1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/CodeGen/CGFunctionInfo.h" 30 #include "clang/CodeGen/SwiftCallingConv.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 63 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 64 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 65 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 66 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 67 case CC_Swift: return llvm::CallingConv::Swift; 68 } 69 } 70 71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 72 /// qualification. 73 /// FIXME: address space qualification? 74 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 75 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 76 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 77 } 78 79 /// Returns the canonical formal type of the given C++ method. 80 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 81 return MD->getType()->getCanonicalTypeUnqualified() 82 .getAs<FunctionProtoType>(); 83 } 84 85 /// Returns the "extra-canonicalized" return type, which discards 86 /// qualifiers on the return type. Codegen doesn't care about them, 87 /// and it makes ABI code a little easier to be able to assume that 88 /// all parameter and return types are top-level unqualified. 89 static CanQualType GetReturnType(QualType RetTy) { 90 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 91 } 92 93 /// Arrange the argument and result information for a value of the given 94 /// unprototyped freestanding function type. 95 const CGFunctionInfo & 96 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 97 // When translating an unprototyped function type, always use a 98 // variadic type. 99 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 100 /*instanceMethod=*/false, 101 /*chainCall=*/false, None, 102 FTNP->getExtInfo(), {}, RequiredArgs(0)); 103 } 104 105 static void addExtParameterInfosForCall( 106 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 107 const FunctionProtoType *proto, 108 unsigned prefixArgs, 109 unsigned totalArgs) { 110 assert(proto->hasExtParameterInfos()); 111 assert(paramInfos.size() <= prefixArgs); 112 assert(proto->getNumParams() + prefixArgs <= totalArgs); 113 114 paramInfos.reserve(totalArgs); 115 116 // Add default infos for any prefix args that don't already have infos. 117 paramInfos.resize(prefixArgs); 118 119 // Add infos for the prototype. 120 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 121 paramInfos.push_back(ParamInfo); 122 // pass_object_size params have no parameter info. 123 if (ParamInfo.hasPassObjectSize()) 124 paramInfos.emplace_back(); 125 } 126 127 assert(paramInfos.size() <= totalArgs && 128 "Did we forget to insert pass_object_size args?"); 129 // Add default infos for the variadic and/or suffix arguments. 130 paramInfos.resize(totalArgs); 131 } 132 133 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 134 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 135 static void appendParameterTypes(const CodeGenTypes &CGT, 136 SmallVectorImpl<CanQualType> &prefix, 137 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 138 CanQual<FunctionProtoType> FPT) { 139 // Fast path: don't touch param info if we don't need to. 140 if (!FPT->hasExtParameterInfos()) { 141 assert(paramInfos.empty() && 142 "We have paramInfos, but the prototype doesn't?"); 143 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 144 return; 145 } 146 147 unsigned PrefixSize = prefix.size(); 148 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 149 // parameters; the only thing that can change this is the presence of 150 // pass_object_size. So, we preallocate for the common case. 151 prefix.reserve(prefix.size() + FPT->getNumParams()); 152 153 auto ExtInfos = FPT->getExtParameterInfos(); 154 assert(ExtInfos.size() == FPT->getNumParams()); 155 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 156 prefix.push_back(FPT->getParamType(I)); 157 if (ExtInfos[I].hasPassObjectSize()) 158 prefix.push_back(CGT.getContext().getSizeType()); 159 } 160 161 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 162 prefix.size()); 163 } 164 165 /// Arrange the LLVM function layout for a value of the given function 166 /// type, on top of any implicit parameters already stored. 167 static const CGFunctionInfo & 168 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 169 SmallVectorImpl<CanQualType> &prefix, 170 CanQual<FunctionProtoType> FTP, 171 const FunctionDecl *FD) { 172 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 173 RequiredArgs Required = 174 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 175 // FIXME: Kill copy. 176 appendParameterTypes(CGT, prefix, paramInfos, FTP); 177 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 178 179 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 180 /*chainCall=*/false, prefix, 181 FTP->getExtInfo(), paramInfos, 182 Required); 183 } 184 185 /// Arrange the argument and result information for a value of the 186 /// given freestanding function type. 187 const CGFunctionInfo & 188 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 189 const FunctionDecl *FD) { 190 SmallVector<CanQualType, 16> argTypes; 191 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 192 FTP, FD); 193 } 194 195 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 196 // Set the appropriate calling convention for the Function. 197 if (D->hasAttr<StdCallAttr>()) 198 return CC_X86StdCall; 199 200 if (D->hasAttr<FastCallAttr>()) 201 return CC_X86FastCall; 202 203 if (D->hasAttr<RegCallAttr>()) 204 return CC_X86RegCall; 205 206 if (D->hasAttr<ThisCallAttr>()) 207 return CC_X86ThisCall; 208 209 if (D->hasAttr<VectorCallAttr>()) 210 return CC_X86VectorCall; 211 212 if (D->hasAttr<PascalAttr>()) 213 return CC_X86Pascal; 214 215 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 216 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 217 218 if (D->hasAttr<AArch64VectorPcsAttr>()) 219 return CC_AArch64VectorCall; 220 221 if (D->hasAttr<IntelOclBiccAttr>()) 222 return CC_IntelOclBicc; 223 224 if (D->hasAttr<MSABIAttr>()) 225 return IsWindows ? CC_C : CC_Win64; 226 227 if (D->hasAttr<SysVABIAttr>()) 228 return IsWindows ? CC_X86_64SysV : CC_C; 229 230 if (D->hasAttr<PreserveMostAttr>()) 231 return CC_PreserveMost; 232 233 if (D->hasAttr<PreserveAllAttr>()) 234 return CC_PreserveAll; 235 236 return CC_C; 237 } 238 239 /// Arrange the argument and result information for a call to an 240 /// unknown C++ non-static member function of the given abstract type. 241 /// (Zero value of RD means we don't have any meaningful "this" argument type, 242 /// so fall back to a generic pointer type). 243 /// The member function must be an ordinary function, i.e. not a 244 /// constructor or destructor. 245 const CGFunctionInfo & 246 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 247 const FunctionProtoType *FTP, 248 const CXXMethodDecl *MD) { 249 SmallVector<CanQualType, 16> argTypes; 250 251 // Add the 'this' pointer. 252 if (RD) 253 argTypes.push_back(GetThisType(Context, RD)); 254 else 255 argTypes.push_back(Context.VoidPtrTy); 256 257 return ::arrangeLLVMFunctionInfo( 258 *this, true, argTypes, 259 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 260 } 261 262 /// Set calling convention for CUDA/HIP kernel. 263 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 264 const FunctionDecl *FD) { 265 if (FD->hasAttr<CUDAGlobalAttr>()) { 266 const FunctionType *FT = FTy->getAs<FunctionType>(); 267 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 268 FTy = FT->getCanonicalTypeUnqualified(); 269 } 270 } 271 272 /// Arrange the argument and result information for a declaration or 273 /// definition of the given C++ non-static member function. The 274 /// member function must be an ordinary function, i.e. not a 275 /// constructor or destructor. 276 const CGFunctionInfo & 277 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 278 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 279 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 280 281 CanQualType FT = GetFormalType(MD).getAs<Type>(); 282 setCUDAKernelCallingConvention(FT, CGM, MD); 283 auto prototype = FT.getAs<FunctionProtoType>(); 284 285 if (MD->isInstance()) { 286 // The abstract case is perfectly fine. 287 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 288 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 289 } 290 291 return arrangeFreeFunctionType(prototype, MD); 292 } 293 294 bool CodeGenTypes::inheritingCtorHasParams( 295 const InheritedConstructor &Inherited, CXXCtorType Type) { 296 // Parameters are unnecessary if we're constructing a base class subobject 297 // and the inherited constructor lives in a virtual base. 298 return Type == Ctor_Complete || 299 !Inherited.getShadowDecl()->constructsVirtualBase() || 300 !Target.getCXXABI().hasConstructorVariants(); 301 } 302 303 const CGFunctionInfo & 304 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 305 StructorType Type) { 306 307 SmallVector<CanQualType, 16> argTypes; 308 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 309 argTypes.push_back(GetThisType(Context, MD->getParent())); 310 311 bool PassParams = true; 312 313 GlobalDecl GD; 314 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 315 GD = GlobalDecl(CD, toCXXCtorType(Type)); 316 317 // A base class inheriting constructor doesn't get forwarded arguments 318 // needed to construct a virtual base (or base class thereof). 319 if (auto Inherited = CD->getInheritedConstructor()) 320 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 321 } else { 322 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 323 GD = GlobalDecl(DD, toCXXDtorType(Type)); 324 } 325 326 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 327 328 // Add the formal parameters. 329 if (PassParams) 330 appendParameterTypes(*this, argTypes, paramInfos, FTP); 331 332 CGCXXABI::AddedStructorArgs AddedArgs = 333 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 334 if (!paramInfos.empty()) { 335 // Note: prefix implies after the first param. 336 if (AddedArgs.Prefix) 337 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 338 FunctionProtoType::ExtParameterInfo{}); 339 if (AddedArgs.Suffix) 340 paramInfos.append(AddedArgs.Suffix, 341 FunctionProtoType::ExtParameterInfo{}); 342 } 343 344 RequiredArgs required = 345 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 346 : RequiredArgs::All); 347 348 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 349 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 350 ? argTypes.front() 351 : TheCXXABI.hasMostDerivedReturn(GD) 352 ? CGM.getContext().VoidPtrTy 353 : Context.VoidTy; 354 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 355 /*chainCall=*/false, argTypes, extInfo, 356 paramInfos, required); 357 } 358 359 static SmallVector<CanQualType, 16> 360 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 361 SmallVector<CanQualType, 16> argTypes; 362 for (auto &arg : args) 363 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 364 return argTypes; 365 } 366 367 static SmallVector<CanQualType, 16> 368 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 369 SmallVector<CanQualType, 16> argTypes; 370 for (auto &arg : args) 371 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 372 return argTypes; 373 } 374 375 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 376 getExtParameterInfosForCall(const FunctionProtoType *proto, 377 unsigned prefixArgs, unsigned totalArgs) { 378 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 379 if (proto->hasExtParameterInfos()) { 380 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 381 } 382 return result; 383 } 384 385 /// Arrange a call to a C++ method, passing the given arguments. 386 /// 387 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 388 /// parameter. 389 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 390 /// args. 391 /// PassProtoArgs indicates whether `args` has args for the parameters in the 392 /// given CXXConstructorDecl. 393 const CGFunctionInfo & 394 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 395 const CXXConstructorDecl *D, 396 CXXCtorType CtorKind, 397 unsigned ExtraPrefixArgs, 398 unsigned ExtraSuffixArgs, 399 bool PassProtoArgs) { 400 // FIXME: Kill copy. 401 SmallVector<CanQualType, 16> ArgTypes; 402 for (const auto &Arg : args) 403 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 404 405 // +1 for implicit this, which should always be args[0]. 406 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 407 408 CanQual<FunctionProtoType> FPT = GetFormalType(D); 409 RequiredArgs Required = 410 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 411 GlobalDecl GD(D, CtorKind); 412 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 413 ? ArgTypes.front() 414 : TheCXXABI.hasMostDerivedReturn(GD) 415 ? CGM.getContext().VoidPtrTy 416 : Context.VoidTy; 417 418 FunctionType::ExtInfo Info = FPT->getExtInfo(); 419 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 420 // If the prototype args are elided, we should only have ABI-specific args, 421 // which never have param info. 422 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 423 // ABI-specific suffix arguments are treated the same as variadic arguments. 424 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 425 ArgTypes.size()); 426 } 427 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 428 /*chainCall=*/false, ArgTypes, Info, 429 ParamInfos, Required); 430 } 431 432 /// Arrange the argument and result information for the declaration or 433 /// definition of the given function. 434 const CGFunctionInfo & 435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 436 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 437 if (MD->isInstance()) 438 return arrangeCXXMethodDeclaration(MD); 439 440 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 441 442 assert(isa<FunctionType>(FTy)); 443 setCUDAKernelCallingConvention(FTy, CGM, FD); 444 445 // When declaring a function without a prototype, always use a 446 // non-variadic type. 447 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 448 return arrangeLLVMFunctionInfo( 449 noProto->getReturnType(), /*instanceMethod=*/false, 450 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 451 } 452 453 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 454 } 455 456 /// Arrange the argument and result information for the declaration or 457 /// definition of an Objective-C method. 458 const CGFunctionInfo & 459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 460 // It happens that this is the same as a call with no optional 461 // arguments, except also using the formal 'self' type. 462 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 463 } 464 465 /// Arrange the argument and result information for the function type 466 /// through which to perform a send to the given Objective-C method, 467 /// using the given receiver type. The receiver type is not always 468 /// the 'self' type of the method or even an Objective-C pointer type. 469 /// This is *not* the right method for actually performing such a 470 /// message send, due to the possibility of optional arguments. 471 const CGFunctionInfo & 472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 473 QualType receiverType) { 474 SmallVector<CanQualType, 16> argTys; 475 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 476 argTys.push_back(Context.getCanonicalParamType(receiverType)); 477 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 478 // FIXME: Kill copy? 479 for (const auto *I : MD->parameters()) { 480 argTys.push_back(Context.getCanonicalParamType(I->getType())); 481 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 482 I->hasAttr<NoEscapeAttr>()); 483 extParamInfos.push_back(extParamInfo); 484 } 485 486 FunctionType::ExtInfo einfo; 487 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 488 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 489 490 if (getContext().getLangOpts().ObjCAutoRefCount && 491 MD->hasAttr<NSReturnsRetainedAttr>()) 492 einfo = einfo.withProducesResult(true); 493 494 RequiredArgs required = 495 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 496 497 return arrangeLLVMFunctionInfo( 498 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 499 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 500 } 501 502 const CGFunctionInfo & 503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 504 const CallArgList &args) { 505 auto argTypes = getArgTypesForCall(Context, args); 506 FunctionType::ExtInfo einfo; 507 508 return arrangeLLVMFunctionInfo( 509 GetReturnType(returnType), /*instanceMethod=*/false, 510 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 511 } 512 513 const CGFunctionInfo & 514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 515 // FIXME: Do we need to handle ObjCMethodDecl? 516 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 517 518 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 519 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 520 521 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 522 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 523 524 return arrangeFunctionDeclaration(FD); 525 } 526 527 /// Arrange a thunk that takes 'this' as the first parameter followed by 528 /// varargs. Return a void pointer, regardless of the actual return type. 529 /// The body of the thunk will end in a musttail call to a function of the 530 /// correct type, and the caller will bitcast the function to the correct 531 /// prototype. 532 const CGFunctionInfo & 533 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 534 assert(MD->isVirtual() && "only methods have thunks"); 535 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 536 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 537 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 538 /*chainCall=*/false, ArgTys, 539 FTP->getExtInfo(), {}, RequiredArgs(1)); 540 } 541 542 const CGFunctionInfo & 543 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 544 CXXCtorType CT) { 545 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 546 547 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 548 SmallVector<CanQualType, 2> ArgTys; 549 const CXXRecordDecl *RD = CD->getParent(); 550 ArgTys.push_back(GetThisType(Context, RD)); 551 if (CT == Ctor_CopyingClosure) 552 ArgTys.push_back(*FTP->param_type_begin()); 553 if (RD->getNumVBases() > 0) 554 ArgTys.push_back(Context.IntTy); 555 CallingConv CC = Context.getDefaultCallingConvention( 556 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 557 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 558 /*chainCall=*/false, ArgTys, 559 FunctionType::ExtInfo(CC), {}, 560 RequiredArgs::All); 561 } 562 563 /// Arrange a call as unto a free function, except possibly with an 564 /// additional number of formal parameters considered required. 565 static const CGFunctionInfo & 566 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 567 CodeGenModule &CGM, 568 const CallArgList &args, 569 const FunctionType *fnType, 570 unsigned numExtraRequiredArgs, 571 bool chainCall) { 572 assert(args.size() >= numExtraRequiredArgs); 573 574 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 575 576 // In most cases, there are no optional arguments. 577 RequiredArgs required = RequiredArgs::All; 578 579 // If we have a variadic prototype, the required arguments are the 580 // extra prefix plus the arguments in the prototype. 581 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 582 if (proto->isVariadic()) 583 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 584 585 if (proto->hasExtParameterInfos()) 586 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 587 args.size()); 588 589 // If we don't have a prototype at all, but we're supposed to 590 // explicitly use the variadic convention for unprototyped calls, 591 // treat all of the arguments as required but preserve the nominal 592 // possibility of variadics. 593 } else if (CGM.getTargetCodeGenInfo() 594 .isNoProtoCallVariadic(args, 595 cast<FunctionNoProtoType>(fnType))) { 596 required = RequiredArgs(args.size()); 597 } 598 599 // FIXME: Kill copy. 600 SmallVector<CanQualType, 16> argTypes; 601 for (const auto &arg : args) 602 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 603 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 604 /*instanceMethod=*/false, chainCall, 605 argTypes, fnType->getExtInfo(), paramInfos, 606 required); 607 } 608 609 /// Figure out the rules for calling a function with the given formal 610 /// type using the given arguments. The arguments are necessary 611 /// because the function might be unprototyped, in which case it's 612 /// target-dependent in crazy ways. 613 const CGFunctionInfo & 614 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 615 const FunctionType *fnType, 616 bool chainCall) { 617 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 618 chainCall ? 