamType = I->type;
2167     const ABIArgInfo &AI = I->info;
2168     llvm::AttrBuilder Attrs;
2169 
2170     // Add attribute for padding argument, if necessary.
2171     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2172       if (AI.getPaddingInReg()) {
2173         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2174             llvm::AttributeSet::get(
2175                 getLLVMContext(),
2176                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2177       }
2178     }
2179 
2180     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2181     // have the corresponding parameter variable.  It doesn't make
2182     // sense to do it here because parameters are so messed up.
2183     switch (AI.getKind()) {
2184     case ABIArgInfo::Extend:
2185       if (AI.isSignExt())
2186         Attrs.addAttribute(llvm::Attribute::SExt);
2187       else
2188         Attrs.addAttribute(llvm::Attribute::ZExt);
2189       LLVM_FALLTHROUGH;
2190     case ABIArgInfo::Direct:
2191       if (ArgNo == 0 && FI.isChainCall())
2192         Attrs.addAttribute(llvm::Attribute::Nest);
2193       else if (AI.getInReg())
2194         Attrs.addAttribute(llvm::Attribute::InReg);
2195       break;
2196 
2197     case ABIArgInfo::Indirect: {
2198       if (AI.getInReg())
2199         Attrs.addAttribute(llvm::Attribute::InReg);
2200 
2201       if (AI.getIndirectByVal())
2202         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2203 
2204       // TODO: We could add the byref attribute if not byval, but it would
2205       // require updating many testcases.
2206 
2207       CharUnits Align = AI.getIndirectAlign();
2208 
2209       // In a byval argument, it is important that the required
2210       // alignment of the type is honored, as LLVM might be creating a
2211       // *new* stack object, and needs to know what alignment to give
2212       // it. (Sometimes it can deduce a sensible alignment on its own,
2213       // but not if clang decides it must emit a packed struct, or the
2214       // user specifies increased alignment requirements.)
2215       //
2216       // This is different from indirect *not* byval, where the object
2217       // exists already, and the align attribute is purely
2218       // informative.
2219       assert(!Align.isZero());
2220 
2221       // For now, only add this when we have a byval argument.
2222       // TODO: be less lazy about updating test cases.
2223       if (AI.getIndirectByVal())
2224         Attrs.addAlignmentAttr(Align.getQuantity());
2225 
2226       // byval disables readnone and readonly.
2227       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2228         .removeAttribute(llvm::Attribute::ReadNone);
2229 
2230       break;
2231     }
2232     case ABIArgInfo::IndirectAliased: {
2233       CharUnits Align = AI.getIndirectAlign();
2234       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2235       Attrs.addAlignmentAttr(Align.getQuantity());
2236       break;
2237     }
2238     case ABIArgInfo::Ignore:
2239     case ABIArgInfo::Expand:
2240     case ABIArgInfo::CoerceAndExpand:
2241       break;
2242 
2243     case ABIArgInfo::InAlloca:
2244       // inalloca disables readnone and readonly.
2245       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2246           .removeAttribute(llvm::Attribute::ReadNone);
2247       continue;
2248     }
2249 
2250     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2251       QualType PTy = RefTy->getPointeeType();
2252       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2253         Attrs.addDereferenceableAttr(
2254             getMinimumObjectSize(PTy).getQuantity());
2255       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2256           !CodeGenOpts.NullPointerIsValid)
2257         Attrs.addAttribute(llvm::Attribute::NonNull);
2258       if (PTy->isObjectType()) {
2259         llvm::Align Alignment =
2260             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2261         Attrs.addAlignmentAttr(Alignment);
2262       }
2263     }
2264 
2265     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2266     case ParameterABI::Ordinary:
2267       break;
2268 
2269     case ParameterABI::SwiftIndirectResult: {
2270       // Add 'sret' if we haven't already used it for something, but
2271       // only if the result is void.
2272       if (!hasUsedSRet && RetTy->isVoidType()) {
2273         Attrs.addAttribute(llvm::Attribute::StructRet);
2274         hasUsedSRet = true;
2275       }
2276 
2277       // Add 'noalias' in either case.
2278       Attrs.addAttribute(llvm::Attribute::NoAlias);
2279 
2280       // Add 'dereferenceable' and 'alignment'.
2281       auto PTy = ParamType->getPointeeType();
2282       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2283         auto info = getContext().getTypeInfoInChars(PTy);
2284         Attrs.addDereferenceableAttr(info.first.getQuantity());
2285         Attrs.addAlignmentAttr(info.second.getAsAlign());
2286       }
2287       break;
2288     }
2289 
2290     case ParameterABI::SwiftErrorResult:
2291       Attrs.addAttribute(llvm::Attribute::SwiftError);
2292       break;
2293 
2294     case ParameterABI::SwiftContext:
2295       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2296       break;
2297     }
2298 
2299     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2300       Attrs.addAttribute(llvm::Attribute::NoCapture);
2301 
2302     if (Attrs.hasAttributes()) {
2303       unsigned FirstIRArg, NumIRArgs;
2304       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2305       for (unsigned i = 0; i < NumIRArgs; i++)
2306         ArgAttrs[FirstIRArg + i] =
2307             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2308     }
2309   }
2310   assert(ArgNo == FI.arg_size());
2311 
2312   AttrList = llvm::AttributeList::get(
2313       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2314       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2315 }
2316 
2317 /// An argument came in as a promoted argument; demote it back to its
2318 /// declared type.
2319 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2320                                          const VarDecl *var,
2321                                          llvm::Value *value) {
2322   llvm::Type *varType = CGF.ConvertType(var->getType());
2323 
2324   // This can happen with promotions that actually don't change the
2325   // underlying type, like the enum promotions.
2326   if (value->getType() == varType) return value;
2327 
2328   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2329          && "unexpected promotion type");
2330 
2331   if (isa<llvm::IntegerType>(varType))
2332     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2333 
2334   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2335 }
2336 
2337 /// Returns the attribute (either parameter attribute, or function
2338 /// attribute), which declares argument ArgNo to be non-null.
2339 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2340                                          QualType ArgType, unsigned ArgNo) {
2341   // FIXME: __attribute__((nonnull)) can also be applied to:
2342   //   - references to pointers, where the pointee is known to be
2343   //     nonnull (apparently a Clang extension)
2344   //   - transparent unions containing pointers
2345   // In the former case, LLVM IR cannot represent the constraint. In
2346   // the latter case, we have no guarantee that the transparent union
2347   // is in fact passed as a pointer.
2348   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2349     return nullptr;
2350   // First, check attribute on parameter itself.
2351   if (PVD) {
2352     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2353       return ParmNNAttr;
2354   }
2355   // Check function attributes.
2356   if (!FD)
2357     return nullptr;
2358   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2359     if (NNAttr->isNonNull(ArgNo))
2360       return NNAttr;
2361   }
2362   return nullptr;
2363 }
2364 
2365 namespace {
2366   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2367     Address Temp;
2368     Address Arg;
2369     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2370     void Emit(CodeGenFunction &CGF, Flags flags) override {
2371       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2372       CGF.Builder.CreateStore(errorValue, Arg);
2373     }
2374   };
2375 }
2376 
2377 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2378                                          llvm::Function *Fn,
2379                                          const FunctionArgList &Args) {
2380   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2381     // Naked functions don't have prologues.
2382     return;
2383 
2384   // If this is an implicit-return-zero function, go ahead and
2385   // initialize the return value.  TODO: it might be nice to have
2386   // a more general mechanism for this that didn't require synthesized
2387   // return statements.
2388   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2389     if (FD->hasImplicitReturnZero()) {
2390       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2391       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2392       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2393       Builder.CreateStore(Zero, ReturnValue);
2394     }
2395   }
2396 
2397   // FIXME: We no longer need the types from FunctionArgList; lift up and
2398   // simplify.
2399 
2400   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2401   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2402 
2403   // If we're using inalloca, all the memory arguments are GEPs off of the last
2404   // parameter, which is a pointer to the complete memory area.
2405   Address ArgStruct = Address::invalid();
2406   if (IRFunctionArgs.hasInallocaArg()) {
2407     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2408                         FI.getArgStructAlignment());
2409 
2410     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2411   }
2412 
2413   // Name the struct return parameter.
2414   if (IRFunctionArgs.hasSRetArg()) {
2415     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2416     AI->setName("agg.result");
2417     AI->addAttr(llvm::Attribute::NoAlias);
2418   }
2419 
2420   // Track if we received the parameter as a pointer (indirect, byval, or
2421   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2422   // into a local alloca for us.
2423   SmallVector<ParamValue, 16> ArgVals;
2424   ArgVals.reserve(Args.size());
2425 
2426   // Create a pointer value for every parameter declaration.  This usually
2427   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2428   // any cleanups or do anything that might unwind.  We do that separately, so
2429   // we can push the cleanups in the correct order for the ABI.
2430   assert(FI.arg_size() == Args.size() &&
2431          "Mismatch between function signature & arguments.");
2432   unsigned ArgNo = 0;
2433   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2434   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2435        i != e; ++i, ++info_it, ++ArgNo) {
2436     const VarDecl *Arg = *i;
2437     const ABIArgInfo &ArgI = info_it->info;
2438 
2439     bool isPromoted =
2440       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2441     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2442     // the parameter is promoted. In this case we convert to
2443     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2444     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2445     assert(hasScalarEvaluationKind(Ty) ==
2446            hasScalarEvaluationKind(Arg->getType()));
2447 
2448     unsigned FirstIRArg, NumIRArgs;
2449     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2450 
2451     switch (ArgI.getKind()) {
2452     case ABIArgInfo::InAlloca: {
2453       assert(NumIRArgs == 0);
2454       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2455       Address V =
2456           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2457       if (ArgI.getInAllocaIndirect())
2458         V = Address(Builder.CreateLoad(V),
2459                     getContext().getTypeAlignInChars(Ty));
2460       ArgVals.push_back(ParamValue::forIndirect(V));
2461       break;
2462     }
2463 
2464     case ABIArgInfo::Indirect:
2465     case ABIArgInfo::IndirectAliased: {
2466       assert(NumIRArgs == 1);
2467       Address ParamAddr =
2468           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2469 
2470       if (!hasScalarEvaluationKind(Ty)) {
2471         // Aggregates and complex variables are accessed by reference. All we
2472         // need to do is realign the value, if requested. Also, if the address
2473         // may be aliased, copy it to ensure that the parameter variable is
2474         // mutable and has a unique adress, as C requires.
2475         Address V = ParamAddr;
2476         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2477           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2478 
2479           // Copy from the incoming argument pointer to the temporary with the
2480           // appropriate alignment.
2481           //
2482           // FIXME: We should have a common utility for generating an aggregate
2483           // copy.
2484           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2485           Builder.CreateMemCpy(
2486               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2487               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2488               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2489           V = AlignedTemp;
2490         }
2491         ArgVals.push_back(ParamValue::forIndirect(V));
2492       } else {
2493         // Load scalar value from indirect argument.
2494         llvm::Value *V =
2495             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2496 
2497         if (isPromoted)
2498           V = emitArgumentDemotion(*this, Arg, V);
2499         ArgVals.push_back(ParamValue::forDirect(V));
2500       }
2501       break;
2502     }
2503 
2504     case ABIArgInfo::Extend:
2505     case ABIArgInfo::Direct: {
2506       auto AI = Fn->getArg(FirstIRArg);
2507       llvm::Type *LTy = ConvertType(Arg->getType());
2508 
2509       // Prepare parameter attributes. So far, only attributes for pointer
2510       // parameters are prepared. See
2511       // http://llvm.org/docs/LangRef.html#paramattrs.
2512       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2513           ArgI.getCoerceToType()->isPointerTy()) {
2514         assert(NumIRArgs == 1);
2515 
2516         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2517           // Set `nonnull` attribute if any.
2518           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2519                              PVD->getFunctionScopeIndex()) &&
2520               !CGM.getCodeGenOpts().NullPointerIsValid)
2521             AI->addAttr(llvm::Attribute::NonNull);
2522 
2523           QualType OTy = PVD->getOriginalType();
2524           if (const auto *ArrTy =
2525               getContext().getAsConstantArrayType(OTy)) {
2526             // A C99 array parameter declaration with the static keyword also
2527             // indicates dereferenceability, and if the size is constant we can
2528             // use the dereferenceable attribute (which requires the size in
2529             // bytes).
