1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "CGCXXABI.h" 17 #include "ABIInfo.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Attributes.h" 26 #include "llvm/Support/CallSite.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/InlineAsm.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 /***/ 34 35 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 36 switch (CC) { 37 default: return llvm::CallingConv::C; 38 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 39 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 40 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 41 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 42 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 43 // TODO: add support for CC_X86Pascal to llvm 44 } 45 } 46 47 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 48 /// qualification. 49 /// FIXME: address space qualification? 50 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 51 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 52 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 53 } 54 55 /// Returns the canonical formal type of the given C++ method. 56 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 57 return MD->getType()->getCanonicalTypeUnqualified() 58 .getAs<FunctionProtoType>(); 59 } 60 61 /// Returns the "extra-canonicalized" return type, which discards 62 /// qualifiers on the return type. Codegen doesn't care about them, 63 /// and it makes ABI code a little easier to be able to assume that 64 /// all parameter and return types are top-level unqualified. 65 static CanQualType GetReturnType(QualType RetTy) { 66 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 67 } 68 69 const CGFunctionInfo & 70 CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP) { 71 return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(), 72 llvm::SmallVector<CanQualType, 16>(), 73 FTNP->getExtInfo()); 74 } 75 76 /// \param Args - contains any initial parameters besides those 77 /// in the formal type 78 static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT, 79 llvm::SmallVectorImpl<CanQualType> &ArgTys, 80 CanQual<FunctionProtoType> FTP) { 81 // FIXME: Kill copy. 82 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 83 ArgTys.push_back(FTP->getArgType(i)); 84 CanQualType ResTy = FTP->getResultType().getUnqualifiedType(); 85 return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); 86 } 87 88 const CGFunctionInfo & 89 CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP) { 90 llvm::SmallVector<CanQualType, 16> ArgTys; 91 return ::getFunctionInfo(*this, ArgTys, FTP); 92 } 93 94 static CallingConv getCallingConventionForDecl(const Decl *D) { 95 // Set the appropriate calling convention for the Function. 96 if (D->hasAttr<StdCallAttr>()) 97 return CC_X86StdCall; 98 99 if (D->hasAttr<FastCallAttr>()) 100 return CC_X86FastCall; 101 102 if (D->hasAttr<ThisCallAttr>()) 103 return CC_X86ThisCall; 104 105 if (D->hasAttr<PascalAttr>()) 106 return CC_X86Pascal; 107 108 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 109 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 110 111 return CC_C; 112 } 113 114 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD, 115 const FunctionProtoType *FTP) { 116 llvm::SmallVector<CanQualType, 16> ArgTys; 117 118 // Add the 'this' pointer. 119 ArgTys.push_back(GetThisType(Context, RD)); 120 121 return ::getFunctionInfo(*this, ArgTys, 122 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 123 } 124 125 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) { 126 llvm::SmallVector<CanQualType, 16> ArgTys; 127 128 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); 129 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 130 131 // Add the 'this' pointer unless this is a static method. 132 if (MD->isInstance()) 133 ArgTys.push_back(GetThisType(Context, MD->getParent())); 134 135 return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD)); 136 } 137 138 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D, 139 CXXCtorType Type) { 140 llvm::SmallVector<CanQualType, 16> ArgTys; 141 ArgTys.push_back(GetThisType(Context, D->getParent())); 142 CanQualType ResTy = Context.VoidTy; 143 144 TheCXXABI.BuildConstructorSignature(D, Type, ResTy, ArgTys); 145 146 CanQual<FunctionProtoType> FTP = GetFormalType(D); 147 148 // Add the formal parameters. 149 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 150 ArgTys.push_back(FTP->getArgType(i)); 151 152 return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); 153 } 154 155 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D, 156 CXXDtorType Type) { 157 llvm::SmallVector<CanQualType, 2> ArgTys; 158 ArgTys.push_back(GetThisType(Context, D->getParent())); 159 CanQualType ResTy = Context.VoidTy; 160 161 TheCXXABI.BuildDestructorSignature(D, Type, ResTy, ArgTys); 162 163 CanQual<FunctionProtoType> FTP = GetFormalType(D); 164 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); 165 166 return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); 167 } 168 169 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) { 170 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 171 if (MD->isInstance()) 172 return getFunctionInfo(MD); 173 174 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 175 assert(isa<FunctionType>(FTy)); 176 if (isa<FunctionNoProtoType>(FTy)) 177 return getFunctionInfo(FTy.getAs<FunctionNoProtoType>()); 178 assert(isa<FunctionProtoType>(FTy)); 179 return getFunctionInfo(FTy.getAs<FunctionProtoType>()); 180 } 181 182 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) { 183 llvm::SmallVector<CanQualType, 16> ArgTys; 184 ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType())); 185 ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 186 // FIXME: Kill copy? 187 for (ObjCMethodDecl::param_iterator i = MD->param_begin(), 188 e = MD->param_end(); i != e; ++i) { 189 ArgTys.push_back(Context.getCanonicalParamType((*i)->getType())); 190 } 191 192 FunctionType::ExtInfo einfo; 193 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); 194 195 if (getContext().getLangOptions().ObjCAutoRefCount && 196 MD->hasAttr<NSReturnsRetainedAttr>()) 197 einfo = einfo.withProducesResult(true); 198 199 return getFunctionInfo(GetReturnType(MD->getResultType()), ArgTys, einfo); 200 } 201 202 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) { 203 // FIXME: Do we need to handle ObjCMethodDecl? 204 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 205 206 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 207 return getFunctionInfo(CD, GD.getCtorType()); 208 209 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 210 return getFunctionInfo(DD, GD.getDtorType()); 211 212 return getFunctionInfo(FD); 213 } 214 215 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, 216 const CallArgList &Args, 217 const FunctionType::ExtInfo &Info) { 218 // FIXME: Kill copy. 219 llvm::SmallVector<CanQualType, 16> ArgTys; 220 for (CallArgList::const_iterator i = Args.begin(), e = Args.end(); 221 i != e; ++i) 222 ArgTys.push_back(Context.getCanonicalParamType(i->Ty)); 223 return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); 224 } 225 226 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, 227 const FunctionArgList &Args, 228 const FunctionType::ExtInfo &Info) { 229 // FIXME: Kill copy. 230 llvm::SmallVector<CanQualType, 16> ArgTys; 231 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 232 i != e; ++i) 233 ArgTys.push_back(Context.getCanonicalParamType((*i)->getType())); 234 return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); 235 } 236 237 const CGFunctionInfo &CodeGenTypes::getNullaryFunctionInfo() { 238 llvm::SmallVector<CanQualType, 1> args; 239 return getFunctionInfo(getContext().VoidTy, args, FunctionType::ExtInfo()); 240 } 241 242 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy, 243 const llvm::SmallVectorImpl<CanQualType> &ArgTys, 244 const FunctionType::ExtInfo &Info) { 245 #ifndef NDEBUG 246 for (llvm::SmallVectorImpl<CanQualType>::const_iterator 247 I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I) 248 assert(I->isCanonicalAsParam()); 249 #endif 250 251 unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC()); 252 253 // Lookup or create unique function info. 254 llvm::FoldingSetNodeID ID; 255 CGFunctionInfo::Profile(ID, Info, ResTy, ArgTys.begin(), ArgTys.end()); 256 257 void *InsertPos = 0; 258 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos); 259 if (FI) 260 return *FI; 261 262 // Construct the function info. 263 FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getProducesResult(), 264 Info.getHasRegParm(), Info.getRegParm(), ResTy, 265 ArgTys.data(), ArgTys.size()); 266 FunctionInfos.InsertNode(FI, InsertPos); 267 268 // Compute ABI information. 