1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 /***/
47 
48 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
49   switch (CC) {
50   default: return llvm::CallingConv::C;
51   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
52   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
53   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
54   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
55   case CC_Win64: return llvm::CallingConv::Win64;
56   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
57   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
58   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
59   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
60   // TODO: Add support for __pascal to LLVM.
61   case CC_X86Pascal: return llvm::CallingConv::C;
62   // TODO: Add support for __vectorcall to LLVM.
63   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
64   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
65   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
66   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
67   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
68   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
69   case CC_Swift: return llvm::CallingConv::Swift;
70   case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
71   }
72 }
73 
74 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
75 /// qualification. Either or both of RD and MD may be null. A null RD indicates
76 /// that there is no meaningful 'this' type, and a null MD can occur when
77 /// calling a method pointer.
78 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
79                                          const CXXMethodDecl *MD) {
80   QualType RecTy;
81   if (RD)
82     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
83   else
84     RecTy = Context.VoidTy;
85 
86   if (MD)
87     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
88   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
89 }
90 
91 /// Returns the canonical formal type of the given C++ method.
92 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
93   return MD->getType()->getCanonicalTypeUnqualified()
94            .getAs<FunctionProtoType>();
95 }
96 
97 /// Returns the "extra-canonicalized" return type, which discards
98 /// qualifiers on the return type.  Codegen doesn't care about them,
99 /// and it makes ABI code a little easier to be able to assume that
100 /// all parameter and return types are top-level unqualified.
101 static CanQualType GetReturnType(QualType RetTy) {
102   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
103 }
104 
105 /// Arrange the argument and result information for a value of the given
106 /// unprototyped freestanding function type.
107 const CGFunctionInfo &
108 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
109   // When translating an unprototyped function type, always use a
110   // variadic type.
111   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
112                                  /*instanceMethod=*/false,
113                                  /*chainCall=*/false, None,
114                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
115 }
116 
117 static void addExtParameterInfosForCall(
118          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
119                                         const FunctionProtoType *proto,
120                                         unsigned prefixArgs,
121                                         unsigned totalArgs) {
122   assert(proto->hasExtParameterInfos());
123   assert(paramInfos.size() <= prefixArgs);
124   assert(proto->getNumParams() + prefixArgs <= totalArgs);
125 
126   paramInfos.reserve(totalArgs);
127 
128   // Add default infos for any prefix args that don't already have infos.
129   paramInfos.resize(prefixArgs);
130 
131   // Add infos for the prototype.
132   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
133     paramInfos.push_back(ParamInfo);
134     // pass_object_size params have no parameter info.
135     if (ParamInfo.hasPassObjectSize())
136       paramInfos.emplace_back();
137   }
138 
139   assert(paramInfos.size() <= totalArgs &&
140          "Did we forget to insert pass_object_size args?");
141   // Add default infos for the variadic and/or suffix arguments.
142   paramInfos.resize(totalArgs);
143 }
144 
145 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
146 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
147 static void appendParameterTypes(const CodeGenTypes &CGT,
148                                  SmallVectorImpl<CanQualType> &prefix,
149               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
150                                  CanQual<FunctionProtoType> FPT) {
151   // Fast path: don't touch param info if we don't need to.
152   if (!FPT->hasExtParameterInfos()) {
153     assert(paramInfos.empty() &&
154            "We have paramInfos, but the prototype doesn't?");
155     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
156     return;
157   }
158 
159   unsigned PrefixSize = prefix.size();
160   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
161   // parameters; the only thing that can change this is the presence of
162   // pass_object_size. So, we preallocate for the common case.
163   prefix.reserve(prefix.size() + FPT->getNumParams());
164 
165   auto ExtInfos = FPT->getExtParameterInfos();
166   assert(ExtInfos.size() == FPT->getNumParams());
167   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
168     prefix.push_back(FPT->getParamType(I));
169     if (ExtInfos[I].hasPassObjectSize())
170       prefix.push_back(CGT.getContext().getSizeType());
171   }
172 
173   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
174                               prefix.size());
175 }
176 
177 /// Arrange the LLVM function layout for a value of the given function
178 /// type, on top of any implicit parameters already stored.
179 static const CGFunctionInfo &
180 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
181                         SmallVectorImpl<CanQualType> &prefix,
182                         CanQual<FunctionProtoType> FTP) {
183   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
184   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
185   // FIXME: Kill copy.
186   appendParameterTypes(CGT, prefix, paramInfos, FTP);
187   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
188 
189   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
190                                      /*chainCall=*/false, prefix,
191                                      FTP->getExtInfo(), paramInfos,
192                                      Required);
193 }
194 
195 /// Arrange the argument and result information for a value of the
196 /// given freestanding function type.
197 const CGFunctionInfo &
198 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
199   SmallVector<CanQualType, 16> argTypes;
200   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
201                                    FTP);
202 }
203 
204 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
205                                                bool IsWindows) {
206   // Set the appropriate calling convention for the Function.
207   if (D->hasAttr<StdCallAttr>())
208     return CC_X86StdCall;
209 
210   if (D->hasAttr<FastCallAttr>())
211     return CC_X86FastCall;
212 
213   if (D->hasAttr<RegCallAttr>())
214     return CC_X86RegCall;
215 
216   if (D->hasAttr<ThisCallAttr>())
217     return CC_X86ThisCall;
218 
219   if (D->hasAttr<VectorCallAttr>())
220     return CC_X86VectorCall;
221 
222   if (D->hasAttr<PascalAttr>())
223     return CC_X86Pascal;
224 
225   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
226     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
227 
228   if (D->hasAttr<AArch64VectorPcsAttr>())
229     return CC_AArch64VectorCall;
230 
231   if (D->hasAttr<IntelOclBiccAttr>())
232     return CC_IntelOclBicc;
233 
234   if (D->hasAttr<MSABIAttr>())
235     return IsWindows ? CC_C : CC_Win64;
236 
237   if (D->hasAttr<SysVABIAttr>())
238     return IsWindows ? CC_X86_64SysV : CC_C;
239 
240   if (D->hasAttr<PreserveMostAttr>())
241     return CC_PreserveMost;
242 
243   if (D->hasAttr<PreserveAllAttr>())
244     return CC_PreserveAll;
245 
246   return CC_C;
247 }
248 
249 /// Arrange the argument and result information for a call to an
250 /// unknown C++ non-static member function of the given abstract type.
251 /// (A null RD means we don't have any meaningful "this" argument type,
252 ///  so fall back to a generic pointer type).
253 /// The member function must be an ordinary function, i.e. not a
254 /// constructor or destructor.
255 const CGFunctionInfo &
256 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
257                                    const FunctionProtoType *FTP,
258                                    const CXXMethodDecl *MD) {
259   SmallVector<CanQualType, 16> argTypes;
260 
261   // Add the 'this' pointer.
262   argTypes.push_back(DeriveThisType(RD, MD));
263 
264   return ::arrangeLLVMFunctionInfo(
265       *this, true, argTypes,
266       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
267 }
268 
269 /// Set calling convention for CUDA/HIP kernel.
270 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
271                                            const FunctionDecl *FD) {
272   if (FD->hasAttr<CUDAGlobalAttr>()) {
273     const FunctionType *FT = FTy->getAs<FunctionType>();
274     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
275     FTy = FT->getCanonicalTypeUnqualified();
276   }
277 }
278 
279 /// Arrange the argument and result information for a declaration or
280 /// definition of the given C++ non-static member function.  The
281 /// member function must be an ordinary function, i.e. not a
282 /// constructor or destructor.
283 const CGFunctionInfo &
284 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
285   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
286   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
287 
288   CanQualType FT = GetFormalType(MD).getAs<Type>();
289   setCUDAKernelCallingConvention(FT, CGM, MD);
290   auto prototype = FT.getAs<FunctionProtoType>();
291 
292   if (MD->isInstance()) {
293     // The abstract case is perfectly fine.
294     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
295     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
296   }
297 
298   return arrangeFreeFunctionType(prototype);
299 }
300 
301 bool CodeGenTypes::inheritingCtorHasParams(
302     const InheritedConstructor &Inherited, CXXCtorType Type) {
303   // Parameters are unnecessary if we're constructing a base class subobject
304   // and the inherited constructor lives in a virtual base.
305   return Type == Ctor_Complete ||
306          !Inherited.getShadowDecl()->constructsVirtualBase() ||
307          !Target.getCXXABI().hasConstructorVariants();
308 }
309 
310 const CGFunctionInfo &
311 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
312   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
313 
314   SmallVector<CanQualType, 16> argTypes;
315   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
316   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
317 
318   bool PassParams = true;
319 
320   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
321     // A base class inheriting constructor doesn't get forwarded arguments
322     // needed to construct a virtual base (or base class thereof).
323     if (auto Inherited = CD->getInheritedConstructor())
324       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
325   }
326 
327   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
328 
329   // Add the formal parameters.
330   if (PassParams)
331     appendParameterTypes(*this, argTypes, paramInfos, FTP);
332 
333   CGCXXABI::AddedStructorArgCounts AddedArgs =
334       TheCXXABI.buildStructorSignature(GD, argTypes);
335   if (!paramInfos.empty()) {
336     // Note: prefix implies after the first param.
337     if (AddedArgs.Prefix)
338       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
339                         FunctionProtoType::ExtParameterInfo{});
340     if (AddedArgs.Suffix)
341       paramInfos.append(AddedArgs.Suffix,
342                         FunctionProtoType::ExtParameterInfo{});
343   }
344 
345   RequiredArgs required =
346       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
347                                       : RequiredArgs::All);
348 
349   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
350   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
351                                ? argTypes.front()
352                                : TheCXXABI.hasMostDerivedReturn(GD)
353                                      ? CGM.getContext().VoidPtrTy
354                                      : Context.VoidTy;
355   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
356                                  /*chainCall=*/false, argTypes, extInfo,
357                                  paramInfos, required);
358 }
359 
360 static SmallVector<CanQualType, 16>
361 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
362   SmallVector<CanQualType, 16> argTypes;
363   for (auto &arg : args)
364     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
365   return argTypes;
366 }
367 
368 static SmallVector<CanQualType, 16>
369 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
370   SmallVector<CanQualType, 16> argTypes;
371   for (auto &arg : args)
372     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
373   return argTypes;
374 }
375 
376 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
377 getExtParameterInfosForCall(const FunctionProtoType *proto,
378                             unsigned prefixArgs, unsigned totalArgs) {
379   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
380   if (proto->hasExtParameterInfos()) {
381     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
382   }
383   return result;
384 }
385 
386 /// Arrange a call to a C++ method, passing the given arguments.
387 ///
388 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
389 /// parameter.
390 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
391 /// args.
392 /// PassProtoArgs indicates whether `args` has args for the parameters in the
393 /// given CXXConstructorDecl.
394 const CGFunctionInfo &
395 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
396                                         const CXXConstructorDecl *D,
397                                         CXXCtorType CtorKind,
398                                         unsigned ExtraPrefixArgs,
399                                         unsigned ExtraSuffixArgs,
400                                         bool PassProtoArgs) {
401   // FIXME: Kill copy.
402   SmallVector<CanQualType, 16> ArgTypes;
403   for (const auto &Arg : args)
404     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
405 
406   // +1 for implicit this, which should always be args[0].
407   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
408 
409   CanQual<FunctionProtoType> FPT = GetFormalType(D);
410   RequiredArgs Required = PassProtoArgs
411                               ? RequiredArgs::forPrototypePlus(
412                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
413                               : RequiredArgs::All;
414 
415   GlobalDecl GD(D, CtorKind);
416   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
417                                ? ArgTypes.front()
418                                : TheCXXABI.hasMostDerivedReturn(GD)
419                                      ? CGM.getContext().VoidPtrTy
420                                      : Context.VoidTy;
421 
422   FunctionType::ExtInfo Info = FPT->getExtInfo();
423   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
424   // If the prototype args are elided, we should only have ABI-specific args,
425   // which never have param info.
426   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
427     // ABI-specific suffix arguments are treated the same as variadic arguments.
428     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
429                                 ArgTypes.size());
430   }
431   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
432                                  /*chainCall=*/false, ArgTypes, Info,
433                                  ParamInfos, Required);
434 }
435 
436 /// Arrange the argument and result information for the declaration or
437 /// definition of the given function.
438 const CGFunctionInfo &
439 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
440   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
441     if (MD->isInstance())
442       return arrangeCXXMethodDeclaration(MD);
443 
444   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
445 
446   assert(isa<FunctionType>(FTy));
447   setCUDAKernelCallingConvention(FTy, CGM, FD);
448 
449   // When declaring a function without a prototype, always use a
450   // non-variadic type.
451   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
452     return arrangeLLVMFunctionInfo(
453         noProto->getReturnType(), /*instanceMethod=*/false,
454         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
455   }
456 
457   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
458 }
459 
460 /// Arrange the argument and result information for the declaration or
461 /// definition of an Objective-C method.
462 const CGFunctionInfo &
463 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
464   // It happens that this is the same as a call with no optional
465   // arguments, except also using the formal 'self' type.
466   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
467 }
468 
469 /// Arrange the argument and result information for the function type
470 /// through which to perform a send to the given Objective-C method,
471 /// using the given receiver type.  The receiver type is not always
472 /// the 'self' type of the method or even an Objective-C pointer type.
473 /// This is *not* the right method for actually performing such a
474 /// message send, due to the possibility of optional arguments.
475 const CGFunctionInfo &
476 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
477                                               QualType receiverType) {
478   SmallVector<CanQualType, 16> argTys;
479   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
480   argTys.push_back(Context.getCanonicalParamType(receiverType));
481   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
482   // FIXME: Kill copy?
483   for (const auto *I : MD->parameters()) {
484     argTys.push_back(Context.getCanonicalParamType(I->getType()));
485     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
486         I->hasAttr<NoEscapeAttr>());
487     extParamInfos.push_back(extParamInfo);
488   }
489 
490   FunctionType::ExtInfo einfo;
491   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
492   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
493 
494   if (getContext().getLangOpts().ObjCAutoRefCount &&
495       MD->hasAttr<NSReturnsRetainedAttr>())
496     einfo = einfo.withProducesResult(true);
497 
498   RequiredArgs required =
499     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
500 
501   return arrangeLLVMFunctionInfo(
502       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
503       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
504 }
505 
506 const CGFunctionInfo &
507 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
508                                                  const CallArgList &args) {
509   auto argTypes = getArgTypesForCall(Context, args);
510   FunctionType::ExtInfo einfo;
511 
512   return arrangeLLVMFunctionInfo(
513       GetReturnType(returnType), /*instanceMethod=*/false,
514       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
515 }
516 
517 const CGFunctionInfo &
518 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
519   // FIXME: Do we need to handle ObjCMethodDecl?
520   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
521 
522   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
523       isa<CXXDestructorDecl>(GD.getDecl()))
524     return arrangeCXXStructorDeclaration(GD);
525 
526   return arrangeFunctionDeclaration(FD);
527 }
528 
529 /// Arrange a thunk that takes 'this' as the first parameter followed by
530 /// varargs.  Return a void pointer, regardless of the actual return type.
531 /// The body of the thunk will end in a musttail call to a function of the
532 /// correct type, and the caller will bitcast the function to the correct
533 /// prototype.
534 const CGFunctionInfo &
535 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
536   assert(MD->isVirtual() && "only methods have thunks");
537   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
538   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
539   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
540                                  /*chainCall=*/false, ArgTys,
541                                  FTP->getExtInfo(), {}, RequiredArgs(1));
542 }
543 
544 const CGFunctionInfo &
545 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
546                                    CXXCtorType CT) {
547   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
548 
549   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
550   SmallVector<CanQualType, 2> ArgTys;
551   const CXXRecordDecl *RD = CD->getParent();
552   ArgTys.push_back(DeriveThisType(RD, CD));
553   if (CT == Ctor_CopyingClosure)
554     ArgTys.push_back(*FTP->param_type_begin());
555   if (RD->getNumVBases() > 0)
556     ArgTys.push_back(Context.IntTy);
557   CallingConv CC = Context.getDefaultCallingConvention(
558       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
559   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
560                                  /*chainCall=*/false, ArgTys,
561                                  FunctionType::ExtInfo(CC), {},
562                                  RequiredArgs::All);
563 }
564 
565 /// Arrange a call as unto a free function, except possibly with an
566 /// additional number of formal parameters considered required.
567 static const CGFunctionInfo &
568 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
569                             CodeGenModule &CGM,
570                             const CallArgList &args,
571                             const FunctionType *fnType,
572                             unsigned numExtraRequiredArgs,
573                             bool chainCall) {
574   assert(args.size() >= numExtraRequiredArgs);
575 
576   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
577 
578   // In most cases, there are no optional arguments.
579   RequiredArgs required = RequiredArgs::All;
580 
581   // If we have a variadic prototype, the required arguments are the
582   // extra prefix plus the arguments in the prototype.
583   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
584     if (proto->isVariadic())
585       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
586 
587     if (proto->hasExtParameterInfos())
588       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
589                                   args.size());
590 
591   // If we don't have a prototype at all, but we're supposed to
592   // explicitly use the variadic convention for unprototyped calls,
593   // treat all of the arguments as required but preserve the nominal
594   // possibility of variadics.
595   } else if (CGM.getTargetCodeGenInfo()
596                 .isNoProtoCallVariadic(args,
597                                        cast<FunctionNoProtoType>(fnType))) {
598     required = RequiredArgs(args.size());
599   }
600 
601   // FIXME: Kill copy.
602   SmallVector<CanQualType, 16> argTypes;
603   for (const auto &arg : args)
604     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
605   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
606                                      /*instanceMethod=*/false, chainCall,
607                                      argTypes, fnType->getExtInfo(), paramInfos,
608                                      required);
609 }
610 
611 /// Figure out the rules for calling a function with the given formal
612 /// type using the given arguments.  The arguments are necessary
613 /// because the function might be unprototyped, in which case it's
614 /// target-dependent in crazy ways.
615 const CGFunctionInfo &
616 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
617                                       const FunctionType *fnType,
618                                       bool chainCall) {
619   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
620                                      chainCall ? 1 : 0, chainCall);
621 }
622 
623 /// A block function is essentially a free function with an
624 /// extra implicit argument.
625 const CGFunctionInfo &
626 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
627                                        const FunctionType *fnType) {
628   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
629                                      /*chainCall=*/false);
630 }
631 
632 const CGFunctionInfo &
633 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
634                                               const FunctionArgList &params) {
635   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
636   auto argTypes = getArgTypesForDeclaration(Context, params);
637 
638   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
639                                  /*instanceMethod*/ false, /*chainCall*/ false,
640                                  argTypes, proto->getExtInfo(), paramInfos,
641                                  RequiredArgs::forPrototypePlus(proto, 1));
642 }
643 
644 const CGFunctionInfo &
645 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
646                                          const CallArgList &args) {
647   // FIXME: Kill copy.
648   SmallVector<CanQualType, 16> argTypes;
649   for (const auto &Arg : args)
650     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
651   return arrangeLLVMFunctionInfo(
652       GetReturnType(resultType), /*instanceMethod=*/false,
653       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
654       /*paramInfos=*/ {}, RequiredArgs::All);
655 }
656 
657 const CGFunctionInfo &
658 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
659                                                 const FunctionArgList &args) {
660   auto argTypes = getArgTypesForDeclaration(Context, args);
661 
662   return arrangeLLVMFunctionInfo(
663       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
664       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
665 }
666 
667 const CGFunctionInfo &
668 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
669                                               ArrayRef<CanQualType> argTypes) {
670   return arrangeLLVMFunctionInfo(
671       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
672       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
673 }
674 
675 /// Arrange a call to a C++ method, passing the given arguments.
676 ///
677 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
678 /// does not count `this`.
679 const CGFunctionInfo &
680 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
681                                    const FunctionProtoType *proto,
682                                    RequiredArgs required,
683                                    unsigned numPrefixArgs) {
684   assert(numPrefixArgs + 1 <= args.size() &&
685          "Emitting a call with less args than the required prefix?");
686   // Add one to account for `this`. It's a bit awkward here, but we don't count
687   // `this` in similar places elsewhere.
688   auto paramInfos =
689     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
690 
691   // FIXME: Kill copy.
692   auto argTypes = getArgTypesForCall(Context, args);
693 
694   FunctionType::ExtInfo info = proto->getExtInfo();
695   return arrangeLLVMFunctionInfo(
696       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
697       /*chainCall=*/false, argTypes, info, paramInfos, required);
698 }
699 
700 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
701   return arrangeLLVMFunctionInfo(
702       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
703       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
704 }
705 
706 const CGFunctionInfo &
707 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
708                           const CallArgList &args) {
709   assert(signature.arg_size() <= args.size());
710   if (signature.arg_size() == args.size())
711     return signature;
712 
713   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
714   auto sigParamInfos = signature.getExtParameterInfos();
715   if (!sigParamInfos.empty()) {
716     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
717     paramInfos.resize(args.size());
718   }
719 
720   auto argTypes = getArgTypesForCall(Context, args);
721 
722   assert(signature.getRequiredArgs().allowsOptionalArgs());
723   return arrangeLLVMFunctionInfo(signature.getReturnType(),
724                                  signature.isInstanceMethod(),
725                                  signature.isChainCall(),
726                                  argTypes,
727                                  signature.getExtInfo(),
728                                  paramInfos,
729                                  signature.getRequiredArgs());
730 }
731 
732 namespace clang {
733 namespace CodeGen {
734 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
735 }
736 }
737 
738 /// Arrange the argument and result information for an abstract value
739 /// of a given function type.  This is the method which all of the
740 /// above functions ultimately defer to.
741 const CGFunctionInfo &
742 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
743                                       bool instanceMethod,
744                                       bool chainCall,
745                                       ArrayRef<CanQualType> argTypes,
746                                       FunctionType::ExtInfo info,
747                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
748                                       RequiredArgs required) {
749   assert(llvm::all_of(argTypes,
750                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
751 
752   // Lookup or create unique function info.
