1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "clang/CodeGen/SwiftCallingConv.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
72 /// qualification.
73 /// FIXME: address space qualification?
74 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
75   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
76   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
77 }
78 
79 /// Returns the canonical formal type of the given C++ method.
80 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
81   return MD->getType()->getCanonicalTypeUnqualified()
82            .getAs<FunctionProtoType>();
83 }
84 
85 /// Returns the "extra-canonicalized" return type, which discards
86 /// qualifiers on the return type.  Codegen doesn't care about them,
87 /// and it makes ABI code a little easier to be able to assume that
88 /// all parameter and return types are top-level unqualified.
89 static CanQualType GetReturnType(QualType RetTy) {
90   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
91 }
92 
93 /// Arrange the argument and result information for a value of the given
94 /// unprototyped freestanding function type.
95 const CGFunctionInfo &
96 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
97   // When translating an unprototyped function type, always use a
98   // variadic type.
99   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
100                                  /*instanceMethod=*/false,
101                                  /*chainCall=*/false, None,
102                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
103 }
104 
105 static void addExtParameterInfosForCall(
106          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
107                                         const FunctionProtoType *proto,
108                                         unsigned prefixArgs,
109                                         unsigned totalArgs) {
110   assert(proto->hasExtParameterInfos());
111   assert(paramInfos.size() <= prefixArgs);
112   assert(proto->getNumParams() + prefixArgs <= totalArgs);
113 
114   paramInfos.reserve(totalArgs);
115 
116   // Add default infos for any prefix args that don't already have infos.
117   paramInfos.resize(prefixArgs);
118 
119   // Add infos for the prototype.
120   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
121     paramInfos.push_back(ParamInfo);
122     // pass_object_size params have no parameter info.
123     if (ParamInfo.hasPassObjectSize())
124       paramInfos.emplace_back();
125   }
126 
127   assert(paramInfos.size() <= totalArgs &&
128          "Did we forget to insert pass_object_size args?");
129   // Add default infos for the variadic and/or suffix arguments.
130   paramInfos.resize(totalArgs);
131 }
132 
133 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
134 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
135 static void appendParameterTypes(const CodeGenTypes &CGT,
136                                  SmallVectorImpl<CanQualType> &prefix,
137               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
138                                  CanQual<FunctionProtoType> FPT) {
139   // Fast path: don't touch param info if we don't need to.
140   if (!FPT->hasExtParameterInfos()) {
141     assert(paramInfos.empty() &&
142            "We have paramInfos, but the prototype doesn't?");
143     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
144     return;
145   }
146 
147   unsigned PrefixSize = prefix.size();
148   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
149   // parameters; the only thing that can change this is the presence of
150   // pass_object_size. So, we preallocate for the common case.
151   prefix.reserve(prefix.size() + FPT->getNumParams());
152 
153   auto ExtInfos = FPT->getExtParameterInfos();
154   assert(ExtInfos.size() == FPT->getNumParams());
155   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
156     prefix.push_back(FPT->getParamType(I));
157     if (ExtInfos[I].hasPassObjectSize())
158       prefix.push_back(CGT.getContext().getSizeType());
159   }
160 
161   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
162                               prefix.size());
163 }
164 
165 /// Arrange the LLVM function layout for a value of the given function
166 /// type, on top of any implicit parameters already stored.
167 static const CGFunctionInfo &
168 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
169                         SmallVectorImpl<CanQualType> &prefix,
170                         CanQual<FunctionProtoType> FTP,
171                         const FunctionDecl *FD) {
172   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
173   RequiredArgs Required =
174       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
175   // FIXME: Kill copy.
176   appendParameterTypes(CGT, prefix, paramInfos, FTP);
177   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
178 
179   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
180                                      /*chainCall=*/false, prefix,
181                                      FTP->getExtInfo(), paramInfos,
182                                      Required);
183 }
184 
185 /// Arrange the argument and result information for a value of the
186 /// given freestanding function type.
187 const CGFunctionInfo &
188 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
189                                       const FunctionDecl *FD) {
190   SmallVector<CanQualType, 16> argTypes;
191   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
192                                    FTP, FD);
193 }
194 
195 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
196   // Set the appropriate calling convention for the Function.
197   if (D->hasAttr<StdCallAttr>())
198     return CC_X86StdCall;
199 
200   if (D->hasAttr<FastCallAttr>())
201     return CC_X86FastCall;
202 
203   if (D->hasAttr<RegCallAttr>())
204     return CC_X86RegCall;
205 
206   if (D->hasAttr<ThisCallAttr>())
207     return CC_X86ThisCall;
208 
209   if (D->hasAttr<VectorCallAttr>())
210     return CC_X86VectorCall;
211 
212   if (D->hasAttr<PascalAttr>())
213     return CC_X86Pascal;
214 
215   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
216     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
217 
218   if (D->hasAttr<AArch64VectorPcsAttr>())
219     return CC_AArch64VectorCall;
220 
221   if (D->hasAttr<IntelOclBiccAttr>())
222     return CC_IntelOclBicc;
223 
224   if (D->hasAttr<MSABIAttr>())
225     return IsWindows ? CC_C : CC_Win64;
226 
227   if (D->hasAttr<SysVABIAttr>())
228     return IsWindows ? CC_X86_64SysV : CC_C;
229 
230   if (D->hasAttr<PreserveMostAttr>())
231     return CC_PreserveMost;
232 
233   if (D->hasAttr<PreserveAllAttr>())
234     return CC_PreserveAll;
235 
236   return CC_C;
237 }
238 
239 /// Arrange the argument and result information for a call to an
240 /// unknown C++ non-static member function of the given abstract type.
241 /// (Zero value of RD means we don't have any meaningful "this" argument type,
242 ///  so fall back to a generic pointer type).
243 /// The member function must be an ordinary function, i.e. not a
244 /// constructor or destructor.
245 const CGFunctionInfo &
246 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
247                                    const FunctionProtoType *FTP,
248                                    const CXXMethodDecl *MD) {
249   SmallVector<CanQualType, 16> argTypes;
250 
251   // Add the 'this' pointer.
252   if (RD)
253     argTypes.push_back(GetThisType(Context, RD));
254   else
255     argTypes.push_back(Context.VoidPtrTy);
256 
257   return ::arrangeLLVMFunctionInfo(
258       *this, true, argTypes,
259       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
260 }
261 
262 /// Set calling convention for CUDA/HIP kernel.
263 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
264                                            const FunctionDecl *FD) {
265   if (FD->hasAttr<CUDAGlobalAttr>()) {
266     const FunctionType *FT = FTy->getAs<FunctionType>();
267     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
268     FTy = FT->getCanonicalTypeUnqualified();
269   }
270 }
271 
272 /// Arrange the argument and result information for a declaration or
273 /// definition of the given C++ non-static member function.  The
274 /// member function must be an ordinary function, i.e. not a
275 /// constructor or destructor.
276 const CGFunctionInfo &
277 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
278   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
279   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
280 
281   CanQualType FT = GetFormalType(MD).getAs<Type>();
282   setCUDAKernelCallingConvention(FT, CGM, MD);
283   auto prototype = FT.getAs<FunctionProtoType>();
284 
285   if (MD->isInstance()) {
286     // The abstract case is perfectly fine.
287     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
288     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
289   }
290 
291   return arrangeFreeFunctionType(prototype, MD);
292 }
293 
294 bool CodeGenTypes::inheritingCtorHasParams(
295     const InheritedConstructor &Inherited, CXXCtorType Type) {
296   // Parameters are unnecessary if we're constructing a base class subobject
297   // and the inherited constructor lives in a virtual base.
298   return Type == Ctor_Complete ||
299          !Inherited.getShadowDecl()->constructsVirtualBase() ||
300          !Target.getCXXABI().hasConstructorVariants();
301   }
302 
303 const CGFunctionInfo &
304 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
305                                             StructorType Type) {
306 
307   SmallVector<CanQualType, 16> argTypes;
308   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
309   argTypes.push_back(GetThisType(Context, MD->getParent()));
310 
311   bool PassParams = true;
312 
313   GlobalDecl GD;
314   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
315     GD = GlobalDecl(CD, toCXXCtorType(Type));
316 
317     // A base class inheriting constructor doesn't get forwarded arguments
318     // needed to construct a virtual base (or base class thereof).
319     if (auto Inherited = CD->getInheritedConstructor())
320       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
321   } else {
322     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
323     GD = GlobalDecl(DD, toCXXDtorType(Type));
324   }
325 
326   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
327 
328   // Add the formal parameters.
329   if (PassParams)
330     appendParameterTypes(*this, argTypes, paramInfos, FTP);
331 
332   CGCXXABI::AddedStructorArgs AddedArgs =
333       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
334   if (!paramInfos.empty()) {
335     // Note: prefix implies after the first param.
336     if (AddedArgs.Prefix)
337       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
338                         FunctionProtoType::ExtParameterInfo{});
339     if (AddedArgs.Suffix)
340       paramInfos.append(AddedArgs.Suffix,
341                         FunctionProtoType::ExtParameterInfo{});
342   }
343 
344   RequiredArgs required =
345       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
346                                       : RequiredArgs::All);
347 
348   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
349   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
350                                ? argTypes.front()
351                                : TheCXXABI.hasMostDerivedReturn(GD)
352                                      ? CGM.getContext().VoidPtrTy
353                                      : Context.VoidTy;
354   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
355                                  /*chainCall=*/false, argTypes, extInfo,
356                                  paramInfos, required);
357 }
358 
359 static SmallVector<CanQualType, 16>
360 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
361   SmallVector<CanQualType, 16> argTypes;
362   for (auto &arg : args)
363     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
364   return argTypes;
365 }
366 
367 static SmallVector<CanQualType, 16>
368 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
369   SmallVector<CanQualType, 16> argTypes;
370   for (auto &arg : args)
371     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
372   return argTypes;
373 }
374 
375 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
376 getExtParameterInfosForCall(const FunctionProtoType *proto,
377                             unsigned prefixArgs, unsigned totalArgs) {
378   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
379   if (proto->hasExtParameterInfos()) {
380     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
381   }
382   return result;
383 }
384 
385 /// Arrange a call to a C++ method, passing the given arguments.
386 ///
387 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
388 /// parameter.
389 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
390 /// args.
391 /// PassProtoArgs indicates whether `args` has args for the parameters in the
392 /// given CXXConstructorDecl.
393 const CGFunctionInfo &
394 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
395                                         const CXXConstructorDecl *D,
396                                         CXXCtorType CtorKind,
397                                         unsigned ExtraPrefixArgs,
398                                         unsigned ExtraSuffixArgs,
399                                         bool PassProtoArgs) {
400   // FIXME: Kill copy.
401   SmallVector<CanQualType, 16> ArgTypes;
402   for (const auto &Arg : args)
403     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
404 
405   // +1 for implicit this, which should always be args[0].
406   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
407 
408   CanQual<FunctionProtoType> FPT = GetFormalType(D);
409   RequiredArgs Required =
410       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
411   GlobalDecl GD(D, CtorKind);
412   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
413                                ? ArgTypes.front()
414                                : TheCXXABI.hasMostDerivedReturn(GD)
415                                      ? CGM.getContext().VoidPtrTy
416                                      : Context.VoidTy;
417 
418   FunctionType::ExtInfo Info = FPT->getExtInfo();
419   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
420   // If the prototype args are elided, we should only have ABI-specific args,
421   // which never have param info.
422   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
423     // ABI-specific suffix arguments are treated the same as variadic arguments.
424     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
425                                 ArgTypes.size());
426   }
427   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
428                                  /*chainCall=*/false, ArgTypes, Info,
429                                  ParamInfos, Required);
430 }
431 
432 /// Arrange the argument and result information for the declaration or
433 /// definition of the given function.
434 const CGFunctionInfo &
435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
436   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
437     if (MD->isInstance())
438       return arrangeCXXMethodDeclaration(MD);
439 
440   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
441 
442   assert(isa<FunctionType>(FTy));
443   setCUDAKernelCallingConvention(FTy, CGM, FD);
444 
445   // When declaring a function without a prototype, always use a
446   // non-variadic type.
447   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
448     return arrangeLLVMFunctionInfo(
449         noProto->getReturnType(), /*instanceMethod=*/false,
450         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
451   }
452 
453   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
454 }
455 
456 /// Arrange the argument and result information for the declaration or
457 /// definition of an Objective-C method.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
460   // It happens that this is the same as a call with no optional
461   // arguments, except also using the formal 'self' type.
462   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
463 }
464 
465 /// Arrange the argument and result information for the function type
466 /// through which to perform a send to the given Objective-C method,
467 /// using the given receiver type.  The receiver type is not always
468 /// the 'self' type of the method or even an Objective-C pointer type.
469 /// This is *not* the right method for actually performing such a
470 /// message send, due to the possibility of optional arguments.
471 const CGFunctionInfo &
472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
473                                               QualType receiverType) {
474   SmallVector<CanQualType, 16> argTys;
475   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
476   argTys.push_back(Context.getCanonicalParamType(receiverType));
477   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
478   // FIXME: Kill copy?
479   for (const auto *I : MD->parameters()) {
480     argTys.push_back(Context.getCanonicalParamType(I->getType()));
481     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
482         I->hasAttr<NoEscapeAttr>());
483     extParamInfos.push_back(extParamInfo);
484   }
485 
486   FunctionType::ExtInfo einfo;
487   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
488   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
489 
490   if (getContext().getLangOpts().ObjCAutoRefCount &&
491       MD->hasAttr<NSReturnsRetainedAttr>())
492     einfo = einfo.withProducesResult(true);
493 
494   RequiredArgs required =
495     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
496 
497   return arrangeLLVMFunctionInfo(
498       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
499       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
500 }
501 
502 const CGFunctionInfo &
503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
504                                                  const CallArgList &args) {
505   auto argTypes = getArgTypesForCall(Context, args);
506   FunctionType::ExtInfo einfo;
507 
508   return arrangeLLVMFunctionInfo(
509       GetReturnType(returnType), /*instanceMethod=*/false,
510       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
511 }
512 
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
515   // FIXME: Do we need to handle ObjCMethodDecl?
516   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
517 
518   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
519     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
520 
521   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
522     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
523 
524   return arrangeFunctionDeclaration(FD);
525 }
526 
527 /// Arrange a thunk that takes 'this' as the first parameter followed by
528 /// varargs.  Return a void pointer, regardless of the actual return type.
529 /// The body of the thunk will end in a musttail call to a function of the
530 /// correct type, and the caller will bitcast the function to the correct
531 /// prototype.
532 const CGFunctionInfo &
533 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
534   assert(MD->isVirtual() && "only methods have thunks");
535   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
536   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
537   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
538                                  /*chainCall=*/false, ArgTys,
539                                  FTP->getExtInfo(), {}, RequiredArgs(1));
540 }
541 
542 const CGFunctionInfo &
543 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
544                                    CXXCtorType CT) {
545   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
546 
547   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
548   SmallVector<CanQualType, 2> ArgTys;
549   const CXXRecordDecl *RD = CD->getParent();
550   ArgTys.push_back(GetThisType(Context, RD));
551   if (CT == Ctor_CopyingClosure)
552     ArgTys.push_back(*FTP->param_type_begin());
553   if (RD->getNumVBases() > 0)
554     ArgTys.push_back(Context.IntTy);
555   CallingConv CC = Context.getDefaultCallingConvention(
556       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
557   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
558                                  /*chainCall=*/false, ArgTys,
559                                  FunctionType::ExtInfo(CC), {},
560                                  RequiredArgs::All);
561 }
562 
563 /// Arrange a call as unto a free function, except possibly with an
564 /// additional number of formal parameters considered required.
565 static const CGFunctionInfo &
566 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
567                             CodeGenModule &CGM,
568                             const CallArgList &args,
569                             const FunctionType *fnType,
570                             unsigned numExtraRequiredArgs,
571                             bool chainCall) {
572   assert(args.size() >= numExtraRequiredArgs);
573 
574   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
575 
576   // In most cases, there are no optional arguments.
577   RequiredArgs required = RequiredArgs::All;
578 
579   // If we have a variadic prototype, the required arguments are the
580   // extra prefix plus the arguments in the prototype.
581   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
582     if (proto->isVariadic())
583       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
584 
585     if (proto->hasExtParameterInfos())
586       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
587                                   args.size());
588 
589   // If we don't have a prototype at all, but we're supposed to
590   // explicitly use the variadic convention for unprototyped calls,
591   // treat all of the arguments as required but preserve the nominal
592   // possibility of variadics.
593   } else if (CGM.getTargetCodeGenInfo()
594                 .isNoProtoCallVariadic(args,
595                                        cast<FunctionNoProtoType>(fnType))) {
596     required = RequiredArgs(args.size());
597   }
598 
599   // FIXME: Kill copy.
600   SmallVector<CanQualType, 16> argTypes;
601   for (const auto &arg : args)
602     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
603   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
604                                      /*instanceMethod=*/false, chainCall,
605                                      argTypes, fnType->getExtInfo(), paramInfos,
606                                      required);
607 }
608 
609 /// Figure out the rules for calling a function with the given formal
610 /// type using the given arguments.  The arguments are necessary
611 /// because the function might be unprototyped, in which case it's
612 /// target-dependent in crazy ways.
613 const CGFunctionInfo &
614 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
615                                       const FunctionType *fnType,
616                                       bool chainCall) {
617   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
618                                      chainCall ? 1 : 0, chainCall);
619 }
620 
621 /// A block function is essentially a free function with an
622 /// extra implicit argument.
