1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 using namespace clang; 43 using namespace CodeGen; 44 45 /***/ 46 47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 48 switch (CC) { 49 default: return llvm::CallingConv::C; 50 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 51 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 52 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 53 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 54 case CC_Win64: return llvm::CallingConv::Win64; 55 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 56 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 57 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 58 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 59 // TODO: Add support for __pascal to LLVM. 60 case CC_X86Pascal: return llvm::CallingConv::C; 61 // TODO: Add support for __vectorcall to LLVM. 62 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 63 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 64 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 65 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 66 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 67 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 68 case CC_Swift: return llvm::CallingConv::Swift; 69 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 70 } 71 } 72 73 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 74 /// qualification. Either or both of RD and MD may be null. A null RD indicates 75 /// that there is no meaningful 'this' type, and a null MD can occur when 76 /// calling a method pointer. 77 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 78 const CXXMethodDecl *MD) { 79 QualType RecTy; 80 if (RD) 81 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 82 else 83 RecTy = Context.VoidTy; 84 85 if (MD) 86 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 87 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 88 } 89 90 /// Returns the canonical formal type of the given C++ method. 91 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 92 return MD->getType()->getCanonicalTypeUnqualified() 93 .getAs<FunctionProtoType>(); 94 } 95 96 /// Returns the "extra-canonicalized" return type, which discards 97 /// qualifiers on the return type. Codegen doesn't care about them, 98 /// and it makes ABI code a little easier to be able to assume that 99 /// all parameter and return types are top-level unqualified. 100 static CanQualType GetReturnType(QualType RetTy) { 101 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 102 } 103 104 /// Arrange the argument and result information for a value of the given 105 /// unprototyped freestanding function type. 106 const CGFunctionInfo & 107 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 108 // When translating an unprototyped function type, always use a 109 // variadic type. 110 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 111 /*instanceMethod=*/false, 112 /*chainCall=*/false, None, 113 FTNP->getExtInfo(), {}, RequiredArgs(0)); 114 } 115 116 static void addExtParameterInfosForCall( 117 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 118 const FunctionProtoType *proto, 119 unsigned prefixArgs, 120 unsigned totalArgs) { 121 assert(proto->hasExtParameterInfos()); 122 assert(paramInfos.size() <= prefixArgs); 123 assert(proto->getNumParams() + prefixArgs <= totalArgs); 124 125 paramInfos.reserve(totalArgs); 126 127 // Add default infos for any prefix args that don't already have infos. 128 paramInfos.resize(prefixArgs); 129 130 // Add infos for the prototype. 131 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 132 paramInfos.push_back(ParamInfo); 133 // pass_object_size params have no parameter info. 134 if (ParamInfo.hasPassObjectSize()) 135 paramInfos.emplace_back(); 136 } 137 138 assert(paramInfos.size() <= totalArgs && 139 "Did we forget to insert pass_object_size args?"); 140 // Add default infos for the variadic and/or suffix arguments. 141 paramInfos.resize(totalArgs); 142 } 143 144 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 145 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 146 static void appendParameterTypes(const CodeGenTypes &CGT, 147 SmallVectorImpl<CanQualType> &prefix, 148 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 149 CanQual<FunctionProtoType> FPT) { 150 // Fast path: don't touch param info if we don't need to. 151 if (!FPT->hasExtParameterInfos()) { 152 assert(paramInfos.empty() && 153 "We have paramInfos, but the prototype doesn't?"); 154 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 155 return; 156 } 157 158 unsigned PrefixSize = prefix.size(); 159 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 160 // parameters; the only thing that can change this is the presence of 161 // pass_object_size. So, we preallocate for the common case. 162 prefix.reserve(prefix.size() + FPT->getNumParams()); 163 164 auto ExtInfos = FPT->getExtParameterInfos(); 165 assert(ExtInfos.size() == FPT->getNumParams()); 166 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 167 prefix.push_back(FPT->getParamType(I)); 168 if (ExtInfos[I].hasPassObjectSize()) 169 prefix.push_back(CGT.getContext().getSizeType()); 170 } 171 172 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 173 prefix.size()); 174 } 175 176 /// Arrange the LLVM function layout for a value of the given function 177 /// type, on top of any implicit parameters already stored. 178 static const CGFunctionInfo & 179 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 180 SmallVectorImpl<CanQualType> &prefix, 181 CanQual<FunctionProtoType> FTP) { 182 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 183 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 184 // FIXME: Kill copy. 185 appendParameterTypes(CGT, prefix, paramInfos, FTP); 186 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 187 188 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 189 /*chainCall=*/false, prefix, 190 FTP->getExtInfo(), paramInfos, 191 Required); 192 } 193 194 /// Arrange the argument and result information for a value of the 195 /// given freestanding function type. 196 const CGFunctionInfo & 197 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 198 SmallVector<CanQualType, 16> argTypes; 199 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 200 FTP); 201 } 202 203 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 204 bool IsWindows) { 205 // Set the appropriate calling convention for the Function. 206 if (D->hasAttr<StdCallAttr>()) 207 return CC_X86StdCall; 208 209 if (D->hasAttr<FastCallAttr>()) 210 return CC_X86FastCall; 211 212 if (D->hasAttr<RegCallAttr>()) 213 return CC_X86RegCall; 214 215 if (D->hasAttr<ThisCallAttr>()) 216 return CC_X86ThisCall; 217 218 if (D->hasAttr<VectorCallAttr>()) 219 return CC_X86VectorCall; 220 221 if (D->hasAttr<PascalAttr>()) 222 return CC_X86Pascal; 223 224 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 225 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 226 227 if (D->hasAttr<AArch64VectorPcsAttr>()) 228 return CC_AArch64VectorCall; 229 230 if (D->hasAttr<IntelOclBiccAttr>()) 231 return CC_IntelOclBicc; 232 233 if (D->hasAttr<MSABIAttr>()) 234 return IsWindows ? CC_C : CC_Win64; 235 236 if (D->hasAttr<SysVABIAttr>()) 237 return IsWindows ? CC_X86_64SysV : CC_C; 238 239 if (D->hasAttr<PreserveMostAttr>()) 240 return CC_PreserveMost; 241 242 if (D->hasAttr<PreserveAllAttr>()) 243 return CC_PreserveAll; 244 245 return CC_C; 246 } 247 248 /// Arrange the argument and result information for a call to an 249 /// unknown C++ non-static member function of the given abstract type. 250 /// (A null RD means we don't have any meaningful "this" argument type, 251 /// so fall back to a generic pointer type). 252 /// The member function must be an ordinary function, i.e. not a 253 /// constructor or destructor. 254 const CGFunctionInfo & 255 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 256 const FunctionProtoType *FTP, 257 const CXXMethodDecl *MD) { 258 SmallVector<CanQualType, 16> argTypes; 259 260 // Add the 'this' pointer. 261 argTypes.push_back(DeriveThisType(RD, MD)); 262 263 return ::arrangeLLVMFunctionInfo( 264 *this, true, argTypes, 265 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 266 } 267 268 /// Set calling convention for CUDA/HIP kernel. 269 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 270 const FunctionDecl *FD) { 271 if (FD->hasAttr<CUDAGlobalAttr>()) { 272 const FunctionType *FT = FTy->getAs<FunctionType>(); 273 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 274 FTy = FT->getCanonicalTypeUnqualified(); 275 } 276 } 277 278 /// Arrange the argument and result information for a declaration or 279 /// definition of the given C++ non-static member function. The 280 /// member function must be an ordinary function, i.e. not a 281 /// constructor or destructor. 282 const CGFunctionInfo & 283 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 284 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 285 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 286 287 CanQualType FT = GetFormalType(MD).getAs<Type>(); 288 setCUDAKernelCallingConvention(FT, CGM, MD); 289 auto prototype = FT.getAs<FunctionProtoType>(); 290 291 if (MD->isInstance()) { 292 // The abstract case is perfectly fine. 293 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 294 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 295 } 296 297 return arrangeFreeFunctionType(prototype); 298 } 299 300 bool CodeGenTypes::inheritingCtorHasParams( 301 const InheritedConstructor &Inherited, CXXCtorType Type) { 302 // Parameters are unnecessary if we're constructing a base class subobject 303 // and the inherited constructor lives in a virtual base. 304 return Type == Ctor_Complete || 305 !Inherited.getShadowDecl()->constructsVirtualBase() || 306 !Target.getCXXABI().hasConstructorVariants(); 307 } 308 309 const CGFunctionInfo & 310 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 311 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 312 313 SmallVector<CanQualType, 16> argTypes; 314 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 315 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 316 317 bool PassParams = true; 318 319 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 320 // A base class inheriting constructor doesn't get forwarded arguments 321 // needed to construct a virtual base (or base class thereof). 322 if (auto Inherited = CD->getInheritedConstructor()) 323 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 324 } 325 326 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 327 328 // Add the formal parameters. 329 if (PassParams) 330 appendParameterTypes(*this, argTypes, paramInfos, FTP); 331 332 CGCXXABI::AddedStructorArgCounts AddedArgs = 333 TheCXXABI.buildStructorSignature(GD, argTypes); 334 if (!paramInfos.empty()) { 335 // Note: prefix implies after the first param. 336 if (AddedArgs.Prefix) 337 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 338 FunctionProtoType::ExtParameterInfo{}); 339 if (AddedArgs.Suffix) 340 paramInfos.append(AddedArgs.Suffix, 341 FunctionProtoType::ExtParameterInfo{}); 342 } 343 344 RequiredArgs required = 345 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 346 : RequiredArgs::All); 347 348 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 349 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 350 ? argTypes.front() 351 : TheCXXABI.hasMostDerivedReturn(GD) 352 ? CGM.getContext().VoidPtrTy 353 : Context.VoidTy; 354 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 355 /*chainCall=*/false, argTypes, extInfo, 356 paramInfos, required); 357 } 358 359 static SmallVector<CanQualType, 16> 360 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 361 SmallVector<CanQualType, 16> argTypes; 362 for (auto &arg : args) 363 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 364 return argTypes; 365 } 366 367 static SmallVector<CanQualType, 16> 368 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 369 SmallVector<CanQualType, 16> argTypes; 370 for (auto &arg : args) 371 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 372 return argTypes; 373 } 374 375 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 376 getExtParameterInfosForCall(const FunctionProtoType *proto, 377 unsigned prefixArgs, unsigned totalArgs) { 378 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 379 if (proto->hasExtParameterInfos()) { 380 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 381 } 382 return result; 383 } 384 385 /// Arrange a call to a C++ method, passing the given arguments. 386 /// 387 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 388 /// parameter. 389 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 390 /// args. 391 /// PassProtoArgs indicates whether `args` has args for the parameters in the 392 /// given CXXConstructorDecl. 393 const CGFunctionInfo & 394 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 395 const CXXConstructorDecl *D, 396 CXXCtorType CtorKind, 397 unsigned ExtraPrefixArgs, 398 unsigned ExtraSuffixArgs, 399 bool PassProtoArgs) { 400 // FIXME: Kill copy. 401 SmallVector<CanQualType, 16> ArgTypes; 402 for (const auto &Arg : args) 403 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 404 405 // +1 for implicit this, which should always be args[0]. 406 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 407 408 CanQual<FunctionProtoType> FPT = GetFormalType(D); 409 RequiredArgs Required = PassProtoArgs 410 ? RequiredArgs::forPrototypePlus( 411 FPT, TotalPrefixArgs + ExtraSuffixArgs) 412 : RequiredArgs::All; 413 414 GlobalDecl GD(D, CtorKind); 415 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 416 ? ArgTypes.front() 417 : TheCXXABI.hasMostDerivedReturn(GD) 418 ? CGM.getContext().VoidPtrTy 419 : Context.VoidTy; 420 421 FunctionType::ExtInfo Info = FPT->getExtInfo(); 422 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 423 // If the prototype args are elided, we should only have ABI-specific args, 424 // which never have param info. 425 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 426 // ABI-specific suffix arguments are treated the same as variadic arguments. 427 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 428 ArgTypes.size()); 429 } 430 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 431 /*chainCall=*/false, ArgTypes, Info, 432 ParamInfos, Required); 433 } 434 435 /// Arrange the argument and result information for the declaration or 436 /// definition of the given function. 437 const CGFunctionInfo & 438 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 439 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 440 if (MD->isInstance()) 441 return arrangeCXXMethodDeclaration(MD); 442 443 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 444 445 assert(isa<FunctionType>(FTy)); 446 setCUDAKernelCallingConvention(FTy, CGM, FD); 447 448 // When declaring a function without a prototype, always use a 449 // non-variadic type. 450 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 451 return arrangeLLVMFunctionInfo( 452 noProto->getReturnType(), /*instanceMethod=*/false, 453 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 454 } 455 456 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 457 } 458 459 /// Arrange the argument and result information for the declaration or 460 /// definition of an Objective-C method. 461 const CGFunctionInfo & 462 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 463 // It happens that this is the same as a call with no optional 464 // arguments, except also using the formal 'self' type. 465 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 466 } 467 468 /// Arrange the argument and result information for the function type 469 /// through which to perform a send to the given Objective-C method, 470 /// using the given receiver type. The receiver type is not always 471 /// the 'self' type of the method or even an Objective-C pointer type. 472 /// This is *not* the right method for actually performing such a 473 /// message send, due to the possibility of optional arguments. 474 const CGFunctionInfo & 475 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 476 QualType receiverType) { 477 SmallVector<CanQualType, 16> argTys; 478 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 479 argTys.push_back(Context.getCanonicalParamType(receiverType)); 480 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 481 // FIXME: Kill copy? 482 for (const auto *I : MD->parameters()) { 483 argTys.push_back(Context.getCanonicalParamType(I->getType())); 484 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 485 I->hasAttr<NoEscapeAttr>()); 486 extParamInfos.push_back(extParamInfo); 487 } 488 489 FunctionType::ExtInfo einfo; 490 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 491 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 492 493 if (getContext().getLangOpts().ObjCAutoRefCount && 494 MD->hasAttr<NSReturnsRetainedAttr>()) 495 einfo = einfo.withProducesResult(true); 496 497 RequiredArgs required = 498 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 499 500 return arrangeLLVMFunctionInfo( 501 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 502 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 503 } 504 505 const CGFunctionInfo & 506 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 507 const CallArgList &args) { 508 auto argTypes = getArgTypesForCall(Context, args); 509 FunctionType::ExtInfo einfo; 510 511 return arrangeLLVMFunctionInfo( 512 GetReturnType(returnType), /*instanceMethod=*/false, 513 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 514 } 515 516 const CGFunctionInfo & 517 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 518 // FIXME: Do we need to handle ObjCMethodDecl? 519 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 520 521 if (isa<CXXConstructorDecl>(GD.getDecl()) || 522 isa<CXXDestructorDecl>(GD.getDecl())) 523 return arrangeCXXStructorDeclaration(GD); 524 525 return arrangeFunctionDeclaration(FD); 526 } 527 528 /// Arrange a thunk that takes 'this' as the first parameter followed by 529 /// varargs. Return a void pointer, regardless of the actual return type. 530 /// The body of the thunk will end in a musttail call to a function of the 531 /// correct type, and the caller will bitcast the function to the correct 532 /// prototype. 533 const CGFunctionInfo & 534 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 535 assert(MD->isVirtual() && "only methods have thunks"); 536 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 537 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 538 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 539 /*chainCall=*/false, ArgTys, 540 FTP->getExtInfo(), {}, RequiredArgs(1)); 541 } 542 543 const CGFunctionInfo & 544 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 545 CXXCtorType CT) { 546 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 547 548 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 549 SmallVector<CanQualType, 2> ArgTys; 550 const CXXRecordDecl *RD = CD->getParent(); 551 ArgTys.push_back(DeriveThisType(RD, CD)); 552 if (CT == Ctor_CopyingClosure) 553 ArgTys.push_back(*FTP->param_type_begin()); 554 if (RD->getNumVBases() > 0) 555 ArgTys.push_back(Context.IntTy); 556 CallingConv CC = Context.getDefaultCallingConvention( 557 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 558 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 559 /*chainCall=*/false, ArgTys, 560 FunctionType::ExtInfo(CC), {}, 561 RequiredArgs::All); 562 } 563 564 /// Arrange a call as unto a free function, except possibly with an 565 /// additional number of formal parameters considered required. 566 static const CGFunctionInfo & 567 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 568 CodeGenModule &CGM, 569 const CallArgList &args, 570 const FunctionType *fnType, 571 unsigned numExtraRequiredArgs, 572 bool chainCall) { 573 assert(args.size() >= numExtraRequiredArgs); 574 575 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 576 577 // In most cases, there are no optional arguments. 578 RequiredArgs required = RequiredArgs::All; 579 580 // If we have a variadic prototype, the required arguments are the 581 // extra prefix plus the arguments in the prototype. 582 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 583 if (proto->isVariadic()) 584 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 585 586 if (proto->hasExtParameterInfos()) 587 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 588 args.size()); 589 590 // If we don't have a prototype at all, but we're supposed to 591 // explicitly use the variadic convention for unprototyped calls, 592 // treat all of the arguments as required but preserve the nominal 593 // possibility of variadics. 594 } else if (CGM.getTargetCodeGenInfo() 595 .isNoProtoCallVariadic(args, 596 cast<FunctionNoProtoType>(fnType))) { 597 required = RequiredArgs(args.size()); 598 } 599 600 // FIXME: Kill copy. 601 SmallVector<CanQualType, 16> argTypes; 602 for (const auto &arg : args) 603 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 604 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 605 /*instanceMethod=*/false, chainCall, 606 argTypes, fnType->getExtInfo(), paramInfos, 607 required); 608 } 609 610 /// Figure out the rules for calling a function with the given formal 611 /// type using the given arguments. The arguments are necessary 612 /// because the function might be unprototyped, in which case it's 613 /// target-dependent in crazy ways. 614 const CGFunctionInfo & 615 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 616 const FunctionType *fnType, 617 bool chainCall) { 618 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 619 chainCall ? 1 : 0, chainCall); 620 } 621 622 /// A block function is essentially a free function with an 623 /// extra implicit argument. 624 const CGFunctionInfo & 625 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 626 const FunctionType *fnType) { 627 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 628 /*chainCall=*/false); 629 } 630 631 const CGFunctionInfo & 632 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 633 const FunctionArgList ¶ms) { 634 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 635 auto argTypes = getArgTypesForDeclaration(Context, params); 636 637 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 638 /*instanceMethod*/ false, /*chainCall*/ false, 639 argTypes, proto->getExtInfo(), paramInfos, 640 RequiredArgs::forPrototypePlus(proto, 1)); 641 } 642 643 const CGFunctionInfo & 644 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 645 const CallArgList &args) { 646 // FIXME: Kill copy. 647 SmallVector<CanQualType, 16> argTypes; 648 for (const auto &Arg : args) 649 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 650 return arrangeLLVMFunctionInfo( 651 GetReturnType(resultType), /*instanceMethod=*/false, 652 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 653 /*paramInfos=*/ {}, RequiredArgs::All); 654 } 655 656 const CGFunctionInfo & 657 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 658 const FunctionArgList &args) { 659 auto argTypes = getArgTypesForDeclaration(Context, args); 660 661 return arrangeLLVMFunctionInfo( 662 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 663 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 664 } 665 666 const CGFunctionInfo & 667 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 668 ArrayRef<CanQualType> argTypes) { 669 return arrangeLLVMFunctionInfo( 670 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 671 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 672 } 673 674 /// Arrange a call to a C++ method, passing the given arguments. 675 /// 676 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 677 /// does not count `this`. 678 const CGFunctionInfo & 679 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 680 const FunctionProtoType *proto, 681 RequiredArgs required, 682 unsigned numPrefixArgs) { 683 assert(numPrefixArgs + 1 <= args.size() && 684 "Emitting a call with less args than the required prefix?"); 685 // Add one to account for `this`. It's a bit awkward here, but we don't count 686 // `this` in similar places elsewhere. 