269 getABIInfo().computeInfo(*FI); 270 271 // Loop over all of the computed argument and return value info. If any of 272 // them are direct or extend without a specified coerce type, specify the 273 // default now. 274 ABIArgInfo &RetInfo = FI->getReturnInfo(); 275 if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0) 276 RetInfo.setCoerceToType(ConvertType(FI->getReturnType())); 277 278 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); 279 I != E; ++I) 280 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) 281 I->info.setCoerceToType(ConvertType(I->type)); 282 283 return *FI; 284 } 285 286 CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention, 287 bool _NoReturn, bool returnsRetained, 288 bool _HasRegParm, unsigned _RegParm, 289 CanQualType ResTy, 290 const CanQualType *ArgTys, 291 unsigned NumArgTys) 292 : CallingConvention(_CallingConvention), 293 EffectiveCallingConvention(_CallingConvention), 294 NoReturn(_NoReturn), ReturnsRetained(returnsRetained), 295 HasRegParm(_HasRegParm), RegParm(_RegParm) 296 { 297 NumArgs = NumArgTys; 298 299 // FIXME: Coallocate with the CGFunctionInfo object. 300 Args = new ArgInfo[1 + NumArgTys]; 301 Args[0].type = ResTy; 302 for (unsigned i = 0; i != NumArgTys; ++i) 303 Args[1 + i].type = ArgTys[i]; 304 } 305 306 /***/ 307 308 void CodeGenTypes::GetExpandedTypes(QualType type, 309 llvm::SmallVectorImpl<llvm::Type*> &expandedTypes) { 310 const RecordType *RT = type->getAsStructureType(); 311 assert(RT && "Can only expand structure types."); 312 const RecordDecl *RD = RT->getDecl(); 313 assert(!RD->hasFlexibleArrayMember() && 314 "Cannot expand structure with flexible array."); 315 316 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 317 i != e; ++i) { 318 const FieldDecl *FD = *i; 319 assert(!FD->isBitField() && 320 "Cannot expand structure with bit-field members."); 321 322 QualType fieldType = FD->getType(); 323 if (fieldType->isRecordType()) 324 GetExpandedTypes(fieldType, expandedTypes); 325 else 326 expandedTypes.push_back(ConvertType(fieldType)); 327 } 328 } 329 330 llvm::Function::arg_iterator 331 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 332 llvm::Function::arg_iterator AI) { 333 const RecordType *RT = Ty->getAsStructureType(); 334 assert(RT && "Can only expand structure types."); 335 336 RecordDecl *RD = RT->getDecl(); 337 assert(LV.isSimple() && 338 "Unexpected non-simple lvalue during struct expansion."); 339 llvm::Value *Addr = LV.getAddress(); 340 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 341 i != e; ++i) { 342 FieldDecl *FD = *i; 343 QualType FT = FD->getType(); 344 345 // FIXME: What are the right qualifiers here? 346 LValue LV = EmitLValueForField(Addr, FD, 0); 347 if (CodeGenFunction::hasAggregateLLVMType(FT)) { 348 AI = ExpandTypeFromArgs(FT, LV, AI); 349 } else { 350 EmitStoreThroughLValue(RValue::get(AI), LV); 351 ++AI; 352 } 353 } 354 355 return AI; 356 } 357 358 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 359 /// accessing some number of bytes out of it, try to gep into the struct to get 360 /// at its inner goodness. Dive as deep as possible without entering an element 361 /// with an in-memory size smaller than DstSize. 362 static llvm::Value * 363 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 364 const llvm::StructType *SrcSTy, 365 uint64_t DstSize, CodeGenFunction &CGF) { 366 // We can't dive into a zero-element struct. 367 if (SrcSTy->getNumElements() == 0) return SrcPtr; 368 369 const llvm::Type *FirstElt = SrcSTy->getElementType(0); 370 371 // If the first elt is at least as large as what we're looking for, or if the 372 // first element is the same size as the whole struct, we can enter it. 373 uint64_t FirstEltSize = 374 CGF.CGM.getTargetData().getTypeAllocSize(FirstElt); 375 if (FirstEltSize < DstSize && 376 FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy)) 377 return SrcPtr; 378 379 // GEP into the first element. 380 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 381 382 // If the first element is a struct, recurse. 383 const llvm::Type *SrcTy = 384 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 385 if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 386 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 387 388 return SrcPtr; 389 } 390 391 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 392 /// are either integers or pointers. This does a truncation of the value if it 393 /// is too large or a zero extension if it is too small. 394 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 395 const llvm::Type *Ty, 396 CodeGenFunction &CGF) { 397 if (Val->getType() == Ty) 398 return Val; 399 400 if (isa<llvm::PointerType>(Val->getType())) { 401 // If this is Pointer->Pointer avoid conversion to and from int. 402 if (isa<llvm::PointerType>(Ty)) 403 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 404 405 // Convert the pointer to an integer so we can play with its width. 406 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 407 } 408 409 const llvm::Type *DestIntTy = Ty; 410 if (isa<llvm::PointerType>(DestIntTy)) 411 DestIntTy = CGF.IntPtrTy; 412 413 if (Val->getType() != DestIntTy) 414 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 415 416 if (isa<llvm::PointerType>(Ty)) 417 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 418 return Val; 419 } 420 421 422 423 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 424 /// a pointer to an object of type \arg Ty. 425 /// 426 /// This safely handles the case when the src type is smaller than the 427 /// destination type; in this situation the values of bits which not 428 /// present in the src are undefined. 429 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 430 const llvm::Type *Ty, 431 CodeGenFunction &CGF) { 432 const llvm::Type *SrcTy = 433 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 434 435 // If SrcTy and Ty are the same, just do a load. 436 if (SrcTy == Ty) 437 return CGF.Builder.CreateLoad(SrcPtr); 438 439 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); 440 441 if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 442 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 443 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 444 } 445 446 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 447 448 // If the source and destination are integer or pointer types, just do an 449 // extension or truncation to the desired type. 450 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 451 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 452 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 453 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 454 } 455 456 // If load is legal, just bitcast the src pointer. 457 if (SrcSize >= DstSize) { 458 // Generally SrcSize is never greater than DstSize, since this means we are 459 // losing bits. However, this can happen in cases where the structure has 460 // additional padding, for example due to a user specified alignment. 461 // 462 // FIXME: Assert that we aren't truncating non-padding bits when have access 463 // to that information. 