2530             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2531               QualType ETy = ArrTy->getElementType();
2532               llvm::Align Alignment =
2533                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2534               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2535               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2536               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2537                   ArrSize) {
2538                 llvm::AttrBuilder Attrs;
2539                 Attrs.addDereferenceableAttr(
2540                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2541                     ArrSize);
2542                 AI->addAttrs(Attrs);
2543               } else if (getContext().getTargetInfo().getNullPointerValue(
2544                              ETy.getAddressSpace()) == 0 &&
2545                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2546                 AI->addAttr(llvm::Attribute::NonNull);
2547               }
2548             }
2549           } else if (const auto *ArrTy =
2550                      getContext().getAsVariableArrayType(OTy)) {
2551             // For C99 VLAs with the static keyword, we don't know the size so
2552             // we can't use the dereferenceable attribute, but in addrspace(0)
2553             // we know that it must be nonnull.
2554             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2555               QualType ETy = ArrTy->getElementType();
2556               llvm::Align Alignment =
2557                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2558               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2559               if (!getContext().getTargetAddressSpace(ETy) &&
2560                   !CGM.getCodeGenOpts().NullPointerIsValid)
2561                 AI->addAttr(llvm::Attribute::NonNull);
2562             }
2563           }
2564 
2565           // Set `align` attribute if any.
2566           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2567           if (!AVAttr)
2568             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2569               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2570           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2571             // If alignment-assumption sanitizer is enabled, we do *not* add
2572             // alignment attribute here, but emit normal alignment assumption,
2573             // so the UBSAN check could function.
2574             llvm::ConstantInt *AlignmentCI =
2575                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2576             unsigned AlignmentInt =
2577                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2578             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2579               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2580               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2581                   llvm::Align(AlignmentInt)));
2582             }
2583           }
2584         }
2585 
2586         // Set 'noalias' if an argument type has the `restrict` qualifier.
2587         if (Arg->getType().isRestrictQualified())
2588           AI->addAttr(llvm::Attribute::NoAlias);
2589       }
2590 
2591       // Prepare the argument value. If we have the trivial case, handle it
2592       // with no muss and fuss.
2593       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2594           ArgI.getCoerceToType() == ConvertType(Ty) &&
2595           ArgI.getDirectOffset() == 0) {
2596         assert(NumIRArgs == 1);
2597 
2598         // LLVM expects swifterror parameters to be used in very restricted
2599         // ways.  Copy the value into a less-restricted temporary.
2600         llvm::Value *V = AI;
2601         if (FI.getExtParameterInfo(ArgNo).getABI()
2602               == ParameterABI::SwiftErrorResult) {
2603           QualType pointeeTy = Ty->getPointeeType();
2604           assert(pointeeTy->isPointerType());
2605           Address temp =
2606             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2607           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2608           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2609           Builder.CreateStore(incomingErrorValue, temp);
2610           V = temp.getPointer();
2611 
2612           // Push a cleanup to copy the value back at the end of the function.
2613           // The convention does not guarantee that the value will be written
2614           // back if the function exits with an unwind exception.
2615           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2616         }
2617 
2618         // Ensure the argument is the correct type.
2619         if (V->getType() != ArgI.getCoerceToType())
2620           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2621 
2622         if (isPromoted)
2623           V = emitArgumentDemotion(*this, Arg, V);
2624 
2625         // Because of merging of function types from multiple decls it is
2626         // possible for the type of an argument to not match the corresponding
2627         // type in the function type. Since we are codegening the callee
2628         // in here, add a cast to the argument type.
2629         llvm::Type *LTy = ConvertType(Arg->getType());
2630         if (V->getType() != LTy)
2631           V = Builder.CreateBitCast(V, LTy);
2632 
2633         ArgVals.push_back(ParamValue::forDirect(V));
2634         break;
2635       }
2636 
2637       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2638                                      Arg->getName());
2639 
2640       // Pointer to store into.
2641       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2642 
2643       // Fast-isel and the optimizer generally like scalar values better than
2644       // FCAs, so we flatten them if this is safe to do for this argument.
2645       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2646       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2647           STy->getNumElements() > 1) {
2648         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2649         llvm::Type *DstTy = Ptr.getElementType();
2650         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2651 
2652         Address AddrToStoreInto = Address::invalid();
2653         if (SrcSize <= DstSize) {
2654           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2655         } else {
2656           AddrToStoreInto =
2657             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2658         }
2659 
2660         assert(STy->getNumElements() == NumIRArgs);
2661         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2662           auto AI = Fn->getArg(FirstIRArg + i);
2663           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2664           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2665           Builder.CreateStore(AI, EltPtr);
2666         }
2667 
2668         if (SrcSize > DstSize) {
2669           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2670         }
2671 
2672       } else {
2673         // Simple case, just do a coerced store of the argument into the alloca.
2674         assert(NumIRArgs == 1);
2675         auto AI = Fn->getArg(FirstIRArg);
2676         AI->setName(Arg->getName() + ".coerce");
2677         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2678       }
2679 
2680       // Match to what EmitParmDecl is expecting for this type.
2681       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2682         llvm::Value *V =
2683             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2684         if (isPromoted)
2685           V = emitArgumentDemotion(*this, Arg, V);
2686         ArgVals.push_back(ParamValue::forDirect(V));
2687       } else {
2688         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2689       }
2690       break;
2691     }
2692 
2693     case ABIArgInfo::CoerceAndExpand: {
2694       // Reconstruct into a temporary.
2695       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2696       ArgVals.push_back(ParamValue::forIndirect(alloca));
2697 
2698       auto coercionType = ArgI.getCoerceAndExpandType();
2699       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2700 
2701       unsigned argIndex = FirstIRArg;
2702       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2703         llvm::Type *eltType = coercionType->getElementType(i);
2704         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2705           continue;
2706 
2707         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2708         auto elt = Fn->getArg(argIndex++);
2709         Builder.CreateStore(elt, eltAddr);
2710       }
2711       assert(argIndex == FirstIRArg + NumIRArgs);
2712       break;
2713     }
2714 
2715     case ABIArgInfo::Expand: {
2716       // If this structure was expanded into multiple arguments then
2717       // we need to create a temporary and reconstruct it from the
2718       // arguments.
2719       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2720       LValue LV = MakeAddrLValue(Alloca, Ty);
2721       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2722 
2723       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2724       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2725       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2726       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2727         auto AI = Fn->getArg(FirstIRArg + i);
2728         AI->setName(Arg->getName() + "." + Twine(i));
2729       }
2730       break;
2731     }
2732 
2733     case ABIArgInfo::Ignore:
2734       assert(NumIRArgs == 0);
2735       // Initialize the local variable appropriately.
2736       if (!hasScalarEvaluationKind(Ty)) {
2737         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2738       } else {
2739         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2740         ArgVals.push_back(ParamValue::forDirect(U));
2741       }
2742       break;
2743     }
2744   }
2745 
2746   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2747     for (int I = Args.size() - 1; I >= 0; --I)
2748       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2749   } else {
2750     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2751       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2752   }
2753 }
2754 
2755 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2756   while (insn->use_empty()) {
2757     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2758     if (!bitcast) return;
2759 
2760     // This is "safe" because we would have used a ConstantExpr otherwise.
2761     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2762     bitcast->eraseFromParent();
2763   }
2764 }
2765 
2766 /// Try to emit a fused autorelease of a return result.
2767 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2768                                                     llvm::Value *result) {
2769   // We must be immediately followed the cast.
2770   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2771   if (BB->empty()) return nullptr;
2772   if (&BB->back() != result) return nullptr;
2773 
2774   llvm::Type *resultType = result->getType();
2775 
2776   // result is in a BasicBlock and is therefore an Instruction.
2777   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2778 
2779   SmallVector<llvm::Instruction *, 4> InstsToKill;
2780 
2781   // Look for:
2782   //  %generator = bitcast %type1* %generator2 to %type2*
2783   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2784     // We would have emitted this as a constant if the operand weren't
2785     // an Instruction.
2786     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2787 
2788     // Require the generator to be immediately followed by the cast.
2789     if (generator->getNextNode() != bitcast)
2790       return nullptr;
2791 
2792     InstsToKill.push_back(bitcast);
2793   }
2794 
2795   // Look for:
2796   //   %generator = call i8* @objc_retain(i8* %originalResult)
2797   // or
2798   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2799   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2800   if (!call) return nullptr;
2801 
2802   bool doRetainAutorelease;
2803 
2804   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2805     doRetainAutorelease = true;
2806   } else if (call->getCalledOperand() ==
2807              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
2808     doRetainAutorelease = false;
2809 
2810     // If we emitted an assembly marker for this call (and the
2811     // ARCEntrypoints field should have been set if so), go looking
2812     // for that call.  If we can't find it, we can't do this
2813     // optimization.  But it should always be the immediately previous
2814     // instruction, unless we needed bitcasts around the call.
2815     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2816       llvm::Instruction *prev = call->getPrevNode();
2817       assert(prev);
2818       if (isa<llvm::BitCastInst>(prev)) {
2819         prev = prev->getPrevNode();
2820         assert(prev);
2821       }
2822       assert(isa<llvm::CallInst>(prev));
2823       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
2824              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2825       InstsToKill.push_back(prev);
2826     }
2827   } else {
2828     return nullptr;
2829   }
2830 
2831   result = call->getArgOperand(0);
2832   InstsToKill.push_back(call);
2833 
2834   // Keep killing bitcasts, for sanity.  Note that we no longer care
2835   // about precise ordering as long as there's exactly one use.
2836   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2837     if (!bitcast->hasOneUse()) break;
2838     InstsToKill.push_back(bitcast);
2839     result = bitcast->getOperand(0);
2840   }
2841 
2842   // Delete all the unnecessary instructions, from latest to earliest.
2843   for (auto *I : InstsToKill)
2844     I->eraseFromParent();
2845 
2846   // Do the fused retain/autorelease if we were asked to.
2847   if (doRetainAutorelease)
2848     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2849 
2850   // Cast back to the result type.
2851   return CGF.Builder.CreateBitCast(result, resultType);
2852 }
2853 
2854 /// If this is a +1 of the value of an immutable 'self', remove it.
2855 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2856                                           llvm::Value *result) {
2857   // This is only applicable to a method with an immutable 'self'.
2858   const ObjCMethodDecl *method =
2859     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2860   if (!method) return nullptr;
2861   const VarDecl *self = method->getSelfDecl();
2862   if (!self->getType().isConstQualified()) return nullptr;
2863 
2864   // Look for a retain call.
2865   llvm::CallInst *retainCall =
2866     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2867   if (!retainCall || retainCall->getCalledOperand() !=
2868                          CGF.CGM.getObjCEntrypoints().objc_retain)
2869     return nullptr;
2870 
2871   // Look for an ordinary load of 'self'.
2872   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2873   llvm::LoadInst *load =
2874     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2875   if (!load || load->isAtomic() || load->isVolatile() ||
2876       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2877     return nullptr;
2878 
2879   // Okay!  Burn it all down.  This relies for correctness on the
2880   // assumption that the retain is emitted as part of the return and
2881   // that thereafter everything is used "linearly".
2882   llvm::Type *resultType = result->getType();
2883   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2884   assert(retainCall->use_empty());
2885   retainCall->eraseFromParent();
2886   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2887 
2888   return CGF.Builder.CreateBitCast(load, resultType);
2889 }
2890 
2891 /// Emit an ARC autorelease of the result of a function.
2892 ///
2893 /// \return the value to actually return from the function
2894 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2895                                             llvm::Value *result) {
2896   // If we're returning 'self', kill the initial retain.  This is a
2897   // heuristic attempt to "encourage correctness" in the really unfortunate
2898   // case where we have a return of self during a dealloc and we desperately
2899   // need to avoid the possible autorelease.
2900   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2901     return self;
2902 
2903   // At -O0, try to emit a fused retain/autorelease.