623 const CGFunctionInfo &
624 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
625                                        const FunctionType *fnType) {
626   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
627                                      /*chainCall=*/false);
628 }
629 
630 const CGFunctionInfo &
631 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
632                                               const FunctionArgList &params) {
633   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
634   auto argTypes = getArgTypesForDeclaration(Context, params);
635 
636   return arrangeLLVMFunctionInfo(
637       GetReturnType(proto->getReturnType()),
638       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
639       proto->getExtInfo(), paramInfos,
640       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
641 }
642 
643 const CGFunctionInfo &
644 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
645                                          const CallArgList &args) {
646   // FIXME: Kill copy.
647   SmallVector<CanQualType, 16> argTypes;
648   for (const auto &Arg : args)
649     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
650   return arrangeLLVMFunctionInfo(
651       GetReturnType(resultType), /*instanceMethod=*/false,
652       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
653       /*paramInfos=*/ {}, RequiredArgs::All);
654 }
655 
656 const CGFunctionInfo &
657 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
658                                                 const FunctionArgList &args) {
659   auto argTypes = getArgTypesForDeclaration(Context, args);
660 
661   return arrangeLLVMFunctionInfo(
662       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
663       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
664 }
665 
666 const CGFunctionInfo &
667 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
668                                               ArrayRef<CanQualType> argTypes) {
669   return arrangeLLVMFunctionInfo(
670       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
671       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
672 }
673 
674 /// Arrange a call to a C++ method, passing the given arguments.
675 ///
676 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
677 /// does not count `this`.
678 const CGFunctionInfo &
679 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
680                                    const FunctionProtoType *proto,
681                                    RequiredArgs required,
682                                    unsigned numPrefixArgs) {
683   assert(numPrefixArgs + 1 <= args.size() &&
684          "Emitting a call with less args than the required prefix?");
685   // Add one to account for `this`. It's a bit awkward here, but we don't count
686   // `this` in similar places elsewhere.
687   auto paramInfos =
688     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
689 
690   // FIXME: Kill copy.
691   auto argTypes = getArgTypesForCall(Context, args);
692 
693   FunctionType::ExtInfo info = proto->getExtInfo();
694   return arrangeLLVMFunctionInfo(
695       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
696       /*chainCall=*/false, argTypes, info, paramInfos, required);
697 }
698 
699 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
700   return arrangeLLVMFunctionInfo(
701       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
702       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
703 }
704 
705 const CGFunctionInfo &
706 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
707                           const CallArgList &args) {
708   assert(signature.arg_size() <= args.size());
709   if (signature.arg_size() == args.size())
710     return signature;
711 
712   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
713   auto sigParamInfos = signature.getExtParameterInfos();
714   if (!sigParamInfos.empty()) {
715     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
716     paramInfos.resize(args.size());
717   }
718 
719   auto argTypes = getArgTypesForCall(Context, args);
720 
721   assert(signature.getRequiredArgs().allowsOptionalArgs());
722   return arrangeLLVMFunctionInfo(signature.getReturnType(),
723                                  signature.isInstanceMethod(),
724                                  signature.isChainCall(),
725                                  argTypes,
726                                  signature.getExtInfo(),
727                                  paramInfos,
728                                  signature.getRequiredArgs());
729 }
730 
731 namespace clang {
732 namespace CodeGen {
733 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
734 }
735 }
736 
737 /// Arrange the argument and result information for an abstract value
738 /// of a given function type.  This is the method which all of the
739 /// above functions ultimately defer to.
740 const CGFunctionInfo &
741 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
742                                       bool instanceMethod,
743                                       bool chainCall,
744                                       ArrayRef<CanQualType> argTypes,
745                                       FunctionType::ExtInfo info,
746                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
747                                       RequiredArgs required) {
748   assert(llvm::all_of(argTypes,
749                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
750 
751   // Lookup or create unique function info.
752   llvm::FoldingSetNodeID ID;
753   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
754                           required, resultType, argTypes);
755 
756   void *insertPos = nullptr;
757   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
758   if (FI)
759     return *FI;
760 
761   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
762 
763   // Construct the function info.  We co-allocate the ArgInfos.
764   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
765                               paramInfos, resultType, argTypes, required);
766   FunctionInfos.InsertNode(FI, insertPos);
767 
768   bool inserted = FunctionsBeingProcessed.insert(FI).second;
769   (void)inserted;
770   assert(inserted && "Recursively being processed?");
771 
772   // Compute ABI information.
773   if (CC == llvm::CallingConv::SPIR_KERNEL) {
774     // Force target independent argument handling for the host visible
775     // kernel functions.
776     computeSPIRKernelABIInfo(CGM, *FI);
777   } else if (info.getCC() == CC_Swift) {
778     swiftcall::computeABIInfo(CGM, *FI);
779   } else {
780     getABIInfo().computeInfo(*FI);
781   }
782 
783   // Loop over all of the computed argument and return value info.  If any of
784   // them are direct or extend without a specified coerce type, specify the
785   // default now.
786   ABIArgInfo &retInfo = FI->getReturnInfo();
787   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
788     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
789 
790   for (auto &I : FI->arguments())
791     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
792       I.info.setCoerceToType(ConvertType(I.type));
793 
794   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
795   assert(erased && "Not in set?");
796 
797   return *FI;
798 }
799 
800 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
801                                        bool instanceMethod,
802                                        bool chainCall,
803                                        const FunctionType::ExtInfo &info,
804                                        ArrayRef<ExtParameterInfo> paramInfos,
805                                        CanQualType resultType,
806                                        ArrayRef<CanQualType> argTypes,
807                                        RequiredArgs required) {
808   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
809 
810   void *buffer =
811     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
812                                   argTypes.size() + 1, paramInfos.size()));
813 
814   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
815   FI->CallingConvention = llvmCC;
816   FI->EffectiveCallingConvention = llvmCC;
817   FI->ASTCallingConvention = info.getCC();
818   FI->InstanceMethod = instanceMethod;
819   FI->ChainCall = chainCall;
820   FI->NoReturn = info.getNoReturn();
821   FI->ReturnsRetained = info.getProducesResult();
822   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
823   FI->NoCfCheck = info.getNoCfCheck();
824   FI->Required = required;
825   FI->HasRegParm = info.getHasRegParm();
826   FI->RegParm = info.getRegParm();
827   FI->ArgStruct = nullptr;
828   FI->ArgStructAlign = 0;
829   FI->NumArgs = argTypes.size();
830   FI->HasExtParameterInfos = !paramInfos.empty();
831   FI->getArgsBuffer()[0].type = resultType;
832   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
833     FI->getArgsBuffer()[i + 1].type = argTypes[i];
834   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
835     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
836   return FI;
837 }
838 
839 /***/
840 
841 namespace {
842 // ABIArgInfo::Expand implementation.
843 
844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
845 struct TypeExpansion {
846   enum TypeExpansionKind {
847     // Elements of constant arrays are expanded recursively.
848     TEK_ConstantArray,
849     // Record fields are expanded recursively (but if record is a union, only
850     // the field with the largest size is expanded).
851     TEK_Record,
852     // For complex types, real and imaginary parts are expanded recursively.
853     TEK_Complex,
854     // All other types are not expandable.
855     TEK_None
856   };
857 
858   const TypeExpansionKind Kind;
859 
860   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
861   virtual ~TypeExpansion() {}
862 };
863 
864 struct ConstantArrayExpansion : TypeExpansion {
865   QualType EltTy;
866   uint64_t NumElts;
867 
868   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
869       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
870   static bool classof(const TypeExpansion *TE) {
871     return TE->Kind == TEK_ConstantArray;
872   }
873 };
874 
875 struct RecordExpansion : TypeExpansion {
876   SmallVector<const CXXBaseSpecifier *, 1> Bases;
877 
878   SmallVector<const FieldDecl *, 1> Fields;
879 
880   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
881                   SmallVector<const FieldDecl *, 1> &&Fields)
882       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
883         Fields(std::move(Fields)) {}
884   static bool classof(const TypeExpansion *TE) {
885     return TE->Kind == TEK_Record;
886   }
887 };
888 
889 struct ComplexExpansion : TypeExpansion {
890   QualType EltTy;
891 
892   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_Complex;
895   }
896 };
897 
898 struct NoExpansion : TypeExpansion {
899   NoExpansion() : TypeExpansion(TEK_None) {}
900   static bool classof(const TypeExpansion *TE) {
901     return TE->Kind == TEK_None;
902   }
903 };
904 }  // namespace
905 
906 static std::unique_ptr<TypeExpansion>
907 getTypeExpansion(QualType Ty, const ASTContext &Context) {
908   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
909     return llvm::make_unique<ConstantArrayExpansion>(
910         AT->getElementType(), AT->getSize().getZExtValue());
911   }
912   if (const RecordType *RT = Ty->getAs<RecordType>()) {
913     SmallVector<const CXXBaseSpecifier *, 1> Bases;
914     SmallVector<const FieldDecl *, 1> Fields;
915     const RecordDecl *RD = RT->getDecl();
916     assert(!RD->hasFlexibleArrayMember() &&
917            "Cannot expand structure with flexible array.");
918     if (RD->isUnion()) {
919       // Unions can be here only in degenerative cases - all the fields are same
920       // after flattening. Thus we have to use the "largest" field.
921       const FieldDecl *LargestFD = nullptr;
922       CharUnits UnionSize = CharUnits::Zero();
923 
924       for (const auto *FD : RD->fields()) {
925         if (FD->isZeroLengthBitField(Context))
926           continue;
927         assert(!FD->isBitField() &&
928                "Cannot expand structure with bit-field members.");
929         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
930         if (UnionSize < FieldSize) {
931           UnionSize = FieldSize;
932           LargestFD = FD;
933         }
934       }
935       if (LargestFD)
936         Fields.push_back(LargestFD);
937     } else {
938       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
939         assert(!CXXRD->isDynamicClass() &&
940                "cannot expand vtable pointers in dynamic classes");
941         for (const CXXBaseSpecifier &BS : CXXRD->bases())
942           Bases.push_back(&BS);
943       }
944 
945       for (const auto *FD : RD->fields()) {
946         if (FD->isZeroLengthBitField(Context))
947           continue;
948         assert(!FD->isBitField() &&
949                "Cannot expand structure with bit-field members.");
950         Fields.push_back(FD);
951       }
952     }
953     return llvm::make_unique<RecordExpansion>(std::move(Bases),
954                                               std::move(Fields));
955   }
956   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
957     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
958   }
959   return llvm::make_unique<NoExpansion>();
960 }
961 
962 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
963   auto Exp = getTypeExpansion(Ty, Context);
964   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
965     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
966   }
967   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
968     int Res = 0;
969     for (auto BS : RExp->Bases)
970       Res += getExpansionSize(BS->getType(), Context);
971     for (auto FD : RExp->Fields)
972       Res += getExpansionSize(FD->getType(), Context);
973     return Res;
974   }
975   if (isa<ComplexExpansion>(Exp.get()))
976     return 2;
977   assert(isa<NoExpansion>(Exp.get()));
978   return 1;
979 }
980 
981 void
982 CodeGenTypes::getExpandedTypes(QualType Ty,
983                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
984   auto Exp = getTypeExpansion(Ty, Context);
985   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
986     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
987       getExpandedTypes(CAExp->EltTy, TI);
988     }
989   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     for (auto BS : RExp->Bases)
991       getExpandedTypes(BS->getType(), TI);
992     for (auto FD : RExp->Fields)
993       getExpandedTypes(FD->getType(), TI);
994   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
995     llvm::Type *EltTy = ConvertType(CExp->EltTy);
996     *TI++ = EltTy;
997     *TI++ = EltTy;
998   } else {
999     assert(isa<NoExpansion>(Exp.get()));
1000     *TI++ = ConvertType(Ty);
1001   }
1002 }
1003 
1004 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1005                                       ConstantArrayExpansion *CAE,
1006                                       Address BaseAddr,
1007                                       llvm::function_ref<void(Address)> Fn) {
1008   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1009   CharUnits EltAlign =
1010     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1011 
1012   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1013     llvm::Value *EltAddr =
1014       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1015     Fn(Address(EltAddr, EltAlign));
1016   }
1017 }
1018 
1019 void CodeGenFunction::ExpandTypeFromArgs(
1020     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1021   assert(LV.isSimple() &&
1022          "Unexpected non-simple lvalue during struct expansion.");
1023 
1024   auto Exp = getTypeExpansion(Ty, getContext());
1025   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1026     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1027                               [&](Address EltAddr) {
1028       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1029       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1030     });
1031   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1032     Address This = LV.getAddress();
1033     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1034       // Perform a single step derived-to-base conversion.
1035       Address Base =
1036           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1037                                 /*NullCheckValue=*/false, SourceLocation());
1038       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1039 
1040       // Recurse onto bases.
1041       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1042     }
1043     for (auto FD : RExp->Fields) {
1044       // FIXME: What are the right qualifiers here?
1045       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1046       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1047     }
1048   } else if (isa<ComplexExpansion>(Exp.get())) {
1049     auto realValue = *AI++;
1050     auto imagValue = *AI++;
1051     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1052   } else {
1053     assert(isa<NoExpansion>(Exp.get()));
1054     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1055   }
1056 }
1057 
1058 void CodeGenFunction::ExpandTypeToArgs(
1059     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1060     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1061   auto Exp = getTypeExpansion(Ty, getContext());
1062   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1063     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1064                                    : Arg.getKnownRValue().getAggregateAddress();
1065     forConstantArrayExpansion(
1066         *this, CAExp, Addr, [&](Address EltAddr) {
1067           CallArg EltArg = CallArg(
1068               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1069               CAExp->EltTy);
1070           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1071                            IRCallArgPos);
1072         });
1073   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1074     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1075                                    : Arg.getKnownRValue().getAggregateAddress();
1076     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1077       // Perform a single step derived-to-base conversion.
1078       Address Base =
1079           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1080                                 /*NullCheckValue=*/false, SourceLocation());
1081       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1082 
1083       // Recurse onto bases.
1084       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1085                        IRCallArgPos);
1086     }
1087 
1088     LValue LV = MakeAddrLValue(This, Ty);
1089     for (auto FD : RExp->Fields) {
1090       CallArg FldArg =
1091           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1092       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1093                        IRCallArgPos);
1094     }
1095   } else if (isa<ComplexExpansion>(Exp.get())) {
1096     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1097     IRCallArgs[IRCallArgPos++] = CV.first;
1098     IRCallArgs[IRCallArgPos++] = CV.second;
1099   } else {
1100     assert(isa<NoExpansion>(Exp.get()));
1101     auto RV = Arg.getKnownRValue();
1102     assert(RV.isScalar() &&
1103            "Unexpected non-scalar rvalue during struct expansion.");
1104 
1105     // Insert a bitcast as needed.
1106     llvm::Value *V = RV.getScalarVal();
1107     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1108         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1109       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1110 
1111     IRCallArgs[IRCallArgPos++] = V;
1112   }
1113 }
1114 
1115 /// Create a temporary allocation for the purposes of coercion.
1116 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1117                                            CharUnits MinAlign) {
1118   // Don't use an alignment that's worse than what LLVM would prefer.
1119   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1120   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1121 
1122   return CGF.CreateTempAlloca(Ty, Align);
1123 }
1124 
1125 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1126 /// accessing some number of bytes out of it, try to gep into the struct to get
1127 /// at its inner goodness.  Dive as deep as possible without entering an element
1128 /// with an in-memory size smaller than DstSize.
1129 static Address
1130 EnterStructPointerForCoercedAccess(Address SrcPtr,
1131                                    llvm::StructType *SrcSTy,
1132                                    uint64_t DstSize, CodeGenFunction &CGF) {
1133   // We can't dive into a zero-element struct.
1134   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1135 
1136   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1137 
1138   // If the first elt is at least as large as what we're looking for, or if the
1139   // first element is the same size as the whole struct, we can enter it. The
1140   // comparison must be made on the store size and not the alloca size. Using
1141   // the alloca size may overstate the size of the load.
1142   uint64_t FirstEltSize =
1143     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1144   if (FirstEltSize < DstSize &&
1145       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1146     return SrcPtr;
1147 
1148   // GEP into the first element.
1149   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1150 
1151   // If the first element is a struct, recurse.
1152   llvm::Type *SrcTy = SrcPtr.getElementType();
1153   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1154     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1155 
1156   return SrcPtr;
1157 }
1158 
1159 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1160 /// are either integers or pointers.  This does a truncation of the value if it
1161 /// is too large or a zero extension if it is too small.
1162 ///
1163 /// This behaves as if the value were coerced through memory, so on big-endian
1164 /// targets the high bits are preserved in a truncation, while little-endian
1165 /// targets preserve the low bits.
1166 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1167                                              llvm::Type *Ty,
1168                                              CodeGenFunction &CGF) {
1169   if (Val->getType() == Ty)
1170     return Val;
1171 
1172   if (isa<llvm::PointerType>(Val->getType())) {
1173     // If this is Pointer->Pointer avoid conversion to and from int.
1174     if (isa<llvm::PointerType>(Ty))
1175       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1176 
1177     // Convert the pointer to an integer so we can play with its width.
1178     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1179   }
1180 
1181   llvm::Type *DestIntTy = Ty;
1182   if (isa<llvm::PointerType>(DestIntTy))
1183     DestIntTy = CGF.IntPtrTy;
1184 
1185   if (Val->getType() != DestIntTy) {
1186     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1187     if (DL.isBigEndian()) {
1188       // Preserve the high bits on big-endian targets.
1189       // That is what memory coercion does.
1190       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1191       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1192 
1193       if (SrcSize > DstSize) {
1194         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1195         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1196       } else {
1197         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1198         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1199       }
1200     } else {
1201       // Little-endian targets preserve the low bits. No shifts required.