464 llvm::Value *Casted = 465 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 466 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 467 // FIXME: Use better alignment / avoid requiring aligned load. 468 Load->setAlignment(1); 469 return Load; 470 } 471 472 // Otherwise do coercion through memory. This is stupid, but 473 // simple. 474 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 475 llvm::Value *Casted = 476 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); 477 llvm::StoreInst *Store = 478 CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); 479 // FIXME: Use better alignment / avoid requiring aligned store. 480 Store->setAlignment(1); 481 return CGF.Builder.CreateLoad(Tmp); 482 } 483 484 // Function to store a first-class aggregate into memory. We prefer to 485 // store the elements rather than the aggregate to be more friendly to 486 // fast-isel. 487 // FIXME: Do we need to recurse here? 488 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 489 llvm::Value *DestPtr, bool DestIsVolatile, 490 bool LowAlignment) { 491 // Prefer scalar stores to first-class aggregate stores. 492 if (const llvm::StructType *STy = 493 dyn_cast<llvm::StructType>(Val->getType())) { 494 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 495 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 496 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 497 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 498 DestIsVolatile); 499 if (LowAlignment) 500 SI->setAlignment(1); 501 } 502 } else { 503 CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 504 } 505 } 506 507 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 508 /// where the source and destination may have different types. 509 /// 510 /// This safely handles the case when the src type is larger than the 511 /// destination type; the upper bits of the src will be lost. 512 static void CreateCoercedStore(llvm::Value *Src, 513 llvm::Value *DstPtr, 514 bool DstIsVolatile, 515 CodeGenFunction &CGF) { 516 const llvm::Type *SrcTy = Src->getType(); 517 const llvm::Type *DstTy = 518 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 519 if (SrcTy == DstTy) { 520 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 521 return; 522 } 523 524 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 525 526 if (const llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 527 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 528 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 529 } 530 531 // If the source and destination are integer or pointer types, just do an 532 // extension or truncation to the desired type. 533 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 534 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 535 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 536 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 537 return; 538 } 539 540 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); 541 542 // If store is legal, just bitcast the src pointer. 543 if (SrcSize <= DstSize) { 544 llvm::Value *Casted = 545 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 546 // FIXME: Use better alignment / avoid requiring aligned store. 547 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 548 } else { 549 // Otherwise do coercion through memory. This is stupid, but 550 // simple. 551 552 // Generally SrcSize is never greater than DstSize, since this means we are 553 // losing bits. However, this can happen in cases where the structure has 554 // additional padding, for example due to a user specified alignment. 555 // 556 // FIXME: Assert that we aren't truncating non-padding bits when have access 557 // to that information. 558 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 559 CGF.Builder.CreateStore(Src, Tmp); 560 llvm::Value *Casted = 561 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); 562 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 563 // FIXME: Use better alignment / avoid requiring aligned load. 564 Load->setAlignment(1); 565 CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile); 566 } 567 } 568 569 /***/ 570 571 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 572 return FI.getReturnInfo().isIndirect(); 573 } 574 575 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 576 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 577 switch (BT->getKind()) { 578 default: 579 return false; 580 case BuiltinType::Float: 581 return getContext().Target.useObjCFPRetForRealType(TargetInfo::Float); 582 case BuiltinType::Double: 583 return getContext().Target.useObjCFPRetForRealType(TargetInfo::Double); 584 case BuiltinType::LongDouble: 585 return getContext().Target.useObjCFPRetForRealType( 586 TargetInfo::LongDouble); 587 } 588 } 589 590 return false; 591 } 592 593 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 594 const CGFunctionInfo &FI = getFunctionInfo(GD); 595 596 // For definition purposes, don't consider a K&R function variadic. 597 bool Variadic = false; 598 if (const FunctionProtoType *FPT = 599 cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>()) 600 Variadic = FPT->isVariadic(); 601 602 return GetFunctionType(FI, Variadic); 603 } 604 605 llvm::FunctionType * 606 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool isVariadic) { 607 llvm::SmallVector<llvm::Type*, 8> argTypes; 608 const llvm::Type *resultType = 0; 609 610 const ABIArgInfo &retAI = FI.getReturnInfo(); 611 switch (retAI.getKind()) { 612 case ABIArgInfo::Expand: 613 llvm_unreachable("Invalid ABI kind for return argument"); 614 615 case ABIArgInfo::Extend: 616 case ABIArgInfo::Direct: 617 resultType = retAI.getCoerceToType(); 618 break; 619 620 case ABIArgInfo::Indirect: { 621 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 622 resultType = llvm::Type::getVoidTy(getLLVMContext()); 623 624 QualType ret = FI.getReturnType(); 625 const llvm::Type *ty = ConvertType(ret); 626 unsigned addressSpace = Context.getTargetAddressSpace(ret); 627 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 628 break; 629 } 630 631 case ABIArgInfo::Ignore: 632 resultType = llvm::Type::getVoidTy(getLLVMContext()); 633 break; 634 } 635 636 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 637 ie = FI.arg_end(); it != ie; ++it) { 638 const ABIArgInfo &argAI = it->info; 639 640 switch (argAI.getKind()) { 641 case ABIArgInfo::Ignore: 642 break; 643 644 case ABIArgInfo::Indirect: { 645 // indirect arguments are always on the stack, which is addr space #0. 646 const llvm::Type *LTy = ConvertTypeForMem(it->type); 647 argTypes.push_back(LTy->getPointerTo()); 648 break; 649 } 650 651 case ABIArgInfo::Extend: 652 case ABIArgInfo::Direct: { 653 // If the coerce-to type is a first class aggregate, flatten it. Either 654 // way is semantically identical, but fast-isel and the optimizer 655 // generally likes scalar values better than FCAs. 656 llvm::Type *argType = argAI.getCoerceToType(); 657 if (const llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { 658 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 659 argTypes.push_back(st->getElementType(i)); 660 } else { 661 argTypes.push_back(argType); 662 } 663 break; 664 } 665 666 case ABIArgInfo::Expand: 667 GetExpandedTypes(it->type, argTypes); 668 break; 669 } 670 } 671 672 return llvm::FunctionType::get(resultType, argTypes, isVariadic); 673 } 674 675 const llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 676 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 677 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 678 679 if (!isFuncTypeConvertible(FPT)) 680 return llvm::StructType::get(getLLVMContext()); 681 682 const CGFunctionInfo *Info; 683 if (isa<CXXDestructorDecl>(MD)) 684 Info = &getFunctionInfo(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 685 else 686 Info = &getFunctionInfo(MD); 687 return GetFunctionType(*Info, FPT->isVariadic()); 688 } 689 690 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 691 const Decl *TargetDecl, 692 AttributeListType &PAL, 693 unsigned &CallingConv) { 694 unsigned FuncAttrs = 0; 695 unsigned RetAttrs = 0; 696 697 CallingConv = FI.getEffectiveCallingConvention(); 698 699 if (FI.isNoReturn()) 700 FuncAttrs |= llvm::Attribute::NoReturn; 701 702 // FIXME: handle sseregparm someday... 