2904   if (CGF.shouldUseFusedARCCalls())
2905     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2906       return fused;
2907 
2908   return CGF.EmitARCAutoreleaseReturnValue(result);
2909 }
2910 
2911 /// Heuristically search for a dominating store to the return-value slot.
2912 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2913   // Check if a User is a store which pointerOperand is the ReturnValue.
2914   // We are looking for stores to the ReturnValue, not for stores of the
2915   // ReturnValue to some other location.
2916   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2917     auto *SI = dyn_cast<llvm::StoreInst>(U);
2918     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2919       return nullptr;
2920     // These aren't actually possible for non-coerced returns, and we
2921     // only care about non-coerced returns on this code path.
2922     assert(!SI->isAtomic() && !SI->isVolatile());
2923     return SI;
2924   };
2925   // If there are multiple uses of the return-value slot, just check
2926   // for something immediately preceding the IP.  Sometimes this can
2927   // happen with how we generate implicit-returns; it can also happen
2928   // with noreturn cleanups.
2929   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2930     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2931     if (IP->empty()) return nullptr;
2932     llvm::Instruction *I = &IP->back();
2933 
2934     // Skip lifetime markers
2935     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2936                                             IE = IP->rend();
2937          II != IE; ++II) {
2938       if (llvm::IntrinsicInst *Intrinsic =
2939               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2940         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2941           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2942           ++II;
2943           if (II == IE)
2944             break;
2945           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2946             continue;
2947         }
2948       }
2949       I = &*II;
2950       break;
2951     }
2952 
2953     return GetStoreIfValid(I);
2954   }
2955 
2956   llvm::StoreInst *store =
2957       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2958   if (!store) return nullptr;
2959 
2960   // Now do a first-and-dirty dominance check: just walk up the
2961   // single-predecessors chain from the current insertion point.
2962   llvm::BasicBlock *StoreBB = store->getParent();
2963   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2964   while (IP != StoreBB) {
2965     if (!(IP = IP->getSinglePredecessor()))
2966       return nullptr;
2967   }
2968 
2969   // Okay, the store's basic block dominates the insertion point; we
2970   // can do our thing.
2971   return store;
2972 }
2973 
2974 // Helper functions for EmitCMSEClearRecord
2975 
2976 // Set the bits corresponding to a field having width `BitWidth` and located at
2977 // offset `BitOffset` (from the least significant bit) within a storage unit of
2978 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
2979 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
2980 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
2981                         int BitWidth, int CharWidth) {
2982   assert(CharWidth <= 64);
2983   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
2984 
2985   int Pos = 0;
2986   if (BitOffset >= CharWidth) {
2987     Pos += BitOffset / CharWidth;
2988     BitOffset = BitOffset % CharWidth;
2989   }
2990 
2991   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
2992   if (BitOffset + BitWidth >= CharWidth) {
2993     Bits[Pos++] |= (Used << BitOffset) & Used;
2994     BitWidth -= CharWidth - BitOffset;
2995     BitOffset = 0;
2996   }
2997 
2998   while (BitWidth >= CharWidth) {
2999     Bits[Pos++] = Used;
3000     BitWidth -= CharWidth;
3001   }
3002 
3003   if (BitWidth > 0)
3004     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3005 }
3006 
3007 // Set the bits corresponding to a field having width `BitWidth` and located at
3008 // offset `BitOffset` (from the least significant bit) within a storage unit of
3009 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3010 // `Bits` corresponds to one target byte. Use target endian layout.
3011 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3012                         int StorageSize, int BitOffset, int BitWidth,
3013                         int CharWidth, bool BigEndian) {
3014 
3015   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3016   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3017 
3018   if (BigEndian)
3019     std::reverse(TmpBits.begin(), TmpBits.end());
3020 
3021   for (uint64_t V : TmpBits)
3022     Bits[StorageOffset++] |= V;
3023 }
3024 
3025 static void setUsedBits(CodeGenModule &, QualType, int,
3026                         SmallVectorImpl<uint64_t> &);
3027 
3028 // Set the bits in `Bits`, which correspond to the value representations of
3029 // the actual members of the record type `RTy`. Note that this function does
3030 // not handle base classes, virtual tables, etc, since they cannot happen in
3031 // CMSE function arguments or return. The bit mask corresponds to the target
3032 // memory layout, i.e. it's endian dependent.
3033 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3034                         SmallVectorImpl<uint64_t> &Bits) {
3035   ASTContext &Context = CGM.getContext();
3036   int CharWidth = Context.getCharWidth();
3037   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3038   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3039   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3040 
3041   int Idx = 0;
3042   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3043     const FieldDecl *F = *I;
3044 
3045     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3046         F->getType()->isIncompleteArrayType())
3047       continue;
3048 
3049     if (F->isBitField()) {
3050       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3051       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3052                   BFI.StorageSize / CharWidth, BFI.Offset,
3053                   BFI.Size, CharWidth,
3054                   CGM.getDataLayout().isBigEndian());
3055       continue;
3056     }
3057 
3058     setUsedBits(CGM, F->getType(),
3059                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3060   }
3061 }
3062 
3063 // Set the bits in `Bits`, which correspond to the value representations of
3064 // the elements of an array type `ATy`.
3065 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3066                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3067   const ASTContext &Context = CGM.getContext();
3068 
3069   QualType ETy = Context.getBaseElementType(ATy);
3070   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3071   SmallVector<uint64_t, 4> TmpBits(Size);
3072   setUsedBits(CGM, ETy, 0, TmpBits);
3073 
3074   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3075     auto Src = TmpBits.begin();
3076     auto Dst = Bits.begin() + Offset + I * Size;
3077     for (int J = 0; J < Size; ++J)
3078       *Dst++ |= *Src++;
3079   }
3080 }
3081 
3082 // Set the bits in `Bits`, which correspond to the value representations of
3083 // the type `QTy`.
3084 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3085                         SmallVectorImpl<uint64_t> &Bits) {
3086   if (const auto *RTy = QTy->getAs<RecordType>())
3087     return setUsedBits(CGM, RTy, Offset, Bits);
3088 
3089   ASTContext &Context = CGM.getContext();
3090   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3091     return setUsedBits(CGM, ATy, Offset, Bits);
3092 
3093   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3094   if (Size <= 0)
3095     return;
3096 
3097   std::fill_n(Bits.begin() + Offset, Size,
3098               (uint64_t(1) << Context.getCharWidth()) - 1);
3099 }
3100 
3101 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3102                                    int Pos, int Size, int CharWidth,
3103                                    bool BigEndian) {
3104   assert(Size > 0);
3105   uint64_t Mask = 0;
3106   if (BigEndian) {
3107     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3108          ++P)
3109       Mask = (Mask << CharWidth) | *P;
3110   } else {
3111     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3112     do
3113       Mask = (Mask << CharWidth) | *--P;
3114     while (P != End);
3115   }
3116   return Mask;
3117 }
3118 
3119 // Emit code to clear the bits in a record, which aren't a part of any user
3120 // declared member, when the record is a function return.
3121 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3122                                                   llvm::IntegerType *ITy,
3123                                                   QualType QTy) {
3124   assert(Src->getType() == ITy);
3125   assert(ITy->getScalarSizeInBits() <= 64);
3126 
3127   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3128   int Size = DataLayout.getTypeStoreSize(ITy);
3129   SmallVector<uint64_t, 4> Bits(Size);
3130   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3131 
3132   int CharWidth = CGM.getContext().getCharWidth();
3133   uint64_t Mask =
3134       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3135 
3136   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3137 }
3138 
3139 // Emit code to clear the bits in a record, which aren't a part of any user
3140 // declared member, when the record is a function argument.
3141 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3142                                                   llvm::ArrayType *ATy,
3143                                                   QualType QTy) {
3144   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3145   int Size = DataLayout.getTypeStoreSize(ATy);
3146   SmallVector<uint64_t, 16> Bits(Size);
3147   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3148 
3149   // Clear each element of the LLVM array.
3150   int CharWidth = CGM.getContext().getCharWidth();
3151   int CharsPerElt =
3152       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3153   int MaskIndex = 0;
3154   llvm::Value *R = llvm::UndefValue::get(ATy);
3155   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3156     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3157                                        DataLayout.isBigEndian());
3158     MaskIndex += CharsPerElt;
3159     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3160     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3161     R = Builder.CreateInsertValue(R, T1, I);
3162   }
3163 
3164   return R;
3165 }
3166 
3167 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3168                                          bool EmitRetDbgLoc,
3169                                          SourceLocation EndLoc) {
3170   if (FI.isNoReturn()) {
3171     // Noreturn functions don't return.
3172     EmitUnreachable(EndLoc);
3173     return;
3174   }
3175 
3176   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3177     // Naked functions don't have epilogues.
3178     Builder.CreateUnreachable();
3179     return;
3180   }
3181 
3182   // Functions with no result always return void.
3183   if (!ReturnValue.isValid()) {
3184     Builder.CreateRetVoid();
3185     return;
3186   }
3187 
3188   llvm::DebugLoc RetDbgLoc;
3189   llvm::Value *RV = nullptr;
3190   QualType RetTy = FI.getReturnType();
3191   const ABIArgInfo &RetAI = FI.getReturnInfo();
3192 
3193   switch (RetAI.getKind()) {
3194   case ABIArgInfo::InAlloca:
3195     // Aggregrates get evaluated directly into the destination.  Sometimes we
3196     // need to return the sret value in a register, though.
3197     assert(hasAggregateEvaluationKind(RetTy));
3198     if (RetAI.getInAllocaSRet()) {
3199       llvm::Function::arg_iterator EI = CurFn->arg_end();
3200       --EI;
3201       llvm::Value *ArgStruct = &*EI;
3202       llvm::Value *SRet = Builder.CreateStructGEP(
3203           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3204       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3205     }
3206     break;
3207 
3208   case ABIArgInfo::Indirect: {
3209     auto AI = CurFn->arg_begin();
3210     if (RetAI.isSRetAfterThis())
3211       ++AI;
3212     switch (getEvaluationKind(RetTy)) {
3213     case TEK_Complex: {
3214       ComplexPairTy RT =
3215         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3216       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3217                          /*isInit*/ true);
3218       break;
3219     }
3220     case TEK_Aggregate:
3221       // Do nothing; aggregrates get evaluated directly into the destination.
3222       break;
3223     case TEK_Scalar:
3224       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3225                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3226                         /*isInit*/ true);
3227       break;
3228     }
3229     break;
3230   }
3231 
3232   case ABIArgInfo::Extend:
3233   case ABIArgInfo::Direct:
3234     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3235         RetAI.getDirectOffset() == 0) {
3236       // The internal return value temp always will have pointer-to-return-type
3237       // type, just do a load.
3238 
3239       // If there is a dominating store to ReturnValue, we can elide
3240       // the load, zap the store, and usually zap the alloca.
3241       if (llvm::StoreInst *SI =
3242               findDominatingStoreToReturnValue(*this)) {
3243         // Reuse the debug location from the store unless there is
3244         // cleanup code to be emitted between the store and return
3245         // instruction.
3246         if (EmitRetDbgLoc && !AutoreleaseResult)
3247           RetDbgLoc = SI->getDebugLoc();
3248         // Get the stored value and nuke the now-dead store.
3249         RV = SI->getValueOperand();
3250         SI->eraseFromParent();
3251 
3252       // Otherwise, we have to do a simple load.
3253       } else {
3254         RV = Builder.CreateLoad(ReturnValue);
3255       }
3256     } else {
3257       // If the value is offset in memory, apply the offset now.
3258       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3259 
3260       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3261     }
3262 
3263     // In ARC, end functions that return a retainable type with a call
3264     // to objc_autoreleaseReturnValue.
3265     if (AutoreleaseResult) {
3266 #ifndef NDEBUG
3267       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3268       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3269       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3270       // CurCodeDecl or BlockInfo.