1202       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1203     }
1204   }
1205 
1206   if (isa<llvm::PointerType>(Ty))
1207     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1208   return Val;
1209 }
1210 
1211 
1212 
1213 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1214 /// a pointer to an object of type \arg Ty, known to be aligned to
1215 /// \arg SrcAlign bytes.
1216 ///
1217 /// This safely handles the case when the src type is smaller than the
1218 /// destination type; in this situation the values of bits which not
1219 /// present in the src are undefined.
1220 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1221                                       CodeGenFunction &CGF) {
1222   llvm::Type *SrcTy = Src.getElementType();
1223 
1224   // If SrcTy and Ty are the same, just do a load.
1225   if (SrcTy == Ty)
1226     return CGF.Builder.CreateLoad(Src);
1227 
1228   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1229 
1230   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1231     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1232     SrcTy = Src.getType()->getElementType();
1233   }
1234 
1235   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1236 
1237   // If the source and destination are integer or pointer types, just do an
1238   // extension or truncation to the desired type.
1239   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1240       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1241     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1242     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1243   }
1244 
1245   // If load is legal, just bitcast the src pointer.
1246   if (SrcSize >= DstSize) {
1247     // Generally SrcSize is never greater than DstSize, since this means we are
1248     // losing bits. However, this can happen in cases where the structure has
1249     // additional padding, for example due to a user specified alignment.
1250     //
1251     // FIXME: Assert that we aren't truncating non-padding bits when have access
1252     // to that information.
1253     Src = CGF.Builder.CreateBitCast(Src,
1254                                     Ty->getPointerTo(Src.getAddressSpace()));
1255     return CGF.Builder.CreateLoad(Src);
1256   }
1257 
1258   // Otherwise do coercion through memory. This is stupid, but simple.
1259   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1260   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1261   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1262   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1263       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1264       false);
1265   return CGF.Builder.CreateLoad(Tmp);
1266 }
1267 
1268 // Function to store a first-class aggregate into memory.  We prefer to
1269 // store the elements rather than the aggregate to be more friendly to
1270 // fast-isel.
1271 // FIXME: Do we need to recurse here?
1272 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1273                           Address Dest, bool DestIsVolatile) {
1274   // Prefer scalar stores to first-class aggregate stores.
1275   if (llvm::StructType *STy =
1276         dyn_cast<llvm::StructType>(Val->getType())) {
1277     const llvm::StructLayout *Layout =
1278       CGF.CGM.getDataLayout().getStructLayout(STy);
1279 
1280     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1281       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1282       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1283       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1284       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1285     }
1286   } else {
1287     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1288   }
1289 }
1290 
1291 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1292 /// where the source and destination may have different types.  The
1293 /// destination is known to be aligned to \arg DstAlign bytes.
1294 ///
1295 /// This safely handles the case when the src type is larger than the
1296 /// destination type; the upper bits of the src will be lost.
1297 static void CreateCoercedStore(llvm::Value *Src,
1298                                Address Dst,
1299                                bool DstIsVolatile,
1300                                CodeGenFunction &CGF) {
1301   llvm::Type *SrcTy = Src->getType();
1302   llvm::Type *DstTy = Dst.getType()->getElementType();
1303   if (SrcTy == DstTy) {
1304     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1305     return;
1306   }
1307 
1308   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1309 
1310   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1311     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1312     DstTy = Dst.getType()->getElementType();
1313   }
1314 
1315   // If the source and destination are integer or pointer types, just do an
1316   // extension or truncation to the desired type.
1317   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1318       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1319     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1320     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1321     return;
1322   }
1323 
1324   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1325 
1326   // If store is legal, just bitcast the src pointer.
1327   if (SrcSize <= DstSize) {
1328     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1329     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1330   } else {
1331     // Otherwise do coercion through memory. This is stupid, but
1332     // simple.
1333 
1334     // Generally SrcSize is never greater than DstSize, since this means we are
1335     // losing bits. However, this can happen in cases where the structure has
1336     // additional padding, for example due to a user specified alignment.
1337     //
1338     // FIXME: Assert that we aren't truncating non-padding bits when have access
1339     // to that information.
1340     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1341     CGF.Builder.CreateStore(Src, Tmp);
1342     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1343     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1344     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1345         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1346         false);
1347   }
1348 }
1349 
1350 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1351                                    const ABIArgInfo &info) {
1352   if (unsigned offset = info.getDirectOffset()) {
1353     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1354     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1355                                              CharUnits::fromQuantity(offset));
1356     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1357   }
1358   return addr;
1359 }
1360 
1361 namespace {
1362 
1363 /// Encapsulates information about the way function arguments from
1364 /// CGFunctionInfo should be passed to actual LLVM IR function.
1365 class ClangToLLVMArgMapping {
1366   static const unsigned InvalidIndex = ~0U;
1367   unsigned InallocaArgNo;
1368   unsigned SRetArgNo;
1369   unsigned TotalIRArgs;
1370 
1371   /// Arguments of LLVM IR function corresponding to single Clang argument.
1372   struct IRArgs {
1373     unsigned PaddingArgIndex;
1374     // Argument is expanded to IR arguments at positions
1375     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1376     unsigned FirstArgIndex;
1377     unsigned NumberOfArgs;
1378 
1379     IRArgs()
1380         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1381           NumberOfArgs(0) {}
1382   };
1383 
1384   SmallVector<IRArgs, 8> ArgInfo;
1385 
1386 public:
1387   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1388                         bool OnlyRequiredArgs = false)
1389       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1390         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1391     construct(Context, FI, OnlyRequiredArgs);
1392   }
1393 
1394   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1395   unsigned getInallocaArgNo() const {
1396     assert(hasInallocaArg());
1397     return InallocaArgNo;
1398   }
1399 
1400   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1401   unsigned getSRetArgNo() const {
1402     assert(hasSRetArg());
1403     return SRetArgNo;
1404   }
1405 
1406   unsigned totalIRArgs() const { return TotalIRArgs; }
1407 
1408   bool hasPaddingArg(unsigned ArgNo) const {
1409     assert(ArgNo < ArgInfo.size());
1410     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1411   }
1412   unsigned getPaddingArgNo(unsigned ArgNo) const {
1413     assert(hasPaddingArg(ArgNo));
1414     return ArgInfo[ArgNo].PaddingArgIndex;
1415   }
1416 
1417   /// Returns index of first IR argument corresponding to ArgNo, and their
1418   /// quantity.
1419   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1420     assert(ArgNo < ArgInfo.size());
1421     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1422                           ArgInfo[ArgNo].NumberOfArgs);
1423   }
1424 
1425 private:
1426   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1427                  bool OnlyRequiredArgs);
1428 };
1429 
1430 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1431                                       const CGFunctionInfo &FI,
1432                                       bool OnlyRequiredArgs) {
1433   unsigned IRArgNo = 0;
1434   bool SwapThisWithSRet = false;
1435   const ABIArgInfo &RetAI = FI.getReturnInfo();
1436 
1437   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1438     SwapThisWithSRet = RetAI.isSRetAfterThis();
1439     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1440   }
1441 
1442   unsigned ArgNo = 0;
1443   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1444   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1445        ++I, ++ArgNo) {
1446     assert(I != FI.arg_end());
1447     QualType ArgType = I->type;
1448     const ABIArgInfo &AI = I->info;
1449     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1450     auto &IRArgs = ArgInfo[ArgNo];
1451 
1452     if (AI.getPaddingType())
1453       IRArgs.PaddingArgIndex = IRArgNo++;
1454 
1455     switch (AI.getKind()) {
1456     case ABIArgInfo::Extend:
1457     case ABIArgInfo::Direct: {
1458       // FIXME: handle sseregparm someday...
1459       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1460       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1461         IRArgs.NumberOfArgs = STy->getNumElements();
1462       } else {
1463         IRArgs.NumberOfArgs = 1;
1464       }
1465       break;
1466     }
1467     case ABIArgInfo::Indirect:
1468       IRArgs.NumberOfArgs = 1;
1469       break;
1470     case ABIArgInfo::Ignore:
1471     case ABIArgInfo::InAlloca:
1472       // ignore and inalloca doesn't have matching LLVM parameters.
1473       IRArgs.NumberOfArgs = 0;
1474       break;
1475     case ABIArgInfo::CoerceAndExpand:
1476       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1477       break;
1478     case ABIArgInfo::Expand:
1479       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1480       break;
1481     }
1482 
1483     if (IRArgs.NumberOfArgs > 0) {
1484       IRArgs.FirstArgIndex = IRArgNo;
1485       IRArgNo += IRArgs.NumberOfArgs;
1486     }
1487 
1488     // Skip over the sret parameter when it comes second.  We already handled it
1489     // above.
1490     if (IRArgNo == 1 && SwapThisWithSRet)
1491       IRArgNo++;
1492   }
1493   assert(ArgNo == ArgInfo.size());
1494 
1495   if (FI.usesInAlloca())
1496     InallocaArgNo = IRArgNo++;
1497 
1498   TotalIRArgs = IRArgNo;
1499 }
1500 }  // namespace
1501 
1502 /***/
1503 
1504 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1505   const auto &RI = FI.getReturnInfo();
1506   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1507 }
1508 
1509 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1510   return ReturnTypeUsesSRet(FI) &&
1511          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1512 }
1513 
1514 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1515   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1516     switch (BT->getKind()) {
1517     default:
1518       return false;
1519     case BuiltinType::Float:
1520       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1521     case BuiltinType::Double:
1522       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1523     case BuiltinType::LongDouble:
1524       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1525     }
1526   }
1527 
1528   return false;
1529 }
1530 
1531 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1532   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1533     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1534       if (BT->getKind() == BuiltinType::LongDouble)
1535         return getTarget().useObjCFP2RetForComplexLongDouble();
1536     }
1537   }
1538 
1539   return false;
1540 }
1541 
1542 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1543   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1544   return GetFunctionType(FI);
1545 }
1546 
1547 llvm::FunctionType *
1548 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1549 
1550   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1551   (void)Inserted;
1552   assert(Inserted && "Recursively being processed?");
1553 
1554   llvm::Type *resultType = nullptr;
1555   const ABIArgInfo &retAI = FI.getReturnInfo();
1556   switch (retAI.getKind()) {
1557   case ABIArgInfo::Expand:
1558     llvm_unreachable("Invalid ABI kind for return argument");
1559 
1560   case ABIArgInfo::Extend:
1561   case ABIArgInfo::Direct:
1562     resultType = retAI.getCoerceToType();
1563     break;
1564 
1565   case ABIArgInfo::InAlloca:
1566     if (retAI.getInAllocaSRet()) {
1567       // sret things on win32 aren't void, they return the sret pointer.
1568       QualType ret = FI.getReturnType();
1569       llvm::Type *ty = ConvertType(ret);
1570       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1571       resultType = llvm::PointerType::get(ty, addressSpace);
1572     } else {
1573       resultType = llvm::Type::getVoidTy(getLLVMContext());
1574     }
1575     break;
1576 
1577   case ABIArgInfo::Indirect:
1578   case ABIArgInfo::Ignore:
1579     resultType = llvm::Type::getVoidTy(getLLVMContext());
1580     break;
1581 
1582   case ABIArgInfo::CoerceAndExpand:
1583     resultType = retAI.getUnpaddedCoerceAndExpandType();
1584     break;
1585   }
1586 
1587   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1588   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1589 
1590   // Add type for sret argument.
1591   if (IRFunctionArgs.hasSRetArg()) {
1592     QualType Ret = FI.getReturnType();
1593     llvm::Type *Ty = ConvertType(Ret);
1594     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1595     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1596         llvm::PointerType::get(Ty, AddressSpace);
1597   }
1598 
1599   // Add type for inalloca argument.
1600   if (IRFunctionArgs.hasInallocaArg()) {
1601     auto ArgStruct = FI.getArgStruct();
1602     assert(ArgStruct);
1603     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1604   }
1605 
1606   // Add in all of the required arguments.
1607   unsigned ArgNo = 0;
1608   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1609                                      ie = it + FI.getNumRequiredArgs();
1610   for (; it != ie; ++it, ++ArgNo) {
1611     const ABIArgInfo &ArgInfo = it->info;
1612 
1613     // Insert a padding type to ensure proper alignment.
1614     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1615       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1616           ArgInfo.getPaddingType();
1617 
1618     unsigned FirstIRArg, NumIRArgs;
1619     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1620 
1621     switch (ArgInfo.getKind()) {
1622     case ABIArgInfo::Ignore:
1623     case ABIArgInfo::InAlloca:
1624       assert(NumIRArgs == 0);
1625       break;
1626 
1627     case ABIArgInfo::Indirect: {
1628       assert(NumIRArgs == 1);
1629       // indirect arguments are always on the stack, which is alloca addr space.
1630       llvm::Type *LTy = ConvertTypeForMem(it->type);
1631       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1632           CGM.getDataLayout().getAllocaAddrSpace());
1633       break;
1634     }
1635 
1636     case ABIArgInfo::Extend:
1637     case ABIArgInfo::Direct: {
1638       // Fast-isel and the optimizer generally like scalar values better than
1639       // FCAs, so we flatten them if this is safe to do for this argument.
1640       llvm::Type *argType = ArgInfo.getCoerceToType();
1641       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1642       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1643         assert(NumIRArgs == st->getNumElements());
1644         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1645           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1646       } else {
1647         assert(NumIRArgs == 1);
1648         ArgTypes[FirstIRArg] = argType;
1649       }
1650       break;
1651     }
1652 
1653     case ABIArgInfo::CoerceAndExpand: {
1654       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1655       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1656         *ArgTypesIter++ = EltTy;
1657       }
1658       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1659       break;
1660     }
1661 
1662     case ABIArgInfo::Expand:
1663       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1664       getExpandedTypes(it->type, ArgTypesIter);
1665       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1666       break;
1667     }
1668   }
1669 
1670   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1671   assert(Erased && "Not in set?");
1672 
1673   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1674 }
1675 
1676 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1677   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1678   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1679 
1680   if (!isFuncTypeConvertible(FPT))
1681     return llvm::StructType::get(getLLVMContext());
1682 
1683   const CGFunctionInfo *Info;
1684   if (isa<CXXDestructorDecl>(MD))
1685     Info =
1686         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1687   else
1688     Info = &arrangeCXXMethodDeclaration(MD);
1689   return GetFunctionType(*Info);
1690 }
1691 
1692 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1693                                                llvm::AttrBuilder &FuncAttrs,
1694                                                const FunctionProtoType *FPT) {
1695   if (!FPT)
1696     return;
1697 
1698   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1699       FPT->isNothrow())
1700     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1701 }
1702 
1703 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1704                                                bool AttrOnCallSite,
1705                                                llvm::AttrBuilder &FuncAttrs) {
1706   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1707   if (!HasOptnone) {
1708     if (CodeGenOpts.OptimizeSize)
1709       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1710     if (CodeGenOpts.OptimizeSize == 2)
1711       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1712   }
1713 
1714   if (CodeGenOpts.DisableRedZone)
1715     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1716   if (CodeGenOpts.IndirectTlsSegRefs)
1717     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1718   if (CodeGenOpts.NoImplicitFloat)
1719     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1720 
1721   if (AttrOnCallSite) {
1722     // Attributes that should go on the call site only.
1723     if (!CodeGenOpts.SimplifyLibCalls ||
1724         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1725       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1726     if (!CodeGenOpts.TrapFuncName.empty())
1727       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1728   } else {
1729     // Attributes that should go on the function, but not the call site.
1730     if (!CodeGenOpts.DisableFPElim) {
1731       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1732     } else if (CodeGenOpts.OmitLeafFramePointer) {
1733       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1734       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1735     } else {
1736       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1737       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1738     }
1739 
1740     FuncAttrs.addAttribute("less-precise-fpmad",
1741                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1742 
1743     if (CodeGenOpts.NullPointerIsValid)
1744       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1745     if (!CodeGenOpts.FPDenormalMode.empty())
1746       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1747 
1748     FuncAttrs.addAttribute("no-trapping-math",
1749                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1750 
1751     // Strict (compliant) code is the default, so only add this attribute to
1752     // indicate that we are trying to workaround a problem case.
1753     if (!CodeGenOpts.StrictFloatCastOverflow)
1754       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1755 
1756     // TODO: Are these all needed?
1757     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1758     FuncAttrs.addAttribute("no-infs-fp-math",
1759                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1760     FuncAttrs.addAttribute("no-nans-fp-math",
1761                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1762     FuncAttrs.addAttribute("unsafe-fp-math",
1763                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1764     FuncAttrs.addAttribute("use-soft-float",
1765                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1766     FuncAttrs.addAttribute("stack-protector-buffer-size",
1767                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1768     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1769                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1770     FuncAttrs.addAttribute(
1771         "correctly-rounded-divide-sqrt-fp-math",
1772         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1773 
1774     if (getLangOpts().OpenCL)
1775       FuncAttrs.addAttribute("denorms-are-zero",
1776                              llvm::toStringRef(CodeGenOpts.FlushDenorm));
1777 
1778     // TODO: Reciprocal estimate codegen options should apply to instructions?
1779     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1780     if (!Recips.empty())
1781       FuncAttrs.addAttribute("reciprocal-estimates",
1782                              llvm::join(Recips, ","));
1783 
1784     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1785         CodeGenOpts.PreferVectorWidth != "none")
1786       FuncAttrs.addAttribute("prefer-vector-width",
1787                              CodeGenOpts.PreferVectorWidth);
1788 
1789     if (CodeGenOpts.StackRealignment)
1790       FuncAttrs.addAttribute("stackrealign");
1791     if (CodeGenOpts.Backchain)
1792       FuncAttrs.addAttribute("backchain");
1793 
1794     // FIXME: The interaction of this attribute with the SLH command line flag
1795     // has not been determined.