1 : 0, chainCall); 619 } 620 621 /// A block function is essentially a free function with an 622 /// extra implicit argument. 623 const CGFunctionInfo & 624 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 625 const FunctionType *fnType) { 626 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 627 /*chainCall=*/false); 628 } 629 630 const CGFunctionInfo & 631 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 632 const FunctionArgList ¶ms) { 633 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 634 auto argTypes = getArgTypesForDeclaration(Context, params); 635 636 return arrangeLLVMFunctionInfo( 637 GetReturnType(proto->getReturnType()), 638 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 639 proto->getExtInfo(), paramInfos, 640 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 641 } 642 643 const CGFunctionInfo & 644 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 645 const CallArgList &args) { 646 // FIXME: Kill copy. 647 SmallVector<CanQualType, 16> argTypes; 648 for (const auto &Arg : args) 649 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 650 return arrangeLLVMFunctionInfo( 651 GetReturnType(resultType), /*instanceMethod=*/false, 652 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 653 /*paramInfos=*/ {}, RequiredArgs::All); 654 } 655 656 const CGFunctionInfo & 657 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 658 const FunctionArgList &args) { 659 auto argTypes = getArgTypesForDeclaration(Context, args); 660 661 return arrangeLLVMFunctionInfo( 662 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 663 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 664 } 665 666 const CGFunctionInfo & 667 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 668 ArrayRef<CanQualType> argTypes) { 669 return arrangeLLVMFunctionInfo( 670 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 671 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 672 } 673 674 /// Arrange a call to a C++ method, passing the given arguments. 675 /// 676 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 677 /// does not count `this`. 678 const CGFunctionInfo & 679 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 680 const FunctionProtoType *proto, 681 RequiredArgs required, 682 unsigned numPrefixArgs) { 683 assert(numPrefixArgs + 1 <= args.size() && 684 "Emitting a call with less args than the required prefix?"); 685 // Add one to account for `this`. It's a bit awkward here, but we don't count 686 // `this` in similar places elsewhere. 687 auto paramInfos = 688 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 689 690 // FIXME: Kill copy. 691 auto argTypes = getArgTypesForCall(Context, args); 692 693 FunctionType::ExtInfo info = proto->getExtInfo(); 694 return arrangeLLVMFunctionInfo( 695 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 696 /*chainCall=*/false, argTypes, info, paramInfos, required); 697 } 698 699 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 700 return arrangeLLVMFunctionInfo( 701 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 702 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 703 } 704 705 const CGFunctionInfo & 706 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 707 const CallArgList &args) { 708 assert(signature.arg_size() <= args.size()); 709 if (signature.arg_size() == args.size()) 710 return signature; 711 712 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 713 auto sigParamInfos = signature.getExtParameterInfos(); 714 if (!sigParamInfos.empty()) { 715 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 716 paramInfos.resize(args.size()); 717 } 718 719 auto argTypes = getArgTypesForCall(Context, args); 720 721 assert(signature.getRequiredArgs().allowsOptionalArgs()); 722 return arrangeLLVMFunctionInfo(signature.getReturnType(), 723 signature.isInstanceMethod(), 724 signature.isChainCall(), 725 argTypes, 726 signature.getExtInfo(), 727 paramInfos, 728 signature.getRequiredArgs()); 729 } 730 731 namespace clang { 732 namespace CodeGen { 733 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 734 } 735 } 736 737 /// Arrange the argument and result information for an abstract value 738 /// of a given function type. This is the method which all of the 739 /// above functions ultimately defer to. 740 const CGFunctionInfo & 741 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 742 bool instanceMethod, 743 bool chainCall, 744 ArrayRef<CanQualType> argTypes, 745 FunctionType::ExtInfo info, 746 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 747 RequiredArgs required) { 748 assert(llvm::all_of(argTypes, 749 [](CanQualType T) { return T.isCanonicalAsParam(); })); 750 751 // Lookup or create unique function info. 752 llvm::FoldingSetNodeID ID; 753 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 754 required, resultType, argTypes); 755 756 void *insertPos = nullptr; 757 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 758 if (FI) 759 return *FI; 760 761 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 762 763 // Construct the function info. We co-allocate the ArgInfos. 764 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 765 paramInfos, resultType, argTypes, required); 766 FunctionInfos.InsertNode(FI, insertPos); 767 768 bool inserted = FunctionsBeingProcessed.insert(FI).second; 769 (void)inserted; 770 assert(inserted && "Recursively being processed?"); 771 772 // Compute ABI information. 773 if (CC == llvm::CallingConv::SPIR_KERNEL) { 774 // Force target independent argument handling for the host visible 775 // kernel functions. 776 computeSPIRKernelABIInfo(CGM, *FI); 777 } else if (info.getCC() == CC_Swift) { 778 swiftcall::computeABIInfo(CGM, *FI); 779 } else { 780 getABIInfo().computeInfo(*FI); 781 } 782 783 // Loop over all of the computed argument and return value info. If any of 784 // them are direct or extend without a specified coerce type, specify the 785 // default now. 786 ABIArgInfo &retInfo = FI->getReturnInfo(); 787 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 788 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 789 790 for (auto &I : FI->arguments()) 791 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 792 I.info.setCoerceToType(ConvertType(I.type)); 793 794 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 795 assert(erased && "Not in set?"); 796 797 return *FI; 798 } 799 800 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 801 bool instanceMethod, 802 bool chainCall, 803 const FunctionType::ExtInfo &info, 804 ArrayRef<ExtParameterInfo> paramInfos, 805 CanQualType resultType, 806 ArrayRef<CanQualType> argTypes, 807 RequiredArgs required) { 808 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 809 810 void *buffer = 811 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 812 argTypes.size() + 1, paramInfos.size())); 813 814 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 815 FI->CallingConvention = llvmCC; 816 FI->EffectiveCallingConvention = llvmCC; 817 FI->ASTCallingConvention = info.getCC(); 818 FI->InstanceMethod = instanceMethod; 819 FI->ChainCall = chainCall; 820 FI->NoReturn = info.getNoReturn(); 821 FI->ReturnsRetained = info.getProducesResult(); 822 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 823 FI->NoCfCheck = info.getNoCfCheck(); 824 FI->Required = required; 825 FI->HasRegParm = info.getHasRegParm(); 826 FI->RegParm = info.getRegParm(); 827 FI->ArgStruct = nullptr; 828 FI->ArgStructAlign = 0; 829 FI->NumArgs = argTypes.size(); 830 FI->HasExtParameterInfos = !paramInfos.empty(); 831 FI->getArgsBuffer()[0].type = resultType; 832 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 833 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 834 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 835 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 836 return FI; 837 } 838 839 /***/ 840 841 namespace { 842 // ABIArgInfo::Expand implementation. 843 844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 845 struct TypeExpansion { 846 enum TypeExpansionKind { 847 // Elements of constant arrays are expanded recursively. 848 TEK_ConstantArray, 849 // Record fields are expanded recursively (but if record is a union, only 850 // the field with the largest size is expanded). 851 TEK_Record, 852 // For complex types, real and imaginary parts are expanded recursively. 853 TEK_Complex, 854 // All other types are not expandable. 855 TEK_None 856 }; 857 858 const TypeExpansionKind Kind; 859 860 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 861 virtual ~TypeExpansion() {} 862 }; 863 864 struct ConstantArrayExpansion : TypeExpansion { 865 QualType EltTy; 866 uint64_t NumElts; 867 868 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 869 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 870 static bool classof(const TypeExpansion *TE) { 871 return TE->Kind == TEK_ConstantArray; 872 } 873 }; 874 875 struct RecordExpansion : TypeExpansion { 876 SmallVector<const CXXBaseSpecifier *, 1> Bases; 877 878 SmallVector<const FieldDecl *, 1> Fields; 879 880 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 881 SmallVector<const FieldDecl *, 1> &&Fields) 882 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 883 Fields(std::move(Fields)) {} 884 static bool classof(const TypeExpansion *TE) { 885 return TE->Kind == TEK_Record; 886 } 887 }; 888 889 struct ComplexExpansion : TypeExpansion { 890 QualType EltTy; 891 892 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 893 static bool classof(const TypeExpansion *TE) { 894 return TE->Kind == TEK_Complex; 895 } 896 }; 897 898 struct NoExpansion : TypeExpansion { 899 NoExpansion() : TypeExpansion(TEK_None) {} 900 static bool classof(const TypeExpansion *TE) { 901 return TE->Kind == TEK_None; 902 } 903 }; 904 } // namespace 905 906 static std::unique_ptr<TypeExpansion> 907 getTypeExpansion(QualType Ty, const ASTContext &Context) { 908 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 909 return llvm::make_unique<ConstantArrayExpansion>( 910 AT->getElementType(), AT->getSize().getZExtValue()); 911 } 912 if (const RecordType *RT = Ty->getAs<RecordType>()) { 913 SmallVector<const CXXBaseSpecifier *, 1> Bases; 914 SmallVector<const FieldDecl *, 1> Fields; 915 const RecordDecl *RD = RT->getDecl(); 916 assert(!RD->hasFlexibleArrayMember() && 917 "Cannot expand structure with flexible array."); 918 if (RD->isUnion()) { 919 // Unions can be here only in degenerative cases - all the fields are same 920 // after flattening. Thus we have to use the "largest" field. 921 const FieldDecl *LargestFD = nullptr; 922 CharUnits UnionSize = CharUnits::Zero(); 923 924 for (const auto *FD : RD->fields()) { 925 if (FD->isZeroLengthBitField(Context)) 926 continue; 927 assert(!FD->isBitField() && 928 "Cannot expand structure with bit-field members."); 929 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 930 if (UnionSize < FieldSize) { 931 UnionSize = FieldSize; 932 LargestFD = FD; 933 } 934 } 935 if (LargestFD) 936 Fields.push_back(LargestFD); 937 } else { 938 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 939 assert(!CXXRD->isDynamicClass() && 940 "cannot expand vtable pointers in dynamic classes"); 941 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 942 Bases.push_back(&BS); 943 } 944 945 for (const auto *FD : RD->fields()) { 946 if (FD->isZeroLengthBitField(Context)) 947 continue; 948 assert(!FD->isBitField() && 949 "Cannot expand structure with bit-field members."); 950 Fields.push_back(FD); 951 } 952 } 953 return llvm::make_unique<RecordExpansion>(std::move(Bases), 954 std::move(Fields)); 955 } 956 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 957 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 958 } 959 return llvm::make_unique<NoExpansion>(); 960 } 961 962 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 963 auto Exp = getTypeExpansion(Ty, Context); 964 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 965 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 966 } 967 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 968 int Res = 0; 969 for (auto BS : RExp->Bases) 970 Res += getExpansionSize(BS->getType(), Context); 971 for (auto FD : RExp->Fields) 972 Res += getExpansionSize(FD->getType(), Context); 973 return Res; 974 } 975 if (isa<ComplexExpansion>(Exp.get())) 976 return 2; 977 assert(isa<NoExpansion>(Exp.get())); 978 return 1; 979 } 980 981 void 982 CodeGenTypes::getExpandedTypes(QualType Ty, 983 SmallVectorImpl<llvm::Type *>::iterator &TI) { 984 auto Exp = getTypeExpansion(Ty, Context); 985 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 986 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 987 getExpandedTypes(CAExp->EltTy, TI); 988 } 989 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 990 for (auto BS : RExp->Bases) 991 getExpandedTypes(BS->getType(), TI); 992 for (auto FD : RExp->Fields) 993 getExpandedTypes(FD->getType(), TI); 994 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 995 llvm::Type *EltTy = ConvertType(CExp->EltTy); 996 *TI++ = EltTy; 997 *TI++ = EltTy; 998 } else { 999 assert(isa<NoExpansion>(Exp.get())); 1000 *TI++ = ConvertType(Ty); 1001 } 1002 } 1003 1004 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1005 ConstantArrayExpansion *CAE, 1006 Address BaseAddr, 1007 llvm::function_ref<void(Address)> Fn) { 1008 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1009 CharUnits EltAlign = 1010 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1011 1012 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1013 llvm::Value *EltAddr = 1014 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1015 Fn(Address(EltAddr, EltAlign)); 1016 } 1017 } 1018 1019 void CodeGenFunction::ExpandTypeFromArgs( 1020 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1021 assert(LV.isSimple() && 1022 "Unexpected non-simple lvalue during struct expansion."); 1023 1024 auto Exp = getTypeExpansion(Ty, getContext()); 1025 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1026 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1027 [&](Address EltAddr) { 1028 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1029 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1030 }); 1031 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1032 Address This = LV.getAddress(); 1033 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1034 // Perform a single step derived-to-base conversion. 1035 Address Base = 1036 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1037 /*NullCheckValue=*/false, SourceLocation()); 1038 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1039 1040 // Recurse onto bases. 1041 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1042 } 1043 for (auto FD : RExp->Fields) { 1044 // FIXME: What are the right qualifiers here? 1045 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1046 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1047 } 1048 } else if (isa<ComplexExpansion>(Exp.get())) { 1049 auto realValue = *AI++; 1050 auto imagValue = *AI++; 1051 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1052 } else { 1053 assert(isa<NoExpansion>(Exp.get())); 1054 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1055 } 1056 } 1057 1058 void CodeGenFunction::ExpandTypeToArgs( 1059 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1060 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1061 auto Exp = getTypeExpansion(Ty, getContext()); 1062 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1063 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1064 : Arg.getKnownRValue().getAggregateAddress(); 1065 forConstantArrayExpansion( 1066 *this, CAExp, Addr, [&](Address EltAddr) { 1067 CallArg EltArg = CallArg( 1068 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1069 CAExp->EltTy); 1070 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1071 IRCallArgPos); 1072 }); 1073 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1074 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1075 : Arg.getKnownRValue().getAggregateAddress(); 1076 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1077 // Perform a single step derived-to-base conversion. 1078 Address Base = 1079 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1080 /*NullCheckValue=*/false, SourceLocation()); 1081 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1082 1083 // Recurse onto bases. 1084 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1085 IRCallArgPos); 1086 } 1087 1088 LValue LV = MakeAddrLValue(This, Ty); 1089 for (auto FD : RExp->Fields) { 1090 CallArg FldArg = 1091 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1092 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1093 IRCallArgPos); 1094 } 1095 } else if (isa<ComplexExpansion>(Exp.get())) { 1096 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1097 IRCallArgs[IRCallArgPos++] = CV.first; 1098 IRCallArgs[IRCallArgPos++] = CV.second; 1099 } else { 1100 assert(isa<NoExpansion>(Exp.get())); 1101 auto RV = Arg.getKnownRValue(); 1102 assert(RV.isScalar() && 1103 "Unexpected non-scalar rvalue during struct expansion."); 1104 1105 // Insert a bitcast as needed. 1106 llvm::Value *V = RV.getScalarVal(); 1107 if (IRCallArgPos < IRFuncTy->getNumParams() && 1108 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1109 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1110 1111 IRCallArgs[IRCallArgPos++] = V; 1112 } 1113 } 1114 1115 /// Create a temporary allocation for the purposes of coercion. 1116 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1117 CharUnits MinAlign) { 1118 // Don't use an alignment that's worse than what LLVM would prefer. 1119 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1120 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1121 1122 return CGF.CreateTempAlloca(Ty, Align); 1123 } 1124 1125 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1126 /// accessing some number of bytes out of it, try to gep into the struct to get 1127 /// at its inner goodness. Dive as deep as possible without entering an element 1128 /// with an in-memory size smaller than DstSize. 1129 static Address 1130 EnterStructPointerForCoercedAccess(Address SrcPtr, 1131 llvm::StructType *SrcSTy, 1132 uint64_t DstSize, CodeGenFunction &CGF) { 1133 // We can't dive into a zero-element struct. 1134 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1135 1136 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1137 1138 // If the first elt is at least as large as what we're looking for, or if the 1139 // first element is the same size as the whole struct, we can enter it. The 1140 // comparison must be made on the store size and not the alloca size. Using 1141 // the alloca size may overstate the size of the load. 1142 uint64_t FirstEltSize = 1143 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1144 if (FirstEltSize < DstSize && 1145 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1146 return SrcPtr; 1147 1148 // GEP into the first element. 1149 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1150 1151 // If the first element is a struct, recurse. 1152 llvm::Type *SrcTy = SrcPtr.getElementType(); 1153 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1154 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1155 1156 return SrcPtr; 1157 } 1158 1159 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1160 /// are either integers or pointers. This does a truncation of the value if it 1161 /// is too large or a zero extension if it is too small. 1162 /// 1163 /// This behaves as if the value were coerced through memory, so on big-endian 1164 /// targets the high bits are preserved in a truncation, while little-endian 1165 /// targets preserve the low bits. 1166 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1167 llvm::Type *Ty, 1168 CodeGenFunction &CGF) { 1169 if (Val->getType() == Ty) 1170 return Val; 1171 1172 if (isa<llvm::PointerType>(Val->getType())) { 1173 // If this is Pointer->Pointer avoid conversion to and from int. 1174 if (isa<llvm::PointerType>(Ty)) 1175 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1176 1177 // Convert the pointer to an integer so we can play with its width. 1178 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1179 } 1180 1181 llvm::Type *DestIntTy = Ty; 1182 if (isa<llvm::PointerType>(DestIntTy)) 1183 DestIntTy = CGF.IntPtrTy; 1184 1185 if (Val->getType() != DestIntTy) { 1186 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1187 if (DL.isBigEndian()) { 1188 // Preserve the high bits on big-endian targets. 