687 auto paramInfos = 688 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 689 690 // FIXME: Kill copy. 691 auto argTypes = getArgTypesForCall(Context, args); 692 693 FunctionType::ExtInfo info = proto->getExtInfo(); 694 return arrangeLLVMFunctionInfo( 695 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 696 /*chainCall=*/false, argTypes, info, paramInfos, required); 697 } 698 699 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 700 return arrangeLLVMFunctionInfo( 701 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 702 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 703 } 704 705 const CGFunctionInfo & 706 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 707 const CallArgList &args) { 708 assert(signature.arg_size() <= args.size()); 709 if (signature.arg_size() == args.size()) 710 return signature; 711 712 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 713 auto sigParamInfos = signature.getExtParameterInfos(); 714 if (!sigParamInfos.empty()) { 715 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 716 paramInfos.resize(args.size()); 717 } 718 719 auto argTypes = getArgTypesForCall(Context, args); 720 721 assert(signature.getRequiredArgs().allowsOptionalArgs()); 722 return arrangeLLVMFunctionInfo(signature.getReturnType(), 723 signature.isInstanceMethod(), 724 signature.isChainCall(), 725 argTypes, 726 signature.getExtInfo(), 727 paramInfos, 728 signature.getRequiredArgs()); 729 } 730 731 namespace clang { 732 namespace CodeGen { 733 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 734 } 735 } 736 737 /// Arrange the argument and result information for an abstract value 738 /// of a given function type. This is the method which all of the 739 /// above functions ultimately defer to. 740 const CGFunctionInfo & 741 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 742 bool instanceMethod, 743 bool chainCall, 744 ArrayRef<CanQualType> argTypes, 745 FunctionType::ExtInfo info, 746 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 747 RequiredArgs required) { 748 assert(llvm::all_of(argTypes, 749 [](CanQualType T) { return T.isCanonicalAsParam(); })); 750 751 // Lookup or create unique function info. 752 llvm::FoldingSetNodeID ID; 753 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 754 required, resultType, argTypes); 755 756 void *insertPos = nullptr; 757 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 758 if (FI) 759 return *FI; 760 761 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 762 763 // Construct the function info. We co-allocate the ArgInfos. 764 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 765 paramInfos, resultType, argTypes, required); 766 FunctionInfos.InsertNode(FI, insertPos); 767 768 bool inserted = FunctionsBeingProcessed.insert(FI).second; 769 (void)inserted; 770 assert(inserted && "Recursively being processed?"); 771 772 // Compute ABI information. 773 if (CC == llvm::CallingConv::SPIR_KERNEL) { 774 // Force target independent argument handling for the host visible 775 // kernel functions. 776 computeSPIRKernelABIInfo(CGM, *FI); 777 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 778 swiftcall::computeABIInfo(CGM, *FI); 779 } else { 780 getABIInfo().computeInfo(*FI); 781 } 782 783 // Loop over all of the computed argument and return value info. If any of 784 // them are direct or extend without a specified coerce type, specify the 785 // default now. 786 ABIArgInfo &retInfo = FI->getReturnInfo(); 787 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 788 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 789 790 for (auto &I : FI->arguments()) 791 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 792 I.info.setCoerceToType(ConvertType(I.type)); 793 794 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 795 assert(erased && "Not in set?"); 796 797 return *FI; 798 } 799 800 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 801 bool instanceMethod, 802 bool chainCall, 803 const FunctionType::ExtInfo &info, 804 ArrayRef<ExtParameterInfo> paramInfos, 805 CanQualType resultType, 806 ArrayRef<CanQualType> argTypes, 807 RequiredArgs required) { 808 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 809 assert(!required.allowsOptionalArgs() || 810 required.getNumRequiredArgs() <= argTypes.size()); 811 812 void *buffer = 813 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 814 argTypes.size() + 1, paramInfos.size())); 815 816 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 817 FI->CallingConvention = llvmCC; 818 FI->EffectiveCallingConvention = llvmCC; 819 FI->ASTCallingConvention = info.getCC(); 820 FI->InstanceMethod = instanceMethod; 821 FI->ChainCall = chainCall; 822 FI->CmseNSCall = info.getCmseNSCall(); 823 FI->NoReturn = info.getNoReturn(); 824 FI->ReturnsRetained = info.getProducesResult(); 825 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 826 FI->NoCfCheck = info.getNoCfCheck(); 827 FI->Required = required; 828 FI->HasRegParm = info.getHasRegParm(); 829 FI->RegParm = info.getRegParm(); 830 FI->ArgStruct = nullptr; 831 FI->ArgStructAlign = 0; 832 FI->NumArgs = argTypes.size(); 833 FI->HasExtParameterInfos = !paramInfos.empty(); 834 FI->getArgsBuffer()[0].type = resultType; 835 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 836 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 837 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 838 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 839 return FI; 840 } 841 842 /***/ 843 844 namespace { 845 // ABIArgInfo::Expand implementation. 846 847 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 848 struct TypeExpansion { 849 enum TypeExpansionKind { 850 // Elements of constant arrays are expanded recursively. 851 TEK_ConstantArray, 852 // Record fields are expanded recursively (but if record is a union, only 853 // the field with the largest size is expanded). 854 TEK_Record, 855 // For complex types, real and imaginary parts are expanded recursively. 856 TEK_Complex, 857 // All other types are not expandable. 858 TEK_None 859 }; 860 861 const TypeExpansionKind Kind; 862 863 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 864 virtual ~TypeExpansion() {} 865 }; 866 867 struct ConstantArrayExpansion : TypeExpansion { 868 QualType EltTy; 869 uint64_t NumElts; 870 871 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 872 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 873 static bool classof(const TypeExpansion *TE) { 874 return TE->Kind == TEK_ConstantArray; 875 } 876 }; 877 878 struct RecordExpansion : TypeExpansion { 879 SmallVector<const CXXBaseSpecifier *, 1> Bases; 880 881 SmallVector<const FieldDecl *, 1> Fields; 882 883 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 884 SmallVector<const FieldDecl *, 1> &&Fields) 885 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 886 Fields(std::move(Fields)) {} 887 static bool classof(const TypeExpansion *TE) { 888 return TE->Kind == TEK_Record; 889 } 890 }; 891 892 struct ComplexExpansion : TypeExpansion { 893 QualType EltTy; 894 895 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 896 static bool classof(const TypeExpansion *TE) { 897 return TE->Kind == TEK_Complex; 898 } 899 }; 900 901 struct NoExpansion : TypeExpansion { 902 NoExpansion() : TypeExpansion(TEK_None) {} 903 static bool classof(const TypeExpansion *TE) { 904 return TE->Kind == TEK_None; 905 } 906 }; 907 } // namespace 908 909 static std::unique_ptr<TypeExpansion> 910 getTypeExpansion(QualType Ty, const ASTContext &Context) { 911 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 912 return std::make_unique<ConstantArrayExpansion>( 913 AT->getElementType(), AT->getSize().getZExtValue()); 914 } 915 if (const RecordType *RT = Ty->getAs<RecordType>()) { 916 SmallVector<const CXXBaseSpecifier *, 1> Bases; 917 SmallVector<const FieldDecl *, 1> Fields; 918 const RecordDecl *RD = RT->getDecl(); 919 assert(!RD->hasFlexibleArrayMember() && 920 "Cannot expand structure with flexible array."); 921 if (RD->isUnion()) { 922 // Unions can be here only in degenerative cases - all the fields are same 923 // after flattening. Thus we have to use the "largest" field. 924 const FieldDecl *LargestFD = nullptr; 925 CharUnits UnionSize = CharUnits::Zero(); 926 927 for (const auto *FD : RD->fields()) { 928 if (FD->isZeroLengthBitField(Context)) 929 continue; 930 assert(!FD->isBitField() && 931 "Cannot expand structure with bit-field members."); 932 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 933 if (UnionSize < FieldSize) { 934 UnionSize = FieldSize; 935 LargestFD = FD; 936 } 937 } 938 if (LargestFD) 939 Fields.push_back(LargestFD); 940 } else { 941 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 942 assert(!CXXRD->isDynamicClass() && 943 "cannot expand vtable pointers in dynamic classes"); 944 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 945 Bases.push_back(&BS); 946 } 947 948 for (const auto *FD : RD->fields()) { 949 if (FD->isZeroLengthBitField(Context)) 950 continue; 951 assert(!FD->isBitField() && 952 "Cannot expand structure with bit-field members."); 953 Fields.push_back(FD); 954 } 955 } 956 return std::make_unique<RecordExpansion>(std::move(Bases), 957 std::move(Fields)); 958 } 959 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 960 return std::make_unique<ComplexExpansion>(CT->getElementType()); 961 } 962 return std::make_unique<NoExpansion>(); 963 } 964 965 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 966 auto Exp = getTypeExpansion(Ty, Context); 967 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 968 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 969 } 970 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 971 int Res = 0; 972 for (auto BS : RExp->Bases) 973 Res += getExpansionSize(BS->getType(), Context); 974 for (auto FD : RExp->Fields) 975 Res += getExpansionSize(FD->getType(), Context); 976 return Res; 977 } 978 if (isa<ComplexExpansion>(Exp.get())) 979 return 2; 980 assert(isa<NoExpansion>(Exp.get())); 981 return 1; 982 } 983 984 void 985 CodeGenTypes::getExpandedTypes(QualType Ty, 986 SmallVectorImpl<llvm::Type *>::iterator &TI) { 987 auto Exp = getTypeExpansion(Ty, Context); 988 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 989 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 990 getExpandedTypes(CAExp->EltTy, TI); 991 } 992 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 993 for (auto BS : RExp->Bases) 994 getExpandedTypes(BS->getType(), TI); 995 for (auto FD : RExp->Fields) 996 getExpandedTypes(FD->getType(), TI); 997 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 998 llvm::Type *EltTy = ConvertType(CExp->EltTy); 999 *TI++ = EltTy; 1000 *TI++ = EltTy; 1001 } else { 1002 assert(isa<NoExpansion>(Exp.get())); 1003 *TI++ = ConvertType(Ty); 1004 } 1005 } 1006 1007 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1008 ConstantArrayExpansion *CAE, 1009 Address BaseAddr, 1010 llvm::function_ref<void(Address)> Fn) { 1011 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1012 CharUnits EltAlign = 1013 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1014 1015 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1016 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( 1017 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); 1018 Fn(Address(EltAddr, EltAlign)); 1019 } 1020 } 1021 1022 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1023 llvm::Function::arg_iterator &AI) { 1024 assert(LV.isSimple() && 1025 "Unexpected non-simple lvalue during struct expansion."); 1026 1027 auto Exp = getTypeExpansion(Ty, getContext()); 1028 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1029 forConstantArrayExpansion( 1030 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1031 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1032 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1033 }); 1034 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1035 Address This = LV.getAddress(*this); 1036 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1037 // Perform a single step derived-to-base conversion. 1038 Address Base = 1039 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1040 /*NullCheckValue=*/false, SourceLocation()); 1041 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1042 1043 // Recurse onto bases. 1044 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1045 } 1046 for (auto FD : RExp->Fields) { 1047 // FIXME: What are the right qualifiers here? 1048 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1049 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1050 } 1051 } else if (isa<ComplexExpansion>(Exp.get())) { 1052 auto realValue = &*AI++; 1053 auto imagValue = &*AI++; 1054 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1055 } else { 1056 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1057 // primitive store. 1058 assert(isa<NoExpansion>(Exp.get())); 1059 if (LV.isBitField()) 1060 EmitStoreThroughLValue(RValue::get(&*AI++), LV); 1061 else 1062 EmitStoreOfScalar(&*AI++, LV); 1063 } 1064 } 1065 1066 void CodeGenFunction::ExpandTypeToArgs( 1067 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1068 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1069 auto Exp = getTypeExpansion(Ty, getContext()); 1070 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1071 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1072 : Arg.getKnownRValue().getAggregateAddress(); 1073 forConstantArrayExpansion( 1074 *this, CAExp, Addr, [&](Address EltAddr) { 1075 CallArg EltArg = CallArg( 1076 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1077 CAExp->EltTy); 1078 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1079 IRCallArgPos); 1080 }); 1081 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1082 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1083 : Arg.getKnownRValue().getAggregateAddress(); 1084 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1085 // Perform a single step derived-to-base conversion. 1086 Address Base = 1087 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1088 /*NullCheckValue=*/false, SourceLocation()); 1089 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1090 1091 // Recurse onto bases. 1092 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1093 IRCallArgPos); 1094 } 1095 1096 LValue LV = MakeAddrLValue(This, Ty); 1097 for (auto FD : RExp->Fields) { 1098 CallArg FldArg = 1099 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1100 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1101 IRCallArgPos); 1102 } 1103 } else if (isa<ComplexExpansion>(Exp.get())) { 1104 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1105 IRCallArgs[IRCallArgPos++] = CV.first; 1106 IRCallArgs[IRCallArgPos++] = CV.second; 1107 } else { 1108 assert(isa<NoExpansion>(Exp.get())); 1109 auto RV = Arg.getKnownRValue(); 1110 assert(RV.isScalar() && 1111 "Unexpected non-scalar rvalue during struct expansion."); 1112 1113 // Insert a bitcast as needed. 1114 llvm::Value *V = RV.getScalarVal(); 1115 if (IRCallArgPos < IRFuncTy->getNumParams() && 1116 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1117 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1118 1119 IRCallArgs[IRCallArgPos++] = V; 1120 } 1121 } 1122 1123 /// Create a temporary allocation for the purposes of coercion. 1124 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1125 CharUnits MinAlign, 1126 const Twine &Name = "tmp") { 1127 // Don't use an alignment that's worse than what LLVM would prefer. 1128 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1129 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1130 1131 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1132 } 1133 1134 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1135 /// accessing some number of bytes out of it, try to gep into the struct to get 1136 /// at its inner goodness. Dive as deep as possible without entering an element 1137 /// with an in-memory size smaller than DstSize. 1138 static Address 1139 EnterStructPointerForCoercedAccess(Address SrcPtr, 1140 llvm::StructType *SrcSTy, 1141 uint64_t DstSize, CodeGenFunction &CGF) { 1142 // We can't dive into a zero-element struct. 1143 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1144 1145 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1146 1147 // If the first elt is at least as large as what we're looking for, or if the 1148 // first element is the same size as the whole struct, we can enter it. The 1149 // comparison must be made on the store size and not the alloca size. Using 1150 // the alloca size may overstate the size of the load. 1151 uint64_t FirstEltSize = 1152 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1153 if (FirstEltSize < DstSize && 1154 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1155 return SrcPtr; 1156 1157 // GEP into the first element. 1158 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1159 1160 // If the first element is a struct, recurse. 1161 llvm::Type *SrcTy = SrcPtr.getElementType(); 1162 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1163 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1164 1165 return SrcPtr; 1166 } 1167 1168 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1169 /// are either integers or pointers. This does a truncation of the value if it 1170 /// is too large or a zero extension if it is too small. 1171 /// 1172 /// This behaves as if the value were coerced through memory, so on big-endian 1173 /// targets the high bits are preserved in a truncation, while little-endian 1174 /// targets preserve the low bits. 1175 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1176 llvm::Type *Ty, 1177 CodeGenFunction &CGF) { 1178 if (Val->getType() == Ty) 1179 return Val; 1180 1181 if (isa<llvm::PointerType>(Val->getType())) { 1182 // If this is Pointer->Pointer avoid conversion to and from int. 1183 if (isa<llvm::PointerType>(Ty)) 1184 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1185 1186 // Convert the pointer to an integer so we can play with its width. 1187 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1188 } 1189 1190 llvm::Type *DestIntTy = Ty; 1191 if (isa<llvm::PointerType>(DestIntTy)) 1192 DestIntTy = CGF.IntPtrTy; 1193 1194 if (Val->getType() != DestIntTy) { 1195 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1196 if (DL.isBigEndian()) { 1197 // Preserve the high bits on big-endian targets. 1198 // That is what memory coercion does. 1199 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1200 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1201 1202 if (SrcSize > DstSize) { 1203 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1204 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1205 } else { 1206 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1207 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1208 } 1209 } else { 1210 // Little-endian targets preserve the low bits. No shifts required. 1211 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1212 } 1213 } 1214 1215 if (isa<llvm::PointerType>(Ty)) 1216 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1217 return Val; 1218 } 1219 1220 1221 1222 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1223 /// a pointer to an object of type \arg Ty, known to be aligned to 1224 /// \arg SrcAlign bytes. 1225 /// 1226 /// This safely handles the case when the src type is smaller than the 1227 /// destination type; in this situation the values of bits which not 1228 /// present in the src are undefined. 1229 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1230 CodeGenFunction &CGF) { 1231 llvm::Type *SrcTy = Src.getElementType(); 1232 1233 // If SrcTy and Ty are the same, just do a load. 1234 if (SrcTy == Ty) 1235 return CGF.Builder.CreateLoad(Src); 1236 1237 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1238 1239 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1240 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1241 DstSize.getFixedSize(), CGF); 1242 SrcTy = Src.getElementType(); 1243 } 1244 1245 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1246 1247 // If the source and destination are integer or pointer types, just do an 1248 // extension or truncation to the desired type. 1249 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1250 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1251 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1252 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1253 } 1254 1255 // If load is legal, just bitcast the src pointer. 1256 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1257 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1258 // Generally SrcSize is never greater than DstSize, since this means we are 1259 // losing bits. However, this can happen in cases where the structure has 1260 // additional padding, for example due to a user specified alignment. 1261 // 1262 // FIXME: Assert that we aren't truncating non-padding bits when have access 1263 // to that information. 1264 Src = CGF.Builder.CreateBitCast(Src, 1265 Ty->getPointerTo(Src.getAddressSpace())); 1266 return CGF.Builder.CreateLoad(Src); 1267 } 1268 1269 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1270 // the types match, use the llvm.experimental.vector.insert intrinsic to 1271 // perform the conversion. 1272 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1273 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1274 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 1275 // vector, use a vector insert and bitcast the result. 1276 bool NeedsBitcast = false; 1277 auto PredType = 1278 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16); 1279 llvm::Type *OrigType = Ty; 1280 if (ScalableDst == PredType && 1281 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) { 1282 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2); 1283 NeedsBitcast = true; 1284 } 1285 if (ScalableDst->getElementType() == FixedSrc->getElementType()) { 1286 auto *Load = CGF.Builder.CreateLoad(Src); 1287 auto *UndefVec = llvm::UndefValue::get(ScalableDst); 1288 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1289 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1290 ScalableDst, UndefVec, Load, Zero, "castScalableSve"); 1291 if (NeedsBitcast) 1292 Result = CGF.Builder.CreateBitCast(Result, OrigType); 1293 return Result; 1294 } 1295 } 1296 } 1297 1298 // Otherwise do coercion through memory. This is stupid, but simple. 1299 Address Tmp = 1300 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1301 CGF.Builder.CreateMemCpy( 1302 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1303 Src.getAlignment().getAsAlign(), 1304 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1305 return CGF.Builder.CreateLoad(Tmp); 1306 } 1307 1308 // Function to store a first-class aggregate into memory. We prefer to 1309 // store the elements rather than the aggregate to be more friendly to 1310 // fast-isel. 1311 // FIXME: Do we need to recurse here? 1312 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1313 bool DestIsVolatile) { 1314 // Prefer scalar stores to first-class aggregate stores. 1315 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1316 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1317 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1318 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1319 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1320 } 1321 } else { 1322 Builder.CreateStore(Val, Dest, DestIsVolatile); 1323 } 1324 } 1325 1326 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1327 /// where the source and destination may have different types. The 1328 /// destination is known to be aligned to \arg DstAlign bytes. 1329 /// 1330 /// This safely handles the case when the src type is larger than the 1331 /// destination type; the upper bits of the src will be lost. 1332 static void CreateCoercedStore(llvm::Value *Src, 1333 Address Dst, 1334 bool DstIsVolatile, 1335 CodeGenFunction &CGF) { 1336 llvm::Type *SrcTy = Src->getType(); 1337 llvm::Type *DstTy = Dst.getElementType(); 1338 if (SrcTy == DstTy) { 1339 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1340 return; 1341 } 1342 1343 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1344 1345 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1346 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1347 SrcSize.getFixedSize(), CGF); 1348 DstTy = Dst.getElementType(); 1349 } 1350 1351 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1352 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1353 if (SrcPtrTy && DstPtrTy && 1354 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1355 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1356 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1357 return; 1358 } 1359 1360 // If the source and destination are integer or pointer types, just do an 1361 // extension or truncation to the desired type. 1362 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1363 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1364 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1365 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1366 return; 1367 } 1368 1369 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1370 1371 // If store is legal, just bitcast the src pointer. 1372 if (isa<llvm::ScalableVectorType>(SrcTy) || 1373 isa<llvm::ScalableVectorType>(DstTy) || 1374 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1375 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1376 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1377 } else { 1378 // Otherwise do coercion through memory. This is stupid, but 1379 // simple. 1380 1381 // Generally SrcSize is never greater than DstSize, since this means we are 1382 // losing bits. However, this can happen in cases where the structure has 1383 // additional padding, for example due to a user specified alignment. 1384 // 1385 // FIXME: Assert that we aren't truncating non-padding bits when have access 1386 // to that information. 1387 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1388 CGF.Builder.CreateStore(Src, Tmp); 1389 CGF.Builder.CreateMemCpy( 1390 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1391 Tmp.getAlignment().getAsAlign(), 1392 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1393 } 1394 } 1395 1396 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1397 const ABIArgInfo &info) { 1398 if (unsigned offset = info.getDirectOffset()) { 1399 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1400 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1401 CharUnits::fromQuantity(offset)); 1402 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1403 } 1404 return addr; 1405 } 1406 1407 namespace { 1408 1409 /// Encapsulates information about the way function arguments from 1410 /// CGFunctionInfo should be passed to actual LLVM IR function. 