1796     if (CodeGenOpts.SpeculativeLoadHardening)
1797       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1798   }
1799 
1800   if (getLangOpts().assumeFunctionsAreConvergent()) {
1801     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1802     // convergent (meaning, they may call an intrinsically convergent op, such
1803     // as __syncthreads() / barrier(), and so can't have certain optimizations
1804     // applied around them).  LLVM will remove this attribute where it safely
1805     // can.
1806     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1807   }
1808 
1809   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1810     // Exceptions aren't supported in CUDA device code.
1811     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1812 
1813     // Respect -fcuda-flush-denormals-to-zero.
1814     if (CodeGenOpts.FlushDenorm)
1815       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1816   }
1817 }
1818 
1819 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1820   llvm::AttrBuilder FuncAttrs;
1821   ConstructDefaultFnAttrList(F.getName(),
1822                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1823                              /* AttrOnCallsite = */ false, FuncAttrs);
1824   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1825 }
1826 
1827 void CodeGenModule::ConstructAttributeList(
1828     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1829     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1830   llvm::AttrBuilder FuncAttrs;
1831   llvm::AttrBuilder RetAttrs;
1832 
1833   CallingConv = FI.getEffectiveCallingConvention();
1834   if (FI.isNoReturn())
1835     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1836 
1837   // If we have information about the function prototype, we can learn
1838   // attributes from there.
1839   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1840                                      CalleeInfo.getCalleeFunctionProtoType());
1841 
1842   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1843 
1844   bool HasOptnone = false;
1845   // FIXME: handle sseregparm someday...
1846   if (TargetDecl) {
1847     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1848       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1849     if (TargetDecl->hasAttr<NoThrowAttr>())
1850       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1851     if (TargetDecl->hasAttr<NoReturnAttr>())
1852       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1853     if (TargetDecl->hasAttr<ColdAttr>())
1854       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1855     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1856       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1857     if (TargetDecl->hasAttr<ConvergentAttr>())
1858       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1859     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1860       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1861 
1862     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1863       AddAttributesFromFunctionProtoType(
1864           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1865       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1866       // These attributes are not inherited by overloads.
1867       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1868       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1869         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1870     }
1871 
1872     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1873     if (TargetDecl->hasAttr<ConstAttr>()) {
1874       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1875       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1876     } else if (TargetDecl->hasAttr<PureAttr>()) {
1877       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1878       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1879     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1880       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1881       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1882     }
1883     if (TargetDecl->hasAttr<RestrictAttr>())
1884       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1885     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1886         !CodeGenOpts.NullPointerIsValid)
1887       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1888     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1889       FuncAttrs.addAttribute("no_caller_saved_registers");
1890     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1891       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1892 
1893     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1894     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1895       Optional<unsigned> NumElemsParam;
1896       if (AllocSize->getNumElemsParam().isValid())
1897         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1898       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1899                                  NumElemsParam);
1900     }
1901   }
1902 
1903   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1904 
1905   if (CodeGenOpts.EnableSegmentedStacks &&
1906       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1907     FuncAttrs.addAttribute("split-stack");
1908 
1909   // Add NonLazyBind attribute to function declarations when -fno-plt
1910   // is used.
1911   if (TargetDecl && CodeGenOpts.NoPLT) {
1912     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1913       if (!Fn->isDefined() && !AttrOnCallSite) {
1914         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1915       }
1916     }
1917   }
1918 
1919   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1920     if (getLangOpts().OpenCLVersion <= 120) {
1921       // OpenCL v1.2 Work groups are always uniform
1922       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1923     } else {
1924       // OpenCL v2.0 Work groups may be whether uniform or not.
1925       // '-cl-uniform-work-group-size' compile option gets a hint
1926       // to the compiler that the global work-size be a multiple of
1927       // the work-group size specified to clEnqueueNDRangeKernel
1928       // (i.e. work groups are uniform).
1929       FuncAttrs.addAttribute("uniform-work-group-size",
1930                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1931     }
1932   }
1933 
1934   if (!AttrOnCallSite) {
1935     bool DisableTailCalls = false;
1936 
1937     if (CodeGenOpts.DisableTailCalls)
1938       DisableTailCalls = true;
1939     else if (TargetDecl) {
1940       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1941           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1942         DisableTailCalls = true;
1943       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1944         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1945           if (!BD->doesNotEscape())
1946             DisableTailCalls = true;
1947       }
1948     }
1949 
1950     FuncAttrs.addAttribute("disable-tail-calls",
1951                            llvm::toStringRef(DisableTailCalls));
1952     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1953   }
1954 
1955   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1956 
1957   QualType RetTy = FI.getReturnType();
1958   const ABIArgInfo &RetAI = FI.getReturnInfo();
1959   switch (RetAI.getKind()) {
1960   case ABIArgInfo::Extend:
1961     if (RetAI.isSignExt())
1962       RetAttrs.addAttribute(llvm::Attribute::SExt);
1963     else
1964       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1965     LLVM_FALLTHROUGH;
1966   case ABIArgInfo::Direct:
1967     if (RetAI.getInReg())
1968       RetAttrs.addAttribute(llvm::Attribute::InReg);
1969     break;
1970   case ABIArgInfo::Ignore:
1971     break;
1972 
1973   case ABIArgInfo::InAlloca:
1974   case ABIArgInfo::Indirect: {
1975     // inalloca and sret disable readnone and readonly
1976     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1977       .removeAttribute(llvm::Attribute::ReadNone);
1978     break;
1979   }
1980 
1981   case ABIArgInfo::CoerceAndExpand:
1982     break;
1983 
1984   case ABIArgInfo::Expand:
1985     llvm_unreachable("Invalid ABI kind for return argument");
1986   }
1987 
1988   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1989     QualType PTy = RefTy->getPointeeType();
1990     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1991       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1992                                         .getQuantity());
1993     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
1994              !CodeGenOpts.NullPointerIsValid)
1995       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1996   }
1997 
1998   bool hasUsedSRet = false;
1999   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2000 
2001   // Attach attributes to sret.
2002   if (IRFunctionArgs.hasSRetArg()) {
2003     llvm::AttrBuilder SRETAttrs;
2004     if (!RetAI.getSuppressSRet())
2005       SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2006     hasUsedSRet = true;
2007     if (RetAI.getInReg())
2008       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2009     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2010         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2011   }
2012 
2013   // Attach attributes to inalloca argument.
2014   if (IRFunctionArgs.hasInallocaArg()) {
2015     llvm::AttrBuilder Attrs;
2016     Attrs.addAttribute(llvm::Attribute::InAlloca);
2017     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2018         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2019   }
2020 
2021   unsigned ArgNo = 0;
2022   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2023                                           E = FI.arg_end();
2024        I != E; ++I, ++ArgNo) {
2025     QualType ParamType = I->type;
2026     const ABIArgInfo &AI = I->info;
2027     llvm::AttrBuilder Attrs;
2028 
2029     // Add attribute for padding argument, if necessary.
2030     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2031       if (AI.getPaddingInReg()) {
2032         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2033             llvm::AttributeSet::get(
2034                 getLLVMContext(),
2035                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2036       }
2037     }
2038 
2039     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2040     // have the corresponding parameter variable.  It doesn't make
2041     // sense to do it here because parameters are so messed up.
2042     switch (AI.getKind()) {
2043     case ABIArgInfo::Extend:
2044       if (AI.isSignExt())
2045         Attrs.addAttribute(llvm::Attribute::SExt);
2046       else
2047         Attrs.addAttribute(llvm::Attribute::ZExt);
2048       LLVM_FALLTHROUGH;
2049     case ABIArgInfo::Direct:
2050       if (ArgNo == 0 && FI.isChainCall())
2051         Attrs.addAttribute(llvm::Attribute::Nest);
2052       else if (AI.getInReg())
2053         Attrs.addAttribute(llvm::Attribute::InReg);
2054       break;
2055 
2056     case ABIArgInfo::Indirect: {
2057       if (AI.getInReg())
2058         Attrs.addAttribute(llvm::Attribute::InReg);
2059 
2060       if (AI.getIndirectByVal())
2061         Attrs.addAttribute(llvm::Attribute::ByVal);
2062 
2063       CharUnits Align = AI.getIndirectAlign();
2064 
2065       // In a byval argument, it is important that the required
2066       // alignment of the type is honored, as LLVM might be creating a
2067       // *new* stack object, and needs to know what alignment to give
2068       // it. (Sometimes it can deduce a sensible alignment on its own,
2069       // but not if clang decides it must emit a packed struct, or the
2070       // user specifies increased alignment requirements.)
2071       //
2072       // This is different from indirect *not* byval, where the object
2073       // exists already, and the align attribute is purely
2074       // informative.
2075       assert(!Align.isZero());
2076 
2077       // For now, only add this when we have a byval argument.
2078       // TODO: be less lazy about updating test cases.
2079       if (AI.getIndirectByVal())
2080         Attrs.addAlignmentAttr(Align.getQuantity());
2081 
2082       // byval disables readnone and readonly.
2083       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2084         .removeAttribute(llvm::Attribute::ReadNone);
2085       break;
2086     }
2087     case ABIArgInfo::Ignore:
2088     case ABIArgInfo::Expand:
2089     case ABIArgInfo::CoerceAndExpand:
2090       break;
2091 
2092     case ABIArgInfo::InAlloca:
2093       // inalloca disables readnone and readonly.
2094       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2095           .removeAttribute(llvm::Attribute::ReadNone);
2096       continue;
2097     }
2098 
2099     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2100       QualType PTy = RefTy->getPointeeType();
2101       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2102         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2103                                        .getQuantity());
2104       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2105                !CodeGenOpts.NullPointerIsValid)
2106         Attrs.addAttribute(llvm::Attribute::NonNull);
2107     }
2108 
2109     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2110     case ParameterABI::Ordinary:
2111       break;
2112 
2113     case ParameterABI::SwiftIndirectResult: {
2114       // Add 'sret' if we haven't already used it for something, but
2115       // only if the result is void.
2116       if (!hasUsedSRet && RetTy->isVoidType()) {
2117         Attrs.addAttribute(llvm::Attribute::StructRet);
2118         hasUsedSRet = true;
2119       }
2120 
2121       // Add 'noalias' in either case.
2122       Attrs.addAttribute(llvm::Attribute::NoAlias);
2123 
2124       // Add 'dereferenceable' and 'alignment'.
2125       auto PTy = ParamType->getPointeeType();
2126       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2127         auto info = getContext().getTypeInfoInChars(PTy);
2128         Attrs.addDereferenceableAttr(info.first.getQuantity());
2129         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2130                                                  info.second.getQuantity()));
2131       }
2132       break;
2133     }
2134 
2135     case ParameterABI::SwiftErrorResult:
2136       Attrs.addAttribute(llvm::Attribute::SwiftError);
2137       break;
2138 
2139     case ParameterABI::SwiftContext:
2140       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2141       break;
2142     }
2143 
2144     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2145       Attrs.addAttribute(llvm::Attribute::NoCapture);
2146 
2147     if (Attrs.hasAttributes()) {
2148       unsigned FirstIRArg, NumIRArgs;
2149       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2150       for (unsigned i = 0; i < NumIRArgs; i++)
2151         ArgAttrs[FirstIRArg + i] =
2152             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2153     }
2154   }
2155   assert(ArgNo == FI.arg_size());
2156 
2157   AttrList = llvm::AttributeList::get(
2158       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2159       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2160 }
2161 
2162 /// An argument came in as a promoted argument; demote it back to its
2163 /// declared type.
2164 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2165                                          const VarDecl *var,
2166                                          llvm::Value *value) {
2167   llvm::Type *varType = CGF.ConvertType(var->getType());
2168 
2169   // This can happen with promotions that actually don't change the
2170   // underlying type, like the enum promotions.
2171   if (value->getType() == varType) return value;
2172 
2173   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2174          && "unexpected promotion type");
2175 
2176   if (isa<llvm::IntegerType>(varType))
2177     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2178 
2179   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2180 }
2181 
2182 /// Returns the attribute (either parameter attribute, or function
2183 /// attribute), which declares argument ArgNo to be non-null.
2184 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2185                                          QualType ArgType, unsigned ArgNo) {
2186   // FIXME: __attribute__((nonnull)) can also be applied to:
2187   //   - references to pointers, where the pointee is known to be
2188   //     nonnull (apparently a Clang extension)
2189   //   - transparent unions containing pointers
2190   // In the former case, LLVM IR cannot represent the constraint. In
2191   // the latter case, we have no guarantee that the transparent union
2192   // is in fact passed as a pointer.
2193   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2194     return nullptr;
2195   // First, check attribute on parameter itself.
2196   if (PVD) {
2197     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2198       return ParmNNAttr;
2199   }
2200   // Check function attributes.
2201   if (!FD)
2202     return nullptr;
2203   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2204     if (NNAttr->isNonNull(ArgNo))
2205       return NNAttr;
2206   }
2207   return nullptr;
2208 }
2209 
2210 namespace {
2211   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2212     Address Temp;
2213     Address Arg;
2214     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2215     void Emit(CodeGenFunction &CGF, Flags flags) override {
2216       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2217       CGF.Builder.CreateStore(errorValue, Arg);
2218     }
2219   };
2220 }
2221 
2222 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2223                                          llvm::Function *Fn,
2224                                          const FunctionArgList &Args) {
2225   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2226     // Naked functions don't have prologues.
2227     return;
2228 
2229   // If this is an implicit-return-zero function, go ahead and
2230   // initialize the return value.  TODO: it might be nice to have
2231   // a more general mechanism for this that didn't require synthesized
2232   // return statements.
2233   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2234     if (FD->hasImplicitReturnZero()) {
2235       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2236       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2237       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2238       Builder.CreateStore(Zero, ReturnValue);
2239     }
2240   }
2241 
2242   // FIXME: We no longer need the types from FunctionArgList; lift up and
2243   // simplify.
2244 
2245   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2246   // Flattened function arguments.
2247   SmallVector<llvm::Value *, 16> FnArgs;
2248   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2249   for (auto &Arg : Fn->args()) {
2250     FnArgs.push_back(&Arg);
2251   }
2252   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2253 
2254   // If we're using inalloca, all the memory arguments are GEPs off of the last
2255   // parameter, which is a pointer to the complete memory area.
2256   Address ArgStruct = Address::invalid();
2257   const llvm::StructLayout *ArgStructLayout = nullptr;
2258   if (IRFunctionArgs.hasInallocaArg()) {
2259     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2260     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2261                         FI.getArgStructAlignment());
2262 
2263     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2264   }
2265 
2266   // Name the struct return parameter.
2267   if (IRFunctionArgs.hasSRetArg()) {
2268     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2269     AI->setName("agg.result");
2270     AI->addAttr(llvm::Attribute::NoAlias);
2271   }
2272 
2273   // Track if we received the parameter as a pointer (indirect, byval, or
2274   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2275   // into a local alloca for us.
2276   SmallVector<ParamValue, 16> ArgVals;
2277   ArgVals.reserve(Args.size());
2278 
2279   // Create a pointer value for every parameter declaration.  This usually
2280   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2281   // any cleanups or do anything that might unwind.  We do that separately, so
2282   // we can push the cleanups in the correct order for the ABI.
2283   assert(FI.arg_size() == Args.size() &&
2284          "Mismatch between function signature & arguments.");
2285   unsigned ArgNo = 0;
2286   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2287   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2288        i != e; ++i, ++info_it, ++ArgNo) {
2289     const VarDecl *Arg = *i;
2290     const ABIArgInfo &ArgI = info_it->info;
2291 
2292     bool isPromoted =
2293       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2294     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2295     // the parameter is promoted. In this case we convert to
2296     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2297     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2298     assert(hasScalarEvaluationKind(Ty) ==
2299            hasScalarEvaluationKind(Arg->getType()));
2300 
2301     unsigned FirstIRArg, NumIRArgs;
2302     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2303 
2304     switch (ArgI.getKind()) {
2305     case ABIArgInfo::InAlloca: {
2306       assert(NumIRArgs == 0);
2307       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2308       CharUnits FieldOffset =
2309         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2310       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2311                                           Arg->getName());
2312       ArgVals.push_back(ParamValue::forIndirect(V));
2313       break;
2314     }
2315 
2316     case ABIArgInfo::Indirect: {
2317       assert(NumIRArgs == 1);
2318       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2319 
2320       if (!hasScalarEvaluationKind(Ty)) {
2321         // Aggregates and complex variables are accessed by reference.  All we
2322         // need to do is realign the value, if requested.
2323         Address V = ParamAddr;
2324         if (ArgI.getIndirectRealign()) {
2325           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2326 
2327           // Copy from the incoming argument pointer to the temporary with the
2328           // appropriate alignment.
2329           //
2330           // FIXME: We should have a common utility for generating an aggregate
2331           // copy.
2332           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2333           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2334           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2335           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2336           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2337           V = AlignedTemp;
2338         }
2339         ArgVals.push_back(ParamValue::forIndirect(V));
2340       } else {
2341         // Load scalar value from indirect argument.
2342         llvm::Value *V =
2343             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2344 
2345         if (isPromoted)
2346           V = emitArgumentDemotion(*this, Arg, V);
2347         ArgVals.push_back(ParamValue::forDirect(V));
2348       }
2349       break;
2350     }
2351 
2352     case ABIArgInfo::Extend:
2353     case ABIArgInfo::Direct: {
2354 
2355       // If we have the trivial case, handle it with no muss and fuss.