703 if (TargetDecl) { 704 if (TargetDecl->hasAttr<NoThrowAttr>()) 705 FuncAttrs |= llvm::Attribute::NoUnwind; 706 else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 707 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 708 if (FPT && FPT->isNothrow(getContext())) 709 FuncAttrs |= llvm::Attribute::NoUnwind; 710 } 711 712 if (TargetDecl->hasAttr<NoReturnAttr>()) 713 FuncAttrs |= llvm::Attribute::NoReturn; 714 if (TargetDecl->hasAttr<ConstAttr>()) 715 FuncAttrs |= llvm::Attribute::ReadNone; 716 else if (TargetDecl->hasAttr<PureAttr>()) 717 FuncAttrs |= llvm::Attribute::ReadOnly; 718 if (TargetDecl->hasAttr<MallocAttr>()) 719 RetAttrs |= llvm::Attribute::NoAlias; 720 } 721 722 if (CodeGenOpts.OptimizeSize) 723 FuncAttrs |= llvm::Attribute::OptimizeForSize; 724 if (CodeGenOpts.DisableRedZone) 725 FuncAttrs |= llvm::Attribute::NoRedZone; 726 if (CodeGenOpts.NoImplicitFloat) 727 FuncAttrs |= llvm::Attribute::NoImplicitFloat; 728 729 QualType RetTy = FI.getReturnType(); 730 unsigned Index = 1; 731 const ABIArgInfo &RetAI = FI.getReturnInfo(); 732 switch (RetAI.getKind()) { 733 case ABIArgInfo::Extend: 734 if (RetTy->hasSignedIntegerRepresentation()) 735 RetAttrs |= llvm::Attribute::SExt; 736 else if (RetTy->hasUnsignedIntegerRepresentation()) 737 RetAttrs |= llvm::Attribute::ZExt; 738 break; 739 case ABIArgInfo::Direct: 740 case ABIArgInfo::Ignore: 741 break; 742 743 case ABIArgInfo::Indirect: 744 PAL.push_back(llvm::AttributeWithIndex::get(Index, 745 llvm::Attribute::StructRet)); 746 ++Index; 747 // sret disables readnone and readonly 748 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 749 llvm::Attribute::ReadNone); 750 break; 751 752 case ABIArgInfo::Expand: 753 assert(0 && "Invalid ABI kind for return argument"); 754 } 755 756 if (RetAttrs) 757 PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); 758 759 // FIXME: RegParm should be reduced in case of global register variable. 760 signed RegParm; 761 if (FI.getHasRegParm()) 762 RegParm = FI.getRegParm(); 763 else 764 RegParm = CodeGenOpts.NumRegisterParameters; 765 766 unsigned PointerWidth = getContext().Target.getPointerWidth(0); 767 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 768 ie = FI.arg_end(); it != ie; ++it) { 769 QualType ParamType = it->type; 770 const ABIArgInfo &AI = it->info; 771 unsigned Attributes = 0; 772 773 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 774 // have the corresponding parameter variable. It doesn't make 775 // sense to do it here because parameters are so messed up. 776 switch (AI.getKind()) { 777 case ABIArgInfo::Extend: 778 if (ParamType->isSignedIntegerOrEnumerationType()) 779 Attributes |= llvm::Attribute::SExt; 780 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 781 Attributes |= llvm::Attribute::ZExt; 782 // FALL THROUGH 783 case ABIArgInfo::Direct: 784 if (RegParm > 0 && 785 (ParamType->isIntegerType() || ParamType->isPointerType())) { 786 RegParm -= 787 (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; 788 if (RegParm >= 0) 789 Attributes |= llvm::Attribute::InReg; 790 } 791 // FIXME: handle sseregparm someday... 792 793 if (const llvm::StructType *STy = 794 dyn_cast<llvm::StructType>(AI.getCoerceToType())) 795 Index += STy->getNumElements()-1; // 1 will be added below. 796 break; 797 798 case ABIArgInfo::Indirect: 799 if (AI.getIndirectByVal()) 800 Attributes |= llvm::Attribute::ByVal; 801 802 Attributes |= 803 llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); 804 // byval disables readnone and readonly. 805 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 806 llvm::Attribute::ReadNone); 807 break; 808 809 case ABIArgInfo::Ignore: 810 // Skip increment, no matching LLVM parameter. 811 continue; 812 813 case ABIArgInfo::Expand: { 814 llvm::SmallVector<llvm::Type*, 8> types; 815 // FIXME: This is rather inefficient. Do we ever actually need to do 816 // anything here? The result should be just reconstructed on the other 817 // side, so extension should be a non-issue. 818 getTypes().GetExpandedTypes(ParamType, types); 819 Index += types.size(); 820 continue; 821 } 822 } 823 824 if (Attributes) 825 PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes)); 826 ++Index; 827 } 828 if (FuncAttrs) 829 PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); 830 } 831 832 /// An argument came in as a promoted argument; demote it back to its 833 /// declared type. 834 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 835 const VarDecl *var, 836 llvm::Value *value) { 837 const llvm::Type *varType = CGF.ConvertType(var->getType()); 838 839 // This can happen with promotions that actually don't change the 840 // underlying type, like the enum promotions. 841 if (value->getType() == varType) return value; 842 843 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 844 && "unexpected promotion type"); 845 846 if (isa<llvm::IntegerType>(varType)) 847 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 848 849 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 850 } 851 852 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 853 llvm::Function *Fn, 854 const FunctionArgList &Args) { 855 // If this is an implicit-return-zero function, go ahead and 856 // initialize the return value. TODO: it might be nice to have 857 // a more general mechanism for this that didn't require synthesized 858 // return statements. 859 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 860 if (FD->hasImplicitReturnZero()) { 861 QualType RetTy = FD->getResultType().getUnqualifiedType(); 862 const llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 863 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 864 Builder.CreateStore(Zero, ReturnValue); 865 } 866 } 867 868 // FIXME: We no longer need the types from FunctionArgList; lift up and 869 // simplify. 870 871 // Emit allocs for param decls. Give the LLVM Argument nodes names. 872 llvm::Function::arg_iterator AI = Fn->arg_begin(); 873 874 // Name the struct return argument. 875 if (CGM.ReturnTypeUsesSRet(FI)) { 876 AI->setName("agg.result"); 877 ++AI; 878 } 879 880 assert(FI.arg_size() == Args.size() && 881 "Mismatch between function signature & arguments."); 882 unsigned ArgNo = 1; 883 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 884 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 885 i != e; ++i, ++info_it, ++ArgNo) { 886 const VarDecl *Arg = *i; 887 QualType Ty = info_it->type; 888 const ABIArgInfo &ArgI = info_it->info; 889 890 bool isPromoted = 891 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 892 893 switch (ArgI.getKind()) { 894 case ABIArgInfo::Indirect: { 895 llvm::Value *V = AI; 896 897 if (hasAggregateLLVMType(Ty)) { 898 // Aggregates and complex variables are accessed by reference. All we 899 // need to do is realign the value, if requested 900 if (ArgI.getIndirectRealign()) { 901 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 902 903 // Copy from the incoming argument pointer to the temporary with the 904 // appropriate alignment. 905 // 906 // FIXME: We should have a common utility for generating an aggregate 907 // copy. 908 const llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 909 CharUnits Size = getContext().getTypeSizeInChars(Ty); 910 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 911 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 912 Builder.CreateMemCpy(Dst, 913 Src, 914 llvm::ConstantInt::get(IntPtrTy, 915 Size.getQuantity()), 916 ArgI.getIndirectAlign(), 917 false); 918 V = AlignedTemp; 919 } 920 } else { 921 // Load scalar value from indirect argument. 