1411 class ClangToLLVMArgMapping { 1412 static const unsigned InvalidIndex = ~0U; 1413 unsigned InallocaArgNo; 1414 unsigned SRetArgNo; 1415 unsigned TotalIRArgs; 1416 1417 /// Arguments of LLVM IR function corresponding to single Clang argument. 1418 struct IRArgs { 1419 unsigned PaddingArgIndex; 1420 // Argument is expanded to IR arguments at positions 1421 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1422 unsigned FirstArgIndex; 1423 unsigned NumberOfArgs; 1424 1425 IRArgs() 1426 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1427 NumberOfArgs(0) {} 1428 }; 1429 1430 SmallVector<IRArgs, 8> ArgInfo; 1431 1432 public: 1433 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1434 bool OnlyRequiredArgs = false) 1435 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1436 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1437 construct(Context, FI, OnlyRequiredArgs); 1438 } 1439 1440 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1441 unsigned getInallocaArgNo() const { 1442 assert(hasInallocaArg()); 1443 return InallocaArgNo; 1444 } 1445 1446 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1447 unsigned getSRetArgNo() const { 1448 assert(hasSRetArg()); 1449 return SRetArgNo; 1450 } 1451 1452 unsigned totalIRArgs() const { return TotalIRArgs; } 1453 1454 bool hasPaddingArg(unsigned ArgNo) const { 1455 assert(ArgNo < ArgInfo.size()); 1456 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1457 } 1458 unsigned getPaddingArgNo(unsigned ArgNo) const { 1459 assert(hasPaddingArg(ArgNo)); 1460 return ArgInfo[ArgNo].PaddingArgIndex; 1461 } 1462 1463 /// Returns index of first IR argument corresponding to ArgNo, and their 1464 /// quantity. 1465 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1466 assert(ArgNo < ArgInfo.size()); 1467 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1468 ArgInfo[ArgNo].NumberOfArgs); 1469 } 1470 1471 private: 1472 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1473 bool OnlyRequiredArgs); 1474 }; 1475 1476 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1477 const CGFunctionInfo &FI, 1478 bool OnlyRequiredArgs) { 1479 unsigned IRArgNo = 0; 1480 bool SwapThisWithSRet = false; 1481 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1482 1483 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1484 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1485 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1486 } 1487 1488 unsigned ArgNo = 0; 1489 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1490 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1491 ++I, ++ArgNo) { 1492 assert(I != FI.arg_end()); 1493 QualType ArgType = I->type; 1494 const ABIArgInfo &AI = I->info; 1495 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1496 auto &IRArgs = ArgInfo[ArgNo]; 1497 1498 if (AI.getPaddingType()) 1499 IRArgs.PaddingArgIndex = IRArgNo++; 1500 1501 switch (AI.getKind()) { 1502 case ABIArgInfo::Extend: 1503 case ABIArgInfo::Direct: { 1504 // FIXME: handle sseregparm someday... 1505 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1506 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1507 IRArgs.NumberOfArgs = STy->getNumElements(); 1508 } else { 1509 IRArgs.NumberOfArgs = 1; 1510 } 1511 break; 1512 } 1513 case ABIArgInfo::Indirect: 1514 case ABIArgInfo::IndirectAliased: 1515 IRArgs.NumberOfArgs = 1; 1516 break; 1517 case ABIArgInfo::Ignore: 1518 case ABIArgInfo::InAlloca: 1519 // ignore and inalloca doesn't have matching LLVM parameters. 1520 IRArgs.NumberOfArgs = 0; 1521 break; 1522 case ABIArgInfo::CoerceAndExpand: 1523 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1524 break; 1525 case ABIArgInfo::Expand: 1526 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1527 break; 1528 } 1529 1530 if (IRArgs.NumberOfArgs > 0) { 1531 IRArgs.FirstArgIndex = IRArgNo; 1532 IRArgNo += IRArgs.NumberOfArgs; 1533 } 1534 1535 // Skip over the sret parameter when it comes second. We already handled it 1536 // above. 1537 if (IRArgNo == 1 && SwapThisWithSRet) 1538 IRArgNo++; 1539 } 1540 assert(ArgNo == ArgInfo.size()); 1541 1542 if (FI.usesInAlloca()) 1543 InallocaArgNo = IRArgNo++; 1544 1545 TotalIRArgs = IRArgNo; 1546 } 1547 } // namespace 1548 1549 /***/ 1550 1551 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1552 const auto &RI = FI.getReturnInfo(); 1553 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1554 } 1555 1556 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1557 return ReturnTypeUsesSRet(FI) && 1558 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1559 } 1560 1561 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1562 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1563 switch (BT->getKind()) { 1564 default: 1565 return false; 1566 case BuiltinType::Float: 1567 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1568 case BuiltinType::Double: 1569 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1570 case BuiltinType::LongDouble: 1571 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1572 } 1573 } 1574 1575 return false; 1576 } 1577 1578 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1579 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1580 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1581 if (BT->getKind() == BuiltinType::LongDouble) 1582 return getTarget().useObjCFP2RetForComplexLongDouble(); 1583 } 1584 } 1585 1586 return false; 1587 } 1588 1589 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1590 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1591 return GetFunctionType(FI); 1592 } 1593 1594 llvm::FunctionType * 1595 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1596 1597 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1598 (void)Inserted; 1599 assert(Inserted && "Recursively being processed?"); 1600 1601 llvm::Type *resultType = nullptr; 1602 const ABIArgInfo &retAI = FI.getReturnInfo(); 1603 switch (retAI.getKind()) { 1604 case ABIArgInfo::Expand: 1605 case ABIArgInfo::IndirectAliased: 1606 llvm_unreachable("Invalid ABI kind for return argument"); 1607 1608 case ABIArgInfo::Extend: 1609 case ABIArgInfo::Direct: 1610 resultType = retAI.getCoerceToType(); 1611 break; 1612 1613 case ABIArgInfo::InAlloca: 1614 if (retAI.getInAllocaSRet()) { 1615 // sret things on win32 aren't void, they return the sret pointer. 1616 QualType ret = FI.getReturnType(); 1617 llvm::Type *ty = ConvertType(ret); 1618 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1619 resultType = llvm::PointerType::get(ty, addressSpace); 1620 } else { 1621 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1622 } 1623 break; 1624 1625 case ABIArgInfo::Indirect: 1626 case ABIArgInfo::Ignore: 1627 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1628 break; 1629 1630 case ABIArgInfo::CoerceAndExpand: 1631 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1632 break; 1633 } 1634 1635 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1636 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1637 1638 // Add type for sret argument. 1639 if (IRFunctionArgs.hasSRetArg()) { 1640 QualType Ret = FI.getReturnType(); 1641 llvm::Type *Ty = ConvertType(Ret); 1642 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1643 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1644 llvm::PointerType::get(Ty, AddressSpace); 1645 } 1646 1647 // Add type for inalloca argument. 1648 if (IRFunctionArgs.hasInallocaArg()) { 1649 auto ArgStruct = FI.getArgStruct(); 1650 assert(ArgStruct); 1651 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1652 } 1653 1654 // Add in all of the required arguments. 1655 unsigned ArgNo = 0; 1656 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1657 ie = it + FI.getNumRequiredArgs(); 1658 for (; it != ie; ++it, ++ArgNo) { 1659 const ABIArgInfo &ArgInfo = it->info; 1660 1661 // Insert a padding type to ensure proper alignment. 1662 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1663 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1664 ArgInfo.getPaddingType(); 1665 1666 unsigned FirstIRArg, NumIRArgs; 1667 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1668 1669 switch (ArgInfo.getKind()) { 1670 case ABIArgInfo::Ignore: 1671 case ABIArgInfo::InAlloca: 1672 assert(NumIRArgs == 0); 1673 break; 1674 1675 case ABIArgInfo::Indirect: { 1676 assert(NumIRArgs == 1); 1677 // indirect arguments are always on the stack, which is alloca addr space. 1678 llvm::Type *LTy = ConvertTypeForMem(it->type); 1679 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1680 CGM.getDataLayout().getAllocaAddrSpace()); 1681 break; 1682 } 1683 case ABIArgInfo::IndirectAliased: { 1684 assert(NumIRArgs == 1); 1685 llvm::Type *LTy = ConvertTypeForMem(it->type); 1686 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1687 break; 1688 } 1689 case ABIArgInfo::Extend: 1690 case ABIArgInfo::Direct: { 1691 // Fast-isel and the optimizer generally like scalar values better than 1692 // FCAs, so we flatten them if this is safe to do for this argument. 1693 llvm::Type *argType = ArgInfo.getCoerceToType(); 1694 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1695 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1696 assert(NumIRArgs == st->getNumElements()); 1697 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1698 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1699 } else { 1700 assert(NumIRArgs == 1); 1701 ArgTypes[FirstIRArg] = argType; 1702 } 1703 break; 1704 } 1705 1706 case ABIArgInfo::CoerceAndExpand: { 1707 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1708 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1709 *ArgTypesIter++ = EltTy; 1710 } 1711 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1712 break; 1713 } 1714 1715 case ABIArgInfo::Expand: 1716 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1717 getExpandedTypes(it->type, ArgTypesIter); 1718 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1719 break; 1720 } 1721 } 1722 1723 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1724 assert(Erased && "Not in set?"); 1725 1726 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1727 } 1728 1729 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1730 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1731 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1732 1733 if (!isFuncTypeConvertible(FPT)) 1734 return llvm::StructType::get(getLLVMContext()); 1735 1736 return GetFunctionType(GD); 1737 } 1738 1739 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1740 llvm::AttrBuilder &FuncAttrs, 1741 const FunctionProtoType *FPT) { 1742 if (!FPT) 1743 return; 1744 1745 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1746 FPT->isNothrow()) 1747 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1748 } 1749 1750 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1751 QualType ReturnType) { 1752 // We can't just discard the return value for a record type with a 1753 // complex destructor or a non-trivially copyable type. 1754 if (const RecordType *RT = 1755 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1756 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1757 return ClassDecl->hasTrivialDestructor(); 1758 } 1759 return ReturnType.isTriviallyCopyableType(Context); 1760 } 1761 1762 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1763 bool HasOptnone, 1764 bool AttrOnCallSite, 1765 llvm::AttrBuilder &FuncAttrs) { 1766 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1767 if (!HasOptnone) { 1768 if (CodeGenOpts.OptimizeSize) 1769 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1770 if (CodeGenOpts.OptimizeSize == 2) 1771 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1772 } 1773 1774 if (CodeGenOpts.DisableRedZone) 1775 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1776 if (CodeGenOpts.IndirectTlsSegRefs) 1777 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1778 if (CodeGenOpts.NoImplicitFloat) 1779 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1780 1781 if (AttrOnCallSite) { 1782 // Attributes that should go on the call site only. 1783 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1784 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1785 if (!CodeGenOpts.TrapFuncName.empty()) 1786 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1787 } else { 1788 StringRef FpKind; 1789 switch (CodeGenOpts.getFramePointer()) { 1790 case CodeGenOptions::FramePointerKind::None: 1791 FpKind = "none"; 1792 break; 1793 case CodeGenOptions::FramePointerKind::NonLeaf: 1794 FpKind = "non-leaf"; 1795 break; 1796 case CodeGenOptions::FramePointerKind::All: 1797 FpKind = "all"; 1798 break; 1799 } 1800 FuncAttrs.addAttribute("frame-pointer", FpKind); 1801 1802 if (CodeGenOpts.LessPreciseFPMAD) 1803 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1804 1805 if (CodeGenOpts.NullPointerIsValid) 1806 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1807 1808 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1809 FuncAttrs.addAttribute("denormal-fp-math", 1810 CodeGenOpts.FPDenormalMode.str()); 1811 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1812 FuncAttrs.addAttribute( 1813 "denormal-fp-math-f32", 1814 CodeGenOpts.FP32DenormalMode.str()); 1815 } 1816 1817 if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore) 1818 FuncAttrs.addAttribute("no-trapping-math", "true"); 1819 1820 // Strict (compliant) code is the default, so only add this attribute to 1821 // indicate that we are trying to workaround a problem case. 1822 if (!CodeGenOpts.StrictFloatCastOverflow) 1823 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1824 1825 // TODO: Are these all needed? 1826 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1827 if (LangOpts.NoHonorInfs) 1828 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1829 if (LangOpts.NoHonorNaNs) 1830 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1831 if (LangOpts.UnsafeFPMath) 1832 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1833 if (CodeGenOpts.SoftFloat) 1834 FuncAttrs.addAttribute("use-soft-float", "true"); 1835 FuncAttrs.addAttribute("stack-protector-buffer-size", 1836 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1837 if (LangOpts.NoSignedZero) 1838 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1839 1840 // TODO: Reciprocal estimate codegen options should apply to instructions? 1841 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1842 if (!Recips.empty()) 1843 FuncAttrs.addAttribute("reciprocal-estimates", 1844 llvm::join(Recips, ",")); 1845 1846 if (!CodeGenOpts.PreferVectorWidth.empty() && 1847 CodeGenOpts.PreferVectorWidth != "none") 1848 FuncAttrs.addAttribute("prefer-vector-width", 1849 CodeGenOpts.PreferVectorWidth); 1850 1851 if (CodeGenOpts.StackRealignment) 1852 FuncAttrs.addAttribute("stackrealign"); 1853 if (CodeGenOpts.Backchain) 1854 FuncAttrs.addAttribute("backchain"); 1855 if (CodeGenOpts.EnableSegmentedStacks) 1856 FuncAttrs.addAttribute("split-stack"); 1857 1858 if (CodeGenOpts.SpeculativeLoadHardening) 1859 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1860 } 1861 1862 if (getLangOpts().assumeFunctionsAreConvergent()) { 1863 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1864 // convergent (meaning, they may call an intrinsically convergent op, such 1865 // as __syncthreads() / barrier(), and so can't have certain optimizations 1866 // applied around them). LLVM will remove this attribute where it safely 1867 // can. 1868 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1869 } 1870 1871 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1872 // Exceptions aren't supported in CUDA device code. 1873 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1874 } 1875 1876 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1877 StringRef Var, Value; 1878 std::tie(Var, Value) = Attr.split('='); 1879 FuncAttrs.addAttribute(Var, Value); 1880 } 1881 } 1882 1883 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1884 llvm::AttrBuilder FuncAttrs; 1885 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1886 /* AttrOnCallSite = */ false, FuncAttrs); 1887 // TODO: call GetCPUAndFeaturesAttributes? 1888 F.addFnAttrs(FuncAttrs); 1889 } 1890 1891 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1892 llvm::AttrBuilder &attrs) { 1893 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1894 /*for call*/ false, attrs); 1895 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1896 } 1897 1898 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1899 const LangOptions &LangOpts, 1900 const NoBuiltinAttr *NBA = nullptr) { 1901 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1902 SmallString<32> AttributeName; 1903 AttributeName += "no-builtin-"; 1904 AttributeName += BuiltinName; 1905 FuncAttrs.addAttribute(AttributeName); 1906 }; 1907 1908 // First, handle the language options passed through -fno-builtin. 1909 if (LangOpts.NoBuiltin) { 1910 // -fno-builtin disables them all. 1911 FuncAttrs.addAttribute("no-builtins"); 1912 return; 1913 } 1914 1915 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1916 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1917 1918 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1919 // the source. 1920 if (!NBA) 1921 return; 1922 1923 // If there is a wildcard in the builtin names specified through the 1924 // attribute, disable them all. 1925 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1926 FuncAttrs.addAttribute("no-builtins"); 1927 return; 1928 } 1929 1930 // And last, add the rest of the builtin names. 1931 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1932 } 1933 1934 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 1935 const llvm::DataLayout &DL, const ABIArgInfo &AI, 1936 bool CheckCoerce = true) { 1937 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 1938 if (AI.getKind() == ABIArgInfo::Indirect) 1939 return true; 1940 if (AI.getKind() == ABIArgInfo::Extend) 1941 return true; 1942 if (!DL.typeSizeEqualsStoreSize(Ty)) 1943 // TODO: This will result in a modest amount of values not marked noundef 1944 // when they could be. We care about values that *invisibly* contain undef 1945 // bits from the perspective of LLVM IR. 1946 return false; 1947 if (CheckCoerce && AI.canHaveCoerceToType()) { 1948 llvm::Type *CoerceTy = AI.getCoerceToType(); 1949 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 1950 DL.getTypeSizeInBits(Ty))) 1951 // If we're coercing to a type with a greater size than the canonical one, 1952 // we're introducing new undef bits. 1953 // Coercing to a type of smaller or equal size is ok, as we know that 1954 // there's no internal padding (typeSizeEqualsStoreSize). 1955 return false; 1956 } 1957 if (QTy->isExtIntType()) 1958 return true; 1959 if (QTy->isReferenceType()) 1960 return true; 1961 if (QTy->isNullPtrType()) 1962 return false; 1963 if (QTy->isMemberPointerType()) 1964 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 1965 // now, never mark them. 1966 return false; 1967 if (QTy->isScalarType()) { 1968 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 1969 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 1970 return true; 1971 } 1972 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 1973 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 1974 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 1975 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 1976 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 1977 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 1978 1979 // TODO: Some structs may be `noundef`, in specific situations. 1980 return false; 1981 } 1982 1983 /// Construct the IR attribute list of a function or call. 1984 /// 1985 /// When adding an attribute, please consider where it should be handled: 1986 /// 1987 /// - getDefaultFunctionAttributes is for attributes that are essentially 1988 /// part of the global target configuration (but perhaps can be 1989 /// overridden on a per-function basis). Adding attributes there 1990 /// will cause them to also be set in frontends that build on Clang's 1991 /// target-configuration logic, as well as for code defined in library 1992 /// modules such as CUDA's libdevice. 1993 /// 1994 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 1995 /// and adds declaration-specific, convention-specific, and 1996 /// frontend-specific logic. The last is of particular importance: 1997 /// attributes that restrict how the frontend generates code must be 1998 /// added here rather than getDefaultFunctionAttributes. 1999 /// 2000 void CodeGenModule::ConstructAttributeList(StringRef Name, 2001 const CGFunctionInfo &FI, 2002 CGCalleeInfo CalleeInfo, 2003 llvm::AttributeList &AttrList, 2004 unsigned &CallingConv, 2005 bool AttrOnCallSite, bool IsThunk) { 2006 llvm::AttrBuilder FuncAttrs; 2007 llvm::AttrBuilder RetAttrs; 2008 2009 // Collect function IR attributes from the CC lowering. 2010 // We'll collect the paramete and result attributes later. 2011 CallingConv = FI.getEffectiveCallingConvention(); 2012 if (FI.isNoReturn()) 2013 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2014 if (FI.isCmseNSCall()) 2015 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2016 2017 // Collect function IR attributes from the callee prototype if we have one. 2018 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2019 CalleeInfo.getCalleeFunctionProtoType()); 2020 2021 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2022 2023 bool HasOptnone = false; 2024 // The NoBuiltinAttr attached to the target FunctionDecl. 2025 const NoBuiltinAttr *NBA = nullptr; 2026 2027 // Collect function IR attributes based on declaration-specific 2028 // information. 2029 // FIXME: handle sseregparm someday... 2030 if (TargetDecl) { 2031 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2032 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2033 if (TargetDecl->hasAttr<NoThrowAttr>()) 2034 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2035 if (TargetDecl->hasAttr<NoReturnAttr>()) 2036 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2037 if (TargetDecl->hasAttr<ColdAttr>()) 2038 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2039 if (TargetDecl->hasAttr<HotAttr>()) 2040 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2041 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2042 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2043 if (TargetDecl->hasAttr<ConvergentAttr>()) 2044 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2045 2046 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2047 AddAttributesFromFunctionProtoType( 2048 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2049 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2050 // A sane operator new returns a non-aliasing pointer. 2051 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2052 if (getCodeGenOpts().AssumeSaneOperatorNew && 2053 (Kind == OO_New || Kind == OO_Array_New)) 2054 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2055 } 2056 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2057 const bool IsVirtualCall = MD && MD->isVirtual(); 2058 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2059 // virtual function. These attributes are not inherited by overloads. 2060 if (!(AttrOnCallSite && IsVirtualCall)) { 2061 if (Fn->isNoReturn()) 2062 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2063 NBA = Fn->getAttr<NoBuiltinAttr>(); 2064 } 2065 // Only place nomerge attribute on call sites, never functions. This 2066 // allows it to work on indirect virtual function calls. 2067 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2068 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2069 } 2070 2071 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2072 if (TargetDecl->hasAttr<ConstAttr>()) { 2073 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 2074 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2075 // gcc specifies that 'const' functions have greater restrictions than 2076 // 'pure' functions, so they also cannot have infinite loops. 2077 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2078 } else if (TargetDecl->hasAttr<PureAttr>()) { 2079 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 2080 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2081 // gcc specifies that 'pure' functions cannot have infinite loops. 2082 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2083 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2084 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 2085 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2086 } 2087 if (TargetDecl->hasAttr<RestrictAttr>()) 2088 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2089 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2090 !CodeGenOpts.NullPointerIsValid) 2091 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2092 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2093 FuncAttrs.addAttribute("no_caller_saved_registers"); 2094 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2095 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2096 if (TargetDecl->hasAttr<LeafAttr>()) 2097 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2098 2099 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2100 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2101 Optional<unsigned> NumElemsParam; 2102 if (AllocSize->getNumElemsParam().isValid()) 2103 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2104 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2105 NumElemsParam); 2106 } 2107 2108 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2109 if (getLangOpts().OpenCLVersion <= 120) { 2110 // OpenCL v1.2 Work groups are always uniform 2111 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2112 } else { 2113 // OpenCL v2.0 Work groups may be whether uniform or not. 2114 // '-cl-uniform-work-group-size' compile option gets a hint 2115 // to the compiler that the global work-size be a multiple of 2116 // the work-group size specified to clEnqueueNDRangeKernel 2117 // (i.e. work groups are uniform). 