753   llvm::FoldingSetNodeID ID;
754   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
755                           required, resultType, argTypes);
756 
757   void *insertPos = nullptr;
758   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
759   if (FI)
760     return *FI;
761 
762   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
763 
764   // Construct the function info.  We co-allocate the ArgInfos.
765   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
766                               paramInfos, resultType, argTypes, required);
767   FunctionInfos.InsertNode(FI, insertPos);
768 
769   bool inserted = FunctionsBeingProcessed.insert(FI).second;
770   (void)inserted;
771   assert(inserted && "Recursively being processed?");
772 
773   // Compute ABI information.
774   if (CC == llvm::CallingConv::SPIR_KERNEL) {
775     // Force target independent argument handling for the host visible
776     // kernel functions.
777     computeSPIRKernelABIInfo(CGM, *FI);
778   } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
779     swiftcall::computeABIInfo(CGM, *FI);
780   } else {
781     getABIInfo().computeInfo(*FI);
782   }
783 
784   // Loop over all of the computed argument and return value info.  If any of
785   // them are direct or extend without a specified coerce type, specify the
786   // default now.
787   ABIArgInfo &retInfo = FI->getReturnInfo();
788   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
789     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
790 
791   for (auto &I : FI->arguments())
792     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
793       I.info.setCoerceToType(ConvertType(I.type));
794 
795   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
796   assert(erased && "Not in set?");
797 
798   return *FI;
799 }
800 
801 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
802                                        bool instanceMethod,
803                                        bool chainCall,
804                                        const FunctionType::ExtInfo &info,
805                                        ArrayRef<ExtParameterInfo> paramInfos,
806                                        CanQualType resultType,
807                                        ArrayRef<CanQualType> argTypes,
808                                        RequiredArgs required) {
809   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
810   assert(!required.allowsOptionalArgs() ||
811          required.getNumRequiredArgs() <= argTypes.size());
812 
813   void *buffer =
814     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
815                                   argTypes.size() + 1, paramInfos.size()));
816 
817   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
818   FI->CallingConvention = llvmCC;
819   FI->EffectiveCallingConvention = llvmCC;
820   FI->ASTCallingConvention = info.getCC();
821   FI->InstanceMethod = instanceMethod;
822   FI->ChainCall = chainCall;
823   FI->CmseNSCall = info.getCmseNSCall();
824   FI->NoReturn = info.getNoReturn();
825   FI->ReturnsRetained = info.getProducesResult();
826   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
827   FI->NoCfCheck = info.getNoCfCheck();
828   FI->Required = required;
829   FI->HasRegParm = info.getHasRegParm();
830   FI->RegParm = info.getRegParm();
831   FI->ArgStruct = nullptr;
832   FI->ArgStructAlign = 0;
833   FI->NumArgs = argTypes.size();
834   FI->HasExtParameterInfos = !paramInfos.empty();
835   FI->getArgsBuffer()[0].type = resultType;
836   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
837     FI->getArgsBuffer()[i + 1].type = argTypes[i];
838   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
839     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
840   return FI;
841 }
842 
843 /***/
844 
845 namespace {
846 // ABIArgInfo::Expand implementation.
847 
848 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
849 struct TypeExpansion {
850   enum TypeExpansionKind {
851     // Elements of constant arrays are expanded recursively.
852     TEK_ConstantArray,
853     // Record fields are expanded recursively (but if record is a union, only
854     // the field with the largest size is expanded).
855     TEK_Record,
856     // For complex types, real and imaginary parts are expanded recursively.
857     TEK_Complex,
858     // All other types are not expandable.
859     TEK_None
860   };
861 
862   const TypeExpansionKind Kind;
863 
864   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
865   virtual ~TypeExpansion() {}
866 };
867 
868 struct ConstantArrayExpansion : TypeExpansion {
869   QualType EltTy;
870   uint64_t NumElts;
871 
872   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
873       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
874   static bool classof(const TypeExpansion *TE) {
875     return TE->Kind == TEK_ConstantArray;
876   }
877 };
878 
879 struct RecordExpansion : TypeExpansion {
880   SmallVector<const CXXBaseSpecifier *, 1> Bases;
881 
882   SmallVector<const FieldDecl *, 1> Fields;
883 
884   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
885                   SmallVector<const FieldDecl *, 1> &&Fields)
886       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
887         Fields(std::move(Fields)) {}
888   static bool classof(const TypeExpansion *TE) {
889     return TE->Kind == TEK_Record;
890   }
891 };
892 
893 struct ComplexExpansion : TypeExpansion {
894   QualType EltTy;
895 
896   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
897   static bool classof(const TypeExpansion *TE) {
898     return TE->Kind == TEK_Complex;
899   }
900 };
901 
902 struct NoExpansion : TypeExpansion {
903   NoExpansion() : TypeExpansion(TEK_None) {}
904   static bool classof(const TypeExpansion *TE) {
905     return TE->Kind == TEK_None;
906   }
907 };
908 }  // namespace
909 
910 static std::unique_ptr<TypeExpansion>
911 getTypeExpansion(QualType Ty, const ASTContext &Context) {
912   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
913     return std::make_unique<ConstantArrayExpansion>(
914         AT->getElementType(), AT->getSize().getZExtValue());
915   }
916   if (const RecordType *RT = Ty->getAs<RecordType>()) {
917     SmallVector<const CXXBaseSpecifier *, 1> Bases;
918     SmallVector<const FieldDecl *, 1> Fields;
919     const RecordDecl *RD = RT->getDecl();
920     assert(!RD->hasFlexibleArrayMember() &&
921            "Cannot expand structure with flexible array.");
922     if (RD->isUnion()) {
923       // Unions can be here only in degenerative cases - all the fields are same
924       // after flattening. Thus we have to use the "largest" field.
925       const FieldDecl *LargestFD = nullptr;
926       CharUnits UnionSize = CharUnits::Zero();
927 
928       for (const auto *FD : RD->fields()) {
929         if (FD->isZeroLengthBitField(Context))
930           continue;
931         assert(!FD->isBitField() &&
932                "Cannot expand structure with bit-field members.");
933         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
934         if (UnionSize < FieldSize) {
935           UnionSize = FieldSize;
936           LargestFD = FD;
937         }
938       }
939       if (LargestFD)
940         Fields.push_back(LargestFD);
941     } else {
942       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
943         assert(!CXXRD->isDynamicClass() &&
944                "cannot expand vtable pointers in dynamic classes");
945         llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases()));
946       }
947 
948       for (const auto *FD : RD->fields()) {
949         if (FD->isZeroLengthBitField(Context))
950           continue;
951         assert(!FD->isBitField() &&
952                "Cannot expand structure with bit-field members.");
953         Fields.push_back(FD);
954       }
955     }
956     return std::make_unique<RecordExpansion>(std::move(Bases),
957                                               std::move(Fields));
958   }
959   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
960     return std::make_unique<ComplexExpansion>(CT->getElementType());
961   }
962   return std::make_unique<NoExpansion>();
963 }
964 
965 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
966   auto Exp = getTypeExpansion(Ty, Context);
967   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
968     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
969   }
970   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
971     int Res = 0;
972     for (auto BS : RExp->Bases)
973       Res += getExpansionSize(BS->getType(), Context);
974     for (auto FD : RExp->Fields)
975       Res += getExpansionSize(FD->getType(), Context);
976     return Res;
977   }
978   if (isa<ComplexExpansion>(Exp.get()))
979     return 2;
980   assert(isa<NoExpansion>(Exp.get()));
981   return 1;
982 }
983 
984 void
985 CodeGenTypes::getExpandedTypes(QualType Ty,
986                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
987   auto Exp = getTypeExpansion(Ty, Context);
988   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
989     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
990       getExpandedTypes(CAExp->EltTy, TI);
991     }
992   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
993     for (auto BS : RExp->Bases)
994       getExpandedTypes(BS->getType(), TI);
995     for (auto FD : RExp->Fields)
996       getExpandedTypes(FD->getType(), TI);
997   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
998     llvm::Type *EltTy = ConvertType(CExp->EltTy);
999     *TI++ = EltTy;
1000     *TI++ = EltTy;
1001   } else {
1002     assert(isa<NoExpansion>(Exp.get()));
1003     *TI++ = ConvertType(Ty);
1004   }
1005 }
1006 
1007 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1008                                       ConstantArrayExpansion *CAE,
1009                                       Address BaseAddr,
1010                                       llvm::function_ref<void(Address)> Fn) {
1011   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1012   CharUnits EltAlign =
1013     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1014   llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy);
1015 
1016   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1017     llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1018         BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1019     Fn(Address(EltAddr, EltTy, EltAlign));
1020   }
1021 }
1022 
1023 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1024                                          llvm::Function::arg_iterator &AI) {
1025   assert(LV.isSimple() &&
1026          "Unexpected non-simple lvalue during struct expansion.");
1027 
1028   auto Exp = getTypeExpansion(Ty, getContext());
1029   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1030     forConstantArrayExpansion(
1031         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1032           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1033           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1034         });
1035   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1036     Address This = LV.getAddress(*this);
1037     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1038       // Perform a single step derived-to-base conversion.
1039       Address Base =
1040           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1041                                 /*NullCheckValue=*/false, SourceLocation());
1042       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1043 
1044       // Recurse onto bases.
1045       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1046     }
1047     for (auto FD : RExp->Fields) {
1048       // FIXME: What are the right qualifiers here?
1049       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1050       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1051     }
1052   } else if (isa<ComplexExpansion>(Exp.get())) {
1053     auto realValue = &*AI++;
1054     auto imagValue = &*AI++;
1055     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1056   } else {
1057     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1058     // primitive store.
1059     assert(isa<NoExpansion>(Exp.get()));
1060     llvm::Value *Arg = &*AI++;
1061     if (LV.isBitField()) {
1062       EmitStoreThroughLValue(RValue::get(Arg), LV);
1063     } else {
1064       // TODO: currently there are some places are inconsistent in what LLVM
1065       // pointer type they use (see D118744). Once clang uses opaque pointers
1066       // all LLVM pointer types will be the same and we can remove this check.
1067       if (Arg->getType()->isPointerTy()) {
1068         Address Addr = LV.getAddress(*this);
1069         Arg = Builder.CreateBitCast(Arg, Addr.getElementType());
1070       }
1071       EmitStoreOfScalar(Arg, LV);
1072     }
1073   }
1074 }
1075 
1076 void CodeGenFunction::ExpandTypeToArgs(
1077     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1078     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1079   auto Exp = getTypeExpansion(Ty, getContext());
1080   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1081     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1082                                    : Arg.getKnownRValue().getAggregateAddress();
1083     forConstantArrayExpansion(
1084         *this, CAExp, Addr, [&](Address EltAddr) {
1085           CallArg EltArg = CallArg(
1086               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1087               CAExp->EltTy);
1088           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1089                            IRCallArgPos);
1090         });
1091   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1092     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1093                                    : Arg.getKnownRValue().getAggregateAddress();
1094     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1095       // Perform a single step derived-to-base conversion.
1096       Address Base =
1097           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1098                                 /*NullCheckValue=*/false, SourceLocation());
1099       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1100 
1101       // Recurse onto bases.
1102       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1103                        IRCallArgPos);
1104     }
1105 
1106     LValue LV = MakeAddrLValue(This, Ty);
1107     for (auto FD : RExp->Fields) {
1108       CallArg FldArg =
1109           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1110       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1111                        IRCallArgPos);
1112     }
1113   } else if (isa<ComplexExpansion>(Exp.get())) {
1114     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1115     IRCallArgs[IRCallArgPos++] = CV.first;
1116     IRCallArgs[IRCallArgPos++] = CV.second;
1117   } else {
1118     assert(isa<NoExpansion>(Exp.get()));
1119     auto RV = Arg.getKnownRValue();
1120     assert(RV.isScalar() &&
1121            "Unexpected non-scalar rvalue during struct expansion.");
1122 
1123     // Insert a bitcast as needed.
1124     llvm::Value *V = RV.getScalarVal();
1125     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1126         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1127       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1128 
1129     IRCallArgs[IRCallArgPos++] = V;
1130   }
1131 }
1132 
1133 /// Create a temporary allocation for the purposes of coercion.
1134 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1135                                            CharUnits MinAlign,
1136                                            const Twine &Name = "tmp") {
1137   // Don't use an alignment that's worse than what LLVM would prefer.
1138   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1139   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1140 
1141   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1142 }
1143 
1144 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1145 /// accessing some number of bytes out of it, try to gep into the struct to get
1146 /// at its inner goodness.  Dive as deep as possible without entering an element
1147 /// with an in-memory size smaller than DstSize.
1148 static Address
1149 EnterStructPointerForCoercedAccess(Address SrcPtr,
1150                                    llvm::StructType *SrcSTy,
1151                                    uint64_t DstSize, CodeGenFunction &CGF) {
1152   // We can't dive into a zero-element struct.
1153   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1154 
1155   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1156 
1157   // If the first elt is at least as large as what we're looking for, or if the
1158   // first element is the same size as the whole struct, we can enter it. The
1159   // comparison must be made on the store size and not the alloca size. Using
1160   // the alloca size may overstate the size of the load.
1161   uint64_t FirstEltSize =
1162     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1163   if (FirstEltSize < DstSize &&
1164       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1165     return SrcPtr;
1166 
1167   // GEP into the first element.
1168   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1169 
1170   // If the first element is a struct, recurse.
1171   llvm::Type *SrcTy = SrcPtr.getElementType();
1172   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1173     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1174 
1175   return SrcPtr;
1176 }
1177 
1178 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1179 /// are either integers or pointers.  This does a truncation of the value if it
1180 /// is too large or a zero extension if it is too small.
1181 ///
1182 /// This behaves as if the value were coerced through memory, so on big-endian
1183 /// targets the high bits are preserved in a truncation, while little-endian
1184 /// targets preserve the low bits.
1185 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1186                                              llvm::Type *Ty,
1187                                              CodeGenFunction &CGF) {
1188   if (Val->getType() == Ty)
1189     return Val;
1190 
1191   if (isa<llvm::PointerType>(Val->getType())) {
1192     // If this is Pointer->Pointer avoid conversion to and from int.
1193     if (isa<llvm::PointerType>(Ty))
1194       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1195 
1196     // Convert the pointer to an integer so we can play with its width.
1197     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1198   }
1199 
1200   llvm::Type *DestIntTy = Ty;
1201   if (isa<llvm::PointerType>(DestIntTy))
1202     DestIntTy = CGF.IntPtrTy;
1203 
1204   if (Val->getType() != DestIntTy) {
1205     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1206     if (DL.isBigEndian()) {
1207       // Preserve the high bits on big-endian targets.
1208       // That is what memory coercion does.
1209       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1210       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1211 
1212       if (SrcSize > DstSize) {
1213         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1214         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1215       } else {
1216         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1217         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1218       }
1219     } else {
1220       // Little-endian targets preserve the low bits. No shifts required.
1221       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1222     }
1223   }
1224 
1225   if (isa<llvm::PointerType>(Ty))
1226     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1227   return Val;
1228 }
1229 
1230 
1231 
1232 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1233 /// a pointer to an object of type \arg Ty, known to be aligned to
1234 /// \arg SrcAlign bytes.
1235 ///
1236 /// This safely handles the case when the src type is smaller than the
1237 /// destination type; in this situation the values of bits which not
1238 /// present in the src are undefined.
1239 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1240                                       CodeGenFunction &CGF) {
1241   llvm::Type *SrcTy = Src.getElementType();
1242 
1243   // If SrcTy and Ty are the same, just do a load.
1244   if (SrcTy == Ty)
1245     return CGF.Builder.CreateLoad(Src);
1246 
1247   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1248 
1249   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1250     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1251                                              DstSize.getFixedSize(), CGF);
1252     SrcTy = Src.getElementType();
1253   }
1254 
1255   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1256 
1257   // If the source and destination are integer or pointer types, just do an
1258   // extension or truncation to the desired type.
1259   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1260       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1261     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1262     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1263   }
1264 
1265   // If load is legal, just bitcast the src pointer.
1266   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1267       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1268     // Generally SrcSize is never greater than DstSize, since this means we are
1269     // losing bits. However, this can happen in cases where the structure has
1270     // additional padding, for example due to a user specified alignment.
1271     //
1272     // FIXME: Assert that we aren't truncating non-padding bits when have access
1273     // to that information.
1274     Src = CGF.Builder.CreateElementBitCast(Src, Ty);
1275     return CGF.Builder.CreateLoad(Src);
1276   }
1277 
1278   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1279   // the types match, use the llvm.experimental.vector.insert intrinsic to
1280   // perform the conversion.
1281   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1282     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1283       // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1284       // vector, use a vector insert and bitcast the result.
1285       bool NeedsBitcast = false;
1286       auto PredType =
1287           llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1288       llvm::Type *OrigType = Ty;
1289       if (ScalableDst == PredType &&
1290           FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1291         ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1292         NeedsBitcast = true;
1293       }
1294       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1295         auto *Load = CGF.Builder.CreateLoad(Src);
1296         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1297         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1298         llvm::Value *Result = CGF.Builder.CreateInsertVector(
1299             ScalableDst, UndefVec, Load, Zero, "castScalableSve");
1300         if (NeedsBitcast)
1301           Result = CGF.Builder.CreateBitCast(Result, OrigType);
1302         return Result;
1303       }
1304     }
1305   }
1306 
1307   // Otherwise do coercion through memory. This is stupid, but simple.
1308   Address Tmp =
1309       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1310   CGF.Builder.CreateMemCpy(
1311       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1312       Src.getAlignment().getAsAlign(),
1313       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1314   return CGF.Builder.CreateLoad(Tmp);
1315 }
1316 
1317 // Function to store a first-class aggregate into memory.  We prefer to
1318 // store the elements rather than the aggregate to be more friendly to
1319 // fast-isel.
1320 // FIXME: Do we need to recurse here?
1321 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1322                                          bool DestIsVolatile) {
1323   // Prefer scalar stores to first-class aggregate stores.
1324   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1325     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1326       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1327       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1328       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1329     }
1330   } else {
1331     Builder.CreateStore(Val, Dest, DestIsVolatile);
1332   }
1333 }
1334 
1335 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1336 /// where the source and destination may have different types.  The
1337 /// destination is known to be aligned to \arg DstAlign bytes.
1338 ///
1339 /// This safely handles the case when the src type is larger than the
1340 /// destination type; the upper bits of the src will be lost.
1341 static void CreateCoercedStore(llvm::Value *Src,
1342                                Address Dst,
1343                                bool DstIsVolatile,
1344                                CodeGenFunction &CGF) {
1345   llvm::Type *SrcTy = Src->getType();
1346   llvm::Type *DstTy = Dst.getElementType();
1347   if (SrcTy == DstTy) {
1348     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1349     return;
1350   }
1351 
1352   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1353 
1354   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1355     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1356                                              SrcSize.getFixedSize(), CGF);
1357     DstTy = Dst.getElementType();
1358   }
1359 
1360   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1361   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1362   if (SrcPtrTy && DstPtrTy &&
1363       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1364     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1365     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1366     return;
1367   }
1368 
1369   // If the source and destination are integer or pointer types, just do an
1370   // extension or truncation to the desired type.
1371   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1372       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1373     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1374     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1375     return;
1376   }
1377 
1378   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1379 
1380   // If store is legal, just bitcast the src pointer.
1381   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1382       isa<llvm::ScalableVectorType>(DstTy) ||
1383       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1384     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1385     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1386   } else {
1387     // Otherwise do coercion through memory. This is stupid, but
1388     // simple.
1389 
1390     // Generally SrcSize is never greater than DstSize, since this means we are
1391     // losing bits. However, this can happen in cases where the structure has
1392     // additional padding, for example due to a user specified alignment.
1393     //
1394     // FIXME: Assert that we aren't truncating non-padding bits when have access
1395     // to that information.
1396     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1397     CGF.Builder.CreateStore(Src, Tmp);
1398     CGF.Builder.CreateMemCpy(
1399         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1400         Tmp.getAlignment().getAsAlign(),
1401         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1402   }
1403 }
1404 
1405 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1406                                    const ABIArgInfo &info) {
1407   if (unsigned offset = info.getDirectOffset()) {
1408     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1409     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1410                                              CharUnits::fromQuantity(offset));
1411     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1412   }
1413   return addr;
1414 }
1415 
1416 namespace {
1417 
1418 /// Encapsulates information about the way function arguments from
1419 /// CGFunctionInfo should be passed to actual LLVM IR function.
1420 class ClangToLLVMArgMapping {
1421   static const unsigned InvalidIndex = ~0U;
1422   unsigned InallocaArgNo;
1423   unsigned SRetArgNo;
1424   unsigned TotalIRArgs;
1425 
1426   /// Arguments of LLVM IR function corresponding to single Clang argument.
1427   struct IRArgs {
1428     unsigned PaddingArgIndex;
1429     // Argument is expanded to IR arguments at positions
1430     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1431     unsigned FirstArgIndex;
1432     unsigned NumberOfArgs;
1433 
1434     IRArgs()
1435         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1436           NumberOfArgs(0) {}
1437   };
1438 
1439   SmallVector<IRArgs, 8> ArgInfo;
1440 
1441 public:
1442   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1443                         bool OnlyRequiredArgs = false)
1444       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1445         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1446     construct(Context, FI, OnlyRequiredArgs);
1447   }
1448 
1449   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1450   unsigned getInallocaArgNo() const {
1451     assert(hasInallocaArg());
1452     return InallocaArgNo;
1453   }
1454 
1455   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1456   unsigned getSRetArgNo() const {
1457     assert(hasSRetArg());
1458     return SRetArgNo;
1459   }
1460 
1461   unsigned totalIRArgs() const { return TotalIRArgs; }
1462 
1463   bool hasPaddingArg(unsigned ArgNo) const {
1464     assert(ArgNo < ArgInfo.size());
1465     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1466   }
1467   unsigned getPaddingArgNo(unsigned ArgNo) const {
1468     assert(hasPaddingArg(ArgNo));
1469     return ArgInfo[ArgNo].PaddingArgIndex;
1470   }
1471 
1472   /// Returns index of first IR argument corresponding to ArgNo, and their
1473   /// quantity.