922 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 923 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); 924 925 if (isPromoted) 926 V = emitArgumentDemotion(*this, Arg, V); 927 } 928 EmitParmDecl(*Arg, V, ArgNo); 929 break; 930 } 931 932 case ABIArgInfo::Extend: 933 case ABIArgInfo::Direct: { 934 // If we have the trivial case, handle it with no muss and fuss. 935 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 936 ArgI.getCoerceToType() == ConvertType(Ty) && 937 ArgI.getDirectOffset() == 0) { 938 assert(AI != Fn->arg_end() && "Argument mismatch!"); 939 llvm::Value *V = AI; 940 941 if (Arg->getType().isRestrictQualified()) 942 AI->addAttr(llvm::Attribute::NoAlias); 943 944 if (isPromoted) 945 V = emitArgumentDemotion(*this, Arg, V); 946 947 EmitParmDecl(*Arg, V, ArgNo); 948 break; 949 } 950 951 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce"); 952 953 // The alignment we need to use is the max of the requested alignment for 954 // the argument plus the alignment required by our access code below. 955 unsigned AlignmentToUse = 956 CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType()); 957 AlignmentToUse = std::max(AlignmentToUse, 958 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 959 960 Alloca->setAlignment(AlignmentToUse); 961 llvm::Value *V = Alloca; 962 llvm::Value *Ptr = V; // Pointer to store into. 963 964 // If the value is offset in memory, apply the offset now. 965 if (unsigned Offs = ArgI.getDirectOffset()) { 966 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 967 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 968 Ptr = Builder.CreateBitCast(Ptr, 969 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 970 } 971 972 // If the coerce-to type is a first class aggregate, we flatten it and 973 // pass the elements. Either way is semantically identical, but fast-isel 974 // and the optimizer generally likes scalar values better than FCAs. 975 if (const llvm::StructType *STy = 976 dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) { 977 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 978 979 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 980 assert(AI != Fn->arg_end() && "Argument mismatch!"); 981 AI->setName(Arg->getName() + ".coerce" + llvm::Twine(i)); 982 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 983 Builder.CreateStore(AI++, EltPtr); 984 } 985 } else { 986 // Simple case, just do a coerced store of the argument into the alloca. 987 assert(AI != Fn->arg_end() && "Argument mismatch!"); 988 AI->setName(Arg->getName() + ".coerce"); 989 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 990 } 991 992 993 // Match to what EmitParmDecl is expecting for this type. 994 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 995 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); 996 if (isPromoted) 997 V = emitArgumentDemotion(*this, Arg, V); 998 } 999 EmitParmDecl(*Arg, V, ArgNo); 1000 continue; // Skip ++AI increment, already done. 1001 } 1002 1003 case ABIArgInfo::Expand: { 1004 // If this structure was expanded into multiple arguments then 1005 // we need to create a temporary and reconstruct it from the 1006 // arguments. 1007 llvm::Value *Temp = CreateMemTemp(Ty, Arg->getName() + ".addr"); 1008 llvm::Function::arg_iterator End = 1009 ExpandTypeFromArgs(Ty, MakeAddrLValue(Temp, Ty), AI); 1010 EmitParmDecl(*Arg, Temp, ArgNo); 1011 1012 // Name the arguments used in expansion and increment AI. 1013 unsigned Index = 0; 1014 for (; AI != End; ++AI, ++Index) 1015 AI->setName(Arg->getName() + "." + llvm::Twine(Index)); 1016 continue; 1017 } 1018 1019 case ABIArgInfo::Ignore: 1020 // Initialize the local variable appropriately. 1021 if (hasAggregateLLVMType(Ty)) 1022 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); 1023 else 1024 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), 1025 ArgNo); 1026 1027 // Skip increment, no matching LLVM parameter. 1028 continue; 1029 } 1030 1031 ++AI; 1032 } 1033 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1034 } 1035 1036 /// Try to emit a fused autorelease of a return result. 1037 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1038 llvm::Value *result) { 1039 // We must be immediately followed the cast. 1040 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1041 if (BB->empty()) return 0; 1042 if (&BB->back() != result) return 0; 1043 1044 const llvm::Type *resultType = result->getType(); 1045 1046 // result is in a BasicBlock and is therefore an Instruction. 1047 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1048 1049 llvm::SmallVector<llvm::Instruction*,4> insnsToKill; 1050 1051 // Look for: 1052 // %generator = bitcast %type1* %generator2 to %type2* 1053 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1054 // We would have emitted this as a constant if the operand weren't 1055 // an Instruction. 1056 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1057 1058 // Require the generator to be immediately followed by the cast. 1059 if (generator->getNextNode() != bitcast) 1060 return 0; 1061 1062 insnsToKill.push_back(bitcast); 1063 } 1064 1065 // Look for: 1066 // %generator = call i8* @objc_retain(i8* %originalResult) 1067 // or 1068 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1069 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1070 if (!call) return 0; 1071 1072 bool doRetainAutorelease; 1073 1074 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1075 doRetainAutorelease = true; 1076 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1077 .objc_retainAutoreleasedReturnValue) { 1078 doRetainAutorelease = false; 1079 1080 // Look for an inline asm immediately preceding the call and kill it, too. 1081 llvm::Instruction *prev = call->getPrevNode(); 1082 if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev)) 1083 if (asmCall->getCalledValue() 1084 == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) 1085 insnsToKill.push_back(prev); 1086 } else { 1087 return 0; 1088 } 1089 1090 result = call->getArgOperand(0); 1091 insnsToKill.push_back(call); 1092 1093 // Keep killing bitcasts, for sanity. Note that we no longer care 1094 // about precise ordering as long as there's exactly one use. 1095 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1096 if (!bitcast->hasOneUse()) break; 1097 insnsToKill.push_back(bitcast); 1098 result = bitcast->getOperand(0); 1099 } 1100 1101 // Delete all the unnecessary instructions, from latest to earliest. 1102 for (llvm::SmallVectorImpl<llvm::Instruction*>::iterator 1103 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1104 (*i)->eraseFromParent(); 1105 1106 // Do the fused retain/autorelease if we were asked to. 1107 if (doRetainAutorelease) 1108 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1109 1110 // Cast back to the result type. 1111 return CGF.Builder.CreateBitCast(result, resultType); 1112 } 1113 1114 /// Emit an ARC autorelease of the result of a function. 1115 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1116 llvm::Value *result) { 1117 // At -O0, try to emit a fused retain/autorelease. 1118 if (CGF.shouldUseFusedARCCalls()) 1119 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1120 return fused; 1121 1122 return CGF.EmitARCAutoreleaseReturnValue(result); 1123 } 1124 1125 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) { 1126 // Functions with no result always return void. 1127 if (ReturnValue == 0) { 1128 Builder.CreateRetVoid(); 1129 return; 1130 } 1131 1132 llvm::DebugLoc RetDbgLoc; 1133 llvm::Value *RV = 0; 1134 QualType RetTy = FI.getReturnType(); 1135 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1136 1137 switch (RetAI.getKind()) { 1138 case ABIArgInfo::Indirect: { 1139 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1140 if (RetTy->isAnyComplexType()) { 1141 ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); 1142 StoreComplexToAddr(RT, CurFn->arg_begin(), false); 1143 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1144 // Do nothing; aggregrates get evaluated directly into the destination. 