2118 FuncAttrs.addAttribute("uniform-work-group-size", 2119 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2120 } 2121 } 2122 2123 std::string AssumptionValueStr; 2124 for (AssumptionAttr *AssumptionA : 2125 TargetDecl->specific_attrs<AssumptionAttr>()) { 2126 std::string AS = AssumptionA->getAssumption().str(); 2127 if (!AS.empty() && !AssumptionValueStr.empty()) 2128 AssumptionValueStr += ","; 2129 AssumptionValueStr += AS; 2130 } 2131 2132 if (!AssumptionValueStr.empty()) 2133 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, AssumptionValueStr); 2134 } 2135 2136 // Attach "no-builtins" attributes to: 2137 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2138 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2139 // The attributes can come from: 2140 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2141 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2142 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2143 2144 // Collect function IR attributes based on global settiings. 2145 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2146 2147 // Override some default IR attributes based on declaration-specific 2148 // information. 2149 if (TargetDecl) { 2150 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2151 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2152 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2153 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2154 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2155 FuncAttrs.removeAttribute("split-stack"); 2156 2157 // Add NonLazyBind attribute to function declarations when -fno-plt 2158 // is used. 2159 // FIXME: what if we just haven't processed the function definition 2160 // yet, or if it's an external definition like C99 inline? 2161 if (CodeGenOpts.NoPLT) { 2162 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2163 if (!Fn->isDefined() && !AttrOnCallSite) { 2164 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2165 } 2166 } 2167 } 2168 } 2169 2170 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2171 // functions with -funique-internal-linkage-names. 2172 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2173 if (isa<FunctionDecl>(TargetDecl)) { 2174 if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) == 2175 llvm::GlobalValue::InternalLinkage) 2176 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2177 "selected"); 2178 } 2179 } 2180 2181 // Collect non-call-site function IR attributes from declaration-specific 2182 // information. 2183 if (!AttrOnCallSite) { 2184 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2185 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2186 2187 // Whether tail calls are enabled. 2188 auto shouldDisableTailCalls = [&] { 2189 // Should this be honored in getDefaultFunctionAttributes? 2190 if (CodeGenOpts.DisableTailCalls) 2191 return true; 2192 2193 if (!TargetDecl) 2194 return false; 2195 2196 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2197 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2198 return true; 2199 2200 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2201 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2202 if (!BD->doesNotEscape()) 2203 return true; 2204 } 2205 2206 return false; 2207 }; 2208 if (shouldDisableTailCalls()) 2209 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2210 2211 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2212 // handles these separately to set them based on the global defaults. 2213 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2214 } 2215 2216 // Collect attributes from arguments and return values. 2217 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2218 2219 QualType RetTy = FI.getReturnType(); 2220 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2221 const llvm::DataLayout &DL = getDataLayout(); 2222 2223 // C++ explicitly makes returning undefined values UB. C's rule only applies 2224 // to used values, so we never mark them noundef for now. 2225 bool HasStrictReturn = getLangOpts().CPlusPlus; 2226 if (TargetDecl && HasStrictReturn) { 2227 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) 2228 HasStrictReturn &= !FDecl->isExternC(); 2229 else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) 2230 // Function pointer 2231 HasStrictReturn &= !VDecl->isExternC(); 2232 } 2233 2234 // We don't want to be too aggressive with the return checking, unless 2235 // it's explicit in the code opts or we're using an appropriate sanitizer. 2236 // Try to respect what the programmer intended. 2237 HasStrictReturn &= getCodeGenOpts().StrictReturn || 2238 !MayDropFunctionReturn(getContext(), RetTy) || 2239 getLangOpts().Sanitize.has(SanitizerKind::Memory) || 2240 getLangOpts().Sanitize.has(SanitizerKind::Return); 2241 2242 // Determine if the return type could be partially undef 2243 if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) { 2244 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2245 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2246 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2247 } 2248 2249 switch (RetAI.getKind()) { 2250 case ABIArgInfo::Extend: 2251 if (RetAI.isSignExt()) 2252 RetAttrs.addAttribute(llvm::Attribute::SExt); 2253 else 2254 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2255 LLVM_FALLTHROUGH; 2256 case ABIArgInfo::Direct: 2257 if (RetAI.getInReg()) 2258 RetAttrs.addAttribute(llvm::Attribute::InReg); 2259 break; 2260 case ABIArgInfo::Ignore: 2261 break; 2262 2263 case ABIArgInfo::InAlloca: 2264 case ABIArgInfo::Indirect: { 2265 // inalloca and sret disable readnone and readonly 2266 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2267 .removeAttribute(llvm::Attribute::ReadNone); 2268 break; 2269 } 2270 2271 case ABIArgInfo::CoerceAndExpand: 2272 break; 2273 2274 case ABIArgInfo::Expand: 2275 case ABIArgInfo::IndirectAliased: 2276 llvm_unreachable("Invalid ABI kind for return argument"); 2277 } 2278 2279 if (!IsThunk) { 2280 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2281 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2282 QualType PTy = RefTy->getPointeeType(); 2283 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2284 RetAttrs.addDereferenceableAttr( 2285 getMinimumObjectSize(PTy).getQuantity()); 2286 if (getContext().getTargetAddressSpace(PTy) == 0 && 2287 !CodeGenOpts.NullPointerIsValid) 2288 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2289 if (PTy->isObjectType()) { 2290 llvm::Align Alignment = 2291 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2292 RetAttrs.addAlignmentAttr(Alignment); 2293 } 2294 } 2295 } 2296 2297 bool hasUsedSRet = false; 2298 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2299 2300 // Attach attributes to sret. 2301 if (IRFunctionArgs.hasSRetArg()) { 2302 llvm::AttrBuilder SRETAttrs; 2303 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2304 hasUsedSRet = true; 2305 if (RetAI.getInReg()) 2306 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2307 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2308 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2309 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2310 } 2311 2312 // Attach attributes to inalloca argument. 2313 if (IRFunctionArgs.hasInallocaArg()) { 2314 llvm::AttrBuilder Attrs; 2315 Attrs.addInAllocaAttr(FI.getArgStruct()); 2316 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2317 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2318 } 2319 2320 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2321 // unless this is a thunk function. 2322 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2323 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2324 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2325 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2326 2327 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2328 2329 llvm::AttrBuilder Attrs; 2330 2331 QualType ThisTy = 2332 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType(); 2333 2334 if (!CodeGenOpts.NullPointerIsValid && 2335 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2336 Attrs.addAttribute(llvm::Attribute::NonNull); 2337 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2338 } else { 2339 // FIXME dereferenceable should be correct here, regardless of 2340 // NullPointerIsValid. However, dereferenceable currently does not always 2341 // respect NullPointerIsValid and may imply nonnull and break the program. 2342 // See https://reviews.llvm.org/D66618 for discussions. 2343 Attrs.addDereferenceableOrNullAttr( 2344 getMinimumObjectSize( 2345 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2346 .getQuantity()); 2347 } 2348 2349 llvm::Align Alignment = 2350 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2351 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2352 .getAsAlign(); 2353 Attrs.addAlignmentAttr(Alignment); 2354 2355 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2356 } 2357 2358 unsigned ArgNo = 0; 2359 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2360 E = FI.arg_end(); 2361 I != E; ++I, ++ArgNo) { 2362 QualType ParamType = I->type; 2363 const ABIArgInfo &AI = I->info; 2364 llvm::AttrBuilder Attrs; 2365 2366 // Add attribute for padding argument, if necessary. 2367 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2368 if (AI.getPaddingInReg()) { 2369 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2370 llvm::AttributeSet::get( 2371 getLLVMContext(), 2372 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2373 } 2374 } 2375 2376 // Decide whether the argument we're handling could be partially undef 2377 bool ArgNoUndef = DetermineNoUndef(ParamType, getTypes(), DL, AI); 2378 if (CodeGenOpts.EnableNoundefAttrs && ArgNoUndef) 2379 Attrs.addAttribute(llvm::Attribute::NoUndef); 2380 2381 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2382 // have the corresponding parameter variable. It doesn't make 2383 // sense to do it here because parameters are so messed up. 2384 switch (AI.getKind()) { 2385 case ABIArgInfo::Extend: 2386 if (AI.isSignExt()) 2387 Attrs.addAttribute(llvm::Attribute::SExt); 2388 else 2389 Attrs.addAttribute(llvm::Attribute::ZExt); 2390 LLVM_FALLTHROUGH; 2391 case ABIArgInfo::Direct: 2392 if (ArgNo == 0 && FI.isChainCall()) 2393 Attrs.addAttribute(llvm::Attribute::Nest); 2394 else if (AI.getInReg()) 2395 Attrs.addAttribute(llvm::Attribute::InReg); 2396 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2397 break; 2398 2399 case ABIArgInfo::Indirect: { 2400 if (AI.getInReg()) 2401 Attrs.addAttribute(llvm::Attribute::InReg); 2402 2403 if (AI.getIndirectByVal()) 2404 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2405 2406 auto *Decl = ParamType->getAsRecordDecl(); 2407 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2408 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2409 // When calling the function, the pointer passed in will be the only 2410 // reference to the underlying object. Mark it accordingly. 2411 Attrs.addAttribute(llvm::Attribute::NoAlias); 2412 2413 // TODO: We could add the byref attribute if not byval, but it would 2414 // require updating many testcases. 2415 2416 CharUnits Align = AI.getIndirectAlign(); 2417 2418 // In a byval argument, it is important that the required 2419 // alignment of the type is honored, as LLVM might be creating a 2420 // *new* stack object, and needs to know what alignment to give 2421 // it. (Sometimes it can deduce a sensible alignment on its own, 2422 // but not if clang decides it must emit a packed struct, or the 2423 // user specifies increased alignment requirements.) 2424 // 2425 // This is different from indirect *not* byval, where the object 2426 // exists already, and the align attribute is purely 2427 // informative. 2428 assert(!Align.isZero()); 2429 2430 // For now, only add this when we have a byval argument. 2431 // TODO: be less lazy about updating test cases. 2432 if (AI.getIndirectByVal()) 2433 Attrs.addAlignmentAttr(Align.getQuantity()); 2434 2435 // byval disables readnone and readonly. 2436 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2437 .removeAttribute(llvm::Attribute::ReadNone); 2438 2439 break; 2440 } 2441 case ABIArgInfo::IndirectAliased: { 2442 CharUnits Align = AI.getIndirectAlign(); 2443 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2444 Attrs.addAlignmentAttr(Align.getQuantity()); 2445 break; 2446 } 2447 case ABIArgInfo::Ignore: 2448 case ABIArgInfo::Expand: 2449 case ABIArgInfo::CoerceAndExpand: 2450 break; 2451 2452 case ABIArgInfo::InAlloca: 2453 // inalloca disables readnone and readonly. 2454 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2455 .removeAttribute(llvm::Attribute::ReadNone); 2456 continue; 2457 } 2458 2459 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2460 QualType PTy = RefTy->getPointeeType(); 2461 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2462 Attrs.addDereferenceableAttr( 2463 getMinimumObjectSize(PTy).getQuantity()); 2464 if (getContext().getTargetAddressSpace(PTy) == 0 && 2465 !CodeGenOpts.NullPointerIsValid) 2466 Attrs.addAttribute(llvm::Attribute::NonNull); 2467 if (PTy->isObjectType()) { 2468 llvm::Align Alignment = 2469 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2470 Attrs.addAlignmentAttr(Alignment); 2471 } 2472 } 2473 2474 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2475 case ParameterABI::Ordinary: 2476 break; 2477 2478 case ParameterABI::SwiftIndirectResult: { 2479 // Add 'sret' if we haven't already used it for something, but 2480 // only if the result is void. 2481 if (!hasUsedSRet && RetTy->isVoidType()) { 2482 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2483 hasUsedSRet = true; 2484 } 2485 2486 // Add 'noalias' in either case. 2487 Attrs.addAttribute(llvm::Attribute::NoAlias); 2488 2489 // Add 'dereferenceable' and 'alignment'. 2490 auto PTy = ParamType->getPointeeType(); 2491 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2492 auto info = getContext().getTypeInfoInChars(PTy); 2493 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2494 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2495 } 2496 break; 2497 } 2498 2499 case ParameterABI::SwiftErrorResult: 2500 Attrs.addAttribute(llvm::Attribute::SwiftError); 2501 break; 2502 2503 case ParameterABI::SwiftContext: 2504 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2505 break; 2506 2507 case ParameterABI::SwiftAsyncContext: 2508 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2509 break; 2510 } 2511 2512 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2513 Attrs.addAttribute(llvm::Attribute::NoCapture); 2514 2515 if (Attrs.hasAttributes()) { 2516 unsigned FirstIRArg, NumIRArgs; 2517 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2518 for (unsigned i = 0; i < NumIRArgs; i++) 2519 ArgAttrs[FirstIRArg + i] = 2520 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2521 } 2522 } 2523 assert(ArgNo == FI.arg_size()); 2524 2525 AttrList = llvm::AttributeList::get( 2526 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2527 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2528 } 2529 2530 /// An argument came in as a promoted argument; demote it back to its 2531 /// declared type. 2532 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2533 const VarDecl *var, 2534 llvm::Value *value) { 2535 llvm::Type *varType = CGF.ConvertType(var->getType()); 2536 2537 // This can happen with promotions that actually don't change the 2538 // underlying type, like the enum promotions. 2539 if (value->getType() == varType) return value; 2540 2541 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2542 && "unexpected promotion type"); 2543 2544 if (isa<llvm::IntegerType>(varType)) 2545 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2546 2547 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2548 } 2549 2550 /// Returns the attribute (either parameter attribute, or function 2551 /// attribute), which declares argument ArgNo to be non-null. 2552 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2553 QualType ArgType, unsigned ArgNo) { 2554 // FIXME: __attribute__((nonnull)) can also be applied to: 2555 // - references to pointers, where the pointee is known to be 2556 // nonnull (apparently a Clang extension) 2557 // - transparent unions containing pointers 2558 // In the former case, LLVM IR cannot represent the constraint. In 2559 // the latter case, we have no guarantee that the transparent union 2560 // is in fact passed as a pointer. 2561 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2562 return nullptr; 2563 // First, check attribute on parameter itself. 2564 if (PVD) { 2565 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2566 return ParmNNAttr; 2567 } 2568 // Check function attributes. 2569 if (!FD) 2570 return nullptr; 2571 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2572 if (NNAttr->isNonNull(ArgNo)) 2573 return NNAttr; 2574 } 2575 return nullptr; 2576 } 2577 2578 namespace { 2579 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2580 Address Temp; 2581 Address Arg; 2582 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2583 void Emit(CodeGenFunction &CGF, Flags flags) override { 2584 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2585 CGF.Builder.CreateStore(errorValue, Arg); 2586 } 2587 }; 2588 } 2589 2590 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2591 llvm::Function *Fn, 2592 const FunctionArgList &Args) { 2593 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2594 // Naked functions don't have prologues. 2595 return; 2596 2597 // If this is an implicit-return-zero function, go ahead and 2598 // initialize the return value. TODO: it might be nice to have 2599 // a more general mechanism for this that didn't require synthesized 2600 // return statements. 2601 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2602 if (FD->hasImplicitReturnZero()) { 2603 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2604 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2605 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2606 Builder.CreateStore(Zero, ReturnValue); 2607 } 2608 } 2609 2610 // FIXME: We no longer need the types from FunctionArgList; lift up and 2611 // simplify. 2612 2613 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2614 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2615 2616 // If we're using inalloca, all the memory arguments are GEPs off of the last 2617 // parameter, which is a pointer to the complete memory area. 2618 Address ArgStruct = Address::invalid(); 2619 if (IRFunctionArgs.hasInallocaArg()) { 2620 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2621 FI.getArgStructAlignment()); 2622 2623 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2624 } 2625 2626 // Name the struct return parameter. 2627 if (IRFunctionArgs.hasSRetArg()) { 2628 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2629 AI->setName("agg.result"); 2630 AI->addAttr(llvm::Attribute::NoAlias); 2631 } 2632 2633 // Track if we received the parameter as a pointer (indirect, byval, or 2634 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2635 // into a local alloca for us. 2636 SmallVector<ParamValue, 16> ArgVals; 2637 ArgVals.reserve(Args.size()); 2638 2639 // Create a pointer value for every parameter declaration. This usually 2640 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2641 // any cleanups or do anything that might unwind. We do that separately, so 2642 // we can push the cleanups in the correct order for the ABI. 2643 assert(FI.arg_size() == Args.size() && 2644 "Mismatch between function signature & arguments."); 2645 unsigned ArgNo = 0; 2646 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2647 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2648 i != e; ++i, ++info_it, ++ArgNo) { 2649 const VarDecl *Arg = *i; 2650 const ABIArgInfo &ArgI = info_it->info; 2651 2652 bool isPromoted = 2653 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2654 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2655 // the parameter is promoted. In this case we convert to 2656 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2657 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2658 assert(hasScalarEvaluationKind(Ty) == 2659 hasScalarEvaluationKind(Arg->getType())); 2660 2661 unsigned FirstIRArg, NumIRArgs; 2662 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2663 2664 switch (ArgI.getKind()) { 2665 case ABIArgInfo::InAlloca: { 2666 assert(NumIRArgs == 0); 2667 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2668 Address V = 2669 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2670 if (ArgI.getInAllocaIndirect()) 2671 V = Address(Builder.CreateLoad(V), 2672 getContext().getTypeAlignInChars(Ty)); 2673 ArgVals.push_back(ParamValue::forIndirect(V)); 2674 break; 2675 } 2676 2677 case ABIArgInfo::Indirect: 2678 case ABIArgInfo::IndirectAliased: { 2679 assert(NumIRArgs == 1); 2680 Address ParamAddr = 2681 Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign()); 2682 2683 if (!hasScalarEvaluationKind(Ty)) { 2684 // Aggregates and complex variables are accessed by reference. All we 2685 // need to do is realign the value, if requested. Also, if the address 2686 // may be aliased, copy it to ensure that the parameter variable is 2687 // mutable and has a unique adress, as C requires. 2688 Address V = ParamAddr; 2689 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2690 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2691 2692 // Copy from the incoming argument pointer to the temporary with the 2693 // appropriate alignment. 2694 // 2695 // FIXME: We should have a common utility for generating an aggregate 2696 // copy. 2697 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2698 Builder.CreateMemCpy( 2699 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2700 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2701 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2702 V = AlignedTemp; 2703 } 2704 ArgVals.push_back(ParamValue::forIndirect(V)); 2705 } else { 2706 // Load scalar value from indirect argument. 2707 llvm::Value *V = 2708 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2709 2710 if (isPromoted) 2711 V = emitArgumentDemotion(*this, Arg, V); 2712 ArgVals.push_back(ParamValue::forDirect(V)); 2713 } 2714 break; 2715 } 2716 2717 case ABIArgInfo::Extend: 2718 case ABIArgInfo::Direct: { 2719 auto AI = Fn->getArg(FirstIRArg); 2720 llvm::Type *LTy = ConvertType(Arg->getType()); 2721 2722 // Prepare parameter attributes. So far, only attributes for pointer 2723 // parameters are prepared. See 2724 // http://llvm.org/docs/LangRef.html#paramattrs. 2725 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2726 ArgI.getCoerceToType()->isPointerTy()) { 2727 assert(NumIRArgs == 1); 2728 2729 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2730 // Set `nonnull` attribute if any. 2731 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2732 PVD->getFunctionScopeIndex()) && 2733 !CGM.getCodeGenOpts().NullPointerIsValid) 2734 AI->addAttr(llvm::Attribute::NonNull); 2735 2736 QualType OTy = PVD->getOriginalType(); 2737 if (const auto *ArrTy = 2738 getContext().getAsConstantArrayType(OTy)) { 2739 // A C99 array parameter declaration with the static keyword also 2740 // indicates dereferenceability, and if the size is constant we can 2741 // use the dereferenceable attribute (which requires the size in 2742 // bytes). 2743 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2744 QualType ETy = ArrTy->getElementType(); 2745 llvm::Align Alignment = 2746 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2747 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2748 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2749 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2750 ArrSize) { 2751 llvm::AttrBuilder Attrs; 2752 Attrs.addDereferenceableAttr( 2753 getContext().getTypeSizeInChars(ETy).getQuantity() * 2754 ArrSize); 2755 AI->addAttrs(Attrs); 2756 } else if (getContext().getTargetInfo().getNullPointerValue( 2757 ETy.getAddressSpace()) == 0 && 2758 !CGM.getCodeGenOpts().NullPointerIsValid) { 2759 AI->addAttr(llvm::Attribute::NonNull); 2760 } 2761 } 2762 } else if (const auto *ArrTy = 2763 getContext().getAsVariableArrayType(OTy)) { 2764 // For C99 VLAs with the static keyword, we don't know the size so 2765 // we can't use the dereferenceable attribute, but in addrspace(0) 2766 // we know that it must be nonnull. 2767 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2768 QualType ETy = ArrTy->getElementType(); 2769 llvm::Align Alignment = 2770 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2771 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2772 if (!getContext().getTargetAddressSpace(ETy) && 2773 !CGM.getCodeGenOpts().NullPointerIsValid) 2774 AI->addAttr(llvm::Attribute::NonNull); 2775 } 2776 } 2777 2778 // Set `align` attribute if any. 2779 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2780 if (!AVAttr) 2781 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2782 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2783 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2784 // If alignment-assumption sanitizer is enabled, we do *not* add 2785 // alignment attribute here, but emit normal alignment assumption, 2786 // so the UBSAN check could function. 