1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/InlineAsm.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /***/ 43 44 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 45 switch (CC) { 46 default: return llvm::CallingConv::C; 47 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 48 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 49 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 50 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 51 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 52 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 53 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 54 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 55 // TODO: Add support for __pascal to LLVM. 56 case CC_X86Pascal: return llvm::CallingConv::C; 57 // TODO: Add support for __vectorcall to LLVM. 58 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 59 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 60 case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL; 61 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 62 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 63 case CC_Swift: return llvm::CallingConv::Swift; 64 } 65 } 66 67 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 68 /// qualification. 69 /// FIXME: address space qualification? 70 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 71 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 72 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 73 } 74 75 /// Returns the canonical formal type of the given C++ method. 76 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 77 return MD->getType()->getCanonicalTypeUnqualified() 78 .getAs<FunctionProtoType>(); 79 } 80 81 /// Returns the "extra-canonicalized" return type, which discards 82 /// qualifiers on the return type. Codegen doesn't care about them, 83 /// and it makes ABI code a little easier to be able to assume that 84 /// all parameter and return types are top-level unqualified. 85 static CanQualType GetReturnType(QualType RetTy) { 86 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 87 } 88 89 /// Arrange the argument and result information for a value of the given 90 /// unprototyped freestanding function type. 91 const CGFunctionInfo & 92 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 93 // When translating an unprototyped function type, always use a 94 // variadic type. 95 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 96 /*instanceMethod=*/false, 97 /*chainCall=*/false, None, 98 FTNP->getExtInfo(), {}, RequiredArgs(0)); 99 } 100 101 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in 102 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 103 static void appendParameterTypes(const CodeGenTypes &CGT, 104 SmallVectorImpl<CanQualType> &prefix, 105 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 CanQual<FunctionProtoType> FPT, 107 const FunctionDecl *FD) { 108 // Fill out paramInfos. 109 if (FPT->hasExtParameterInfos() || !paramInfos.empty()) { 110 assert(paramInfos.size() <= prefix.size()); 111 auto protoParamInfos = FPT->getExtParameterInfos(); 112 paramInfos.reserve(prefix.size() + protoParamInfos.size()); 113 paramInfos.resize(prefix.size()); 114 paramInfos.append(protoParamInfos.begin(), protoParamInfos.end()); 115 } 116 117 // Fast path: unknown target. 118 if (FD == nullptr) { 119 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 120 return; 121 } 122 123 // In the vast majority cases, we'll have precisely FPT->getNumParams() 124 // parameters; the only thing that can change this is the presence of 125 // pass_object_size. So, we preallocate for the common case. 126 prefix.reserve(prefix.size() + FPT->getNumParams()); 127 128 assert(FD->getNumParams() == FPT->getNumParams()); 129 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 130 prefix.push_back(FPT->getParamType(I)); 131 if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>()) 132 prefix.push_back(CGT.getContext().getSizeType()); 133 } 134 } 135 136 /// Arrange the LLVM function layout for a value of the given function 137 /// type, on top of any implicit parameters already stored. 138 static const CGFunctionInfo & 139 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 140 SmallVectorImpl<CanQualType> &prefix, 141 CanQual<FunctionProtoType> FTP, 142 const FunctionDecl *FD) { 143 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 144 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 145 // FIXME: Kill copy. 146 appendParameterTypes(CGT, prefix, paramInfos, FTP, FD); 147 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 148 149 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 150 /*chainCall=*/false, prefix, 151 FTP->getExtInfo(), paramInfos, 152 required); 153 } 154 155 /// Arrange the argument and result information for a value of the 156 /// given freestanding function type. 157 const CGFunctionInfo & 158 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 159 const FunctionDecl *FD) { 160 SmallVector<CanQualType, 16> argTypes; 161 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 162 FTP, FD); 163 } 164 165 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 166 // Set the appropriate calling convention for the Function. 167 if (D->hasAttr<StdCallAttr>()) 168 return CC_X86StdCall; 169 170 if (D->hasAttr<FastCallAttr>()) 171 return CC_X86FastCall; 172 173 if (D->hasAttr<ThisCallAttr>()) 174 return CC_X86ThisCall; 175 176 if (D->hasAttr<VectorCallAttr>()) 177 return CC_X86VectorCall; 178 179 if (D->hasAttr<PascalAttr>()) 180 return CC_X86Pascal; 181 182 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 183 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 184 185 if (D->hasAttr<IntelOclBiccAttr>()) 186 return CC_IntelOclBicc; 187 188 if (D->hasAttr<MSABIAttr>()) 189 return IsWindows ? CC_C : CC_X86_64Win64; 190 191 if (D->hasAttr<SysVABIAttr>()) 192 return IsWindows ? CC_X86_64SysV : CC_C; 193 194 if (D->hasAttr<PreserveMostAttr>()) 195 return CC_PreserveMost; 196 197 if (D->hasAttr<PreserveAllAttr>()) 198 return CC_PreserveAll; 199 200 return CC_C; 201 } 202 203 /// Arrange the argument and result information for a call to an 204 /// unknown C++ non-static member function of the given abstract type. 205 /// (Zero value of RD means we don't have any meaningful "this" argument type, 206 /// so fall back to a generic pointer type). 207 /// The member function must be an ordinary function, i.e. not a 208 /// constructor or destructor. 209 const CGFunctionInfo & 210 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 211 const FunctionProtoType *FTP, 212 const CXXMethodDecl *MD) { 213 SmallVector<CanQualType, 16> argTypes; 214 215 // Add the 'this' pointer. 216 if (RD) 217 argTypes.push_back(GetThisType(Context, RD)); 218 else 219 argTypes.push_back(Context.VoidPtrTy); 220 221 return ::arrangeLLVMFunctionInfo( 222 *this, true, argTypes, 223 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 224 } 225 226 /// Arrange the argument and result information for a declaration or 227 /// definition of the given C++ non-static member function. The 228 /// member function must be an ordinary function, i.e. not a 229 /// constructor or destructor. 230 const CGFunctionInfo & 231 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 232 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 233 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 234 235 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 236 237 if (MD->isInstance()) { 238 // The abstract case is perfectly fine. 239 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 240 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 241 } 242 243 return arrangeFreeFunctionType(prototype, MD); 244 } 245 246 const CGFunctionInfo & 247 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 248 StructorType Type) { 249 250 SmallVector<CanQualType, 16> argTypes; 251 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 252 argTypes.push_back(GetThisType(Context, MD->getParent())); 253 254 GlobalDecl GD; 255 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 256 GD = GlobalDecl(CD, toCXXCtorType(Type)); 257 } else { 258 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 259 GD = GlobalDecl(DD, toCXXDtorType(Type)); 260 } 261 262 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 263 264 // Add the formal parameters. 265 appendParameterTypes(*this, argTypes, paramInfos, FTP, MD); 266 267 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 268 269 RequiredArgs required = 270 (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All); 271 272 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 273 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 274 ? argTypes.front() 275 : TheCXXABI.hasMostDerivedReturn(GD) 276 ? CGM.getContext().VoidPtrTy 277 : Context.VoidTy; 278 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 279 /*chainCall=*/false, argTypes, extInfo, 280 paramInfos, required); 281 } 282 283 static SmallVector<CanQualType, 16> 284 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 285 SmallVector<CanQualType, 16> argTypes; 286 for (auto &arg : args) 287 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 288 return argTypes; 289 } 290 291 static SmallVector<CanQualType, 16> 292 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 293 SmallVector<CanQualType, 16> argTypes; 294 for (auto &arg : args) 295 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 296 return argTypes; 297 } 298 299 static void addExtParameterInfosForCall( 300 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 301 const FunctionProtoType *proto, 302 unsigned prefixArgs, 303 unsigned totalArgs) { 304 assert(proto->hasExtParameterInfos()); 305 assert(paramInfos.size() <= prefixArgs); 306 assert(proto->getNumParams() + prefixArgs <= totalArgs); 307 308 // Add default infos for any prefix args that don't already have infos. 