1474   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1475     assert(ArgNo < ArgInfo.size());
1476     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1477                           ArgInfo[ArgNo].NumberOfArgs);
1478   }
1479 
1480 private:
1481   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1482                  bool OnlyRequiredArgs);
1483 };
1484 
1485 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1486                                       const CGFunctionInfo &FI,
1487                                       bool OnlyRequiredArgs) {
1488   unsigned IRArgNo = 0;
1489   bool SwapThisWithSRet = false;
1490   const ABIArgInfo &RetAI = FI.getReturnInfo();
1491 
1492   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1493     SwapThisWithSRet = RetAI.isSRetAfterThis();
1494     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1495   }
1496 
1497   unsigned ArgNo = 0;
1498   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1499   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1500        ++I, ++ArgNo) {
1501     assert(I != FI.arg_end());
1502     QualType ArgType = I->type;
1503     const ABIArgInfo &AI = I->info;
1504     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1505     auto &IRArgs = ArgInfo[ArgNo];
1506 
1507     if (AI.getPaddingType())
1508       IRArgs.PaddingArgIndex = IRArgNo++;
1509 
1510     switch (AI.getKind()) {
1511     case ABIArgInfo::Extend:
1512     case ABIArgInfo::Direct: {
1513       // FIXME: handle sseregparm someday...
1514       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1515       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1516         IRArgs.NumberOfArgs = STy->getNumElements();
1517       } else {
1518         IRArgs.NumberOfArgs = 1;
1519       }
1520       break;
1521     }
1522     case ABIArgInfo::Indirect:
1523     case ABIArgInfo::IndirectAliased:
1524       IRArgs.NumberOfArgs = 1;
1525       break;
1526     case ABIArgInfo::Ignore:
1527     case ABIArgInfo::InAlloca:
1528       // ignore and inalloca doesn't have matching LLVM parameters.
1529       IRArgs.NumberOfArgs = 0;
1530       break;
1531     case ABIArgInfo::CoerceAndExpand:
1532       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1533       break;
1534     case ABIArgInfo::Expand:
1535       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1536       break;
1537     }
1538 
1539     if (IRArgs.NumberOfArgs > 0) {
1540       IRArgs.FirstArgIndex = IRArgNo;
1541       IRArgNo += IRArgs.NumberOfArgs;
1542     }
1543 
1544     // Skip over the sret parameter when it comes second.  We already handled it
1545     // above.
1546     if (IRArgNo == 1 && SwapThisWithSRet)
1547       IRArgNo++;
1548   }
1549   assert(ArgNo == ArgInfo.size());
1550 
1551   if (FI.usesInAlloca())
1552     InallocaArgNo = IRArgNo++;
1553 
1554   TotalIRArgs = IRArgNo;
1555 }
1556 }  // namespace
1557 
1558 /***/
1559 
1560 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1561   const auto &RI = FI.getReturnInfo();
1562   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1563 }
1564 
1565 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1566   return ReturnTypeUsesSRet(FI) &&
1567          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1568 }
1569 
1570 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1571   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1572     switch (BT->getKind()) {
1573     default:
1574       return false;
1575     case BuiltinType::Float:
1576       return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1577     case BuiltinType::Double:
1578       return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1579     case BuiltinType::LongDouble:
1580       return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1581     }
1582   }
1583 
1584   return false;
1585 }
1586 
1587 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1588   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1589     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1590       if (BT->getKind() == BuiltinType::LongDouble)
1591         return getTarget().useObjCFP2RetForComplexLongDouble();
1592     }
1593   }
1594 
1595   return false;
1596 }
1597 
1598 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1599   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1600   return GetFunctionType(FI);
1601 }
1602 
1603 llvm::FunctionType *
1604 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1605 
1606   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1607   (void)Inserted;
1608   assert(Inserted && "Recursively being processed?");
1609 
1610   llvm::Type *resultType = nullptr;
1611   const ABIArgInfo &retAI = FI.getReturnInfo();
1612   switch (retAI.getKind()) {
1613   case ABIArgInfo::Expand:
1614   case ABIArgInfo::IndirectAliased:
1615     llvm_unreachable("Invalid ABI kind for return argument");
1616 
1617   case ABIArgInfo::Extend:
1618   case ABIArgInfo::Direct:
1619     resultType = retAI.getCoerceToType();
1620     break;
1621 
1622   case ABIArgInfo::InAlloca:
1623     if (retAI.getInAllocaSRet()) {
1624       // sret things on win32 aren't void, they return the sret pointer.
1625       QualType ret = FI.getReturnType();
1626       llvm::Type *ty = ConvertType(ret);
1627       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1628       resultType = llvm::PointerType::get(ty, addressSpace);
1629     } else {
1630       resultType = llvm::Type::getVoidTy(getLLVMContext());
1631     }
1632     break;
1633 
1634   case ABIArgInfo::Indirect:
1635   case ABIArgInfo::Ignore:
1636     resultType = llvm::Type::getVoidTy(getLLVMContext());
1637     break;
1638 
1639   case ABIArgInfo::CoerceAndExpand:
1640     resultType = retAI.getUnpaddedCoerceAndExpandType();
1641     break;
1642   }
1643 
1644   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1645   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1646 
1647   // Add type for sret argument.
1648   if (IRFunctionArgs.hasSRetArg()) {
1649     QualType Ret = FI.getReturnType();
1650     llvm::Type *Ty = ConvertType(Ret);
1651     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1652     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1653         llvm::PointerType::get(Ty, AddressSpace);
1654   }
1655 
1656   // Add type for inalloca argument.
1657   if (IRFunctionArgs.hasInallocaArg()) {
1658     auto ArgStruct = FI.getArgStruct();
1659     assert(ArgStruct);
1660     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1661   }
1662 
1663   // Add in all of the required arguments.
1664   unsigned ArgNo = 0;
1665   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1666                                      ie = it + FI.getNumRequiredArgs();
1667   for (; it != ie; ++it, ++ArgNo) {
1668     const ABIArgInfo &ArgInfo = it->info;
1669 
1670     // Insert a padding type to ensure proper alignment.
1671     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1672       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1673           ArgInfo.getPaddingType();
1674 
1675     unsigned FirstIRArg, NumIRArgs;
1676     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1677 
1678     switch (ArgInfo.getKind()) {
1679     case ABIArgInfo::Ignore:
1680     case ABIArgInfo::InAlloca:
1681       assert(NumIRArgs == 0);
1682       break;
1683 
1684     case ABIArgInfo::Indirect: {
1685       assert(NumIRArgs == 1);
1686       // indirect arguments are always on the stack, which is alloca addr space.
1687       llvm::Type *LTy = ConvertTypeForMem(it->type);
1688       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1689           CGM.getDataLayout().getAllocaAddrSpace());
1690       break;
1691     }
1692     case ABIArgInfo::IndirectAliased: {
1693       assert(NumIRArgs == 1);
1694       llvm::Type *LTy = ConvertTypeForMem(it->type);
1695       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1696       break;
1697     }
1698     case ABIArgInfo::Extend:
1699     case ABIArgInfo::Direct: {
1700       // Fast-isel and the optimizer generally like scalar values better than
1701       // FCAs, so we flatten them if this is safe to do for this argument.
1702       llvm::Type *argType = ArgInfo.getCoerceToType();
1703       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1704       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1705         assert(NumIRArgs == st->getNumElements());
1706         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1707           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1708       } else {
1709         assert(NumIRArgs == 1);
1710         ArgTypes[FirstIRArg] = argType;
1711       }
1712       break;
1713     }
1714 
1715     case ABIArgInfo::CoerceAndExpand: {
1716       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1717       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1718         *ArgTypesIter++ = EltTy;
1719       }
1720       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1721       break;
1722     }
1723 
1724     case ABIArgInfo::Expand:
1725       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1726       getExpandedTypes(it->type, ArgTypesIter);
1727       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1728       break;
1729     }
1730   }
1731 
1732   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1733   assert(Erased && "Not in set?");
1734 
1735   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1736 }
1737 
1738 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1739   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1740   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1741 
1742   if (!isFuncTypeConvertible(FPT))
1743     return llvm::StructType::get(getLLVMContext());
1744 
1745   return GetFunctionType(GD);
1746 }
1747 
1748 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1749                                                llvm::AttrBuilder &FuncAttrs,
1750                                                const FunctionProtoType *FPT) {
1751   if (!FPT)
1752     return;
1753 
1754   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1755       FPT->isNothrow())
1756     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1757 }
1758 
1759 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
1760                                      const Decl *Callee) {
1761   if (!Callee)
1762     return;
1763 
1764   SmallVector<StringRef, 4> Attrs;
1765 
1766   for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
1767     AA->getAssumption().split(Attrs, ",");
1768 
1769   if (!Attrs.empty())
1770     FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1771                            llvm::join(Attrs.begin(), Attrs.end(), ","));
1772 }
1773 
1774 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1775                                           QualType ReturnType) {
1776   // We can't just discard the return value for a record type with a
1777   // complex destructor or a non-trivially copyable type.
1778   if (const RecordType *RT =
1779           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1780     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1781       return ClassDecl->hasTrivialDestructor();
1782   }
1783   return ReturnType.isTriviallyCopyableType(Context);
1784 }
1785 
1786 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1787                                                  bool HasOptnone,
1788                                                  bool AttrOnCallSite,
1789                                                llvm::AttrBuilder &FuncAttrs) {
1790   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1791   if (!HasOptnone) {
1792     if (CodeGenOpts.OptimizeSize)
1793       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1794     if (CodeGenOpts.OptimizeSize == 2)
1795       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1796   }
1797 
1798   if (CodeGenOpts.DisableRedZone)
1799     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1800   if (CodeGenOpts.IndirectTlsSegRefs)
1801     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1802   if (CodeGenOpts.NoImplicitFloat)
1803     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1804 
1805   if (AttrOnCallSite) {
1806     // Attributes that should go on the call site only.
1807     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1808       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1809     if (!CodeGenOpts.TrapFuncName.empty())
1810       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1811   } else {
1812     StringRef FpKind;
1813     switch (CodeGenOpts.getFramePointer()) {
1814     case CodeGenOptions::FramePointerKind::None:
1815       FpKind = "none";
1816       break;
1817     case CodeGenOptions::FramePointerKind::NonLeaf:
1818       FpKind = "non-leaf";
1819       break;
1820     case CodeGenOptions::FramePointerKind::All:
1821       FpKind = "all";
1822       break;
1823     }
1824     FuncAttrs.addAttribute("frame-pointer", FpKind);
1825 
1826     if (CodeGenOpts.LessPreciseFPMAD)
1827       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1828 
1829     if (CodeGenOpts.NullPointerIsValid)
1830       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1831 
1832     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1833       FuncAttrs.addAttribute("denormal-fp-math",
1834                              CodeGenOpts.FPDenormalMode.str());
1835     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1836       FuncAttrs.addAttribute(
1837           "denormal-fp-math-f32",
1838           CodeGenOpts.FP32DenormalMode.str());
1839     }
1840 
1841     if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1842       FuncAttrs.addAttribute("no-trapping-math", "true");
1843 
1844     // TODO: Are these all needed?
1845     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1846     if (LangOpts.NoHonorInfs)
1847       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1848     if (LangOpts.NoHonorNaNs)
1849       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1850     if (LangOpts.ApproxFunc)
1851       FuncAttrs.addAttribute("approx-func-fp-math", "true");
1852     if (LangOpts.UnsafeFPMath)
1853       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1854     if (CodeGenOpts.SoftFloat)
1855       FuncAttrs.addAttribute("use-soft-float", "true");
1856     FuncAttrs.addAttribute("stack-protector-buffer-size",
1857                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1858     if (LangOpts.NoSignedZero)
1859       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1860 
1861     // TODO: Reciprocal estimate codegen options should apply to instructions?
1862     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1863     if (!Recips.empty())
1864       FuncAttrs.addAttribute("reciprocal-estimates",
1865                              llvm::join(Recips, ","));
1866 
1867     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1868         CodeGenOpts.PreferVectorWidth != "none")
1869       FuncAttrs.addAttribute("prefer-vector-width",
1870                              CodeGenOpts.PreferVectorWidth);
1871 
1872     if (CodeGenOpts.StackRealignment)
1873       FuncAttrs.addAttribute("stackrealign");
1874     if (CodeGenOpts.Backchain)
1875       FuncAttrs.addAttribute("backchain");
1876     if (CodeGenOpts.EnableSegmentedStacks)
1877       FuncAttrs.addAttribute("split-stack");
1878 
1879     if (CodeGenOpts.SpeculativeLoadHardening)
1880       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1881 
1882     // Add zero-call-used-regs attribute.
1883     switch (CodeGenOpts.getZeroCallUsedRegs()) {
1884     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
1885       FuncAttrs.removeAttribute("zero-call-used-regs");
1886       break;
1887     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
1888       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg");
1889       break;
1890     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
1891       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr");
1892       break;
1893     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
1894       FuncAttrs.addAttribute("zero-call-used-regs", "used-arg");
1895       break;
1896     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
1897       FuncAttrs.addAttribute("zero-call-used-regs", "used");
1898       break;
1899     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
1900       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg");
1901       break;
1902     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
1903       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr");
1904       break;
1905     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
1906       FuncAttrs.addAttribute("zero-call-used-regs", "all-arg");
1907       break;
1908     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
1909       FuncAttrs.addAttribute("zero-call-used-regs", "all");
1910       break;
1911     }
1912   }
1913 
1914   if (getLangOpts().assumeFunctionsAreConvergent()) {
1915     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1916     // convergent (meaning, they may call an intrinsically convergent op, such
1917     // as __syncthreads() / barrier(), and so can't have certain optimizations
1918     // applied around them).  LLVM will remove this attribute where it safely
1919     // can.
1920     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1921   }
1922 
1923   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1924     // Exceptions aren't supported in CUDA device code.
1925     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1926   }
1927 
1928   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1929     StringRef Var, Value;
1930     std::tie(Var, Value) = Attr.split('=');
1931     FuncAttrs.addAttribute(Var, Value);
1932   }
1933 }
1934 
1935 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1936   llvm::AttrBuilder FuncAttrs(F.getContext());
1937   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1938                                /* AttrOnCallSite = */ false, FuncAttrs);
1939   // TODO: call GetCPUAndFeaturesAttributes?
1940   F.addFnAttrs(FuncAttrs);
1941 }
1942 
1943 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1944                                                    llvm::AttrBuilder &attrs) {
1945   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1946                                /*for call*/ false, attrs);
1947   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1948 }
1949 
1950 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1951                                    const LangOptions &LangOpts,
1952                                    const NoBuiltinAttr *NBA = nullptr) {
1953   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1954     SmallString<32> AttributeName;
1955     AttributeName += "no-builtin-";
1956     AttributeName += BuiltinName;
1957     FuncAttrs.addAttribute(AttributeName);
1958   };
1959 
1960   // First, handle the language options passed through -fno-builtin.
1961   if (LangOpts.NoBuiltin) {
1962     // -fno-builtin disables them all.
1963     FuncAttrs.addAttribute("no-builtins");
1964     return;
1965   }
1966 
1967   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1968   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1969 
1970   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1971   // the source.
1972   if (!NBA)
1973     return;
1974 
1975   // If there is a wildcard in the builtin names specified through the
1976   // attribute, disable them all.
1977   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1978     FuncAttrs.addAttribute("no-builtins");
1979     return;
1980   }
1981 
1982   // And last, add the rest of the builtin names.
1983   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1984 }
1985 
1986 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
1987                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
1988                              bool CheckCoerce = true) {
1989   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
1990   if (AI.getKind() == ABIArgInfo::Indirect)
1991     return true;
1992   if (AI.getKind() == ABIArgInfo::Extend)
1993     return true;
1994   if (!DL.typeSizeEqualsStoreSize(Ty))
1995     // TODO: This will result in a modest amount of values not marked noundef
1996     // when they could be. We care about values that *invisibly* contain undef
1997     // bits from the perspective of LLVM IR.
1998     return false;
1999   if (CheckCoerce && AI.canHaveCoerceToType()) {
2000     llvm::Type *CoerceTy = AI.getCoerceToType();
2001     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
2002                                   DL.getTypeSizeInBits(Ty)))
2003       // If we're coercing to a type with a greater size than the canonical one,
2004       // we're introducing new undef bits.
2005       // Coercing to a type of smaller or equal size is ok, as we know that
2006       // there's no internal padding (typeSizeEqualsStoreSize).
2007       return false;
2008   }
2009   if (QTy->isBitIntType())
2010     return true;
2011   if (QTy->isReferenceType())
2012     return true;
2013   if (QTy->isNullPtrType())
2014     return false;
2015   if (QTy->isMemberPointerType())
2016     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2017     // now, never mark them.
2018     return false;
2019   if (QTy->isScalarType()) {
2020     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
2021       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
2022     return true;
2023   }
2024   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
2025     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
2026   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
2027     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
2028   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
2029     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
2030 
2031   // TODO: Some structs may be `noundef`, in specific situations.
2032   return false;
2033 }
2034 
2035 /// Construct the IR attribute list of a function or call.
2036 ///
2037 /// When adding an attribute, please consider where it should be handled:
2038 ///
2039 ///   - getDefaultFunctionAttributes is for attributes that are essentially
2040 ///     part of the global target configuration (but perhaps can be
2041 ///     overridden on a per-function basis).  Adding attributes there
2042 ///     will cause them to also be set in frontends that build on Clang's
2043 ///     target-configuration logic, as well as for code defined in library
2044 ///     modules such as CUDA's libdevice.
2045 ///
2046 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2047 ///     and adds declaration-specific, convention-specific, and
2048 ///     frontend-specific logic.  The last is of particular importance:
2049 ///     attributes that restrict how the frontend generates code must be
2050 ///     added here rather than getDefaultFunctionAttributes.
2051 ///
2052 void CodeGenModule::ConstructAttributeList(StringRef Name,
2053                                            const CGFunctionInfo &FI,
2054                                            CGCalleeInfo CalleeInfo,
2055                                            llvm::AttributeList &AttrList,
2056                                            unsigned &CallingConv,
2057                                            bool AttrOnCallSite, bool IsThunk) {
2058   llvm::AttrBuilder FuncAttrs(getLLVMContext());
2059   llvm::AttrBuilder RetAttrs(getLLVMContext());
2060 
2061   // Collect function IR attributes from the CC lowering.
2062   // We'll collect the paramete and result attributes later.
2063   CallingConv = FI.getEffectiveCallingConvention();
2064   if (FI.isNoReturn())
2065     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2066   if (FI.isCmseNSCall())
2067     FuncAttrs.addAttribute("cmse_nonsecure_call");
2068 
2069   // Collect function IR attributes from the callee prototype if we have one.
2070   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2071                                      CalleeInfo.getCalleeFunctionProtoType());
2072 
2073   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2074 
2075   // Attach assumption attributes to the declaration. If this is a call
2076   // site, attach assumptions from the caller to the call as well.
2077   AddAttributesFromAssumes(FuncAttrs, TargetDecl);
2078 
2079   bool HasOptnone = false;
2080   // The NoBuiltinAttr attached to the target FunctionDecl.
2081   const NoBuiltinAttr *NBA = nullptr;
2082 
2083   // Collect function IR attributes based on declaration-specific
2084   // information.
2085   // FIXME: handle sseregparm someday...
2086   if (TargetDecl) {
2087     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2088       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2089     if (TargetDecl->hasAttr<NoThrowAttr>())
2090       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2091     if (TargetDecl->hasAttr<NoReturnAttr>())
2092       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2093     if (TargetDecl->hasAttr<ColdAttr>())
2094       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2095     if (TargetDecl->hasAttr<HotAttr>())
2096       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2097     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2098       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2099     if (TargetDecl->hasAttr<ConvergentAttr>())
2100       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2101 
2102     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2103       AddAttributesFromFunctionProtoType(
2104           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2105       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2106         // A sane operator new returns a non-aliasing pointer.
2107         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2108         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2109             (Kind == OO_New || Kind == OO_Array_New))
2110           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2111       }
2112       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2113       const bool IsVirtualCall = MD && MD->isVirtual();
2114       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2115       // virtual function. These attributes are not inherited by overloads.
2116       if (!(AttrOnCallSite && IsVirtualCall)) {
2117         if (Fn->isNoReturn())
2118           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2119         NBA = Fn->getAttr<NoBuiltinAttr>();
2120       }
2121       // Only place nomerge attribute on call sites, never functions. This
2122       // allows it to work on indirect virtual function calls.
2123       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2124         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2125     }
2126 
2127     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2128     if (TargetDecl->hasAttr<ConstAttr>()) {
2129       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2130       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2131       // gcc specifies that 'const' functions have greater restrictions than
2132       // 'pure' functions, so they also cannot have infinite loops.
2133       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2134     } else if (TargetDecl->hasAttr<PureAttr>()) {
2135       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2136       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2137       // gcc specifies that 'pure' functions cannot have infinite loops.
2138       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2139     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2140       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2141       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2142     }
2143     if (TargetDecl->hasAttr<RestrictAttr>())
2144       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2145     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2146         !CodeGenOpts.NullPointerIsValid)
2147       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2148     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2149       FuncAttrs.addAttribute("no_caller_saved_registers");
2150     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2151       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2152     if (TargetDecl->hasAttr<LeafAttr>())
2153       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2154 
2155     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2156     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2157       Optional<unsigned> NumElemsParam;
2158       if (AllocSize->getNumElemsParam().isValid())
2159         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2160       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2161                                  NumElemsParam);
2162     }
2163 
2164     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2165       if (getLangOpts().OpenCLVersion <= 120) {
2166         // OpenCL v1.2 Work groups are always uniform
2167         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2168       } else {
2169         // OpenCL v2.0 Work groups may be whether uniform or not.
2170         // '-cl-uniform-work-group-size' compile option gets a hint
2171         // to the compiler that the global work-size be a multiple of
2172         // the work-group size specified to clEnqueueNDRangeKernel
2173         // (i.e. work groups are uniform).