2787 llvm::ConstantInt *AlignmentCI = 2788 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2789 unsigned AlignmentInt = 2790 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2791 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2792 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2793 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr( 2794 llvm::Align(AlignmentInt))); 2795 } 2796 } 2797 } 2798 2799 // Set 'noalias' if an argument type has the `restrict` qualifier. 2800 if (Arg->getType().isRestrictQualified()) 2801 AI->addAttr(llvm::Attribute::NoAlias); 2802 } 2803 2804 // Prepare the argument value. If we have the trivial case, handle it 2805 // with no muss and fuss. 2806 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2807 ArgI.getCoerceToType() == ConvertType(Ty) && 2808 ArgI.getDirectOffset() == 0) { 2809 assert(NumIRArgs == 1); 2810 2811 // LLVM expects swifterror parameters to be used in very restricted 2812 // ways. Copy the value into a less-restricted temporary. 2813 llvm::Value *V = AI; 2814 if (FI.getExtParameterInfo(ArgNo).getABI() 2815 == ParameterABI::SwiftErrorResult) { 2816 QualType pointeeTy = Ty->getPointeeType(); 2817 assert(pointeeTy->isPointerType()); 2818 Address temp = 2819 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2820 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2821 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2822 Builder.CreateStore(incomingErrorValue, temp); 2823 V = temp.getPointer(); 2824 2825 // Push a cleanup to copy the value back at the end of the function. 2826 // The convention does not guarantee that the value will be written 2827 // back if the function exits with an unwind exception. 2828 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2829 } 2830 2831 // Ensure the argument is the correct type. 2832 if (V->getType() != ArgI.getCoerceToType()) 2833 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2834 2835 if (isPromoted) 2836 V = emitArgumentDemotion(*this, Arg, V); 2837 2838 // Because of merging of function types from multiple decls it is 2839 // possible for the type of an argument to not match the corresponding 2840 // type in the function type. Since we are codegening the callee 2841 // in here, add a cast to the argument type. 2842 llvm::Type *LTy = ConvertType(Arg->getType()); 2843 if (V->getType() != LTy) 2844 V = Builder.CreateBitCast(V, LTy); 2845 2846 ArgVals.push_back(ParamValue::forDirect(V)); 2847 break; 2848 } 2849 2850 // VLST arguments are coerced to VLATs at the function boundary for 2851 // ABI consistency. If this is a VLST that was coerced to 2852 // a VLAT at the function boundary and the types match up, use 2853 // llvm.experimental.vector.extract to convert back to the original 2854 // VLST. 2855 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 2856 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 2857 if (auto *VecTyFrom = 2858 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 2859 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2860 // vector, bitcast the source and use a vector extract. 2861 auto PredType = 2862 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2863 if (VecTyFrom == PredType && 2864 VecTyTo->getElementType() == Builder.getInt8Ty()) { 2865 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2866 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 2867 } 2868 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 2869 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 2870 2871 assert(NumIRArgs == 1); 2872 Coerced->setName(Arg->getName() + ".coerce"); 2873 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 2874 VecTyTo, Coerced, Zero, "castFixedSve"))); 2875 break; 2876 } 2877 } 2878 } 2879 2880 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2881 Arg->getName()); 2882 2883 // Pointer to store into. 2884 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2885 2886 // Fast-isel and the optimizer generally like scalar values better than 2887 // FCAs, so we flatten them if this is safe to do for this argument. 2888 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2889 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2890 STy->getNumElements() > 1) { 2891 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2892 llvm::Type *DstTy = Ptr.getElementType(); 2893 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2894 2895 Address AddrToStoreInto = Address::invalid(); 2896 if (SrcSize <= DstSize) { 2897 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2898 } else { 2899 AddrToStoreInto = 2900 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2901 } 2902 2903 assert(STy->getNumElements() == NumIRArgs); 2904 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2905 auto AI = Fn->getArg(FirstIRArg + i); 2906 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2907 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2908 Builder.CreateStore(AI, EltPtr); 2909 } 2910 2911 if (SrcSize > DstSize) { 2912 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2913 } 2914 2915 } else { 2916 // Simple case, just do a coerced store of the argument into the alloca. 2917 assert(NumIRArgs == 1); 2918 auto AI = Fn->getArg(FirstIRArg); 2919 AI->setName(Arg->getName() + ".coerce"); 2920 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2921 } 2922 2923 // Match to what EmitParmDecl is expecting for this type. 2924 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2925 llvm::Value *V = 2926 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2927 if (isPromoted) 2928 V = emitArgumentDemotion(*this, Arg, V); 2929 ArgVals.push_back(ParamValue::forDirect(V)); 2930 } else { 2931 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2932 } 2933 break; 2934 } 2935 2936 case ABIArgInfo::CoerceAndExpand: { 2937 // Reconstruct into a temporary. 2938 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2939 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2940 2941 auto coercionType = ArgI.getCoerceAndExpandType(); 2942 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2943 2944 unsigned argIndex = FirstIRArg; 2945 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2946 llvm::Type *eltType = coercionType->getElementType(i); 2947 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2948 continue; 2949 2950 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2951 auto elt = Fn->getArg(argIndex++); 2952 Builder.CreateStore(elt, eltAddr); 2953 } 2954 assert(argIndex == FirstIRArg + NumIRArgs); 2955 break; 2956 } 2957 2958 case ABIArgInfo::Expand: { 2959 // If this structure was expanded into multiple arguments then 2960 // we need to create a temporary and reconstruct it from the 2961 // arguments. 2962 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2963 LValue LV = MakeAddrLValue(Alloca, Ty); 2964 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2965 2966 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2967 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2968 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2969 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2970 auto AI = Fn->getArg(FirstIRArg + i); 2971 AI->setName(Arg->getName() + "." + Twine(i)); 2972 } 2973 break; 2974 } 2975 2976 case ABIArgInfo::Ignore: 2977 assert(NumIRArgs == 0); 2978 // Initialize the local variable appropriately. 2979 if (!hasScalarEvaluationKind(Ty)) { 2980 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2981 } else { 2982 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2983 ArgVals.push_back(ParamValue::forDirect(U)); 2984 } 2985 break; 2986 } 2987 } 2988 2989 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2990 for (int I = Args.size() - 1; I >= 0; --I) 2991 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2992 } else { 2993 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2994 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2995 } 2996 } 2997 2998 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2999 while (insn->use_empty()) { 3000 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3001 if (!bitcast) return; 3002 3003 // This is "safe" because we would have used a ConstantExpr otherwise. 3004 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3005 bitcast->eraseFromParent(); 3006 } 3007 } 3008 3009 /// Try to emit a fused autorelease of a return result. 3010 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3011 llvm::Value *result) { 3012 // We must be immediately followed the cast. 3013 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3014 if (BB->empty()) return nullptr; 3015 if (&BB->back() != result) return nullptr; 3016 3017 llvm::Type *resultType = result->getType(); 3018 3019 // result is in a BasicBlock and is therefore an Instruction. 3020 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3021 3022 SmallVector<llvm::Instruction *, 4> InstsToKill; 3023 3024 // Look for: 3025 // %generator = bitcast %type1* %generator2 to %type2* 3026 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3027 // We would have emitted this as a constant if the operand weren't 3028 // an Instruction. 3029 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3030 3031 // Require the generator to be immediately followed by the cast. 3032 if (generator->getNextNode() != bitcast) 3033 return nullptr; 3034 3035 InstsToKill.push_back(bitcast); 3036 } 3037 3038 // Look for: 3039 // %generator = call i8* @objc_retain(i8* %originalResult) 3040 // or 3041 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3042 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3043 if (!call) return nullptr; 3044 3045 bool doRetainAutorelease; 3046 3047 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3048 doRetainAutorelease = true; 3049 } else if (call->getCalledOperand() == 3050 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3051 doRetainAutorelease = false; 3052 3053 // If we emitted an assembly marker for this call (and the 3054 // ARCEntrypoints field should have been set if so), go looking 3055 // for that call. If we can't find it, we can't do this 3056 // optimization. But it should always be the immediately previous 3057 // instruction, unless we needed bitcasts around the call. 3058 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3059 llvm::Instruction *prev = call->getPrevNode(); 3060 assert(prev); 3061 if (isa<llvm::BitCastInst>(prev)) { 3062 prev = prev->getPrevNode(); 3063 assert(prev); 3064 } 3065 assert(isa<llvm::CallInst>(prev)); 3066 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3067 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3068 InstsToKill.push_back(prev); 3069 } 3070 } else { 3071 return nullptr; 3072 } 3073 3074 result = call->getArgOperand(0); 3075 InstsToKill.push_back(call); 3076 3077 // Keep killing bitcasts, for sanity. Note that we no longer care 3078 // about precise ordering as long as there's exactly one use. 3079 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3080 if (!bitcast->hasOneUse()) break; 3081 InstsToKill.push_back(bitcast); 3082 result = bitcast->getOperand(0); 3083 } 3084 3085 // Delete all the unnecessary instructions, from latest to earliest. 3086 for (auto *I : InstsToKill) 3087 I->eraseFromParent(); 3088 3089 // Do the fused retain/autorelease if we were asked to. 3090 if (doRetainAutorelease) 3091 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3092 3093 // Cast back to the result type. 3094 return CGF.Builder.CreateBitCast(result, resultType); 3095 } 3096 3097 /// If this is a +1 of the value of an immutable 'self', remove it. 3098 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3099 llvm::Value *result) { 3100 // This is only applicable to a method with an immutable 'self'. 3101 const ObjCMethodDecl *method = 3102 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3103 if (!method) return nullptr; 3104 const VarDecl *self = method->getSelfDecl(); 3105 if (!self->getType().isConstQualified()) return nullptr; 3106 3107 // Look for a retain call. 3108 llvm::CallInst *retainCall = 3109 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 3110 if (!retainCall || retainCall->getCalledOperand() != 3111 CGF.CGM.getObjCEntrypoints().objc_retain) 3112 return nullptr; 3113 3114 // Look for an ordinary load of 'self'. 3115 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3116 llvm::LoadInst *load = 3117 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3118 if (!load || load->isAtomic() || load->isVolatile() || 3119 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 3120 return nullptr; 3121 3122 // Okay! Burn it all down. This relies for correctness on the 3123 // assumption that the retain is emitted as part of the return and 3124 // that thereafter everything is used "linearly". 3125 llvm::Type *resultType = result->getType(); 3126 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3127 assert(retainCall->use_empty()); 3128 retainCall->eraseFromParent(); 3129 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3130 3131 return CGF.Builder.CreateBitCast(load, resultType); 3132 } 3133 3134 /// Emit an ARC autorelease of the result of a function. 3135 /// 3136 /// \return the value to actually return from the function 3137 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3138 llvm::Value *result) { 3139 // If we're returning 'self', kill the initial retain. This is a 3140 // heuristic attempt to "encourage correctness" in the really unfortunate 3141 // case where we have a return of self during a dealloc and we desperately 3142 // need to avoid the possible autorelease. 3143 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3144 return self; 3145 3146 // At -O0, try to emit a fused retain/autorelease. 3147 if (CGF.shouldUseFusedARCCalls()) 3148 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3149 return fused; 3150 3151 return CGF.EmitARCAutoreleaseReturnValue(result); 3152 } 3153 3154 /// Heuristically search for a dominating store to the return-value slot. 3155 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3156 // Check if a User is a store which pointerOperand is the ReturnValue. 3157 // We are looking for stores to the ReturnValue, not for stores of the 3158 // ReturnValue to some other location. 3159 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 3160 auto *SI = dyn_cast<llvm::StoreInst>(U); 3161 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 3162 return nullptr; 3163 // These aren't actually possible for non-coerced returns, and we 3164 // only care about non-coerced returns on this code path. 3165 assert(!SI->isAtomic() && !SI->isVolatile()); 3166 return SI; 3167 }; 3168 // If there are multiple uses of the return-value slot, just check 3169 // for something immediately preceding the IP. Sometimes this can 3170 // happen with how we generate implicit-returns; it can also happen 3171 // with noreturn cleanups. 3172 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3173 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3174 if (IP->empty()) return nullptr; 3175 llvm::Instruction *I = &IP->back(); 3176 3177 // Skip lifetime markers 3178 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 3179 IE = IP->rend(); 3180 II != IE; ++II) { 3181 if (llvm::IntrinsicInst *Intrinsic = 3182 dyn_cast<llvm::IntrinsicInst>(&*II)) { 3183 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 3184 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 3185 ++II; 3186 if (II == IE) 3187 break; 3188 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 3189 continue; 3190 } 3191 } 3192 I = &*II; 3193 break; 3194 } 3195 3196 return GetStoreIfValid(I); 3197 } 3198 3199 llvm::StoreInst *store = 3200 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3201 if (!store) return nullptr; 3202 3203 // Now do a first-and-dirty dominance check: just walk up the 3204 // single-predecessors chain from the current insertion point. 3205 llvm::BasicBlock *StoreBB = store->getParent(); 3206 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3207 while (IP != StoreBB) { 3208 if (!(IP = IP->getSinglePredecessor())) 3209 return nullptr; 3210 } 3211 3212 // Okay, the store's basic block dominates the insertion point; we 3213 // can do our thing. 3214 return store; 3215 } 3216 3217 // Helper functions for EmitCMSEClearRecord 3218 3219 // Set the bits corresponding to a field having width `BitWidth` and located at 3220 // offset `BitOffset` (from the least significant bit) within a storage unit of 3221 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3222 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3223 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3224 int BitWidth, int CharWidth) { 3225 assert(CharWidth <= 64); 3226 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3227 3228 int Pos = 0; 3229 if (BitOffset >= CharWidth) { 3230 Pos += BitOffset / CharWidth; 3231 BitOffset = BitOffset % CharWidth; 3232 } 3233 3234 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3235 if (BitOffset + BitWidth >= CharWidth) { 3236 Bits[Pos++] |= (Used << BitOffset) & Used; 3237 BitWidth -= CharWidth - BitOffset; 3238 BitOffset = 0; 3239 } 3240 3241 while (BitWidth >= CharWidth) { 3242 Bits[Pos++] = Used; 3243 BitWidth -= CharWidth; 3244 } 3245 3246 if (BitWidth > 0) 3247 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3248 } 3249 3250 // Set the bits corresponding to a field having width `BitWidth` and located at 3251 // offset `BitOffset` (from the least significant bit) within a storage unit of 3252 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3253 // `Bits` corresponds to one target byte. Use target endian layout. 3254 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3255 int StorageSize, int BitOffset, int BitWidth, 3256 int CharWidth, bool BigEndian) { 3257 3258 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3259 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3260 3261 if (BigEndian) 3262 std::reverse(TmpBits.begin(), TmpBits.end()); 3263 3264 for (uint64_t V : TmpBits) 3265 Bits[StorageOffset++] |= V; 3266 } 3267 3268 static void setUsedBits(CodeGenModule &, QualType, int, 3269 SmallVectorImpl<uint64_t> &); 3270 3271 // Set the bits in `Bits`, which correspond to the value representations of 3272 // the actual members of the record type `RTy`. Note that this function does 3273 // not handle base classes, virtual tables, etc, since they cannot happen in 3274 // CMSE function arguments or return. The bit mask corresponds to the target 3275 // memory layout, i.e. it's endian dependent. 3276 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3277 SmallVectorImpl<uint64_t> &Bits) { 3278 ASTContext &Context = CGM.getContext(); 3279 int CharWidth = Context.getCharWidth(); 3280 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3281 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3282 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3283 3284 int Idx = 0; 3285 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3286 const FieldDecl *F = *I; 3287 3288 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3289 F->getType()->isIncompleteArrayType()) 3290 continue; 3291 3292 if (F->isBitField()) { 3293 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3294 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3295 BFI.StorageSize / CharWidth, BFI.Offset, 3296 BFI.Size, CharWidth, 3297 CGM.getDataLayout().isBigEndian()); 3298 continue; 3299 } 3300 3301 setUsedBits(CGM, F->getType(), 3302 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3303 } 3304 } 3305 3306 // Set the bits in `Bits`, which correspond to the value representations of 3307 // the elements of an array type `ATy`. 3308 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3309 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3310 const ASTContext &Context = CGM.getContext(); 3311 3312 QualType ETy = Context.getBaseElementType(ATy); 3313 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3314 SmallVector<uint64_t, 4> TmpBits(Size); 3315 setUsedBits(CGM, ETy, 0, TmpBits); 3316 3317 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3318 auto Src = TmpBits.begin(); 3319 auto Dst = Bits.begin() + Offset + I * Size; 3320 for (int J = 0; J < Size; ++J) 3321 *Dst++ |= *Src++; 3322 } 3323 } 3324 3325 // Set the bits in `Bits`, which correspond to the value representations of 3326 // the type `QTy`. 3327 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3328 SmallVectorImpl<uint64_t> &Bits) { 3329 if (const auto *RTy = QTy->getAs<RecordType>()) 3330 return setUsedBits(CGM, RTy, Offset, Bits); 3331 3332 ASTContext &Context = CGM.getContext(); 3333 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3334 return setUsedBits(CGM, ATy, Offset, Bits); 3335 3336 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3337 if (Size <= 0) 3338 return; 3339 3340 std::fill_n(Bits.begin() + Offset, Size, 3341 (uint64_t(1) << Context.getCharWidth()) - 1); 3342 } 3343 3344 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3345 int Pos, int Size, int CharWidth, 3346 bool BigEndian) { 3347 assert(Size > 0); 3348 uint64_t Mask = 0; 3349 if (BigEndian) { 3350 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3351 ++P) 3352 Mask = (Mask << CharWidth) | *P; 3353 } else { 3354 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3355 do 3356 Mask = (Mask << CharWidth) | *--P; 3357 while (P != End); 3358 } 3359 return Mask; 3360 } 3361 3362 // Emit code to clear the bits in a record, which aren't a part of any user 3363 // declared member, when the record is a function return. 3364 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3365 llvm::IntegerType *ITy, 3366 QualType QTy) { 3367 assert(Src->getType() == ITy); 3368 assert(ITy->getScalarSizeInBits() <= 64); 3369 3370 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3371 int Size = DataLayout.getTypeStoreSize(ITy); 3372 SmallVector<uint64_t, 4> Bits(Size); 3373 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3374 3375 int CharWidth = CGM.getContext().getCharWidth(); 3376 uint64_t Mask = 3377 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3378 3379 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3380 } 3381 3382 // Emit code to clear the bits in a record, which aren't a part of any user 3383 // declared member, when the record is a function argument. 3384 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3385 llvm::ArrayType *ATy, 3386 QualType QTy) { 3387 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3388 int Size = DataLayout.getTypeStoreSize(ATy); 3389 SmallVector<uint64_t, 16> Bits(Size); 3390 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3391 3392 // Clear each element of the LLVM array. 3393 int CharWidth = CGM.getContext().getCharWidth(); 3394 int CharsPerElt = 3395 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3396 int MaskIndex = 0; 3397 llvm::Value *R = llvm::UndefValue::get(ATy); 3398 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3399 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3400 DataLayout.isBigEndian()); 3401 MaskIndex += CharsPerElt; 3402 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3403 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3404 R = Builder.CreateInsertValue(R, T1, I); 3405 } 3406 3407 return R; 3408 } 3409 3410 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3411 bool EmitRetDbgLoc, 3412 SourceLocation EndLoc) { 3413 if (FI.isNoReturn()) { 3414 // Noreturn functions don't return. 3415 EmitUnreachable(EndLoc); 3416 return; 3417 } 3418 3419 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3420 // Naked functions don't have epilogues. 3421 Builder.CreateUnreachable(); 3422 return; 3423 } 3424 3425 // Functions with no result always return void. 3426 if (!ReturnValue.isValid()) { 3427 Builder.CreateRetVoid(); 3428 return; 3429 } 3430 3431 llvm::DebugLoc RetDbgLoc; 3432 llvm::Value *RV = nullptr; 3433 QualType RetTy = FI.getReturnType(); 3434 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3435 3436 switch (RetAI.getKind()) { 3437 case ABIArgInfo::InAlloca: 3438 // Aggregrates get evaluated directly into the destination. Sometimes we 3439 // need to return the sret value in a register, though. 3440 assert(hasAggregateEvaluationKind(RetTy)); 3441 if (RetAI.getInAllocaSRet()) { 3442 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3443 --EI; 3444 llvm::Value *ArgStruct = &*EI; 3445 llvm::Value *SRet = Builder.CreateStructGEP( 3446 EI->getType()->getPointerElementType(), ArgStruct, 3447 RetAI.getInAllocaFieldIndex()); 3448 llvm::Type *Ty = 3449 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3450 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3451 } 3452 break; 3453 3454 case ABIArgInfo::Indirect: { 3455 auto AI = CurFn->arg_begin(); 3456 if (RetAI.isSRetAfterThis()) 3457 ++AI; 3458 switch (getEvaluationKind(RetTy)) { 3459 case TEK_Complex: { 3460 ComplexPairTy RT = 3461 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3462 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3463 /*isInit*/ true); 3464 break; 3465 } 3466 case TEK_Aggregate: 3467 // Do nothing; aggregrates get evaluated directly into the destination. 