309 paramInfos.resize(prefixArgs); 310 311 // Add infos for the prototype. 312 auto protoInfos = proto->getExtParameterInfos(); 313 paramInfos.append(protoInfos.begin(), protoInfos.end()); 314 315 // Add default infos for the variadic arguments. 316 paramInfos.resize(totalArgs); 317 } 318 319 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 320 getExtParameterInfosForCall(const FunctionProtoType *proto, 321 unsigned prefixArgs, unsigned totalArgs) { 322 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 323 if (proto->hasExtParameterInfos()) { 324 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 325 } 326 return result; 327 } 328 329 /// Arrange a call to a C++ method, passing the given arguments. 330 const CGFunctionInfo & 331 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 332 const CXXConstructorDecl *D, 333 CXXCtorType CtorKind, 334 unsigned ExtraArgs) { 335 // FIXME: Kill copy. 336 SmallVector<CanQualType, 16> ArgTypes; 337 for (const auto &Arg : args) 338 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 339 340 CanQual<FunctionProtoType> FPT = GetFormalType(D); 341 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs); 342 GlobalDecl GD(D, CtorKind); 343 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 344 ? ArgTypes.front() 345 : TheCXXABI.hasMostDerivedReturn(GD) 346 ? CGM.getContext().VoidPtrTy 347 : Context.VoidTy; 348 349 FunctionType::ExtInfo Info = FPT->getExtInfo(); 350 auto ParamInfos = getExtParameterInfosForCall(FPT.getTypePtr(), 1 + ExtraArgs, 351 ArgTypes.size()); 352 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 353 /*chainCall=*/false, ArgTypes, Info, 354 ParamInfos, Required); 355 } 356 357 /// Arrange the argument and result information for the declaration or 358 /// definition of the given function. 359 const CGFunctionInfo & 360 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 361 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 362 if (MD->isInstance()) 363 return arrangeCXXMethodDeclaration(MD); 364 365 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 366 367 assert(isa<FunctionType>(FTy)); 368 369 // When declaring a function without a prototype, always use a 370 // non-variadic type. 371 if (isa<FunctionNoProtoType>(FTy)) { 372 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 373 return arrangeLLVMFunctionInfo( 374 noProto->getReturnType(), /*instanceMethod=*/false, 375 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 376 } 377 378 assert(isa<FunctionProtoType>(FTy)); 379 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD); 380 } 381 382 /// Arrange the argument and result information for the declaration or 383 /// definition of an Objective-C method. 384 const CGFunctionInfo & 385 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 386 // It happens that this is the same as a call with no optional 387 // arguments, except also using the formal 'self' type. 388 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 389 } 390 391 /// Arrange the argument and result information for the function type 392 /// through which to perform a send to the given Objective-C method, 393 /// using the given receiver type. The receiver type is not always 394 /// the 'self' type of the method or even an Objective-C pointer type. 395 /// This is *not* the right method for actually performing such a 396 /// message send, due to the possibility of optional arguments. 397 const CGFunctionInfo & 398 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 399 QualType receiverType) { 400 SmallVector<CanQualType, 16> argTys; 401 argTys.push_back(Context.getCanonicalParamType(receiverType)); 402 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 403 // FIXME: Kill copy? 404 for (const auto *I : MD->params()) { 405 argTys.push_back(Context.getCanonicalParamType(I->getType())); 406 } 407 408 FunctionType::ExtInfo einfo; 409 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 410 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 411 412 if (getContext().getLangOpts().ObjCAutoRefCount && 413 MD->hasAttr<NSReturnsRetainedAttr>()) 414 einfo = einfo.withProducesResult(true); 415 416 RequiredArgs required = 417 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 418 419 return arrangeLLVMFunctionInfo( 420 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 421 /*chainCall=*/false, argTys, einfo, {}, required); 422 } 423 424 const CGFunctionInfo & 425 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 426 const CallArgList &args) { 427 auto argTypes = getArgTypesForCall(Context, args); 428 FunctionType::ExtInfo einfo; 429 430 return arrangeLLVMFunctionInfo( 431 GetReturnType(returnType), /*instanceMethod=*/false, 432 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 433 } 434 435 const CGFunctionInfo & 436 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 437 // FIXME: Do we need to handle ObjCMethodDecl? 438 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 439 440 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 441 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 442 443 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 444 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 445 446 return arrangeFunctionDeclaration(FD); 447 } 448 449 /// Arrange a thunk that takes 'this' as the first parameter followed by 450 /// varargs. Return a void pointer, regardless of the actual return type. 451 /// The body of the thunk will end in a musttail call to a function of the 452 /// correct type, and the caller will bitcast the function to the correct 453 /// prototype. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 456 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 457 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 458 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 459 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 460 /*chainCall=*/false, ArgTys, 461 FTP->getExtInfo(), {}, RequiredArgs(1)); 462 } 463 464 const CGFunctionInfo & 465 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 466 CXXCtorType CT) { 467 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 468 469 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 470 SmallVector<CanQualType, 2> ArgTys; 471 const CXXRecordDecl *RD = CD->getParent(); 472 ArgTys.push_back(GetThisType(Context, RD)); 473 if (CT == Ctor_CopyingClosure) 474 ArgTys.push_back(*FTP->param_type_begin()); 475 if (RD->getNumVBases() > 0) 476 ArgTys.push_back(Context.IntTy); 477 CallingConv CC = Context.getDefaultCallingConvention( 478 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 479 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 480 /*chainCall=*/false, ArgTys, 481 FunctionType::ExtInfo(CC), {}, 482 RequiredArgs::All); 483 } 484 485 /// Arrange a call as unto a free function, except possibly with an 486 /// additional number of formal parameters considered required. 487 static const CGFunctionInfo & 488 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 489 CodeGenModule &CGM, 490 const CallArgList &args, 491 const FunctionType *fnType, 492 unsigned numExtraRequiredArgs, 493 bool chainCall) { 494 assert(args.size() >= numExtraRequiredArgs); 495 496 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 497 498 // In most cases, there are no optional arguments. 499 RequiredArgs required = RequiredArgs::All; 500 501 // If we have a variadic prototype, the required arguments are the 502 // extra prefix plus the arguments in the prototype. 503 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 504 if (proto->isVariadic()) 505 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 506 507 if (proto->hasExtParameterInfos()) 508 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 509 args.size()); 510 511 // If we don't have a prototype at all, but we're supposed to 512 // explicitly use the variadic convention for unprototyped calls, 513 // treat all of the arguments as required but preserve the nominal 514 // possibility of variadics. 515 } else if (CGM.getTargetCodeGenInfo() 516 .isNoProtoCallVariadic(args, 517 cast<FunctionNoProtoType>(fnType))) { 518 required = RequiredArgs(args.size()); 519 } 520 521 // FIXME: Kill copy. 522 SmallVector<CanQualType, 16> argTypes; 523 for (const auto &arg : args) 524 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 525 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 526 /*instanceMethod=*/false, chainCall, 527 argTypes, fnType->getExtInfo(), paramInfos, 528 required); 529 } 530 531 /// Figure out the rules for calling a function with the given formal 532 /// type using the given arguments. The arguments are necessary 533 /// because the function might be unprototyped, in which case it's 534 /// target-dependent in crazy ways. 535 const CGFunctionInfo & 536 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 537 const FunctionType *fnType, 538 bool chainCall) { 539 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 540 chainCall ? 1 : 0, chainCall); 541 } 542 543 /// A block function is essentially a free function with an 544 /// extra implicit argument. 