3271       QualType RT;
3272 
3273       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3274         RT = FD->getReturnType();
3275       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3276         RT = MD->getReturnType();
3277       else if (isa<BlockDecl>(CurCodeDecl))
3278         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3279       else
3280         llvm_unreachable("Unexpected function/method type");
3281 
3282       assert(getLangOpts().ObjCAutoRefCount &&
3283              !FI.isReturnsRetained() &&
3284              RT->isObjCRetainableType());
3285 #endif
3286       RV = emitAutoreleaseOfResult(*this, RV);
3287     }
3288 
3289     break;
3290 
3291   case ABIArgInfo::Ignore:
3292     break;
3293 
3294   case ABIArgInfo::CoerceAndExpand: {
3295     auto coercionType = RetAI.getCoerceAndExpandType();
3296 
3297     // Load all of the coerced elements out into results.
3298     llvm::SmallVector<llvm::Value*, 4> results;
3299     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3300     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3301       auto coercedEltType = coercionType->getElementType(i);
3302       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3303         continue;
3304 
3305       auto eltAddr = Builder.CreateStructGEP(addr, i);
3306       auto elt = Builder.CreateLoad(eltAddr);
3307       results.push_back(elt);
3308     }
3309 
3310     // If we have one result, it's the single direct result type.
3311     if (results.size() == 1) {
3312       RV = results[0];
3313 
3314     // Otherwise, we need to make a first-class aggregate.
3315     } else {
3316       // Construct a return type that lacks padding elements.
3317       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3318 
3319       RV = llvm::UndefValue::get(returnType);
3320       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3321         RV = Builder.CreateInsertValue(RV, results[i], i);
3322       }
3323     }
3324     break;
3325   }
3326   case ABIArgInfo::Expand:
3327   case ABIArgInfo::IndirectAliased:
3328     llvm_unreachable("Invalid ABI kind for return argument");
3329   }
3330 
3331   llvm::Instruction *Ret;
3332   if (RV) {
3333     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3334       // For certain return types, clear padding bits, as they may reveal
3335       // sensitive information.
3336       // Small struct/union types are passed as integers.
3337       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3338       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3339         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3340     }
3341     EmitReturnValueCheck(RV);
3342     Ret = Builder.CreateRet(RV);
3343   } else {
3344     Ret = Builder.CreateRetVoid();
3345   }
3346 
3347   if (RetDbgLoc)
3348     Ret->setDebugLoc(std::move(RetDbgLoc));
3349 }
3350 
3351 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3352   // A current decl may not be available when emitting vtable thunks.
3353   if (!CurCodeDecl)
3354     return;
3355 
3356   // If the return block isn't reachable, neither is this check, so don't emit
3357   // it.
3358   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3359     return;
3360 
3361   ReturnsNonNullAttr *RetNNAttr = nullptr;
3362   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3363     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3364 
3365   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3366     return;
3367 
3368   // Prefer the returns_nonnull attribute if it's present.
3369   SourceLocation AttrLoc;
3370   SanitizerMask CheckKind;
3371   SanitizerHandler Handler;
3372   if (RetNNAttr) {
3373     assert(!requiresReturnValueNullabilityCheck() &&
3374            "Cannot check nullability and the nonnull attribute");
3375     AttrLoc = RetNNAttr->getLocation();
3376     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3377     Handler = SanitizerHandler::NonnullReturn;
3378   } else {
3379     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3380       if (auto *TSI = DD->getTypeSourceInfo())
3381         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3382           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3383     CheckKind = SanitizerKind::NullabilityReturn;
3384     Handler = SanitizerHandler::NullabilityReturn;
3385   }
3386 
3387   SanitizerScope SanScope(this);
3388 
3389   // Make sure the "return" source location is valid. If we're checking a
3390   // nullability annotation, make sure the preconditions for the check are met.
3391   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3392   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3393   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3394   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3395   if (requiresReturnValueNullabilityCheck())
3396     CanNullCheck =
3397         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3398   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3399   EmitBlock(Check);
3400 
3401   // Now do the null check.
3402   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3403   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3404   llvm::Value *DynamicData[] = {SLocPtr};
3405   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3406 
3407   EmitBlock(NoCheck);
3408 
3409 #ifndef NDEBUG
3410   // The return location should not be used after the check has been emitted.
3411   ReturnLocation = Address::invalid();
3412 #endif
3413 }
3414 
3415 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3416   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3417   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3418 }
3419 
3420 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3421                                           QualType Ty) {
3422   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3423   // placeholders.
3424   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3425   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3426   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3427 
3428   // FIXME: When we generate this IR in one pass, we shouldn't need
3429   // this win32-specific alignment hack.
3430   CharUnits Align = CharUnits::fromQuantity(4);
3431   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3432 
3433   return AggValueSlot::forAddr(Address(Placeholder, Align),
3434                                Ty.getQualifiers(),
3435                                AggValueSlot::IsNotDestructed,
3436                                AggValueSlot::DoesNotNeedGCBarriers,
3437                                AggValueSlot::IsNotAliased,
3438                                AggValueSlot::DoesNotOverlap);
3439 }
3440 
3441 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3442                                           const VarDecl *param,
3443                                           SourceLocation loc) {
3444   // StartFunction converted the ABI-lowered parameter(s) into a
3445   // local alloca.  We need to turn that into an r-value suitable
3446   // for EmitCall.
3447   Address local = GetAddrOfLocalVar(param);
3448 
3449   QualType type = param->getType();
3450 
3451   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3452     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3453   }
3454 
3455   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3456   // but the argument needs to be the original pointer.
3457   if (type->isReferenceType()) {
3458     args.add(RValue::get(Builder.CreateLoad(local)), type);
3459 
3460   // In ARC, move out of consumed arguments so that the release cleanup
3461   // entered by StartFunction doesn't cause an over-release.  This isn't
3462   // optimal -O0 code generation, but it should get cleaned up when
3463   // optimization is enabled.  This also assumes that delegate calls are
3464   // performed exactly once for a set of arguments, but that should be safe.
3465   } else if (getLangOpts().ObjCAutoRefCount &&
3466              param->hasAttr<NSConsumedAttr>() &&
3467              type->isObjCRetainableType()) {
3468     llvm::Value *ptr = Builder.CreateLoad(local);
3469     auto null =
3470       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3471     Builder.CreateStore(null, local);
3472     args.add(RValue::get(ptr), type);
3473 
3474   // For the most part, we just need to load the alloca, except that
3475   // aggregate r-values are actually pointers to temporaries.
3476   } else {
3477     args.add(convertTempToRValue(local, type, loc), type);
3478   }
3479 
3480   // Deactivate the cleanup for the callee-destructed param that was pushed.
3481   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3482       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3483       param->needsDestruction(getContext())) {
3484     EHScopeStack::stable_iterator cleanup =
3485         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3486     assert(cleanup.isValid() &&
3487            "cleanup for callee-destructed param not recorded");
3488     // This unreachable is a temporary marker which will be removed later.
3489     llvm::Instruction *isActive = Builder.CreateUnreachable();
3490     args.addArgCleanupDeactivation(cleanup, isActive);
3491   }
3492 }
3493 
3494 static bool isProvablyNull(llvm::Value *addr) {
3495   return isa<llvm::ConstantPointerNull>(addr);
3496 }
3497 
3498 /// Emit the actual writing-back of a writeback.
3499 static void emitWriteback(CodeGenFunction &CGF,
3500                           const CallArgList::Writeback &writeback) {
3501   const LValue &srcLV = writeback.Source;
3502   Address srcAddr = srcLV.getAddress(CGF);
3503   assert(!isProvablyNull(srcAddr.getPointer()) &&
3504          "shouldn't have writeback for provably null argument");
3505 
3506   llvm::BasicBlock *contBB = nullptr;
3507 
3508   // If the argument wasn't provably non-null, we need to null check
3509   // before doing the store.
3510   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3511                                               CGF.CGM.getDataLayout());
3512   if (!provablyNonNull) {
3513     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3514     contBB = CGF.createBasicBlock("icr.done");
3515 
3516     llvm::Value *isNull =
3517       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3518     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3519     CGF.EmitBlock(writebackBB);
3520   }
3521 
3522   // Load the value to writeback.
3523   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3524 
3525   // Cast it back, in case we're writing an id to a Foo* or something.
3526   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3527                                     "icr.writeback-cast");
3528 
3529   // Perform the writeback.
3530 
3531   // If we have a "to use" value, it's something we need to emit a use
3532   // of.  This has to be carefully threaded in: if it's done after the
3533   // release it's potentially undefined behavior (and the optimizer
3534   // will ignore it), and if it happens before the retain then the
3535   // optimizer could move the release there.
3536   if (writeback.ToUse) {
3537     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3538 
3539     // Retain the new value.  No need to block-copy here:  the block's
3540     // being passed up the stack.
3541     value = CGF.EmitARCRetainNonBlock(value);
3542 
3543     // Emit the intrinsic use here.
3544     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3545 
3546     // Load the old value (primitively).
3547     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3548 
3549     // Put the new value in place (primitively).
3550     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3551 
3552     // Release the old value.
3553     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3554 
3555   // Otherwise, we can just do a normal lvalue store.
3556   } else {
3557     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3558   }
3559 
3560   // Jump to the continuation block.
3561   if (!provablyNonNull)
3562     CGF.EmitBlock(contBB);
3563 }
3564 
3565 static void emitWritebacks(CodeGenFunction &CGF,
3566                            const CallArgList &args) {
3567   for (const auto &I : args.writebacks())
3568     emitWriteback(CGF, I);
3569 }
3570 
3571 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3572                                             const CallArgList &CallArgs) {
3573   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3574     CallArgs.getCleanupsToDeactivate();
3575   // Iterate in reverse to increase the likelihood of popping the cleanup.
3576   for (const auto &I : llvm::reverse(Cleanups)) {
3577     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3578     I.IsActiveIP->eraseFromParent();
3579   }
3580 }
3581 
3582 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3583   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3584     if (uop->getOpcode() == UO_AddrOf)
3585       return uop->getSubExpr();
3586   return nullptr;
3587 }
3588 
3589 /// Emit an argument that's being passed call-by-writeback.  That is,
3590 /// we are passing the address of an __autoreleased temporary; it
3591 /// might be copy-initialized with the current value of the given
3592 /// address, but it will definitely be copied out of after the call.
3593 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3594                              const ObjCIndirectCopyRestoreExpr *CRE) {
3595   LValue srcLV;
3596 
3597   // Make an optimistic effort to emit the address as an l-value.
3598   // This can fail if the argument expression is more complicated.
3599   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3600     srcLV = CGF.EmitLValue(lvExpr);
3601 
3602   // Otherwise, just emit it as a scalar.
3603   } else {
3604     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3605 
3606     QualType srcAddrType =
3607       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3608     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3609   }
3610   Address srcAddr = srcLV.getAddress(CGF);
3611 
3612   // The dest and src types don't necessarily match in LLVM terms
3613   // because of the crazy ObjC compatibility rules.
3614 
3615   llvm::PointerType *destType =
3616     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3617 
3618   // If the address is a constant null, just pass the appropriate null.
3619   if (isProvablyNull(srcAddr.getPointer())) {
3620     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3621              CRE->getType());
3622     return;
3623   }
3624 
3625   // Create the temporary.
3626   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3627                                       CGF.getPointerAlign(),
3628                                       "icr.temp");
3629   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3630   // and that cleanup will be conditional if we can't prove that the l-value
3631   // isn't null, so we need to register a dominating point so that the cleanups
3632   // system will make valid IR.
3633   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3634 
3635   // Zero-initialize it if we're not doing a copy-initialization.
3636   bool shouldCopy = CRE->shouldCopy();
3637   if (!shouldCopy) {
3638     llvm::Value *null =
3639       llvm::ConstantPointerNull::get(
3640         cast<llvm::PointerType>(destType->getElementType()));
3641     CGF.Builder.CreateStore(null, temp);
3642   }
3643 
3644   llvm::BasicBlock *contBB = nullptr;
3645   llvm::BasicBlock *originBB = nullptr;
3646 
3647   // If the address is *not* known to be non-null, we need to switch.
3648   llvm::Value *finalArgument;
3649 
3650   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3651                                               CGF.CGM.getDataLayout());
3652   if (provablyNonNull) {
3653     finalArgument = temp.getPointer();
3654   } else {
3655     llvm::Value *isNull =
3656       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3657 
3658     finalArgument = CGF.Builder.CreateSelect(isNull,
3659                                    llvm::ConstantPointerNull::get(destType),
3660                                              temp.getPointer(), "icr.argument");
3661 
3662     // If we need to copy, then the load has to be conditional, which
3663     // means we need control flow.