2174         FuncAttrs.addAttribute("uniform-work-group-size",
2175                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2176       }
2177     }
2178   }
2179 
2180   // Attach "no-builtins" attributes to:
2181   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2182   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2183   // The attributes can come from:
2184   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2185   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2186   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2187 
2188   // Collect function IR attributes based on global settiings.
2189   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2190 
2191   // Override some default IR attributes based on declaration-specific
2192   // information.
2193   if (TargetDecl) {
2194     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2195       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2196     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2197       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2198     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2199       FuncAttrs.removeAttribute("split-stack");
2200     if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
2201       // A function "__attribute__((...))" overrides the command-line flag.
2202       auto Kind =
2203           TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
2204       FuncAttrs.removeAttribute("zero-call-used-regs");
2205       FuncAttrs.addAttribute(
2206           "zero-call-used-regs",
2207           ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind));
2208     }
2209 
2210     // Add NonLazyBind attribute to function declarations when -fno-plt
2211     // is used.
2212     // FIXME: what if we just haven't processed the function definition
2213     // yet, or if it's an external definition like C99 inline?
2214     if (CodeGenOpts.NoPLT) {
2215       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2216         if (!Fn->isDefined() && !AttrOnCallSite) {
2217           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2218         }
2219       }
2220     }
2221   }
2222 
2223   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2224   // functions with -funique-internal-linkage-names.
2225   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2226     if (isa<FunctionDecl>(TargetDecl)) {
2227       if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) ==
2228           llvm::GlobalValue::InternalLinkage)
2229         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2230                                "selected");
2231     }
2232   }
2233 
2234   // Collect non-call-site function IR attributes from declaration-specific
2235   // information.
2236   if (!AttrOnCallSite) {
2237     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2238       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2239 
2240     // Whether tail calls are enabled.
2241     auto shouldDisableTailCalls = [&] {
2242       // Should this be honored in getDefaultFunctionAttributes?
2243       if (CodeGenOpts.DisableTailCalls)
2244         return true;
2245 
2246       if (!TargetDecl)
2247         return false;
2248 
2249       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2250           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2251         return true;
2252 
2253       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2254         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2255           if (!BD->doesNotEscape())
2256             return true;
2257       }
2258 
2259       return false;
2260     };
2261     if (shouldDisableTailCalls())
2262       FuncAttrs.addAttribute("disable-tail-calls", "true");
2263 
2264     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2265     // handles these separately to set them based on the global defaults.
2266     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2267   }
2268 
2269   // Collect attributes from arguments and return values.
2270   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2271 
2272   QualType RetTy = FI.getReturnType();
2273   const ABIArgInfo &RetAI = FI.getReturnInfo();
2274   const llvm::DataLayout &DL = getDataLayout();
2275 
2276   // C++ explicitly makes returning undefined values UB. C's rule only applies
2277   // to used values, so we never mark them noundef for now.
2278   bool HasStrictReturn = getLangOpts().CPlusPlus;
2279   if (TargetDecl && HasStrictReturn) {
2280     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2281       HasStrictReturn &= !FDecl->isExternC();
2282     else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2283       // Function pointer
2284       HasStrictReturn &= !VDecl->isExternC();
2285   }
2286 
2287   // We don't want to be too aggressive with the return checking, unless
2288   // it's explicit in the code opts or we're using an appropriate sanitizer.
2289   // Try to respect what the programmer intended.
2290   HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2291                      !MayDropFunctionReturn(getContext(), RetTy) ||
2292                      getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2293                      getLangOpts().Sanitize.has(SanitizerKind::Return);
2294 
2295   // Determine if the return type could be partially undef
2296   if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2297     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2298         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2299       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2300   }
2301 
2302   switch (RetAI.getKind()) {
2303   case ABIArgInfo::Extend:
2304     if (RetAI.isSignExt())
2305       RetAttrs.addAttribute(llvm::Attribute::SExt);
2306     else
2307       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2308     LLVM_FALLTHROUGH;
2309   case ABIArgInfo::Direct:
2310     if (RetAI.getInReg())
2311       RetAttrs.addAttribute(llvm::Attribute::InReg);
2312     break;
2313   case ABIArgInfo::Ignore:
2314     break;
2315 
2316   case ABIArgInfo::InAlloca:
2317   case ABIArgInfo::Indirect: {
2318     // inalloca and sret disable readnone and readonly
2319     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2320       .removeAttribute(llvm::Attribute::ReadNone);
2321     break;
2322   }
2323 
2324   case ABIArgInfo::CoerceAndExpand:
2325     break;
2326 
2327   case ABIArgInfo::Expand:
2328   case ABIArgInfo::IndirectAliased:
2329     llvm_unreachable("Invalid ABI kind for return argument");
2330   }
2331 
2332   if (!IsThunk) {
2333     // FIXME: fix this properly, https://reviews.llvm.org/D100388
2334     if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2335       QualType PTy = RefTy->getPointeeType();
2336       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2337         RetAttrs.addDereferenceableAttr(
2338             getMinimumObjectSize(PTy).getQuantity());
2339       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2340           !CodeGenOpts.NullPointerIsValid)
2341         RetAttrs.addAttribute(llvm::Attribute::NonNull);
2342       if (PTy->isObjectType()) {
2343         llvm::Align Alignment =
2344             getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2345         RetAttrs.addAlignmentAttr(Alignment);
2346       }
2347     }
2348   }
2349 
2350   bool hasUsedSRet = false;
2351   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2352 
2353   // Attach attributes to sret.
2354   if (IRFunctionArgs.hasSRetArg()) {
2355     llvm::AttrBuilder SRETAttrs(getLLVMContext());
2356     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2357     hasUsedSRet = true;
2358     if (RetAI.getInReg())
2359       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2360     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2361     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2362         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2363   }
2364 
2365   // Attach attributes to inalloca argument.
2366   if (IRFunctionArgs.hasInallocaArg()) {
2367     llvm::AttrBuilder Attrs(getLLVMContext());
2368     Attrs.addInAllocaAttr(FI.getArgStruct());
2369     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2370         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2371   }
2372 
2373   // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2374   // unless this is a thunk function.
2375   // FIXME: fix this properly, https://reviews.llvm.org/D100388
2376   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2377       !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2378     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2379 
2380     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2381 
2382     llvm::AttrBuilder Attrs(getLLVMContext());
2383 
2384     QualType ThisTy =
2385         FI.arg_begin()->type.castAs<PointerType>()->getPointeeType();
2386 
2387     if (!CodeGenOpts.NullPointerIsValid &&
2388         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2389       Attrs.addAttribute(llvm::Attribute::NonNull);
2390       Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2391     } else {
2392       // FIXME dereferenceable should be correct here, regardless of
2393       // NullPointerIsValid. However, dereferenceable currently does not always
2394       // respect NullPointerIsValid and may imply nonnull and break the program.
2395       // See https://reviews.llvm.org/D66618 for discussions.
2396       Attrs.addDereferenceableOrNullAttr(
2397           getMinimumObjectSize(
2398               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2399               .getQuantity());
2400     }
2401 
2402     llvm::Align Alignment =
2403         getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2404                                 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2405             .getAsAlign();
2406     Attrs.addAlignmentAttr(Alignment);
2407 
2408     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2409   }
2410 
2411   unsigned ArgNo = 0;
2412   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2413                                           E = FI.arg_end();
2414        I != E; ++I, ++ArgNo) {
2415     QualType ParamType = I->type;
2416     const ABIArgInfo &AI = I->info;
2417     llvm::AttrBuilder Attrs(getLLVMContext());
2418 
2419     // Add attribute for padding argument, if necessary.
2420     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2421       if (AI.getPaddingInReg()) {
2422         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2423             llvm::AttributeSet::get(
2424                 getLLVMContext(),
2425                 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg));
2426       }
2427     }
2428 
2429     // Decide whether the argument we're handling could be partially undef
2430     if (CodeGenOpts.EnableNoundefAttrs &&
2431         DetermineNoUndef(ParamType, getTypes(), DL, AI)) {
2432       Attrs.addAttribute(llvm::Attribute::NoUndef);
2433     }
2434 
2435     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2436     // have the corresponding parameter variable.  It doesn't make
2437     // sense to do it here because parameters are so messed up.
2438     switch (AI.getKind()) {
2439     case ABIArgInfo::Extend:
2440       if (AI.isSignExt())
2441         Attrs.addAttribute(llvm::Attribute::SExt);
2442       else
2443         Attrs.addAttribute(llvm::Attribute::ZExt);
2444       LLVM_FALLTHROUGH;
2445     case ABIArgInfo::Direct:
2446       if (ArgNo == 0 && FI.isChainCall())
2447         Attrs.addAttribute(llvm::Attribute::Nest);
2448       else if (AI.getInReg())
2449         Attrs.addAttribute(llvm::Attribute::InReg);
2450       Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2451       break;
2452 
2453     case ABIArgInfo::Indirect: {
2454       if (AI.getInReg())
2455         Attrs.addAttribute(llvm::Attribute::InReg);
2456 
2457       if (AI.getIndirectByVal())
2458         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2459 
2460       auto *Decl = ParamType->getAsRecordDecl();
2461       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2462           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2463         // When calling the function, the pointer passed in will be the only
2464         // reference to the underlying object. Mark it accordingly.
2465         Attrs.addAttribute(llvm::Attribute::NoAlias);
2466 
2467       // TODO: We could add the byref attribute if not byval, but it would
2468       // require updating many testcases.
2469 
2470       CharUnits Align = AI.getIndirectAlign();
2471 
2472       // In a byval argument, it is important that the required
2473       // alignment of the type is honored, as LLVM might be creating a
2474       // *new* stack object, and needs to know what alignment to give
2475       // it. (Sometimes it can deduce a sensible alignment on its own,
2476       // but not if clang decides it must emit a packed struct, or the
2477       // user specifies increased alignment requirements.)
2478       //
2479       // This is different from indirect *not* byval, where the object
2480       // exists already, and the align attribute is purely
2481       // informative.
2482       assert(!Align.isZero());
2483 
2484       // For now, only add this when we have a byval argument.
2485       // TODO: be less lazy about updating test cases.
2486       if (AI.getIndirectByVal())
2487         Attrs.addAlignmentAttr(Align.getQuantity());
2488 
2489       // byval disables readnone and readonly.
2490       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2491         .removeAttribute(llvm::Attribute::ReadNone);
2492 
2493       break;
2494     }
2495     case ABIArgInfo::IndirectAliased: {
2496       CharUnits Align = AI.getIndirectAlign();
2497       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2498       Attrs.addAlignmentAttr(Align.getQuantity());
2499       break;
2500     }
2501     case ABIArgInfo::Ignore:
2502     case ABIArgInfo::Expand:
2503     case ABIArgInfo::CoerceAndExpand:
2504       break;
2505 
2506     case ABIArgInfo::InAlloca:
2507       // inalloca disables readnone and readonly.
2508       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2509           .removeAttribute(llvm::Attribute::ReadNone);
2510       continue;
2511     }
2512 
2513     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2514       QualType PTy = RefTy->getPointeeType();
2515       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2516         Attrs.addDereferenceableAttr(
2517             getMinimumObjectSize(PTy).getQuantity());
2518       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2519           !CodeGenOpts.NullPointerIsValid)
2520         Attrs.addAttribute(llvm::Attribute::NonNull);
2521       if (PTy->isObjectType()) {
2522         llvm::Align Alignment =
2523             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2524         Attrs.addAlignmentAttr(Alignment);
2525       }
2526     }
2527 
2528     // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2529     // > For arguments to a __kernel function declared to be a pointer to a
2530     // > data type, the OpenCL compiler can assume that the pointee is always
2531     // > appropriately aligned as required by the data type.
2532     if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
2533         ParamType->isPointerType()) {
2534       QualType PTy = ParamType->getPointeeType();
2535       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2536         llvm::Align Alignment =
2537             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2538         Attrs.addAlignmentAttr(Alignment);
2539       }
2540     }
2541 
2542     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2543     case ParameterABI::Ordinary:
2544       break;
2545 
2546     case ParameterABI::SwiftIndirectResult: {
2547       // Add 'sret' if we haven't already used it for something, but
2548       // only if the result is void.
2549       if (!hasUsedSRet && RetTy->isVoidType()) {
2550         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2551         hasUsedSRet = true;
2552       }
2553 
2554       // Add 'noalias' in either case.
2555       Attrs.addAttribute(llvm::Attribute::NoAlias);
2556 
2557       // Add 'dereferenceable' and 'alignment'.
2558       auto PTy = ParamType->getPointeeType();
2559       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2560         auto info = getContext().getTypeInfoInChars(PTy);
2561         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2562         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2563       }
2564       break;
2565     }
2566 
2567     case ParameterABI::SwiftErrorResult:
2568       Attrs.addAttribute(llvm::Attribute::SwiftError);
2569       break;
2570 
2571     case ParameterABI::SwiftContext:
2572       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2573       break;
2574 
2575     case ParameterABI::SwiftAsyncContext:
2576       Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2577       break;
2578     }
2579 
2580     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2581       Attrs.addAttribute(llvm::Attribute::NoCapture);
2582 
2583     if (Attrs.hasAttributes()) {
2584       unsigned FirstIRArg, NumIRArgs;
2585       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2586       for (unsigned i = 0; i < NumIRArgs; i++)
2587         ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
2588             getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs));
2589     }
2590   }
2591   assert(ArgNo == FI.arg_size());
2592 
2593   AttrList = llvm::AttributeList::get(
2594       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2595       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2596 }
2597 
2598 /// An argument came in as a promoted argument; demote it back to its
2599 /// declared type.
2600 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2601                                          const VarDecl *var,
2602                                          llvm::Value *value) {
2603   llvm::Type *varType = CGF.ConvertType(var->getType());
2604 
2605   // This can happen with promotions that actually don't change the
2606   // underlying type, like the enum promotions.
2607   if (value->getType() == varType) return value;
2608 
2609   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2610          && "unexpected promotion type");
2611 
2612   if (isa<llvm::IntegerType>(varType))
2613     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2614 
2615   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2616 }
2617 
2618 /// Returns the attribute (either parameter attribute, or function
2619 /// attribute), which declares argument ArgNo to be non-null.
2620 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2621                                          QualType ArgType, unsigned ArgNo) {
2622   // FIXME: __attribute__((nonnull)) can also be applied to:
2623   //   - references to pointers, where the pointee is known to be
2624   //     nonnull (apparently a Clang extension)
2625   //   - transparent unions containing pointers
2626   // In the former case, LLVM IR cannot represent the constraint. In
2627   // the latter case, we have no guarantee that the transparent union
2628   // is in fact passed as a pointer.
2629   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2630     return nullptr;
2631   // First, check attribute on parameter itself.
2632   if (PVD) {
2633     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2634       return ParmNNAttr;
2635   }
2636   // Check function attributes.
2637   if (!FD)
2638     return nullptr;
2639   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2640     if (NNAttr->isNonNull(ArgNo))
2641       return NNAttr;
2642   }
2643   return nullptr;
2644 }
2645 
2646 namespace {
2647   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2648     Address Temp;
2649     Address Arg;
2650     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2651     void Emit(CodeGenFunction &CGF, Flags flags) override {
2652       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2653       CGF.Builder.CreateStore(errorValue, Arg);
2654     }
2655   };
2656 }
2657 
2658 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2659                                          llvm::Function *Fn,
2660                                          const FunctionArgList &Args) {
2661   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2662     // Naked functions don't have prologues.
2663     return;
2664 
2665   // If this is an implicit-return-zero function, go ahead and
2666   // initialize the return value.  TODO: it might be nice to have
2667   // a more general mechanism for this that didn't require synthesized
2668   // return statements.
2669   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2670     if (FD->hasImplicitReturnZero()) {
2671       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2672       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2673       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2674       Builder.CreateStore(Zero, ReturnValue);
2675     }
2676   }
2677 
2678   // FIXME: We no longer need the types from FunctionArgList; lift up and
2679   // simplify.
2680 
2681   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2682   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2683 
2684   // If we're using inalloca, all the memory arguments are GEPs off of the last
2685   // parameter, which is a pointer to the complete memory area.
2686   Address ArgStruct = Address::invalid();
2687   if (IRFunctionArgs.hasInallocaArg()) {
2688     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2689                         FI.getArgStruct(), FI.getArgStructAlignment());
2690 
2691     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2692   }
2693 
2694   // Name the struct return parameter.
2695   if (IRFunctionArgs.hasSRetArg()) {
2696     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2697     AI->setName("agg.result");
2698     AI->addAttr(llvm::Attribute::NoAlias);
2699   }
2700 
2701   // Track if we received the parameter as a pointer (indirect, byval, or
2702   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2703   // into a local alloca for us.
2704   SmallVector<ParamValue, 16> ArgVals;
2705   ArgVals.reserve(Args.size());
2706 
2707   // Create a pointer value for every parameter declaration.  This usually
2708   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2709   // any cleanups or do anything that might unwind.  We do that separately, so
2710   // we can push the cleanups in the correct order for the ABI.
2711   assert(FI.arg_size() == Args.size() &&
2712          "Mismatch between function signature & arguments.");
2713   unsigned ArgNo = 0;
2714   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2715   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2716        i != e; ++i, ++info_it, ++ArgNo) {
2717     const VarDecl *Arg = *i;
2718     const ABIArgInfo &ArgI = info_it->info;
2719 
2720     bool isPromoted =
2721       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2722     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2723     // the parameter is promoted. In this case we convert to
2724     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2725     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2726     assert(hasScalarEvaluationKind(Ty) ==
2727            hasScalarEvaluationKind(Arg->getType()));
2728 
2729     unsigned FirstIRArg, NumIRArgs;
2730     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2731 
2732     switch (ArgI.getKind()) {
2733     case ABIArgInfo::InAlloca: {
2734       assert(NumIRArgs == 0);
2735       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2736       Address V =
2737           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2738       if (ArgI.getInAllocaIndirect())
2739         V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty),
2740                     getContext().getTypeAlignInChars(Ty));
2741       ArgVals.push_back(ParamValue::forIndirect(V));
2742       break;
2743     }
2744 
2745     case ABIArgInfo::Indirect:
2746     case ABIArgInfo::IndirectAliased: {
2747       assert(NumIRArgs == 1);
2748       Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty),
2749                                   ArgI.getIndirectAlign());
2750 
2751       if (!hasScalarEvaluationKind(Ty)) {
2752         // Aggregates and complex variables are accessed by reference. All we
2753         // need to do is realign the value, if requested. Also, if the address
2754         // may be aliased, copy it to ensure that the parameter variable is
2755         // mutable and has a unique adress, as C requires.
2756         Address V = ParamAddr;
2757         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2758           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2759 
2760           // Copy from the incoming argument pointer to the temporary with the
2761           // appropriate alignment.
2762           //
2763           // FIXME: We should have a common utility for generating an aggregate
2764           // copy.
2765           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2766           Builder.CreateMemCpy(
2767               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2768               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2769               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2770           V = AlignedTemp;
2771         }
2772         ArgVals.push_back(ParamValue::forIndirect(V));
2773       } else {
2774         // Load scalar value from indirect argument.
2775         llvm::Value *V =
2776             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2777 
2778         if (isPromoted)
2779           V = emitArgumentDemotion(*this, Arg, V);
2780         ArgVals.push_back(ParamValue::forDirect(V));
2781       }
2782       break;
2783     }
2784 
2785     case ABIArgInfo::Extend:
2786     case ABIArgInfo::Direct: {
2787       auto AI = Fn->getArg(FirstIRArg);
2788       llvm::Type *LTy = ConvertType(Arg->getType());
2789 
2790       // Prepare parameter attributes. So far, only attributes for pointer
2791       // parameters are prepared. See
2792       // http://llvm.org/docs/LangRef.html#paramattrs.
2793       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2794           ArgI.getCoerceToType()->isPointerTy()) {
2795         assert(NumIRArgs == 1);
2796 
2797         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2798           // Set `nonnull` attribute if any.
2799           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2800                              PVD->getFunctionScopeIndex()) &&
2801               !CGM.getCodeGenOpts().NullPointerIsValid)
2802             AI->addAttr(llvm::Attribute::NonNull);
2803 
2804           QualType OTy = PVD->getOriginalType();
2805           if (const auto *ArrTy =
2806               getContext().getAsConstantArrayType(OTy)) {
2807             // A C99 array parameter declaration with the static keyword also
2808             // indicates dereferenceability, and if the size is constant we can
2809             // use the dereferenceable attribute (which requires the size in
2810             // bytes).
2811             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2812               QualType ETy = ArrTy->getElementType();
2813               llvm::Align Alignment =
2814                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2815               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
2816               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2817               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2818                   ArrSize) {
2819                 llvm::AttrBuilder Attrs(getLLVMContext());
2820                 Attrs.addDereferenceableAttr(
2821                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2822                     ArrSize);
2823                 AI->addAttrs(Attrs);
2824               } else if (getContext().getTargetInfo().getNullPointerValue(
2825                              ETy.getAddressSpace()) == 0 &&
2826                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2827                 AI->addAttr(llvm::Attribute::NonNull);
2828               }
2829             }
2830           } else if (const auto *ArrTy =
2831                      getContext().getAsVariableArrayType(OTy)) {
2832             // For C99 VLAs with the static keyword, we don't know the size so
2833             // we can't use the dereferenceable attribute, but in addrspace(0)
2834             // we know that it must be nonnull.
2835             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2836               QualType ETy = ArrTy->getElementType();
2837               llvm::Align Alignment =
2838                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2839               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
2840               if (!getContext().getTargetAddressSpace(ETy) &&
2841                   !CGM.getCodeGenOpts().NullPointerIsValid)
2842                 AI->addAttr(llvm::Attribute::NonNull);
2843             }
2844           }
2845 
2846           // Set `align` attribute if any.
2847           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2848           if (!AVAttr)
2849             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2850               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2851           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2852             // If alignment-assumption sanitizer is enabled, we do *not* add
2853             // alignment attribute here, but emit normal alignment assumption,
2854             // so the UBSAN check could function.