2356       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2357           ArgI.getCoerceToType() == ConvertType(Ty) &&
2358           ArgI.getDirectOffset() == 0) {
2359         assert(NumIRArgs == 1);
2360         llvm::Value *V = FnArgs[FirstIRArg];
2361         auto AI = cast<llvm::Argument>(V);
2362 
2363         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2364           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2365                              PVD->getFunctionScopeIndex()) &&
2366               !CGM.getCodeGenOpts().NullPointerIsValid)
2367             AI->addAttr(llvm::Attribute::NonNull);
2368 
2369           QualType OTy = PVD->getOriginalType();
2370           if (const auto *ArrTy =
2371               getContext().getAsConstantArrayType(OTy)) {
2372             // A C99 array parameter declaration with the static keyword also
2373             // indicates dereferenceability, and if the size is constant we can
2374             // use the dereferenceable attribute (which requires the size in
2375             // bytes).
2376             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2377               QualType ETy = ArrTy->getElementType();
2378               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2379               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2380                   ArrSize) {
2381                 llvm::AttrBuilder Attrs;
2382                 Attrs.addDereferenceableAttr(
2383                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2384                 AI->addAttrs(Attrs);
2385               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2386                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2387                 AI->addAttr(llvm::Attribute::NonNull);
2388               }
2389             }
2390           } else if (const auto *ArrTy =
2391                      getContext().getAsVariableArrayType(OTy)) {
2392             // For C99 VLAs with the static keyword, we don't know the size so
2393             // we can't use the dereferenceable attribute, but in addrspace(0)
2394             // we know that it must be nonnull.
2395             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2396                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2397                 !CGM.getCodeGenOpts().NullPointerIsValid)
2398               AI->addAttr(llvm::Attribute::NonNull);
2399           }
2400 
2401           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2402           if (!AVAttr)
2403             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2404               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2405           if (AVAttr) {
2406             llvm::Value *AlignmentValue =
2407               EmitScalarExpr(AVAttr->getAlignment());
2408             llvm::ConstantInt *AlignmentCI =
2409               cast<llvm::ConstantInt>(AlignmentValue);
2410             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2411                                           +llvm::Value::MaximumAlignment);
2412             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2413           }
2414         }
2415 
2416         if (Arg->getType().isRestrictQualified())
2417           AI->addAttr(llvm::Attribute::NoAlias);
2418 
2419         // LLVM expects swifterror parameters to be used in very restricted
2420         // ways.  Copy the value into a less-restricted temporary.
2421         if (FI.getExtParameterInfo(ArgNo).getABI()
2422               == ParameterABI::SwiftErrorResult) {
2423           QualType pointeeTy = Ty->getPointeeType();
2424           assert(pointeeTy->isPointerType());
2425           Address temp =
2426             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2427           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2428           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2429           Builder.CreateStore(incomingErrorValue, temp);
2430           V = temp.getPointer();
2431 
2432           // Push a cleanup to copy the value back at the end of the function.
2433           // The convention does not guarantee that the value will be written
2434           // back if the function exits with an unwind exception.
2435           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2436         }
2437 
2438         // Ensure the argument is the correct type.
2439         if (V->getType() != ArgI.getCoerceToType())
2440           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2441 
2442         if (isPromoted)
2443           V = emitArgumentDemotion(*this, Arg, V);
2444 
2445         // Because of merging of function types from multiple decls it is
2446         // possible for the type of an argument to not match the corresponding
2447         // type in the function type. Since we are codegening the callee
2448         // in here, add a cast to the argument type.
2449         llvm::Type *LTy = ConvertType(Arg->getType());
2450         if (V->getType() != LTy)
2451           V = Builder.CreateBitCast(V, LTy);
2452 
2453         ArgVals.push_back(ParamValue::forDirect(V));
2454         break;
2455       }
2456 
2457       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2458                                      Arg->getName());
2459 
2460       // Pointer to store into.
2461       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2462 
2463       // Fast-isel and the optimizer generally like scalar values better than
2464       // FCAs, so we flatten them if this is safe to do for this argument.
2465       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2466       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2467           STy->getNumElements() > 1) {
2468         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2469         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2470         llvm::Type *DstTy = Ptr.getElementType();
2471         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2472 
2473         Address AddrToStoreInto = Address::invalid();
2474         if (SrcSize <= DstSize) {
2475           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2476         } else {
2477           AddrToStoreInto =
2478             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2479         }
2480 
2481         assert(STy->getNumElements() == NumIRArgs);
2482         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2483           auto AI = FnArgs[FirstIRArg + i];
2484           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2485           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2486           Address EltPtr =
2487             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2488           Builder.CreateStore(AI, EltPtr);
2489         }
2490 
2491         if (SrcSize > DstSize) {
2492           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2493         }
2494 
2495       } else {
2496         // Simple case, just do a coerced store of the argument into the alloca.
2497         assert(NumIRArgs == 1);
2498         auto AI = FnArgs[FirstIRArg];
2499         AI->setName(Arg->getName() + ".coerce");
2500         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2501       }
2502 
2503       // Match to what EmitParmDecl is expecting for this type.
2504       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2505         llvm::Value *V =
2506             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2507         if (isPromoted)
2508           V = emitArgumentDemotion(*this, Arg, V);
2509         ArgVals.push_back(ParamValue::forDirect(V));
2510       } else {
2511         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2512       }
2513       break;
2514     }
2515 
2516     case ABIArgInfo::CoerceAndExpand: {
2517       // Reconstruct into a temporary.
2518       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2519       ArgVals.push_back(ParamValue::forIndirect(alloca));
2520 
2521       auto coercionType = ArgI.getCoerceAndExpandType();
2522       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2523       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2524 
2525       unsigned argIndex = FirstIRArg;
2526       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2527         llvm::Type *eltType = coercionType->getElementType(i);
2528         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2529           continue;
2530 
2531         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2532         auto elt = FnArgs[argIndex++];
2533         Builder.CreateStore(elt, eltAddr);
2534       }
2535       assert(argIndex == FirstIRArg + NumIRArgs);
2536       break;
2537     }
2538 
2539     case ABIArgInfo::Expand: {
2540       // If this structure was expanded into multiple arguments then
2541       // we need to create a temporary and reconstruct it from the
2542       // arguments.
2543       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2544       LValue LV = MakeAddrLValue(Alloca, Ty);
2545       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2546 
2547       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2548       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2549       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2550       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2551         auto AI = FnArgs[FirstIRArg + i];
2552         AI->setName(Arg->getName() + "." + Twine(i));
2553       }
2554       break;
2555     }
2556 
2557     case ABIArgInfo::Ignore:
2558       assert(NumIRArgs == 0);
2559       // Initialize the local variable appropriately.
2560       if (!hasScalarEvaluationKind(Ty)) {
2561         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2562       } else {
2563         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2564         ArgVals.push_back(ParamValue::forDirect(U));
2565       }
2566       break;
2567     }
2568   }
2569 
2570   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2571     for (int I = Args.size() - 1; I >= 0; --I)
2572       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2573   } else {
2574     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2575       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2576   }
2577 }
2578 
2579 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2580   while (insn->use_empty()) {
2581     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2582     if (!bitcast) return;
2583 
2584     // This is "safe" because we would have used a ConstantExpr otherwise.
2585     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2586     bitcast->eraseFromParent();
2587   }
2588 }
2589 
2590 /// Try to emit a fused autorelease of a return result.
2591 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2592                                                     llvm::Value *result) {
2593   // We must be immediately followed the cast.
2594   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2595   if (BB->empty()) return nullptr;
2596   if (&BB->back() != result) return nullptr;
2597 
2598   llvm::Type *resultType = result->getType();
2599 
2600   // result is in a BasicBlock and is therefore an Instruction.
2601   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2602 
2603   SmallVector<llvm::Instruction *, 4> InstsToKill;
2604 
2605   // Look for:
2606   //  %generator = bitcast %type1* %generator2 to %type2*
2607   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2608     // We would have emitted this as a constant if the operand weren't
2609     // an Instruction.
2610     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2611 
2612     // Require the generator to be immediately followed by the cast.
2613     if (generator->getNextNode() != bitcast)
2614       return nullptr;
2615 
2616     InstsToKill.push_back(bitcast);
2617   }
2618 
2619   // Look for:
2620   //   %generator = call i8* @objc_retain(i8* %originalResult)
2621   // or
2622   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2623   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2624   if (!call) return nullptr;
2625 
2626   bool doRetainAutorelease;
2627 
2628   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2629     doRetainAutorelease = true;
2630   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2631                                           .objc_retainAutoreleasedReturnValue) {
2632     doRetainAutorelease = false;
2633 
2634     // If we emitted an assembly marker for this call (and the
2635     // ARCEntrypoints field should have been set if so), go looking
2636     // for that call.  If we can't find it, we can't do this
2637     // optimization.  But it should always be the immediately previous
2638     // instruction, unless we needed bitcasts around the call.
2639     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2640       llvm::Instruction *prev = call->getPrevNode();
2641       assert(prev);
2642       if (isa<llvm::BitCastInst>(prev)) {
2643         prev = prev->getPrevNode();
2644         assert(prev);
2645       }
2646       assert(isa<llvm::CallInst>(prev));
2647       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2648                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2649       InstsToKill.push_back(prev);
2650     }
2651   } else {
2652     return nullptr;
2653   }
2654 
2655   result = call->getArgOperand(0);
2656   InstsToKill.push_back(call);
2657 
2658   // Keep killing bitcasts, for sanity.  Note that we no longer care
2659   // about precise ordering as long as there's exactly one use.
2660   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2661     if (!bitcast->hasOneUse()) break;
2662     InstsToKill.push_back(bitcast);
2663     result = bitcast->getOperand(0);
2664   }
2665 
2666   // Delete all the unnecessary instructions, from latest to earliest.
2667   for (auto *I : InstsToKill)
2668     I->eraseFromParent();
2669 
2670   // Do the fused retain/autorelease if we were asked to.
2671   if (doRetainAutorelease)
2672     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2673 
2674   // Cast back to the result type.
2675   return CGF.Builder.CreateBitCast(result, resultType);
2676 }
2677 
2678 /// If this is a +1 of the value of an immutable 'self', remove it.
2679 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2680                                           llvm::Value *result) {
2681   // This is only applicable to a method with an immutable 'self'.
2682   const ObjCMethodDecl *method =
2683     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2684   if (!method) return nullptr;
2685   const VarDecl *self = method->getSelfDecl();
2686   if (!self->getType().isConstQualified()) return nullptr;
2687 
2688   // Look for a retain call.
2689   llvm::CallInst *retainCall =
2690     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2691   if (!retainCall ||
2692       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2693     return nullptr;
2694 
2695   // Look for an ordinary load of 'self'.
2696   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2697   llvm::LoadInst *load =
2698     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2699   if (!load || load->isAtomic() || load->isVolatile() ||
2700       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2701     return nullptr;
2702 
2703   // Okay!  Burn it all down.  This relies for correctness on the
2704   // assumption that the retain is emitted as part of the return and
2705   // that thereafter everything is used "linearly".
2706   llvm::Type *resultType = result->getType();
2707   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2708   assert(retainCall->use_empty());
2709   retainCall->eraseFromParent();
2710   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2711 
2712   return CGF.Builder.CreateBitCast(load, resultType);
2713 }
2714 
2715 /// Emit an ARC autorelease of the result of a function.
2716 ///
2717 /// \return the value to actually return from the function
2718 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2719                                             llvm::Value *result) {
2720   // If we're returning 'self', kill the initial retain.  This is a
2721   // heuristic attempt to "encourage correctness" in the really unfortunate
2722   // case where we have a return of self during a dealloc and we desperately
2723   // need to avoid the possible autorelease.
2724   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2725     return self;
2726 
2727   // At -O0, try to emit a fused retain/autorelease.
2728   if (CGF.shouldUseFusedARCCalls())
2729     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2730       return fused;
2731 
2732   return CGF.EmitARCAutoreleaseReturnValue(result);
2733 }
2734 
2735 /// Heuristically search for a dominating store to the return-value slot.
2736 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2737   // Check if a User is a store which pointerOperand is the ReturnValue.
2738   // We are looking for stores to the ReturnValue, not for stores of the
2739   // ReturnValue to some other location.
2740   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2741     auto *SI = dyn_cast<llvm::StoreInst>(U);
2742     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2743       return nullptr;
2744     // These aren't actually possible for non-coerced returns, and we
2745     // only care about non-coerced returns on this code path.
2746     assert(!SI->isAtomic() && !SI->isVolatile());
2747     return SI;
2748   };
2749   // If there are multiple uses of the return-value slot, just check
2750   // for something immediately preceding the IP.  Sometimes this can
2751   // happen with how we generate implicit-returns; it can also happen
2752   // with noreturn cleanups.
2753   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2754     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2755     if (IP->empty()) return nullptr;
2756     llvm::Instruction *I = &IP->back();
2757 
2758     // Skip lifetime markers
2759     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2760                                             IE = IP->rend();
2761          II != IE; ++II) {
2762       if (llvm::IntrinsicInst *Intrinsic =
2763               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2764         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2765           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2766           ++II;
2767           if (II == IE)
2768             break;
2769           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2770             continue;
2771         }
2772       }
2773       I = &*II;
2774       break;
2775     }
2776 
2777     return GetStoreIfValid(I);
2778   }
2779 
2780   llvm::StoreInst *store =
2781       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2782   if (!store) return nullptr;
2783 
2784   // Now do a first-and-dirty dominance check: just walk up the
2785   // single-predecessors chain from the current insertion point.
2786   llvm::BasicBlock *StoreBB = store->getParent();
2787   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2788   while (IP != StoreBB) {
2789     if (!(IP = IP->getSinglePredecessor()))
2790       return nullptr;
2791   }
2792 
2793   // Okay, the store's basic block dominates the insertion point; we
2794   // can do our thing.
2795   return store;
2796 }
2797 
2798 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2799                                          bool EmitRetDbgLoc,
2800                                          SourceLocation EndLoc) {
2801   if (FI.isNoReturn()) {
2802     // Noreturn functions don't return.
2803     EmitUnreachable(EndLoc);
2804     return;
2805   }
2806 
2807   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2808     // Naked functions don't have epilogues.
2809     Builder.CreateUnreachable();
2810     return;
2811   }
2812 
2813   // Functions with no result always return void.
2814   if (!ReturnValue.isValid()) {
2815     Builder.CreateRetVoid();
2816     return;
2817   }
2818 
2819   llvm::DebugLoc RetDbgLoc;
2820   llvm::Value *RV = nullptr;
2821   QualType RetTy = FI.getReturnType();
2822   const ABIArgInfo &RetAI = FI.getReturnInfo();
2823 
2824   switch (RetAI.getKind()) {
2825   case ABIArgInfo::InAlloca:
2826     // Aggregrates get evaluated directly into the destination.  Sometimes we
2827     // need to return the sret value in a register, though.
2828     assert(hasAggregateEvaluationKind(RetTy));
2829     if (RetAI.getInAllocaSRet()) {
2830       llvm::Function::arg_iterator EI = CurFn->arg_end();
2831       --EI;
2832       llvm::Value *ArgStruct = &*EI;
2833       llvm::Value *SRet = Builder.CreateStructGEP(
2834           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2835       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2836     }
2837     break;
2838 
2839   case ABIArgInfo::Indirect: {
2840     auto AI = CurFn->arg_begin();
2841     if (RetAI.isSRetAfterThis())
2842       ++AI;
2843     switch (getEvaluationKind(RetTy)) {
2844     case TEK_Complex: {
2845       ComplexPairTy RT =
2846         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2847       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2848                          /*isInit*/ true);
2849       break;
2850     }
2851     case TEK_Aggregate:
2852       // Do nothing; aggregrates get evaluated directly into the destination.
2853       break;
2854     case TEK_Scalar:
2855       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2856                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2857                         /*isInit*/ true);
2858       break;
2859     }
2860     break;
2861   }
2862 
2863   case ABIArgInfo::Extend:
2864   case ABIArgInfo::Direct:
2865     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2866         RetAI.getDirectOffset() == 0) {
2867       // The internal return value temp always will have pointer-to-return-type
2868       // type, just do a load.
2869 
2870       // If there is a dominating store to ReturnValue, we can elide
2871       // the load, zap the store, and usually zap the alloca.
2872       if (llvm::StoreInst *SI =
2873               findDominatingStoreToReturnValue(*this)) {
2874         // Reuse the debug location from the store unless there is
2875         // cleanup code to be emitted between the store and return
2876         // instruction.
2877         if (EmitRetDbgLoc && !AutoreleaseResult)
2878           RetDbgLoc = SI->getDebugLoc();
2879         // Get the stored value and nuke the now-dead store.
2880         RV = SI->getValueOperand();
2881         SI->eraseFromParent();
2882 
2883         // If that was the only use of the return value, nuke it as well now.
2884         auto returnValueInst = ReturnValue.getPointer();
2885         if (returnValueInst->use_empty()) {
2886           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2887             alloca->eraseFromParent();
2888             ReturnValue = Address::invalid();
2889           }
2890         }
2891 
2892       // Otherwise, we have to do a simple load.
2893       } else {
2894         RV = Builder.CreateLoad(ReturnValue);
2895       }
2896     } else {
2897       // If the value is offset in memory, apply the offset now.
2898       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2899 
2900       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2901     }
2902 
2903     // In ARC, end functions that return a retainable type with a call
2904     // to objc_autoreleaseReturnValue.
2905     if (AutoreleaseResult) {
2906 #ifndef NDEBUG
2907       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2908       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2909       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2910       // CurCodeDecl or BlockInfo.