1189 // That is what memory coercion does. 1190 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1191 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1192 1193 if (SrcSize > DstSize) { 1194 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1195 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1196 } else { 1197 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1198 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1199 } 1200 } else { 1201 // Little-endian targets preserve the low bits. No shifts required. 1202 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1203 } 1204 } 1205 1206 if (isa<llvm::PointerType>(Ty)) 1207 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1208 return Val; 1209 } 1210 1211 1212 1213 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1214 /// a pointer to an object of type \arg Ty, known to be aligned to 1215 /// \arg SrcAlign bytes. 1216 /// 1217 /// This safely handles the case when the src type is smaller than the 1218 /// destination type; in this situation the values of bits which not 1219 /// present in the src are undefined. 1220 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1221 CodeGenFunction &CGF) { 1222 llvm::Type *SrcTy = Src.getElementType(); 1223 1224 // If SrcTy and Ty are the same, just do a load. 1225 if (SrcTy == Ty) 1226 return CGF.Builder.CreateLoad(Src); 1227 1228 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1229 1230 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1231 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1232 SrcTy = Src.getType()->getElementType(); 1233 } 1234 1235 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1236 1237 // If the source and destination are integer or pointer types, just do an 1238 // extension or truncation to the desired type. 1239 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1240 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1241 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1242 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1243 } 1244 1245 // If load is legal, just bitcast the src pointer. 1246 if (SrcSize >= DstSize) { 1247 // Generally SrcSize is never greater than DstSize, since this means we are 1248 // losing bits. However, this can happen in cases where the structure has 1249 // additional padding, for example due to a user specified alignment. 1250 // 1251 // FIXME: Assert that we aren't truncating non-padding bits when have access 1252 // to that information. 1253 Src = CGF.Builder.CreateBitCast(Src, 1254 Ty->getPointerTo(Src.getAddressSpace())); 1255 return CGF.Builder.CreateLoad(Src); 1256 } 1257 1258 // Otherwise do coercion through memory. This is stupid, but simple. 1259 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1260 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1261 Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty); 1262 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1263 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1264 false); 1265 return CGF.Builder.CreateLoad(Tmp); 1266 } 1267 1268 // Function to store a first-class aggregate into memory. We prefer to 1269 // store the elements rather than the aggregate to be more friendly to 1270 // fast-isel. 1271 // FIXME: Do we need to recurse here? 1272 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1273 Address Dest, bool DestIsVolatile) { 1274 // Prefer scalar stores to first-class aggregate stores. 1275 if (llvm::StructType *STy = 1276 dyn_cast<llvm::StructType>(Val->getType())) { 1277 const llvm::StructLayout *Layout = 1278 CGF.CGM.getDataLayout().getStructLayout(STy); 1279 1280 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1281 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1282 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1283 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1284 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1285 } 1286 } else { 1287 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1288 } 1289 } 1290 1291 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1292 /// where the source and destination may have different types. The 1293 /// destination is known to be aligned to \arg DstAlign bytes. 1294 /// 1295 /// This safely handles the case when the src type is larger than the 1296 /// destination type; the upper bits of the src will be lost. 1297 static void CreateCoercedStore(llvm::Value *Src, 1298 Address Dst, 1299 bool DstIsVolatile, 1300 CodeGenFunction &CGF) { 1301 llvm::Type *SrcTy = Src->getType(); 1302 llvm::Type *DstTy = Dst.getType()->getElementType(); 1303 if (SrcTy == DstTy) { 1304 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1305 return; 1306 } 1307 1308 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1309 1310 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1311 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1312 DstTy = Dst.getType()->getElementType(); 1313 } 1314 1315 // If the source and destination are integer or pointer types, just do an 1316 // extension or truncation to the desired type. 1317 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1318 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1319 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1320 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1321 return; 1322 } 1323 1324 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1325 1326 // If store is legal, just bitcast the src pointer. 1327 if (SrcSize <= DstSize) { 1328 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1329 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1330 } else { 1331 // Otherwise do coercion through memory. This is stupid, but 1332 // simple. 1333 1334 // Generally SrcSize is never greater than DstSize, since this means we are 1335 // losing bits. However, this can happen in cases where the structure has 1336 // additional padding, for example due to a user specified alignment. 1337 // 1338 // FIXME: Assert that we aren't truncating non-padding bits when have access 1339 // to that information. 1340 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1341 CGF.Builder.CreateStore(Src, Tmp); 1342 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1343 Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty); 1344 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1345 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1346 false); 1347 } 1348 } 1349 1350 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1351 const ABIArgInfo &info) { 1352 if (unsigned offset = info.getDirectOffset()) { 1353 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1354 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1355 CharUnits::fromQuantity(offset)); 1356 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1357 } 1358 return addr; 1359 } 1360 1361 namespace { 1362 1363 /// Encapsulates information about the way function arguments from 1364 /// CGFunctionInfo should be passed to actual LLVM IR function. 1365 class ClangToLLVMArgMapping { 1366 static const unsigned InvalidIndex = ~0U; 1367 unsigned InallocaArgNo; 1368 unsigned SRetArgNo; 1369 unsigned TotalIRArgs; 1370 1371 /// Arguments of LLVM IR function corresponding to single Clang argument. 1372 struct IRArgs { 1373 unsigned PaddingArgIndex; 1374 // Argument is expanded to IR arguments at positions 1375 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1376 unsigned FirstArgIndex; 1377 unsigned NumberOfArgs; 1378 1379 IRArgs() 1380 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1381 NumberOfArgs(0) {} 1382 }; 1383 1384 SmallVector<IRArgs, 8> ArgInfo; 1385 1386 public: 1387 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1388 bool OnlyRequiredArgs = false) 1389 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1390 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1391 construct(Context, FI, OnlyRequiredArgs); 1392 } 1393 1394 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1395 unsigned getInallocaArgNo() const { 1396 assert(hasInallocaArg()); 1397 return InallocaArgNo; 1398 } 1399 1400 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1401 unsigned getSRetArgNo() const { 1402 assert(hasSRetArg()); 1403 return SRetArgNo; 1404 } 1405 1406 unsigned totalIRArgs() const { return TotalIRArgs; } 1407 1408 bool hasPaddingArg(unsigned ArgNo) const { 1409 assert(ArgNo < ArgInfo.size()); 1410 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1411 } 1412 unsigned getPaddingArgNo(unsigned ArgNo) const { 1413 assert(hasPaddingArg(ArgNo)); 1414 return ArgInfo[ArgNo].PaddingArgIndex; 1415 } 1416 1417 /// Returns index of first IR argument corresponding to ArgNo, and their 1418 /// quantity. 1419 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1420 assert(ArgNo < ArgInfo.size()); 1421 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1422 ArgInfo[ArgNo].NumberOfArgs); 1423 } 1424 1425 private: 1426 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1427 bool OnlyRequiredArgs); 1428 }; 1429 1430 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1431 const CGFunctionInfo &FI, 1432 bool OnlyRequiredArgs) { 1433 unsigned IRArgNo = 0; 1434 bool SwapThisWithSRet = false; 1435 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1436 1437 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1438 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1439 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1440 } 1441 1442 unsigned ArgNo = 0; 1443 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1444 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1445 ++I, ++ArgNo) { 1446 assert(I != FI.arg_end()); 1447 QualType ArgType = I->type; 1448 const ABIArgInfo &AI = I->info; 1449 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1450 auto &IRArgs = ArgInfo[ArgNo]; 1451 1452 if (AI.getPaddingType()) 1453 IRArgs.PaddingArgIndex = IRArgNo++; 1454 1455 switch (AI.getKind()) { 1456 case ABIArgInfo::Extend: 1457 case ABIArgInfo::Direct: { 1458 // FIXME: handle sseregparm someday... 1459 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1460 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1461 IRArgs.NumberOfArgs = STy->getNumElements(); 1462 } else { 1463 IRArgs.NumberOfArgs = 1; 1464 } 1465 break; 1466 } 1467 case ABIArgInfo::Indirect: 1468 IRArgs.NumberOfArgs = 1; 1469 break; 1470 case ABIArgInfo::Ignore: 1471 case ABIArgInfo::InAlloca: 1472 // ignore and inalloca doesn't have matching LLVM parameters. 1473 IRArgs.NumberOfArgs = 0; 1474 break; 1475 case ABIArgInfo::CoerceAndExpand: 1476 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1477 break; 1478 case ABIArgInfo::Expand: 1479 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1480 break; 1481 } 1482 1483 if (IRArgs.NumberOfArgs > 0) { 1484 IRArgs.FirstArgIndex = IRArgNo; 1485 IRArgNo += IRArgs.NumberOfArgs; 1486 } 1487 1488 // Skip over the sret parameter when it comes second. We already handled it 1489 // above. 1490 if (IRArgNo == 1 && SwapThisWithSRet) 1491 IRArgNo++; 1492 } 1493 assert(ArgNo == ArgInfo.size()); 1494 1495 if (FI.usesInAlloca()) 1496 InallocaArgNo = IRArgNo++; 1497 1498 TotalIRArgs = IRArgNo; 1499 } 1500 } // namespace 1501 1502 /***/ 1503 1504 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1505 const auto &RI = FI.getReturnInfo(); 1506 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1507 } 1508 1509 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1510 return ReturnTypeUsesSRet(FI) && 1511 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1512 } 1513 1514 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1515 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1516 switch (BT->getKind()) { 1517 default: 1518 return false; 1519 case BuiltinType::Float: 1520 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1521 case BuiltinType::Double: 1522 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1523 case BuiltinType::LongDouble: 1524 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1525 } 1526 } 1527 1528 return false; 1529 } 1530 1531 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1532 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1533 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1534 if (BT->getKind() == BuiltinType::LongDouble) 1535 return getTarget().useObjCFP2RetForComplexLongDouble(); 1536 } 1537 } 1538 1539 return false; 1540 } 1541 1542 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1543 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1544 return GetFunctionType(FI); 1545 } 1546 1547 llvm::FunctionType * 1548 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1549 1550 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1551 (void)Inserted; 1552 assert(Inserted && "Recursively being processed?"); 1553 1554 llvm::Type *resultType = nullptr; 1555 const ABIArgInfo &retAI = FI.getReturnInfo(); 1556 switch (retAI.getKind()) { 1557 case ABIArgInfo::Expand: 1558 llvm_unreachable("Invalid ABI kind for return argument"); 1559 1560 case ABIArgInfo::Extend: 1561 case ABIArgInfo::Direct: 1562 resultType = retAI.getCoerceToType(); 1563 break; 1564 1565 case ABIArgInfo::InAlloca: 1566 if (retAI.getInAllocaSRet()) { 1567 // sret things on win32 aren't void, they return the sret pointer. 1568 QualType ret = FI.getReturnType(); 1569 llvm::Type *ty = ConvertType(ret); 1570 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1571 resultType = llvm::PointerType::get(ty, addressSpace); 1572 } else { 1573 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1574 } 1575 break; 1576 1577 case ABIArgInfo::Indirect: 1578 case ABIArgInfo::Ignore: 1579 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1580 break; 1581 1582 case ABIArgInfo::CoerceAndExpand: 1583 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1584 break; 1585 } 1586 1587 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1588 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1589 1590 // Add type for sret argument. 1591 if (IRFunctionArgs.hasSRetArg()) { 1592 QualType Ret = FI.getReturnType(); 1593 llvm::Type *Ty = ConvertType(Ret); 1594 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1595 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1596 llvm::PointerType::get(Ty, AddressSpace); 1597 } 1598 1599 // Add type for inalloca argument. 1600 if (IRFunctionArgs.hasInallocaArg()) { 1601 auto ArgStruct = FI.getArgStruct(); 1602 assert(ArgStruct); 1603 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1604 } 1605 1606 // Add in all of the required arguments. 1607 unsigned ArgNo = 0; 1608 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1609 ie = it + FI.getNumRequiredArgs(); 1610 for (; it != ie; ++it, ++ArgNo) { 1611 const ABIArgInfo &ArgInfo = it->info; 1612 1613 // Insert a padding type to ensure proper alignment. 1614 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1615 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1616 ArgInfo.getPaddingType(); 1617 1618 unsigned FirstIRArg, NumIRArgs; 1619 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1620 1621 switch (ArgInfo.getKind()) { 1622 case ABIArgInfo::Ignore: 1623 case ABIArgInfo::InAlloca: 1624 assert(NumIRArgs == 0); 1625 break; 1626 1627 case ABIArgInfo::Indirect: { 1628 assert(NumIRArgs == 1); 1629 // indirect arguments are always on the stack, which is alloca addr space. 1630 llvm::Type *LTy = ConvertTypeForMem(it->type); 1631 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1632 CGM.getDataLayout().getAllocaAddrSpace()); 1633 break; 1634 } 1635 1636 case ABIArgInfo::Extend: 1637 case ABIArgInfo::Direct: { 1638 // Fast-isel and the optimizer generally like scalar values better than 1639 // FCAs, so we flatten them if this is safe to do for this argument. 1640 llvm::Type *argType = ArgInfo.getCoerceToType(); 1641 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1642 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1643 assert(NumIRArgs == st->getNumElements()); 1644 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1645 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1646 } else { 1647 assert(NumIRArgs == 1); 1648 ArgTypes[FirstIRArg] = argType; 1649 } 1650 break; 1651 } 1652 1653 case ABIArgInfo::CoerceAndExpand: { 1654 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1655 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1656 *ArgTypesIter++ = EltTy; 1657 } 1658 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1659 break; 1660 } 1661 1662 case ABIArgInfo::Expand: 1663 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1664 getExpandedTypes(it->type, ArgTypesIter); 1665 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1666 break; 1667 } 1668 } 1669 1670 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1671 assert(Erased && "Not in set?"); 1672 1673 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1674 } 1675 1676 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1677 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1678 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1679 1680 if (!isFuncTypeConvertible(FPT)) 1681 return llvm::StructType::get(getLLVMContext()); 1682 1683 const CGFunctionInfo *Info; 1684 if (isa<CXXDestructorDecl>(MD)) 1685 Info = 1686 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1687 else 1688 Info = &arrangeCXXMethodDeclaration(MD); 1689 return GetFunctionType(*Info); 1690 } 1691 1692 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1693 llvm::AttrBuilder &FuncAttrs, 1694 const FunctionProtoType *FPT) { 1695 if (!FPT) 1696 return; 1697 1698 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1699 FPT->isNothrow()) 1700 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1701 } 1702 1703 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1704 bool AttrOnCallSite, 1705 llvm::AttrBuilder &FuncAttrs) { 1706 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1707 if (!HasOptnone) { 1708 if (CodeGenOpts.OptimizeSize) 1709 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1710 if (CodeGenOpts.OptimizeSize == 2) 1711 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1712 } 1713 1714 if (CodeGenOpts.DisableRedZone) 1715 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1716 if (CodeGenOpts.IndirectTlsSegRefs) 1717 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1718 if (CodeGenOpts.NoImplicitFloat) 1719 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1720 1721 if (AttrOnCallSite) { 1722 // Attributes that should go on the call site only. 1723 if (!CodeGenOpts.SimplifyLibCalls || 1724 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1725 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1726 if (!CodeGenOpts.TrapFuncName.empty()) 1727 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1728 } else { 1729 // Attributes that should go on the function, but not the call site. 1730 if (!CodeGenOpts.DisableFPElim) { 1731 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1732 } else if (CodeGenOpts.OmitLeafFramePointer) { 1733 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1734 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1735 } else { 1736 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1737 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1738 } 1739 1740 FuncAttrs.addAttribute("less-precise-fpmad", 1741 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1742 1743 if (CodeGenOpts.NullPointerIsValid) 1744 FuncAttrs.addAttribute("null-pointer-is-valid", "true"); 1745 if (!CodeGenOpts.FPDenormalMode.empty()) 1746 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1747 1748 FuncAttrs.addAttribute("no-trapping-math", 1749 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1750 1751 // Strict (compliant) code is the default, so only add this attribute to 1752 // indicate that we are trying to workaround a problem case. 1753 if (!CodeGenOpts.StrictFloatCastOverflow) 1754 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1755 1756 // TODO: Are these all needed? 1757 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1758 FuncAttrs.addAttribute("no-infs-fp-math", 1759 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1760 FuncAttrs.addAttribute("no-nans-fp-math", 1761 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1762 FuncAttrs.addAttribute("unsafe-fp-math", 1763 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1764 FuncAttrs.addAttribute("use-soft-float", 1765 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1766 FuncAttrs.addAttribute("stack-protector-buffer-size", 1767 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1768 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1769 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1770 FuncAttrs.addAttribute( 1771 "correctly-rounded-divide-sqrt-fp-math", 1772 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1773 1774 if (getLangOpts().OpenCL) 1775 FuncAttrs.addAttribute("denorms-are-zero", 1776 llvm::toStringRef(CodeGenOpts.FlushDenorm)); 1777 1778 // TODO: Reciprocal estimate codegen options should apply to instructions? 