3468 break; 3469 case TEK_Scalar: 3470 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 3471 MakeNaturalAlignAddrLValue(&*AI, RetTy), 3472 /*isInit*/ true); 3473 break; 3474 } 3475 break; 3476 } 3477 3478 case ABIArgInfo::Extend: 3479 case ABIArgInfo::Direct: 3480 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3481 RetAI.getDirectOffset() == 0) { 3482 // The internal return value temp always will have pointer-to-return-type 3483 // type, just do a load. 3484 3485 // If there is a dominating store to ReturnValue, we can elide 3486 // the load, zap the store, and usually zap the alloca. 3487 if (llvm::StoreInst *SI = 3488 findDominatingStoreToReturnValue(*this)) { 3489 // Reuse the debug location from the store unless there is 3490 // cleanup code to be emitted between the store and return 3491 // instruction. 3492 if (EmitRetDbgLoc && !AutoreleaseResult) 3493 RetDbgLoc = SI->getDebugLoc(); 3494 // Get the stored value and nuke the now-dead store. 3495 RV = SI->getValueOperand(); 3496 SI->eraseFromParent(); 3497 3498 // Otherwise, we have to do a simple load. 3499 } else { 3500 RV = Builder.CreateLoad(ReturnValue); 3501 } 3502 } else { 3503 // If the value is offset in memory, apply the offset now. 3504 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3505 3506 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3507 } 3508 3509 // In ARC, end functions that return a retainable type with a call 3510 // to objc_autoreleaseReturnValue. 3511 if (AutoreleaseResult) { 3512 #ifndef NDEBUG 3513 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3514 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3515 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3516 // CurCodeDecl or BlockInfo. 3517 QualType RT; 3518 3519 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3520 RT = FD->getReturnType(); 3521 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3522 RT = MD->getReturnType(); 3523 else if (isa<BlockDecl>(CurCodeDecl)) 3524 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3525 else 3526 llvm_unreachable("Unexpected function/method type"); 3527 3528 assert(getLangOpts().ObjCAutoRefCount && 3529 !FI.isReturnsRetained() && 3530 RT->isObjCRetainableType()); 3531 #endif 3532 RV = emitAutoreleaseOfResult(*this, RV); 3533 } 3534 3535 break; 3536 3537 case ABIArgInfo::Ignore: 3538 break; 3539 3540 case ABIArgInfo::CoerceAndExpand: { 3541 auto coercionType = RetAI.getCoerceAndExpandType(); 3542 3543 // Load all of the coerced elements out into results. 3544 llvm::SmallVector<llvm::Value*, 4> results; 3545 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3546 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3547 auto coercedEltType = coercionType->getElementType(i); 3548 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3549 continue; 3550 3551 auto eltAddr = Builder.CreateStructGEP(addr, i); 3552 auto elt = Builder.CreateLoad(eltAddr); 3553 results.push_back(elt); 3554 } 3555 3556 // If we have one result, it's the single direct result type. 3557 if (results.size() == 1) { 3558 RV = results[0]; 3559 3560 // Otherwise, we need to make a first-class aggregate. 3561 } else { 3562 // Construct a return type that lacks padding elements. 3563 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3564 3565 RV = llvm::UndefValue::get(returnType); 3566 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3567 RV = Builder.CreateInsertValue(RV, results[i], i); 3568 } 3569 } 3570 break; 3571 } 3572 case ABIArgInfo::Expand: 3573 case ABIArgInfo::IndirectAliased: 3574 llvm_unreachable("Invalid ABI kind for return argument"); 3575 } 3576 3577 llvm::Instruction *Ret; 3578 if (RV) { 3579 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3580 // For certain return types, clear padding bits, as they may reveal 3581 // sensitive information. 3582 // Small struct/union types are passed as integers. 3583 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3584 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3585 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3586 } 3587 EmitReturnValueCheck(RV); 3588 Ret = Builder.CreateRet(RV); 3589 } else { 3590 Ret = Builder.CreateRetVoid(); 3591 } 3592 3593 if (RetDbgLoc) 3594 Ret->setDebugLoc(std::move(RetDbgLoc)); 3595 } 3596 3597 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3598 // A current decl may not be available when emitting vtable thunks. 3599 if (!CurCodeDecl) 3600 return; 3601 3602 // If the return block isn't reachable, neither is this check, so don't emit 3603 // it. 3604 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3605 return; 3606 3607 ReturnsNonNullAttr *RetNNAttr = nullptr; 3608 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3609 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3610 3611 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3612 return; 3613 3614 // Prefer the returns_nonnull attribute if it's present. 3615 SourceLocation AttrLoc; 3616 SanitizerMask CheckKind; 3617 SanitizerHandler Handler; 3618 if (RetNNAttr) { 3619 assert(!requiresReturnValueNullabilityCheck() && 3620 "Cannot check nullability and the nonnull attribute"); 3621 AttrLoc = RetNNAttr->getLocation(); 3622 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3623 Handler = SanitizerHandler::NonnullReturn; 3624 } else { 3625 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3626 if (auto *TSI = DD->getTypeSourceInfo()) 3627 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3628 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3629 CheckKind = SanitizerKind::NullabilityReturn; 3630 Handler = SanitizerHandler::NullabilityReturn; 3631 } 3632 3633 SanitizerScope SanScope(this); 3634 3635 // Make sure the "return" source location is valid. If we're checking a 3636 // nullability annotation, make sure the preconditions for the check are met. 3637 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3638 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3639 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3640 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3641 if (requiresReturnValueNullabilityCheck()) 3642 CanNullCheck = 3643 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3644 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3645 EmitBlock(Check); 3646 3647 // Now do the null check. 3648 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3649 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3650 llvm::Value *DynamicData[] = {SLocPtr}; 3651 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3652 3653 EmitBlock(NoCheck); 3654 3655 #ifndef NDEBUG 3656 // The return location should not be used after the check has been emitted. 3657 ReturnLocation = Address::invalid(); 3658 #endif 3659 } 3660 3661 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3662 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3663 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3664 } 3665 3666 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3667 QualType Ty) { 3668 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3669 // placeholders. 3670 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3671 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3672 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3673 3674 // FIXME: When we generate this IR in one pass, we shouldn't need 3675 // this win32-specific alignment hack. 3676 CharUnits Align = CharUnits::fromQuantity(4); 3677 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3678 3679 return AggValueSlot::forAddr(Address(Placeholder, Align), 3680 Ty.getQualifiers(), 3681 AggValueSlot::IsNotDestructed, 3682 AggValueSlot::DoesNotNeedGCBarriers, 3683 AggValueSlot::IsNotAliased, 3684 AggValueSlot::DoesNotOverlap); 3685 } 3686 3687 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3688 const VarDecl *param, 3689 SourceLocation loc) { 3690 // StartFunction converted the ABI-lowered parameter(s) into a 3691 // local alloca. We need to turn that into an r-value suitable 3692 // for EmitCall. 3693 Address local = GetAddrOfLocalVar(param); 3694 3695 QualType type = param->getType(); 3696 3697 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3698 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3699 } 3700 3701 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3702 // but the argument needs to be the original pointer. 3703 if (type->isReferenceType()) { 3704 args.add(RValue::get(Builder.CreateLoad(local)), type); 3705 3706 // In ARC, move out of consumed arguments so that the release cleanup 3707 // entered by StartFunction doesn't cause an over-release. This isn't 3708 // optimal -O0 code generation, but it should get cleaned up when 3709 // optimization is enabled. This also assumes that delegate calls are 3710 // performed exactly once for a set of arguments, but that should be safe. 3711 } else if (getLangOpts().ObjCAutoRefCount && 3712 param->hasAttr<NSConsumedAttr>() && 3713 type->isObjCRetainableType()) { 3714 llvm::Value *ptr = Builder.CreateLoad(local); 3715 auto null = 3716 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3717 Builder.CreateStore(null, local); 3718 args.add(RValue::get(ptr), type); 3719 3720 // For the most part, we just need to load the alloca, except that 3721 // aggregate r-values are actually pointers to temporaries. 3722 } else { 3723 args.add(convertTempToRValue(local, type, loc), type); 3724 } 3725 3726 // Deactivate the cleanup for the callee-destructed param that was pushed. 3727 if (type->isRecordType() && !CurFuncIsThunk && 3728 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3729 param->needsDestruction(getContext())) { 3730 EHScopeStack::stable_iterator cleanup = 3731 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3732 assert(cleanup.isValid() && 3733 "cleanup for callee-destructed param not recorded"); 3734 // This unreachable is a temporary marker which will be removed later. 3735 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3736 args.addArgCleanupDeactivation(cleanup, isActive); 3737 } 3738 } 3739 3740 static bool isProvablyNull(llvm::Value *addr) { 3741 return isa<llvm::ConstantPointerNull>(addr); 3742 } 3743 3744 /// Emit the actual writing-back of a writeback. 3745 static void emitWriteback(CodeGenFunction &CGF, 3746 const CallArgList::Writeback &writeback) { 3747 const LValue &srcLV = writeback.Source; 3748 Address srcAddr = srcLV.getAddress(CGF); 3749 assert(!isProvablyNull(srcAddr.getPointer()) && 3750 "shouldn't have writeback for provably null argument"); 3751 3752 llvm::BasicBlock *contBB = nullptr; 3753 3754 // If the argument wasn't provably non-null, we need to null check 3755 // before doing the store. 3756 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3757 CGF.CGM.getDataLayout()); 3758 if (!provablyNonNull) { 3759 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3760 contBB = CGF.createBasicBlock("icr.done"); 3761 3762 llvm::Value *isNull = 3763 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3764 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3765 CGF.EmitBlock(writebackBB); 3766 } 3767 3768 // Load the value to writeback. 3769 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3770 3771 // Cast it back, in case we're writing an id to a Foo* or something. 3772 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3773 "icr.writeback-cast"); 3774 3775 // Perform the writeback. 3776 3777 // If we have a "to use" value, it's something we need to emit a use 3778 // of. This has to be carefully threaded in: if it's done after the 3779 // release it's potentially undefined behavior (and the optimizer 3780 // will ignore it), and if it happens before the retain then the 3781 // optimizer could move the release there. 3782 if (writeback.ToUse) { 3783 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3784 3785 // Retain the new value. No need to block-copy here: the block's 3786 // being passed up the stack. 3787 value = CGF.EmitARCRetainNonBlock(value); 3788 3789 // Emit the intrinsic use here. 3790 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3791 3792 // Load the old value (primitively). 3793 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3794 3795 // Put the new value in place (primitively). 3796 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3797 3798 // Release the old value. 3799 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3800 3801 // Otherwise, we can just do a normal lvalue store. 3802 } else { 3803 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3804 } 3805 3806 // Jump to the continuation block. 3807 if (!provablyNonNull) 3808 CGF.EmitBlock(contBB); 3809 } 3810 3811 static void emitWritebacks(CodeGenFunction &CGF, 3812 const CallArgList &args) { 3813 for (const auto &I : args.writebacks()) 3814 emitWriteback(CGF, I); 3815 } 3816 3817 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3818 const CallArgList &CallArgs) { 3819 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3820 CallArgs.getCleanupsToDeactivate(); 3821 // Iterate in reverse to increase the likelihood of popping the cleanup. 3822 for (const auto &I : llvm::reverse(Cleanups)) { 3823 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3824 I.IsActiveIP->eraseFromParent(); 3825 } 3826 } 3827 3828 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3829 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3830 if (uop->getOpcode() == UO_AddrOf) 3831 return uop->getSubExpr(); 3832 return nullptr; 3833 } 3834 3835 /// Emit an argument that's being passed call-by-writeback. That is, 3836 /// we are passing the address of an __autoreleased temporary; it 3837 /// might be copy-initialized with the current value of the given 3838 /// address, but it will definitely be copied out of after the call. 3839 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3840 const ObjCIndirectCopyRestoreExpr *CRE) { 3841 LValue srcLV; 3842 3843 // Make an optimistic effort to emit the address as an l-value. 3844 // This can fail if the argument expression is more complicated. 3845 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3846 srcLV = CGF.EmitLValue(lvExpr); 3847 3848 // Otherwise, just emit it as a scalar. 3849 } else { 3850 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3851 3852 QualType srcAddrType = 3853 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3854 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3855 } 3856 Address srcAddr = srcLV.getAddress(CGF); 3857 3858 // The dest and src types don't necessarily match in LLVM terms 3859 // because of the crazy ObjC compatibility rules. 3860 3861 llvm::PointerType *destType = 3862 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3863 3864 // If the address is a constant null, just pass the appropriate null. 3865 if (isProvablyNull(srcAddr.getPointer())) { 3866 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3867 CRE->getType()); 3868 return; 3869 } 3870 3871 // Create the temporary. 3872 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3873 CGF.getPointerAlign(), 3874 "icr.temp"); 3875 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3876 // and that cleanup will be conditional if we can't prove that the l-value 3877 // isn't null, so we need to register a dominating point so that the cleanups 3878 // system will make valid IR. 3879 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3880 3881 // Zero-initialize it if we're not doing a copy-initialization. 3882 bool shouldCopy = CRE->shouldCopy(); 3883 if (!shouldCopy) { 3884 llvm::Value *null = 3885 llvm::ConstantPointerNull::get( 3886 cast<llvm::PointerType>(destType->getElementType())); 3887 CGF.Builder.CreateStore(null, temp); 3888 } 3889 3890 llvm::BasicBlock *contBB = nullptr; 3891 llvm::BasicBlock *originBB = nullptr; 3892 3893 // If the address is *not* known to be non-null, we need to switch. 3894 llvm::Value *finalArgument; 3895 3896 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3897 CGF.CGM.getDataLayout()); 3898 if (provablyNonNull) { 3899 finalArgument = temp.getPointer(); 3900 } else { 3901 llvm::Value *isNull = 3902 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3903 3904 finalArgument = CGF.Builder.CreateSelect(isNull, 3905 llvm::ConstantPointerNull::get(destType), 3906 temp.getPointer(), "icr.argument"); 3907 3908 // If we need to copy, then the load has to be conditional, which 3909 // means we need control flow. 3910 if (shouldCopy) { 3911 originBB = CGF.Builder.GetInsertBlock(); 3912 contBB = CGF.createBasicBlock("icr.cont"); 3913 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3914 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3915 CGF.EmitBlock(copyBB); 3916 condEval.begin(CGF); 3917 } 3918 } 3919 3920 llvm::Value *valueToUse = nullptr; 3921 3922 // Perform a copy if necessary. 3923 if (shouldCopy) { 3924 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3925 assert(srcRV.isScalar()); 3926 3927 llvm::Value *src = srcRV.getScalarVal(); 3928 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3929 "icr.cast"); 3930 3931 // Use an ordinary store, not a store-to-lvalue. 3932 CGF.Builder.CreateStore(src, temp); 3933 3934 // If optimization is enabled, and the value was held in a 3935 // __strong variable, we need to tell the optimizer that this 3936 // value has to stay alive until we're doing the store back. 3937 // This is because the temporary is effectively unretained, 3938 // and so otherwise we can violate the high-level semantics. 3939 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3940 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3941 valueToUse = src; 3942 } 3943 } 3944 3945 // Finish the control flow if we needed it. 3946 if (shouldCopy && !provablyNonNull) { 3947 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3948 CGF.EmitBlock(contBB); 3949 3950 // Make a phi for the value to intrinsically use. 3951 if (valueToUse) { 3952 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3953 "icr.to-use"); 3954 phiToUse->addIncoming(valueToUse, copyBB); 3955 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3956 originBB); 3957 valueToUse = phiToUse; 3958 } 3959 3960 condEval.end(CGF); 3961 } 3962 3963 args.addWriteback(srcLV, temp, valueToUse); 3964 args.add(RValue::get(finalArgument), CRE->getType()); 3965 } 3966 3967 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3968 assert(!StackBase); 3969 3970 // Save the stack. 3971 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3972 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3973 } 3974 3975 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3976 if (StackBase) { 3977 // Restore the stack after the call. 3978 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3979 CGF.Builder.CreateCall(F, StackBase); 3980 } 3981 } 3982 3983 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3984 SourceLocation ArgLoc, 3985 AbstractCallee AC, 3986 unsigned ParmNum) { 3987 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3988 SanOpts.has(SanitizerKind::NullabilityArg))) 3989 return; 3990 3991 // The param decl may be missing in a variadic function. 3992 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3993 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3994 3995 // Prefer the nonnull attribute if it's present. 3996 const NonNullAttr *NNAttr = nullptr; 3997 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3998 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3999 4000 bool CanCheckNullability = false; 4001 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 4002 auto Nullability = PVD->getType()->getNullability(getContext()); 4003 CanCheckNullability = Nullability && 4004 *Nullability == NullabilityKind::NonNull && 4005 PVD->getTypeSourceInfo(); 4006 } 4007 4008 if (!NNAttr && !CanCheckNullability) 4009 return; 4010 4011 SourceLocation AttrLoc; 4012 SanitizerMask CheckKind; 4013 SanitizerHandler Handler; 4014 if (NNAttr) { 4015 AttrLoc = NNAttr->getLocation(); 4016 CheckKind = SanitizerKind::NonnullAttribute; 4017 Handler = SanitizerHandler::NonnullArg; 4018 } else { 4019 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4020 CheckKind = SanitizerKind::NullabilityArg; 4021 Handler = SanitizerHandler::NullabilityArg; 4022 } 4023 4024 SanitizerScope SanScope(this); 4025 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4026 llvm::Constant *StaticData[] = { 4027 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4028 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4029 }; 4030 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 4031 } 4032 4033 // Check if the call is going to use the inalloca convention. This needs to 4034 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4035 // later, so we can't check it directly. 4036 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4037 ArrayRef<QualType> ArgTypes) { 4038 // The Swift calling conventions don't go through the target-specific 4039 // argument classification, they never use inalloca. 4040 // TODO: Consider limiting inalloca use to only calling conventions supported 4041 // by MSVC. 4042 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4043 return false; 4044 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4045 return false; 4046 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4047 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4048 }); 4049 } 4050 4051 #ifndef NDEBUG 4052 // Determine whether the given argument is an Objective-C method 4053 // that may have type parameters in its signature. 4054 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4055 const DeclContext *dc = method->getDeclContext(); 4056 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4057 return classDecl->getTypeParamListAsWritten(); 4058 } 4059 4060 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4061 return catDecl->getTypeParamList(); 4062 } 4063 4064 return false; 4065 } 4066 #endif 4067 4068 /// EmitCallArgs - Emit call arguments for a function. 4069 void CodeGenFunction::EmitCallArgs( 4070 CallArgList &Args, PrototypeWrapper Prototype, 4071 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4072 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4073 SmallVector<QualType, 16> ArgTypes; 4074 4075 assert((ParamsToSkip == 0 || Prototype.P) && 4076 "Can't skip parameters if type info is not provided"); 4077 4078 // This variable only captures *explicitly* written conventions, not those 4079 // applied by default via command line flags or target defaults, such as 4080 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4081 // require knowing if this is a C++ instance method or being able to see 4082 // unprototyped FunctionTypes. 4083 CallingConv ExplicitCC = CC_C; 4084 4085 // First, if a prototype was provided, use those argument types. 4086 bool IsVariadic = false; 4087 if (Prototype.P) { 4088 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4089 if (MD) { 4090 IsVariadic = MD->isVariadic(); 4091 ExplicitCC = getCallingConventionForDecl( 4092 MD, CGM.getTarget().getTriple().isOSWindows()); 4093 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4094 MD->param_type_end()); 4095 } else { 4096 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4097 IsVariadic = FPT->isVariadic(); 4098 ExplicitCC = FPT->getExtInfo().getCC(); 4099 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4100 FPT->param_type_end()); 4101 } 4102 4103 #ifndef NDEBUG 4104 // Check that the prototyped types match the argument expression types. 4105 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4106 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4107 for (QualType Ty : ArgTypes) { 4108 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4109 assert( 4110 (isGenericMethod || Ty->isVariablyModifiedType() || 4111 Ty.getNonReferenceType()->isObjCRetainableType() || 4112 getContext() 4113 .getCanonicalType(Ty.getNonReferenceType()) 4114 .getTypePtr() == 4115 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4116 "type mismatch in call argument!"); 4117 ++Arg; 4118 } 4119 4120 // Either we've emitted all the call args, or we have a call to variadic 4121 // function. 4122 assert((Arg == ArgRange.end() || IsVariadic) && 4123 "Extra arguments in non-variadic function!"); 4124 #endif 4125 } 4126 4127 // If we still have any arguments, emit them using the type of the argument. 4128 for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()), 4129 ArgRange.end())) 4130 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4131 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4132 4133 // We must evaluate arguments from right to left in the MS C++ ABI, 4134 // because arguments are destroyed left to right in the callee. As a special 4135 // case, there are certain language constructs that require left-to-right 4136 // evaluation, and in those cases we consider the evaluation order requirement 4137 // to trump the "destruction order is reverse construction order" guarantee. 4138 bool LeftToRight = 4139 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4140 ? Order == EvaluationOrder::ForceLeftToRight 4141 : Order != EvaluationOrder::ForceRightToLeft; 4142 4143 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4144 RValue EmittedArg) { 4145 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4146 return; 4147 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4148 if (PS == nullptr) 4149 return; 4150 4151 const auto &Context = getContext(); 4152 auto SizeTy = Context.getSizeType(); 4153 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4154 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4155 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4156 EmittedArg.getScalarVal(), 4157 PS->isDynamic()); 4158 Args.add(RValue::get(V), SizeTy); 4159 // If we're emitting args in reverse, be sure to do so with 4160 // pass_object_size, as well. 4161 if (!LeftToRight) 4162 std::swap(Args.back(), *(&Args.back() - 1)); 4163 }; 4164 4165 // Insert a stack save if we're going to need any inalloca args. 4166 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4167 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4168 "inalloca only supported on x86"); 4169 Args.allocateArgumentMemory(*this); 4170 } 4171 4172 // Evaluate each argument in the appropriate order. 