545 const CGFunctionInfo & 546 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 547 const FunctionType *fnType) { 548 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 549 /*chainCall=*/false); 550 } 551 552 const CGFunctionInfo & 553 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 554 const FunctionArgList ¶ms) { 555 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 556 auto argTypes = getArgTypesForDeclaration(Context, params); 557 558 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 559 /*instanceMethod*/ false, /*chainCall*/ false, 560 argTypes, proto->getExtInfo(), paramInfos, 561 RequiredArgs::forPrototypePlus(proto, 1)); 562 } 563 564 const CGFunctionInfo & 565 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 566 const CallArgList &args) { 567 // FIXME: Kill copy. 568 SmallVector<CanQualType, 16> argTypes; 569 for (const auto &Arg : args) 570 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 571 return arrangeLLVMFunctionInfo( 572 GetReturnType(resultType), /*instanceMethod=*/false, 573 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 574 /*paramInfos=*/ {}, RequiredArgs::All); 575 } 576 577 const CGFunctionInfo & 578 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 579 const FunctionArgList &args) { 580 auto argTypes = getArgTypesForDeclaration(Context, args); 581 582 return arrangeLLVMFunctionInfo( 583 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 584 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 585 } 586 587 const CGFunctionInfo & 588 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 589 ArrayRef<CanQualType> argTypes) { 590 return arrangeLLVMFunctionInfo( 591 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 592 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 593 } 594 595 /// Arrange a call to a C++ method, passing the given arguments. 596 const CGFunctionInfo & 597 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 598 const FunctionProtoType *proto, 599 RequiredArgs required) { 600 unsigned numRequiredArgs = 601 (proto->isVariadic() ? required.getNumRequiredArgs() : args.size()); 602 unsigned numPrefixArgs = numRequiredArgs - proto->getNumParams(); 603 auto paramInfos = 604 getExtParameterInfosForCall(proto, numPrefixArgs, args.size()); 605 606 // FIXME: Kill copy. 607 auto argTypes = getArgTypesForCall(Context, args); 608 609 FunctionType::ExtInfo info = proto->getExtInfo(); 610 return arrangeLLVMFunctionInfo( 611 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 612 /*chainCall=*/false, argTypes, info, paramInfos, required); 613 } 614 615 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 616 return arrangeLLVMFunctionInfo( 617 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 618 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 619 } 620 621 const CGFunctionInfo & 622 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 623 const CallArgList &args) { 624 assert(signature.arg_size() <= args.size()); 625 if (signature.arg_size() == args.size()) 626 return signature; 627 628 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 629 auto sigParamInfos = signature.getExtParameterInfos(); 630 if (!sigParamInfos.empty()) { 631 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 632 paramInfos.resize(args.size()); 633 } 634 635 auto argTypes = getArgTypesForCall(Context, args); 636 637 assert(signature.getRequiredArgs().allowsOptionalArgs()); 638 return arrangeLLVMFunctionInfo(signature.getReturnType(), 639 signature.isInstanceMethod(), 640 signature.isChainCall(), 641 argTypes, 642 signature.getExtInfo(), 643 paramInfos, 644 signature.getRequiredArgs()); 645 } 646 647 /// Arrange the argument and result information for an abstract value 648 /// of a given function type. This is the method which all of the 649 /// above functions ultimately defer to. 650 const CGFunctionInfo & 651 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 652 bool instanceMethod, 653 bool chainCall, 654 ArrayRef<CanQualType> argTypes, 655 FunctionType::ExtInfo info, 656 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 657 RequiredArgs required) { 658 assert(std::all_of(argTypes.begin(), argTypes.end(), 659 std::mem_fun_ref(&CanQualType::isCanonicalAsParam))); 660 661 // Lookup or create unique function info. 662 llvm::FoldingSetNodeID ID; 663 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 664 required, resultType, argTypes); 665 666 void *insertPos = nullptr; 667 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 668 if (FI) 669 return *FI; 670 671 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 672 673 // Construct the function info. We co-allocate the ArgInfos. 674 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 675 paramInfos, resultType, argTypes, required); 676 FunctionInfos.InsertNode(FI, insertPos); 677 678 bool inserted = FunctionsBeingProcessed.insert(FI).second; 679 (void)inserted; 680 assert(inserted && "Recursively being processed?"); 681 682 // Compute ABI information. 683 if (info.getCC() != CC_Swift) { 684 getABIInfo().computeInfo(*FI); 685 } else { 686 swiftcall::computeABIInfo(CGM, *FI); 687 } 688 689 // Loop over all of the computed argument and return value info. If any of 690 // them are direct or extend without a specified coerce type, specify the 691 // default now. 692 ABIArgInfo &retInfo = FI->getReturnInfo(); 693 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 694 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 695 696 for (auto &I : FI->arguments()) 697 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 698 I.info.setCoerceToType(ConvertType(I.type)); 699 700 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 701 assert(erased && "Not in set?"); 702 703 return *FI; 704 } 705 706 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 707 bool instanceMethod, 708 bool chainCall, 709 const FunctionType::ExtInfo &info, 710 ArrayRef<ExtParameterInfo> paramInfos, 711 CanQualType resultType, 712 ArrayRef<CanQualType> argTypes, 713 RequiredArgs required) { 714 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 715 716 void *buffer = 717 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 718 argTypes.size() + 1, paramInfos.size())); 719 720 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 721 FI->CallingConvention = llvmCC; 722 FI->EffectiveCallingConvention = llvmCC; 723 FI->ASTCallingConvention = info.getCC(); 724 FI->InstanceMethod = instanceMethod; 725 FI->ChainCall = chainCall; 726 FI->NoReturn = info.getNoReturn(); 727 FI->ReturnsRetained = info.getProducesResult(); 728 FI->Required = required; 729 FI->HasRegParm = info.getHasRegParm(); 730 FI->RegParm = info.getRegParm(); 731 FI->ArgStruct = nullptr; 732 FI->ArgStructAlign = 0; 733 FI->NumArgs = argTypes.size(); 734 FI->HasExtParameterInfos = !paramInfos.empty(); 735 FI->getArgsBuffer()[0].type = resultType; 736 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 737 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 738 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 739 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 740 return FI; 741 } 742 743 /***/ 744 745 namespace { 746 // ABIArgInfo::Expand implementation. 747 748 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 749 struct TypeExpansion { 750 enum TypeExpansionKind { 751 // Elements of constant arrays are expanded recursively. 752 TEK_ConstantArray, 753 // Record fields are expanded recursively (but if record is a union, only 754 // the field with the largest size is expanded). 755 TEK_Record, 756 // For complex types, real and imaginary parts are expanded recursively. 757 TEK_Complex, 758 // All other types are not expandable. 759 TEK_None 760 }; 761 762 const TypeExpansionKind Kind; 763 764 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 765 virtual ~TypeExpansion() {} 766 }; 767 768 struct ConstantArrayExpansion : TypeExpansion { 769 QualType EltTy; 770 uint64_t NumElts; 771 772 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 773 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 774 static bool classof(const TypeExpansion *TE) { 775 return TE->Kind == TEK_ConstantArray; 776 } 777 }; 778 779 struct RecordExpansion : TypeExpansion { 780 SmallVector<const CXXBaseSpecifier *, 1> Bases; 781 782 SmallVector<const FieldDecl *, 1> Fields; 783 784 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 785 SmallVector<const FieldDecl *, 1> &&Fields) 786 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 787 Fields(std::move(Fields)) {} 788 static bool classof(const TypeExpansion *TE) { 789 return TE->Kind == TEK_Record; 790 } 791 }; 792 793 struct ComplexExpansion : TypeExpansion { 794 QualType EltTy; 795 796 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 797 static bool classof(const TypeExpansion *TE) { 798 return TE->Kind == TEK_Complex; 799 } 800 }; 801 802 struct NoExpansion : TypeExpansion { 803 NoExpansion() : TypeExpansion(TEK_None) {} 804 static bool classof(const TypeExpansion *TE) { 805 return TE->Kind == TEK_None; 806 } 807 }; 808 } // namespace 809 810 static std::unique_ptr<TypeExpansion> 811 getTypeExpansion(QualType Ty, const ASTContext &Context) { 812 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 813 return llvm::make_unique<ConstantArrayExpansion>( 814 AT->getElementType(), AT->getSize().getZExtValue()); 815 } 816 if (const RecordType *RT = Ty->getAs<RecordType>()) { 817 SmallVector<const CXXBaseSpecifier *, 1> Bases; 818 SmallVector<const FieldDecl *, 1> Fields; 819 const RecordDecl *RD = RT->getDecl(); 820 assert(!RD->hasFlexibleArrayMember() && 821 "Cannot expand structure with flexible array."); 822 if (RD->isUnion()) { 823 // Unions can be here only in degenerative cases - all the fields are same 824 // after flattening. Thus we have to use the "largest" field. 825 const FieldDecl *LargestFD = nullptr; 826 CharUnits UnionSize = CharUnits::Zero(); 827 828 for (const auto *FD : RD->fields()) { 829 // Skip zero length bitfields. 830 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 831 continue; 832 assert(!FD->isBitField() && 833 "Cannot expand structure with bit-field members."); 834 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 835 if (UnionSize < FieldSize) { 836 UnionSize = FieldSize; 837 LargestFD = FD; 838 } 839 } 840 if (LargestFD) 841 Fields.push_back(LargestFD); 842 } else { 843 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 844 assert(!CXXRD->isDynamicClass() && 845 "cannot expand vtable pointers in dynamic classes"); 846 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 847 Bases.push_back(&BS); 848 } 849 850 for (const auto *FD : RD->fields()) { 851 // Skip zero length bitfields. 