1779 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1780 if (!Recips.empty()) 1781 FuncAttrs.addAttribute("reciprocal-estimates", 1782 llvm::join(Recips, ",")); 1783 1784 if (!CodeGenOpts.PreferVectorWidth.empty() && 1785 CodeGenOpts.PreferVectorWidth != "none") 1786 FuncAttrs.addAttribute("prefer-vector-width", 1787 CodeGenOpts.PreferVectorWidth); 1788 1789 if (CodeGenOpts.StackRealignment) 1790 FuncAttrs.addAttribute("stackrealign"); 1791 if (CodeGenOpts.Backchain) 1792 FuncAttrs.addAttribute("backchain"); 1793 1794 // FIXME: The interaction of this attribute with the SLH command line flag 1795 // has not been determined. 1796 if (CodeGenOpts.SpeculativeLoadHardening) 1797 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1798 } 1799 1800 if (getLangOpts().assumeFunctionsAreConvergent()) { 1801 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1802 // convergent (meaning, they may call an intrinsically convergent op, such 1803 // as __syncthreads() / barrier(), and so can't have certain optimizations 1804 // applied around them). LLVM will remove this attribute where it safely 1805 // can. 1806 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1807 } 1808 1809 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1810 // Exceptions aren't supported in CUDA device code. 1811 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1812 1813 // Respect -fcuda-flush-denormals-to-zero. 1814 if (CodeGenOpts.FlushDenorm) 1815 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1816 } 1817 } 1818 1819 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1820 llvm::AttrBuilder FuncAttrs; 1821 ConstructDefaultFnAttrList(F.getName(), 1822 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1823 /* AttrOnCallsite = */ false, FuncAttrs); 1824 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1825 } 1826 1827 void CodeGenModule::ConstructAttributeList( 1828 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1829 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1830 llvm::AttrBuilder FuncAttrs; 1831 llvm::AttrBuilder RetAttrs; 1832 1833 CallingConv = FI.getEffectiveCallingConvention(); 1834 if (FI.isNoReturn()) 1835 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1836 1837 // If we have information about the function prototype, we can learn 1838 // attributes from there. 1839 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1840 CalleeInfo.getCalleeFunctionProtoType()); 1841 1842 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1843 1844 bool HasOptnone = false; 1845 // FIXME: handle sseregparm someday... 1846 if (TargetDecl) { 1847 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1848 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1849 if (TargetDecl->hasAttr<NoThrowAttr>()) 1850 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1851 if (TargetDecl->hasAttr<NoReturnAttr>()) 1852 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1853 if (TargetDecl->hasAttr<ColdAttr>()) 1854 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1855 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1856 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1857 if (TargetDecl->hasAttr<ConvergentAttr>()) 1858 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1859 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 1860 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1861 1862 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1863 AddAttributesFromFunctionProtoType( 1864 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1865 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1866 // These attributes are not inherited by overloads. 1867 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1868 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1869 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1870 } 1871 1872 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1873 if (TargetDecl->hasAttr<ConstAttr>()) { 1874 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1875 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1876 } else if (TargetDecl->hasAttr<PureAttr>()) { 1877 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1878 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1879 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1880 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1881 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1882 } 1883 if (TargetDecl->hasAttr<RestrictAttr>()) 1884 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1885 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1886 !CodeGenOpts.NullPointerIsValid) 1887 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1888 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1889 FuncAttrs.addAttribute("no_caller_saved_registers"); 1890 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1891 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1892 1893 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1894 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1895 Optional<unsigned> NumElemsParam; 1896 if (AllocSize->getNumElemsParam().isValid()) 1897 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1898 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1899 NumElemsParam); 1900 } 1901 } 1902 1903 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1904 1905 if (CodeGenOpts.EnableSegmentedStacks && 1906 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1907 FuncAttrs.addAttribute("split-stack"); 1908 1909 // Add NonLazyBind attribute to function declarations when -fno-plt 1910 // is used. 1911 if (TargetDecl && CodeGenOpts.NoPLT) { 1912 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1913 if (!Fn->isDefined() && !AttrOnCallSite) { 1914 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1915 } 1916 } 1917 } 1918 1919 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1920 if (getLangOpts().OpenCLVersion <= 120) { 1921 // OpenCL v1.2 Work groups are always uniform 1922 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1923 } else { 1924 // OpenCL v2.0 Work groups may be whether uniform or not. 1925 // '-cl-uniform-work-group-size' compile option gets a hint 1926 // to the compiler that the global work-size be a multiple of 1927 // the work-group size specified to clEnqueueNDRangeKernel 1928 // (i.e. work groups are uniform). 1929 FuncAttrs.addAttribute("uniform-work-group-size", 1930 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1931 } 1932 } 1933 1934 if (!AttrOnCallSite) { 1935 bool DisableTailCalls = false; 1936 1937 if (CodeGenOpts.DisableTailCalls) 1938 DisableTailCalls = true; 1939 else if (TargetDecl) { 1940 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1941 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1942 DisableTailCalls = true; 1943 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1944 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1945 if (!BD->doesNotEscape()) 1946 DisableTailCalls = true; 1947 } 1948 } 1949 1950 FuncAttrs.addAttribute("disable-tail-calls", 1951 llvm::toStringRef(DisableTailCalls)); 1952 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 1953 } 1954 1955 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1956 1957 QualType RetTy = FI.getReturnType(); 1958 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1959 switch (RetAI.getKind()) { 1960 case ABIArgInfo::Extend: 1961 if (RetAI.isSignExt()) 1962 RetAttrs.addAttribute(llvm::Attribute::SExt); 1963 else 1964 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1965 LLVM_FALLTHROUGH; 1966 case ABIArgInfo::Direct: 1967 if (RetAI.getInReg()) 1968 RetAttrs.addAttribute(llvm::Attribute::InReg); 1969 break; 1970 case ABIArgInfo::Ignore: 1971 break; 1972 1973 case ABIArgInfo::InAlloca: 1974 case ABIArgInfo::Indirect: { 1975 // inalloca and sret disable readnone and readonly 1976 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1977 .removeAttribute(llvm::Attribute::ReadNone); 1978 break; 1979 } 1980 1981 case ABIArgInfo::CoerceAndExpand: 1982 break; 1983 1984 case ABIArgInfo::Expand: 1985 llvm_unreachable("Invalid ABI kind for return argument"); 1986 } 1987 1988 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1989 QualType PTy = RefTy->getPointeeType(); 1990 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1991 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1992 .getQuantity()); 1993 else if (getContext().getTargetAddressSpace(PTy) == 0 && 1994 !CodeGenOpts.NullPointerIsValid) 1995 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1996 } 1997 1998 bool hasUsedSRet = false; 1999 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2000 2001 // Attach attributes to sret. 2002 if (IRFunctionArgs.hasSRetArg()) { 2003 llvm::AttrBuilder SRETAttrs; 2004 if (!RetAI.getSuppressSRet()) 2005 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2006 hasUsedSRet = true; 2007 if (RetAI.getInReg()) 2008 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2009 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2010 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2011 } 2012 2013 // Attach attributes to inalloca argument. 2014 if (IRFunctionArgs.hasInallocaArg()) { 2015 llvm::AttrBuilder Attrs; 2016 Attrs.addAttribute(llvm::Attribute::InAlloca); 2017 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2018 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2019 } 2020 2021 unsigned ArgNo = 0; 2022 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2023 E = FI.arg_end(); 2024 I != E; ++I, ++ArgNo) { 2025 QualType ParamType = I->type; 2026 const ABIArgInfo &AI = I->info; 2027 llvm::AttrBuilder Attrs; 2028 2029 // Add attribute for padding argument, if necessary. 2030 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2031 if (AI.getPaddingInReg()) { 2032 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2033 llvm::AttributeSet::get( 2034 getLLVMContext(), 2035 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2036 } 2037 } 2038 2039 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2040 // have the corresponding parameter variable. It doesn't make 2041 // sense to do it here because parameters are so messed up. 2042 switch (AI.getKind()) { 2043 case ABIArgInfo::Extend: 2044 if (AI.isSignExt()) 2045 Attrs.addAttribute(llvm::Attribute::SExt); 2046 else 2047 Attrs.addAttribute(llvm::Attribute::ZExt); 2048 LLVM_FALLTHROUGH; 2049 case ABIArgInfo::Direct: 2050 if (ArgNo == 0 && FI.isChainCall()) 2051 Attrs.addAttribute(llvm::Attribute::Nest); 2052 else if (AI.getInReg()) 2053 Attrs.addAttribute(llvm::Attribute::InReg); 2054 break; 2055 2056 case ABIArgInfo::Indirect: { 2057 if (AI.getInReg()) 2058 Attrs.addAttribute(llvm::Attribute::InReg); 2059 2060 if (AI.getIndirectByVal()) 2061 Attrs.addAttribute(llvm::Attribute::ByVal); 2062 2063 CharUnits Align = AI.getIndirectAlign(); 2064 2065 // In a byval argument, it is important that the required 2066 // alignment of the type is honored, as LLVM might be creating a 2067 // *new* stack object, and needs to know what alignment to give 2068 // it. (Sometimes it can deduce a sensible alignment on its own, 2069 // but not if clang decides it must emit a packed struct, or the 2070 // user specifies increased alignment requirements.) 2071 // 2072 // This is different from indirect *not* byval, where the object 2073 // exists already, and the align attribute is purely 2074 // informative. 2075 assert(!Align.isZero()); 2076 2077 // For now, only add this when we have a byval argument. 2078 // TODO: be less lazy about updating test cases. 2079 if (AI.getIndirectByVal()) 2080 Attrs.addAlignmentAttr(Align.getQuantity()); 2081 2082 // byval disables readnone and readonly. 2083 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2084 .removeAttribute(llvm::Attribute::ReadNone); 2085 break; 2086 } 2087 case ABIArgInfo::Ignore: 2088 case ABIArgInfo::Expand: 2089 case ABIArgInfo::CoerceAndExpand: 2090 break; 2091 2092 case ABIArgInfo::InAlloca: 2093 // inalloca disables readnone and readonly. 2094 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2095 .removeAttribute(llvm::Attribute::ReadNone); 2096 continue; 2097 } 2098 2099 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2100 QualType PTy = RefTy->getPointeeType(); 2101 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2102 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2103 .getQuantity()); 2104 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2105 !CodeGenOpts.NullPointerIsValid) 2106 Attrs.addAttribute(llvm::Attribute::NonNull); 2107 } 2108 2109 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2110 case ParameterABI::Ordinary: 2111 break; 2112 2113 case ParameterABI::SwiftIndirectResult: { 2114 // Add 'sret' if we haven't already used it for something, but 2115 // only if the result is void. 2116 if (!hasUsedSRet && RetTy->isVoidType()) { 2117 Attrs.addAttribute(llvm::Attribute::StructRet); 2118 hasUsedSRet = true; 2119 } 2120 2121 // Add 'noalias' in either case. 2122 Attrs.addAttribute(llvm::Attribute::NoAlias); 2123 2124 // Add 'dereferenceable' and 'alignment'. 2125 auto PTy = ParamType->getPointeeType(); 2126 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2127 auto info = getContext().getTypeInfoInChars(PTy); 2128 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2129 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2130 info.second.getQuantity())); 2131 } 2132 break; 2133 } 2134 2135 case ParameterABI::SwiftErrorResult: 2136 Attrs.addAttribute(llvm::Attribute::SwiftError); 2137 break; 2138 2139 case ParameterABI::SwiftContext: 2140 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2141 break; 2142 } 2143 2144 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2145 Attrs.addAttribute(llvm::Attribute::NoCapture); 2146 2147 if (Attrs.hasAttributes()) { 2148 unsigned FirstIRArg, NumIRArgs; 2149 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2150 for (unsigned i = 0; i < NumIRArgs; i++) 2151 ArgAttrs[FirstIRArg + i] = 2152 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2153 } 2154 } 2155 assert(ArgNo == FI.arg_size()); 2156 2157 AttrList = llvm::AttributeList::get( 2158 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2159 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2160 } 2161 2162 /// An argument came in as a promoted argument; demote it back to its 2163 /// declared type. 2164 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2165 const VarDecl *var, 2166 llvm::Value *value) { 2167 llvm::Type *varType = CGF.ConvertType(var->getType()); 2168 2169 // This can happen with promotions that actually don't change the 2170 // underlying type, like the enum promotions. 2171 if (value->getType() == varType) return value; 2172 2173 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2174 && "unexpected promotion type"); 2175 2176 if (isa<llvm::IntegerType>(varType)) 2177 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2178 2179 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2180 } 2181 2182 /// Returns the attribute (either parameter attribute, or function 2183 /// attribute), which declares argument ArgNo to be non-null. 2184 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2185 QualType ArgType, unsigned ArgNo) { 2186 // FIXME: __attribute__((nonnull)) can also be applied to: 2187 // - references to pointers, where the pointee is known to be 2188 // nonnull (apparently a Clang extension) 2189 // - transparent unions containing pointers 2190 // In the former case, LLVM IR cannot represent the constraint. In 2191 // the latter case, we have no guarantee that the transparent union 2192 // is in fact passed as a pointer. 2193 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2194 return nullptr; 2195 // First, check attribute on parameter itself. 2196 if (PVD) { 2197 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2198 return ParmNNAttr; 2199 } 2200 // Check function attributes. 2201 if (!FD) 2202 return nullptr; 2203 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2204 if (NNAttr->isNonNull(ArgNo)) 2205 return NNAttr; 2206 } 2207 return nullptr; 2208 } 2209 2210 namespace { 2211 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2212 Address Temp; 2213 Address Arg; 2214 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2215 void Emit(CodeGenFunction &CGF, Flags flags) override { 2216 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2217 CGF.Builder.CreateStore(errorValue, Arg); 2218 } 2219 }; 2220 } 2221 2222 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2223 llvm::Function *Fn, 2224 const FunctionArgList &Args) { 2225 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2226 // Naked functions don't have prologues. 2227 return; 2228 2229 // If this is an implicit-return-zero function, go ahead and 2230 // initialize the return value. TODO: it might be nice to have 2231 // a more general mechanism for this that didn't require synthesized 2232 // return statements. 2233 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2234 if (FD->hasImplicitReturnZero()) { 2235 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2236 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2237 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2238 Builder.CreateStore(Zero, ReturnValue); 2239 } 2240 } 2241 2242 // FIXME: We no longer need the types from FunctionArgList; lift up and 2243 // simplify. 2244 2245 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2246 // Flattened function arguments. 2247 SmallVector<llvm::Value *, 16> FnArgs; 2248 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2249 for (auto &Arg : Fn->args()) { 2250 FnArgs.push_back(&Arg); 2251 } 2252 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2253 2254 // If we're using inalloca, all the memory arguments are GEPs off of the last 2255 // parameter, which is a pointer to the complete memory area. 2256 Address ArgStruct = Address::invalid(); 2257 const llvm::StructLayout *ArgStructLayout = nullptr; 2258 if (IRFunctionArgs.hasInallocaArg()) { 2259 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2260 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2261 FI.getArgStructAlignment()); 2262 2263 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2264 } 2265 2266 // Name the struct return parameter. 2267 if (IRFunctionArgs.hasSRetArg()) { 2268 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2269 AI->setName("agg.result"); 2270 AI->addAttr(llvm::Attribute::NoAlias); 2271 } 2272 2273 // Track if we received the parameter as a pointer (indirect, byval, or 2274 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2275 // into a local alloca for us. 2276 SmallVector<ParamValue, 16> ArgVals; 2277 ArgVals.reserve(Args.size()); 2278 2279 // Create a pointer value for every parameter declaration. This usually 2280 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2281 // any cleanups or do anything that might unwind. We do that separately, so 2282 // we can push the cleanups in the correct order for the ABI. 2283 assert(FI.arg_size() == Args.size() && 2284 "Mismatch between function signature & arguments."); 2285 unsigned ArgNo = 0; 2286 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2287 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2288 i != e; ++i, ++info_it, ++ArgNo) { 2289 const VarDecl *Arg = *i; 2290 const ABIArgInfo &ArgI = info_it->info; 2291 2292 bool isPromoted = 2293 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2294 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2295 // the parameter is promoted. In this case we convert to 2296 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2297 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2298 assert(hasScalarEvaluationKind(Ty) == 2299 hasScalarEvaluationKind(Arg->getType())); 2300 2301 unsigned FirstIRArg, NumIRArgs; 2302 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2303 2304 switch (ArgI.getKind()) { 2305 case ABIArgInfo::InAlloca: { 2306 assert(NumIRArgs == 0); 2307 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2308 CharUnits FieldOffset = 2309 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2310 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2311 Arg->getName()); 2312 ArgVals.push_back(ParamValue::forIndirect(V)); 2313 break; 2314 } 2315 2316 case ABIArgInfo::Indirect: { 2317 assert(NumIRArgs == 1); 2318 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2319 2320 if (!hasScalarEvaluationKind(Ty)) { 2321 // Aggregates and complex variables are accessed by reference. All we 2322 // need to do is realign the value, if requested. 