2911       QualType RT;
2912 
2913       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2914         RT = FD->getReturnType();
2915       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2916         RT = MD->getReturnType();
2917       else if (isa<BlockDecl>(CurCodeDecl))
2918         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2919       else
2920         llvm_unreachable("Unexpected function/method type");
2921 
2922       assert(getLangOpts().ObjCAutoRefCount &&
2923              !FI.isReturnsRetained() &&
2924              RT->isObjCRetainableType());
2925 #endif
2926       RV = emitAutoreleaseOfResult(*this, RV);
2927     }
2928 
2929     break;
2930 
2931   case ABIArgInfo::Ignore:
2932     break;
2933 
2934   case ABIArgInfo::CoerceAndExpand: {
2935     auto coercionType = RetAI.getCoerceAndExpandType();
2936     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2937 
2938     // Load all of the coerced elements out into results.
2939     llvm::SmallVector<llvm::Value*, 4> results;
2940     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2941     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2942       auto coercedEltType = coercionType->getElementType(i);
2943       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2944         continue;
2945 
2946       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2947       auto elt = Builder.CreateLoad(eltAddr);
2948       results.push_back(elt);
2949     }
2950 
2951     // If we have one result, it's the single direct result type.
2952     if (results.size() == 1) {
2953       RV = results[0];
2954 
2955     // Otherwise, we need to make a first-class aggregate.
2956     } else {
2957       // Construct a return type that lacks padding elements.
2958       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2959 
2960       RV = llvm::UndefValue::get(returnType);
2961       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2962         RV = Builder.CreateInsertValue(RV, results[i], i);
2963       }
2964     }
2965     break;
2966   }
2967 
2968   case ABIArgInfo::Expand:
2969     llvm_unreachable("Invalid ABI kind for return argument");
2970   }
2971 
2972   llvm::Instruction *Ret;
2973   if (RV) {
2974     EmitReturnValueCheck(RV);
2975     Ret = Builder.CreateRet(RV);
2976   } else {
2977     Ret = Builder.CreateRetVoid();
2978   }
2979 
2980   if (RetDbgLoc)
2981     Ret->setDebugLoc(std::move(RetDbgLoc));
2982 }
2983 
2984 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2985   // A current decl may not be available when emitting vtable thunks.
2986   if (!CurCodeDecl)
2987     return;
2988 
2989   ReturnsNonNullAttr *RetNNAttr = nullptr;
2990   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2991     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
2992 
2993   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
2994     return;
2995 
2996   // Prefer the returns_nonnull attribute if it's present.
2997   SourceLocation AttrLoc;
2998   SanitizerMask CheckKind;
2999   SanitizerHandler Handler;
3000   if (RetNNAttr) {
3001     assert(!requiresReturnValueNullabilityCheck() &&
3002            "Cannot check nullability and the nonnull attribute");
3003     AttrLoc = RetNNAttr->getLocation();
3004     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3005     Handler = SanitizerHandler::NonnullReturn;
3006   } else {
3007     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3008       if (auto *TSI = DD->getTypeSourceInfo())
3009         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3010           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3011     CheckKind = SanitizerKind::NullabilityReturn;
3012     Handler = SanitizerHandler::NullabilityReturn;
3013   }
3014 
3015   SanitizerScope SanScope(this);
3016 
3017   // Make sure the "return" source location is valid. If we're checking a
3018   // nullability annotation, make sure the preconditions for the check are met.
3019   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3020   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3021   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3022   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3023   if (requiresReturnValueNullabilityCheck())
3024     CanNullCheck =
3025         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3026   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3027   EmitBlock(Check);
3028 
3029   // Now do the null check.
3030   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3031   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3032   llvm::Value *DynamicData[] = {SLocPtr};
3033   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3034 
3035   EmitBlock(NoCheck);
3036 
3037 #ifndef NDEBUG
3038   // The return location should not be used after the check has been emitted.
3039   ReturnLocation = Address::invalid();
3040 #endif
3041 }
3042 
3043 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3044   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3045   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3046 }
3047 
3048 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3049                                           QualType Ty) {
3050   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3051   // placeholders.
3052   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3053   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3054   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3055 
3056   // FIXME: When we generate this IR in one pass, we shouldn't need
3057   // this win32-specific alignment hack.
3058   CharUnits Align = CharUnits::fromQuantity(4);
3059   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3060 
3061   return AggValueSlot::forAddr(Address(Placeholder, Align),
3062                                Ty.getQualifiers(),
3063                                AggValueSlot::IsNotDestructed,
3064                                AggValueSlot::DoesNotNeedGCBarriers,
3065                                AggValueSlot::IsNotAliased,
3066                                AggValueSlot::DoesNotOverlap);
3067 }
3068 
3069 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3070                                           const VarDecl *param,
3071                                           SourceLocation loc) {
3072   // StartFunction converted the ABI-lowered parameter(s) into a
3073   // local alloca.  We need to turn that into an r-value suitable
3074   // for EmitCall.
3075   Address local = GetAddrOfLocalVar(param);
3076 
3077   QualType type = param->getType();
3078 
3079   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
3080          "cannot emit delegate call arguments for inalloca arguments!");
3081 
3082   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3083   // but the argument needs to be the original pointer.
3084   if (type->isReferenceType()) {
3085     args.add(RValue::get(Builder.CreateLoad(local)), type);
3086 
3087   // In ARC, move out of consumed arguments so that the release cleanup
3088   // entered by StartFunction doesn't cause an over-release.  This isn't
3089   // optimal -O0 code generation, but it should get cleaned up when
3090   // optimization is enabled.  This also assumes that delegate calls are
3091   // performed exactly once for a set of arguments, but that should be safe.
3092   } else if (getLangOpts().ObjCAutoRefCount &&
3093              param->hasAttr<NSConsumedAttr>() &&
3094              type->isObjCRetainableType()) {
3095     llvm::Value *ptr = Builder.CreateLoad(local);
3096     auto null =
3097       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3098     Builder.CreateStore(null, local);
3099     args.add(RValue::get(ptr), type);
3100 
3101   // For the most part, we just need to load the alloca, except that
3102   // aggregate r-values are actually pointers to temporaries.
3103   } else {
3104     args.add(convertTempToRValue(local, type, loc), type);
3105   }
3106 
3107   // Deactivate the cleanup for the callee-destructed param that was pushed.
3108   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3109       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3110       type.isDestructedType()) {
3111     EHScopeStack::stable_iterator cleanup =
3112         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3113     assert(cleanup.isValid() &&
3114            "cleanup for callee-destructed param not recorded");
3115     // This unreachable is a temporary marker which will be removed later.
3116     llvm::Instruction *isActive = Builder.CreateUnreachable();
3117     args.addArgCleanupDeactivation(cleanup, isActive);
3118   }
3119 }
3120 
3121 static bool isProvablyNull(llvm::Value *addr) {
3122   return isa<llvm::ConstantPointerNull>(addr);
3123 }
3124 
3125 /// Emit the actual writing-back of a writeback.
3126 static void emitWriteback(CodeGenFunction &CGF,
3127                           const CallArgList::Writeback &writeback) {
3128   const LValue &srcLV = writeback.Source;
3129   Address srcAddr = srcLV.getAddress();
3130   assert(!isProvablyNull(srcAddr.getPointer()) &&
3131          "shouldn't have writeback for provably null argument");
3132 
3133   llvm::BasicBlock *contBB = nullptr;
3134 
3135   // If the argument wasn't provably non-null, we need to null check
3136   // before doing the store.
3137   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3138                                               CGF.CGM.getDataLayout());
3139   if (!provablyNonNull) {
3140     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3141     contBB = CGF.createBasicBlock("icr.done");
3142 
3143     llvm::Value *isNull =
3144       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3145     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3146     CGF.EmitBlock(writebackBB);
3147   }
3148 
3149   // Load the value to writeback.
3150   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3151 
3152   // Cast it back, in case we're writing an id to a Foo* or something.
3153   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3154                                     "icr.writeback-cast");
3155 
3156   // Perform the writeback.
3157 
3158   // If we have a "to use" value, it's something we need to emit a use
3159   // of.  This has to be carefully threaded in: if it's done after the
3160   // release it's potentially undefined behavior (and the optimizer
3161   // will ignore it), and if it happens before the retain then the
3162   // optimizer could move the release there.
3163   if (writeback.ToUse) {
3164     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3165 
3166     // Retain the new value.  No need to block-copy here:  the block's
3167     // being passed up the stack.
3168     value = CGF.EmitARCRetainNonBlock(value);
3169 
3170     // Emit the intrinsic use here.
3171     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3172 
3173     // Load the old value (primitively).
3174     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3175 
3176     // Put the new value in place (primitively).
3177     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3178 
3179     // Release the old value.
3180     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3181 
3182   // Otherwise, we can just do a normal lvalue store.
3183   } else {
3184     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3185   }
3186 
3187   // Jump to the continuation block.
3188   if (!provablyNonNull)
3189     CGF.EmitBlock(contBB);
3190 }
3191 
3192 static void emitWritebacks(CodeGenFunction &CGF,
3193                            const CallArgList &args) {
3194   for (const auto &I : args.writebacks())
3195     emitWriteback(CGF, I);
3196 }
3197 
3198 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3199                                             const CallArgList &CallArgs) {
3200   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3201     CallArgs.getCleanupsToDeactivate();
3202   // Iterate in reverse to increase the likelihood of popping the cleanup.
3203   for (const auto &I : llvm::reverse(Cleanups)) {
3204     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3205     I.IsActiveIP->eraseFromParent();
3206   }
3207 }
3208 
3209 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3210   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3211     if (uop->getOpcode() == UO_AddrOf)
3212       return uop->getSubExpr();
3213   return nullptr;
3214 }
3215 
3216 /// Emit an argument that's being passed call-by-writeback.  That is,
3217 /// we are passing the address of an __autoreleased temporary; it
3218 /// might be copy-initialized with the current value of the given
3219 /// address, but it will definitely be copied out of after the call.
3220 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3221                              const ObjCIndirectCopyRestoreExpr *CRE) {
3222   LValue srcLV;
3223 
3224   // Make an optimistic effort to emit the address as an l-value.
3225   // This can fail if the argument expression is more complicated.
3226   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3227     srcLV = CGF.EmitLValue(lvExpr);
3228 
3229   // Otherwise, just emit it as a scalar.
3230   } else {
3231     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3232 
3233     QualType srcAddrType =
3234       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3235     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3236   }
3237   Address srcAddr = srcLV.getAddress();
3238 
3239   // The dest and src types don't necessarily match in LLVM terms
3240   // because of the crazy ObjC compatibility rules.
3241 
3242   llvm::PointerType *destType =
3243     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3244 
3245   // If the address is a constant null, just pass the appropriate null.
3246   if (isProvablyNull(srcAddr.getPointer())) {
3247     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3248              CRE->getType());
3249     return;
3250   }
3251 
3252   // Create the temporary.
3253   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3254                                       CGF.getPointerAlign(),
3255                                       "icr.temp");
3256   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3257   // and that cleanup will be conditional if we can't prove that the l-value
3258   // isn't null, so we need to register a dominating point so that the cleanups
3259   // system will make valid IR.
3260   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3261 
3262   // Zero-initialize it if we're not doing a copy-initialization.
3263   bool shouldCopy = CRE->shouldCopy();
3264   if (!shouldCopy) {
3265     llvm::Value *null =
3266       llvm::ConstantPointerNull::get(
3267         cast<llvm::PointerType>(destType->getElementType()));
3268     CGF.Builder.CreateStore(null, temp);
3269   }
3270 
3271   llvm::BasicBlock *contBB = nullptr;
3272   llvm::BasicBlock *originBB = nullptr;
3273 
3274   // If the address is *not* known to be non-null, we need to switch.
3275   llvm::Value *finalArgument;
3276 
3277   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3278                                               CGF.CGM.getDataLayout());
3279   if (provablyNonNull) {
3280     finalArgument = temp.getPointer();
3281   } else {
3282     llvm::Value *isNull =
3283       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3284 
3285     finalArgument = CGF.Builder.CreateSelect(isNull,
3286                                    llvm::ConstantPointerNull::get(destType),
3287                                              temp.getPointer(), "icr.argument");
3288 
3289     // If we need to copy, then the load has to be conditional, which
3290     // means we need control flow.
3291     if (shouldCopy) {
3292       originBB = CGF.Builder.GetInsertBlock();
3293       contBB = CGF.createBasicBlock("icr.cont");
3294       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3295       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3296       CGF.EmitBlock(copyBB);
3297       condEval.begin(CGF);
3298     }
3299   }
3300 
3301   llvm::Value *valueToUse = nullptr;
3302 
3303   // Perform a copy if necessary.
3304   if (shouldCopy) {
3305     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3306     assert(srcRV.isScalar());
3307 
3308     llvm::Value *src = srcRV.getScalarVal();
3309     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3310                                     "icr.cast");
3311 
3312     // Use an ordinary store, not a store-to-lvalue.
3313     CGF.Builder.CreateStore(src, temp);
3314 
3315     // If optimization is enabled, and the value was held in a
3316     // __strong variable, we need to tell the optimizer that this
3317     // value has to stay alive until we're doing the store back.
3318     // This is because the temporary is effectively unretained,
3319     // and so otherwise we can violate the high-level semantics.
3320     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3321         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3322       valueToUse = src;
3323     }
3324   }
3325 
3326   // Finish the control flow if we needed it.
3327   if (shouldCopy && !provablyNonNull) {
3328     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3329     CGF.EmitBlock(contBB);
3330 
3331     // Make a phi for the value to intrinsically use.
3332     if (valueToUse) {
3333       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3334                                                       "icr.to-use");
3335       phiToUse->addIncoming(valueToUse, copyBB);
3336       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3337                             originBB);
3338       valueToUse = phiToUse;
3339     }
3340 
3341     condEval.end(CGF);
3342   }
3343 
3344   args.addWriteback(srcLV, temp, valueToUse);
3345   args.add(RValue::get(finalArgument), CRE->getType());
3346 }
3347 
3348 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3349   assert(!StackBase);
3350 
3351   // Save the stack.
3352   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3353   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3354 }
3355 
3356 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3357   if (StackBase) {
3358     // Restore the stack after the call.
3359     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3360     CGF.Builder.CreateCall(F, StackBase);
3361   }
3362 }
3363 
3364 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3365                                           SourceLocation ArgLoc,
3366                                           AbstractCallee AC,
3367                                           unsigned ParmNum) {
3368   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3369                          SanOpts.has(SanitizerKind::NullabilityArg)))
3370     return;
3371 
3372   // The param decl may be missing in a variadic function.
3373   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3374   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3375 
3376   // Prefer the nonnull attribute if it's present.
3377   const NonNullAttr *NNAttr = nullptr;
3378   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3379     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3380 
3381   bool CanCheckNullability = false;
3382   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3383     auto Nullability = PVD->getType()->getNullability(getContext());
3384     CanCheckNullability = Nullability &&
3385                           *Nullability == NullabilityKind::NonNull &&
3386                           PVD->getTypeSourceInfo();
3387   }
3388 
3389   if (!NNAttr && !CanCheckNullability)
3390     return;
3391 
3392   SourceLocation AttrLoc;
3393   SanitizerMask CheckKind;
3394   SanitizerHandler Handler;
3395   if (NNAttr) {
3396     AttrLoc = NNAttr->getLocation();
3397     CheckKind = SanitizerKind::NonnullAttribute;
3398     Handler = SanitizerHandler::NonnullArg;
3399   } else {
3400     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3401     CheckKind = SanitizerKind::NullabilityArg;
3402     Handler = SanitizerHandler::NullabilityArg;
3403   }
3404 
3405   SanitizerScope SanScope(this);
3406   assert(RV.isScalar());
3407   llvm::Value *V = RV.getScalarVal();
3408   llvm::Value *Cond =
3409       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3410   llvm::Constant *StaticData[] = {
3411       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3412       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3413   };
3414   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3415 }
3416 
3417 void CodeGenFunction::EmitCallArgs(
3418     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3419     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3420     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3421   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3422 
3423   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3424   // because arguments are destroyed left to right in the callee. As a special
3425   // case, there are certain language constructs that require left-to-right
3426   // evaluation, and in those cases we consider the evaluation order requirement
3427   // to trump the "destruction order is reverse construction order" guarantee.
3428   bool LeftToRight =
3429       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3430           ? Order == EvaluationOrder::ForceLeftToRight
3431           : Order != EvaluationOrder::ForceRightToLeft;
3432 
3433   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3434                                          RValue EmittedArg) {
3435     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3436       return;
3437     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3438     if (PS == nullptr)
3439       return;
3440 
3441     const auto &Context = getContext();
3442     auto SizeTy = Context.getSizeType();
3443     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3444     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3445     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3446                                                      EmittedArg.getScalarVal());
3447     Args.add(RValue::get(V), SizeTy);
3448     // If we're emitting args in reverse, be sure to do so with
3449     // pass_object_size, as well.
3450     if (!LeftToRight)
3451       std::swap(Args.back(), *(&Args.back() - 1));
3452   };
3453 
3454   // Insert a stack save if we're going to need any inalloca args.
3455   bool HasInAllocaArgs = false;
3456   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3457     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3458          I != E && !HasInAllocaArgs; ++I)
3459       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3460     if (HasInAllocaArgs) {
3461       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3462       Args.allocateArgumentMemory(*this);
3463     }
3464   }
3465 
3466   // Evaluate each argument in the appropriate order.
3467   size_t CallArgsStart = Args.size();
3468   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3469     unsigned Idx = LeftToRight ? I : E - I - 1;
3470     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3471     unsigned InitialArgSize = Args.size();
3472     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3473     // the argument and parameter match or the objc method is parameterized.