2855             llvm::ConstantInt *AlignmentCI =
2856                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2857             uint64_t AlignmentInt =
2858                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2859             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2860               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2861               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
2862                   llvm::Align(AlignmentInt)));
2863             }
2864           }
2865         }
2866 
2867         // Set 'noalias' if an argument type has the `restrict` qualifier.
2868         if (Arg->getType().isRestrictQualified())
2869           AI->addAttr(llvm::Attribute::NoAlias);
2870       }
2871 
2872       // Prepare the argument value. If we have the trivial case, handle it
2873       // with no muss and fuss.
2874       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2875           ArgI.getCoerceToType() == ConvertType(Ty) &&
2876           ArgI.getDirectOffset() == 0) {
2877         assert(NumIRArgs == 1);
2878 
2879         // LLVM expects swifterror parameters to be used in very restricted
2880         // ways.  Copy the value into a less-restricted temporary.
2881         llvm::Value *V = AI;
2882         if (FI.getExtParameterInfo(ArgNo).getABI()
2883               == ParameterABI::SwiftErrorResult) {
2884           QualType pointeeTy = Ty->getPointeeType();
2885           assert(pointeeTy->isPointerType());
2886           Address temp =
2887             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2888           Address arg(V, ConvertTypeForMem(pointeeTy),
2889                       getContext().getTypeAlignInChars(pointeeTy));
2890           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2891           Builder.CreateStore(incomingErrorValue, temp);
2892           V = temp.getPointer();
2893 
2894           // Push a cleanup to copy the value back at the end of the function.
2895           // The convention does not guarantee that the value will be written
2896           // back if the function exits with an unwind exception.
2897           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2898         }
2899 
2900         // Ensure the argument is the correct type.
2901         if (V->getType() != ArgI.getCoerceToType())
2902           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2903 
2904         if (isPromoted)
2905           V = emitArgumentDemotion(*this, Arg, V);
2906 
2907         // Because of merging of function types from multiple decls it is
2908         // possible for the type of an argument to not match the corresponding
2909         // type in the function type. Since we are codegening the callee
2910         // in here, add a cast to the argument type.
2911         llvm::Type *LTy = ConvertType(Arg->getType());
2912         if (V->getType() != LTy)
2913           V = Builder.CreateBitCast(V, LTy);
2914 
2915         ArgVals.push_back(ParamValue::forDirect(V));
2916         break;
2917       }
2918 
2919       // VLST arguments are coerced to VLATs at the function boundary for
2920       // ABI consistency. If this is a VLST that was coerced to
2921       // a VLAT at the function boundary and the types match up, use
2922       // llvm.experimental.vector.extract to convert back to the original
2923       // VLST.
2924       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2925         llvm::Value *Coerced = Fn->getArg(FirstIRArg);
2926         if (auto *VecTyFrom =
2927                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2928           // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2929           // vector, bitcast the source and use a vector extract.
2930           auto PredType =
2931               llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2932           if (VecTyFrom == PredType &&
2933               VecTyTo->getElementType() == Builder.getInt8Ty()) {
2934             VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2935             Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
2936           }
2937           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2938             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2939 
2940             assert(NumIRArgs == 1);
2941             Coerced->setName(Arg->getName() + ".coerce");
2942             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2943                 VecTyTo, Coerced, Zero, "castFixedSve")));
2944             break;
2945           }
2946         }
2947       }
2948 
2949       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2950                                      Arg->getName());
2951 
2952       // Pointer to store into.
2953       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2954 
2955       // Fast-isel and the optimizer generally like scalar values better than
2956       // FCAs, so we flatten them if this is safe to do for this argument.
2957       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2958       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2959           STy->getNumElements() > 1) {
2960         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2961         llvm::Type *DstTy = Ptr.getElementType();
2962         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2963 
2964         Address AddrToStoreInto = Address::invalid();
2965         if (SrcSize <= DstSize) {
2966           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2967         } else {
2968           AddrToStoreInto =
2969             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2970         }
2971 
2972         assert(STy->getNumElements() == NumIRArgs);
2973         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2974           auto AI = Fn->getArg(FirstIRArg + i);
2975           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2976           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2977           Builder.CreateStore(AI, EltPtr);
2978         }
2979 
2980         if (SrcSize > DstSize) {
2981           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2982         }
2983 
2984       } else {
2985         // Simple case, just do a coerced store of the argument into the alloca.
2986         assert(NumIRArgs == 1);
2987         auto AI = Fn->getArg(FirstIRArg);
2988         AI->setName(Arg->getName() + ".coerce");
2989         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2990       }
2991 
2992       // Match to what EmitParmDecl is expecting for this type.
2993       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2994         llvm::Value *V =
2995             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2996         if (isPromoted)
2997           V = emitArgumentDemotion(*this, Arg, V);
2998         ArgVals.push_back(ParamValue::forDirect(V));
2999       } else {
3000         ArgVals.push_back(ParamValue::forIndirect(Alloca));
3001       }
3002       break;
3003     }
3004 
3005     case ABIArgInfo::CoerceAndExpand: {
3006       // Reconstruct into a temporary.
3007       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3008       ArgVals.push_back(ParamValue::forIndirect(alloca));
3009 
3010       auto coercionType = ArgI.getCoerceAndExpandType();
3011       alloca = Builder.CreateElementBitCast(alloca, coercionType);
3012 
3013       unsigned argIndex = FirstIRArg;
3014       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3015         llvm::Type *eltType = coercionType->getElementType(i);
3016         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
3017           continue;
3018 
3019         auto eltAddr = Builder.CreateStructGEP(alloca, i);
3020         auto elt = Fn->getArg(argIndex++);
3021         Builder.CreateStore(elt, eltAddr);
3022       }
3023       assert(argIndex == FirstIRArg + NumIRArgs);
3024       break;
3025     }
3026 
3027     case ABIArgInfo::Expand: {
3028       // If this structure was expanded into multiple arguments then
3029       // we need to create a temporary and reconstruct it from the
3030       // arguments.
3031       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3032       LValue LV = MakeAddrLValue(Alloca, Ty);
3033       ArgVals.push_back(ParamValue::forIndirect(Alloca));
3034 
3035       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
3036       ExpandTypeFromArgs(Ty, LV, FnArgIter);
3037       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
3038       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
3039         auto AI = Fn->getArg(FirstIRArg + i);
3040         AI->setName(Arg->getName() + "." + Twine(i));
3041       }
3042       break;
3043     }
3044 
3045     case ABIArgInfo::Ignore:
3046       assert(NumIRArgs == 0);
3047       // Initialize the local variable appropriately.
3048       if (!hasScalarEvaluationKind(Ty)) {
3049         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
3050       } else {
3051         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
3052         ArgVals.push_back(ParamValue::forDirect(U));
3053       }
3054       break;
3055     }
3056   }
3057 
3058   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3059     for (int I = Args.size() - 1; I >= 0; --I)
3060       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3061   } else {
3062     for (unsigned I = 0, E = Args.size(); I != E; ++I)
3063       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3064   }
3065 }
3066 
3067 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3068   while (insn->use_empty()) {
3069     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3070     if (!bitcast) return;
3071 
3072     // This is "safe" because we would have used a ConstantExpr otherwise.
3073     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3074     bitcast->eraseFromParent();
3075   }
3076 }
3077 
3078 /// Try to emit a fused autorelease of a return result.
3079 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3080                                                     llvm::Value *result) {
3081   // We must be immediately followed the cast.
3082   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3083   if (BB->empty()) return nullptr;
3084   if (&BB->back() != result) return nullptr;
3085 
3086   llvm::Type *resultType = result->getType();
3087 
3088   // result is in a BasicBlock and is therefore an Instruction.
3089   llvm::Instruction *generator = cast<llvm::Instruction>(result);
3090 
3091   SmallVector<llvm::Instruction *, 4> InstsToKill;
3092 
3093   // Look for:
3094   //  %generator = bitcast %type1* %generator2 to %type2*
3095   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3096     // We would have emitted this as a constant if the operand weren't
3097     // an Instruction.
3098     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3099 
3100     // Require the generator to be immediately followed by the cast.
3101     if (generator->getNextNode() != bitcast)
3102       return nullptr;
3103 
3104     InstsToKill.push_back(bitcast);
3105   }
3106 
3107   // Look for:
3108   //   %generator = call i8* @objc_retain(i8* %originalResult)
3109   // or
3110   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3111   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3112   if (!call) return nullptr;
3113 
3114   bool doRetainAutorelease;
3115 
3116   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3117     doRetainAutorelease = true;
3118   } else if (call->getCalledOperand() ==
3119              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3120     doRetainAutorelease = false;
3121 
3122     // If we emitted an assembly marker for this call (and the
3123     // ARCEntrypoints field should have been set if so), go looking
3124     // for that call.  If we can't find it, we can't do this
3125     // optimization.  But it should always be the immediately previous
3126     // instruction, unless we needed bitcasts around the call.
3127     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3128       llvm::Instruction *prev = call->getPrevNode();
3129       assert(prev);
3130       if (isa<llvm::BitCastInst>(prev)) {
3131         prev = prev->getPrevNode();
3132         assert(prev);
3133       }
3134       assert(isa<llvm::CallInst>(prev));
3135       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3136              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3137       InstsToKill.push_back(prev);
3138     }
3139   } else {
3140     return nullptr;
3141   }
3142 
3143   result = call->getArgOperand(0);
3144   InstsToKill.push_back(call);
3145 
3146   // Keep killing bitcasts, for sanity.  Note that we no longer care
3147   // about precise ordering as long as there's exactly one use.
3148   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3149     if (!bitcast->hasOneUse()) break;
3150     InstsToKill.push_back(bitcast);
3151     result = bitcast->getOperand(0);
3152   }
3153 
3154   // Delete all the unnecessary instructions, from latest to earliest.
3155   for (auto *I : InstsToKill)
3156     I->eraseFromParent();
3157 
3158   // Do the fused retain/autorelease if we were asked to.
3159   if (doRetainAutorelease)
3160     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3161 
3162   // Cast back to the result type.
3163   return CGF.Builder.CreateBitCast(result, resultType);
3164 }
3165 
3166 /// If this is a +1 of the value of an immutable 'self', remove it.
3167 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3168                                           llvm::Value *result) {
3169   // This is only applicable to a method with an immutable 'self'.
3170   const ObjCMethodDecl *method =
3171     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3172   if (!method) return nullptr;
3173   const VarDecl *self = method->getSelfDecl();
3174   if (!self->getType().isConstQualified()) return nullptr;
3175 
3176   // Look for a retain call.
3177   llvm::CallInst *retainCall =
3178     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3179   if (!retainCall || retainCall->getCalledOperand() !=
3180                          CGF.CGM.getObjCEntrypoints().objc_retain)
3181     return nullptr;
3182 
3183   // Look for an ordinary load of 'self'.
3184   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3185   llvm::LoadInst *load =
3186     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3187   if (!load || load->isAtomic() || load->isVolatile() ||
3188       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3189     return nullptr;
3190 
3191   // Okay!  Burn it all down.  This relies for correctness on the
3192   // assumption that the retain is emitted as part of the return and
3193   // that thereafter everything is used "linearly".
3194   llvm::Type *resultType = result->getType();
3195   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3196   assert(retainCall->use_empty());
3197   retainCall->eraseFromParent();
3198   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3199 
3200   return CGF.Builder.CreateBitCast(load, resultType);
3201 }
3202 
3203 /// Emit an ARC autorelease of the result of a function.
3204 ///
3205 /// \return the value to actually return from the function
3206 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3207                                             llvm::Value *result) {
3208   // If we're returning 'self', kill the initial retain.  This is a
3209   // heuristic attempt to "encourage correctness" in the really unfortunate
3210   // case where we have a return of self during a dealloc and we desperately
3211   // need to avoid the possible autorelease.
3212   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3213     return self;
3214 
3215   // At -O0, try to emit a fused retain/autorelease.
3216   if (CGF.shouldUseFusedARCCalls())
3217     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3218       return fused;
3219 
3220   return CGF.EmitARCAutoreleaseReturnValue(result);
3221 }
3222 
3223 /// Heuristically search for a dominating store to the return-value slot.
3224 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3225   // Check if a User is a store which pointerOperand is the ReturnValue.
3226   // We are looking for stores to the ReturnValue, not for stores of the
3227   // ReturnValue to some other location.
3228   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3229     auto *SI = dyn_cast<llvm::StoreInst>(U);
3230     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
3231       return nullptr;
3232     // These aren't actually possible for non-coerced returns, and we
3233     // only care about non-coerced returns on this code path.
3234     assert(!SI->isAtomic() && !SI->isVolatile());
3235     return SI;
3236   };
3237   // If there are multiple uses of the return-value slot, just check
3238   // for something immediately preceding the IP.  Sometimes this can
3239   // happen with how we generate implicit-returns; it can also happen
3240   // with noreturn cleanups.
3241   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3242     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3243     if (IP->empty()) return nullptr;
3244     llvm::Instruction *I = &IP->back();
3245 
3246     // Skip lifetime markers
3247     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
3248                                             IE = IP->rend();
3249          II != IE; ++II) {
3250       if (llvm::IntrinsicInst *Intrinsic =
3251               dyn_cast<llvm::IntrinsicInst>(&*II)) {
3252         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
3253           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
3254           ++II;
3255           if (II == IE)
3256             break;
3257           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
3258             continue;
3259         }
3260       }
3261       I = &*II;
3262       break;
3263     }
3264 
3265     return GetStoreIfValid(I);
3266   }
3267 
3268   llvm::StoreInst *store =
3269       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3270   if (!store) return nullptr;
3271 
3272   // Now do a first-and-dirty dominance check: just walk up the
3273   // single-predecessors chain from the current insertion point.
3274   llvm::BasicBlock *StoreBB = store->getParent();
3275   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3276   while (IP != StoreBB) {
3277     if (!(IP = IP->getSinglePredecessor()))
3278       return nullptr;
3279   }
3280 
3281   // Okay, the store's basic block dominates the insertion point; we
3282   // can do our thing.
3283   return store;
3284 }
3285 
3286 // Helper functions for EmitCMSEClearRecord
3287 
3288 // Set the bits corresponding to a field having width `BitWidth` and located at
3289 // offset `BitOffset` (from the least significant bit) within a storage unit of
3290 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3291 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3292 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3293                         int BitWidth, int CharWidth) {
3294   assert(CharWidth <= 64);
3295   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3296 
3297   int Pos = 0;
3298   if (BitOffset >= CharWidth) {
3299     Pos += BitOffset / CharWidth;
3300     BitOffset = BitOffset % CharWidth;
3301   }
3302 
3303   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3304   if (BitOffset + BitWidth >= CharWidth) {
3305     Bits[Pos++] |= (Used << BitOffset) & Used;
3306     BitWidth -= CharWidth - BitOffset;
3307     BitOffset = 0;
3308   }
3309 
3310   while (BitWidth >= CharWidth) {
3311     Bits[Pos++] = Used;
3312     BitWidth -= CharWidth;
3313   }
3314 
3315   if (BitWidth > 0)
3316     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3317 }
3318 
3319 // Set the bits corresponding to a field having width `BitWidth` and located at
3320 // offset `BitOffset` (from the least significant bit) within a storage unit of
3321 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3322 // `Bits` corresponds to one target byte. Use target endian layout.
3323 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3324                         int StorageSize, int BitOffset, int BitWidth,
3325                         int CharWidth, bool BigEndian) {
3326 
3327   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3328   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3329 
3330   if (BigEndian)
3331     std::reverse(TmpBits.begin(), TmpBits.end());
3332 
3333   for (uint64_t V : TmpBits)
3334     Bits[StorageOffset++] |= V;
3335 }
3336 
3337 static void setUsedBits(CodeGenModule &, QualType, int,
3338                         SmallVectorImpl<uint64_t> &);
3339 
3340 // Set the bits in `Bits`, which correspond to the value representations of
3341 // the actual members of the record type `RTy`. Note that this function does
3342 // not handle base classes, virtual tables, etc, since they cannot happen in
3343 // CMSE function arguments or return. The bit mask corresponds to the target
3344 // memory layout, i.e. it's endian dependent.
3345 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3346                         SmallVectorImpl<uint64_t> &Bits) {
3347   ASTContext &Context = CGM.getContext();
3348   int CharWidth = Context.getCharWidth();
3349   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3350   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3351   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3352 
3353   int Idx = 0;
3354   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3355     const FieldDecl *F = *I;
3356 
3357     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3358         F->getType()->isIncompleteArrayType())
3359       continue;
3360 
3361     if (F->isBitField()) {
3362       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3363       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3364                   BFI.StorageSize / CharWidth, BFI.Offset,
3365                   BFI.Size, CharWidth,
3366                   CGM.getDataLayout().isBigEndian());
3367       continue;
3368     }
3369 
3370     setUsedBits(CGM, F->getType(),
3371                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3372   }
3373 }
3374 
3375 // Set the bits in `Bits`, which correspond to the value representations of
3376 // the elements of an array type `ATy`.
3377 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3378                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3379   const ASTContext &Context = CGM.getContext();
3380 
3381   QualType ETy = Context.getBaseElementType(ATy);
3382   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3383   SmallVector<uint64_t, 4> TmpBits(Size);
3384   setUsedBits(CGM, ETy, 0, TmpBits);
3385 
3386   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3387     auto Src = TmpBits.begin();
3388     auto Dst = Bits.begin() + Offset + I * Size;
3389     for (int J = 0; J < Size; ++J)
3390       *Dst++ |= *Src++;
3391   }
3392 }
3393 
3394 // Set the bits in `Bits`, which correspond to the value representations of
3395 // the type `QTy`.
3396 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3397                         SmallVectorImpl<uint64_t> &Bits) {
3398   if (const auto *RTy = QTy->getAs<RecordType>())
3399     return setUsedBits(CGM, RTy, Offset, Bits);
3400 
3401   ASTContext &Context = CGM.getContext();
3402   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3403     return setUsedBits(CGM, ATy, Offset, Bits);
3404 
3405   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3406   if (Size <= 0)
3407     return;
3408 
3409   std::fill_n(Bits.begin() + Offset, Size,
3410               (uint64_t(1) << Context.getCharWidth()) - 1);
3411 }
3412 
3413 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3414                                    int Pos, int Size, int CharWidth,
3415                                    bool BigEndian) {
3416   assert(Size > 0);
3417   uint64_t Mask = 0;
3418   if (BigEndian) {
3419     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3420          ++P)
3421       Mask = (Mask << CharWidth) | *P;
3422   } else {
3423     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3424     do
3425       Mask = (Mask << CharWidth) | *--P;
3426     while (P != End);
3427   }
3428   return Mask;
3429 }
3430 
3431 // Emit code to clear the bits in a record, which aren't a part of any user
3432 // declared member, when the record is a function return.
3433 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3434                                                   llvm::IntegerType *ITy,
3435                                                   QualType QTy) {
3436   assert(Src->getType() == ITy);
3437   assert(ITy->getScalarSizeInBits() <= 64);
3438 
3439   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3440   int Size = DataLayout.getTypeStoreSize(ITy);
3441   SmallVector<uint64_t, 4> Bits(Size);
3442   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3443 
3444   int CharWidth = CGM.getContext().getCharWidth();
3445   uint64_t Mask =
3446       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3447 
3448   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3449 }
3450 
3451 // Emit code to clear the bits in a record, which aren't a part of any user
3452 // declared member, when the record is a function argument.
3453 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3454                                                   llvm::ArrayType *ATy,
3455                                                   QualType QTy) {
3456   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3457   int Size = DataLayout.getTypeStoreSize(ATy);
3458   SmallVector<uint64_t, 16> Bits(Size);
3459   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3460 
3461   // Clear each element of the LLVM array.
3462   int CharWidth = CGM.getContext().getCharWidth();
3463   int CharsPerElt =
3464       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3465   int MaskIndex = 0;
3466   llvm::Value *R = llvm::UndefValue::get(ATy);
3467   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3468     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3469                                        DataLayout.isBigEndian());
3470     MaskIndex += CharsPerElt;
3471     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3472     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3473     R = Builder.CreateInsertValue(R, T1, I);
3474   }
3475 
3476   return R;
3477 }
3478 
3479 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3480                                          bool EmitRetDbgLoc,
3481                                          SourceLocation EndLoc) {
3482   if (FI.isNoReturn()) {
3483     // Noreturn functions don't return.
3484     EmitUnreachable(EndLoc);
3485     return;
3486   }
3487 
3488   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3489     // Naked functions don't have epilogues.
3490     Builder.CreateUnreachable();
3491     return;
3492   }
3493 
3494   // Functions with no result always return void.
3495   if (!ReturnValue.isValid()) {
3496     Builder.CreateRetVoid();
3497     return;
3498   }
3499 
3500   llvm::DebugLoc RetDbgLoc;
3501   llvm::Value *RV = nullptr;
3502   QualType RetTy = FI.getReturnType();
3503   const ABIArgInfo &RetAI = FI.getReturnInfo();
3504 
3505   switch (RetAI.getKind()) {
3506   case ABIArgInfo::InAlloca:
3507     // Aggregrates get evaluated directly into the destination.  Sometimes we
3508     // need to return the sret value in a register, though.
3509     assert(hasAggregateEvaluationKind(RetTy));
3510     if (RetAI.getInAllocaSRet()) {
3511       llvm::Function::arg_iterator EI = CurFn->arg_end();
3512       --EI;
3513       llvm::Value *ArgStruct = &*EI;
3514       llvm::Value *SRet = Builder.CreateStructGEP(
3515           FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex());
3516       llvm::Type *Ty =
3517           cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3518       RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3519     }
3520     break;
3521 
3522   case ABIArgInfo::Indirect: {
3523     auto AI = CurFn->arg_begin();
3524     if (RetAI.isSRetAfterThis())
3525       ++AI;
3526     switch (getEvaluationKind(RetTy)) {
3527     case TEK_Complex: {
3528       ComplexPairTy RT =
3529         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3530       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3531                          /*isInit*/ true);
3532       break;
3533     }
3534     case TEK_Aggregate:
3535       // Do nothing; aggregrates get evaluated directly into the destination.