2323 Address V = ParamAddr; 2324 if (ArgI.getIndirectRealign()) { 2325 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2326 2327 // Copy from the incoming argument pointer to the temporary with the 2328 // appropriate alignment. 2329 // 2330 // FIXME: We should have a common utility for generating an aggregate 2331 // copy. 2332 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2333 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2334 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2335 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2336 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2337 V = AlignedTemp; 2338 } 2339 ArgVals.push_back(ParamValue::forIndirect(V)); 2340 } else { 2341 // Load scalar value from indirect argument. 2342 llvm::Value *V = 2343 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2344 2345 if (isPromoted) 2346 V = emitArgumentDemotion(*this, Arg, V); 2347 ArgVals.push_back(ParamValue::forDirect(V)); 2348 } 2349 break; 2350 } 2351 2352 case ABIArgInfo::Extend: 2353 case ABIArgInfo::Direct: { 2354 2355 // If we have the trivial case, handle it with no muss and fuss. 2356 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2357 ArgI.getCoerceToType() == ConvertType(Ty) && 2358 ArgI.getDirectOffset() == 0) { 2359 assert(NumIRArgs == 1); 2360 llvm::Value *V = FnArgs[FirstIRArg]; 2361 auto AI = cast<llvm::Argument>(V); 2362 2363 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2364 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2365 PVD->getFunctionScopeIndex()) && 2366 !CGM.getCodeGenOpts().NullPointerIsValid) 2367 AI->addAttr(llvm::Attribute::NonNull); 2368 2369 QualType OTy = PVD->getOriginalType(); 2370 if (const auto *ArrTy = 2371 getContext().getAsConstantArrayType(OTy)) { 2372 // A C99 array parameter declaration with the static keyword also 2373 // indicates dereferenceability, and if the size is constant we can 2374 // use the dereferenceable attribute (which requires the size in 2375 // bytes). 2376 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2377 QualType ETy = ArrTy->getElementType(); 2378 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2379 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2380 ArrSize) { 2381 llvm::AttrBuilder Attrs; 2382 Attrs.addDereferenceableAttr( 2383 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2384 AI->addAttrs(Attrs); 2385 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2386 !CGM.getCodeGenOpts().NullPointerIsValid) { 2387 AI->addAttr(llvm::Attribute::NonNull); 2388 } 2389 } 2390 } else if (const auto *ArrTy = 2391 getContext().getAsVariableArrayType(OTy)) { 2392 // For C99 VLAs with the static keyword, we don't know the size so 2393 // we can't use the dereferenceable attribute, but in addrspace(0) 2394 // we know that it must be nonnull. 2395 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2396 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2397 !CGM.getCodeGenOpts().NullPointerIsValid) 2398 AI->addAttr(llvm::Attribute::NonNull); 2399 } 2400 2401 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2402 if (!AVAttr) 2403 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2404 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2405 if (AVAttr) { 2406 llvm::Value *AlignmentValue = 2407 EmitScalarExpr(AVAttr->getAlignment()); 2408 llvm::ConstantInt *AlignmentCI = 2409 cast<llvm::ConstantInt>(AlignmentValue); 2410 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2411 +llvm::Value::MaximumAlignment); 2412 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2413 } 2414 } 2415 2416 if (Arg->getType().isRestrictQualified()) 2417 AI->addAttr(llvm::Attribute::NoAlias); 2418 2419 // LLVM expects swifterror parameters to be used in very restricted 2420 // ways. Copy the value into a less-restricted temporary. 2421 if (FI.getExtParameterInfo(ArgNo).getABI() 2422 == ParameterABI::SwiftErrorResult) { 2423 QualType pointeeTy = Ty->getPointeeType(); 2424 assert(pointeeTy->isPointerType()); 2425 Address temp = 2426 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2427 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2428 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2429 Builder.CreateStore(incomingErrorValue, temp); 2430 V = temp.getPointer(); 2431 2432 // Push a cleanup to copy the value back at the end of the function. 2433 // The convention does not guarantee that the value will be written 2434 // back if the function exits with an unwind exception. 2435 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2436 } 2437 2438 // Ensure the argument is the correct type. 2439 if (V->getType() != ArgI.getCoerceToType()) 2440 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2441 2442 if (isPromoted) 2443 V = emitArgumentDemotion(*this, Arg, V); 2444 2445 // Because of merging of function types from multiple decls it is 2446 // possible for the type of an argument to not match the corresponding 2447 // type in the function type. Since we are codegening the callee 2448 // in here, add a cast to the argument type. 2449 llvm::Type *LTy = ConvertType(Arg->getType()); 2450 if (V->getType() != LTy) 2451 V = Builder.CreateBitCast(V, LTy); 2452 2453 ArgVals.push_back(ParamValue::forDirect(V)); 2454 break; 2455 } 2456 2457 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2458 Arg->getName()); 2459 2460 // Pointer to store into. 2461 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2462 2463 // Fast-isel and the optimizer generally like scalar values better than 2464 // FCAs, so we flatten them if this is safe to do for this argument. 2465 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2466 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2467 STy->getNumElements() > 1) { 2468 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2469 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2470 llvm::Type *DstTy = Ptr.getElementType(); 2471 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2472 2473 Address AddrToStoreInto = Address::invalid(); 2474 if (SrcSize <= DstSize) { 2475 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2476 } else { 2477 AddrToStoreInto = 2478 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2479 } 2480 2481 assert(STy->getNumElements() == NumIRArgs); 2482 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2483 auto AI = FnArgs[FirstIRArg + i]; 2484 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2485 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2486 Address EltPtr = 2487 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2488 Builder.CreateStore(AI, EltPtr); 2489 } 2490 2491 if (SrcSize > DstSize) { 2492 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2493 } 2494 2495 } else { 2496 // Simple case, just do a coerced store of the argument into the alloca. 2497 assert(NumIRArgs == 1); 2498 auto AI = FnArgs[FirstIRArg]; 2499 AI->setName(Arg->getName() + ".coerce"); 2500 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2501 } 2502 2503 // Match to what EmitParmDecl is expecting for this type. 2504 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2505 llvm::Value *V = 2506 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2507 if (isPromoted) 2508 V = emitArgumentDemotion(*this, Arg, V); 2509 ArgVals.push_back(ParamValue::forDirect(V)); 2510 } else { 2511 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2512 } 2513 break; 2514 } 2515 2516 case ABIArgInfo::CoerceAndExpand: { 2517 // Reconstruct into a temporary. 2518 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2519 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2520 2521 auto coercionType = ArgI.getCoerceAndExpandType(); 2522 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2523 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2524 2525 unsigned argIndex = FirstIRArg; 2526 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2527 llvm::Type *eltType = coercionType->getElementType(i); 2528 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2529 continue; 2530 2531 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2532 auto elt = FnArgs[argIndex++]; 2533 Builder.CreateStore(elt, eltAddr); 2534 } 2535 assert(argIndex == FirstIRArg + NumIRArgs); 2536 break; 2537 } 2538 2539 case ABIArgInfo::Expand: { 2540 // If this structure was expanded into multiple arguments then 2541 // we need to create a temporary and reconstruct it from the 2542 // arguments. 2543 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2544 LValue LV = MakeAddrLValue(Alloca, Ty); 2545 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2546 2547 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2548 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2549 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2550 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2551 auto AI = FnArgs[FirstIRArg + i]; 2552 AI->setName(Arg->getName() + "." + Twine(i)); 2553 } 2554 break; 2555 } 2556 2557 case ABIArgInfo::Ignore: 2558 assert(NumIRArgs == 0); 2559 // Initialize the local variable appropriately. 2560 if (!hasScalarEvaluationKind(Ty)) { 2561 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2562 } else { 2563 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2564 ArgVals.push_back(ParamValue::forDirect(U)); 2565 } 2566 break; 2567 } 2568 } 2569 2570 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2571 for (int I = Args.size() - 1; I >= 0; --I) 2572 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2573 } else { 2574 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2575 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2576 } 2577 } 2578 2579 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2580 while (insn->use_empty()) { 2581 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2582 if (!bitcast) return; 2583 2584 // This is "safe" because we would have used a ConstantExpr otherwise. 2585 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2586 bitcast->eraseFromParent(); 2587 } 2588 } 2589 2590 /// Try to emit a fused autorelease of a return result. 2591 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2592 llvm::Value *result) { 2593 // We must be immediately followed the cast. 2594 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2595 if (BB->empty()) return nullptr; 2596 if (&BB->back() != result) return nullptr; 2597 2598 llvm::Type *resultType = result->getType(); 2599 2600 // result is in a BasicBlock and is therefore an Instruction. 2601 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2602 2603 SmallVector<llvm::Instruction *, 4> InstsToKill; 2604 2605 // Look for: 2606 // %generator = bitcast %type1* %generator2 to %type2* 2607 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2608 // We would have emitted this as a constant if the operand weren't 2609 // an Instruction. 2610 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2611 2612 // Require the generator to be immediately followed by the cast. 2613 if (generator->getNextNode() != bitcast) 2614 return nullptr; 2615 2616 InstsToKill.push_back(bitcast); 2617 } 2618 2619 // Look for: 2620 // %generator = call i8* @objc_retain(i8* %originalResult) 2621 // or 2622 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2623 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2624 if (!call) return nullptr; 2625 2626 bool doRetainAutorelease; 2627 2628 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2629 doRetainAutorelease = true; 2630 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2631 .objc_retainAutoreleasedReturnValue) { 2632 doRetainAutorelease = false; 2633 2634 // If we emitted an assembly marker for this call (and the 2635 // ARCEntrypoints field should have been set if so), go looking 2636 // for that call. If we can't find it, we can't do this 2637 // optimization. But it should always be the immediately previous 2638 // instruction, unless we needed bitcasts around the call. 2639 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2640 llvm::Instruction *prev = call->getPrevNode(); 2641 assert(prev); 2642 if (isa<llvm::BitCastInst>(prev)) { 2643 prev = prev->getPrevNode(); 2644 assert(prev); 2645 } 2646 assert(isa<llvm::CallInst>(prev)); 2647 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2648 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2649 InstsToKill.push_back(prev); 2650 } 2651 } else { 2652 return nullptr; 2653 } 2654 2655 result = call->getArgOperand(0); 2656 InstsToKill.push_back(call); 2657 2658 // Keep killing bitcasts, for sanity. Note that we no longer care 2659 // about precise ordering as long as there's exactly one use. 2660 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2661 if (!bitcast->hasOneUse()) break; 2662 InstsToKill.push_back(bitcast); 2663 result = bitcast->getOperand(0); 2664 } 2665 2666 // Delete all the unnecessary instructions, from latest to earliest. 2667 for (auto *I : InstsToKill) 2668 I->eraseFromParent(); 2669 2670 // Do the fused retain/autorelease if we were asked to. 2671 if (doRetainAutorelease) 2672 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2673 2674 // Cast back to the result type. 2675 return CGF.Builder.CreateBitCast(result, resultType); 2676 } 2677 2678 /// If this is a +1 of the value of an immutable 'self', remove it. 2679 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2680 llvm::Value *result) { 2681 // This is only applicable to a method with an immutable 'self'. 2682 const ObjCMethodDecl *method = 2683 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2684 if (!method) return nullptr; 2685 const VarDecl *self = method->getSelfDecl(); 2686 if (!self->getType().isConstQualified()) return nullptr; 2687 2688 // Look for a retain call. 2689 llvm::CallInst *retainCall = 2690 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2691 if (!retainCall || 2692 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2693 return nullptr; 2694 2695 // Look for an ordinary load of 'self'. 2696 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2697 llvm::LoadInst *load = 2698 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2699 if (!load || load->isAtomic() || load->isVolatile() || 2700 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2701 return nullptr; 2702 2703 // Okay! Burn it all down. This relies for correctness on the 2704 // assumption that the retain is emitted as part of the return and 2705 // that thereafter everything is used "linearly". 2706 llvm::Type *resultType = result->getType(); 2707 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2708 assert(retainCall->use_empty()); 2709 retainCall->eraseFromParent(); 2710 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2711 2712 return CGF.Builder.CreateBitCast(load, resultType); 2713 } 2714 2715 /// Emit an ARC autorelease of the result of a function. 2716 /// 2717 /// \return the value to actually return from the function 2718 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2719 llvm::Value *result) { 2720 // If we're returning 'self', kill the initial retain. This is a 2721 // heuristic attempt to "encourage correctness" in the really unfortunate 2722 // case where we have a return of self during a dealloc and we desperately 2723 // need to avoid the possible autorelease. 2724 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2725 return self; 2726 2727 // At -O0, try to emit a fused retain/autorelease. 2728 if (CGF.shouldUseFusedARCCalls()) 2729 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2730 return fused; 2731 2732 return CGF.EmitARCAutoreleaseReturnValue(result); 2733 } 2734 2735 /// Heuristically search for a dominating store to the return-value slot. 2736 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2737 // Check if a User is a store which pointerOperand is the ReturnValue. 2738 // We are looking for stores to the ReturnValue, not for stores of the 2739 // ReturnValue to some other location. 2740 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2741 auto *SI = dyn_cast<llvm::StoreInst>(U); 2742 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2743 return nullptr; 2744 // These aren't actually possible for non-coerced returns, and we 2745 // only care about non-coerced returns on this code path. 2746 assert(!SI->isAtomic() && !SI->isVolatile()); 2747 return SI; 2748 }; 2749 // If there are multiple uses of the return-value slot, just check 2750 // for something immediately preceding the IP. Sometimes this can 2751 // happen with how we generate implicit-returns; it can also happen 2752 // with noreturn cleanups. 2753 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2754 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2755 if (IP->empty()) return nullptr; 2756 llvm::Instruction *I = &IP->back(); 2757 2758 // Skip lifetime markers 2759 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2760 IE = IP->rend(); 2761 II != IE; ++II) { 2762 if (llvm::IntrinsicInst *Intrinsic = 2763 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2764 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2765 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2766 ++II; 2767 if (II == IE) 2768 break; 2769 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2770 continue; 2771 } 2772 } 2773 I = &*II; 2774 break; 2775 } 2776 2777 return GetStoreIfValid(I); 2778 } 2779 2780 llvm::StoreInst *store = 2781 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2782 if (!store) return nullptr; 2783 2784 // Now do a first-and-dirty dominance check: just walk up the 2785 // single-predecessors chain from the current insertion point. 2786 llvm::BasicBlock *StoreBB = store->getParent(); 2787 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2788 while (IP != StoreBB) { 2789 if (!(IP = IP->getSinglePredecessor())) 2790 return nullptr; 2791 } 2792 2793 // Okay, the store's basic block dominates the insertion point; we 2794 // can do our thing. 2795 return store; 2796 } 2797 2798 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2799 bool EmitRetDbgLoc, 2800 SourceLocation EndLoc) { 2801 if (FI.isNoReturn()) { 2802 // Noreturn functions don't return. 2803 EmitUnreachable(EndLoc); 2804 return; 2805 } 2806 2807 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2808 // Naked functions don't have epilogues. 2809 Builder.CreateUnreachable(); 2810 return; 2811 } 2812 2813 // Functions with no result always return void. 2814 if (!ReturnValue.isValid()) { 2815 Builder.CreateRetVoid(); 2816 return; 2817 } 2818 2819 llvm::DebugLoc RetDbgLoc; 2820 llvm::Value *RV = nullptr; 2821 QualType RetTy = FI.getReturnType(); 2822 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2823 2824 switch (RetAI.getKind()) { 2825 case ABIArgInfo::InAlloca: 2826 // Aggregrates get evaluated directly into the destination. Sometimes we 2827 // need to return the sret value in a register, though. 2828 assert(hasAggregateEvaluationKind(RetTy)); 2829 if (RetAI.getInAllocaSRet()) { 2830 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2831 --EI; 2832 llvm::Value *ArgStruct = &*EI; 2833 llvm::Value *SRet = Builder.CreateStructGEP( 2834 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2835 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2836 } 2837 break; 2838 2839 case ABIArgInfo::Indirect: { 2840 auto AI = CurFn->arg_begin(); 2841 if (RetAI.isSRetAfterThis()) 2842 ++AI; 2843 switch (getEvaluationKind(RetTy)) { 2844 case TEK_Complex: { 2845 ComplexPairTy RT = 2846 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2847 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2848 /*isInit*/ true); 2849 break; 2850 } 2851 case TEK_Aggregate: 2852 // Do nothing; aggregrates get evaluated directly into the destination. 2853 break; 2854 case TEK_Scalar: 2855 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2856 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2857 /*isInit*/ true); 2858 break; 2859 } 2860 break; 2861 } 2862 2863 case ABIArgInfo::Extend: 2864 case ABIArgInfo::Direct: 2865 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2866 RetAI.getDirectOffset() == 0) { 2867 // The internal return value temp always will have pointer-to-return-type 2868 // type, just do a load. 2869 2870 // If there is a dominating store to ReturnValue, we can elide 2871 // the load, zap the store, and usually zap the alloca. 2872 if (llvm::StoreInst *SI = 2873 findDominatingStoreToReturnValue(*this)) { 2874 // Reuse the debug location from the store unless there is 2875 // cleanup code to be emitted between the store and return 2876 // instruction. 