1145 } else { 1146 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), 1147 false, Alignment, RetTy); 1148 } 1149 break; 1150 } 1151 1152 case ABIArgInfo::Extend: 1153 case ABIArgInfo::Direct: 1154 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1155 RetAI.getDirectOffset() == 0) { 1156 // The internal return value temp always will have pointer-to-return-type 1157 // type, just do a load. 1158 1159 // If the instruction right before the insertion point is a store to the 1160 // return value, we can elide the load, zap the store, and usually zap the 1161 // alloca. 1162 llvm::BasicBlock *InsertBB = Builder.GetInsertBlock(); 1163 llvm::StoreInst *SI = 0; 1164 if (InsertBB->empty() || 1165 !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) || 1166 SI->getPointerOperand() != ReturnValue || SI->isVolatile()) { 1167 RV = Builder.CreateLoad(ReturnValue); 1168 } else { 1169 // Get the stored value and nuke the now-dead store. 1170 RetDbgLoc = SI->getDebugLoc(); 1171 RV = SI->getValueOperand(); 1172 SI->eraseFromParent(); 1173 1174 // If that was the only use of the return value, nuke it as well now. 1175 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1176 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1177 ReturnValue = 0; 1178 } 1179 } 1180 } else { 1181 llvm::Value *V = ReturnValue; 1182 // If the value is offset in memory, apply the offset now. 1183 if (unsigned Offs = RetAI.getDirectOffset()) { 1184 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1185 V = Builder.CreateConstGEP1_32(V, Offs); 1186 V = Builder.CreateBitCast(V, 1187 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1188 } 1189 1190 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1191 } 1192 1193 // In ARC, end functions that return a retainable type with a call 1194 // to objc_autoreleaseReturnValue. 1195 if (AutoreleaseResult) { 1196 assert(getLangOptions().ObjCAutoRefCount && 1197 !FI.isReturnsRetained() && 1198 RetTy->isObjCRetainableType()); 1199 RV = emitAutoreleaseOfResult(*this, RV); 1200 } 1201 1202 break; 1203 1204 case ABIArgInfo::Ignore: 1205 break; 1206 1207 case ABIArgInfo::Expand: 1208 assert(0 && "Invalid ABI kind for return argument"); 1209 } 1210 1211 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1212 if (!RetDbgLoc.isUnknown()) 1213 Ret->setDebugLoc(RetDbgLoc); 1214 } 1215 1216 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1217 const VarDecl *param) { 1218 // StartFunction converted the ABI-lowered parameter(s) into a 1219 // local alloca. We need to turn that into an r-value suitable 1220 // for EmitCall. 1221 llvm::Value *local = GetAddrOfLocalVar(param); 1222 1223 QualType type = param->getType(); 1224 1225 // For the most part, we just need to load the alloca, except: 1226 // 1) aggregate r-values are actually pointers to temporaries, and 1227 // 2) references to aggregates are pointers directly to the aggregate. 1228 // I don't know why references to non-aggregates are different here. 1229 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1230 if (hasAggregateLLVMType(ref->getPointeeType())) 1231 return args.add(RValue::getAggregate(local), type); 1232 1233 // Locals which are references to scalars are represented 1234 // with allocas holding the pointer. 1235 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1236 } 1237 1238 if (type->isAnyComplexType()) { 1239 ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false); 1240 return args.add(RValue::getComplex(complex), type); 1241 } 1242 1243 if (hasAggregateLLVMType(type)) 1244 return args.add(RValue::getAggregate(local), type); 1245 1246 unsigned alignment = getContext().getDeclAlign(param).getQuantity(); 1247 llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type); 1248 return args.add(RValue::get(value), type); 1249 } 1250 1251 static bool isProvablyNull(llvm::Value *addr) { 1252 return isa<llvm::ConstantPointerNull>(addr); 1253 } 1254 1255 static bool isProvablyNonNull(llvm::Value *addr) { 1256 return isa<llvm::AllocaInst>(addr); 1257 } 1258 1259 /// Emit the actual writing-back of a writeback. 1260 static void emitWriteback(CodeGenFunction &CGF, 1261 const CallArgList::Writeback &writeback) { 1262 llvm::Value *srcAddr = writeback.Address; 1263 assert(!isProvablyNull(srcAddr) && 1264 "shouldn't have writeback for provably null argument"); 1265 1266 llvm::BasicBlock *contBB = 0; 1267 1268 // If the argument wasn't provably non-null, we need to null check 1269 // before doing the store. 1270 bool provablyNonNull = isProvablyNonNull(srcAddr); 1271 if (!provablyNonNull) { 1272 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 1273 contBB = CGF.createBasicBlock("icr.done"); 1274 1275 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1276 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 1277 CGF.EmitBlock(writebackBB); 1278 } 1279 1280 // Load the value to writeback. 1281 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 1282 1283 // Cast it back, in case we're writing an id to a Foo* or something. 1284 value = CGF.Builder.CreateBitCast(value, 1285 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 1286 "icr.writeback-cast"); 1287 1288 // Perform the writeback. 1289 QualType srcAddrType = writeback.AddressType; 1290 CGF.EmitStoreThroughLValue(RValue::get(value), 1291 CGF.MakeAddrLValue(srcAddr, srcAddrType)); 1292 1293 // Jump to the continuation block. 1294 if (!provablyNonNull) 1295 CGF.EmitBlock(contBB); 1296 } 1297 1298 static void emitWritebacks(CodeGenFunction &CGF, 1299 const CallArgList &args) { 1300 for (CallArgList::writeback_iterator 1301 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) 1302 emitWriteback(CGF, *i); 1303 } 1304 1305 /// Emit an argument that's being passed call-by-writeback. That is, 1306 /// we are passing the address of 1307 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 1308 const ObjCIndirectCopyRestoreExpr *CRE) { 1309 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 1310 1311 // The dest and src types don't necessarily match in LLVM terms 1312 // because of the crazy ObjC compatibility rules. 1313 1314 const llvm::PointerType *destType = 1315 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 1316 1317 // If the address is a constant null, just pass the appropriate null. 1318 if (isProvablyNull(srcAddr)) { 1319 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 1320 CRE->getType()); 1321 return; 1322 } 1323 1324 QualType srcAddrType = 1325 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 1326 1327 // Create the temporary. 1328 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 1329 "icr.temp"); 1330 1331 // Zero-initialize it if we're not doing a copy-initialization. 1332 bool shouldCopy = CRE->shouldCopy(); 1333 if (!shouldCopy) { 1334 llvm::Value *null = 1335 llvm::ConstantPointerNull::get( 1336 cast<llvm::PointerType>(destType->getElementType())); 1337 CGF.Builder.CreateStore(null, temp); 1338 } 1339 1340 llvm::BasicBlock *contBB = 0; 1341 1342 // If the address is *not* known to be non-null, we need to switch. 1343 llvm::Value *finalArgument; 1344 1345 bool provablyNonNull = isProvablyNonNull(srcAddr); 1346 if (provablyNonNull) { 1347 finalArgument = temp; 1348 } else { 1349 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1350 1351 finalArgument = CGF.Builder.CreateSelect(isNull, 1352 llvm::ConstantPointerNull::get(destType), 1353 temp, "icr.argument"); 1354 1355 // If we need to copy, then the load has to be conditional, which 1356 // means we need control flow. 1357 if (shouldCopy) { 1358 contBB = CGF.createBasicBlock("icr.cont"); 1359 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 1360 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 1361 CGF.EmitBlock(copyBB); 1362 } 1363 } 1364 1365 // Perform a copy if necessary. 