3536       break;
3537     case TEK_Scalar: {
3538       LValueBaseInfo BaseInfo;
3539       TBAAAccessInfo TBAAInfo;
3540       CharUnits Alignment =
3541           CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
3542       Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
3543       LValue ArgVal =
3544           LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
3545       EmitStoreOfScalar(
3546           Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true);
3547       break;
3548     }
3549     }
3550     break;
3551   }
3552 
3553   case ABIArgInfo::Extend:
3554   case ABIArgInfo::Direct:
3555     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3556         RetAI.getDirectOffset() == 0) {
3557       // The internal return value temp always will have pointer-to-return-type
3558       // type, just do a load.
3559 
3560       // If there is a dominating store to ReturnValue, we can elide
3561       // the load, zap the store, and usually zap the alloca.
3562       if (llvm::StoreInst *SI =
3563               findDominatingStoreToReturnValue(*this)) {
3564         // Reuse the debug location from the store unless there is
3565         // cleanup code to be emitted between the store and return
3566         // instruction.
3567         if (EmitRetDbgLoc && !AutoreleaseResult)
3568           RetDbgLoc = SI->getDebugLoc();
3569         // Get the stored value and nuke the now-dead store.
3570         RV = SI->getValueOperand();
3571         SI->eraseFromParent();
3572 
3573       // Otherwise, we have to do a simple load.
3574       } else {
3575         RV = Builder.CreateLoad(ReturnValue);
3576       }
3577     } else {
3578       // If the value is offset in memory, apply the offset now.
3579       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3580 
3581       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3582     }
3583 
3584     // In ARC, end functions that return a retainable type with a call
3585     // to objc_autoreleaseReturnValue.
3586     if (AutoreleaseResult) {
3587 #ifndef NDEBUG
3588       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3589       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3590       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3591       // CurCodeDecl or BlockInfo.
3592       QualType RT;
3593 
3594       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3595         RT = FD->getReturnType();
3596       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3597         RT = MD->getReturnType();
3598       else if (isa<BlockDecl>(CurCodeDecl))
3599         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3600       else
3601         llvm_unreachable("Unexpected function/method type");
3602 
3603       assert(getLangOpts().ObjCAutoRefCount &&
3604              !FI.isReturnsRetained() &&
3605              RT->isObjCRetainableType());
3606 #endif
3607       RV = emitAutoreleaseOfResult(*this, RV);
3608     }
3609 
3610     break;
3611 
3612   case ABIArgInfo::Ignore:
3613     break;
3614 
3615   case ABIArgInfo::CoerceAndExpand: {
3616     auto coercionType = RetAI.getCoerceAndExpandType();
3617 
3618     // Load all of the coerced elements out into results.
3619     llvm::SmallVector<llvm::Value*, 4> results;
3620     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3621     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3622       auto coercedEltType = coercionType->getElementType(i);
3623       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3624         continue;
3625 
3626       auto eltAddr = Builder.CreateStructGEP(addr, i);
3627       auto elt = Builder.CreateLoad(eltAddr);
3628       results.push_back(elt);
3629     }
3630 
3631     // If we have one result, it's the single direct result type.
3632     if (results.size() == 1) {
3633       RV = results[0];
3634 
3635     // Otherwise, we need to make a first-class aggregate.
3636     } else {
3637       // Construct a return type that lacks padding elements.
3638       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3639 
3640       RV = llvm::UndefValue::get(returnType);
3641       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3642         RV = Builder.CreateInsertValue(RV, results[i], i);
3643       }
3644     }
3645     break;
3646   }
3647   case ABIArgInfo::Expand:
3648   case ABIArgInfo::IndirectAliased:
3649     llvm_unreachable("Invalid ABI kind for return argument");
3650   }
3651 
3652   llvm::Instruction *Ret;
3653   if (RV) {
3654     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3655       // For certain return types, clear padding bits, as they may reveal
3656       // sensitive information.
3657       // Small struct/union types are passed as integers.
3658       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3659       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3660         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3661     }
3662     EmitReturnValueCheck(RV);
3663     Ret = Builder.CreateRet(RV);
3664   } else {
3665     Ret = Builder.CreateRetVoid();
3666   }
3667 
3668   if (RetDbgLoc)
3669     Ret->setDebugLoc(std::move(RetDbgLoc));
3670 }
3671 
3672 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3673   // A current decl may not be available when emitting vtable thunks.
3674   if (!CurCodeDecl)
3675     return;
3676 
3677   // If the return block isn't reachable, neither is this check, so don't emit
3678   // it.
3679   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3680     return;
3681 
3682   ReturnsNonNullAttr *RetNNAttr = nullptr;
3683   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3684     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3685 
3686   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3687     return;
3688 
3689   // Prefer the returns_nonnull attribute if it's present.
3690   SourceLocation AttrLoc;
3691   SanitizerMask CheckKind;
3692   SanitizerHandler Handler;
3693   if (RetNNAttr) {
3694     assert(!requiresReturnValueNullabilityCheck() &&
3695            "Cannot check nullability and the nonnull attribute");
3696     AttrLoc = RetNNAttr->getLocation();
3697     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3698     Handler = SanitizerHandler::NonnullReturn;
3699   } else {
3700     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3701       if (auto *TSI = DD->getTypeSourceInfo())
3702         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3703           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3704     CheckKind = SanitizerKind::NullabilityReturn;
3705     Handler = SanitizerHandler::NullabilityReturn;
3706   }
3707 
3708   SanitizerScope SanScope(this);
3709 
3710   // Make sure the "return" source location is valid. If we're checking a
3711   // nullability annotation, make sure the preconditions for the check are met.
3712   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3713   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3714   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3715   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3716   if (requiresReturnValueNullabilityCheck())
3717     CanNullCheck =
3718         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3719   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3720   EmitBlock(Check);
3721 
3722   // Now do the null check.
3723   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3724   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3725   llvm::Value *DynamicData[] = {SLocPtr};
3726   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3727 
3728   EmitBlock(NoCheck);
3729 
3730 #ifndef NDEBUG
3731   // The return location should not be used after the check has been emitted.
3732   ReturnLocation = Address::invalid();
3733 #endif
3734 }
3735 
3736 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3737   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3738   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3739 }
3740 
3741 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3742                                           QualType Ty) {
3743   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3744   // placeholders.
3745   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3746   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3747   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3748 
3749   // FIXME: When we generate this IR in one pass, we shouldn't need
3750   // this win32-specific alignment hack.
3751   CharUnits Align = CharUnits::fromQuantity(4);
3752   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3753 
3754   return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align),
3755                                Ty.getQualifiers(),
3756                                AggValueSlot::IsNotDestructed,
3757                                AggValueSlot::DoesNotNeedGCBarriers,
3758                                AggValueSlot::IsNotAliased,
3759                                AggValueSlot::DoesNotOverlap);
3760 }
3761 
3762 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3763                                           const VarDecl *param,
3764                                           SourceLocation loc) {
3765   // StartFunction converted the ABI-lowered parameter(s) into a
3766   // local alloca.  We need to turn that into an r-value suitable
3767   // for EmitCall.
3768   Address local = GetAddrOfLocalVar(param);
3769 
3770   QualType type = param->getType();
3771 
3772   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3773     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3774   }
3775 
3776   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3777   // but the argument needs to be the original pointer.
3778   if (type->isReferenceType()) {
3779     args.add(RValue::get(Builder.CreateLoad(local)), type);
3780 
3781   // In ARC, move out of consumed arguments so that the release cleanup
3782   // entered by StartFunction doesn't cause an over-release.  This isn't
3783   // optimal -O0 code generation, but it should get cleaned up when
3784   // optimization is enabled.  This also assumes that delegate calls are
3785   // performed exactly once for a set of arguments, but that should be safe.
3786   } else if (getLangOpts().ObjCAutoRefCount &&
3787              param->hasAttr<NSConsumedAttr>() &&
3788              type->isObjCRetainableType()) {
3789     llvm::Value *ptr = Builder.CreateLoad(local);
3790     auto null =
3791       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3792     Builder.CreateStore(null, local);
3793     args.add(RValue::get(ptr), type);
3794 
3795   // For the most part, we just need to load the alloca, except that
3796   // aggregate r-values are actually pointers to temporaries.
3797   } else {
3798     args.add(convertTempToRValue(local, type, loc), type);
3799   }
3800 
3801   // Deactivate the cleanup for the callee-destructed param that was pushed.
3802   if (type->isRecordType() && !CurFuncIsThunk &&
3803       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3804       param->needsDestruction(getContext())) {
3805     EHScopeStack::stable_iterator cleanup =
3806         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3807     assert(cleanup.isValid() &&
3808            "cleanup for callee-destructed param not recorded");
3809     // This unreachable is a temporary marker which will be removed later.
3810     llvm::Instruction *isActive = Builder.CreateUnreachable();
3811     args.addArgCleanupDeactivation(cleanup, isActive);
3812   }
3813 }
3814 
3815 static bool isProvablyNull(llvm::Value *addr) {
3816   return isa<llvm::ConstantPointerNull>(addr);
3817 }
3818 
3819 /// Emit the actual writing-back of a writeback.
3820 static void emitWriteback(CodeGenFunction &CGF,
3821                           const CallArgList::Writeback &writeback) {
3822   const LValue &srcLV = writeback.Source;
3823   Address srcAddr = srcLV.getAddress(CGF);
3824   assert(!isProvablyNull(srcAddr.getPointer()) &&
3825          "shouldn't have writeback for provably null argument");
3826 
3827   llvm::BasicBlock *contBB = nullptr;
3828 
3829   // If the argument wasn't provably non-null, we need to null check
3830   // before doing the store.
3831   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3832                                               CGF.CGM.getDataLayout());
3833   if (!provablyNonNull) {
3834     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3835     contBB = CGF.createBasicBlock("icr.done");
3836 
3837     llvm::Value *isNull =
3838       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3839     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3840     CGF.EmitBlock(writebackBB);
3841   }
3842 
3843   // Load the value to writeback.
3844   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3845 
3846   // Cast it back, in case we're writing an id to a Foo* or something.
3847   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3848                                     "icr.writeback-cast");
3849 
3850   // Perform the writeback.
3851 
3852   // If we have a "to use" value, it's something we need to emit a use
3853   // of.  This has to be carefully threaded in: if it's done after the
3854   // release it's potentially undefined behavior (and the optimizer
3855   // will ignore it), and if it happens before the retain then the
3856   // optimizer could move the release there.
3857   if (writeback.ToUse) {
3858     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3859 
3860     // Retain the new value.  No need to block-copy here:  the block's
3861     // being passed up the stack.
3862     value = CGF.EmitARCRetainNonBlock(value);
3863 
3864     // Emit the intrinsic use here.
3865     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3866 
3867     // Load the old value (primitively).
3868     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3869 
3870     // Put the new value in place (primitively).
3871     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3872 
3873     // Release the old value.
3874     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3875 
3876   // Otherwise, we can just do a normal lvalue store.
3877   } else {
3878     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3879   }
3880 
3881   // Jump to the continuation block.
3882   if (!provablyNonNull)
3883     CGF.EmitBlock(contBB);
3884 }
3885 
3886 static void emitWritebacks(CodeGenFunction &CGF,
3887                            const CallArgList &args) {
3888   for (const auto &I : args.writebacks())
3889     emitWriteback(CGF, I);
3890 }
3891 
3892 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3893                                             const CallArgList &CallArgs) {
3894   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3895     CallArgs.getCleanupsToDeactivate();
3896   // Iterate in reverse to increase the likelihood of popping the cleanup.
3897   for (const auto &I : llvm::reverse(Cleanups)) {
3898     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3899     I.IsActiveIP->eraseFromParent();
3900   }
3901 }
3902 
3903 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3904   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3905     if (uop->getOpcode() == UO_AddrOf)
3906       return uop->getSubExpr();
3907   return nullptr;
3908 }
3909 
3910 /// Emit an argument that's being passed call-by-writeback.  That is,
3911 /// we are passing the address of an __autoreleased temporary; it
3912 /// might be copy-initialized with the current value of the given
3913 /// address, but it will definitely be copied out of after the call.
3914 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3915                              const ObjCIndirectCopyRestoreExpr *CRE) {
3916   LValue srcLV;
3917 
3918   // Make an optimistic effort to emit the address as an l-value.
3919   // This can fail if the argument expression is more complicated.
3920   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3921     srcLV = CGF.EmitLValue(lvExpr);
3922 
3923   // Otherwise, just emit it as a scalar.
3924   } else {
3925     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3926 
3927     QualType srcAddrType =
3928       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3929     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3930   }
3931   Address srcAddr = srcLV.getAddress(CGF);
3932 
3933   // The dest and src types don't necessarily match in LLVM terms
3934   // because of the crazy ObjC compatibility rules.
3935 
3936   llvm::PointerType *destType =
3937       cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3938   llvm::Type *destElemType =
3939       CGF.ConvertTypeForMem(CRE->getType()->getPointeeType());
3940 
3941   // If the address is a constant null, just pass the appropriate null.
3942   if (isProvablyNull(srcAddr.getPointer())) {
3943     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3944              CRE->getType());
3945     return;
3946   }
3947 
3948   // Create the temporary.
3949   Address temp =
3950       CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp");
3951   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3952   // and that cleanup will be conditional if we can't prove that the l-value
3953   // isn't null, so we need to register a dominating point so that the cleanups
3954   // system will make valid IR.
3955   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3956 
3957   // Zero-initialize it if we're not doing a copy-initialization.
3958   bool shouldCopy = CRE->shouldCopy();
3959   if (!shouldCopy) {
3960     llvm::Value *null =
3961         llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType));
3962     CGF.Builder.CreateStore(null, temp);
3963   }
3964 
3965   llvm::BasicBlock *contBB = nullptr;
3966   llvm::BasicBlock *originBB = nullptr;
3967 
3968   // If the address is *not* known to be non-null, we need to switch.
3969   llvm::Value *finalArgument;
3970 
3971   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3972                                               CGF.CGM.getDataLayout());
3973   if (provablyNonNull) {
3974     finalArgument = temp.getPointer();
3975   } else {
3976     llvm::Value *isNull =
3977       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3978 
3979     finalArgument = CGF.Builder.CreateSelect(isNull,
3980                                    llvm::ConstantPointerNull::get(destType),
3981                                              temp.getPointer(), "icr.argument");
3982 
3983     // If we need to copy, then the load has to be conditional, which
3984     // means we need control flow.
3985     if (shouldCopy) {
3986       originBB = CGF.Builder.GetInsertBlock();
3987       contBB = CGF.createBasicBlock("icr.cont");
3988       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3989       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3990       CGF.EmitBlock(copyBB);
3991       condEval.begin(CGF);
3992     }
3993   }
3994 
3995   llvm::Value *valueToUse = nullptr;
3996 
3997   // Perform a copy if necessary.
3998   if (shouldCopy) {
3999     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
4000     assert(srcRV.isScalar());
4001 
4002     llvm::Value *src = srcRV.getScalarVal();
4003     src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast");
4004 
4005     // Use an ordinary store, not a store-to-lvalue.
4006     CGF.Builder.CreateStore(src, temp);
4007 
4008     // If optimization is enabled, and the value was held in a
4009     // __strong variable, we need to tell the optimizer that this
4010     // value has to stay alive until we're doing the store back.
4011     // This is because the temporary is effectively unretained,
4012     // and so otherwise we can violate the high-level semantics.
4013     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4014         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
4015       valueToUse = src;
4016     }
4017   }
4018 
4019   // Finish the control flow if we needed it.
4020   if (shouldCopy && !provablyNonNull) {
4021     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
4022     CGF.EmitBlock(contBB);
4023 
4024     // Make a phi for the value to intrinsically use.
4025     if (valueToUse) {
4026       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
4027                                                       "icr.to-use");
4028       phiToUse->addIncoming(valueToUse, copyBB);
4029       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
4030                             originBB);
4031       valueToUse = phiToUse;
4032     }
4033 
4034     condEval.end(CGF);
4035   }
4036 
4037   args.addWriteback(srcLV, temp, valueToUse);
4038   args.add(RValue::get(finalArgument), CRE->getType());
4039 }
4040 
4041 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
4042   assert(!StackBase);
4043 
4044   // Save the stack.
4045   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
4046   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
4047 }
4048 
4049 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
4050   if (StackBase) {
4051     // Restore the stack after the call.
4052     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
4053     CGF.Builder.CreateCall(F, StackBase);
4054   }
4055 }
4056 
4057 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4058                                           SourceLocation ArgLoc,
4059                                           AbstractCallee AC,
4060                                           unsigned ParmNum) {
4061   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4062                          SanOpts.has(SanitizerKind::NullabilityArg)))
4063     return;
4064 
4065   // The param decl may be missing in a variadic function.
4066   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4067   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4068 
4069   // Prefer the nonnull attribute if it's present.
4070   const NonNullAttr *NNAttr = nullptr;
4071   if (SanOpts.has(SanitizerKind::NonnullAttribute))
4072     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4073 
4074   bool CanCheckNullability = false;
4075   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4076     auto Nullability = PVD->getType()->getNullability(getContext());
4077     CanCheckNullability = Nullability &&
4078                           *Nullability == NullabilityKind::NonNull &&
4079                           PVD->getTypeSourceInfo();
4080   }
4081 
4082   if (!NNAttr && !CanCheckNullability)
4083     return;
4084 
4085   SourceLocation AttrLoc;
4086   SanitizerMask CheckKind;
4087   SanitizerHandler Handler;
4088   if (NNAttr) {
4089     AttrLoc = NNAttr->getLocation();
4090     CheckKind = SanitizerKind::NonnullAttribute;
4091     Handler = SanitizerHandler::NonnullArg;
4092   } else {
4093     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4094     CheckKind = SanitizerKind::NullabilityArg;
4095     Handler = SanitizerHandler::NullabilityArg;
4096   }
4097 
4098   SanitizerScope SanScope(this);
4099   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4100   llvm::Constant *StaticData[] = {
4101       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4102       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4103   };
4104   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
4105 }
4106 
4107 // Check if the call is going to use the inalloca convention. This needs to
4108 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4109 // later, so we can't check it directly.
4110 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4111                             ArrayRef<QualType> ArgTypes) {
4112   // The Swift calling conventions don't go through the target-specific
4113   // argument classification, they never use inalloca.
4114   // TODO: Consider limiting inalloca use to only calling conventions supported
4115   // by MSVC.
4116   if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4117     return false;
4118   if (!CGM.getTarget().getCXXABI().isMicrosoft())
4119     return false;
4120   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4121     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4122   });
4123 }
4124 
4125 #ifndef NDEBUG
4126 // Determine whether the given argument is an Objective-C method
4127 // that may have type parameters in its signature.
4128 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4129   const DeclContext *dc = method->getDeclContext();
4130   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4131     return classDecl->getTypeParamListAsWritten();
4132   }
4133 
4134   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4135     return catDecl->getTypeParamList();
4136   }
4137 
4138   return false;
4139 }
4140 #endif
4141 
4142 /// EmitCallArgs - Emit call arguments for a function.
4143 void CodeGenFunction::EmitCallArgs(
4144     CallArgList &Args, PrototypeWrapper Prototype,
4145     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4146     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4147   SmallVector<QualType, 16> ArgTypes;
4148 
4149   assert((ParamsToSkip == 0 || Prototype.P) &&
4150          "Can't skip parameters if type info is not provided");
4151 
4152   // This variable only captures *explicitly* written conventions, not those
4153   // applied by default via command line flags or target defaults, such as
4154   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4155   // require knowing if this is a C++ instance method or being able to see
4156   // unprototyped FunctionTypes.
4157   CallingConv ExplicitCC = CC_C;
4158 
4159   // First, if a prototype was provided, use those argument types.
4160   bool IsVariadic = false;
4161   if (Prototype.P) {
4162     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4163     if (MD) {
4164       IsVariadic = MD->isVariadic();
4165       ExplicitCC = getCallingConventionForDecl(
4166           MD, CGM.getTarget().getTriple().isOSWindows());
4167       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4168                       MD->param_type_end());
4169     } else {
4170       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4171       IsVariadic = FPT->isVariadic();
4172       ExplicitCC = FPT->getExtInfo().getCC();
4173       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4174                       FPT->param_type_end());
4175     }
4176 
4177 #ifndef NDEBUG
4178     // Check that the prototyped types match the argument expression types.
4179     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4180     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4181     for (QualType Ty : ArgTypes) {
4182       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4183       assert(
4184           (isGenericMethod || Ty->isVariablyModifiedType() ||
4185            Ty.getNonReferenceType()->isObjCRetainableType() ||
4186            getContext()
4187                    .getCanonicalType(Ty.getNonReferenceType())
4188                    .getTypePtr() ==
4189                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4190           "type mismatch in call argument!");
4191       ++Arg;
4192     }
4193 
4194     // Either we've emitted all the call args, or we have a call to variadic
4195     // function.
4196     assert((Arg == ArgRange.end() || IsVariadic) &&
4197            "Extra arguments in non-variadic function!");
4198 #endif
4199   }
4200 
4201   // If we still have any arguments, emit them using the type of the argument.
4202   for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
4203     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4204   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4205 
4206   // We must evaluate arguments from right to left in the MS C++ ABI,
4207   // because arguments are destroyed left to right in the callee. As a special
4208   // case, there are certain language constructs that require left-to-right
4209   // evaluation, and in those cases we consider the evaluation order requirement
4210   // to trump the "destruction order is reverse construction order" guarantee.
4211   bool LeftToRight =
4212       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4213           ? Order == EvaluationOrder::ForceLeftToRight
4214           : Order != EvaluationOrder::ForceRightToLeft;
4215 
4216   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4217                                          RValue EmittedArg) {
4218     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4219       return;
4220     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4221     if (PS == nullptr)
4222       return;
4223 
4224     const auto &Context = getContext();
4225     auto SizeTy = Context.getSizeType();
4226     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4227     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4228     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4229                                                      EmittedArg.getScalarVal(),
4230                                                      PS->isDynamic());
4231     Args.add(RValue::get(V), SizeTy);
4232     // If we're emitting args in reverse, be sure to do so with
4233     // pass_object_size, as well.