852 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 853 continue; 854 assert(!FD->isBitField() && 855 "Cannot expand structure with bit-field members."); 856 Fields.push_back(FD); 857 } 858 } 859 return llvm::make_unique<RecordExpansion>(std::move(Bases), 860 std::move(Fields)); 861 } 862 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 863 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 864 } 865 return llvm::make_unique<NoExpansion>(); 866 } 867 868 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 869 auto Exp = getTypeExpansion(Ty, Context); 870 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 871 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 872 } 873 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 874 int Res = 0; 875 for (auto BS : RExp->Bases) 876 Res += getExpansionSize(BS->getType(), Context); 877 for (auto FD : RExp->Fields) 878 Res += getExpansionSize(FD->getType(), Context); 879 return Res; 880 } 881 if (isa<ComplexExpansion>(Exp.get())) 882 return 2; 883 assert(isa<NoExpansion>(Exp.get())); 884 return 1; 885 } 886 887 void 888 CodeGenTypes::getExpandedTypes(QualType Ty, 889 SmallVectorImpl<llvm::Type *>::iterator &TI) { 890 auto Exp = getTypeExpansion(Ty, Context); 891 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 892 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 893 getExpandedTypes(CAExp->EltTy, TI); 894 } 895 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 896 for (auto BS : RExp->Bases) 897 getExpandedTypes(BS->getType(), TI); 898 for (auto FD : RExp->Fields) 899 getExpandedTypes(FD->getType(), TI); 900 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 901 llvm::Type *EltTy = ConvertType(CExp->EltTy); 902 *TI++ = EltTy; 903 *TI++ = EltTy; 904 } else { 905 assert(isa<NoExpansion>(Exp.get())); 906 *TI++ = ConvertType(Ty); 907 } 908 } 909 910 static void forConstantArrayExpansion(CodeGenFunction &CGF, 911 ConstantArrayExpansion *CAE, 912 Address BaseAddr, 913 llvm::function_ref<void(Address)> Fn) { 914 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 915 CharUnits EltAlign = 916 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 917 918 for (int i = 0, n = CAE->NumElts; i < n; i++) { 919 llvm::Value *EltAddr = 920 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 921 Fn(Address(EltAddr, EltAlign)); 922 } 923 } 924 925 void CodeGenFunction::ExpandTypeFromArgs( 926 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 927 assert(LV.isSimple() && 928 "Unexpected non-simple lvalue during struct expansion."); 929 930 auto Exp = getTypeExpansion(Ty, getContext()); 931 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 932 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 933 [&](Address EltAddr) { 934 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 935 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 936 }); 937 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 938 Address This = LV.getAddress(); 939 for (const CXXBaseSpecifier *BS : RExp->Bases) { 940 // Perform a single step derived-to-base conversion. 941 Address Base = 942 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 943 /*NullCheckValue=*/false, SourceLocation()); 944 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 945 946 // Recurse onto bases. 947 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 948 } 949 for (auto FD : RExp->Fields) { 950 // FIXME: What are the right qualifiers here? 951 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 952 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 953 } 954 } else if (isa<ComplexExpansion>(Exp.get())) { 955 auto realValue = *AI++; 956 auto imagValue = *AI++; 957 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 958 } else { 959 assert(isa<NoExpansion>(Exp.get())); 960 EmitStoreThroughLValue(RValue::get(*AI++), LV); 961 } 962 } 963 964 void CodeGenFunction::ExpandTypeToArgs( 965 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 966 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 967 auto Exp = getTypeExpansion(Ty, getContext()); 968 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 969 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 970 [&](Address EltAddr) { 971 RValue EltRV = 972 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 973 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 974 }); 975 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 976 Address This = RV.getAggregateAddress(); 977 for (const CXXBaseSpecifier *BS : RExp->Bases) { 978 // Perform a single step derived-to-base conversion. 979 Address Base = 980 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 981 /*NullCheckValue=*/false, SourceLocation()); 982 RValue BaseRV = RValue::getAggregate(Base); 983 984 // Recurse onto bases. 985 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 986 IRCallArgPos); 987 } 988 989 LValue LV = MakeAddrLValue(This, Ty); 990 for (auto FD : RExp->Fields) { 991 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 992 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 993 IRCallArgPos); 994 } 995 } else if (isa<ComplexExpansion>(Exp.get())) { 996 ComplexPairTy CV = RV.getComplexVal(); 997 IRCallArgs[IRCallArgPos++] = CV.first; 998 IRCallArgs[IRCallArgPos++] = CV.second; 999 } else { 1000 assert(isa<NoExpansion>(Exp.get())); 1001 assert(RV.isScalar() && 1002 "Unexpected non-scalar rvalue during struct expansion."); 1003 1004 // Insert a bitcast as needed. 1005 llvm::Value *V = RV.getScalarVal(); 1006 if (IRCallArgPos < IRFuncTy->getNumParams() && 1007 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1008 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1009 1010 IRCallArgs[IRCallArgPos++] = V; 1011 } 1012 } 1013 1014 /// Create a temporary allocation for the purposes of coercion. 1015 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1016 CharUnits MinAlign) { 1017 // Don't use an alignment that's worse than what LLVM would prefer. 1018 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1019 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1020 1021 return CGF.CreateTempAlloca(Ty, Align); 1022 } 1023 1024 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1025 /// accessing some number of bytes out of it, try to gep into the struct to get 1026 /// at its inner goodness. Dive as deep as possible without entering an element 1027 /// with an in-memory size smaller than DstSize. 1028 static Address 1029 EnterStructPointerForCoercedAccess(Address SrcPtr, 1030 llvm::StructType *SrcSTy, 1031 uint64_t DstSize, CodeGenFunction &CGF) { 1032 // We can't dive into a zero-element struct. 1033 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1034 1035 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1036 1037 // If the first elt is at least as large as what we're looking for, or if the 1038 // first element is the same size as the whole struct, we can enter it. The 1039 // comparison must be made on the store size and not the alloca size. Using 1040 // the alloca size may overstate the size of the load. 1041 uint64_t FirstEltSize = 1042 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1043 if (FirstEltSize < DstSize && 1044 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1045 return SrcPtr; 1046 1047 // GEP into the first element. 1048 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1049 1050 // If the first element is a struct, recurse. 1051 llvm::Type *SrcTy = SrcPtr.getElementType(); 1052 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1053 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1054 1055 return SrcPtr; 1056 } 1057 1058 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1059 /// are either integers or pointers. This does a truncation of the value if it 1060 /// is too large or a zero extension if it is too small. 1061 /// 1062 /// This behaves as if the value were coerced through memory, so on big-endian 1063 /// targets the high bits are preserved in a truncation, while little-endian 1064 /// targets preserve the low bits. 1065 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1066 llvm::Type *Ty, 1067 CodeGenFunction &CGF) { 1068 if (Val->getType() == Ty) 1069 return Val; 1070 1071 if (isa<llvm::PointerType>(Val->getType())) { 1072 // If this is Pointer->Pointer avoid conversion to and from int. 1073 if (isa<llvm::PointerType>(Ty)) 1074 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1075 1076 // Convert the pointer to an integer so we can play with its width. 1077 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1078 } 1079 1080 llvm::Type *DestIntTy = Ty; 1081 if (isa<llvm::PointerType>(DestIntTy)) 1082 DestIntTy = CGF.IntPtrTy; 1083 1084 if (Val->getType() != DestIntTy) { 1085 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1086 if (DL.isBigEndian()) { 1087 // Preserve the high bits on big-endian targets. 1088 // That is what memory coercion does. 1089 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1090 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1091 1092 if (SrcSize > DstSize) { 1093 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1094 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1095 } else { 1096 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1097 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1098 } 1099 } else { 1100 // Little-endian targets preserve the low bits. No shifts required. 1101 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1102 } 1103 } 1104 1105 if (isa<llvm::PointerType>(Ty)) 1106 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1107 return Val; 1108 } 1109 1110 1111 1112 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1113 /// a pointer to an object of type \arg Ty, known to be aligned to 1114 /// \arg SrcAlign bytes. 