1366 if (shouldCopy) { 1367 LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 1368 RValue srcRV = CGF.EmitLoadOfLValue(srcLV); 1369 assert(srcRV.isScalar()); 1370 1371 llvm::Value *src = srcRV.getScalarVal(); 1372 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 1373 "icr.cast"); 1374 1375 // Use an ordinary store, not a store-to-lvalue. 1376 CGF.Builder.CreateStore(src, temp); 1377 } 1378 1379 // Finish the control flow if we needed it. 1380 if (shouldCopy && !provablyNonNull) 1381 CGF.EmitBlock(contBB); 1382 1383 args.addWriteback(srcAddr, srcAddrType, temp); 1384 args.add(RValue::get(finalArgument), CRE->getType()); 1385 } 1386 1387 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 1388 QualType type) { 1389 if (const ObjCIndirectCopyRestoreExpr *CRE 1390 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 1391 assert(getContext().getLangOptions().ObjCAutoRefCount); 1392 assert(getContext().hasSameType(E->getType(), type)); 1393 return emitWritebackArg(*this, args, CRE); 1394 } 1395 1396 if (type->isReferenceType()) 1397 return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0), 1398 type); 1399 1400 if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() && 1401 isa<ImplicitCastExpr>(E) && 1402 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 1403 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 1404 assert(L.isSimple()); 1405 args.add(RValue::getAggregate(L.getAddress(), L.isVolatileQualified()), 1406 type, /*NeedsCopy*/true); 1407 return; 1408 } 1409 1410 args.add(EmitAnyExprToTemp(E), type); 1411 } 1412 1413 /// Emits a call or invoke instruction to the given function, depending 1414 /// on the current state of the EH stack. 1415 llvm::CallSite 1416 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1417 llvm::Value * const *ArgBegin, 1418 llvm::Value * const *ArgEnd, 1419 const llvm::Twine &Name) { 1420 llvm::BasicBlock *InvokeDest = getInvokeDest(); 1421 if (!InvokeDest) 1422 return Builder.CreateCall(Callee, ArgBegin, ArgEnd, Name); 1423 1424 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 1425 llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest, 1426 ArgBegin, ArgEnd, Name); 1427 EmitBlock(ContBB); 1428 return Invoke; 1429 } 1430 1431 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 1432 llvm::FunctionType *FTy) { 1433 if (ArgNo < FTy->getNumParams()) 1434 assert(Elt->getType() == FTy->getParamType(ArgNo)); 1435 else 1436 assert(FTy->isVarArg()); 1437 ++ArgNo; 1438 } 1439 1440 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 1441 llvm::SmallVector<llvm::Value*,16> &Args, 1442 llvm::FunctionType *IRFuncTy) { 1443 const RecordType *RT = Ty->getAsStructureType(); 1444 assert(RT && "Can only expand structure types."); 1445 1446 RecordDecl *RD = RT->getDecl(); 1447 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 1448 llvm::Value *Addr = RV.getAggregateAddr(); 1449 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1450 i != e; ++i) { 1451 FieldDecl *FD = *i; 1452 QualType FT = FD->getType(); 1453 1454 // FIXME: What are the right qualifiers here? 1455 LValue LV = EmitLValueForField(Addr, FD, 0); 1456 if (CodeGenFunction::hasAggregateLLVMType(FT)) { 1457 ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), 1458 Args, IRFuncTy); 1459 continue; 1460 } 1461 1462 RValue RV = EmitLoadOfLValue(LV); 1463 assert(RV.isScalar() && 1464 "Unexpected non-scalar rvalue during struct expansion."); 1465 1466 // Insert a bitcast as needed. 1467 llvm::Value *V = RV.getScalarVal(); 1468 if (Args.size() < IRFuncTy->getNumParams() && 1469 V->getType() != IRFuncTy->getParamType(Args.size())) 1470 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 1471 1472 Args.push_back(V); 1473 } 1474 } 1475 1476 1477 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 1478 llvm::Value *Callee, 1479 ReturnValueSlot ReturnValue, 1480 const CallArgList &CallArgs, 1481 const Decl *TargetDecl, 1482 llvm::Instruction **callOrInvoke) { 1483 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 1484 llvm::SmallVector<llvm::Value*, 16> Args; 1485 1486 // Handle struct-return functions by passing a pointer to the 1487 // location that we would like to return into. 1488 QualType RetTy = CallInfo.getReturnType(); 1489 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 1490 1491 // IRArgNo - Keep track of the argument number in the callee we're looking at. 1492 unsigned IRArgNo = 0; 1493 llvm::FunctionType *IRFuncTy = 1494 cast<llvm::FunctionType>( 1495 cast<llvm::PointerType>(Callee->getType())->getElementType()); 1496 1497 // If the call returns a temporary with struct return, create a temporary 1498 // alloca to hold the result, unless one is given to us. 1499 if (CGM.ReturnTypeUsesSRet(CallInfo)) { 1500 llvm::Value *Value = ReturnValue.getValue(); 1501 if (!Value) 1502 Value = CreateMemTemp(RetTy); 1503 Args.push_back(Value); 1504 checkArgMatches(Value, IRArgNo, IRFuncTy); 1505 } 1506 1507 assert(CallInfo.arg_size() == CallArgs.size() && 1508 "Mismatch between function signature & arguments."); 1509 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 1510 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 1511 I != E; ++I, ++info_it) { 1512 const ABIArgInfo &ArgInfo = info_it->info; 1513 RValue RV = I->RV; 1514 1515 unsigned TypeAlign = 1516 getContext().getTypeAlignInChars(I->Ty).getQuantity(); 1517 switch (ArgInfo.getKind()) { 1518 case ABIArgInfo::Indirect: { 1519 if (RV.isScalar() || RV.isComplex()) { 1520 // Make a temporary alloca to pass the argument. 1521 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1522 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 1523 AI->setAlignment(ArgInfo.getIndirectAlign()); 1524 Args.push_back(AI); 1525 1526 if (RV.isScalar()) 1527 EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, 1528 TypeAlign, I->Ty); 1529 else 1530 StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); 1531 1532 // Validate argument match. 1533 checkArgMatches(AI, IRArgNo, IRFuncTy); 1534 } else { 1535 // We want to avoid creating an unnecessary temporary+copy here; 1536 // however, we need one in two cases: 1537 // 1. If the argument is not byval, and we are required to copy the 1538 // source. (This case doesn't occur on any common architecture.) 1539 // 2. If the argument is byval, RV is not sufficiently aligned, and 1540 // we cannot force it to be sufficiently aligned. 1541 llvm::Value *Addr = RV.getAggregateAddr(); 1542 unsigned Align = ArgInfo.getIndirectAlign(); 1543 const llvm::TargetData *TD = &CGM.getTargetData(); 1544 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 1545 (ArgInfo.getIndirectByVal() && TypeAlign < Align && 1546 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) { 1547 // Create an aligned temporary, and copy to it. 1548 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1549 if (Align > AI->getAlignment()) 1550 AI->setAlignment(Align); 1551 Args.push_back(AI); 1552 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 1553 1554 // Validate argument match. 1555 checkArgMatches(AI, IRArgNo, IRFuncTy); 1556 } else { 1557 // Skip the extra memcpy call. 1558 Args.push_back(Addr); 1559 1560 // Validate argument match. 1561 checkArgMatches(Addr, IRArgNo, IRFuncTy); 1562 } 1563 } 1564 break; 1565 } 1566 1567 case ABIArgInfo::Ignore: 1568 break; 1569 1570 case ABIArgInfo::Extend: 1571 case ABIArgInfo::Direct: { 1572 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 1573 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 1574 ArgInfo.getDirectOffset() == 0) { 1575 llvm::Value *V; 1576 if (RV.isScalar()) 1577 V = RV.getScalarVal(); 1578 else 1579 V = Builder.CreateLoad(RV.getAggregateAddr()); 1580 1581 // If the argument doesn't match, perform a bitcast to coerce it. This 1582 // can happen due to trivial type mismatches. 