4234     if (!LeftToRight)
4235       std::swap(Args.back(), *(&Args.back() - 1));
4236   };
4237 
4238   // Insert a stack save if we're going to need any inalloca args.
4239   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4240     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4241            "inalloca only supported on x86");
4242     Args.allocateArgumentMemory(*this);
4243   }
4244 
4245   // Evaluate each argument in the appropriate order.
4246   size_t CallArgsStart = Args.size();
4247   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4248     unsigned Idx = LeftToRight ? I : E - I - 1;
4249     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4250     unsigned InitialArgSize = Args.size();
4251     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4252     // the argument and parameter match or the objc method is parameterized.
4253     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4254             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4255                                                 ArgTypes[Idx]) ||
4256             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4257              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4258            "Argument and parameter types don't match");
4259     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4260     // In particular, we depend on it being the last arg in Args, and the
4261     // objectsize bits depend on there only being one arg if !LeftToRight.
4262     assert(InitialArgSize + 1 == Args.size() &&
4263            "The code below depends on only adding one arg per EmitCallArg");
4264     (void)InitialArgSize;
4265     // Since pointer argument are never emitted as LValue, it is safe to emit
4266     // non-null argument check for r-value only.
4267     if (!Args.back().hasLValue()) {
4268       RValue RVArg = Args.back().getKnownRValue();
4269       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4270                           ParamsToSkip + Idx);
4271       // @llvm.objectsize should never have side-effects and shouldn't need
4272       // destruction/cleanups, so we can safely "emit" it after its arg,
4273       // regardless of right-to-leftness
4274       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4275     }
4276   }
4277 
4278   if (!LeftToRight) {
4279     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4280     // IR function.
4281     std::reverse(Args.begin() + CallArgsStart, Args.end());
4282   }
4283 }
4284 
4285 namespace {
4286 
4287 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4288   DestroyUnpassedArg(Address Addr, QualType Ty)
4289       : Addr(Addr), Ty(Ty) {}
4290 
4291   Address Addr;
4292   QualType Ty;
4293 
4294   void Emit(CodeGenFunction &CGF, Flags flags) override {
4295     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4296     if (DtorKind == QualType::DK_cxx_destructor) {
4297       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4298       assert(!Dtor->isTrivial());
4299       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4300                                 /*Delegating=*/false, Addr, Ty);
4301     } else {
4302       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4303     }
4304   }
4305 };
4306 
4307 struct DisableDebugLocationUpdates {
4308   CodeGenFunction &CGF;
4309   bool disabledDebugInfo;
4310   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4311     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4312       CGF.disableDebugInfo();
4313   }
4314   ~DisableDebugLocationUpdates() {
4315     if (disabledDebugInfo)
4316       CGF.enableDebugInfo();
4317   }
4318 };
4319 
4320 } // end anonymous namespace
4321 
4322 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4323   if (!HasLV)
4324     return RV;
4325   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4326   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4327                         LV.isVolatile());
4328   IsUsed = true;
4329   return RValue::getAggregate(Copy.getAddress(CGF));
4330 }
4331 
4332 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4333   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4334   if (!HasLV && RV.isScalar())
4335     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4336   else if (!HasLV && RV.isComplex())
4337     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4338   else {
4339     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4340     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4341     // We assume that call args are never copied into subobjects.
4342     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4343                           HasLV ? LV.isVolatileQualified()
4344                                 : RV.isVolatileQualified());
4345   }
4346   IsUsed = true;
4347 }
4348 
4349 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4350                                   QualType type) {
4351   DisableDebugLocationUpdates Dis(*this, E);
4352   if (const ObjCIndirectCopyRestoreExpr *CRE
4353         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4354     assert(getLangOpts().ObjCAutoRefCount);
4355     return emitWritebackArg(*this, args, CRE);
4356   }
4357 
4358   assert(type->isReferenceType() == E->isGLValue() &&
4359          "reference binding to unmaterialized r-value!");
4360 
4361   if (E->isGLValue()) {
4362     assert(E->getObjectKind() == OK_Ordinary);
4363     return args.add(EmitReferenceBindingToExpr(E), type);
4364   }
4365 
4366   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4367 
4368   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4369   // However, we still have to push an EH-only cleanup in case we unwind before
4370   // we make it to the call.
4371   if (type->isRecordType() &&
4372       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4373     // If we're using inalloca, use the argument memory.  Otherwise, use a
4374     // temporary.
4375     AggValueSlot Slot = args.isUsingInAlloca()
4376         ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
4377 
4378     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4379     if (const auto *RD = type->getAsCXXRecordDecl())
4380       DestroyedInCallee = RD->hasNonTrivialDestructor();
4381     else
4382       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4383 
4384     if (DestroyedInCallee)
4385       Slot.setExternallyDestructed();
4386 
4387     EmitAggExpr(E, Slot);
4388     RValue RV = Slot.asRValue();
4389     args.add(RV, type);
4390 
4391     if (DestroyedInCallee && NeedsEHCleanup) {
4392       // Create a no-op GEP between the placeholder and the cleanup so we can
4393       // RAUW it successfully.  It also serves as a marker of the first
4394       // instruction where the cleanup is active.
4395       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4396                                               type);
4397       // This unreachable is a temporary marker which will be removed later.
4398       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4399       args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive);
4400     }
4401     return;
4402   }
4403 
4404   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4405       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4406     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4407     assert(L.isSimple());
4408     args.addUncopiedAggregate(L, type);
4409     return;
4410   }
4411 
4412   args.add(EmitAnyExprToTemp(E), type);
4413 }
4414 
4415 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4416   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4417   // implicitly widens null pointer constants that are arguments to varargs
4418   // functions to pointer-sized ints.
4419   if (!getTarget().getTriple().isOSWindows())
4420     return Arg->getType();
4421 
4422   if (Arg->getType()->isIntegerType() &&
4423       getContext().getTypeSize(Arg->getType()) <
4424           getContext().getTargetInfo().getPointerWidth(0) &&
4425       Arg->isNullPointerConstant(getContext(),
4426                                  Expr::NPC_ValueDependentIsNotNull)) {
4427     return getContext().getIntPtrType();
4428   }
4429 
4430   return Arg->getType();
4431 }
4432 
4433 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4434 // optimizer it can aggressively ignore unwind edges.
4435 void
4436 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4437   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4438       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4439     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4440                       CGM.getNoObjCARCExceptionsMetadata());
4441 }
4442 
4443 /// Emits a call to the given no-arguments nounwind runtime function.
4444 llvm::CallInst *
4445 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4446                                          const llvm::Twine &name) {
4447   return EmitNounwindRuntimeCall(callee, None, name);
4448 }
4449 
4450 /// Emits a call to the given nounwind runtime function.
4451 llvm::CallInst *
4452 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4453                                          ArrayRef<llvm::Value *> args,
4454                                          const llvm::Twine &name) {
4455   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4456   call->setDoesNotThrow();
4457   return call;
4458 }
4459 
4460 /// Emits a simple call (never an invoke) to the given no-arguments
4461 /// runtime function.
4462 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4463                                                  const llvm::Twine &name) {
4464   return EmitRuntimeCall(callee, None, name);
4465 }
4466 
4467 // Calls which may throw must have operand bundles indicating which funclet
4468 // they are nested within.
4469 SmallVector<llvm::OperandBundleDef, 1>
4470 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4471   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4472   // There is no need for a funclet operand bundle if we aren't inside a
4473   // funclet.
4474   if (!CurrentFuncletPad)
4475     return BundleList;
4476 
4477   // Skip intrinsics which cannot throw.
4478   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4479   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4480     return BundleList;
4481 
4482   BundleList.emplace_back("funclet", CurrentFuncletPad);
4483   return BundleList;
4484 }
4485 
4486 /// Emits a simple call (never an invoke) to the given runtime function.
4487 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4488                                                  ArrayRef<llvm::Value *> args,
4489                                                  const llvm::Twine &name) {
4490   llvm::CallInst *call = Builder.CreateCall(
4491       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4492   call->setCallingConv(getRuntimeCC());
4493   return call;
4494 }
4495 
4496 /// Emits a call or invoke to the given noreturn runtime function.
4497 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4498     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4499   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4500       getBundlesForFunclet(callee.getCallee());
4501 
4502   if (getInvokeDest()) {
4503     llvm::InvokeInst *invoke =
4504       Builder.CreateInvoke(callee,
4505                            getUnreachableBlock(),
4506                            getInvokeDest(),
4507                            args,
4508                            BundleList);
4509     invoke->setDoesNotReturn();
4510     invoke->setCallingConv(getRuntimeCC());
4511   } else {
4512     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4513     call->setDoesNotReturn();
4514     call->setCallingConv(getRuntimeCC());
4515     Builder.CreateUnreachable();
4516   }
4517 }
4518 
4519 /// Emits a call or invoke instruction to the given nullary runtime function.
4520 llvm::CallBase *
4521 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4522                                          const Twine &name) {
4523   return EmitRuntimeCallOrInvoke(callee, None, name);
4524 }
4525 
4526 /// Emits a call or invoke instruction to the given runtime function.
4527 llvm::CallBase *
4528 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4529                                          ArrayRef<llvm::Value *> args,
4530                                          const Twine &name) {
4531   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4532   call->setCallingConv(getRuntimeCC());
4533   return call;
4534 }
4535 
4536 /// Emits a call or invoke instruction to the given function, depending
4537 /// on the current state of the EH stack.
4538 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4539                                                   ArrayRef<llvm::Value *> Args,
4540                                                   const Twine &Name) {
4541   llvm::BasicBlock *InvokeDest = getInvokeDest();
4542   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4543       getBundlesForFunclet(Callee.getCallee());
4544 
4545   llvm::CallBase *Inst;
4546   if (!InvokeDest)
4547     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4548   else {
4549     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4550     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4551                                 Name);
4552     EmitBlock(ContBB);
4553   }
4554 
4555   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4556   // optimizer it can aggressively ignore unwind edges.
4557   if (CGM.getLangOpts().ObjCAutoRefCount)
4558     AddObjCARCExceptionMetadata(Inst);
4559 
4560   return Inst;
4561 }
4562 
4563 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4564                                                   llvm::Value *New) {
4565   DeferredReplacements.push_back(
4566       std::make_pair(llvm::WeakTrackingVH(Old), New));
4567 }
4568 
4569 namespace {
4570 
4571 /// Specify given \p NewAlign as the alignment of return value attribute. If
4572 /// such attribute already exists, re-set it to the maximal one of two options.
4573 LLVM_NODISCARD llvm::AttributeList
4574 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4575                                 const llvm::AttributeList &Attrs,
4576                                 llvm::Align NewAlign) {
4577   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4578   if (CurAlign >= NewAlign)
4579     return Attrs;
4580   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4581   return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4582       .addRetAttribute(Ctx, AlignAttr);
4583 }
4584 
4585 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4586 protected:
4587   CodeGenFunction &CGF;
4588 
4589   /// We do nothing if this is, or becomes, nullptr.
4590   const AlignedAttrTy *AA = nullptr;
4591 
4592   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4593   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4594 
4595   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4596       : CGF(CGF_) {
4597     if (!FuncDecl)
4598       return;
4599     AA = FuncDecl->getAttr<AlignedAttrTy>();
4600   }
4601 
4602 public:
4603   /// If we can, materialize the alignment as an attribute on return value.
4604   LLVM_NODISCARD llvm::AttributeList
4605   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4606     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4607       return Attrs;
4608     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4609     if (!AlignmentCI)
4610       return Attrs;
4611     // We may legitimately have non-power-of-2 alignment here.
4612     // If so, this is UB land, emit it via `@llvm.assume` instead.
4613     if (!AlignmentCI->getValue().isPowerOf2())
4614       return Attrs;
4615     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4616         CGF.getLLVMContext(), Attrs,
4617         llvm::Align(
4618             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4619     AA = nullptr; // We're done. Disallow doing anything else.
4620     return NewAttrs;
4621   }
4622 
4623   /// Emit alignment assumption.
4624   /// This is a general fallback that we take if either there is an offset,
4625   /// or the alignment is variable or we are sanitizing for alignment.
4626   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4627     if (!AA)
4628       return;
4629     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4630                                 AA->getLocation(), Alignment, OffsetCI);
4631     AA = nullptr; // We're done. Disallow doing anything else.
4632   }
4633 };
4634 
4635 /// Helper data structure to emit `AssumeAlignedAttr`.
4636 class AssumeAlignedAttrEmitter final
4637     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4638 public:
4639   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4640       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4641     if (!AA)
4642       return;
4643     // It is guaranteed that the alignment/offset are constants.
4644     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4645     if (Expr *Offset = AA->getOffset()) {
4646       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4647       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4648         OffsetCI = nullptr;
4649     }
4650   }
4651 };
4652 
4653 /// Helper data structure to emit `AllocAlignAttr`.
4654 class AllocAlignAttrEmitter final
4655     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4656 public:
4657   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4658                         const CallArgList &CallArgs)
4659       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4660     if (!AA)
4661       return;
4662     // Alignment may or may not be a constant, and that is okay.
4663     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4664                     .getRValue(CGF)
4665                     .getScalarVal();
4666   }
4667 };
4668 
4669 } // namespace
4670 
4671 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4672                                  const CGCallee &Callee,
4673                                  ReturnValueSlot ReturnValue,
4674                                  const CallArgList &CallArgs,
4675                                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4676                                  SourceLocation Loc) {
4677   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4678 
4679   assert(Callee.isOrdinary() || Callee.isVirtual());
4680 
4681   // Handle struct-return functions by passing a pointer to the
4682   // location that we would like to return into.
4683   QualType RetTy = CallInfo.getReturnType();
4684   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4685 
4686   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4687 
4688   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4689   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4690     // We can only guarantee that a function is called from the correct
4691     // context/function based on the appropriate target attributes,
4692     // so only check in the case where we have both always_inline and target
4693     // since otherwise we could be making a conditional call after a check for
4694     // the proper cpu features (and it won't cause code generation issues due to
4695     // function based code generation).
4696     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4697         TargetDecl->hasAttr<TargetAttr>())
4698       checkTargetFeatures(Loc, FD);
4699 
4700     // Some architectures (such as x86-64) have the ABI changed based on
4701     // attribute-target/features. Give them a chance to diagnose.
4702     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4703         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4704   }
4705 
4706 #ifndef NDEBUG
4707   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4708     // For an inalloca varargs function, we don't expect CallInfo to match the
4709     // function pointer's type, because the inalloca struct a will have extra
4710     // fields in it for the varargs parameters.  Code later in this function
4711     // bitcasts the function pointer to the type derived from CallInfo.
4712     //
4713     // In other cases, we assert that the types match up (until pointers stop
4714     // having pointee types).
4715     if (Callee.isVirtual())
4716       assert(IRFuncTy == Callee.getVirtualFunctionType());
4717     else {
4718       llvm::PointerType *PtrTy =
4719           llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType());
4720       assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy));
4721     }
4722   }
4723 #endif
4724 
4725   // 1. Set up the arguments.
4726 
4727   // If we're using inalloca, insert the allocation after the stack save.
4728   // FIXME: Do this earlier rather than hacking it in here!
4729   Address ArgMemory = Address::invalid();
4730   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4731     const llvm::DataLayout &DL = CGM.getDataLayout();
4732     llvm::Instruction *IP = CallArgs.getStackBase();
4733     llvm::AllocaInst *AI;
4734     if (IP) {
4735       IP = IP->getNextNode();
4736       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4737                                 "argmem", IP);
4738     } else {
4739       AI = CreateTempAlloca(ArgStruct, "argmem");
4740     }
4741     auto Align = CallInfo.getArgStructAlignment();
4742     AI->setAlignment(Align.getAsAlign());
4743     AI->setUsedWithInAlloca(true);
4744     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4745     ArgMemory = Address(AI, ArgStruct, Align);
4746   }
4747 
4748   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4749   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4750 
4751   // If the call returns a temporary with struct return, create a temporary
4752   // alloca to hold the result, unless one is given to us.
4753   Address SRetPtr = Address::invalid();
4754   Address SRetAlloca = Address::invalid();
4755   llvm::Value *UnusedReturnSizePtr = nullptr;
4756   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4757     if (!ReturnValue.isNull()) {
4758       SRetPtr = ReturnValue.getValue();
4759     } else {
4760       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4761       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4762         llvm::TypeSize size =
4763             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4764         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4765       }
4766     }
4767     if (IRFunctionArgs.hasSRetArg()) {
4768       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4769     } else if (RetAI.isInAlloca()) {
4770       Address Addr =
4771           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4772       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4773     }
4774   }
4775 
4776   Address swiftErrorTemp = Address::invalid();
4777   Address swiftErrorArg = Address::invalid();
4778 
4779   // When passing arguments using temporary allocas, we need to add the
4780   // appropriate lifetime markers. This vector keeps track of all the lifetime
4781   // markers that need to be ended right after the call.
4782   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4783 
4784   // Translate all of the arguments as necessary to match the IR lowering.
4785   assert(CallInfo.arg_size() == CallArgs.size() &&
4786          "Mismatch between function signature & arguments.");
4787   unsigned ArgNo = 0;
4788   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4789   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4790        I != E; ++I, ++info_it, ++ArgNo) {
4791     const ABIArgInfo &ArgInfo = info_it->info;
4792 
4793     // Insert a padding argument to ensure proper alignment.
4794     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4795       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4796           llvm::UndefValue::get(ArgInfo.getPaddingType());
4797 
4798     unsigned FirstIRArg, NumIRArgs;
4799     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4800 
4801     switch (ArgInfo.getKind()) {
4802     case ABIArgInfo::InAlloca: {
4803       assert(NumIRArgs == 0);
4804       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4805       if (I->isAggregate()) {
4806         Address Addr = I->hasLValue()
4807                            ? I->getKnownLValue().getAddress(*this)
4808                            : I->getKnownRValue().getAggregateAddress();
4809         llvm::Instruction *Placeholder =
4810             cast<llvm::Instruction>(Addr.getPointer());
4811 
4812         if (!ArgInfo.getInAllocaIndirect()) {
4813           // Replace the placeholder with the appropriate argument slot GEP.
4814           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4815           Builder.SetInsertPoint(Placeholder);
4816           Addr = Builder.CreateStructGEP(ArgMemory,
4817                                          ArgInfo.getInAllocaFieldIndex());
4818           Builder.restoreIP(IP);
4819         } else {
4820           // For indirect things such as overaligned structs, replace the
4821           // placeholder with a regular aggregate temporary alloca. Store the
4822           // address of this alloca into the struct.
4823           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4824           Address ArgSlot = Builder.CreateStructGEP(
4825               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4826           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4827         }
4828         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4829       } else if (ArgInfo.getInAllocaIndirect()) {
4830         // Make a temporary alloca and store the address of it into the argument
4831         // struct.
4832         Address Addr = CreateMemTempWithoutCast(
4833             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4834             "indirect-arg-temp");
4835         I->copyInto(*this, Addr);
4836         Address ArgSlot =
4837             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4838         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4839       } else {
4840         // Store the RValue into the argument struct.
4841         Address Addr =
4842             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4843         // There are some cases where a trivial bitcast is not avoidable.  The
4844         // definition of a type later in a translation unit may change it's type
4845         // from {}* to (%struct.foo*)*.
4846         Addr = Builder.CreateElementBitCast(Addr, ConvertTypeForMem(I->Ty));
4847         I->copyInto(*this, Addr);
4848       }
4849       break;
4850     }
4851 
4852     case ABIArgInfo::Indirect:
4853     case ABIArgInfo::IndirectAliased: {
4854       assert(NumIRArgs == 1);
4855       if (!I->isAggregate()) {
4856         // Make a temporary alloca to pass the argument.
4857         Address Addr = CreateMemTempWithoutCast(
4858             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4859         IRCallArgs[FirstIRArg] = Addr.getPointer();
4860 
4861         I->copyInto(*this, Addr);
4862       } else {
4863         // We want to avoid creating an unnecessary temporary+copy here;
4864         // however, we need one in three cases:
4865         // 1. If the argument is not byval, and we are required to copy the
4866         //    source.  (This case doesn't occur on any common architecture.)
4867         // 2. If the argument is byval, RV is not sufficiently aligned, and
4868         //    we cannot force it to be sufficiently aligned.
4869         // 3. If the argument is byval, but RV is not located in default
4870         //    or alloca address space.
4871         Address Addr = I->hasLValue()
4872                            ? I->getKnownLValue().getAddress(*this)
4873                            : I->getKnownRValue().getAggregateAddress();
4874         llvm::Value *V = Addr.getPointer();
4875         CharUnits Align = ArgInfo.getIndirectAlign();
4876         const llvm::DataLayout *TD = &CGM.getDataLayout();
4877 
4878         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4879                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4880                     TD->getAllocaAddrSpace()) &&
4881                "indirect argument must be in alloca address space");
4882 
4883         bool NeedCopy = false;
4884 
4885         if (Addr.getAlignment() < Align &&
4886             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4887                 Align.getAsAlign()) {
4888           NeedCopy = true;
4889         } else if (I->hasLValue()) {
4890           auto LV = I->getKnownLValue();
4891           auto AS = LV.getAddressSpace();
4892 
4893           if (!ArgInfo.getIndirectByVal() ||
4894               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4895             NeedCopy = true;
4896           }
4897           if (!getLangOpts().OpenCL) {
4898             if ((ArgInfo.getIndirectByVal() &&
4899                 (AS != LangAS::Default &&
4900                  AS != CGM.getASTAllocaAddressSpace()))) {
4901               NeedCopy = true;
4902             }
4903           }
4904           // For OpenCL even if RV is located in default or alloca address space
4905           // we don't want to perform address space cast for it.
4906           else if ((ArgInfo.getIndirectByVal() &&
4907                     Addr.getType()->getAddressSpace() != IRFuncTy->
4908                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4909             NeedCopy = true;
4910           }
4911         }
4912 
4913         if (NeedCopy) {
4914           // Create an aligned temporary, and copy to it.
4915           Address AI = CreateMemTempWithoutCast(
4916               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4917           IRCallArgs[FirstIRArg] = AI.getPointer();
4918 
4919           // Emit lifetime markers for the temporary alloca.