3474     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3475             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3476                                                 ArgTypes[Idx]) ||
3477             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3478              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3479            "Argument and parameter types don't match");
3480     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3481     // In particular, we depend on it being the last arg in Args, and the
3482     // objectsize bits depend on there only being one arg if !LeftToRight.
3483     assert(InitialArgSize + 1 == Args.size() &&
3484            "The code below depends on only adding one arg per EmitCallArg");
3485     (void)InitialArgSize;
3486     // Since pointer argument are never emitted as LValue, it is safe to emit
3487     // non-null argument check for r-value only.
3488     if (!Args.back().hasLValue()) {
3489       RValue RVArg = Args.back().getKnownRValue();
3490       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3491                           ParamsToSkip + Idx);
3492       // @llvm.objectsize should never have side-effects and shouldn't need
3493       // destruction/cleanups, so we can safely "emit" it after its arg,
3494       // regardless of right-to-leftness
3495       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3496     }
3497   }
3498 
3499   if (!LeftToRight) {
3500     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3501     // IR function.
3502     std::reverse(Args.begin() + CallArgsStart, Args.end());
3503   }
3504 }
3505 
3506 namespace {
3507 
3508 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3509   DestroyUnpassedArg(Address Addr, QualType Ty)
3510       : Addr(Addr), Ty(Ty) {}
3511 
3512   Address Addr;
3513   QualType Ty;
3514 
3515   void Emit(CodeGenFunction &CGF, Flags flags) override {
3516     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3517     if (DtorKind == QualType::DK_cxx_destructor) {
3518       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3519       assert(!Dtor->isTrivial());
3520       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3521                                 /*Delegating=*/false, Addr);
3522     } else {
3523       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3524     }
3525   }
3526 };
3527 
3528 struct DisableDebugLocationUpdates {
3529   CodeGenFunction &CGF;
3530   bool disabledDebugInfo;
3531   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3532     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3533       CGF.disableDebugInfo();
3534   }
3535   ~DisableDebugLocationUpdates() {
3536     if (disabledDebugInfo)
3537       CGF.enableDebugInfo();
3538   }
3539 };
3540 
3541 } // end anonymous namespace
3542 
3543 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3544   if (!HasLV)
3545     return RV;
3546   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3547   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3548                         LV.isVolatile());
3549   IsUsed = true;
3550   return RValue::getAggregate(Copy.getAddress());
3551 }
3552 
3553 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3554   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3555   if (!HasLV && RV.isScalar())
3556     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true);
3557   else if (!HasLV && RV.isComplex())
3558     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3559   else {
3560     auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3561     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3562     // We assume that call args are never copied into subobjects.
3563     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3564                           HasLV ? LV.isVolatileQualified()
3565                                 : RV.isVolatileQualified());
3566   }
3567   IsUsed = true;
3568 }
3569 
3570 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3571                                   QualType type) {
3572   DisableDebugLocationUpdates Dis(*this, E);
3573   if (const ObjCIndirectCopyRestoreExpr *CRE
3574         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3575     assert(getLangOpts().ObjCAutoRefCount);
3576     return emitWritebackArg(*this, args, CRE);
3577   }
3578 
3579   assert(type->isReferenceType() == E->isGLValue() &&
3580          "reference binding to unmaterialized r-value!");
3581 
3582   if (E->isGLValue()) {
3583     assert(E->getObjectKind() == OK_Ordinary);
3584     return args.add(EmitReferenceBindingToExpr(E), type);
3585   }
3586 
3587   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3588 
3589   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3590   // However, we still have to push an EH-only cleanup in case we unwind before
3591   // we make it to the call.
3592   if (HasAggregateEvalKind &&
3593       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3594     // If we're using inalloca, use the argument memory.  Otherwise, use a
3595     // temporary.
3596     AggValueSlot Slot;
3597     if (args.isUsingInAlloca())
3598       Slot = createPlaceholderSlot(*this, type);
3599     else
3600       Slot = CreateAggTemp(type, "agg.tmp");
3601 
3602     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3603     if (const auto *RD = type->getAsCXXRecordDecl())
3604       DestroyedInCallee = RD->hasNonTrivialDestructor();
3605     else
3606       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3607 
3608     if (DestroyedInCallee)
3609       Slot.setExternallyDestructed();
3610 
3611     EmitAggExpr(E, Slot);
3612     RValue RV = Slot.asRValue();
3613     args.add(RV, type);
3614 
3615     if (DestroyedInCallee && NeedsEHCleanup) {
3616       // Create a no-op GEP between the placeholder and the cleanup so we can
3617       // RAUW it successfully.  It also serves as a marker of the first
3618       // instruction where the cleanup is active.
3619       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3620                                               type);
3621       // This unreachable is a temporary marker which will be removed later.
3622       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3623       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3624     }
3625     return;
3626   }
3627 
3628   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3629       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3630     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3631     assert(L.isSimple());
3632     args.addUncopiedAggregate(L, type);
3633     return;
3634   }
3635 
3636   args.add(EmitAnyExprToTemp(E), type);
3637 }
3638 
3639 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3640   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3641   // implicitly widens null pointer constants that are arguments to varargs
3642   // functions to pointer-sized ints.
3643   if (!getTarget().getTriple().isOSWindows())
3644     return Arg->getType();
3645 
3646   if (Arg->getType()->isIntegerType() &&
3647       getContext().getTypeSize(Arg->getType()) <
3648           getContext().getTargetInfo().getPointerWidth(0) &&
3649       Arg->isNullPointerConstant(getContext(),
3650                                  Expr::NPC_ValueDependentIsNotNull)) {
3651     return getContext().getIntPtrType();
3652   }
3653 
3654   return Arg->getType();
3655 }
3656 
3657 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3658 // optimizer it can aggressively ignore unwind edges.
3659 void
3660 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3661   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3662       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3663     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3664                       CGM.getNoObjCARCExceptionsMetadata());
3665 }
3666 
3667 /// Emits a call to the given no-arguments nounwind runtime function.
3668 llvm::CallInst *
3669 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3670                                          const llvm::Twine &name) {
3671   return EmitNounwindRuntimeCall(callee, None, name);
3672 }
3673 
3674 /// Emits a call to the given nounwind runtime function.
3675 llvm::CallInst *
3676 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3677                                          ArrayRef<llvm::Value*> args,
3678                                          const llvm::Twine &name) {
3679   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3680   call->setDoesNotThrow();
3681   return call;
3682 }
3683 
3684 /// Emits a simple call (never an invoke) to the given no-arguments
3685 /// runtime function.
3686 llvm::CallInst *
3687 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3688                                  const llvm::Twine &name) {
3689   return EmitRuntimeCall(callee, None, name);
3690 }
3691 
3692 // Calls which may throw must have operand bundles indicating which funclet
3693 // they are nested within.
3694 SmallVector<llvm::OperandBundleDef, 1>
3695 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3696   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3697   // There is no need for a funclet operand bundle if we aren't inside a
3698   // funclet.
3699   if (!CurrentFuncletPad)
3700     return BundleList;
3701 
3702   // Skip intrinsics which cannot throw.
3703   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3704   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3705     return BundleList;
3706 
3707   BundleList.emplace_back("funclet", CurrentFuncletPad);
3708   return BundleList;
3709 }
3710 
3711 /// Emits a simple call (never an invoke) to the given runtime function.
3712 llvm::CallInst *
3713 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3714                                  ArrayRef<llvm::Value*> args,
3715                                  const llvm::Twine &name) {
3716   llvm::CallInst *call =
3717       Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name);
3718   call->setCallingConv(getRuntimeCC());
3719   return call;
3720 }
3721 
3722 /// Emits a call or invoke to the given noreturn runtime function.
3723 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3724                                                ArrayRef<llvm::Value*> args) {
3725   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3726       getBundlesForFunclet(callee);
3727 
3728   if (getInvokeDest()) {
3729     llvm::InvokeInst *invoke =
3730       Builder.CreateInvoke(callee,
3731                            getUnreachableBlock(),
3732                            getInvokeDest(),
3733                            args,
3734                            BundleList);
3735     invoke->setDoesNotReturn();
3736     invoke->setCallingConv(getRuntimeCC());
3737   } else {
3738     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3739     call->setDoesNotReturn();
3740     call->setCallingConv(getRuntimeCC());
3741     Builder.CreateUnreachable();
3742   }
3743 }
3744 
3745 /// Emits a call or invoke instruction to the given nullary runtime function.
3746 llvm::CallSite
3747 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3748                                          const Twine &name) {
3749   return EmitRuntimeCallOrInvoke(callee, None, name);
3750 }
3751 
3752 /// Emits a call or invoke instruction to the given runtime function.
3753 llvm::CallSite
3754 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3755                                          ArrayRef<llvm::Value*> args,
3756                                          const Twine &name) {
3757   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3758   callSite.setCallingConv(getRuntimeCC());
3759   return callSite;
3760 }
3761 
3762 /// Emits a call or invoke instruction to the given function, depending
3763 /// on the current state of the EH stack.
3764 llvm::CallSite
3765 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3766                                   ArrayRef<llvm::Value *> Args,
3767                                   const Twine &Name) {
3768   llvm::BasicBlock *InvokeDest = getInvokeDest();
3769   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3770       getBundlesForFunclet(Callee);
3771 
3772   llvm::Instruction *Inst;
3773   if (!InvokeDest)
3774     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3775   else {
3776     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3777     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3778                                 Name);
3779     EmitBlock(ContBB);
3780   }
3781 
3782   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3783   // optimizer it can aggressively ignore unwind edges.
3784   if (CGM.getLangOpts().ObjCAutoRefCount)
3785     AddObjCARCExceptionMetadata(Inst);
3786 
3787   return llvm::CallSite(Inst);
3788 }
3789 
3790 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3791                                                   llvm::Value *New) {
3792   DeferredReplacements.push_back(std::make_pair(Old, New));
3793 }
3794 
3795 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3796                                  const CGCallee &Callee,
3797                                  ReturnValueSlot ReturnValue,
3798                                  const CallArgList &CallArgs,
3799                                  llvm::Instruction **callOrInvoke,
3800                                  SourceLocation Loc) {
3801   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3802 
3803   assert(Callee.isOrdinary() || Callee.isVirtual());
3804 
3805   // Handle struct-return functions by passing a pointer to the
3806   // location that we would like to return into.
3807   QualType RetTy = CallInfo.getReturnType();
3808   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3809 
3810   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3811 
3812   // 1. Set up the arguments.
3813 
3814   // If we're using inalloca, insert the allocation after the stack save.
3815   // FIXME: Do this earlier rather than hacking it in here!
3816   Address ArgMemory = Address::invalid();
3817   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3818   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3819     const llvm::DataLayout &DL = CGM.getDataLayout();
3820     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3821     llvm::Instruction *IP = CallArgs.getStackBase();
3822     llvm::AllocaInst *AI;
3823     if (IP) {
3824       IP = IP->getNextNode();
3825       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3826                                 "argmem", IP);
3827     } else {
3828       AI = CreateTempAlloca(ArgStruct, "argmem");
3829     }
3830     auto Align = CallInfo.getArgStructAlignment();
3831     AI->setAlignment(Align.getQuantity());
3832     AI->setUsedWithInAlloca(true);
3833     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3834     ArgMemory = Address(AI, Align);
3835   }
3836 
3837   // Helper function to drill into the inalloca allocation.
3838   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3839     auto FieldOffset =
3840       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3841     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3842   };
3843 
3844   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3845   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3846 
3847   // If the call returns a temporary with struct return, create a temporary
3848   // alloca to hold the result, unless one is given to us.
3849   Address SRetPtr = Address::invalid();
3850   Address SRetAlloca = Address::invalid();
3851   llvm::Value *UnusedReturnSizePtr = nullptr;
3852   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3853     if (!ReturnValue.isNull()) {
3854       SRetPtr = ReturnValue.getValue();
3855     } else {
3856       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3857       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3858         uint64_t size =
3859             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3860         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3861       }
3862     }
3863     if (IRFunctionArgs.hasSRetArg()) {
3864       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3865     } else if (RetAI.isInAlloca()) {
3866       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3867       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3868     }
3869   }
3870 
3871   Address swiftErrorTemp = Address::invalid();
3872   Address swiftErrorArg = Address::invalid();
3873 
3874   // Translate all of the arguments as necessary to match the IR lowering.
3875   assert(CallInfo.arg_size() == CallArgs.size() &&
3876          "Mismatch between function signature & arguments.");
3877   unsigned ArgNo = 0;
3878   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3879   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3880        I != E; ++I, ++info_it, ++ArgNo) {
3881     const ABIArgInfo &ArgInfo = info_it->info;
3882 
3883     // Insert a padding argument to ensure proper alignment.
3884     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3885       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3886           llvm::UndefValue::get(ArgInfo.getPaddingType());
3887 
3888     unsigned FirstIRArg, NumIRArgs;
3889     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3890 
3891     switch (ArgInfo.getKind()) {
3892     case ABIArgInfo::InAlloca: {
3893       assert(NumIRArgs == 0);
3894       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3895       if (I->isAggregate()) {
3896         // Replace the placeholder with the appropriate argument slot GEP.
3897         Address Addr = I->hasLValue()
3898                            ? I->getKnownLValue().getAddress()
3899                            : I->getKnownRValue().getAggregateAddress();
3900         llvm::Instruction *Placeholder =
3901             cast<llvm::Instruction>(Addr.getPointer());
3902         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3903         Builder.SetInsertPoint(Placeholder);
3904         Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3905         Builder.restoreIP(IP);
3906         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3907       } else {
3908         // Store the RValue into the argument struct.
3909         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3910         unsigned AS = Addr.getType()->getPointerAddressSpace();
3911         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3912         // There are some cases where a trivial bitcast is not avoidable.  The
3913         // definition of a type later in a translation unit may change it's type
3914         // from {}* to (%struct.foo*)*.
3915         if (Addr.getType() != MemType)
3916           Addr = Builder.CreateBitCast(Addr, MemType);
3917         I->copyInto(*this, Addr);
3918       }
3919       break;
3920     }
3921 
3922     case ABIArgInfo::Indirect: {
3923       assert(NumIRArgs == 1);
3924       if (!I->isAggregate()) {
3925         // Make a temporary alloca to pass the argument.
3926         Address Addr = CreateMemTempWithoutCast(
3927             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3928         IRCallArgs[FirstIRArg] = Addr.getPointer();
3929 
3930         I->copyInto(*this, Addr);
3931       } else {
3932         // We want to avoid creating an unnecessary temporary+copy here;
3933         // however, we need one in three cases:
3934         // 1. If the argument is not byval, and we are required to copy the
3935         //    source.  (This case doesn't occur on any common architecture.)
3936         // 2. If the argument is byval, RV is not sufficiently aligned, and
3937         //    we cannot force it to be sufficiently aligned.
3938         // 3. If the argument is byval, but RV is not located in default
3939         //    or alloca address space.
3940         Address Addr = I->hasLValue()
3941                            ? I->getKnownLValue().getAddress()
3942                            : I->getKnownRValue().getAggregateAddress();
3943         llvm::Value *V = Addr.getPointer();
3944         CharUnits Align = ArgInfo.getIndirectAlign();
3945         const llvm::DataLayout *TD = &CGM.getDataLayout();
3946 
3947         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3948                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3949                     TD->getAllocaAddrSpace()) &&
3950                "indirect argument must be in alloca address space");
3951 
3952         bool NeedCopy = false;
3953 
3954         if (Addr.getAlignment() < Align &&
3955             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3956                 Align.getQuantity()) {
3957           NeedCopy = true;
3958         } else if (I->hasLValue()) {
3959           auto LV = I->getKnownLValue();
3960           auto AS = LV.getAddressSpace();
3961 
3962           if ((!ArgInfo.getIndirectByVal() &&
3963                (LV.getAlignment() >=
3964                 getContext().getTypeAlignInChars(I->Ty)))) {
3965             NeedCopy = true;
3966           }
3967           if (!getLangOpts().OpenCL) {
3968             if ((ArgInfo.getIndirectByVal() &&
3969                 (AS != LangAS::Default &&
3970                  AS != CGM.getASTAllocaAddressSpace()))) {
3971               NeedCopy = true;
3972             }
3973           }
3974           // For OpenCL even if RV is located in default or alloca address space
3975           // we don't want to perform address space cast for it.
3976           else if ((ArgInfo.getIndirectByVal() &&
3977                     Addr.getType()->getAddressSpace() != IRFuncTy->
3978                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
3979             NeedCopy = true;
3980           }
3981         }
3982 
3983         if (NeedCopy) {
3984           // Create an aligned temporary, and copy to it.
3985           Address AI = CreateMemTempWithoutCast(
3986               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
3987           IRCallArgs[FirstIRArg] = AI.getPointer();
3988           I->copyInto(*this, AI);
3989         } else {
3990           // Skip the extra memcpy call.
3991           auto *T = V->getType()->getPointerElementType()->getPointerTo(
3992               CGM.getDataLayout().getAllocaAddrSpace());
3993           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
3994               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
3995               true);
3996         }
3997       }
3998       break;
3999     }
4000 
4001     case ABIArgInfo::Ignore:
4002       assert(NumIRArgs == 0);
4003       break;
4004 
4005     case ABIArgInfo::Extend:
4006     case ABIArgInfo::Direct: {
4007       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4008           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4009           ArgInfo.getDirectOffset() == 0) {
4010         assert(NumIRArgs == 1);
4011         llvm::Value *V;
4012         if (!I->isAggregate())
4013           V = I->getKnownRValue().getScalarVal();
4014         else
4015           V = Builder.CreateLoad(
4016               I->hasLValue() ? I->getKnownLValue().getAddress()
4017                              : I->getKnownRValue().getAggregateAddress());
4018 
4019         // Implement swifterror by copying into a new swifterror argument.