4173 size_t CallArgsStart = Args.size(); 4174 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4175 unsigned Idx = LeftToRight ? I : E - I - 1; 4176 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4177 unsigned InitialArgSize = Args.size(); 4178 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4179 // the argument and parameter match or the objc method is parameterized. 4180 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4181 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4182 ArgTypes[Idx]) || 4183 (isa<ObjCMethodDecl>(AC.getDecl()) && 4184 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4185 "Argument and parameter types don't match"); 4186 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4187 // In particular, we depend on it being the last arg in Args, and the 4188 // objectsize bits depend on there only being one arg if !LeftToRight. 4189 assert(InitialArgSize + 1 == Args.size() && 4190 "The code below depends on only adding one arg per EmitCallArg"); 4191 (void)InitialArgSize; 4192 // Since pointer argument are never emitted as LValue, it is safe to emit 4193 // non-null argument check for r-value only. 4194 if (!Args.back().hasLValue()) { 4195 RValue RVArg = Args.back().getKnownRValue(); 4196 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4197 ParamsToSkip + Idx); 4198 // @llvm.objectsize should never have side-effects and shouldn't need 4199 // destruction/cleanups, so we can safely "emit" it after its arg, 4200 // regardless of right-to-leftness 4201 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4202 } 4203 } 4204 4205 if (!LeftToRight) { 4206 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4207 // IR function. 4208 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4209 } 4210 } 4211 4212 namespace { 4213 4214 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4215 DestroyUnpassedArg(Address Addr, QualType Ty) 4216 : Addr(Addr), Ty(Ty) {} 4217 4218 Address Addr; 4219 QualType Ty; 4220 4221 void Emit(CodeGenFunction &CGF, Flags flags) override { 4222 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4223 if (DtorKind == QualType::DK_cxx_destructor) { 4224 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4225 assert(!Dtor->isTrivial()); 4226 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4227 /*Delegating=*/false, Addr, Ty); 4228 } else { 4229 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4230 } 4231 } 4232 }; 4233 4234 struct DisableDebugLocationUpdates { 4235 CodeGenFunction &CGF; 4236 bool disabledDebugInfo; 4237 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4238 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4239 CGF.disableDebugInfo(); 4240 } 4241 ~DisableDebugLocationUpdates() { 4242 if (disabledDebugInfo) 4243 CGF.enableDebugInfo(); 4244 } 4245 }; 4246 4247 } // end anonymous namespace 4248 4249 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4250 if (!HasLV) 4251 return RV; 4252 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4253 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4254 LV.isVolatile()); 4255 IsUsed = true; 4256 return RValue::getAggregate(Copy.getAddress(CGF)); 4257 } 4258 4259 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4260 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4261 if (!HasLV && RV.isScalar()) 4262 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4263 else if (!HasLV && RV.isComplex()) 4264 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4265 else { 4266 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4267 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4268 // We assume that call args are never copied into subobjects. 4269 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4270 HasLV ? LV.isVolatileQualified() 4271 : RV.isVolatileQualified()); 4272 } 4273 IsUsed = true; 4274 } 4275 4276 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4277 QualType type) { 4278 DisableDebugLocationUpdates Dis(*this, E); 4279 if (const ObjCIndirectCopyRestoreExpr *CRE 4280 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4281 assert(getLangOpts().ObjCAutoRefCount); 4282 return emitWritebackArg(*this, args, CRE); 4283 } 4284 4285 assert(type->isReferenceType() == E->isGLValue() && 4286 "reference binding to unmaterialized r-value!"); 4287 4288 if (E->isGLValue()) { 4289 assert(E->getObjectKind() == OK_Ordinary); 4290 return args.add(EmitReferenceBindingToExpr(E), type); 4291 } 4292 4293 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4294 4295 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4296 // However, we still have to push an EH-only cleanup in case we unwind before 4297 // we make it to the call. 4298 if (type->isRecordType() && 4299 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4300 // If we're using inalloca, use the argument memory. Otherwise, use a 4301 // temporary. 4302 AggValueSlot Slot; 4303 if (args.isUsingInAlloca()) 4304 Slot = createPlaceholderSlot(*this, type); 4305 else 4306 Slot = CreateAggTemp(type, "agg.tmp"); 4307 4308 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4309 if (const auto *RD = type->getAsCXXRecordDecl()) 4310 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4311 else 4312 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4313 4314 if (DestroyedInCallee) 4315 Slot.setExternallyDestructed(); 4316 4317 EmitAggExpr(E, Slot); 4318 RValue RV = Slot.asRValue(); 4319 args.add(RV, type); 4320 4321 if (DestroyedInCallee && NeedsEHCleanup) { 4322 // Create a no-op GEP between the placeholder and the cleanup so we can 4323 // RAUW it successfully. It also serves as a marker of the first 4324 // instruction where the cleanup is active. 4325 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4326 type); 4327 // This unreachable is a temporary marker which will be removed later. 4328 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4329 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 4330 } 4331 return; 4332 } 4333 4334 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4335 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4336 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4337 assert(L.isSimple()); 4338 args.addUncopiedAggregate(L, type); 4339 return; 4340 } 4341 4342 args.add(EmitAnyExprToTemp(E), type); 4343 } 4344 4345 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4346 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4347 // implicitly widens null pointer constants that are arguments to varargs 4348 // functions to pointer-sized ints. 4349 if (!getTarget().getTriple().isOSWindows()) 4350 return Arg->getType(); 4351 4352 if (Arg->getType()->isIntegerType() && 4353 getContext().getTypeSize(Arg->getType()) < 4354 getContext().getTargetInfo().getPointerWidth(0) && 4355 Arg->isNullPointerConstant(getContext(), 4356 Expr::NPC_ValueDependentIsNotNull)) { 4357 return getContext().getIntPtrType(); 4358 } 4359 4360 return Arg->getType(); 4361 } 4362 4363 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4364 // optimizer it can aggressively ignore unwind edges. 4365 void 4366 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4367 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4368 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4369 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4370 CGM.getNoObjCARCExceptionsMetadata()); 4371 } 4372 4373 /// Emits a call to the given no-arguments nounwind runtime function. 4374 llvm::CallInst * 4375 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4376 const llvm::Twine &name) { 4377 return EmitNounwindRuntimeCall(callee, None, name); 4378 } 4379 4380 /// Emits a call to the given nounwind runtime function. 4381 llvm::CallInst * 4382 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4383 ArrayRef<llvm::Value *> args, 4384 const llvm::Twine &name) { 4385 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4386 call->setDoesNotThrow(); 4387 return call; 4388 } 4389 4390 /// Emits a simple call (never an invoke) to the given no-arguments 4391 /// runtime function. 4392 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4393 const llvm::Twine &name) { 4394 return EmitRuntimeCall(callee, None, name); 4395 } 4396 4397 // Calls which may throw must have operand bundles indicating which funclet 4398 // they are nested within. 4399 SmallVector<llvm::OperandBundleDef, 1> 4400 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4401 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4402 // There is no need for a funclet operand bundle if we aren't inside a 4403 // funclet. 4404 if (!CurrentFuncletPad) 4405 return BundleList; 4406 4407 // Skip intrinsics which cannot throw. 4408 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4409 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4410 return BundleList; 4411 4412 BundleList.emplace_back("funclet", CurrentFuncletPad); 4413 return BundleList; 4414 } 4415 4416 /// Emits a simple call (never an invoke) to the given runtime function. 4417 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4418 ArrayRef<llvm::Value *> args, 4419 const llvm::Twine &name) { 4420 llvm::CallInst *call = Builder.CreateCall( 4421 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4422 call->setCallingConv(getRuntimeCC()); 4423 return call; 4424 } 4425 4426 /// Emits a call or invoke to the given noreturn runtime function. 4427 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4428 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4429 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4430 getBundlesForFunclet(callee.getCallee()); 4431 4432 if (getInvokeDest()) { 4433 llvm::InvokeInst *invoke = 4434 Builder.CreateInvoke(callee, 4435 getUnreachableBlock(), 4436 getInvokeDest(), 4437 args, 4438 BundleList); 4439 invoke->setDoesNotReturn(); 4440 invoke->setCallingConv(getRuntimeCC()); 4441 } else { 4442 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4443 call->setDoesNotReturn(); 4444 call->setCallingConv(getRuntimeCC()); 4445 Builder.CreateUnreachable(); 4446 } 4447 } 4448 4449 /// Emits a call or invoke instruction to the given nullary runtime function. 4450 llvm::CallBase * 4451 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4452 const Twine &name) { 4453 return EmitRuntimeCallOrInvoke(callee, None, name); 4454 } 4455 4456 /// Emits a call or invoke instruction to the given runtime function. 4457 llvm::CallBase * 4458 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4459 ArrayRef<llvm::Value *> args, 4460 const Twine &name) { 4461 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4462 call->setCallingConv(getRuntimeCC()); 4463 return call; 4464 } 4465 4466 /// Emits a call or invoke instruction to the given function, depending 4467 /// on the current state of the EH stack. 4468 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4469 ArrayRef<llvm::Value *> Args, 4470 const Twine &Name) { 4471 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4472 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4473 getBundlesForFunclet(Callee.getCallee()); 4474 4475 llvm::CallBase *Inst; 4476 if (!InvokeDest) 4477 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4478 else { 4479 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4480 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4481 Name); 4482 EmitBlock(ContBB); 4483 } 4484 4485 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4486 // optimizer it can aggressively ignore unwind edges. 4487 if (CGM.getLangOpts().ObjCAutoRefCount) 4488 AddObjCARCExceptionMetadata(Inst); 4489 4490 return Inst; 4491 } 4492 4493 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4494 llvm::Value *New) { 4495 DeferredReplacements.push_back( 4496 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4497 } 4498 4499 namespace { 4500 4501 /// Specify given \p NewAlign as the alignment of return value attribute. If 4502 /// such attribute already exists, re-set it to the maximal one of two options. 4503 LLVM_NODISCARD llvm::AttributeList 4504 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4505 const llvm::AttributeList &Attrs, 4506 llvm::Align NewAlign) { 4507 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4508 if (CurAlign >= NewAlign) 4509 return Attrs; 4510 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4511 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4512 .addRetAttribute(Ctx, AlignAttr); 4513 } 4514 4515 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4516 protected: 4517 CodeGenFunction &CGF; 4518 4519 /// We do nothing if this is, or becomes, nullptr. 4520 const AlignedAttrTy *AA = nullptr; 4521 4522 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4523 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4524 4525 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4526 : CGF(CGF_) { 4527 if (!FuncDecl) 4528 return; 4529 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4530 } 4531 4532 public: 4533 /// If we can, materialize the alignment as an attribute on return value. 4534 LLVM_NODISCARD llvm::AttributeList 4535 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4536 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4537 return Attrs; 4538 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4539 if (!AlignmentCI) 4540 return Attrs; 4541 // We may legitimately have non-power-of-2 alignment here. 4542 // If so, this is UB land, emit it via `@llvm.assume` instead. 4543 if (!AlignmentCI->getValue().isPowerOf2()) 4544 return Attrs; 4545 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4546 CGF.getLLVMContext(), Attrs, 4547 llvm::Align( 4548 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4549 AA = nullptr; // We're done. Disallow doing anything else. 4550 return NewAttrs; 4551 } 4552 4553 /// Emit alignment assumption. 4554 /// This is a general fallback that we take if either there is an offset, 4555 /// or the alignment is variable or we are sanitizing for alignment. 4556 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4557 if (!AA) 4558 return; 4559 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4560 AA->getLocation(), Alignment, OffsetCI); 4561 AA = nullptr; // We're done. Disallow doing anything else. 4562 } 4563 }; 4564 4565 /// Helper data structure to emit `AssumeAlignedAttr`. 4566 class AssumeAlignedAttrEmitter final 4567 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4568 public: 4569 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4570 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4571 if (!AA) 4572 return; 4573 // It is guaranteed that the alignment/offset are constants. 4574 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4575 if (Expr *Offset = AA->getOffset()) { 4576 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4577 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4578 OffsetCI = nullptr; 4579 } 4580 } 4581 }; 4582 4583 /// Helper data structure to emit `AllocAlignAttr`. 4584 class AllocAlignAttrEmitter final 4585 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4586 public: 4587 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4588 const CallArgList &CallArgs) 4589 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4590 if (!AA) 4591 return; 4592 // Alignment may or may not be a constant, and that is okay. 4593 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4594 .getRValue(CGF) 4595 .getScalarVal(); 4596 } 4597 }; 4598 4599 } // namespace 4600 4601 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4602 const CGCallee &Callee, 4603 ReturnValueSlot ReturnValue, 4604 const CallArgList &CallArgs, 4605 llvm::CallBase **callOrInvoke, bool IsMustTail, 4606 SourceLocation Loc) { 4607 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4608 4609 assert(Callee.isOrdinary() || Callee.isVirtual()); 4610 4611 // Handle struct-return functions by passing a pointer to the 4612 // location that we would like to return into. 4613 QualType RetTy = CallInfo.getReturnType(); 4614 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4615 4616 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4617 4618 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4619 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4620 // We can only guarantee that a function is called from the correct 4621 // context/function based on the appropriate target attributes, 4622 // so only check in the case where we have both always_inline and target 4623 // since otherwise we could be making a conditional call after a check for 4624 // the proper cpu features (and it won't cause code generation issues due to 4625 // function based code generation). 4626 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4627 TargetDecl->hasAttr<TargetAttr>()) 4628 checkTargetFeatures(Loc, FD); 4629 4630 // Some architectures (such as x86-64) have the ABI changed based on 4631 // attribute-target/features. Give them a chance to diagnose. 4632 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4633 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4634 } 4635 4636 #ifndef NDEBUG 4637 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4638 // For an inalloca varargs function, we don't expect CallInfo to match the 4639 // function pointer's type, because the inalloca struct a will have extra 4640 // fields in it for the varargs parameters. Code later in this function 4641 // bitcasts the function pointer to the type derived from CallInfo. 4642 // 4643 // In other cases, we assert that the types match up (until pointers stop 4644 // having pointee types). 4645 llvm::Type *TypeFromVal; 4646 if (Callee.isVirtual()) 4647 TypeFromVal = Callee.getVirtualFunctionType(); 4648 else 4649 TypeFromVal = 4650 Callee.getFunctionPointer()->getType()->getPointerElementType(); 4651 assert(IRFuncTy == TypeFromVal); 4652 } 4653 #endif 4654 4655 // 1. Set up the arguments. 4656 4657 // If we're using inalloca, insert the allocation after the stack save. 4658 // FIXME: Do this earlier rather than hacking it in here! 4659 Address ArgMemory = Address::invalid(); 4660 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4661 const llvm::DataLayout &DL = CGM.getDataLayout(); 4662 llvm::Instruction *IP = CallArgs.getStackBase(); 4663 llvm::AllocaInst *AI; 4664 if (IP) { 4665 IP = IP->getNextNode(); 4666 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4667 "argmem", IP); 4668 } else { 4669 AI = CreateTempAlloca(ArgStruct, "argmem"); 4670 } 4671 auto Align = CallInfo.getArgStructAlignment(); 4672 AI->setAlignment(Align.getAsAlign()); 4673 AI->setUsedWithInAlloca(true); 4674 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4675 ArgMemory = Address(AI, Align); 4676 } 4677 4678 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4679 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4680 4681 // If the call returns a temporary with struct return, create a temporary 4682 // alloca to hold the result, unless one is given to us. 4683 Address SRetPtr = Address::invalid(); 4684 Address SRetAlloca = Address::invalid(); 4685 llvm::Value *UnusedReturnSizePtr = nullptr; 4686 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4687 if (!ReturnValue.isNull()) { 4688 SRetPtr = ReturnValue.getValue(); 4689 } else { 4690 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4691 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4692 llvm::TypeSize size = 4693 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4694 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4695 } 4696 } 4697 if (IRFunctionArgs.hasSRetArg()) { 4698 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4699 } else if (RetAI.isInAlloca()) { 4700 Address Addr = 4701 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4702 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4703 } 4704 } 4705 4706 Address swiftErrorTemp = Address::invalid(); 4707 Address swiftErrorArg = Address::invalid(); 4708 4709 // When passing arguments using temporary allocas, we need to add the 4710 // appropriate lifetime markers. This vector keeps track of all the lifetime 4711 // markers that need to be ended right after the call. 4712 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4713 4714 // Translate all of the arguments as necessary to match the IR lowering. 4715 assert(CallInfo.arg_size() == CallArgs.size() && 4716 "Mismatch between function signature & arguments."); 4717 unsigned ArgNo = 0; 4718 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4719 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4720 I != E; ++I, ++info_it, ++ArgNo) { 4721 const ABIArgInfo &ArgInfo = info_it->info; 4722 4723 // Insert a padding argument to ensure proper alignment. 4724 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4725 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4726 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4727 4728 unsigned FirstIRArg, NumIRArgs; 4729 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4730 4731 switch (ArgInfo.getKind()) { 4732 case ABIArgInfo::InAlloca: { 4733 assert(NumIRArgs == 0); 4734 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4735 if (I->isAggregate()) { 4736 Address Addr = I->hasLValue() 4737 ? I->getKnownLValue().getAddress(*this) 4738 : I->getKnownRValue().getAggregateAddress(); 4739 llvm::Instruction *Placeholder = 4740 cast<llvm::Instruction>(Addr.getPointer()); 4741 4742 if (!ArgInfo.getInAllocaIndirect()) { 4743 // Replace the placeholder with the appropriate argument slot GEP. 4744 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4745 Builder.SetInsertPoint(Placeholder); 4746 Addr = Builder.CreateStructGEP(ArgMemory, 4747 ArgInfo.getInAllocaFieldIndex()); 4748 Builder.restoreIP(IP); 4749 } else { 4750 // For indirect things such as overaligned structs, replace the 4751 // placeholder with a regular aggregate temporary alloca. Store the 4752 // address of this alloca into the struct. 4753 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4754 Address ArgSlot = Builder.CreateStructGEP( 4755 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4756 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4757 } 4758 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4759 } else if (ArgInfo.getInAllocaIndirect()) { 4760 // Make a temporary alloca and store the address of it into the argument 4761 // struct. 4762 Address Addr = CreateMemTempWithoutCast( 4763 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4764 "indirect-arg-temp"); 4765 I->copyInto(*this, Addr); 4766 Address ArgSlot = 4767 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4768 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4769 } else { 4770 // Store the RValue into the argument struct. 4771 Address Addr = 4772 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4773 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4774 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4775 // There are some cases where a trivial bitcast is not avoidable. The 4776 // definition of a type later in a translation unit may change it's type 4777 // from {}* to (%struct.foo*)*. 4778 if (Addr.getType() != MemType) 4779 Addr = Builder.CreateBitCast(Addr, MemType); 4780 I->copyInto(*this, Addr); 4781 } 4782 break; 4783 } 4784 4785 case ABIArgInfo::Indirect: 4786 case ABIArgInfo::IndirectAliased: { 4787 assert(NumIRArgs == 1); 4788 if (!I->isAggregate()) { 4789 // Make a temporary alloca to pass the argument. 4790 Address Addr = CreateMemTempWithoutCast( 4791 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4792 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4793 4794 I->copyInto(*this, Addr); 4795 } else { 4796 // We want to avoid creating an unnecessary temporary+copy here; 4797 // however, we need one in three cases: 4798 // 1. If the argument is not byval, and we are required to copy the 4799 // source. (This case doesn't occur on any common architecture.) 4800 // 2. If the argument is byval, RV is not sufficiently aligned, and 4801 // we cannot force it to be sufficiently aligned. 4802 // 3. If the argument is byval, but RV is not located in default 4803 // or alloca address space. 