3664     if (shouldCopy) {
3665       originBB = CGF.Builder.GetInsertBlock();
3666       contBB = CGF.createBasicBlock("icr.cont");
3667       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3668       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3669       CGF.EmitBlock(copyBB);
3670       condEval.begin(CGF);
3671     }
3672   }
3673 
3674   llvm::Value *valueToUse = nullptr;
3675 
3676   // Perform a copy if necessary.
3677   if (shouldCopy) {
3678     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3679     assert(srcRV.isScalar());
3680 
3681     llvm::Value *src = srcRV.getScalarVal();
3682     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3683                                     "icr.cast");
3684 
3685     // Use an ordinary store, not a store-to-lvalue.
3686     CGF.Builder.CreateStore(src, temp);
3687 
3688     // If optimization is enabled, and the value was held in a
3689     // __strong variable, we need to tell the optimizer that this
3690     // value has to stay alive until we're doing the store back.
3691     // This is because the temporary is effectively unretained,
3692     // and so otherwise we can violate the high-level semantics.
3693     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3694         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3695       valueToUse = src;
3696     }
3697   }
3698 
3699   // Finish the control flow if we needed it.
3700   if (shouldCopy && !provablyNonNull) {
3701     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3702     CGF.EmitBlock(contBB);
3703 
3704     // Make a phi for the value to intrinsically use.
3705     if (valueToUse) {
3706       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3707                                                       "icr.to-use");
3708       phiToUse->addIncoming(valueToUse, copyBB);
3709       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3710                             originBB);
3711       valueToUse = phiToUse;
3712     }
3713 
3714     condEval.end(CGF);
3715   }
3716 
3717   args.addWriteback(srcLV, temp, valueToUse);
3718   args.add(RValue::get(finalArgument), CRE->getType());
3719 }
3720 
3721 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3722   assert(!StackBase);
3723 
3724   // Save the stack.
3725   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3726   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3727 }
3728 
3729 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3730   if (StackBase) {
3731     // Restore the stack after the call.
3732     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3733     CGF.Builder.CreateCall(F, StackBase);
3734   }
3735 }
3736 
3737 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3738                                           SourceLocation ArgLoc,
3739                                           AbstractCallee AC,
3740                                           unsigned ParmNum) {
3741   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3742                          SanOpts.has(SanitizerKind::NullabilityArg)))
3743     return;
3744 
3745   // The param decl may be missing in a variadic function.
3746   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3747   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3748 
3749   // Prefer the nonnull attribute if it's present.
3750   const NonNullAttr *NNAttr = nullptr;
3751   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3752     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3753 
3754   bool CanCheckNullability = false;
3755   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3756     auto Nullability = PVD->getType()->getNullability(getContext());
3757     CanCheckNullability = Nullability &&
3758                           *Nullability == NullabilityKind::NonNull &&
3759                           PVD->getTypeSourceInfo();
3760   }
3761 
3762   if (!NNAttr && !CanCheckNullability)
3763     return;
3764 
3765   SourceLocation AttrLoc;
3766   SanitizerMask CheckKind;
3767   SanitizerHandler Handler;
3768   if (NNAttr) {
3769     AttrLoc = NNAttr->getLocation();
3770     CheckKind = SanitizerKind::NonnullAttribute;
3771     Handler = SanitizerHandler::NonnullArg;
3772   } else {
3773     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3774     CheckKind = SanitizerKind::NullabilityArg;
3775     Handler = SanitizerHandler::NullabilityArg;
3776   }
3777 
3778   SanitizerScope SanScope(this);
3779   assert(RV.isScalar());
3780   llvm::Value *V = RV.getScalarVal();
3781   llvm::Value *Cond =
3782       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3783   llvm::Constant *StaticData[] = {
3784       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3785       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3786   };
3787   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3788 }
3789 
3790 void CodeGenFunction::EmitCallArgs(
3791     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3792     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3793     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3794   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3795 
3796   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3797   // because arguments are destroyed left to right in the callee. As a special
3798   // case, there are certain language constructs that require left-to-right
3799   // evaluation, and in those cases we consider the evaluation order requirement
3800   // to trump the "destruction order is reverse construction order" guarantee.
3801   bool LeftToRight =
3802       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3803           ? Order == EvaluationOrder::ForceLeftToRight
3804           : Order != EvaluationOrder::ForceRightToLeft;
3805 
3806   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3807                                          RValue EmittedArg) {
3808     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3809       return;
3810     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3811     if (PS == nullptr)
3812       return;
3813 
3814     const auto &Context = getContext();
3815     auto SizeTy = Context.getSizeType();
3816     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3817     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3818     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3819                                                      EmittedArg.getScalarVal(),
3820                                                      PS->isDynamic());
3821     Args.add(RValue::get(V), SizeTy);
3822     // If we're emitting args in reverse, be sure to do so with
3823     // pass_object_size, as well.
3824     if (!LeftToRight)
3825       std::swap(Args.back(), *(&Args.back() - 1));
3826   };
3827 
3828   // Insert a stack save if we're going to need any inalloca args.
3829   bool HasInAllocaArgs = false;
3830   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3831     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3832          I != E && !HasInAllocaArgs; ++I)
3833       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3834     if (HasInAllocaArgs) {
3835       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3836       Args.allocateArgumentMemory(*this);
3837     }
3838   }
3839 
3840   // Evaluate each argument in the appropriate order.
3841   size_t CallArgsStart = Args.size();
3842   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3843     unsigned Idx = LeftToRight ? I : E - I - 1;
3844     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3845     unsigned InitialArgSize = Args.size();
3846     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3847     // the argument and parameter match or the objc method is parameterized.
3848     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3849             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3850                                                 ArgTypes[Idx]) ||
3851             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3852              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3853            "Argument and parameter types don't match");
3854     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3855     // In particular, we depend on it being the last arg in Args, and the
3856     // objectsize bits depend on there only being one arg if !LeftToRight.
3857     assert(InitialArgSize + 1 == Args.size() &&
3858            "The code below depends on only adding one arg per EmitCallArg");
3859     (void)InitialArgSize;
3860     // Since pointer argument are never emitted as LValue, it is safe to emit
3861     // non-null argument check for r-value only.
3862     if (!Args.back().hasLValue()) {
3863       RValue RVArg = Args.back().getKnownRValue();
3864       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3865                           ParamsToSkip + Idx);
3866       // @llvm.objectsize should never have side-effects and shouldn't need
3867       // destruction/cleanups, so we can safely "emit" it after its arg,
3868       // regardless of right-to-leftness
3869       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3870     }
3871   }
3872 
3873   if (!LeftToRight) {
3874     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3875     // IR function.
3876     std::reverse(Args.begin() + CallArgsStart, Args.end());
3877   }
3878 }
3879 
3880 namespace {
3881 
3882 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3883   DestroyUnpassedArg(Address Addr, QualType Ty)
3884       : Addr(Addr), Ty(Ty) {}
3885 
3886   Address Addr;
3887   QualType Ty;
3888 
3889   void Emit(CodeGenFunction &CGF, Flags flags) override {
3890     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3891     if (DtorKind == QualType::DK_cxx_destructor) {
3892       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3893       assert(!Dtor->isTrivial());
3894       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3895                                 /*Delegating=*/false, Addr, Ty);
3896     } else {
3897       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3898     }
3899   }
3900 };
3901 
3902 struct DisableDebugLocationUpdates {
3903   CodeGenFunction &CGF;
3904   bool disabledDebugInfo;
3905   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3906     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3907       CGF.disableDebugInfo();
3908   }
3909   ~DisableDebugLocationUpdates() {
3910     if (disabledDebugInfo)
3911       CGF.enableDebugInfo();
3912   }
3913 };
3914 
3915 } // end anonymous namespace
3916 
3917 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3918   if (!HasLV)
3919     return RV;
3920   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3921   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3922                         LV.isVolatile());
3923   IsUsed = true;
3924   return RValue::getAggregate(Copy.getAddress(CGF));
3925 }
3926 
3927 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3928   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3929   if (!HasLV && RV.isScalar())
3930     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3931   else if (!HasLV && RV.isComplex())
3932     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3933   else {
3934     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3935     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3936     // We assume that call args are never copied into subobjects.
3937     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3938                           HasLV ? LV.isVolatileQualified()
3939                                 : RV.isVolatileQualified());
3940   }
3941   IsUsed = true;
3942 }
3943 
3944 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3945                                   QualType type) {
3946   DisableDebugLocationUpdates Dis(*this, E);
3947   if (const ObjCIndirectCopyRestoreExpr *CRE
3948         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3949     assert(getLangOpts().ObjCAutoRefCount);
3950     return emitWritebackArg(*this, args, CRE);
3951   }
3952 
3953   assert(type->isReferenceType() == E->isGLValue() &&
3954          "reference binding to unmaterialized r-value!");
3955 
3956   if (E->isGLValue()) {
3957     assert(E->getObjectKind() == OK_Ordinary);
3958     return args.add(EmitReferenceBindingToExpr(E), type);
3959   }
3960 
3961   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3962 
3963   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3964   // However, we still have to push an EH-only cleanup in case we unwind before
3965   // we make it to the call.
3966   if (HasAggregateEvalKind &&
3967       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3968     // If we're using inalloca, use the argument memory.  Otherwise, use a
3969     // temporary.
3970     AggValueSlot Slot;
3971     if (args.isUsingInAlloca())
3972       Slot = createPlaceholderSlot(*this, type);
3973     else
3974       Slot = CreateAggTemp(type, "agg.tmp");
3975 
3976     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3977     if (const auto *RD = type->getAsCXXRecordDecl())
3978       DestroyedInCallee = RD->hasNonTrivialDestructor();
3979     else
3980       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3981 
3982     if (DestroyedInCallee)
3983       Slot.setExternallyDestructed();
3984 
3985     EmitAggExpr(E, Slot);
3986     RValue RV = Slot.asRValue();
3987     args.add(RV, type);
3988 
3989     if (DestroyedInCallee && NeedsEHCleanup) {
3990       // Create a no-op GEP between the placeholder and the cleanup so we can
3991       // RAUW it successfully.  It also serves as a marker of the first
3992       // instruction where the cleanup is active.
3993       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3994                                               type);
3995       // This unreachable is a temporary marker which will be removed later.
3996       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3997       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3998     }
3999     return;
4000   }
4001 
4002   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4003       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4004     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4005     assert(L.isSimple());
4006     args.addUncopiedAggregate(L, type);
4007     return;
4008   }
4009 
4010   args.add(EmitAnyExprToTemp(E), type);
4011 }
4012 
4013 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4014   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4015   // implicitly widens null pointer constants that are arguments to varargs
4016   // functions to pointer-sized ints.
4017   if (!getTarget().getTriple().isOSWindows())
4018     return Arg->getType();
4019 
4020   if (Arg->getType()->isIntegerType() &&
4021       getContext().getTypeSize(Arg->getType()) <
4022           getContext().getTargetInfo().getPointerWidth(0) &&
4023       Arg->isNullPointerConstant(getContext(),
4024                                  Expr::NPC_ValueDependentIsNotNull)) {
4025     return getContext().getIntPtrType();
4026   }
4027 
4028   return Arg->getType();
4029 }
4030 
4031 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4032 // optimizer it can aggressively ignore unwind edges.
4033 void
4034 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4035   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4036       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4037     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4038                       CGM.getNoObjCARCExceptionsMetadata());
4039 }
4040 
4041 /// Emits a call to the given no-arguments nounwind runtime function.
4042 llvm::CallInst *
4043 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4044                                          const llvm::Twine &name) {
4045   return EmitNounwindRuntimeCall(callee, None, name);
4046 }
4047 
4048 /// Emits a call to the given nounwind runtime function.
4049 llvm::CallInst *
4050 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4051                                          ArrayRef<llvm::Value *> args,
4052                                          const llvm::Twine &name) {
4053   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4054   call->setDoesNotThrow();
4055   return call;
4056 }
4057 
4058 /// Emits a simple call (never an invoke) to the given no-arguments
4059 /// runtime function.