2877 if (EmitRetDbgLoc && !AutoreleaseResult) 2878 RetDbgLoc = SI->getDebugLoc(); 2879 // Get the stored value and nuke the now-dead store. 2880 RV = SI->getValueOperand(); 2881 SI->eraseFromParent(); 2882 2883 // If that was the only use of the return value, nuke it as well now. 2884 auto returnValueInst = ReturnValue.getPointer(); 2885 if (returnValueInst->use_empty()) { 2886 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2887 alloca->eraseFromParent(); 2888 ReturnValue = Address::invalid(); 2889 } 2890 } 2891 2892 // Otherwise, we have to do a simple load. 2893 } else { 2894 RV = Builder.CreateLoad(ReturnValue); 2895 } 2896 } else { 2897 // If the value is offset in memory, apply the offset now. 2898 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2899 2900 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2901 } 2902 2903 // In ARC, end functions that return a retainable type with a call 2904 // to objc_autoreleaseReturnValue. 2905 if (AutoreleaseResult) { 2906 #ifndef NDEBUG 2907 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2908 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2909 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2910 // CurCodeDecl or BlockInfo. 2911 QualType RT; 2912 2913 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2914 RT = FD->getReturnType(); 2915 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2916 RT = MD->getReturnType(); 2917 else if (isa<BlockDecl>(CurCodeDecl)) 2918 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2919 else 2920 llvm_unreachable("Unexpected function/method type"); 2921 2922 assert(getLangOpts().ObjCAutoRefCount && 2923 !FI.isReturnsRetained() && 2924 RT->isObjCRetainableType()); 2925 #endif 2926 RV = emitAutoreleaseOfResult(*this, RV); 2927 } 2928 2929 break; 2930 2931 case ABIArgInfo::Ignore: 2932 break; 2933 2934 case ABIArgInfo::CoerceAndExpand: { 2935 auto coercionType = RetAI.getCoerceAndExpandType(); 2936 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2937 2938 // Load all of the coerced elements out into results. 2939 llvm::SmallVector<llvm::Value*, 4> results; 2940 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2941 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2942 auto coercedEltType = coercionType->getElementType(i); 2943 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2944 continue; 2945 2946 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2947 auto elt = Builder.CreateLoad(eltAddr); 2948 results.push_back(elt); 2949 } 2950 2951 // If we have one result, it's the single direct result type. 2952 if (results.size() == 1) { 2953 RV = results[0]; 2954 2955 // Otherwise, we need to make a first-class aggregate. 2956 } else { 2957 // Construct a return type that lacks padding elements. 2958 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2959 2960 RV = llvm::UndefValue::get(returnType); 2961 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2962 RV = Builder.CreateInsertValue(RV, results[i], i); 2963 } 2964 } 2965 break; 2966 } 2967 2968 case ABIArgInfo::Expand: 2969 llvm_unreachable("Invalid ABI kind for return argument"); 2970 } 2971 2972 llvm::Instruction *Ret; 2973 if (RV) { 2974 EmitReturnValueCheck(RV); 2975 Ret = Builder.CreateRet(RV); 2976 } else { 2977 Ret = Builder.CreateRetVoid(); 2978 } 2979 2980 if (RetDbgLoc) 2981 Ret->setDebugLoc(std::move(RetDbgLoc)); 2982 } 2983 2984 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2985 // A current decl may not be available when emitting vtable thunks. 2986 if (!CurCodeDecl) 2987 return; 2988 2989 ReturnsNonNullAttr *RetNNAttr = nullptr; 2990 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2991 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2992 2993 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2994 return; 2995 2996 // Prefer the returns_nonnull attribute if it's present. 2997 SourceLocation AttrLoc; 2998 SanitizerMask CheckKind; 2999 SanitizerHandler Handler; 3000 if (RetNNAttr) { 3001 assert(!requiresReturnValueNullabilityCheck() && 3002 "Cannot check nullability and the nonnull attribute"); 3003 AttrLoc = RetNNAttr->getLocation(); 3004 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3005 Handler = SanitizerHandler::NonnullReturn; 3006 } else { 3007 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3008 if (auto *TSI = DD->getTypeSourceInfo()) 3009 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 3010 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3011 CheckKind = SanitizerKind::NullabilityReturn; 3012 Handler = SanitizerHandler::NullabilityReturn; 3013 } 3014 3015 SanitizerScope SanScope(this); 3016 3017 // Make sure the "return" source location is valid. If we're checking a 3018 // nullability annotation, make sure the preconditions for the check are met. 3019 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3020 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3021 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3022 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3023 if (requiresReturnValueNullabilityCheck()) 3024 CanNullCheck = 3025 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3026 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3027 EmitBlock(Check); 3028 3029 // Now do the null check. 3030 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3031 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3032 llvm::Value *DynamicData[] = {SLocPtr}; 3033 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3034 3035 EmitBlock(NoCheck); 3036 3037 #ifndef NDEBUG 3038 // The return location should not be used after the check has been emitted. 3039 ReturnLocation = Address::invalid(); 3040 #endif 3041 } 3042 3043 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3044 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3045 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3046 } 3047 3048 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3049 QualType Ty) { 3050 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3051 // placeholders. 3052 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3053 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3054 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3055 3056 // FIXME: When we generate this IR in one pass, we shouldn't need 3057 // this win32-specific alignment hack. 3058 CharUnits Align = CharUnits::fromQuantity(4); 3059 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3060 3061 return AggValueSlot::forAddr(Address(Placeholder, Align), 3062 Ty.getQualifiers(), 3063 AggValueSlot::IsNotDestructed, 3064 AggValueSlot::DoesNotNeedGCBarriers, 3065 AggValueSlot::IsNotAliased, 3066 AggValueSlot::DoesNotOverlap); 3067 } 3068 3069 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3070 const VarDecl *param, 3071 SourceLocation loc) { 3072 // StartFunction converted the ABI-lowered parameter(s) into a 3073 // local alloca. We need to turn that into an r-value suitable 3074 // for EmitCall. 3075 Address local = GetAddrOfLocalVar(param); 3076 3077 QualType type = param->getType(); 3078 3079 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 3080 "cannot emit delegate call arguments for inalloca arguments!"); 3081 3082 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3083 // but the argument needs to be the original pointer. 3084 if (type->isReferenceType()) { 3085 args.add(RValue::get(Builder.CreateLoad(local)), type); 3086 3087 // In ARC, move out of consumed arguments so that the release cleanup 3088 // entered by StartFunction doesn't cause an over-release. This isn't 3089 // optimal -O0 code generation, but it should get cleaned up when 3090 // optimization is enabled. This also assumes that delegate calls are 3091 // performed exactly once for a set of arguments, but that should be safe. 3092 } else if (getLangOpts().ObjCAutoRefCount && 3093 param->hasAttr<NSConsumedAttr>() && 3094 type->isObjCRetainableType()) { 3095 llvm::Value *ptr = Builder.CreateLoad(local); 3096 auto null = 3097 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3098 Builder.CreateStore(null, local); 3099 args.add(RValue::get(ptr), type); 3100 3101 // For the most part, we just need to load the alloca, except that 3102 // aggregate r-values are actually pointers to temporaries. 3103 } else { 3104 args.add(convertTempToRValue(local, type, loc), type); 3105 } 3106 3107 // Deactivate the cleanup for the callee-destructed param that was pushed. 3108 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3109 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3110 type.isDestructedType()) { 3111 EHScopeStack::stable_iterator cleanup = 3112 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3113 assert(cleanup.isValid() && 3114 "cleanup for callee-destructed param not recorded"); 3115 // This unreachable is a temporary marker which will be removed later. 3116 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3117 args.addArgCleanupDeactivation(cleanup, isActive); 3118 } 3119 } 3120 3121 static bool isProvablyNull(llvm::Value *addr) { 3122 return isa<llvm::ConstantPointerNull>(addr); 3123 } 3124 3125 /// Emit the actual writing-back of a writeback. 3126 static void emitWriteback(CodeGenFunction &CGF, 3127 const CallArgList::Writeback &writeback) { 3128 const LValue &srcLV = writeback.Source; 3129 Address srcAddr = srcLV.getAddress(); 3130 assert(!isProvablyNull(srcAddr.getPointer()) && 3131 "shouldn't have writeback for provably null argument"); 3132 3133 llvm::BasicBlock *contBB = nullptr; 3134 3135 // If the argument wasn't provably non-null, we need to null check 3136 // before doing the store. 3137 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3138 CGF.CGM.getDataLayout()); 3139 if (!provablyNonNull) { 3140 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3141 contBB = CGF.createBasicBlock("icr.done"); 3142 3143 llvm::Value *isNull = 3144 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3145 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3146 CGF.EmitBlock(writebackBB); 3147 } 3148 3149 // Load the value to writeback. 3150 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3151 3152 // Cast it back, in case we're writing an id to a Foo* or something. 3153 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3154 "icr.writeback-cast"); 3155 3156 // Perform the writeback. 3157 3158 // If we have a "to use" value, it's something we need to emit a use 3159 // of. This has to be carefully threaded in: if it's done after the 3160 // release it's potentially undefined behavior (and the optimizer 3161 // will ignore it), and if it happens before the retain then the 3162 // optimizer could move the release there. 3163 if (writeback.ToUse) { 3164 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3165 3166 // Retain the new value. No need to block-copy here: the block's 3167 // being passed up the stack. 3168 value = CGF.EmitARCRetainNonBlock(value); 3169 3170 // Emit the intrinsic use here. 3171 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3172 3173 // Load the old value (primitively). 3174 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3175 3176 // Put the new value in place (primitively). 3177 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3178 3179 // Release the old value. 3180 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3181 3182 // Otherwise, we can just do a normal lvalue store. 3183 } else { 3184 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3185 } 3186 3187 // Jump to the continuation block. 3188 if (!provablyNonNull) 3189 CGF.EmitBlock(contBB); 3190 } 3191 3192 static void emitWritebacks(CodeGenFunction &CGF, 3193 const CallArgList &args) { 3194 for (const auto &I : args.writebacks()) 3195 emitWriteback(CGF, I); 3196 } 3197 3198 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3199 const CallArgList &CallArgs) { 3200 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3201 CallArgs.getCleanupsToDeactivate(); 3202 // Iterate in reverse to increase the likelihood of popping the cleanup. 3203 for (const auto &I : llvm::reverse(Cleanups)) { 3204 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3205 I.IsActiveIP->eraseFromParent(); 3206 } 3207 } 3208 3209 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3210 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3211 if (uop->getOpcode() == UO_AddrOf) 3212 return uop->getSubExpr(); 3213 return nullptr; 3214 } 3215 3216 /// Emit an argument that's being passed call-by-writeback. That is, 3217 /// we are passing the address of an __autoreleased temporary; it 3218 /// might be copy-initialized with the current value of the given 3219 /// address, but it will definitely be copied out of after the call. 3220 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3221 const ObjCIndirectCopyRestoreExpr *CRE) { 3222 LValue srcLV; 3223 3224 // Make an optimistic effort to emit the address as an l-value. 3225 // This can fail if the argument expression is more complicated. 3226 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3227 srcLV = CGF.EmitLValue(lvExpr); 3228 3229 // Otherwise, just emit it as a scalar. 3230 } else { 3231 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3232 3233 QualType srcAddrType = 3234 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3235 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3236 } 3237 Address srcAddr = srcLV.getAddress(); 3238 3239 // The dest and src types don't necessarily match in LLVM terms 3240 // because of the crazy ObjC compatibility rules. 3241 3242 llvm::PointerType *destType = 3243 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3244 3245 // If the address is a constant null, just pass the appropriate null. 3246 if (isProvablyNull(srcAddr.getPointer())) { 3247 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3248 CRE->getType()); 3249 return; 3250 } 3251 3252 // Create the temporary. 3253 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3254 CGF.getPointerAlign(), 3255 "icr.temp"); 3256 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3257 // and that cleanup will be conditional if we can't prove that the l-value 3258 // isn't null, so we need to register a dominating point so that the cleanups 3259 // system will make valid IR. 3260 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3261 3262 // Zero-initialize it if we're not doing a copy-initialization. 3263 bool shouldCopy = CRE->shouldCopy(); 3264 if (!shouldCopy) { 3265 llvm::Value *null = 3266 llvm::ConstantPointerNull::get( 3267 cast<llvm::PointerType>(destType->getElementType())); 3268 CGF.Builder.CreateStore(null, temp); 3269 } 3270 3271 llvm::BasicBlock *contBB = nullptr; 3272 llvm::BasicBlock *originBB = nullptr; 3273 3274 // If the address is *not* known to be non-null, we need to switch. 3275 llvm::Value *finalArgument; 3276 3277 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3278 CGF.CGM.getDataLayout()); 3279 if (provablyNonNull) { 3280 finalArgument = temp.getPointer(); 3281 } else { 3282 llvm::Value *isNull = 3283 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3284 3285 finalArgument = CGF.Builder.CreateSelect(isNull, 3286 llvm::ConstantPointerNull::get(destType), 3287 temp.getPointer(), "icr.argument"); 3288 3289 // If we need to copy, then the load has to be conditional, which 3290 // means we need control flow. 3291 if (shouldCopy) { 3292 originBB = CGF.Builder.GetInsertBlock(); 3293 contBB = CGF.createBasicBlock("icr.cont"); 3294 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3295 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3296 CGF.EmitBlock(copyBB); 3297 condEval.begin(CGF); 3298 } 3299 } 3300 3301 llvm::Value *valueToUse = nullptr; 3302 3303 // Perform a copy if necessary. 3304 if (shouldCopy) { 3305 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3306 assert(srcRV.isScalar()); 3307 3308 llvm::Value *src = srcRV.getScalarVal(); 3309 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3310 "icr.cast"); 3311 3312 // Use an ordinary store, not a store-to-lvalue. 3313 CGF.Builder.CreateStore(src, temp); 3314 3315 // If optimization is enabled, and the value was held in a 3316 // __strong variable, we need to tell the optimizer that this 3317 // value has to stay alive until we're doing the store back. 3318 // This is because the temporary is effectively unretained, 3319 // and so otherwise we can violate the high-level semantics. 3320 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3321 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3322 valueToUse = src; 3323 } 3324 } 3325 3326 // Finish the control flow if we needed it. 3327 if (shouldCopy && !provablyNonNull) { 3328 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3329 CGF.EmitBlock(contBB); 3330 3331 // Make a phi for the value to intrinsically use. 3332 if (valueToUse) { 3333 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3334 "icr.to-use"); 3335 phiToUse->addIncoming(valueToUse, copyBB); 3336 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3337 originBB); 3338 valueToUse = phiToUse; 3339 } 3340 3341 condEval.end(CGF); 3342 } 3343 3344 args.addWriteback(srcLV, temp, valueToUse); 3345 args.add(RValue::get(finalArgument), CRE->getType()); 3346 } 3347 3348 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3349 assert(!StackBase); 3350 3351 // Save the stack. 3352 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3353 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3354 } 3355 3356 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3357 if (StackBase) { 3358 // Restore the stack after the call. 3359 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3360 CGF.Builder.CreateCall(F, StackBase); 3361 } 3362 } 3363 3364 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3365 SourceLocation ArgLoc, 3366 AbstractCallee AC, 3367 unsigned ParmNum) { 3368 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3369 SanOpts.has(SanitizerKind::NullabilityArg))) 3370 return; 3371 3372 // The param decl may be missing in a variadic function. 3373 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3374 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3375 3376 // Prefer the nonnull attribute if it's present. 3377 const NonNullAttr *NNAttr = nullptr; 3378 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3379 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3380 3381 bool CanCheckNullability = false; 3382 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3383 auto Nullability = PVD->getType()->getNullability(getContext()); 3384 CanCheckNullability = Nullability && 3385 *Nullability == NullabilityKind::NonNull && 3386 PVD->getTypeSourceInfo(); 3387 } 3388 3389 if (!NNAttr && !CanCheckNullability) 3390 return; 3391 3392 SourceLocation AttrLoc; 3393 SanitizerMask CheckKind; 3394 SanitizerHandler Handler; 3395 if (NNAttr) { 3396 AttrLoc = NNAttr->getLocation(); 3397 CheckKind = SanitizerKind::NonnullAttribute; 3398 Handler = SanitizerHandler::NonnullArg; 3399 } else { 3400 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3401 CheckKind = SanitizerKind::NullabilityArg; 3402 Handler = SanitizerHandler::NullabilityArg; 3403 } 3404 3405 SanitizerScope SanScope(this); 3406 assert(RV.isScalar()); 3407 llvm::Value *V = RV.getScalarVal(); 3408 llvm::Value *Cond = 3409 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3410 llvm::Constant *StaticData[] = { 3411 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3412 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3413 }; 3414 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3415 } 3416 3417 void CodeGenFunction::EmitCallArgs( 3418 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3419 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3420 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3421 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3422 3423 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3424 // because arguments are destroyed left to right in the callee. As a special 3425 // case, there are certain language constructs that require left-to-right 3426 // evaluation, and in those cases we consider the evaluation order requirement 3427 // to trump the "destruction order is reverse construction order" guarantee. 