4020         // We'll write back in the normal path out of the call.
4021         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4022               == ParameterABI::SwiftErrorResult) {
4023           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4024 
4025           QualType pointeeTy = I->Ty->getPointeeType();
4026           swiftErrorArg =
4027             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4028 
4029           swiftErrorTemp =
4030             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4031           V = swiftErrorTemp.getPointer();
4032           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4033 
4034           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4035           Builder.CreateStore(errorValue, swiftErrorTemp);
4036         }
4037 
4038         // We might have to widen integers, but we should never truncate.
4039         if (ArgInfo.getCoerceToType() != V->getType() &&
4040             V->getType()->isIntegerTy())
4041           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4042 
4043         // If the argument doesn't match, perform a bitcast to coerce it.  This
4044         // can happen due to trivial type mismatches.
4045         if (FirstIRArg < IRFuncTy->getNumParams() &&
4046             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4047           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4048 
4049         IRCallArgs[FirstIRArg] = V;
4050         break;
4051       }
4052 
4053       // FIXME: Avoid the conversion through memory if possible.
4054       Address Src = Address::invalid();
4055       if (!I->isAggregate()) {
4056         Src = CreateMemTemp(I->Ty, "coerce");
4057         I->copyInto(*this, Src);
4058       } else {
4059         Src = I->hasLValue() ? I->getKnownLValue().getAddress()
4060                              : I->getKnownRValue().getAggregateAddress();
4061       }
4062 
4063       // If the value is offset in memory, apply the offset now.
4064       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4065 
4066       // Fast-isel and the optimizer generally like scalar values better than
4067       // FCAs, so we flatten them if this is safe to do for this argument.
4068       llvm::StructType *STy =
4069             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4070       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4071         llvm::Type *SrcTy = Src.getType()->getElementType();
4072         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4073         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4074 
4075         // If the source type is smaller than the destination type of the
4076         // coerce-to logic, copy the source value into a temp alloca the size
4077         // of the destination type to allow loading all of it. The bits past
4078         // the source value are left undef.
4079         if (SrcSize < DstSize) {
4080           Address TempAlloca
4081             = CreateTempAlloca(STy, Src.getAlignment(),
4082                                Src.getName() + ".coerce");
4083           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4084           Src = TempAlloca;
4085         } else {
4086           Src = Builder.CreateBitCast(Src,
4087                                       STy->getPointerTo(Src.getAddressSpace()));
4088         }
4089 
4090         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
4091         assert(NumIRArgs == STy->getNumElements());
4092         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4093           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
4094           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
4095           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4096           IRCallArgs[FirstIRArg + i] = LI;
4097         }
4098       } else {
4099         // In the simple case, just pass the coerced loaded value.
4100         assert(NumIRArgs == 1);
4101         IRCallArgs[FirstIRArg] =
4102           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4103       }
4104 
4105       break;
4106     }
4107 
4108     case ABIArgInfo::CoerceAndExpand: {
4109       auto coercionType = ArgInfo.getCoerceAndExpandType();
4110       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4111 
4112       llvm::Value *tempSize = nullptr;
4113       Address addr = Address::invalid();
4114       Address AllocaAddr = Address::invalid();
4115       if (I->isAggregate()) {
4116         addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4117                               : I->getKnownRValue().getAggregateAddress();
4118 
4119       } else {
4120         RValue RV = I->getKnownRValue();
4121         assert(RV.isScalar()); // complex should always just be direct
4122 
4123         llvm::Type *scalarType = RV.getScalarVal()->getType();
4124         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4125         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4126 
4127         // Materialize to a temporary.
4128         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4129                                 CharUnits::fromQuantity(std::max(
4130                                     layout->getAlignment(), scalarAlign)),
4131                                 "tmp",
4132                                 /*ArraySize=*/nullptr, &AllocaAddr);
4133         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4134 
4135         Builder.CreateStore(RV.getScalarVal(), addr);
4136       }
4137 
4138       addr = Builder.CreateElementBitCast(addr, coercionType);
4139 
4140       unsigned IRArgPos = FirstIRArg;
4141       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4142         llvm::Type *eltType = coercionType->getElementType(i);
4143         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4144         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4145         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4146         IRCallArgs[IRArgPos++] = elt;
4147       }
4148       assert(IRArgPos == FirstIRArg + NumIRArgs);
4149 
4150       if (tempSize) {
4151         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4152       }
4153 
4154       break;
4155     }
4156 
4157     case ABIArgInfo::Expand:
4158       unsigned IRArgPos = FirstIRArg;
4159       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4160       assert(IRArgPos == FirstIRArg + NumIRArgs);
4161       break;
4162     }
4163   }
4164 
4165   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4166   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4167 
4168   // If we're using inalloca, set up that argument.
4169   if (ArgMemory.isValid()) {
4170     llvm::Value *Arg = ArgMemory.getPointer();
4171     if (CallInfo.isVariadic()) {
4172       // When passing non-POD arguments by value to variadic functions, we will
4173       // end up with a variadic prototype and an inalloca call site.  In such
4174       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4175       // the callee.
4176       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4177       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4178       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4179     } else {
4180       llvm::Type *LastParamTy =
4181           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4182       if (Arg->getType() != LastParamTy) {
4183 #ifndef NDEBUG
4184         // Assert that these structs have equivalent element types.
4185         llvm::StructType *FullTy = CallInfo.getArgStruct();
4186         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4187             cast<llvm::PointerType>(LastParamTy)->getElementType());
4188         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4189         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4190                                                 DE = DeclaredTy->element_end(),
4191                                                 FI = FullTy->element_begin();
4192              DI != DE; ++DI, ++FI)
4193           assert(*DI == *FI);
4194 #endif
4195         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4196       }
4197     }
4198     assert(IRFunctionArgs.hasInallocaArg());
4199     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4200   }
4201 
4202   // 2. Prepare the function pointer.
4203 
4204   // If the callee is a bitcast of a non-variadic function to have a
4205   // variadic function pointer type, check to see if we can remove the
4206   // bitcast.  This comes up with unprototyped functions.
4207   //
4208   // This makes the IR nicer, but more importantly it ensures that we
4209   // can inline the function at -O0 if it is marked always_inline.
4210   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4211     llvm::FunctionType *CalleeFT =
4212       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4213     if (!CalleeFT->isVarArg())
4214       return Ptr;
4215 
4216     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4217     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4218       return Ptr;
4219 
4220     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4221     if (!OrigFn)
4222       return Ptr;
4223 
4224     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4225 
4226     // If the original type is variadic, or if any of the component types
4227     // disagree, we cannot remove the cast.
4228     if (OrigFT->isVarArg() ||
4229         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4230         OrigFT->getReturnType() != CalleeFT->getReturnType())
4231       return Ptr;
4232 
4233     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4234       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4235         return Ptr;
4236 
4237     return OrigFn;
4238   };
4239   CalleePtr = simplifyVariadicCallee(CalleePtr);
4240 
4241   // 3. Perform the actual call.
4242 
4243   // Deactivate any cleanups that we're supposed to do immediately before
4244   // the call.
4245   if (!CallArgs.getCleanupsToDeactivate().empty())
4246     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4247 
4248   // Assert that the arguments we computed match up.  The IR verifier
4249   // will catch this, but this is a common enough source of problems
4250   // during IRGen changes that it's way better for debugging to catch
4251   // it ourselves here.
4252 #ifndef NDEBUG
4253   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4254   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4255     // Inalloca argument can have different type.
4256     if (IRFunctionArgs.hasInallocaArg() &&
4257         i == IRFunctionArgs.getInallocaArgNo())
4258       continue;
4259     if (i < IRFuncTy->getNumParams())
4260       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4261   }
4262 #endif
4263 
4264   // Update the largest vector width if any arguments have vector types.
4265   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4266     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4267       LargestVectorWidth = std::max(LargestVectorWidth,
4268                                     VT->getPrimitiveSizeInBits());
4269   }
4270 
4271   // Compute the calling convention and attributes.
4272   unsigned CallingConv;
4273   llvm::AttributeList Attrs;
4274   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4275                              Callee.getAbstractInfo(), Attrs, CallingConv,
4276                              /*AttrOnCallSite=*/true);
4277 
4278   // Apply some call-site-specific attributes.
4279   // TODO: work this into building the attribute set.
4280 
4281   // Apply always_inline to all calls within flatten functions.
4282   // FIXME: should this really take priority over __try, below?
4283   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4284       !(Callee.getAbstractInfo().getCalleeDecl().getDecl() &&
4285         Callee.getAbstractInfo()
4286             .getCalleeDecl()
4287             .getDecl()
4288             ->hasAttr<NoInlineAttr>())) {
4289     Attrs =
4290         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4291                            llvm::Attribute::AlwaysInline);
4292   }
4293 
4294   // Disable inlining inside SEH __try blocks.
4295   if (isSEHTryScope()) {
4296     Attrs =
4297         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4298                            llvm::Attribute::NoInline);
4299   }
4300 
4301   // Decide whether to use a call or an invoke.
4302   bool CannotThrow;
4303   if (currentFunctionUsesSEHTry()) {
4304     // SEH cares about asynchronous exceptions, so everything can "throw."
4305     CannotThrow = false;
4306   } else if (isCleanupPadScope() &&
4307              EHPersonality::get(*this).isMSVCXXPersonality()) {
4308     // The MSVC++ personality will implicitly terminate the program if an
4309     // exception is thrown during a cleanup outside of a try/catch.
4310     // We don't need to model anything in IR to get this behavior.
4311     CannotThrow = true;
4312   } else {
4313     // Otherwise, nounwind call sites will never throw.
4314     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4315                                      llvm::Attribute::NoUnwind);
4316   }
4317 
4318   // If we made a temporary, be sure to clean up after ourselves. Note that we
4319   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4320   // pop this cleanup later on. Being eager about this is OK, since this
4321   // temporary is 'invisible' outside of the callee.
4322   if (UnusedReturnSizePtr)
4323     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4324                                          UnusedReturnSizePtr);
4325 
4326   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4327 
4328   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4329       getBundlesForFunclet(CalleePtr);
4330 
4331   // Emit the actual call/invoke instruction.
4332   llvm::CallSite CS;
4333   if (!InvokeDest) {
4334     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4335   } else {
4336     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4337     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4338                               BundleList);
4339     EmitBlock(Cont);
4340   }
4341   llvm::Instruction *CI = CS.getInstruction();
4342   if (callOrInvoke)
4343     *callOrInvoke = CI;
4344 
4345   // Apply the attributes and calling convention.
4346   CS.setAttributes(Attrs);
4347   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4348 
4349   // Apply various metadata.
4350 
4351   if (!CI->getType()->isVoidTy())
4352     CI->setName("call");
4353 
4354   // Update largest vector width from the return type.
4355   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4356     LargestVectorWidth = std::max(LargestVectorWidth,
4357                                   VT->getPrimitiveSizeInBits());
4358 
4359   // Insert instrumentation or attach profile metadata at indirect call sites.
4360   // For more details, see the comment before the definition of
4361   // IPVK_IndirectCallTarget in InstrProfData.inc.
4362   if (!CS.getCalledFunction())
4363     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4364                      CI, CalleePtr);
4365 
4366   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4367   // optimizer it can aggressively ignore unwind edges.
4368   if (CGM.getLangOpts().ObjCAutoRefCount)
4369     AddObjCARCExceptionMetadata(CI);
4370 
4371   // Suppress tail calls if requested.
4372   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4373     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4374     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4375       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4376   }
4377 
4378   // 4. Finish the call.
4379 
4380   // If the call doesn't return, finish the basic block and clear the
4381   // insertion point; this allows the rest of IRGen to discard
4382   // unreachable code.
4383   if (CS.doesNotReturn()) {
4384     if (UnusedReturnSizePtr)
4385       PopCleanupBlock();
4386 
4387     // Strip away the noreturn attribute to better diagnose unreachable UB.
4388     if (SanOpts.has(SanitizerKind::Unreachable)) {
4389       if (auto *F = CS.getCalledFunction())
4390         F->removeFnAttr(llvm::Attribute::NoReturn);
4391       CS.removeAttribute(llvm::AttributeList::FunctionIndex,
4392                          llvm::Attribute::NoReturn);
4393     }
4394 
4395     EmitUnreachable(Loc);
4396     Builder.ClearInsertionPoint();
4397 
4398     // FIXME: For now, emit a dummy basic block because expr emitters in
4399     // generally are not ready to handle emitting expressions at unreachable
4400     // points.
4401     EnsureInsertPoint();
4402 
4403     // Return a reasonable RValue.
4404     return GetUndefRValue(RetTy);
4405   }
4406 
4407   // Perform the swifterror writeback.
4408   if (swiftErrorTemp.isValid()) {
4409     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4410     Builder.CreateStore(errorResult, swiftErrorArg);
4411   }
4412 
4413   // Emit any call-associated writebacks immediately.  Arguably this
4414   // should happen after any return-value munging.
4415   if (CallArgs.hasWritebacks())
4416     emitWritebacks(*this, CallArgs);
4417 
4418   // The stack cleanup for inalloca arguments has to run out of the normal
4419   // lexical order, so deactivate it and run it manually here.
4420   CallArgs.freeArgumentMemory(*this);
4421 
4422   // Extract the return value.
4423   RValue Ret = [&] {
4424     switch (RetAI.getKind()) {
4425     case ABIArgInfo::CoerceAndExpand: {
4426       auto coercionType = RetAI.getCoerceAndExpandType();
4427       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4428 
4429       Address addr = SRetPtr;
4430       addr = Builder.CreateElementBitCast(addr, coercionType);
4431 
4432       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4433       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4434 
4435       unsigned unpaddedIndex = 0;
4436       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4437         llvm::Type *eltType = coercionType->getElementType(i);
4438         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4439         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4440         llvm::Value *elt = CI;
4441         if (requiresExtract)
4442           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4443         else
4444           assert(unpaddedIndex == 0);
4445         Builder.CreateStore(elt, eltAddr);
4446       }
4447       // FALLTHROUGH
4448       LLVM_FALLTHROUGH;
4449     }
4450 
4451     case ABIArgInfo::InAlloca:
4452     case ABIArgInfo::Indirect: {
4453       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4454       if (UnusedReturnSizePtr)
4455         PopCleanupBlock();
4456       return ret;
4457     }
4458 
4459     case ABIArgInfo::Ignore:
4460       // If we are ignoring an argument that had a result, make sure to
4461       // construct the appropriate return value for our caller.
4462       return GetUndefRValue(RetTy);
4463 
4464     case ABIArgInfo::Extend:
4465     case ABIArgInfo::Direct: {
4466       llvm::Type *RetIRTy = ConvertType(RetTy);
4467       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4468         switch (getEvaluationKind(RetTy)) {
4469         case TEK_Complex: {
4470           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4471           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4472           return RValue::getComplex(std::make_pair(Real, Imag));
4473         }
4474         case TEK_Aggregate: {
4475           Address DestPtr = ReturnValue.getValue();
4476           bool DestIsVolatile = ReturnValue.isVolatile();
4477 
4478           if (!DestPtr.isValid()) {
4479             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4480             DestIsVolatile = false;
4481           }
4482           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4483           return RValue::getAggregate(DestPtr);
4484         }
4485         case TEK_Scalar: {
4486           // If the argument doesn't match, perform a bitcast to coerce it.  This
4487           // can happen due to trivial type mismatches.
4488           llvm::Value *V = CI;
4489           if (V->getType() != RetIRTy)
4490             V = Builder.CreateBitCast(V, RetIRTy);
4491           return RValue::get(V);
4492         }
4493         }
4494         llvm_unreachable("bad evaluation kind");
4495       }
4496 
4497       Address DestPtr = ReturnValue.getValue();
4498       bool DestIsVolatile = ReturnValue.isVolatile();
4499 
4500       if (!DestPtr.isValid()) {
4501         DestPtr = CreateMemTemp(RetTy, "coerce");
4502         DestIsVolatile = false;
4503       }
4504 
4505       // If the value is offset in memory, apply the offset now.
4506       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4507       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4508 
4509       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4510     }
4511 
4512     case ABIArgInfo::Expand:
4513       llvm_unreachable("Invalid ABI kind for return argument");
4514     }
4515 
4516     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4517   } ();
4518 
4519   // Emit the assume_aligned check on the return value.
4520   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4521   if (Ret.isScalar() && TargetDecl) {
4522     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4523       llvm::Value *OffsetValue = nullptr;
4524       if (const auto *Offset = AA->getOffset())
4525         OffsetValue = EmitScalarExpr(Offset);
4526 
4527       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4528       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4529       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4530                               OffsetValue);
4531     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4532       llvm::Value *ParamVal =
4533           CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue(
4534               *this).getScalarVal();
4535       EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal);
4536     }
4537   }
4538 
4539   return Ret;
4540 }
4541 
4542 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4543   if (isVirtual()) {
4544     const CallExpr *CE = getVirtualCallExpr();
4545     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4546         CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(),
4547         CE ? CE->getBeginLoc() : SourceLocation());
4548   }
4549 
4550   return *this;
4551 }
4552 
4553 /* VarArg handling */
4554 
4555 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4556   VAListAddr = VE->isMicrosoftABI()
4557                  ? EmitMSVAListRef(VE->getSubExpr())
4558                  : EmitVAListRef(VE->getSubExpr());
4559   QualType Ty = VE->getType();
4560   if (VE->isMicrosoftABI())
4561     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4562   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4563 }
4564