1583 if (IRArgNo < IRFuncTy->getNumParams() && 1584 V->getType() != IRFuncTy->getParamType(IRArgNo)) 1585 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 1586 Args.push_back(V); 1587 1588 checkArgMatches(V, IRArgNo, IRFuncTy); 1589 break; 1590 } 1591 1592 // FIXME: Avoid the conversion through memory if possible. 1593 llvm::Value *SrcPtr; 1594 if (RV.isScalar()) { 1595 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 1596 EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty); 1597 } else if (RV.isComplex()) { 1598 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 1599 StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); 1600 } else 1601 SrcPtr = RV.getAggregateAddr(); 1602 1603 // If the value is offset in memory, apply the offset now. 1604 if (unsigned Offs = ArgInfo.getDirectOffset()) { 1605 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 1606 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 1607 SrcPtr = Builder.CreateBitCast(SrcPtr, 1608 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 1609 1610 } 1611 1612 // If the coerce-to type is a first class aggregate, we flatten it and 1613 // pass the elements. Either way is semantically identical, but fast-isel 1614 // and the optimizer generally likes scalar values better than FCAs. 1615 if (const llvm::StructType *STy = 1616 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 1617 SrcPtr = Builder.CreateBitCast(SrcPtr, 1618 llvm::PointerType::getUnqual(STy)); 1619 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1620 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 1621 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 1622 // We don't know what we're loading from. 1623 LI->setAlignment(1); 1624 Args.push_back(LI); 1625 1626 // Validate argument match. 1627 checkArgMatches(LI, IRArgNo, IRFuncTy); 1628 } 1629 } else { 1630 // In the simple case, just pass the coerced loaded value. 1631 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 1632 *this)); 1633 1634 // Validate argument match. 1635 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 1636 } 1637 1638 break; 1639 } 1640 1641 case ABIArgInfo::Expand: 1642 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 1643 IRArgNo = Args.size(); 1644 break; 1645 } 1646 } 1647 1648 // If the callee is a bitcast of a function to a varargs pointer to function 1649 // type, check to see if we can remove the bitcast. This handles some cases 1650 // with unprototyped functions. 1651 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 1652 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 1653 const llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 1654 const llvm::FunctionType *CurFT = 1655 cast<llvm::FunctionType>(CurPT->getElementType()); 1656 const llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 1657 1658 if (CE->getOpcode() == llvm::Instruction::BitCast && 1659 ActualFT->getReturnType() == CurFT->getReturnType() && 1660 ActualFT->getNumParams() == CurFT->getNumParams() && 1661 ActualFT->getNumParams() == Args.size() && 1662 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 1663 bool ArgsMatch = true; 1664 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 1665 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 1666 ArgsMatch = false; 1667 break; 1668 } 1669 1670 // Strip the cast if we can get away with it. This is a nice cleanup, 1671 // but also allows us to inline the function at -O0 if it is marked 1672 // always_inline. 1673 if (ArgsMatch) 1674 Callee = CalleeF; 1675 } 1676 } 1677 1678 unsigned CallingConv; 1679 CodeGen::AttributeListType AttributeList; 1680 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); 1681 llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), 1682 AttributeList.end()); 1683 1684 llvm::BasicBlock *InvokeDest = 0; 1685 if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) 1686 InvokeDest = getInvokeDest(); 1687 1688 llvm::CallSite CS; 1689 if (!InvokeDest) { 1690 CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size()); 1691 } else { 1692 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 1693 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, 1694 Args.data(), Args.data()+Args.size()); 1695 EmitBlock(Cont); 1696 } 1697 if (callOrInvoke) 1698 *callOrInvoke = CS.getInstruction(); 1699 1700 CS.setAttributes(Attrs); 1701 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1702 1703 // If the call doesn't return, finish the basic block and clear the 1704 // insertion point; this allows the rest of IRgen to discard 1705 // unreachable code. 1706 if (CS.doesNotReturn()) { 1707 Builder.CreateUnreachable(); 1708 Builder.ClearInsertionPoint(); 1709 1710 // FIXME: For now, emit a dummy basic block because expr emitters in 1711 // generally are not ready to handle emitting expressions at unreachable 1712 // points. 1713 EnsureInsertPoint(); 1714 1715 // Return a reasonable RValue. 1716 return GetUndefRValue(RetTy); 1717 } 1718 1719 llvm::Instruction *CI = CS.getInstruction(); 1720 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 1721 CI->setName("call"); 1722 1723 // Emit any writebacks immediately. Arguably this should happen 1724 // after any return-value munging. 1725 if (CallArgs.hasWritebacks()) 1726 emitWritebacks(*this, CallArgs); 1727 1728 switch (RetAI.getKind()) { 1729 case ABIArgInfo::Indirect: { 1730 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1731 if (RetTy->isAnyComplexType()) 1732 return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); 1733 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 1734 return RValue::getAggregate(Args[0]); 1735 return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy)); 1736 } 1737 1738 case ABIArgInfo::Ignore: 1739 // If we are ignoring an argument that had a result, make sure to 1740 // construct the appropriate return value for our caller. 1741 return GetUndefRValue(RetTy); 1742 1743 case ABIArgInfo::Extend: 1744 case ABIArgInfo::Direct: { 1745 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1746 RetAI.getDirectOffset() == 0) { 1747 if (RetTy->isAnyComplexType()) { 1748 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 1749 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 1750 return RValue::getComplex(std::make_pair(Real, Imag)); 1751 } 1752 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1753 llvm::Value *DestPtr = ReturnValue.getValue(); 1754 bool DestIsVolatile = ReturnValue.isVolatile(); 1755 1756 if (!DestPtr) { 1757 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 1758 DestIsVolatile = false; 1759 } 1760 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 1761 return RValue::getAggregate(DestPtr); 1762 } 1763 return RValue::get(CI); 1764 } 1765 1766 llvm::Value *DestPtr = ReturnValue.getValue(); 1767 bool DestIsVolatile = ReturnValue.isVolatile(); 1768 1769 if (!DestPtr) { 1770 DestPtr = CreateMemTemp(RetTy, "coerce"); 1771 DestIsVolatile = false; 1772 } 1773 1774 // If the value is offset in memory, apply the offset now. 1775 llvm::Value *StorePtr = DestPtr; 1776 if (unsigned Offs = RetAI.getDirectOffset()) { 1777 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 1778 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 1779 StorePtr = Builder.CreateBitCast(StorePtr, 1780 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1781 } 1782 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 1783 1784 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1785 if (RetTy->isAnyComplexType()) 1786 return RValue::getComplex(LoadComplexFromAddr(DestPtr, false)); 1787 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 1788 return RValue::getAggregate(DestPtr); 1789 return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy)); 1790 } 1791 1792 case ABIArgInfo::Expand: 1793 assert(0 && "Invalid ABI kind for return argument"); 1794 } 1795 1796 assert(0 && "Unhandled ABIArgInfo::Kind"); 1797 return RValue::get(0); 1798 } 1799 1800 /* VarArg handling */ 1801 1802 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 1803 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 1804 } 1805