3428 bool LeftToRight = 3429 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3430 ? Order == EvaluationOrder::ForceLeftToRight 3431 : Order != EvaluationOrder::ForceRightToLeft; 3432 3433 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3434 RValue EmittedArg) { 3435 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3436 return; 3437 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3438 if (PS == nullptr) 3439 return; 3440 3441 const auto &Context = getContext(); 3442 auto SizeTy = Context.getSizeType(); 3443 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3444 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3445 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3446 EmittedArg.getScalarVal()); 3447 Args.add(RValue::get(V), SizeTy); 3448 // If we're emitting args in reverse, be sure to do so with 3449 // pass_object_size, as well. 3450 if (!LeftToRight) 3451 std::swap(Args.back(), *(&Args.back() - 1)); 3452 }; 3453 3454 // Insert a stack save if we're going to need any inalloca args. 3455 bool HasInAllocaArgs = false; 3456 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3457 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3458 I != E && !HasInAllocaArgs; ++I) 3459 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3460 if (HasInAllocaArgs) { 3461 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3462 Args.allocateArgumentMemory(*this); 3463 } 3464 } 3465 3466 // Evaluate each argument in the appropriate order. 3467 size_t CallArgsStart = Args.size(); 3468 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3469 unsigned Idx = LeftToRight ? I : E - I - 1; 3470 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3471 unsigned InitialArgSize = Args.size(); 3472 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3473 // the argument and parameter match or the objc method is parameterized. 3474 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3475 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3476 ArgTypes[Idx]) || 3477 (isa<ObjCMethodDecl>(AC.getDecl()) && 3478 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3479 "Argument and parameter types don't match"); 3480 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3481 // In particular, we depend on it being the last arg in Args, and the 3482 // objectsize bits depend on there only being one arg if !LeftToRight. 3483 assert(InitialArgSize + 1 == Args.size() && 3484 "The code below depends on only adding one arg per EmitCallArg"); 3485 (void)InitialArgSize; 3486 // Since pointer argument are never emitted as LValue, it is safe to emit 3487 // non-null argument check for r-value only. 3488 if (!Args.back().hasLValue()) { 3489 RValue RVArg = Args.back().getKnownRValue(); 3490 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3491 ParamsToSkip + Idx); 3492 // @llvm.objectsize should never have side-effects and shouldn't need 3493 // destruction/cleanups, so we can safely "emit" it after its arg, 3494 // regardless of right-to-leftness 3495 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3496 } 3497 } 3498 3499 if (!LeftToRight) { 3500 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3501 // IR function. 3502 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3503 } 3504 } 3505 3506 namespace { 3507 3508 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3509 DestroyUnpassedArg(Address Addr, QualType Ty) 3510 : Addr(Addr), Ty(Ty) {} 3511 3512 Address Addr; 3513 QualType Ty; 3514 3515 void Emit(CodeGenFunction &CGF, Flags flags) override { 3516 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3517 if (DtorKind == QualType::DK_cxx_destructor) { 3518 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3519 assert(!Dtor->isTrivial()); 3520 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3521 /*Delegating=*/false, Addr); 3522 } else { 3523 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3524 } 3525 } 3526 }; 3527 3528 struct DisableDebugLocationUpdates { 3529 CodeGenFunction &CGF; 3530 bool disabledDebugInfo; 3531 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3532 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3533 CGF.disableDebugInfo(); 3534 } 3535 ~DisableDebugLocationUpdates() { 3536 if (disabledDebugInfo) 3537 CGF.enableDebugInfo(); 3538 } 3539 }; 3540 3541 } // end anonymous namespace 3542 3543 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3544 if (!HasLV) 3545 return RV; 3546 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3547 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3548 LV.isVolatile()); 3549 IsUsed = true; 3550 return RValue::getAggregate(Copy.getAddress()); 3551 } 3552 3553 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3554 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3555 if (!HasLV && RV.isScalar()) 3556 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); 3557 else if (!HasLV && RV.isComplex()) 3558 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3559 else { 3560 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3561 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3562 // We assume that call args are never copied into subobjects. 3563 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3564 HasLV ? LV.isVolatileQualified() 3565 : RV.isVolatileQualified()); 3566 } 3567 IsUsed = true; 3568 } 3569 3570 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3571 QualType type) { 3572 DisableDebugLocationUpdates Dis(*this, E); 3573 if (const ObjCIndirectCopyRestoreExpr *CRE 3574 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3575 assert(getLangOpts().ObjCAutoRefCount); 3576 return emitWritebackArg(*this, args, CRE); 3577 } 3578 3579 assert(type->isReferenceType() == E->isGLValue() && 3580 "reference binding to unmaterialized r-value!"); 3581 3582 if (E->isGLValue()) { 3583 assert(E->getObjectKind() == OK_Ordinary); 3584 return args.add(EmitReferenceBindingToExpr(E), type); 3585 } 3586 3587 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3588 3589 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3590 // However, we still have to push an EH-only cleanup in case we unwind before 3591 // we make it to the call. 3592 if (HasAggregateEvalKind && 3593 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3594 // If we're using inalloca, use the argument memory. Otherwise, use a 3595 // temporary. 3596 AggValueSlot Slot; 3597 if (args.isUsingInAlloca()) 3598 Slot = createPlaceholderSlot(*this, type); 3599 else 3600 Slot = CreateAggTemp(type, "agg.tmp"); 3601 3602 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3603 if (const auto *RD = type->getAsCXXRecordDecl()) 3604 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3605 else 3606 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3607 3608 if (DestroyedInCallee) 3609 Slot.setExternallyDestructed(); 3610 3611 EmitAggExpr(E, Slot); 3612 RValue RV = Slot.asRValue(); 3613 args.add(RV, type); 3614 3615 if (DestroyedInCallee && NeedsEHCleanup) { 3616 // Create a no-op GEP between the placeholder and the cleanup so we can 3617 // RAUW it successfully. It also serves as a marker of the first 3618 // instruction where the cleanup is active. 3619 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3620 type); 3621 // This unreachable is a temporary marker which will be removed later. 3622 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3623 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3624 } 3625 return; 3626 } 3627 3628 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3629 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3630 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3631 assert(L.isSimple()); 3632 args.addUncopiedAggregate(L, type); 3633 return; 3634 } 3635 3636 args.add(EmitAnyExprToTemp(E), type); 3637 } 3638 3639 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3640 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3641 // implicitly widens null pointer constants that are arguments to varargs 3642 // functions to pointer-sized ints. 3643 if (!getTarget().getTriple().isOSWindows()) 3644 return Arg->getType(); 3645 3646 if (Arg->getType()->isIntegerType() && 3647 getContext().getTypeSize(Arg->getType()) < 3648 getContext().getTargetInfo().getPointerWidth(0) && 3649 Arg->isNullPointerConstant(getContext(), 3650 Expr::NPC_ValueDependentIsNotNull)) { 3651 return getContext().getIntPtrType(); 3652 } 3653 3654 return Arg->getType(); 3655 } 3656 3657 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3658 // optimizer it can aggressively ignore unwind edges. 3659 void 3660 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3661 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3662 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3663 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3664 CGM.getNoObjCARCExceptionsMetadata()); 3665 } 3666 3667 /// Emits a call to the given no-arguments nounwind runtime function. 3668 llvm::CallInst * 3669 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3670 const llvm::Twine &name) { 3671 return EmitNounwindRuntimeCall(callee, None, name); 3672 } 3673 3674 /// Emits a call to the given nounwind runtime function. 3675 llvm::CallInst * 3676 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3677 ArrayRef<llvm::Value*> args, 3678 const llvm::Twine &name) { 3679 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3680 call->setDoesNotThrow(); 3681 return call; 3682 } 3683 3684 /// Emits a simple call (never an invoke) to the given no-arguments 3685 /// runtime function. 3686 llvm::CallInst * 3687 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3688 const llvm::Twine &name) { 3689 return EmitRuntimeCall(callee, None, name); 3690 } 3691 3692 // Calls which may throw must have operand bundles indicating which funclet 3693 // they are nested within. 3694 SmallVector<llvm::OperandBundleDef, 1> 3695 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3696 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3697 // There is no need for a funclet operand bundle if we aren't inside a 3698 // funclet. 3699 if (!CurrentFuncletPad) 3700 return BundleList; 3701 3702 // Skip intrinsics which cannot throw. 3703 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3704 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3705 return BundleList; 3706 3707 BundleList.emplace_back("funclet", CurrentFuncletPad); 3708 return BundleList; 3709 } 3710 3711 /// Emits a simple call (never an invoke) to the given runtime function. 3712 llvm::CallInst * 3713 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3714 ArrayRef<llvm::Value*> args, 3715 const llvm::Twine &name) { 3716 llvm::CallInst *call = 3717 Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); 3718 call->setCallingConv(getRuntimeCC()); 3719 return call; 3720 } 3721 3722 /// Emits a call or invoke to the given noreturn runtime function. 3723 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3724 ArrayRef<llvm::Value*> args) { 3725 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3726 getBundlesForFunclet(callee); 3727 3728 if (getInvokeDest()) { 3729 llvm::InvokeInst *invoke = 3730 Builder.CreateInvoke(callee, 3731 getUnreachableBlock(), 3732 getInvokeDest(), 3733 args, 3734 BundleList); 3735 invoke->setDoesNotReturn(); 3736 invoke->setCallingConv(getRuntimeCC()); 3737 } else { 3738 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3739 call->setDoesNotReturn(); 3740 call->setCallingConv(getRuntimeCC()); 3741 Builder.CreateUnreachable(); 3742 } 3743 } 3744 3745 /// Emits a call or invoke instruction to the given nullary runtime function. 3746 llvm::CallSite 3747 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3748 const Twine &name) { 3749 return EmitRuntimeCallOrInvoke(callee, None, name); 3750 } 3751 3752 /// Emits a call or invoke instruction to the given runtime function. 3753 llvm::CallSite 3754 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3755 ArrayRef<llvm::Value*> args, 3756 const Twine &name) { 3757 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3758 callSite.setCallingConv(getRuntimeCC()); 3759 return callSite; 3760 } 3761 3762 /// Emits a call or invoke instruction to the given function, depending 3763 /// on the current state of the EH stack. 3764 llvm::CallSite 3765 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3766 ArrayRef<llvm::Value *> Args, 3767 const Twine &Name) { 3768 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3769 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3770 getBundlesForFunclet(Callee); 3771 3772 llvm::Instruction *Inst; 3773 if (!InvokeDest) 3774 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3775 else { 3776 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3777 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3778 Name); 3779 EmitBlock(ContBB); 3780 } 3781 3782 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3783 // optimizer it can aggressively ignore unwind edges. 3784 if (CGM.getLangOpts().ObjCAutoRefCount) 3785 AddObjCARCExceptionMetadata(Inst); 3786 3787 return llvm::CallSite(Inst); 3788 } 3789 3790 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3791 llvm::Value *New) { 3792 DeferredReplacements.push_back(std::make_pair(Old, New)); 3793 } 3794 3795 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3796 const CGCallee &Callee, 3797 ReturnValueSlot ReturnValue, 3798 const CallArgList &CallArgs, 3799 llvm::Instruction **callOrInvoke, 3800 SourceLocation Loc) { 3801 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3802 3803 assert(Callee.isOrdinary() || Callee.isVirtual()); 3804 3805 // Handle struct-return functions by passing a pointer to the 3806 // location that we would like to return into. 3807 QualType RetTy = CallInfo.getReturnType(); 3808 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3809 3810 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3811 3812 // 1. Set up the arguments. 3813 3814 // If we're using inalloca, insert the allocation after the stack save. 3815 // FIXME: Do this earlier rather than hacking it in here! 3816 Address ArgMemory = Address::invalid(); 3817 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3818 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3819 const llvm::DataLayout &DL = CGM.getDataLayout(); 3820 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3821 llvm::Instruction *IP = CallArgs.getStackBase(); 3822 llvm::AllocaInst *AI; 3823 if (IP) { 3824 IP = IP->getNextNode(); 3825 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3826 "argmem", IP); 3827 } else { 3828 AI = CreateTempAlloca(ArgStruct, "argmem"); 3829 } 3830 auto Align = CallInfo.getArgStructAlignment(); 3831 AI->setAlignment(Align.getQuantity()); 3832 AI->setUsedWithInAlloca(true); 3833 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3834 ArgMemory = Address(AI, Align); 3835 } 3836 3837 // Helper function to drill into the inalloca allocation. 3838 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3839 auto FieldOffset = 3840 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3841 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3842 }; 3843 3844 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3845 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3846 3847 // If the call returns a temporary with struct return, create a temporary 3848 // alloca to hold the result, unless one is given to us. 3849 Address SRetPtr = Address::invalid(); 3850 Address SRetAlloca = Address::invalid(); 3851 llvm::Value *UnusedReturnSizePtr = nullptr; 3852 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3853 if (!ReturnValue.isNull()) { 3854 SRetPtr = ReturnValue.getValue(); 3855 } else { 3856 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 3857 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3858 uint64_t size = 3859 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3860 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 3861 } 3862 } 3863 if (IRFunctionArgs.hasSRetArg()) { 3864 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3865 } else if (RetAI.isInAlloca()) { 3866 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3867 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3868 } 3869 } 3870 3871 Address swiftErrorTemp = Address::invalid(); 3872 Address swiftErrorArg = Address::invalid(); 3873 3874 // Translate all of the arguments as necessary to match the IR lowering. 3875 assert(CallInfo.arg_size() == CallArgs.size() && 3876 "Mismatch between function signature & arguments."); 3877 unsigned ArgNo = 0; 3878 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3879 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3880 I != E; ++I, ++info_it, ++ArgNo) { 3881 const ABIArgInfo &ArgInfo = info_it->info; 3882 3883 // Insert a padding argument to ensure proper alignment. 3884 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3885 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3886 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3887 3888 unsigned FirstIRArg, NumIRArgs; 3889 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3890 3891 switch (ArgInfo.getKind()) { 3892 case ABIArgInfo::InAlloca: { 3893 assert(NumIRArgs == 0); 3894 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3895 if (I->isAggregate()) { 3896 // Replace the placeholder with the appropriate argument slot GEP. 3897 Address Addr = I->hasLValue() 3898 ? I->getKnownLValue().getAddress() 3899 : I->getKnownRValue().getAggregateAddress(); 3900 llvm::Instruction *Placeholder = 3901 cast<llvm::Instruction>(Addr.getPointer()); 3902 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3903 Builder.SetInsertPoint(Placeholder); 3904 Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3905 Builder.restoreIP(IP); 3906 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3907 } else { 3908 // Store the RValue into the argument struct. 3909 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3910 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3911 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3912 // There are some cases where a trivial bitcast is not avoidable. The 3913 // definition of a type later in a translation unit may change it's type 3914 // from {}* to (%struct.foo*)*. 3915 if (Addr.getType() != MemType) 3916 Addr = Builder.CreateBitCast(Addr, MemType); 3917 I->copyInto(*this, Addr); 3918 } 3919 break; 3920 } 3921 3922 case ABIArgInfo::Indirect: { 3923 assert(NumIRArgs == 1); 3924 if (!I->isAggregate()) { 3925 // Make a temporary alloca to pass the argument. 3926 Address Addr = CreateMemTempWithoutCast( 3927 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 3928 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3929 3930 I->copyInto(*this, Addr); 3931 } else { 3932 // We want to avoid creating an unnecessary temporary+copy here; 3933 // however, we need one in three cases: 3934 // 1. If the argument is not byval, and we are required to copy the 3935 // source. (This case doesn't occur on any common architecture.) 3936 // 2. If the argument is byval, RV is not sufficiently aligned, and 3937 // we cannot force it to be sufficiently aligned. 3938 // 3. If the argument is byval, but RV is not located in default 3939 // or alloca address space. 3940 Address Addr = I->hasLValue() 3941 ? I->getKnownLValue().getAddress() 3942 : I->getKnownRValue().getAggregateAddress(); 3943 llvm::Value *V = Addr.getPointer(); 3944 CharUnits Align = ArgInfo.getIndirectAlign(); 3945 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3946 3947 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3948 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3949 TD->getAllocaAddrSpace()) && 3950 "indirect argument must be in alloca address space"); 3951 3952 bool NeedCopy = false; 3953 3954 if (Addr.getAlignment() < Align && 3955 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3956 Align.getQuantity()) { 3957 NeedCopy = true; 3958 } else if (I->hasLValue()) { 3959 auto LV = I->getKnownLValue(); 3960 auto AS = LV.getAddressSpace(); 3961 3962 if ((!ArgInfo.getIndirectByVal() && 3963 (LV.getAlignment() >= 3964 getContext().getTypeAlignInChars(I->Ty)))) { 3965 NeedCopy = true; 3966 } 3967 if (!getLangOpts().OpenCL) { 3968 if ((ArgInfo.getIndirectByVal() && 3969 (AS != LangAS::Default && 3970 AS != CGM.getASTAllocaAddressSpace()))) { 3971 NeedCopy = true; 3972 } 3973 } 3974 // For OpenCL even if RV is located in default or alloca address space 3975 // we don't want to perform address space cast for it. 3976 else if ((ArgInfo.getIndirectByVal() && 3977 Addr.getType()->getAddressSpace() != IRFuncTy-> 3978 getParamType(FirstIRArg)->getPointerAddressSpace())) { 3979 NeedCopy = true; 3980 } 3981 } 3982 3983 if (NeedCopy) { 3984 // Create an aligned temporary, and copy to it. 3985 Address AI = CreateMemTempWithoutCast( 3986 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 3987 IRCallArgs[FirstIRArg] = AI.getPointer(); 3988 I->copyInto(*this, AI); 3989 } else { 3990 // Skip the extra memcpy call. 3991 auto *T = V->getType()->getPointerElementType()->getPointerTo( 3992 CGM.getDataLayout().getAllocaAddrSpace()); 3993 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 3994 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 3995 true); 3996 } 3997 } 3998 break; 3999 } 4000 4001 case ABIArgInfo::Ignore: 4002 assert(NumIRArgs == 0); 4003 break; 4004 4005 case ABIArgInfo::Extend: 4006 case ABIArgInfo::Direct: { 4007 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4008 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4009 ArgInfo.getDirectOffset() == 0) { 4010 assert(NumIRArgs == 1); 4011 llvm::Value *V; 4012 if (!I->isAggregate()) 4013 V = I->getKnownRValue().getScalarVal(); 4014 else 4015 V = Builder.CreateLoad( 4016 I->hasLValue() ? I->getKnownLValue().getAddress() 4017 : I->getKnownRValue().getAggregateAddress()); 4018 4019 // Implement swifterror by copying into a new swifterror argument. 