1115 /// 1116 /// This safely handles the case when the src type is smaller than the 1117 /// destination type; in this situation the values of bits which not 1118 /// present in the src are undefined. 1119 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1120 CodeGenFunction &CGF) { 1121 llvm::Type *SrcTy = Src.getElementType(); 1122 1123 // If SrcTy and Ty are the same, just do a load. 1124 if (SrcTy == Ty) 1125 return CGF.Builder.CreateLoad(Src); 1126 1127 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1128 1129 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1130 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1131 SrcTy = Src.getType()->getElementType(); 1132 } 1133 1134 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1135 1136 // If the source and destination are integer or pointer types, just do an 1137 // extension or truncation to the desired type. 1138 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1139 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1140 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1141 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1142 } 1143 1144 // If load is legal, just bitcast the src pointer. 1145 if (SrcSize >= DstSize) { 1146 // Generally SrcSize is never greater than DstSize, since this means we are 1147 // losing bits. However, this can happen in cases where the structure has 1148 // additional padding, for example due to a user specified alignment. 1149 // 1150 // FIXME: Assert that we aren't truncating non-padding bits when have access 1151 // to that information. 1152 Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty)); 1153 return CGF.Builder.CreateLoad(Src); 1154 } 1155 1156 // Otherwise do coercion through memory. This is stupid, but simple. 1157 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1158 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1159 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 1160 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1161 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1162 false); 1163 return CGF.Builder.CreateLoad(Tmp); 1164 } 1165 1166 // Function to store a first-class aggregate into memory. We prefer to 1167 // store the elements rather than the aggregate to be more friendly to 1168 // fast-isel. 1169 // FIXME: Do we need to recurse here? 1170 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1171 Address Dest, bool DestIsVolatile) { 1172 // Prefer scalar stores to first-class aggregate stores. 1173 if (llvm::StructType *STy = 1174 dyn_cast<llvm::StructType>(Val->getType())) { 1175 const llvm::StructLayout *Layout = 1176 CGF.CGM.getDataLayout().getStructLayout(STy); 1177 1178 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1179 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1180 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1181 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1182 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1183 } 1184 } else { 1185 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1186 } 1187 } 1188 1189 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1190 /// where the source and destination may have different types. The 1191 /// destination is known to be aligned to \arg DstAlign bytes. 1192 /// 1193 /// This safely handles the case when the src type is larger than the 1194 /// destination type; the upper bits of the src will be lost. 1195 static void CreateCoercedStore(llvm::Value *Src, 1196 Address Dst, 1197 bool DstIsVolatile, 1198 CodeGenFunction &CGF) { 1199 llvm::Type *SrcTy = Src->getType(); 1200 llvm::Type *DstTy = Dst.getType()->getElementType(); 1201 if (SrcTy == DstTy) { 1202 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1203 return; 1204 } 1205 1206 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1207 1208 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1209 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1210 DstTy = Dst.getType()->getElementType(); 1211 } 1212 1213 // If the source and destination are integer or pointer types, just do an 1214 // extension or truncation to the desired type. 1215 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1216 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1217 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1218 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1219 return; 1220 } 1221 1222 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1223 1224 // If store is legal, just bitcast the src pointer. 1225 if (SrcSize <= DstSize) { 1226 Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy)); 1227 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1228 } else { 1229 // Otherwise do coercion through memory. This is stupid, but 1230 // simple. 1231 1232 // Generally SrcSize is never greater than DstSize, since this means we are 1233 // losing bits. However, this can happen in cases where the structure has 1234 // additional padding, for example due to a user specified alignment. 1235 // 1236 // FIXME: Assert that we aren't truncating non-padding bits when have access 1237 // to that information. 1238 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1239 CGF.Builder.CreateStore(Src, Tmp); 1240 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1241 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1242 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1243 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1244 false); 1245 } 1246 } 1247 1248 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1249 const ABIArgInfo &info) { 1250 if (unsigned offset = info.getDirectOffset()) { 1251 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1252 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1253 CharUnits::fromQuantity(offset)); 1254 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1255 } 1256 return addr; 1257 } 1258 1259 namespace { 1260 1261 /// Encapsulates information about the way function arguments from 1262 /// CGFunctionInfo should be passed to actual LLVM IR function. 1263 class ClangToLLVMArgMapping { 1264 static const unsigned InvalidIndex = ~0U; 1265 unsigned InallocaArgNo; 1266 unsigned SRetArgNo; 1267 unsigned TotalIRArgs; 1268 1269 /// Arguments of LLVM IR function corresponding to single Clang argument. 1270 struct IRArgs { 1271 unsigned PaddingArgIndex; 1272 // Argument is expanded to IR arguments at positions 1273 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1274 unsigned FirstArgIndex; 1275 unsigned NumberOfArgs; 1276 1277 IRArgs() 1278 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1279 NumberOfArgs(0) {} 1280 }; 1281 1282 SmallVector<IRArgs, 8> ArgInfo; 1283 1284 public: 1285 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1286 bool OnlyRequiredArgs = false) 1287 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1288 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1289 construct(Context, FI, OnlyRequiredArgs); 1290 } 1291 1292 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1293 unsigned getInallocaArgNo() const { 1294 assert(hasInallocaArg()); 1295 return InallocaArgNo; 1296 } 1297 1298 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1299 unsigned getSRetArgNo() const { 1300 assert(hasSRetArg()); 1301 return SRetArgNo; 1302 } 1303 1304 unsigned totalIRArgs() const { return TotalIRArgs; } 1305 1306 bool hasPaddingArg(unsigned ArgNo) const { 1307 assert(ArgNo < ArgInfo.size()); 1308 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1309 } 1310 unsigned getPaddingArgNo(unsigned ArgNo) const { 1311 assert(hasPaddingArg(ArgNo)); 1312 return ArgInfo[ArgNo].PaddingArgIndex; 1313 } 1314 1315 /// Returns index of first IR argument corresponding to ArgNo, and their 1316 /// quantity. 1317 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1318 assert(ArgNo < ArgInfo.size()); 1319 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1320 ArgInfo[ArgNo].NumberOfArgs); 1321 } 1322 1323 private: 1324 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1325 bool OnlyRequiredArgs); 1326 }; 1327 1328 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1329 const CGFunctionInfo &FI, 1330 bool OnlyRequiredArgs) { 1331 unsigned IRArgNo = 0; 1332 bool SwapThisWithSRet = false; 1333 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1334 1335 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1336 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1337 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1338 } 1339 1340 unsigned ArgNo = 0; 1341 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1342 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1343 ++I, ++ArgNo) { 1344 assert(I != FI.arg_end()); 1345 QualType ArgType = I->type; 1346 const ABIArgInfo &AI = I->info; 1347 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1348 auto &IRArgs = ArgInfo[ArgNo]; 1349 1350 if (AI.getPaddingType()) 1351 IRArgs.PaddingArgIndex = IRArgNo++; 1352 1353 switch (AI.getKind()) { 1354 case ABIArgInfo::Extend: 1355 case ABIArgInfo::Direct: { 1356 // FIXME: handle sseregparm someday... 1357 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1358 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1359 IRArgs.NumberOfArgs = STy->getNumElements(); 1360 } else { 1361 IRArgs.NumberOfArgs = 1; 1362 } 1363 break; 1364 } 1365 case ABIArgInfo::Indirect: 1366 IRArgs.NumberOfArgs = 1; 1367 break; 1368 case ABIArgInfo::Ignore: 1369 case ABIArgInfo::InAlloca: 1370 // ignore and inalloca doesn't have matching LLVM parameters. 