4060 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4061                                                  const llvm::Twine &name) {
4062   return EmitRuntimeCall(callee, None, name);
4063 }
4064 
4065 // Calls which may throw must have operand bundles indicating which funclet
4066 // they are nested within.
4067 SmallVector<llvm::OperandBundleDef, 1>
4068 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4069   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4070   // There is no need for a funclet operand bundle if we aren't inside a
4071   // funclet.
4072   if (!CurrentFuncletPad)
4073     return BundleList;
4074 
4075   // Skip intrinsics which cannot throw.
4076   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4077   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4078     return BundleList;
4079 
4080   BundleList.emplace_back("funclet", CurrentFuncletPad);
4081   return BundleList;
4082 }
4083 
4084 /// Emits a simple call (never an invoke) to the given runtime function.
4085 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4086                                                  ArrayRef<llvm::Value *> args,
4087                                                  const llvm::Twine &name) {
4088   llvm::CallInst *call = Builder.CreateCall(
4089       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4090   call->setCallingConv(getRuntimeCC());
4091   return call;
4092 }
4093 
4094 /// Emits a call or invoke to the given noreturn runtime function.
4095 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4096     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4097   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4098       getBundlesForFunclet(callee.getCallee());
4099 
4100   if (getInvokeDest()) {
4101     llvm::InvokeInst *invoke =
4102       Builder.CreateInvoke(callee,
4103                            getUnreachableBlock(),
4104                            getInvokeDest(),
4105                            args,
4106                            BundleList);
4107     invoke->setDoesNotReturn();
4108     invoke->setCallingConv(getRuntimeCC());
4109   } else {
4110     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4111     call->setDoesNotReturn();
4112     call->setCallingConv(getRuntimeCC());
4113     Builder.CreateUnreachable();
4114   }
4115 }
4116 
4117 /// Emits a call or invoke instruction to the given nullary runtime function.
4118 llvm::CallBase *
4119 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4120                                          const Twine &name) {
4121   return EmitRuntimeCallOrInvoke(callee, None, name);
4122 }
4123 
4124 /// Emits a call or invoke instruction to the given runtime function.
4125 llvm::CallBase *
4126 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4127                                          ArrayRef<llvm::Value *> args,
4128                                          const Twine &name) {
4129   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4130   call->setCallingConv(getRuntimeCC());
4131   return call;
4132 }
4133 
4134 /// Emits a call or invoke instruction to the given function, depending
4135 /// on the current state of the EH stack.
4136 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4137                                                   ArrayRef<llvm::Value *> Args,
4138                                                   const Twine &Name) {
4139   llvm::BasicBlock *InvokeDest = getInvokeDest();
4140   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4141       getBundlesForFunclet(Callee.getCallee());
4142 
4143   llvm::CallBase *Inst;
4144   if (!InvokeDest)
4145     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4146   else {
4147     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4148     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4149                                 Name);
4150     EmitBlock(ContBB);
4151   }
4152 
4153   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4154   // optimizer it can aggressively ignore unwind edges.
4155   if (CGM.getLangOpts().ObjCAutoRefCount)
4156     AddObjCARCExceptionMetadata(Inst);
4157 
4158   return Inst;
4159 }
4160 
4161 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4162                                                   llvm::Value *New) {
4163   DeferredReplacements.push_back(std::make_pair(Old, New));
4164 }
4165 
4166 namespace {
4167 
4168 /// Specify given \p NewAlign as the alignment of return value attribute. If
4169 /// such attribute already exists, re-set it to the maximal one of two options.
4170 LLVM_NODISCARD llvm::AttributeList
4171 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4172                                 const llvm::AttributeList &Attrs,
4173                                 llvm::Align NewAlign) {
4174   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4175   if (CurAlign >= NewAlign)
4176     return Attrs;
4177   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4178   return Attrs
4179       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4180                        llvm::Attribute::AttrKind::Alignment)
4181       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4182 }
4183 
4184 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4185 protected:
4186   CodeGenFunction &CGF;
4187 
4188   /// We do nothing if this is, or becomes, nullptr.
4189   const AlignedAttrTy *AA = nullptr;
4190 
4191   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4192   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4193 
4194   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4195       : CGF(CGF_) {
4196     if (!FuncDecl)
4197       return;
4198     AA = FuncDecl->getAttr<AlignedAttrTy>();
4199   }
4200 
4201 public:
4202   /// If we can, materialize the alignment as an attribute on return value.
4203   LLVM_NODISCARD llvm::AttributeList
4204   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4205     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4206       return Attrs;
4207     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4208     if (!AlignmentCI)
4209       return Attrs;
4210     // We may legitimately have non-power-of-2 alignment here.
4211     // If so, this is UB land, emit it via `@llvm.assume` instead.
4212     if (!AlignmentCI->getValue().isPowerOf2())
4213       return Attrs;
4214     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4215         CGF.getLLVMContext(), Attrs,
4216         llvm::Align(
4217             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4218     AA = nullptr; // We're done. Disallow doing anything else.
4219     return NewAttrs;
4220   }
4221 
4222   /// Emit alignment assumption.
4223   /// This is a general fallback that we take if either there is an offset,
4224   /// or the alignment is variable or we are sanitizing for alignment.
4225   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4226     if (!AA)
4227       return;
4228     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4229                                 AA->getLocation(), Alignment, OffsetCI);
4230     AA = nullptr; // We're done. Disallow doing anything else.
4231   }
4232 };
4233 
4234 /// Helper data structure to emit `AssumeAlignedAttr`.
4235 class AssumeAlignedAttrEmitter final
4236     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4237 public:
4238   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4239       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4240     if (!AA)
4241       return;
4242     // It is guaranteed that the alignment/offset are constants.
4243     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4244     if (Expr *Offset = AA->getOffset()) {
4245       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4246       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4247         OffsetCI = nullptr;
4248     }
4249   }
4250 };
4251 
4252 /// Helper data structure to emit `AllocAlignAttr`.
4253 class AllocAlignAttrEmitter final
4254     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4255 public:
4256   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4257                         const CallArgList &CallArgs)
4258       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4259     if (!AA)
4260       return;
4261     // Alignment may or may not be a constant, and that is okay.
4262     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4263                     .getRValue(CGF)
4264                     .getScalarVal();
4265   }
4266 };
4267 
4268 } // namespace
4269 
4270 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4271                                  const CGCallee &Callee,
4272                                  ReturnValueSlot ReturnValue,
4273                                  const CallArgList &CallArgs,
4274                                  llvm::CallBase **callOrInvoke,
4275                                  SourceLocation Loc) {
4276   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4277 
4278   assert(Callee.isOrdinary() || Callee.isVirtual());
4279 
4280   // Handle struct-return functions by passing a pointer to the
4281   // location that we would like to return into.
4282   QualType RetTy = CallInfo.getReturnType();
4283   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4284 
4285   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4286 
4287   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4288   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4289     // We can only guarantee that a function is called from the correct
4290     // context/function based on the appropriate target attributes,
4291     // so only check in the case where we have both always_inline and target
4292     // since otherwise we could be making a conditional call after a check for
4293     // the proper cpu features (and it won't cause code generation issues due to
4294     // function based code generation).
4295     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4296         TargetDecl->hasAttr<TargetAttr>())
4297       checkTargetFeatures(Loc, FD);
4298 
4299     // Some architectures (such as x86-64) have the ABI changed based on
4300     // attribute-target/features. Give them a chance to diagnose.
4301     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4302         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4303   }
4304 
4305 #ifndef NDEBUG
4306   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4307     // For an inalloca varargs function, we don't expect CallInfo to match the
4308     // function pointer's type, because the inalloca struct a will have extra
4309     // fields in it for the varargs parameters.  Code later in this function
4310     // bitcasts the function pointer to the type derived from CallInfo.
4311     //
4312     // In other cases, we assert that the types match up (until pointers stop
4313     // having pointee types).
4314     llvm::Type *TypeFromVal;
4315     if (Callee.isVirtual())
4316       TypeFromVal = Callee.getVirtualFunctionType();
4317     else
4318       TypeFromVal =
4319           Callee.getFunctionPointer()->getType()->getPointerElementType();
4320     assert(IRFuncTy == TypeFromVal);
4321   }
4322 #endif
4323 
4324   // 1. Set up the arguments.
4325 
4326   // If we're using inalloca, insert the allocation after the stack save.
4327   // FIXME: Do this earlier rather than hacking it in here!
4328   Address ArgMemory = Address::invalid();
4329   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4330     const llvm::DataLayout &DL = CGM.getDataLayout();
4331     llvm::Instruction *IP = CallArgs.getStackBase();
4332     llvm::AllocaInst *AI;
4333     if (IP) {
4334       IP = IP->getNextNode();
4335       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4336                                 "argmem", IP);
4337     } else {
4338       AI = CreateTempAlloca(ArgStruct, "argmem");
4339     }
4340     auto Align = CallInfo.getArgStructAlignment();
4341     AI->setAlignment(Align.getAsAlign());
4342     AI->setUsedWithInAlloca(true);
4343     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4344     ArgMemory = Address(AI, Align);
4345   }
4346 
4347   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4348   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4349 
4350   // If the call returns a temporary with struct return, create a temporary
4351   // alloca to hold the result, unless one is given to us.
4352   Address SRetPtr = Address::invalid();
4353   Address SRetAlloca = Address::invalid();
4354   llvm::Value *UnusedReturnSizePtr = nullptr;
4355   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4356     if (!ReturnValue.isNull()) {
4357       SRetPtr = ReturnValue.getValue();
4358     } else {
4359       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4360       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4361         uint64_t size =
4362             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4363         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4364       }
4365     }
4366     if (IRFunctionArgs.hasSRetArg()) {
4367       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4368     } else if (RetAI.isInAlloca()) {
4369       Address Addr =
4370           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4371       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4372     }
4373   }
4374 
4375   Address swiftErrorTemp = Address::invalid();
4376   Address swiftErrorArg = Address::invalid();
4377 
4378   // When passing arguments using temporary allocas, we need to add the
4379   // appropriate lifetime markers. This vector keeps track of all the lifetime
4380   // markers that need to be ended right after the call.
4381   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4382 
4383   // Translate all of the arguments as necessary to match the IR lowering.
4384   assert(CallInfo.arg_size() == CallArgs.size() &&
4385          "Mismatch between function signature & arguments.");
4386   unsigned ArgNo = 0;
4387   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4388   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4389        I != E; ++I, ++info_it, ++ArgNo) {
4390     const ABIArgInfo &ArgInfo = info_it->info;
4391 
4392     // Insert a padding argument to ensure proper alignment.
4393     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4394       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4395           llvm::UndefValue::get(ArgInfo.getPaddingType());
4396 
4397     unsigned FirstIRArg, NumIRArgs;
4398     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4399 
4400     switch (ArgInfo.getKind()) {
4401     case ABIArgInfo::InAlloca: {
4402       assert(NumIRArgs == 0);
4403       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4404       if (I->isAggregate()) {
4405         Address Addr = I->hasLValue()
4406                            ? I->getKnownLValue().getAddress(*this)
4407                            : I->getKnownRValue().getAggregateAddress();
4408         llvm::Instruction *Placeholder =
4409             cast<llvm::Instruction>(Addr.getPointer());
4410 
4411         if (!ArgInfo.getInAllocaIndirect()) {
4412           // Replace the placeholder with the appropriate argument slot GEP.
4413           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4414           Builder.SetInsertPoint(Placeholder);
4415           Addr = Builder.CreateStructGEP(ArgMemory,
4416                                          ArgInfo.getInAllocaFieldIndex());
4417           Builder.restoreIP(IP);
4418         } else {
4419           // For indirect things such as overaligned structs, replace the
4420           // placeholder with a regular aggregate temporary alloca. Store the
4421           // address of this alloca into the struct.
4422           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4423           Address ArgSlot = Builder.CreateStructGEP(
4424               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4425           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4426         }
4427         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4428       } else if (ArgInfo.getInAllocaIndirect()) {
4429         // Make a temporary alloca and store the address of it into the argument
4430         // struct.