4920           llvm::TypeSize ByvalTempElementSize =
4921               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4922           llvm::Value *LifetimeSize =
4923               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4924 
4925           // Add cleanup code to emit the end lifetime marker after the call.
4926           if (LifetimeSize) // In case we disabled lifetime markers.
4927             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4928 
4929           // Generate the copy.
4930           I->copyInto(*this, AI);
4931         } else {
4932           // Skip the extra memcpy call.
4933           auto *T = llvm::PointerType::getWithSamePointeeType(
4934               cast<llvm::PointerType>(V->getType()),
4935               CGM.getDataLayout().getAllocaAddrSpace());
4936           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4937               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4938               true);
4939         }
4940       }
4941       break;
4942     }
4943 
4944     case ABIArgInfo::Ignore:
4945       assert(NumIRArgs == 0);
4946       break;
4947 
4948     case ABIArgInfo::Extend:
4949     case ABIArgInfo::Direct: {
4950       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4951           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4952           ArgInfo.getDirectOffset() == 0) {
4953         assert(NumIRArgs == 1);
4954         llvm::Value *V;
4955         if (!I->isAggregate())
4956           V = I->getKnownRValue().getScalarVal();
4957         else
4958           V = Builder.CreateLoad(
4959               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4960                              : I->getKnownRValue().getAggregateAddress());
4961 
4962         // Implement swifterror by copying into a new swifterror argument.
4963         // We'll write back in the normal path out of the call.
4964         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4965               == ParameterABI::SwiftErrorResult) {
4966           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4967 
4968           QualType pointeeTy = I->Ty->getPointeeType();
4969           swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy),
4970                                   getContext().getTypeAlignInChars(pointeeTy));
4971 
4972           swiftErrorTemp =
4973             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4974           V = swiftErrorTemp.getPointer();
4975           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4976 
4977           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4978           Builder.CreateStore(errorValue, swiftErrorTemp);
4979         }
4980 
4981         // We might have to widen integers, but we should never truncate.
4982         if (ArgInfo.getCoerceToType() != V->getType() &&
4983             V->getType()->isIntegerTy())
4984           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4985 
4986         // If the argument doesn't match, perform a bitcast to coerce it.  This
4987         // can happen due to trivial type mismatches.
4988         if (FirstIRArg < IRFuncTy->getNumParams() &&
4989             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4990           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4991 
4992         IRCallArgs[FirstIRArg] = V;
4993         break;
4994       }
4995 
4996       // FIXME: Avoid the conversion through memory if possible.
4997       Address Src = Address::invalid();
4998       if (!I->isAggregate()) {
4999         Src = CreateMemTemp(I->Ty, "coerce");
5000         I->copyInto(*this, Src);
5001       } else {
5002         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5003                              : I->getKnownRValue().getAggregateAddress();
5004       }
5005 
5006       // If the value is offset in memory, apply the offset now.
5007       Src = emitAddressAtOffset(*this, Src, ArgInfo);
5008 
5009       // Fast-isel and the optimizer generally like scalar values better than
5010       // FCAs, so we flatten them if this is safe to do for this argument.
5011       llvm::StructType *STy =
5012             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
5013       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
5014         llvm::Type *SrcTy = Src.getElementType();
5015         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
5016         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
5017 
5018         // If the source type is smaller than the destination type of the
5019         // coerce-to logic, copy the source value into a temp alloca the size
5020         // of the destination type to allow loading all of it. The bits past
5021         // the source value are left undef.
5022         if (SrcSize < DstSize) {
5023           Address TempAlloca
5024             = CreateTempAlloca(STy, Src.getAlignment(),
5025                                Src.getName() + ".coerce");
5026           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
5027           Src = TempAlloca;
5028         } else {
5029           Src = Builder.CreateElementBitCast(Src, STy);
5030         }
5031 
5032         assert(NumIRArgs == STy->getNumElements());
5033         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5034           Address EltPtr = Builder.CreateStructGEP(Src, i);
5035           llvm::Value *LI = Builder.CreateLoad(EltPtr);
5036           IRCallArgs[FirstIRArg + i] = LI;
5037         }
5038       } else {
5039         // In the simple case, just pass the coerced loaded value.
5040         assert(NumIRArgs == 1);
5041         llvm::Value *Load =
5042             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
5043 
5044         if (CallInfo.isCmseNSCall()) {
5045           // For certain parameter types, clear padding bits, as they may reveal
5046           // sensitive information.
5047           // Small struct/union types are passed as integer arrays.
5048           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
5049           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
5050             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
5051         }
5052         IRCallArgs[FirstIRArg] = Load;
5053       }
5054 
5055       break;
5056     }
5057 
5058     case ABIArgInfo::CoerceAndExpand: {
5059       auto coercionType = ArgInfo.getCoerceAndExpandType();
5060       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5061 
5062       llvm::Value *tempSize = nullptr;
5063       Address addr = Address::invalid();
5064       Address AllocaAddr = Address::invalid();
5065       if (I->isAggregate()) {
5066         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5067                               : I->getKnownRValue().getAggregateAddress();
5068 
5069       } else {
5070         RValue RV = I->getKnownRValue();
5071         assert(RV.isScalar()); // complex should always just be direct
5072 
5073         llvm::Type *scalarType = RV.getScalarVal()->getType();
5074         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5075         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
5076 
5077         // Materialize to a temporary.
5078         addr =
5079             CreateTempAlloca(RV.getScalarVal()->getType(),
5080                              CharUnits::fromQuantity(std::max(
5081                                  layout->getAlignment().value(), scalarAlign)),
5082                              "tmp",
5083                              /*ArraySize=*/nullptr, &AllocaAddr);
5084         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5085 
5086         Builder.CreateStore(RV.getScalarVal(), addr);
5087       }
5088 
5089       addr = Builder.CreateElementBitCast(addr, coercionType);
5090 
5091       unsigned IRArgPos = FirstIRArg;
5092       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5093         llvm::Type *eltType = coercionType->getElementType(i);
5094         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5095         Address eltAddr = Builder.CreateStructGEP(addr, i);
5096         llvm::Value *elt = Builder.CreateLoad(eltAddr);
5097         IRCallArgs[IRArgPos++] = elt;
5098       }
5099       assert(IRArgPos == FirstIRArg + NumIRArgs);
5100 
5101       if (tempSize) {
5102         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5103       }
5104 
5105       break;
5106     }
5107 
5108     case ABIArgInfo::Expand: {
5109       unsigned IRArgPos = FirstIRArg;
5110       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5111       assert(IRArgPos == FirstIRArg + NumIRArgs);
5112       break;
5113     }
5114     }
5115   }
5116 
5117   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5118   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5119 
5120   // If we're using inalloca, set up that argument.
5121   if (ArgMemory.isValid()) {
5122     llvm::Value *Arg = ArgMemory.getPointer();
5123     if (CallInfo.isVariadic()) {
5124       // When passing non-POD arguments by value to variadic functions, we will
5125       // end up with a variadic prototype and an inalloca call site.  In such
5126       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
5127       // the callee.
5128       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5129       CalleePtr =
5130           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5131     } else {
5132       llvm::Type *LastParamTy =
5133           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5134       if (Arg->getType() != LastParamTy) {
5135 #ifndef NDEBUG
5136         // Assert that these structs have equivalent element types.
5137         llvm::StructType *FullTy = CallInfo.getArgStruct();
5138         if (!LastParamTy->isOpaquePointerTy()) {
5139           llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5140               LastParamTy->getNonOpaquePointerElementType());
5141           assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5142           for (auto DI = DeclaredTy->element_begin(),
5143                     DE = DeclaredTy->element_end(),
5144                     FI = FullTy->element_begin();
5145                DI != DE; ++DI, ++FI)
5146             assert(*DI == *FI);
5147         }
5148 #endif
5149         Arg = Builder.CreateBitCast(Arg, LastParamTy);
5150       }
5151     }
5152     assert(IRFunctionArgs.hasInallocaArg());
5153     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5154   }
5155 
5156   // 2. Prepare the function pointer.
5157 
5158   // If the callee is a bitcast of a non-variadic function to have a
5159   // variadic function pointer type, check to see if we can remove the
5160   // bitcast.  This comes up with unprototyped functions.
5161   //
5162   // This makes the IR nicer, but more importantly it ensures that we
5163   // can inline the function at -O0 if it is marked always_inline.
5164   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5165                                    llvm::Value *Ptr) -> llvm::Function * {
5166     if (!CalleeFT->isVarArg())
5167       return nullptr;
5168 
5169     // Get underlying value if it's a bitcast
5170     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5171       if (CE->getOpcode() == llvm::Instruction::BitCast)
5172         Ptr = CE->getOperand(0);
5173     }
5174 
5175     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5176     if (!OrigFn)
5177       return nullptr;
5178 
5179     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5180 
5181     // If the original type is variadic, or if any of the component types
5182     // disagree, we cannot remove the cast.
5183     if (OrigFT->isVarArg() ||
5184         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5185         OrigFT->getReturnType() != CalleeFT->getReturnType())
5186       return nullptr;
5187 
5188     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5189       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5190         return nullptr;
5191 
5192     return OrigFn;
5193   };
5194 
5195   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5196     CalleePtr = OrigFn;
5197     IRFuncTy = OrigFn->getFunctionType();
5198   }
5199 
5200   // 3. Perform the actual call.
5201 
5202   // Deactivate any cleanups that we're supposed to do immediately before
5203   // the call.
5204   if (!CallArgs.getCleanupsToDeactivate().empty())
5205     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5206 
5207   // Assert that the arguments we computed match up.  The IR verifier
5208   // will catch this, but this is a common enough source of problems
5209   // during IRGen changes that it's way better for debugging to catch
5210   // it ourselves here.
5211 #ifndef NDEBUG
5212   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5213   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5214     // Inalloca argument can have different type.
5215     if (IRFunctionArgs.hasInallocaArg() &&
5216         i == IRFunctionArgs.getInallocaArgNo())
5217       continue;
5218     if (i < IRFuncTy->getNumParams())
5219       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5220   }
5221 #endif
5222 
5223   // Update the largest vector width if any arguments have vector types.
5224   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5225     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
5226       LargestVectorWidth =
5227           std::max((uint64_t)LargestVectorWidth,
5228                    VT->getPrimitiveSizeInBits().getKnownMinSize());
5229   }
5230 
5231   // Compute the calling convention and attributes.
5232   unsigned CallingConv;
5233   llvm::AttributeList Attrs;
5234   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5235                              Callee.getAbstractInfo(), Attrs, CallingConv,
5236                              /*AttrOnCallSite=*/true,
5237                              /*IsThunk=*/false);
5238 
5239   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5240     if (FD->hasAttr<StrictFPAttr>())
5241       // All calls within a strictfp function are marked strictfp
5242       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5243 
5244   // Add call-site nomerge attribute if exists.
5245   if (InNoMergeAttributedStmt)
5246     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5247 
5248   // Add call-site noinline attribute if exists.
5249   if (InNoInlineAttributedStmt)
5250     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5251 
5252   // Add call-site always_inline attribute if exists.
5253   if (InAlwaysInlineAttributedStmt)
5254     Attrs =
5255         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5256 
5257   // Apply some call-site-specific attributes.
5258   // TODO: work this into building the attribute set.
5259 
5260   // Apply always_inline to all calls within flatten functions.
5261   // FIXME: should this really take priority over __try, below?
5262   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5263       !InNoInlineAttributedStmt &&
5264       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5265     Attrs =
5266         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5267   }
5268 
5269   // Disable inlining inside SEH __try blocks.
5270   if (isSEHTryScope()) {
5271     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5272   }
5273 
5274   // Decide whether to use a call or an invoke.
5275   bool CannotThrow;
5276   if (currentFunctionUsesSEHTry()) {
5277     // SEH cares about asynchronous exceptions, so everything can "throw."
5278     CannotThrow = false;
5279   } else if (isCleanupPadScope() &&
5280              EHPersonality::get(*this).isMSVCXXPersonality()) {
5281     // The MSVC++ personality will implicitly terminate the program if an
5282     // exception is thrown during a cleanup outside of a try/catch.
5283     // We don't need to model anything in IR to get this behavior.
5284     CannotThrow = true;
5285   } else {
5286     // Otherwise, nounwind call sites will never throw.
5287     CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5288 
5289     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5290       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5291         CannotThrow = true;
5292   }
5293 
5294   // If we made a temporary, be sure to clean up after ourselves. Note that we
5295   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5296   // pop this cleanup later on. Being eager about this is OK, since this
5297   // temporary is 'invisible' outside of the callee.
5298   if (UnusedReturnSizePtr)
5299     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5300                                          UnusedReturnSizePtr);
5301 
5302   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5303 
5304   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5305       getBundlesForFunclet(CalleePtr);
5306 
5307   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5308     if (FD->hasAttr<StrictFPAttr>())
5309       // All calls within a strictfp function are marked strictfp
5310       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5311 
5312   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5313   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5314 
5315   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5316   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5317 
5318   // Emit the actual call/invoke instruction.
5319   llvm::CallBase *CI;
5320   if (!InvokeDest) {
5321     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5322   } else {
5323     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5324     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5325                               BundleList);
5326     EmitBlock(Cont);
5327   }
5328   if (callOrInvoke)
5329     *callOrInvoke = CI;
5330 
5331   // If this is within a function that has the guard(nocf) attribute and is an
5332   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5333   // Control Flow Guard checks should not be added, even if the call is inlined.
5334   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5335     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5336       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5337         Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5338     }
5339   }
5340 
5341   // Apply the attributes and calling convention.
5342   CI->setAttributes(Attrs);
5343   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5344 
5345   // Apply various metadata.
5346 
5347   if (!CI->getType()->isVoidTy())
5348     CI->setName("call");
5349 
5350   // Update largest vector width from the return type.
5351   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
5352     LargestVectorWidth =
5353         std::max((uint64_t)LargestVectorWidth,
5354                  VT->getPrimitiveSizeInBits().getKnownMinSize());
5355 
5356   // Insert instrumentation or attach profile metadata at indirect call sites.
5357   // For more details, see the comment before the definition of
5358   // IPVK_IndirectCallTarget in InstrProfData.inc.
5359   if (!CI->getCalledFunction())
5360     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5361                      CI, CalleePtr);
5362 
5363   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5364   // optimizer it can aggressively ignore unwind edges.
5365   if (CGM.getLangOpts().ObjCAutoRefCount)
5366     AddObjCARCExceptionMetadata(CI);
5367 
5368   // Set tail call kind if necessary.
5369   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5370     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5371       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5372     else if (IsMustTail)
5373       Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5374   }
5375 
5376   // Add metadata for calls to MSAllocator functions
5377   if (getDebugInfo() && TargetDecl &&
5378       TargetDecl->hasAttr<MSAllocatorAttr>())
5379     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5380 
5381   // Add metadata if calling an __attribute__((error(""))) or warning fn.
5382   if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5383     llvm::ConstantInt *Line =
5384         llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5385     llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5386     llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5387     CI->setMetadata("srcloc", MDT);
5388   }
5389 
5390   // 4. Finish the call.
5391 
5392   // If the call doesn't return, finish the basic block and clear the
5393   // insertion point; this allows the rest of IRGen to discard
5394   // unreachable code.
5395   if (CI->doesNotReturn()) {
5396     if (UnusedReturnSizePtr)
5397       PopCleanupBlock();
5398 
5399     // Strip away the noreturn attribute to better diagnose unreachable UB.
5400     if (SanOpts.has(SanitizerKind::Unreachable)) {
5401       // Also remove from function since CallBase::hasFnAttr additionally checks
5402       // attributes of the called function.
5403       if (auto *F = CI->getCalledFunction())
5404         F->removeFnAttr(llvm::Attribute::NoReturn);
5405       CI->removeFnAttr(llvm::Attribute::NoReturn);
5406 
5407       // Avoid incompatibility with ASan which relies on the `noreturn`
5408       // attribute to insert handler calls.
5409       if (SanOpts.hasOneOf(SanitizerKind::Address |
5410                            SanitizerKind::KernelAddress)) {
5411         SanitizerScope SanScope(this);
5412         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5413         Builder.SetInsertPoint(CI);
5414         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5415         llvm::FunctionCallee Fn =
5416             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5417         EmitNounwindRuntimeCall(Fn);
5418       }
5419     }
5420 
5421     EmitUnreachable(Loc);
5422     Builder.ClearInsertionPoint();
5423 
5424     // FIXME: For now, emit a dummy basic block because expr emitters in
5425     // generally are not ready to handle emitting expressions at unreachable
5426     // points.
5427     EnsureInsertPoint();
5428 
5429     // Return a reasonable RValue.
5430     return GetUndefRValue(RetTy);
5431   }
5432 
5433   // If this is a musttail call, return immediately. We do not branch to the
5434   // epilogue in this case.
5435   if (IsMustTail) {
5436     for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5437          ++it) {
5438       EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5439       if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5440         CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5441     }
5442     if (CI->getType()->isVoidTy())
5443       Builder.CreateRetVoid();
5444     else
5445       Builder.CreateRet(CI);
5446     Builder.ClearInsertionPoint();
5447     EnsureInsertPoint();
5448     return GetUndefRValue(RetTy);
5449   }
5450 
5451   // Perform the swifterror writeback.
5452   if (swiftErrorTemp.isValid()) {
5453     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5454     Builder.CreateStore(errorResult, swiftErrorArg);
5455   }
5456 
5457   // Emit any call-associated writebacks immediately.  Arguably this
5458   // should happen after any return-value munging.
5459   if (CallArgs.hasWritebacks())
5460     emitWritebacks(*this, CallArgs);
5461 
5462   // The stack cleanup for inalloca arguments has to run out of the normal
5463   // lexical order, so deactivate it and run it manually here.
5464   CallArgs.freeArgumentMemory(*this);
5465 
5466   // Extract the return value.
5467   RValue Ret = [&] {
5468     switch (RetAI.getKind()) {
5469     case ABIArgInfo::CoerceAndExpand: {
5470       auto coercionType = RetAI.getCoerceAndExpandType();
5471 
5472       Address addr = SRetPtr;
5473       addr = Builder.CreateElementBitCast(addr, coercionType);
5474 
5475       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5476       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5477 
5478       unsigned unpaddedIndex = 0;
5479       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5480         llvm::Type *eltType = coercionType->getElementType(i);
5481         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5482         Address eltAddr = Builder.CreateStructGEP(addr, i);
5483         llvm::Value *elt = CI;
5484         if (requiresExtract)
5485           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5486         else
5487           assert(unpaddedIndex == 0);
5488         Builder.CreateStore(elt, eltAddr);
5489       }
5490       // FALLTHROUGH
5491       LLVM_FALLTHROUGH;
5492     }
5493 
5494     case ABIArgInfo::InAlloca:
5495     case ABIArgInfo::Indirect: {
5496       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5497       if (UnusedReturnSizePtr)
5498         PopCleanupBlock();
5499       return ret;
5500     }
5501 
5502     case ABIArgInfo::Ignore:
5503       // If we are ignoring an argument that had a result, make sure to
5504       // construct the appropriate return value for our caller.
5505       return GetUndefRValue(RetTy);
5506 
5507     case ABIArgInfo::Extend:
5508     case ABIArgInfo::Direct: {
5509       llvm::Type *RetIRTy = ConvertType(RetTy);
5510       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5511         switch (getEvaluationKind(RetTy)) {
5512         case TEK_Complex: {
5513           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5514           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5515           return RValue::getComplex(std::make_pair(Real, Imag));
5516         }
5517         case TEK_Aggregate: {
5518           Address DestPtr = ReturnValue.getValue();
5519           bool DestIsVolatile = ReturnValue.isVolatile();
5520 
5521           if (!DestPtr.isValid()) {
5522             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5523             DestIsVolatile = false;
5524           }
5525           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5526           return RValue::getAggregate(DestPtr);
5527         }
5528         case TEK_Scalar: {
5529           // If the argument doesn't match, perform a bitcast to coerce it.  This
5530           // can happen due to trivial type mismatches.
5531           llvm::Value *V = CI;
5532           if (V->getType() != RetIRTy)
5533             V = Builder.CreateBitCast(V, RetIRTy);
5534           return RValue::get(V);
5535         }
5536         }
5537         llvm_unreachable("bad evaluation kind");
5538       }
5539 
5540       Address DestPtr = ReturnValue.getValue();
5541       bool DestIsVolatile = ReturnValue.isVolatile();
5542 
5543       if (!DestPtr.isValid()) {
5544         DestPtr = CreateMemTemp(RetTy, "coerce");
5545         DestIsVolatile = false;
5546       }
5547 
5548       // If the value is offset in memory, apply the offset now.
5549       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5550       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5551 
5552       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5553     }
5554 
5555     case ABIArgInfo::Expand:
5556     case ABIArgInfo::IndirectAliased:
5557       llvm_unreachable("Invalid ABI kind for return argument");
5558     }
5559 
5560     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5561   } ();
5562 
5563   // Emit the assume_aligned check on the return value.
5564   if (Ret.isScalar() && TargetDecl) {
5565     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5566     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5567   }
5568 
5569   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5570   // we can't use the full cleanup mechanism.
5571   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5572     LifetimeEnd.Emit(*this, /*Flags=*/{});
5573 
5574   if (!ReturnValue.isExternallyDestructed() &&
5575       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5576     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5577                 RetTy);
5578 
5579   return Ret;
5580 }
5581 
5582 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5583   if (isVirtual()) {
5584     const CallExpr *CE = getVirtualCallExpr();
5585     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5586         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5587         CE ? CE->getBeginLoc() : SourceLocation());
5588   }
5589 
5590   return *this;
5591 }
5592 
5593 /* VarArg handling */
5594 
5595 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5596   VAListAddr = VE->isMicrosoftABI()
5597                  ? EmitMSVAListRef(VE->getSubExpr())
5598                  : EmitVAListRef(VE->getSubExpr());
5599   QualType Ty = VE->getType();
5600   if (VE->isMicrosoftABI())
5601     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5602   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5603 }
5604