1371 IRArgs.NumberOfArgs = 0; 1372 break; 1373 case ABIArgInfo::CoerceAndExpand: 1374 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1375 break; 1376 case ABIArgInfo::Expand: 1377 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1378 break; 1379 } 1380 1381 if (IRArgs.NumberOfArgs > 0) { 1382 IRArgs.FirstArgIndex = IRArgNo; 1383 IRArgNo += IRArgs.NumberOfArgs; 1384 } 1385 1386 // Skip over the sret parameter when it comes second. We already handled it 1387 // above. 1388 if (IRArgNo == 1 && SwapThisWithSRet) 1389 IRArgNo++; 1390 } 1391 assert(ArgNo == ArgInfo.size()); 1392 1393 if (FI.usesInAlloca()) 1394 InallocaArgNo = IRArgNo++; 1395 1396 TotalIRArgs = IRArgNo; 1397 } 1398 } // namespace 1399 1400 /***/ 1401 1402 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1403 return FI.getReturnInfo().isIndirect(); 1404 } 1405 1406 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1407 return ReturnTypeUsesSRet(FI) && 1408 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1409 } 1410 1411 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1412 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1413 switch (BT->getKind()) { 1414 default: 1415 return false; 1416 case BuiltinType::Float: 1417 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1418 case BuiltinType::Double: 1419 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1420 case BuiltinType::LongDouble: 1421 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1422 } 1423 } 1424 1425 return false; 1426 } 1427 1428 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1429 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1430 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1431 if (BT->getKind() == BuiltinType::LongDouble) 1432 return getTarget().useObjCFP2RetForComplexLongDouble(); 1433 } 1434 } 1435 1436 return false; 1437 } 1438 1439 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1440 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1441 return GetFunctionType(FI); 1442 } 1443 1444 llvm::FunctionType * 1445 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1446 1447 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1448 (void)Inserted; 1449 assert(Inserted && "Recursively being processed?"); 1450 1451 llvm::Type *resultType = nullptr; 1452 const ABIArgInfo &retAI = FI.getReturnInfo(); 1453 switch (retAI.getKind()) { 1454 case ABIArgInfo::Expand: 1455 llvm_unreachable("Invalid ABI kind for return argument"); 1456 1457 case ABIArgInfo::Extend: 1458 case ABIArgInfo::Direct: 1459 resultType = retAI.getCoerceToType(); 1460 break; 1461 1462 case ABIArgInfo::InAlloca: 1463 if (retAI.getInAllocaSRet()) { 1464 // sret things on win32 aren't void, they return the sret pointer. 1465 QualType ret = FI.getReturnType(); 1466 llvm::Type *ty = ConvertType(ret); 1467 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1468 resultType = llvm::PointerType::get(ty, addressSpace); 1469 } else { 1470 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1471 } 1472 break; 1473 1474 case ABIArgInfo::Indirect: 1475 case ABIArgInfo::Ignore: 1476 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1477 break; 1478 1479 case ABIArgInfo::CoerceAndExpand: 1480 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1481 break; 1482 } 1483 1484 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1485 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1486 1487 // Add type for sret argument. 1488 if (IRFunctionArgs.hasSRetArg()) { 1489 QualType Ret = FI.getReturnType(); 1490 llvm::Type *Ty = ConvertType(Ret); 1491 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1492 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1493 llvm::PointerType::get(Ty, AddressSpace); 1494 } 1495 1496 // Add type for inalloca argument. 1497 if (IRFunctionArgs.hasInallocaArg()) { 1498 auto ArgStruct = FI.getArgStruct(); 1499 assert(ArgStruct); 1500 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1501 } 1502 1503 // Add in all of the required arguments. 1504 unsigned ArgNo = 0; 1505 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1506 ie = it + FI.getNumRequiredArgs(); 1507 for (; it != ie; ++it, ++ArgNo) { 1508 const ABIArgInfo &ArgInfo = it->info; 1509 1510 // Insert a padding type to ensure proper alignment. 1511 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1512 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1513 ArgInfo.getPaddingType(); 1514 1515 unsigned FirstIRArg, NumIRArgs; 1516 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1517 1518 switch (ArgInfo.getKind()) { 1519 case ABIArgInfo::Ignore: 1520 case ABIArgInfo::InAlloca: 1521 assert(NumIRArgs == 0); 1522 break; 1523 1524 case ABIArgInfo::Indirect: { 1525 assert(NumIRArgs == 1); 1526 // indirect arguments are always on the stack, which is addr space #0. 1527 llvm::Type *LTy = ConvertTypeForMem(it->type); 1528 ArgTypes[FirstIRArg] = LTy->getPointerTo(); 1529 break; 1530 } 1531 1532 case ABIArgInfo::Extend: 1533 case ABIArgInfo::Direct: { 1534 // Fast-isel and the optimizer generally like scalar values better than 1535 // FCAs, so we flatten them if this is safe to do for this argument. 1536 llvm::Type *argType = ArgInfo.getCoerceToType(); 1537 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1538 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1539 assert(NumIRArgs == st->getNumElements()); 1540 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1541 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1542 } else { 1543 assert(NumIRArgs == 1); 1544 ArgTypes[FirstIRArg] = argType; 1545 } 1546 break; 1547 } 1548 1549 case ABIArgInfo::CoerceAndExpand: { 1550 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1551 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1552 *ArgTypesIter++ = EltTy; 1553 } 1554 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1555 break; 1556 } 1557 1558 case ABIArgInfo::Expand: 1559 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1560 getExpandedTypes(it->type, ArgTypesIter); 1561 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1562 break; 1563 } 1564 } 1565 1566 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1567 assert(Erased && "Not in set?"); 1568 1569 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1570 } 1571 1572 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1573 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1574 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1575 1576 if (!isFuncTypeConvertible(FPT)) 1577 return llvm::StructType::get(getLLVMContext()); 1578 1579 const CGFunctionInfo *Info; 1580 if (isa<CXXDestructorDecl>(MD)) 1581 Info = 1582 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1583 else 1584 Info = &arrangeCXXMethodDeclaration(MD); 1585 return GetFunctionType(*Info); 1586 } 1587 1588 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1589 llvm::AttrBuilder &FuncAttrs, 1590 const FunctionProtoType *FPT) { 1591 if (!FPT) 1592 return; 1593 1594 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1595 FPT->isNothrow(Ctx)) 1596 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1597 } 1598 1599 void CodeGenModule::ConstructAttributeList( 1600 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1601 AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) { 1602 llvm::AttrBuilder FuncAttrs; 1603 llvm::AttrBuilder RetAttrs; 1604 bool HasOptnone = false; 1605 1606 CallingConv = FI.getEffectiveCallingConvention(); 1607 1608 if (FI.isNoReturn()) 1609 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1610 1611 // If we have information about the function prototype, we can learn 1612 // attributes form there. 1613 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1614 CalleeInfo.getCalleeFunctionProtoType()); 1615 1616 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1617 1618 bool HasAnyX86InterruptAttr = false; 1619 // FIXME: handle sseregparm someday... 1620 if (TargetDecl) { 1621 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1622 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1623 if (TargetDecl->hasAttr<NoThrowAttr>()) 1624 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1625 if (TargetDecl->hasAttr<NoReturnAttr>()) 1626 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1627 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1628 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1629 1630 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1631 AddAttributesFromFunctionProtoType( 1632 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1633 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1634 // These attributes are not inherited by overloads. 