4020 // We'll write back in the normal path out of the call. 4021 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4022 == ParameterABI::SwiftErrorResult) { 4023 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4024 4025 QualType pointeeTy = I->Ty->getPointeeType(); 4026 swiftErrorArg = 4027 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4028 4029 swiftErrorTemp = 4030 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4031 V = swiftErrorTemp.getPointer(); 4032 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4033 4034 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4035 Builder.CreateStore(errorValue, swiftErrorTemp); 4036 } 4037 4038 // We might have to widen integers, but we should never truncate. 4039 if (ArgInfo.getCoerceToType() != V->getType() && 4040 V->getType()->isIntegerTy()) 4041 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4042 4043 // If the argument doesn't match, perform a bitcast to coerce it. This 4044 // can happen due to trivial type mismatches. 4045 if (FirstIRArg < IRFuncTy->getNumParams() && 4046 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4047 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4048 4049 IRCallArgs[FirstIRArg] = V; 4050 break; 4051 } 4052 4053 // FIXME: Avoid the conversion through memory if possible. 4054 Address Src = Address::invalid(); 4055 if (!I->isAggregate()) { 4056 Src = CreateMemTemp(I->Ty, "coerce"); 4057 I->copyInto(*this, Src); 4058 } else { 4059 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 4060 : I->getKnownRValue().getAggregateAddress(); 4061 } 4062 4063 // If the value is offset in memory, apply the offset now. 4064 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4065 4066 // Fast-isel and the optimizer generally like scalar values better than 4067 // FCAs, so we flatten them if this is safe to do for this argument. 4068 llvm::StructType *STy = 4069 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4070 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4071 llvm::Type *SrcTy = Src.getType()->getElementType(); 4072 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4073 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4074 4075 // If the source type is smaller than the destination type of the 4076 // coerce-to logic, copy the source value into a temp alloca the size 4077 // of the destination type to allow loading all of it. The bits past 4078 // the source value are left undef. 4079 if (SrcSize < DstSize) { 4080 Address TempAlloca 4081 = CreateTempAlloca(STy, Src.getAlignment(), 4082 Src.getName() + ".coerce"); 4083 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4084 Src = TempAlloca; 4085 } else { 4086 Src = Builder.CreateBitCast(Src, 4087 STy->getPointerTo(Src.getAddressSpace())); 4088 } 4089 4090 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 4091 assert(NumIRArgs == STy->getNumElements()); 4092 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4093 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 4094 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 4095 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4096 IRCallArgs[FirstIRArg + i] = LI; 4097 } 4098 } else { 4099 // In the simple case, just pass the coerced loaded value. 4100 assert(NumIRArgs == 1); 4101 IRCallArgs[FirstIRArg] = 4102 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4103 } 4104 4105 break; 4106 } 4107 4108 case ABIArgInfo::CoerceAndExpand: { 4109 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4110 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4111 4112 llvm::Value *tempSize = nullptr; 4113 Address addr = Address::invalid(); 4114 Address AllocaAddr = Address::invalid(); 4115 if (I->isAggregate()) { 4116 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4117 : I->getKnownRValue().getAggregateAddress(); 4118 4119 } else { 4120 RValue RV = I->getKnownRValue(); 4121 assert(RV.isScalar()); // complex should always just be direct 4122 4123 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4124 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4125 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4126 4127 // Materialize to a temporary. 4128 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 4129 CharUnits::fromQuantity(std::max( 4130 layout->getAlignment(), scalarAlign)), 4131 "tmp", 4132 /*ArraySize=*/nullptr, &AllocaAddr); 4133 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4134 4135 Builder.CreateStore(RV.getScalarVal(), addr); 4136 } 4137 4138 addr = Builder.CreateElementBitCast(addr, coercionType); 4139 4140 unsigned IRArgPos = FirstIRArg; 4141 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4142 llvm::Type *eltType = coercionType->getElementType(i); 4143 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4144 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4145 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4146 IRCallArgs[IRArgPos++] = elt; 4147 } 4148 assert(IRArgPos == FirstIRArg + NumIRArgs); 4149 4150 if (tempSize) { 4151 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4152 } 4153 4154 break; 4155 } 4156 4157 case ABIArgInfo::Expand: 4158 unsigned IRArgPos = FirstIRArg; 4159 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4160 assert(IRArgPos == FirstIRArg + NumIRArgs); 4161 break; 4162 } 4163 } 4164 4165 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4166 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4167 4168 // If we're using inalloca, set up that argument. 4169 if (ArgMemory.isValid()) { 4170 llvm::Value *Arg = ArgMemory.getPointer(); 4171 if (CallInfo.isVariadic()) { 4172 // When passing non-POD arguments by value to variadic functions, we will 4173 // end up with a variadic prototype and an inalloca call site. In such 4174 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4175 // the callee. 4176 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4177 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4178 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4179 } else { 4180 llvm::Type *LastParamTy = 4181 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4182 if (Arg->getType() != LastParamTy) { 4183 #ifndef NDEBUG 4184 // Assert that these structs have equivalent element types. 4185 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4186 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4187 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4188 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4189 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4190 DE = DeclaredTy->element_end(), 4191 FI = FullTy->element_begin(); 4192 DI != DE; ++DI, ++FI) 4193 assert(*DI == *FI); 4194 #endif 4195 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4196 } 4197 } 4198 assert(IRFunctionArgs.hasInallocaArg()); 4199 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4200 } 4201 4202 // 2. Prepare the function pointer. 4203 4204 // If the callee is a bitcast of a non-variadic function to have a 4205 // variadic function pointer type, check to see if we can remove the 4206 // bitcast. This comes up with unprototyped functions. 4207 // 4208 // This makes the IR nicer, but more importantly it ensures that we 4209 // can inline the function at -O0 if it is marked always_inline. 4210 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4211 llvm::FunctionType *CalleeFT = 4212 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4213 if (!CalleeFT->isVarArg()) 4214 return Ptr; 4215 4216 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4217 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4218 return Ptr; 4219 4220 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4221 if (!OrigFn) 4222 return Ptr; 4223 4224 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4225 4226 // If the original type is variadic, or if any of the component types 4227 // disagree, we cannot remove the cast. 4228 if (OrigFT->isVarArg() || 4229 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4230 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4231 return Ptr; 4232 4233 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4234 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4235 return Ptr; 4236 4237 return OrigFn; 4238 }; 4239 CalleePtr = simplifyVariadicCallee(CalleePtr); 4240 4241 // 3. Perform the actual call. 4242 4243 // Deactivate any cleanups that we're supposed to do immediately before 4244 // the call. 4245 if (!CallArgs.getCleanupsToDeactivate().empty()) 4246 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4247 4248 // Assert that the arguments we computed match up. The IR verifier 4249 // will catch this, but this is a common enough source of problems 4250 // during IRGen changes that it's way better for debugging to catch 4251 // it ourselves here. 4252 #ifndef NDEBUG 4253 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4254 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4255 // Inalloca argument can have different type. 4256 if (IRFunctionArgs.hasInallocaArg() && 4257 i == IRFunctionArgs.getInallocaArgNo()) 4258 continue; 4259 if (i < IRFuncTy->getNumParams()) 4260 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4261 } 4262 #endif 4263 4264 // Update the largest vector width if any arguments have vector types. 4265 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4266 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4267 LargestVectorWidth = std::max(LargestVectorWidth, 4268 VT->getPrimitiveSizeInBits()); 4269 } 4270 4271 // Compute the calling convention and attributes. 4272 unsigned CallingConv; 4273 llvm::AttributeList Attrs; 4274 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4275 Callee.getAbstractInfo(), Attrs, CallingConv, 4276 /*AttrOnCallSite=*/true); 4277 4278 // Apply some call-site-specific attributes. 4279 // TODO: work this into building the attribute set. 4280 4281 // Apply always_inline to all calls within flatten functions. 4282 // FIXME: should this really take priority over __try, below? 4283 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4284 !(Callee.getAbstractInfo().getCalleeDecl().getDecl() && 4285 Callee.getAbstractInfo() 4286 .getCalleeDecl() 4287 .getDecl() 4288 ->hasAttr<NoInlineAttr>())) { 4289 Attrs = 4290 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4291 llvm::Attribute::AlwaysInline); 4292 } 4293 4294 // Disable inlining inside SEH __try blocks. 4295 if (isSEHTryScope()) { 4296 Attrs = 4297 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4298 llvm::Attribute::NoInline); 4299 } 4300 4301 // Decide whether to use a call or an invoke. 4302 bool CannotThrow; 4303 if (currentFunctionUsesSEHTry()) { 4304 // SEH cares about asynchronous exceptions, so everything can "throw." 4305 CannotThrow = false; 4306 } else if (isCleanupPadScope() && 4307 EHPersonality::get(*this).isMSVCXXPersonality()) { 4308 // The MSVC++ personality will implicitly terminate the program if an 4309 // exception is thrown during a cleanup outside of a try/catch. 4310 // We don't need to model anything in IR to get this behavior. 4311 CannotThrow = true; 4312 } else { 4313 // Otherwise, nounwind call sites will never throw. 4314 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4315 llvm::Attribute::NoUnwind); 4316 } 4317 4318 // If we made a temporary, be sure to clean up after ourselves. Note that we 4319 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4320 // pop this cleanup later on. Being eager about this is OK, since this 4321 // temporary is 'invisible' outside of the callee. 4322 if (UnusedReturnSizePtr) 4323 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4324 UnusedReturnSizePtr); 4325 4326 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4327 4328 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4329 getBundlesForFunclet(CalleePtr); 4330 4331 // Emit the actual call/invoke instruction. 4332 llvm::CallSite CS; 4333 if (!InvokeDest) { 4334 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4335 } else { 4336 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4337 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4338 BundleList); 4339 EmitBlock(Cont); 4340 } 4341 llvm::Instruction *CI = CS.getInstruction(); 4342 if (callOrInvoke) 4343 *callOrInvoke = CI; 4344 4345 // Apply the attributes and calling convention. 4346 CS.setAttributes(Attrs); 4347 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4348 4349 // Apply various metadata. 4350 4351 if (!CI->getType()->isVoidTy()) 4352 CI->setName("call"); 4353 4354 // Update largest vector width from the return type. 4355 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4356 LargestVectorWidth = std::max(LargestVectorWidth, 4357 VT->getPrimitiveSizeInBits()); 4358 4359 // Insert instrumentation or attach profile metadata at indirect call sites. 4360 // For more details, see the comment before the definition of 4361 // IPVK_IndirectCallTarget in InstrProfData.inc. 4362 if (!CS.getCalledFunction()) 4363 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4364 CI, CalleePtr); 4365 4366 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4367 // optimizer it can aggressively ignore unwind edges. 4368 if (CGM.getLangOpts().ObjCAutoRefCount) 4369 AddObjCARCExceptionMetadata(CI); 4370 4371 // Suppress tail calls if requested. 4372 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4373 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4374 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4375 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4376 } 4377 4378 // 4. Finish the call. 4379 4380 // If the call doesn't return, finish the basic block and clear the 4381 // insertion point; this allows the rest of IRGen to discard 4382 // unreachable code. 4383 if (CS.doesNotReturn()) { 4384 if (UnusedReturnSizePtr) 4385 PopCleanupBlock(); 4386 4387 // Strip away the noreturn attribute to better diagnose unreachable UB. 4388 if (SanOpts.has(SanitizerKind::Unreachable)) { 4389 if (auto *F = CS.getCalledFunction()) 4390 F->removeFnAttr(llvm::Attribute::NoReturn); 4391 CS.removeAttribute(llvm::AttributeList::FunctionIndex, 4392 llvm::Attribute::NoReturn); 4393 } 4394 4395 EmitUnreachable(Loc); 4396 Builder.ClearInsertionPoint(); 4397 4398 // FIXME: For now, emit a dummy basic block because expr emitters in 4399 // generally are not ready to handle emitting expressions at unreachable 4400 // points. 4401 EnsureInsertPoint(); 4402 4403 // Return a reasonable RValue. 4404 return GetUndefRValue(RetTy); 4405 } 4406 4407 // Perform the swifterror writeback. 4408 if (swiftErrorTemp.isValid()) { 4409 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4410 Builder.CreateStore(errorResult, swiftErrorArg); 4411 } 4412 4413 // Emit any call-associated writebacks immediately. Arguably this 4414 // should happen after any return-value munging. 4415 if (CallArgs.hasWritebacks()) 4416 emitWritebacks(*this, CallArgs); 4417 4418 // The stack cleanup for inalloca arguments has to run out of the normal 4419 // lexical order, so deactivate it and run it manually here. 4420 CallArgs.freeArgumentMemory(*this); 4421 4422 // Extract the return value. 4423 RValue Ret = [&] { 4424 switch (RetAI.getKind()) { 4425 case ABIArgInfo::CoerceAndExpand: { 4426 auto coercionType = RetAI.getCoerceAndExpandType(); 4427 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4428 4429 Address addr = SRetPtr; 4430 addr = Builder.CreateElementBitCast(addr, coercionType); 4431 4432 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4433 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4434 4435 unsigned unpaddedIndex = 0; 4436 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4437 llvm::Type *eltType = coercionType->getElementType(i); 4438 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4439 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4440 llvm::Value *elt = CI; 4441 if (requiresExtract) 4442 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4443 else 4444 assert(unpaddedIndex == 0); 4445 Builder.CreateStore(elt, eltAddr); 4446 } 4447 // FALLTHROUGH 4448 LLVM_FALLTHROUGH; 4449 } 4450 4451 case ABIArgInfo::InAlloca: 4452 case ABIArgInfo::Indirect: { 4453 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4454 if (UnusedReturnSizePtr) 4455 PopCleanupBlock(); 4456 return ret; 4457 } 4458 4459 case ABIArgInfo::Ignore: 4460 // If we are ignoring an argument that had a result, make sure to 4461 // construct the appropriate return value for our caller. 4462 return GetUndefRValue(RetTy); 4463 4464 case ABIArgInfo::Extend: 4465 case ABIArgInfo::Direct: { 4466 llvm::Type *RetIRTy = ConvertType(RetTy); 4467 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4468 switch (getEvaluationKind(RetTy)) { 4469 case TEK_Complex: { 4470 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4471 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4472 return RValue::getComplex(std::make_pair(Real, Imag)); 4473 } 4474 case TEK_Aggregate: { 4475 Address DestPtr = ReturnValue.getValue(); 4476 bool DestIsVolatile = ReturnValue.isVolatile(); 4477 4478 if (!DestPtr.isValid()) { 4479 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4480 DestIsVolatile = false; 4481 } 4482 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4483 return RValue::getAggregate(DestPtr); 4484 } 4485 case TEK_Scalar: { 4486 // If the argument doesn't match, perform a bitcast to coerce it. This 4487 // can happen due to trivial type mismatches. 4488 llvm::Value *V = CI; 4489 if (V->getType() != RetIRTy) 4490 V = Builder.CreateBitCast(V, RetIRTy); 4491 return RValue::get(V); 4492 } 4493 } 4494 llvm_unreachable("bad evaluation kind"); 4495 } 4496 4497 Address DestPtr = ReturnValue.getValue(); 4498 bool DestIsVolatile = ReturnValue.isVolatile(); 4499 4500 if (!DestPtr.isValid()) { 4501 DestPtr = CreateMemTemp(RetTy, "coerce"); 4502 DestIsVolatile = false; 4503 } 4504 4505 // If the value is offset in memory, apply the offset now. 4506 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4507 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4508 4509 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4510 } 4511 4512 case ABIArgInfo::Expand: 4513 llvm_unreachable("Invalid ABI kind for return argument"); 4514 } 4515 4516 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4517 } (); 4518 4519 // Emit the assume_aligned check on the return value. 4520 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4521 if (Ret.isScalar() && TargetDecl) { 4522 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4523 llvm::Value *OffsetValue = nullptr; 4524 if (const auto *Offset = AA->getOffset()) 4525 OffsetValue = EmitScalarExpr(Offset); 4526 4527 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4528 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4529 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4530 OffsetValue); 4531 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4532 llvm::Value *ParamVal = 4533 CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue( 4534 *this).getScalarVal(); 4535 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4536 } 4537 } 4538 4539 return Ret; 4540 } 4541 4542 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4543 if (isVirtual()) { 4544 const CallExpr *CE = getVirtualCallExpr(); 4545 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4546 CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(), 4547 CE ? CE->getBeginLoc() : SourceLocation()); 4548 } 4549 4550 return *this; 4551 } 4552 4553 /* VarArg handling */ 4554 4555 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4556 VAListAddr = VE->isMicrosoftABI() 4557 ? EmitMSVAListRef(VE->getSubExpr()) 4558 : EmitVAListRef(VE->getSubExpr()); 4559 QualType Ty = VE->getType(); 4560 if (VE->isMicrosoftABI()) 4561 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4562 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4563 } 4564