4804 Address Addr = I->hasLValue() 4805 ? I->getKnownLValue().getAddress(*this) 4806 : I->getKnownRValue().getAggregateAddress(); 4807 llvm::Value *V = Addr.getPointer(); 4808 CharUnits Align = ArgInfo.getIndirectAlign(); 4809 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4810 4811 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4812 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4813 TD->getAllocaAddrSpace()) && 4814 "indirect argument must be in alloca address space"); 4815 4816 bool NeedCopy = false; 4817 4818 if (Addr.getAlignment() < Align && 4819 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4820 Align.getAsAlign()) { 4821 NeedCopy = true; 4822 } else if (I->hasLValue()) { 4823 auto LV = I->getKnownLValue(); 4824 auto AS = LV.getAddressSpace(); 4825 4826 if (!ArgInfo.getIndirectByVal() || 4827 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4828 NeedCopy = true; 4829 } 4830 if (!getLangOpts().OpenCL) { 4831 if ((ArgInfo.getIndirectByVal() && 4832 (AS != LangAS::Default && 4833 AS != CGM.getASTAllocaAddressSpace()))) { 4834 NeedCopy = true; 4835 } 4836 } 4837 // For OpenCL even if RV is located in default or alloca address space 4838 // we don't want to perform address space cast for it. 4839 else if ((ArgInfo.getIndirectByVal() && 4840 Addr.getType()->getAddressSpace() != IRFuncTy-> 4841 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4842 NeedCopy = true; 4843 } 4844 } 4845 4846 if (NeedCopy) { 4847 // Create an aligned temporary, and copy to it. 4848 Address AI = CreateMemTempWithoutCast( 4849 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4850 IRCallArgs[FirstIRArg] = AI.getPointer(); 4851 4852 // Emit lifetime markers for the temporary alloca. 4853 llvm::TypeSize ByvalTempElementSize = 4854 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4855 llvm::Value *LifetimeSize = 4856 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4857 4858 // Add cleanup code to emit the end lifetime marker after the call. 4859 if (LifetimeSize) // In case we disabled lifetime markers. 4860 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4861 4862 // Generate the copy. 4863 I->copyInto(*this, AI); 4864 } else { 4865 // Skip the extra memcpy call. 4866 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4867 CGM.getDataLayout().getAllocaAddrSpace()); 4868 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4869 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4870 true); 4871 } 4872 } 4873 break; 4874 } 4875 4876 case ABIArgInfo::Ignore: 4877 assert(NumIRArgs == 0); 4878 break; 4879 4880 case ABIArgInfo::Extend: 4881 case ABIArgInfo::Direct: { 4882 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4883 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4884 ArgInfo.getDirectOffset() == 0) { 4885 assert(NumIRArgs == 1); 4886 llvm::Value *V; 4887 if (!I->isAggregate()) 4888 V = I->getKnownRValue().getScalarVal(); 4889 else 4890 V = Builder.CreateLoad( 4891 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4892 : I->getKnownRValue().getAggregateAddress()); 4893 4894 // Implement swifterror by copying into a new swifterror argument. 4895 // We'll write back in the normal path out of the call. 4896 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4897 == ParameterABI::SwiftErrorResult) { 4898 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4899 4900 QualType pointeeTy = I->Ty->getPointeeType(); 4901 swiftErrorArg = 4902 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4903 4904 swiftErrorTemp = 4905 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4906 V = swiftErrorTemp.getPointer(); 4907 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4908 4909 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4910 Builder.CreateStore(errorValue, swiftErrorTemp); 4911 } 4912 4913 // We might have to widen integers, but we should never truncate. 4914 if (ArgInfo.getCoerceToType() != V->getType() && 4915 V->getType()->isIntegerTy()) 4916 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4917 4918 // If the argument doesn't match, perform a bitcast to coerce it. This 4919 // can happen due to trivial type mismatches. 4920 if (FirstIRArg < IRFuncTy->getNumParams() && 4921 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4922 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4923 4924 IRCallArgs[FirstIRArg] = V; 4925 break; 4926 } 4927 4928 // FIXME: Avoid the conversion through memory if possible. 4929 Address Src = Address::invalid(); 4930 if (!I->isAggregate()) { 4931 Src = CreateMemTemp(I->Ty, "coerce"); 4932 I->copyInto(*this, Src); 4933 } else { 4934 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4935 : I->getKnownRValue().getAggregateAddress(); 4936 } 4937 4938 // If the value is offset in memory, apply the offset now. 4939 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4940 4941 // Fast-isel and the optimizer generally like scalar values better than 4942 // FCAs, so we flatten them if this is safe to do for this argument. 4943 llvm::StructType *STy = 4944 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4945 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4946 llvm::Type *SrcTy = Src.getElementType(); 4947 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4948 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4949 4950 // If the source type is smaller than the destination type of the 4951 // coerce-to logic, copy the source value into a temp alloca the size 4952 // of the destination type to allow loading all of it. The bits past 4953 // the source value are left undef. 4954 if (SrcSize < DstSize) { 4955 Address TempAlloca 4956 = CreateTempAlloca(STy, Src.getAlignment(), 4957 Src.getName() + ".coerce"); 4958 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4959 Src = TempAlloca; 4960 } else { 4961 Src = Builder.CreateBitCast(Src, 4962 STy->getPointerTo(Src.getAddressSpace())); 4963 } 4964 4965 assert(NumIRArgs == STy->getNumElements()); 4966 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4967 Address EltPtr = Builder.CreateStructGEP(Src, i); 4968 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4969 IRCallArgs[FirstIRArg + i] = LI; 4970 } 4971 } else { 4972 // In the simple case, just pass the coerced loaded value. 4973 assert(NumIRArgs == 1); 4974 llvm::Value *Load = 4975 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4976 4977 if (CallInfo.isCmseNSCall()) { 4978 // For certain parameter types, clear padding bits, as they may reveal 4979 // sensitive information. 4980 // Small struct/union types are passed as integer arrays. 4981 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 4982 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 4983 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 4984 } 4985 IRCallArgs[FirstIRArg] = Load; 4986 } 4987 4988 break; 4989 } 4990 4991 case ABIArgInfo::CoerceAndExpand: { 4992 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4993 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4994 4995 llvm::Value *tempSize = nullptr; 4996 Address addr = Address::invalid(); 4997 Address AllocaAddr = Address::invalid(); 4998 if (I->isAggregate()) { 4999 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5000 : I->getKnownRValue().getAggregateAddress(); 5001 5002 } else { 5003 RValue RV = I->getKnownRValue(); 5004 assert(RV.isScalar()); // complex should always just be direct 5005 5006 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5007 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5008 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 5009 5010 // Materialize to a temporary. 5011 addr = CreateTempAlloca( 5012 RV.getScalarVal()->getType(), 5013 CharUnits::fromQuantity(std::max( 5014 (unsigned)layout->getAlignment().value(), scalarAlign)), 5015 "tmp", 5016 /*ArraySize=*/nullptr, &AllocaAddr); 5017 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5018 5019 Builder.CreateStore(RV.getScalarVal(), addr); 5020 } 5021 5022 addr = Builder.CreateElementBitCast(addr, coercionType); 5023 5024 unsigned IRArgPos = FirstIRArg; 5025 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5026 llvm::Type *eltType = coercionType->getElementType(i); 5027 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5028 Address eltAddr = Builder.CreateStructGEP(addr, i); 5029 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5030 IRCallArgs[IRArgPos++] = elt; 5031 } 5032 assert(IRArgPos == FirstIRArg + NumIRArgs); 5033 5034 if (tempSize) { 5035 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5036 } 5037 5038 break; 5039 } 5040 5041 case ABIArgInfo::Expand: { 5042 unsigned IRArgPos = FirstIRArg; 5043 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5044 assert(IRArgPos == FirstIRArg + NumIRArgs); 5045 break; 5046 } 5047 } 5048 } 5049 5050 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5051 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5052 5053 // If we're using inalloca, set up that argument. 5054 if (ArgMemory.isValid()) { 5055 llvm::Value *Arg = ArgMemory.getPointer(); 5056 if (CallInfo.isVariadic()) { 5057 // When passing non-POD arguments by value to variadic functions, we will 5058 // end up with a variadic prototype and an inalloca call site. In such 5059 // cases, we can't do any parameter mismatch checks. Give up and bitcast 5060 // the callee. 5061 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 5062 CalleePtr = 5063 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 5064 } else { 5065 llvm::Type *LastParamTy = 5066 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 5067 if (Arg->getType() != LastParamTy) { 5068 #ifndef NDEBUG 5069 // Assert that these structs have equivalent element types. 5070 llvm::StructType *FullTy = CallInfo.getArgStruct(); 5071 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 5072 cast<llvm::PointerType>(LastParamTy)->getElementType()); 5073 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 5074 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 5075 DE = DeclaredTy->element_end(), 5076 FI = FullTy->element_begin(); 5077 DI != DE; ++DI, ++FI) 5078 assert(*DI == *FI); 5079 #endif 5080 Arg = Builder.CreateBitCast(Arg, LastParamTy); 5081 } 5082 } 5083 assert(IRFunctionArgs.hasInallocaArg()); 5084 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5085 } 5086 5087 // 2. Prepare the function pointer. 5088 5089 // If the callee is a bitcast of a non-variadic function to have a 5090 // variadic function pointer type, check to see if we can remove the 5091 // bitcast. This comes up with unprototyped functions. 5092 // 5093 // This makes the IR nicer, but more importantly it ensures that we 5094 // can inline the function at -O0 if it is marked always_inline. 5095 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5096 llvm::Value *Ptr) -> llvm::Function * { 5097 if (!CalleeFT->isVarArg()) 5098 return nullptr; 5099 5100 // Get underlying value if it's a bitcast 5101 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5102 if (CE->getOpcode() == llvm::Instruction::BitCast) 5103 Ptr = CE->getOperand(0); 5104 } 5105 5106 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5107 if (!OrigFn) 5108 return nullptr; 5109 5110 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5111 5112 // If the original type is variadic, or if any of the component types 5113 // disagree, we cannot remove the cast. 5114 if (OrigFT->isVarArg() || 5115 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5116 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5117 return nullptr; 5118 5119 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5120 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5121 return nullptr; 5122 5123 return OrigFn; 5124 }; 5125 5126 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5127 CalleePtr = OrigFn; 5128 IRFuncTy = OrigFn->getFunctionType(); 5129 } 5130 5131 // 3. Perform the actual call. 5132 5133 // Deactivate any cleanups that we're supposed to do immediately before 5134 // the call. 5135 if (!CallArgs.getCleanupsToDeactivate().empty()) 5136 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5137 5138 // Assert that the arguments we computed match up. The IR verifier 5139 // will catch this, but this is a common enough source of problems 5140 // during IRGen changes that it's way better for debugging to catch 5141 // it ourselves here. 5142 #ifndef NDEBUG 5143 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5144 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5145 // Inalloca argument can have different type. 5146 if (IRFunctionArgs.hasInallocaArg() && 5147 i == IRFunctionArgs.getInallocaArgNo()) 5148 continue; 5149 if (i < IRFuncTy->getNumParams()) 5150 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5151 } 5152 #endif 5153 5154 // Update the largest vector width if any arguments have vector types. 5155 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5156 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 5157 LargestVectorWidth = 5158 std::max((uint64_t)LargestVectorWidth, 5159 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5160 } 5161 5162 // Compute the calling convention and attributes. 5163 unsigned CallingConv; 5164 llvm::AttributeList Attrs; 5165 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5166 Callee.getAbstractInfo(), Attrs, CallingConv, 5167 /*AttrOnCallSite=*/true, 5168 /*IsThunk=*/false); 5169 5170 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5171 if (FD->hasAttr<StrictFPAttr>()) 5172 // All calls within a strictfp function are marked strictfp 5173 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5174 5175 // Add call-site nomerge attribute if exists. 5176 if (InNoMergeAttributedStmt) 5177 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5178 5179 // Apply some call-site-specific attributes. 5180 // TODO: work this into building the attribute set. 5181 5182 // Apply always_inline to all calls within flatten functions. 5183 // FIXME: should this really take priority over __try, below? 5184 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5185 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5186 Attrs = 5187 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5188 } 5189 5190 // Disable inlining inside SEH __try blocks. 5191 if (isSEHTryScope()) { 5192 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5193 } 5194 5195 // Decide whether to use a call or an invoke. 5196 bool CannotThrow; 5197 if (currentFunctionUsesSEHTry()) { 5198 // SEH cares about asynchronous exceptions, so everything can "throw." 5199 CannotThrow = false; 5200 } else if (isCleanupPadScope() && 5201 EHPersonality::get(*this).isMSVCXXPersonality()) { 5202 // The MSVC++ personality will implicitly terminate the program if an 5203 // exception is thrown during a cleanup outside of a try/catch. 5204 // We don't need to model anything in IR to get this behavior. 5205 CannotThrow = true; 5206 } else { 5207 // Otherwise, nounwind call sites will never throw. 5208 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5209 5210 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5211 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5212 CannotThrow = true; 5213 } 5214 5215 // If we made a temporary, be sure to clean up after ourselves. Note that we 5216 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5217 // pop this cleanup later on. Being eager about this is OK, since this 5218 // temporary is 'invisible' outside of the callee. 5219 if (UnusedReturnSizePtr) 5220 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5221 UnusedReturnSizePtr); 5222 5223 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5224 5225 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5226 getBundlesForFunclet(CalleePtr); 5227 5228 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5229 if (FD->hasAttr<StrictFPAttr>()) 5230 // All calls within a strictfp function are marked strictfp 5231 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5232 5233 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5234 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5235 5236 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5237 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5238 5239 // Emit the actual call/invoke instruction. 5240 llvm::CallBase *CI; 5241 if (!InvokeDest) { 5242 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5243 } else { 5244 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5245 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5246 BundleList); 5247 EmitBlock(Cont); 5248 } 5249 if (callOrInvoke) 5250 *callOrInvoke = CI; 5251 5252 // If this is within a function that has the guard(nocf) attribute and is an 5253 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5254 // Control Flow Guard checks should not be added, even if the call is inlined. 5255 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5256 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5257 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5258 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5259 } 5260 } 5261 5262 // Apply the attributes and calling convention. 5263 CI->setAttributes(Attrs); 5264 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5265 5266 // Apply various metadata. 5267 5268 if (!CI->getType()->isVoidTy()) 5269 CI->setName("call"); 5270 5271 // Update largest vector width from the return type. 5272 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 5273 LargestVectorWidth = 5274 std::max((uint64_t)LargestVectorWidth, 5275 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5276 5277 // Insert instrumentation or attach profile metadata at indirect call sites. 5278 // For more details, see the comment before the definition of 5279 // IPVK_IndirectCallTarget in InstrProfData.inc. 5280 if (!CI->getCalledFunction()) 5281 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5282 CI, CalleePtr); 5283 5284 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5285 // optimizer it can aggressively ignore unwind edges. 5286 if (CGM.getLangOpts().ObjCAutoRefCount) 5287 AddObjCARCExceptionMetadata(CI); 5288 5289 // Set tail call kind if necessary. 5290 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5291 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5292 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5293 else if (IsMustTail) 5294 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5295 } 5296 5297 // Add metadata for calls to MSAllocator functions 5298 if (getDebugInfo() && TargetDecl && 5299 TargetDecl->hasAttr<MSAllocatorAttr>()) 5300 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5301 5302 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5303 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5304 llvm::ConstantInt *Line = 5305 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding()); 5306 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5307 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5308 CI->setMetadata("srcloc", MDT); 5309 } 5310 5311 // 4. Finish the call. 5312 5313 // If the call doesn't return, finish the basic block and clear the 5314 // insertion point; this allows the rest of IRGen to discard 5315 // unreachable code. 5316 if (CI->doesNotReturn()) { 5317 if (UnusedReturnSizePtr) 5318 PopCleanupBlock(); 5319 5320 // Strip away the noreturn attribute to better diagnose unreachable UB. 5321 if (SanOpts.has(SanitizerKind::Unreachable)) { 5322 // Also remove from function since CallBase::hasFnAttr additionally checks 5323 // attributes of the called function. 5324 if (auto *F = CI->getCalledFunction()) 5325 F->removeFnAttr(llvm::Attribute::NoReturn); 5326 CI->removeFnAttr(llvm::Attribute::NoReturn); 5327 5328 // Avoid incompatibility with ASan which relies on the `noreturn` 5329 // attribute to insert handler calls. 5330 if (SanOpts.hasOneOf(SanitizerKind::Address | 5331 SanitizerKind::KernelAddress)) { 5332 SanitizerScope SanScope(this); 5333 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5334 Builder.SetInsertPoint(CI); 5335 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5336 llvm::FunctionCallee Fn = 5337 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5338 EmitNounwindRuntimeCall(Fn); 5339 } 5340 } 5341 5342 EmitUnreachable(Loc); 5343 Builder.ClearInsertionPoint(); 5344 5345 // FIXME: For now, emit a dummy basic block because expr emitters in 5346 // generally are not ready to handle emitting expressions at unreachable 5347 // points. 5348 EnsureInsertPoint(); 5349 5350 // Return a reasonable RValue. 5351 return GetUndefRValue(RetTy); 5352 } 5353 5354 // If this is a musttail call, return immediately. We do not branch to the 5355 // epilogue in this case. 5356 if (IsMustTail) { 5357 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5358 ++it) { 5359 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5360 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5361 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5362 } 5363 if (CI->getType()->isVoidTy()) 5364 Builder.CreateRetVoid(); 5365 else 5366 Builder.CreateRet(CI); 5367 Builder.ClearInsertionPoint(); 5368 EnsureInsertPoint(); 5369 return GetUndefRValue(RetTy); 5370 } 5371 5372 // Perform the swifterror writeback. 5373 if (swiftErrorTemp.isValid()) { 5374 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5375 Builder.CreateStore(errorResult, swiftErrorArg); 5376 } 5377 5378 // Emit any call-associated writebacks immediately. Arguably this 5379 // should happen after any return-value munging. 5380 if (CallArgs.hasWritebacks()) 5381 emitWritebacks(*this, CallArgs); 5382 5383 // The stack cleanup for inalloca arguments has to run out of the normal 5384 // lexical order, so deactivate it and run it manually here. 5385 CallArgs.freeArgumentMemory(*this); 5386 5387 // Extract the return value. 5388 RValue Ret = [&] { 5389 switch (RetAI.getKind()) { 5390 case ABIArgInfo::CoerceAndExpand: { 5391 auto coercionType = RetAI.getCoerceAndExpandType(); 5392 5393 Address addr = SRetPtr; 5394 addr = Builder.CreateElementBitCast(addr, coercionType); 5395 5396 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5397 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5398 5399 unsigned unpaddedIndex = 0; 5400 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5401 llvm::Type *eltType = coercionType->getElementType(i); 5402 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5403 Address eltAddr = Builder.CreateStructGEP(addr, i); 5404 llvm::Value *elt = CI; 5405 if (requiresExtract) 5406 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5407 else 5408 assert(unpaddedIndex == 0); 5409 Builder.CreateStore(elt, eltAddr); 5410 } 5411 // FALLTHROUGH 5412 LLVM_FALLTHROUGH; 5413 } 5414 5415 case ABIArgInfo::InAlloca: 5416 case ABIArgInfo::Indirect: { 5417 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5418 if (UnusedReturnSizePtr) 5419 PopCleanupBlock(); 5420 return ret; 5421 } 5422 5423 case ABIArgInfo::Ignore: 5424 // If we are ignoring an argument that had a result, make sure to 5425 // construct the appropriate return value for our caller. 5426 return GetUndefRValue(RetTy); 5427 5428 case ABIArgInfo::Extend: 5429 case ABIArgInfo::Direct: { 5430 llvm::Type *RetIRTy = ConvertType(RetTy); 5431 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5432 switch (getEvaluationKind(RetTy)) { 5433 case TEK_Complex: { 5434 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5435 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5436 return RValue::getComplex(std::make_pair(Real, Imag)); 5437 } 5438 case TEK_Aggregate: { 5439 Address DestPtr = ReturnValue.getValue(); 5440 bool DestIsVolatile = ReturnValue.isVolatile(); 5441 5442 if (!DestPtr.isValid()) { 5443 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5444 DestIsVolatile = false; 5445 } 5446 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5447 return RValue::getAggregate(DestPtr); 5448 } 5449 case TEK_Scalar: { 5450 // If the argument doesn't match, perform a bitcast to coerce it. This 5451 // can happen due to trivial type mismatches. 5452 llvm::Value *V = CI; 5453 if (V->getType() != RetIRTy) 5454 V = Builder.CreateBitCast(V, RetIRTy); 5455 return RValue::get(V); 5456 } 5457 } 5458 llvm_unreachable("bad evaluation kind"); 5459 } 5460 5461 Address DestPtr = ReturnValue.getValue(); 5462 bool DestIsVolatile = ReturnValue.isVolatile(); 5463 5464 if (!DestPtr.isValid()) { 5465 DestPtr = CreateMemTemp(RetTy, "coerce"); 5466 DestIsVolatile = false; 5467 } 5468 5469 // If the value is offset in memory, apply the offset now. 5470 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5471 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5472 5473 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5474 } 5475 5476 case ABIArgInfo::Expand: 5477 case ABIArgInfo::IndirectAliased: 5478 llvm_unreachable("Invalid ABI kind for return argument"); 5479 } 5480 5481 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5482 } (); 5483 5484 // Emit the assume_aligned check on the return value. 5485 if (Ret.isScalar() && TargetDecl) { 5486 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5487 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5488 } 5489 5490 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5491 // we can't use the full cleanup mechanism. 5492 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5493 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5494 5495 if (!ReturnValue.isExternallyDestructed() && 5496 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5497 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5498 RetTy); 5499 5500 return Ret; 5501 } 5502 5503 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5504 if (isVirtual()) { 5505 const CallExpr *CE = getVirtualCallExpr(); 5506 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5507 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5508 CE ? CE->getBeginLoc() : SourceLocation()); 5509 } 5510 5511 return *this; 5512 } 5513 5514 /* VarArg handling */ 5515 5516 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5517 VAListAddr = VE->isMicrosoftABI() 5518 ? EmitMSVAListRef(VE->getSubExpr()) 5519 : EmitVAListRef(VE->getSubExpr()); 5520 QualType Ty = VE->getType(); 5521 if (VE->isMicrosoftABI()) 5522 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5523 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5524 } 5525