1635 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1636 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1637 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1638 } 1639 1640 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1641 if (TargetDecl->hasAttr<ConstAttr>()) { 1642 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1643 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1644 } else if (TargetDecl->hasAttr<PureAttr>()) { 1645 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1646 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1647 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1648 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1649 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1650 } 1651 if (TargetDecl->hasAttr<RestrictAttr>()) 1652 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1653 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1654 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1655 1656 HasAnyX86InterruptAttr = TargetDecl->hasAttr<AnyX86InterruptAttr>(); 1657 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1658 } 1659 1660 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1661 if (!HasOptnone) { 1662 if (CodeGenOpts.OptimizeSize) 1663 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1664 if (CodeGenOpts.OptimizeSize == 2) 1665 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1666 } 1667 1668 if (CodeGenOpts.DisableRedZone) 1669 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1670 if (CodeGenOpts.NoImplicitFloat) 1671 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1672 if (CodeGenOpts.EnableSegmentedStacks && 1673 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1674 FuncAttrs.addAttribute("split-stack"); 1675 1676 if (AttrOnCallSite) { 1677 // Attributes that should go on the call site only. 1678 if (!CodeGenOpts.SimplifyLibCalls || 1679 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1680 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1681 if (!CodeGenOpts.TrapFuncName.empty()) 1682 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1683 } else { 1684 // Attributes that should go on the function, but not the call site. 1685 if (!CodeGenOpts.DisableFPElim) { 1686 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1687 } else if (CodeGenOpts.OmitLeafFramePointer) { 1688 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1689 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1690 } else { 1691 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1692 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1693 } 1694 1695 bool DisableTailCalls = 1696 CodeGenOpts.DisableTailCalls || HasAnyX86InterruptAttr || 1697 (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>()); 1698 FuncAttrs.addAttribute( 1699 "disable-tail-calls", 1700 llvm::toStringRef(DisableTailCalls)); 1701 1702 FuncAttrs.addAttribute("less-precise-fpmad", 1703 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1704 FuncAttrs.addAttribute("no-infs-fp-math", 1705 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1706 FuncAttrs.addAttribute("no-nans-fp-math", 1707 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1708 FuncAttrs.addAttribute("unsafe-fp-math", 1709 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1710 FuncAttrs.addAttribute("use-soft-float", 1711 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1712 FuncAttrs.addAttribute("stack-protector-buffer-size", 1713 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1714 1715 if (CodeGenOpts.StackRealignment) 1716 FuncAttrs.addAttribute("stackrealign"); 1717 if (CodeGenOpts.Backchain) 1718 FuncAttrs.addAttribute("backchain"); 1719 1720 // Add target-cpu and target-features attributes to functions. If 1721 // we have a decl for the function and it has a target attribute then 1722 // parse that and add it to the feature set. 1723 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1724 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1725 if (FD && FD->hasAttr<TargetAttr>()) { 1726 llvm::StringMap<bool> FeatureMap; 1727 getFunctionFeatureMap(FeatureMap, FD); 1728 1729 // Produce the canonical string for this set of features. 1730 std::vector<std::string> Features; 1731 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1732 ie = FeatureMap.end(); 1733 it != ie; ++it) 1734 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1735 1736 // Now add the target-cpu and target-features to the function. 1737 // While we populated the feature map above, we still need to 1738 // get and parse the target attribute so we can get the cpu for 1739 // the function. 1740 const auto *TD = FD->getAttr<TargetAttr>(); 1741 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1742 if (ParsedAttr.second != "") 1743 TargetCPU = ParsedAttr.second; 1744 if (TargetCPU != "") 1745 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1746 if (!Features.empty()) { 1747 std::sort(Features.begin(), Features.end()); 1748 FuncAttrs.addAttribute( 1749 "target-features", 1750 llvm::join(Features.begin(), Features.end(), ",")); 1751 } 1752 } else { 1753 // Otherwise just add the existing target cpu and target features to the 1754 // function. 1755 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1756 if (TargetCPU != "") 1757 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1758 if (!Features.empty()) { 1759 std::sort(Features.begin(), Features.end()); 1760 FuncAttrs.addAttribute( 1761 "target-features", 1762 llvm::join(Features.begin(), Features.end(), ",")); 1763 } 1764 } 1765 } 1766 1767 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1768 // Conservatively, mark all functions and calls in CUDA as convergent 1769 // (meaning, they may call an intrinsically convergent op, such as 1770 // __syncthreads(), and so can't have certain optimizations applied around 1771 // them). LLVM will remove this attribute where it safely can. 1772 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1773 1774 // Respect -fcuda-flush-denormals-to-zero. 1775 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1776 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1777 } 1778 1779 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1780 1781 QualType RetTy = FI.getReturnType(); 1782 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1783 switch (RetAI.getKind()) { 1784 case ABIArgInfo::Extend: 1785 if (RetTy->hasSignedIntegerRepresentation()) 1786 RetAttrs.addAttribute(llvm::Attribute::SExt); 1787 else if (RetTy->hasUnsignedIntegerRepresentation()) 1788 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1789 // FALL THROUGH 1790 case ABIArgInfo::Direct: 1791 if (RetAI.getInReg()) 1792 RetAttrs.addAttribute(llvm::Attribute::InReg); 1793 break; 1794 case ABIArgInfo::Ignore: 1795 break; 1796 1797 case ABIArgInfo::InAlloca: 1798 case ABIArgInfo::Indirect: { 1799 // inalloca and sret disable readnone and readonly 1800 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1801 .removeAttribute(llvm::Attribute::ReadNone); 1802 break; 1803 } 1804 1805 case ABIArgInfo::CoerceAndExpand: 1806 break; 1807 1808 case ABIArgInfo::Expand: 1809 llvm_unreachable("Invalid ABI kind for return argument"); 1810 } 1811 1812 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1813 QualType PTy = RefTy->getPointeeType(); 1814 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1815 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1816 .getQuantity()); 1817 else if (getContext().getTargetAddressSpace(PTy) == 0) 1818 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1819 } 1820 1821 // Attach return attributes. 1822 if (RetAttrs.hasAttributes()) { 1823 PAL.push_back(llvm::AttributeSet::get( 1824 getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs)); 1825 } 1826 1827 bool hasUsedSRet = false; 1828 1829 // Attach attributes to sret. 1830 if (IRFunctionArgs.hasSRetArg()) { 1831 llvm::AttrBuilder SRETAttrs; 1832 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1833 hasUsedSRet = true; 1834 if (RetAI.getInReg()) 1835 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1836 PAL.push_back(llvm::AttributeSet::get( 1837 getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs)); 1838 } 1839 1840 // Attach attributes to inalloca argument. 1841 if (IRFunctionArgs.hasInallocaArg()) { 1842 llvm::AttrBuilder Attrs; 1843 Attrs.addAttribute(llvm::Attribute::InAlloca); 1844 PAL.push_back(llvm::AttributeSet::get( 1845 getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs)); 1846 } 1847 1848 unsigned ArgNo = 0; 1849 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1850 E = FI.arg_end(); 1851 I != E; ++I, ++ArgNo) { 1852 QualType ParamType = I->type; 1853 const ABIArgInfo &AI = I->info; 1854 llvm::AttrBuilder Attrs; 1855 1856 // Add attribute for padding argument, if necessary. 1857 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1858 if (AI.getPaddingInReg()) 1859 PAL.push_back(llvm::AttributeSet::get( 1860 getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1, 1861 llvm::Attribute::InReg)); 1862 } 1863 1864 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1865 // have the corresponding parameter variable. It doesn't make 1866 // sense to do it here because parameters are so messed up. 1867 switch (AI.getKind()) { 1868 case ABIArgInfo::Extend: 1869 if (ParamType->isSignedIntegerOrEnumerationType()) 1870 Attrs.addAttribute(llvm::Attribute::SExt); 1871 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1872 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1873 Attrs.addAttribute(llvm::Attribute::SExt); 1874 else 1875 Attrs.addAttribute(llvm::Attribute::ZExt); 1876 } 1877 // FALL THROUGH 1878 case ABIArgInfo::Direct: 1879 if (ArgNo == 0 && FI.isChainCall()) 1880 Attrs.addAttribute(llvm::Attribute::Nest); 1881 else if (AI.getInReg()) 1882 Attrs.addAttribute(llvm::Attribute::InReg); 1883 break; 1884 1885 case ABIArgInfo::Indirect: { 1886 if (AI.getInReg()) 1887 Attrs.addAttribute(llvm::Attribute::InReg); 1888 1889 if (AI.getIndirectByVal()) 1890 Attrs.addAttribute(llvm::Attribute::ByVal); 1891 1892 CharUnits Align = AI.getIndirectAlign(); 1893 1894 // In a byval argument, it is important that the required 1895 // alignment of the type is honored, as LLVM might be creating a 1896 // *new* stack object, and needs to know what alignment to give 1897 // it. (Sometimes it can deduce a sensible alignment on its own, 1898 // but not if clang decides it must emit a packed struct, or the 1899 // user specifies increased alignment requirements.) 1900 // 1901 // This is different from indirect *not* byval, where the object 1902 // exists already, and the align attribute is purely 1903 // informative. 1904 assert(!Align.isZero()); 1905 1906 // For now, only add this when we have a byval argument. 1907 // TODO: be less lazy about updating test cases. 1908 if (AI.getIndirectByVal()) 1909 Attrs.addAlignmentAttr(Align.getQuantity()); 1910 1911 // byval disables readnone and readonly. 1912 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1913 .removeAttribute(llvm::Attribute::ReadNone); 1914 break; 1915 } 1916 case ABIArgInfo::Ignore: 1917 case ABIArgInfo::Expand: 1918 case ABIArgInfo::CoerceAndExpand: 1919 break; 1920 1921 case ABIArgInfo::InAlloca: 1922 // inalloca disables readnone and readonly. 