4431         Address Addr = CreateMemTempWithoutCast(
4432             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4433             "indirect-arg-temp");
4434         I->copyInto(*this, Addr);
4435         Address ArgSlot =
4436             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4437         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4438       } else {
4439         // Store the RValue into the argument struct.
4440         Address Addr =
4441             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4442         unsigned AS = Addr.getType()->getPointerAddressSpace();
4443         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4444         // There are some cases where a trivial bitcast is not avoidable.  The
4445         // definition of a type later in a translation unit may change it's type
4446         // from {}* to (%struct.foo*)*.
4447         if (Addr.getType() != MemType)
4448           Addr = Builder.CreateBitCast(Addr, MemType);
4449         I->copyInto(*this, Addr);
4450       }
4451       break;
4452     }
4453 
4454     case ABIArgInfo::Indirect:
4455     case ABIArgInfo::IndirectAliased: {
4456       assert(NumIRArgs == 1);
4457       if (!I->isAggregate()) {
4458         // Make a temporary alloca to pass the argument.
4459         Address Addr = CreateMemTempWithoutCast(
4460             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4461         IRCallArgs[FirstIRArg] = Addr.getPointer();
4462 
4463         I->copyInto(*this, Addr);
4464       } else {
4465         // We want to avoid creating an unnecessary temporary+copy here;
4466         // however, we need one in three cases:
4467         // 1. If the argument is not byval, and we are required to copy the
4468         //    source.  (This case doesn't occur on any common architecture.)
4469         // 2. If the argument is byval, RV is not sufficiently aligned, and
4470         //    we cannot force it to be sufficiently aligned.
4471         // 3. If the argument is byval, but RV is not located in default
4472         //    or alloca address space.
4473         Address Addr = I->hasLValue()
4474                            ? I->getKnownLValue().getAddress(*this)
4475                            : I->getKnownRValue().getAggregateAddress();
4476         llvm::Value *V = Addr.getPointer();
4477         CharUnits Align = ArgInfo.getIndirectAlign();
4478         const llvm::DataLayout *TD = &CGM.getDataLayout();
4479 
4480         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4481                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4482                     TD->getAllocaAddrSpace()) &&
4483                "indirect argument must be in alloca address space");
4484 
4485         bool NeedCopy = false;
4486 
4487         if (Addr.getAlignment() < Align &&
4488             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4489                 Align.getAsAlign()) {
4490           NeedCopy = true;
4491         } else if (I->hasLValue()) {
4492           auto LV = I->getKnownLValue();
4493           auto AS = LV.getAddressSpace();
4494 
4495           if (!ArgInfo.getIndirectByVal() ||
4496               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4497             NeedCopy = true;
4498           }
4499           if (!getLangOpts().OpenCL) {
4500             if ((ArgInfo.getIndirectByVal() &&
4501                 (AS != LangAS::Default &&
4502                  AS != CGM.getASTAllocaAddressSpace()))) {
4503               NeedCopy = true;
4504             }
4505           }
4506           // For OpenCL even if RV is located in default or alloca address space
4507           // we don't want to perform address space cast for it.
4508           else if ((ArgInfo.getIndirectByVal() &&
4509                     Addr.getType()->getAddressSpace() != IRFuncTy->
4510                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4511             NeedCopy = true;
4512           }
4513         }
4514 
4515         if (NeedCopy) {
4516           // Create an aligned temporary, and copy to it.
4517           Address AI = CreateMemTempWithoutCast(
4518               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4519           IRCallArgs[FirstIRArg] = AI.getPointer();
4520 
4521           // Emit lifetime markers for the temporary alloca.
4522           uint64_t ByvalTempElementSize =
4523               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4524           llvm::Value *LifetimeSize =
4525               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4526 
4527           // Add cleanup code to emit the end lifetime marker after the call.
4528           if (LifetimeSize) // In case we disabled lifetime markers.
4529             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4530 
4531           // Generate the copy.
4532           I->copyInto(*this, AI);
4533         } else {
4534           // Skip the extra memcpy call.
4535           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4536               CGM.getDataLayout().getAllocaAddrSpace());
4537           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4538               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4539               true);
4540         }
4541       }
4542       break;
4543     }
4544 
4545     case ABIArgInfo::Ignore:
4546       assert(NumIRArgs == 0);
4547       break;
4548 
4549     case ABIArgInfo::Extend:
4550     case ABIArgInfo::Direct: {
4551       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4552           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4553           ArgInfo.getDirectOffset() == 0) {
4554         assert(NumIRArgs == 1);
4555         llvm::Value *V;
4556         if (!I->isAggregate())
4557           V = I->getKnownRValue().getScalarVal();
4558         else
4559           V = Builder.CreateLoad(
4560               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4561                              : I->getKnownRValue().getAggregateAddress());
4562 
4563         // Implement swifterror by copying into a new swifterror argument.
4564         // We'll write back in the normal path out of the call.
4565         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4566               == ParameterABI::SwiftErrorResult) {
4567           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4568 
4569           QualType pointeeTy = I->Ty->getPointeeType();
4570           swiftErrorArg =
4571             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4572 
4573           swiftErrorTemp =
4574             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4575           V = swiftErrorTemp.getPointer();
4576           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4577 
4578           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4579           Builder.CreateStore(errorValue, swiftErrorTemp);
4580         }
4581 
4582         // We might have to widen integers, but we should never truncate.
4583         if (ArgInfo.getCoerceToType() != V->getType() &&
4584             V->getType()->isIntegerTy())
4585           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4586 
4587         // If the argument doesn't match, perform a bitcast to coerce it.  This
4588         // can happen due to trivial type mismatches.
4589         if (FirstIRArg < IRFuncTy->getNumParams() &&
4590             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4591           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4592 
4593         IRCallArgs[FirstIRArg] = V;
4594         break;
4595       }
4596 
4597       // FIXME: Avoid the conversion through memory if possible.
4598       Address Src = Address::invalid();
4599       if (!I->isAggregate()) {
4600         Src = CreateMemTemp(I->Ty, "coerce");
4601         I->copyInto(*this, Src);
4602       } else {
4603         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4604                              : I->getKnownRValue().getAggregateAddress();
4605       }
4606 
4607       // If the value is offset in memory, apply the offset now.
4608       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4609 
4610       // Fast-isel and the optimizer generally like scalar values better than
4611       // FCAs, so we flatten them if this is safe to do for this argument.
4612       llvm::StructType *STy =
4613             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4614       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4615         llvm::Type *SrcTy = Src.getElementType();
4616         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4617         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4618 
4619         // If the source type is smaller than the destination type of the
4620         // coerce-to logic, copy the source value into a temp alloca the size
4621         // of the destination type to allow loading all of it. The bits past
4622         // the source value are left undef.
4623         if (SrcSize < DstSize) {
4624           Address TempAlloca
4625             = CreateTempAlloca(STy, Src.getAlignment(),
4626                                Src.getName() + ".coerce");
4627           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4628           Src = TempAlloca;
4629         } else {
4630           Src = Builder.CreateBitCast(Src,
4631                                       STy->getPointerTo(Src.getAddressSpace()));
4632         }
4633 
4634         assert(NumIRArgs == STy->getNumElements());
4635         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4636           Address EltPtr = Builder.CreateStructGEP(Src, i);
4637           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4638           IRCallArgs[FirstIRArg + i] = LI;
4639         }
4640       } else {
4641         // In the simple case, just pass the coerced loaded value.
4642         assert(NumIRArgs == 1);
4643         llvm::Value *Load =
4644             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4645 
4646         if (CallInfo.isCmseNSCall()) {
4647           // For certain parameter types, clear padding bits, as they may reveal
4648           // sensitive information.
4649           // Small struct/union types are passed as integer arrays.
4650           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4651           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4652             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4653         }
4654         IRCallArgs[FirstIRArg] = Load;
4655       }
4656 
4657       break;
4658     }
4659 
4660     case ABIArgInfo::CoerceAndExpand: {
4661       auto coercionType = ArgInfo.getCoerceAndExpandType();
4662       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4663 
4664       llvm::Value *tempSize = nullptr;
4665       Address addr = Address::invalid();
4666       Address AllocaAddr = Address::invalid();
4667       if (I->isAggregate()) {
4668         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4669                               : I->getKnownRValue().getAggregateAddress();
4670 
4671       } else {
4672         RValue RV = I->getKnownRValue();
4673         assert(RV.isScalar()); // complex should always just be direct
4674 
4675         llvm::Type *scalarType = RV.getScalarVal()->getType();
4676         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4677         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4678 
4679         // Materialize to a temporary.
4680         addr = CreateTempAlloca(
4681             RV.getScalarVal()->getType(),
4682             CharUnits::fromQuantity(std::max(
4683                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4684             "tmp",
4685             /*ArraySize=*/nullptr, &AllocaAddr);
4686         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4687 
4688         Builder.CreateStore(RV.getScalarVal(), addr);
4689       }
4690 
4691       addr = Builder.CreateElementBitCast(addr, coercionType);
4692 
4693       unsigned IRArgPos = FirstIRArg;
4694       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4695         llvm::Type *eltType = coercionType->getElementType(i);
4696         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4697         Address eltAddr = Builder.CreateStructGEP(addr, i);
4698         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4699         IRCallArgs[IRArgPos++] = elt;
4700       }
4701       assert(IRArgPos == FirstIRArg + NumIRArgs);
4702 
4703       if (tempSize) {
4704         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4705       }
4706 
4707       break;
4708     }
4709 
4710     case ABIArgInfo::Expand: {
4711       unsigned IRArgPos = FirstIRArg;
4712       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4713       assert(IRArgPos == FirstIRArg + NumIRArgs);
4714       break;
4715     }
4716     }
4717   }
4718 
4719   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4720   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4721 
4722   // If we're using inalloca, set up that argument.
4723   if (ArgMemory.isValid()) {
4724     llvm::Value *Arg = ArgMemory.getPointer();
4725     if (CallInfo.isVariadic()) {
4726       // When passing non-POD arguments by value to variadic functions, we will
4727       // end up with a variadic prototype and an inalloca call site.  In such
4728       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4729       // the callee.
4730       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4731       CalleePtr =
4732           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4733     } else {
4734       llvm::Type *LastParamTy =
4735           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4736       if (Arg->getType() != LastParamTy) {
4737 #ifndef NDEBUG
4738         // Assert that these structs have equivalent element types.
4739         llvm::StructType *FullTy = CallInfo.getArgStruct();
4740         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4741             cast<llvm::PointerType>(LastParamTy)->getElementType());
4742         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4743         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4744                                                 DE = DeclaredTy->element_end(),
4745                                                 FI = FullTy->element_begin();
4746              DI != DE; ++DI, ++FI)
4747           assert(*DI == *FI);
4748 #endif
4749         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4750       }
4751     }
4752     assert(IRFunctionArgs.hasInallocaArg());
4753     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4754   }
4755 
4756   // 2. Prepare the function pointer.
4757 
4758   // If the callee is a bitcast of a non-variadic function to have a
4759   // variadic function pointer type, check to see if we can remove the
4760   // bitcast.  This comes up with unprototyped functions.
4761   //
4762   // This makes the IR nicer, but more importantly it ensures that we
4763   // can inline the function at -O0 if it is marked always_inline.
4764   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4765                                    llvm::Value *Ptr) -> llvm::Function * {
4766     if (!CalleeFT->isVarArg())
4767       return nullptr;
4768 
4769     // Get underlying value if it's a bitcast
4770     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4771       if (CE->getOpcode() == llvm::Instruction::BitCast)
4772         Ptr = CE->getOperand(0);
4773     }
4774 
4775     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4776     if (!OrigFn)
4777       return nullptr;
4778 
4779     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4780 
4781     // If the original type is variadic, or if any of the component types
4782     // disagree, we cannot remove the cast.
4783     if (OrigFT->isVarArg() ||
4784         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4785         OrigFT->getReturnType() != CalleeFT->getReturnType())
4786       return nullptr;
4787 
4788     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4789       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4790         return nullptr;
4791 
4792     return OrigFn;
4793   };
4794 
4795   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4796     CalleePtr = OrigFn;
4797     IRFuncTy = OrigFn->getFunctionType();
4798   }
4799 
4800   // 3. Perform the actual call.
4801 
4802   // Deactivate any cleanups that we're supposed to do immediately before
4803   // the call.
4804   if (!CallArgs.getCleanupsToDeactivate().empty())
4805     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4806 
4807   // Assert that the arguments we computed match up.  The IR verifier
4808   // will catch this, but this is a common enough source of problems
4809   // during IRGen changes that it's way better for debugging to catch
4810   // it ourselves here.
4811 #ifndef NDEBUG
4812   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4813   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4814     // Inalloca argument can have different type.
4815     if (IRFunctionArgs.hasInallocaArg() &&
4816         i == IRFunctionArgs.getInallocaArgNo())
4817       continue;
4818     if (i < IRFuncTy->getNumParams())
4819       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4820   }
4821 #endif
4822 
4823   // Update the largest vector width if any arguments have vector types.
4824   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4825     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4826       LargestVectorWidth =
4827           std::max((uint64_t)LargestVectorWidth,
4828                    VT->getPrimitiveSizeInBits().getKnownMinSize());
4829   }
4830 
4831   // Compute the calling convention and attributes.
4832   unsigned CallingConv;
4833   llvm::AttributeList Attrs;
4834   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4835                              Callee.getAbstractInfo(), Attrs, CallingConv,
4836                              /*AttrOnCallSite=*/true);
4837 
4838   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4839     if (FD->usesFPIntrin())
4840       // All calls within a strictfp function are marked strictfp
4841       Attrs =
4842         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4843                            llvm::Attribute::StrictFP);
4844 
4845   // Add call-site nomerge attribute if exists.
4846   if (InNoMergeAttributedStmt)
4847     Attrs =
4848       Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4849                          llvm::Attribute::NoMerge);
4850 
4851   // Apply some call-site-specific attributes.
4852   // TODO: work this into building the attribute set.
4853 
4854   // Apply always_inline to all calls within flatten functions.
4855   // FIXME: should this really take priority over __try, below?
4856   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4857       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4858     Attrs =
4859         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4860                            llvm::Attribute::AlwaysInline);
4861   }
4862 
4863   // Disable inlining inside SEH __try blocks.
4864   if (isSEHTryScope()) {
4865     Attrs =
4866         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4867                            llvm::Attribute::NoInline);
4868   }
4869 
4870   // Decide whether to use a call or an invoke.
4871   bool CannotThrow;
4872   if (currentFunctionUsesSEHTry()) {
4873     // SEH cares about asynchronous exceptions, so everything can "throw."
4874     CannotThrow = false;
4875   } else if (isCleanupPadScope() &&
4876              EHPersonality::get(*this).isMSVCXXPersonality()) {
4877     // The MSVC++ personality will implicitly terminate the program if an
4878     // exception is thrown during a cleanup outside of a try/catch.
4879     // We don't need to model anything in IR to get this behavior.
4880     CannotThrow = true;
4881   } else {
4882     // Otherwise, nounwind call sites will never throw.
4883     CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
4884 
4885     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
4886       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
4887         CannotThrow = true;
4888   }
4889 
4890   // If we made a temporary, be sure to clean up after ourselves. Note that we
4891   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4892   // pop this cleanup later on. Being eager about this is OK, since this
4893   // temporary is 'invisible' outside of the callee.
4894   if (UnusedReturnSizePtr)
4895     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4896                                          UnusedReturnSizePtr);
4897 
4898   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4899 
4900   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4901       getBundlesForFunclet(CalleePtr);
4902 
4903   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4904     if (FD->usesFPIntrin())
4905       // All calls within a strictfp function are marked strictfp
4906       Attrs =
4907         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4908                            llvm::Attribute::StrictFP);
4909 
4910   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
4911   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4912 
4913   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
4914   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4915 
4916   // Emit the actual call/invoke instruction.
4917   llvm::CallBase *CI;
4918   if (!InvokeDest) {
4919     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4920   } else {
4921     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4922     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4923                               BundleList);
4924     EmitBlock(Cont);
4925   }
4926   if (callOrInvoke)
4927     *callOrInvoke = CI;
4928 
4929   // If this is within a function that has the guard(nocf) attribute and is an
4930   // indirect call, add the "guard_nocf" attribute to this call to indicate that
4931   // Control Flow Guard checks should not be added, even if the call is inlined.
4932   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4933     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4934       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4935         Attrs = Attrs.addAttribute(
4936             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4937     }
4938   }
4939 
4940   // Apply the attributes and calling convention.
4941   CI->setAttributes(Attrs);
4942   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4943 
4944   // Apply various metadata.
4945 
4946   if (!CI->getType()->isVoidTy())
4947     CI->setName("call");
4948 
4949   // Update largest vector width from the return type.
4950   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4951     LargestVectorWidth =
4952         std::max((uint64_t)LargestVectorWidth,
4953                  VT->getPrimitiveSizeInBits().getKnownMinSize());
4954 
4955   // Insert instrumentation or attach profile metadata at indirect call sites.
4956   // For more details, see the comment before the definition of
4957   // IPVK_IndirectCallTarget in InstrProfData.inc.
4958   if (!CI->getCalledFunction())
4959     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4960                      CI, CalleePtr);
4961 
4962   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4963   // optimizer it can aggressively ignore unwind edges.
4964   if (CGM.getLangOpts().ObjCAutoRefCount)
4965     AddObjCARCExceptionMetadata(CI);
4966 
4967   // Suppress tail calls if requested.
4968   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4969     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4970       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4971   }
4972 
4973   // Add metadata for calls to MSAllocator functions
4974   if (getDebugInfo() && TargetDecl &&
4975       TargetDecl->hasAttr<MSAllocatorAttr>())
4976     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
4977 
4978   // 4. Finish the call.
4979 
4980   // If the call doesn't return, finish the basic block and clear the
4981   // insertion point; this allows the rest of IRGen to discard
4982   // unreachable code.
4983   if (CI->doesNotReturn()) {
4984     if (UnusedReturnSizePtr)
4985       PopCleanupBlock();
4986 
4987     // Strip away the noreturn attribute to better diagnose unreachable UB.
4988     if (SanOpts.has(SanitizerKind::Unreachable)) {
4989       // Also remove from function since CallBase::hasFnAttr additionally checks
4990       // attributes of the called function.
4991       if (auto *F = CI->getCalledFunction())
4992         F->removeFnAttr(llvm::Attribute::NoReturn);
4993       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4994                           llvm::Attribute::NoReturn);
4995 
4996       // Avoid incompatibility with ASan which relies on the `noreturn`
4997       // attribute to insert handler calls.
4998       if (SanOpts.hasOneOf(SanitizerKind::Address |
4999                            SanitizerKind::KernelAddress)) {
5000         SanitizerScope SanScope(this);
5001         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5002         Builder.SetInsertPoint(CI);
5003         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5004         llvm::FunctionCallee Fn =
5005             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5006         EmitNounwindRuntimeCall(Fn);
5007       }
5008     }
5009 
5010     EmitUnreachable(Loc);
5011     Builder.ClearInsertionPoint();
5012 
5013     // FIXME: For now, emit a dummy basic block because expr emitters in
5014     // generally are not ready to handle emitting expressions at unreachable
5015     // points.
5016     EnsureInsertPoint();
5017 
5018     // Return a reasonable RValue.
5019     return GetUndefRValue(RetTy);
5020   }
5021 
5022   // Perform the swifterror writeback.
5023   if (swiftErrorTemp.isValid()) {
5024     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5025     Builder.CreateStore(errorResult, swiftErrorArg);
5026   }
5027 
5028   // Emit any call-associated writebacks immediately.  Arguably this
5029   // should happen after any return-value munging.
5030   if (CallArgs.hasWritebacks())
5031     emitWritebacks(*this, CallArgs);
5032 
5033   // The stack cleanup for inalloca arguments has to run out of the normal
5034   // lexical order, so deactivate it and run it manually here.
5035   CallArgs.freeArgumentMemory(*this);
5036 
5037   // Extract the return value.
5038   RValue Ret = [&] {
5039     switch (RetAI.getKind()) {
5040     case ABIArgInfo::CoerceAndExpand: {
5041       auto coercionType = RetAI.getCoerceAndExpandType();
5042 
5043       Address addr = SRetPtr;
5044       addr = Builder.CreateElementBitCast(addr, coercionType);
5045 
5046       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5047       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5048 
5049       unsigned unpaddedIndex = 0;
5050       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5051         llvm::Type *eltType = coercionType->getElementType(i);
5052         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5053         Address eltAddr = Builder.CreateStructGEP(addr, i);
5054         llvm::Value *elt = CI;
5055         if (requiresExtract)
5056           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5057         else
5058           assert(unpaddedIndex == 0);
5059         Builder.CreateStore(elt, eltAddr);
5060       }
5061       // FALLTHROUGH
5062       LLVM_FALLTHROUGH;
5063     }
5064 
5065     case ABIArgInfo::InAlloca:
5066     case ABIArgInfo::Indirect: {
5067       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5068       if (UnusedReturnSizePtr)
5069         PopCleanupBlock();
5070       return ret;
5071     }
5072 
5073     case ABIArgInfo::Ignore:
5074       // If we are ignoring an argument that had a result, make sure to
5075       // construct the appropriate return value for our caller.
5076       return GetUndefRValue(RetTy);
5077 
5078     case ABIArgInfo::Extend:
5079     case ABIArgInfo::Direct: {
5080       llvm::Type *RetIRTy = ConvertType(RetTy);
5081       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5082         switch (getEvaluationKind(RetTy)) {
5083         case TEK_Complex: {
5084           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5085           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5086           return RValue::getComplex(std::make_pair(Real, Imag));
5087         }
5088         case TEK_Aggregate: {
5089           Address DestPtr = ReturnValue.getValue();
5090           bool DestIsVolatile = ReturnValue.isVolatile();
5091 
5092           if (!DestPtr.isValid()) {
5093             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5094             DestIsVolatile = false;
5095           }
5096           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5097           return RValue::getAggregate(DestPtr);
5098         }
5099         case TEK_Scalar: {
5100           // If the argument doesn't match, perform a bitcast to coerce it.  This
5101           // can happen due to trivial type mismatches.
5102           llvm::Value *V = CI;
5103           if (V->getType() != RetIRTy)
5104             V = Builder.CreateBitCast(V, RetIRTy);
5105           return RValue::get(V);
5106         }
5107         }
5108         llvm_unreachable("bad evaluation kind");
5109       }
5110 
5111       Address DestPtr = ReturnValue.getValue();
5112       bool DestIsVolatile = ReturnValue.isVolatile();
5113 
5114       if (!DestPtr.isValid()) {
5115         DestPtr = CreateMemTemp(RetTy, "coerce");
5116         DestIsVolatile = false;
5117       }
5118 
5119       // If the value is offset in memory, apply the offset now.
5120       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5121       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5122 
5123       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5124     }
5125 
5126     case ABIArgInfo::Expand:
5127     case ABIArgInfo::IndirectAliased:
5128       llvm_unreachable("Invalid ABI kind for return argument");
5129     }
5130 
5131     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5132   } ();
5133 
5134   // Emit the assume_aligned check on the return value.
5135   if (Ret.isScalar() && TargetDecl) {
5136     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5137     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5138   }
5139 
5140   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5141   // we can't use the full cleanup mechanism.
5142   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5143     LifetimeEnd.Emit(*this, /*Flags=*/{});
5144 
5145   if (!ReturnValue.isExternallyDestructed() &&
5146       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5147     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5148                 RetTy);
5149 
5150   return Ret;
5151 }
5152 
5153 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5154   if (isVirtual()) {
5155     const CallExpr *CE = getVirtualCallExpr();
5156     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5157         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5158         CE ? CE->getBeginLoc() : SourceLocation());
5159   }
5160 
5161   return *this;
5162 }
5163 
5164 /* VarArg handling */
5165 
5166 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5167   VAListAddr = VE->isMicrosoftABI()
5168                  ? EmitMSVAListRef(VE->getSubExpr())
5169                  : EmitVAListRef(VE->getSubExpr());
5170   QualType Ty = VE->getType();
5171   if (VE->isMicrosoftABI())
5172     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5173   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5174 }
5175