1923 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1924 .removeAttribute(llvm::Attribute::ReadNone); 1925 continue; 1926 } 1927 1928 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 1929 QualType PTy = RefTy->getPointeeType(); 1930 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1931 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1932 .getQuantity()); 1933 else if (getContext().getTargetAddressSpace(PTy) == 0) 1934 Attrs.addAttribute(llvm::Attribute::NonNull); 1935 } 1936 1937 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 1938 case ParameterABI::Ordinary: 1939 break; 1940 1941 case ParameterABI::SwiftIndirectResult: { 1942 // Add 'sret' if we haven't already used it for something, but 1943 // only if the result is void. 1944 if (!hasUsedSRet && RetTy->isVoidType()) { 1945 Attrs.addAttribute(llvm::Attribute::StructRet); 1946 hasUsedSRet = true; 1947 } 1948 1949 // Add 'noalias' in either case. 1950 Attrs.addAttribute(llvm::Attribute::NoAlias); 1951 1952 // Add 'dereferenceable' and 'alignment'. 1953 auto PTy = ParamType->getPointeeType(); 1954 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 1955 auto info = getContext().getTypeInfoInChars(PTy); 1956 Attrs.addDereferenceableAttr(info.first.getQuantity()); 1957 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 1958 info.second.getQuantity())); 1959 } 1960 break; 1961 } 1962 1963 case ParameterABI::SwiftErrorResult: 1964 Attrs.addAttribute(llvm::Attribute::SwiftError); 1965 break; 1966 1967 case ParameterABI::SwiftContext: 1968 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 1969 break; 1970 } 1971 1972 if (Attrs.hasAttributes()) { 1973 unsigned FirstIRArg, NumIRArgs; 1974 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1975 for (unsigned i = 0; i < NumIRArgs; i++) 1976 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), 1977 FirstIRArg + i + 1, Attrs)); 1978 } 1979 } 1980 assert(ArgNo == FI.arg_size()); 1981 1982 if (FuncAttrs.hasAttributes()) 1983 PAL.push_back(llvm:: 1984 AttributeSet::get(getLLVMContext(), 1985 llvm::AttributeSet::FunctionIndex, 1986 FuncAttrs)); 1987 } 1988 1989 /// An argument came in as a promoted argument; demote it back to its 1990 /// declared type. 1991 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1992 const VarDecl *var, 1993 llvm::Value *value) { 1994 llvm::Type *varType = CGF.ConvertType(var->getType()); 1995 1996 // This can happen with promotions that actually don't change the 1997 // underlying type, like the enum promotions. 1998 if (value->getType() == varType) return value; 1999 2000 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2001 && "unexpected promotion type"); 2002 2003 if (isa<llvm::IntegerType>(varType)) 2004 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2005 2006 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2007 } 2008 2009 /// Returns the attribute (either parameter attribute, or function 2010 /// attribute), which declares argument ArgNo to be non-null. 2011 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2012 QualType ArgType, unsigned ArgNo) { 2013 // FIXME: __attribute__((nonnull)) can also be applied to: 2014 // - references to pointers, where the pointee is known to be 2015 // nonnull (apparently a Clang extension) 2016 // - transparent unions containing pointers 2017 // In the former case, LLVM IR cannot represent the constraint. In 2018 // the latter case, we have no guarantee that the transparent union 2019 // is in fact passed as a pointer. 2020 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2021 return nullptr; 2022 // First, check attribute on parameter itself. 2023 if (PVD) { 2024 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2025 return ParmNNAttr; 2026 } 2027 // Check function attributes. 2028 if (!FD) 2029 return nullptr; 2030 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2031 if (NNAttr->isNonNull(ArgNo)) 2032 return NNAttr; 2033 } 2034 return nullptr; 2035 } 2036 2037 namespace { 2038 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2039 Address Temp; 2040 Address Arg; 2041 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2042 void Emit(CodeGenFunction &CGF, Flags flags) override { 2043 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2044 CGF.Builder.CreateStore(errorValue, Arg); 2045 } 2046 }; 2047 } 2048 2049 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2050 llvm::Function *Fn, 2051 const FunctionArgList &Args) { 2052 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2053 // Naked functions don't have prologues. 2054 return; 2055 2056 // If this is an implicit-return-zero function, go ahead and 2057 // initialize the return value. TODO: it might be nice to have 2058 // a more general mechanism for this that didn't require synthesized 2059 // return statements. 2060 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2061 if (FD->hasImplicitReturnZero()) { 2062 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2063 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2064 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2065 Builder.CreateStore(Zero, ReturnValue); 2066 } 2067 } 2068 2069 // FIXME: We no longer need the types from FunctionArgList; lift up and 2070 // simplify. 2071 2072 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2073 // Flattened function arguments. 2074 SmallVector<llvm::Value *, 16> FnArgs; 2075 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2076 for (auto &Arg : Fn->args()) { 2077 FnArgs.push_back(&Arg); 2078 } 2079 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2080 2081 // If we're using inalloca, all the memory arguments are GEPs off of the last 2082 // parameter, which is a pointer to the complete memory area. 2083 Address ArgStruct = Address::invalid(); 2084 const llvm::StructLayout *ArgStructLayout = nullptr; 2085 if (IRFunctionArgs.hasInallocaArg()) { 2086 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2087 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2088 FI.getArgStructAlignment()); 2089 2090 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2091 } 2092 2093 // Name the struct return parameter. 2094 if (IRFunctionArgs.hasSRetArg()) { 2095 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2096 AI->setName("agg.result"); 2097 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1, 2098 llvm::Attribute::NoAlias)); 2099 } 2100 2101 // Track if we received the parameter as a pointer (indirect, byval, or 2102 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2103 // into a local alloca for us. 2104 SmallVector<ParamValue, 16> ArgVals; 2105 ArgVals.reserve(Args.size()); 2106 2107 // Create a pointer value for every parameter declaration. This usually 2108 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2109 // any cleanups or do anything that might unwind. We do that separately, so 2110 // we can push the cleanups in the correct order for the ABI. 2111 assert(FI.arg_size() == Args.size() && 2112 "Mismatch between function signature & arguments."); 2113 unsigned ArgNo = 0; 2114 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2115 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2116 i != e; ++i, ++info_it, ++ArgNo) { 2117 const VarDecl *Arg = *i; 2118 QualType Ty = info_it->type; 2119 const ABIArgInfo &ArgI = info_it->info; 2120 2121 bool isPromoted = 2122 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2123 2124 unsigned FirstIRArg, NumIRArgs; 2125 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2126 2127 switch (ArgI.getKind()) { 2128 case ABIArgInfo::InAlloca: { 2129 assert(NumIRArgs == 0); 2130 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2131 CharUnits FieldOffset = 2132 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2133 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2134 Arg->getName()); 2135 ArgVals.push_back(ParamValue::forIndirect(V)); 2136 break; 2137 } 2138 2139 case ABIArgInfo::Indirect: { 2140 assert(NumIRArgs == 1); 2141 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2142 2143 if (!hasScalarEvaluationKind(Ty)) { 2144 // Aggregates and complex variables are accessed by reference. All we 2145 // need to do is realign the value, if requested. 2146 Address V = ParamAddr; 2147 if (ArgI.getIndirectRealign()) { 2148 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2149 2150 // Copy from the incoming argument pointer to the temporary with the 2151 // appropriate alignment. 2152 // 2153 // FIXME: We should have a common utility for generating an aggregate 2154 // copy. 2155 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2156 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2157 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2158 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2159 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2160 V = AlignedTemp; 2161 } 2162 ArgVals.push_back(ParamValue::forIndirect(V)); 2163 } else { 2164 // Load scalar value from indirect argument. 2165 llvm::Value *V = 2166 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2167 2168 if (isPromoted) 2169 V = emitArgumentDemotion(*this, Arg, V); 2170 ArgVals.push_back(ParamValue::forDirect(V)); 2171 } 2172 break; 2173 } 2174 2175 case ABIArgInfo::Extend: 2176 case ABIArgInfo::Direct: { 2177 2178 // If we have the trivial case, handle it with no muss and fuss. 2179 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2180 ArgI.getCoerceToType() == ConvertType(Ty) && 2181 ArgI.getDirectOffset() == 0) { 2182 assert(NumIRArgs == 1); 2183 llvm::Value *V = FnArgs[FirstIRArg]; 2184 auto AI = cast<llvm::Argument>(V); 2185 2186 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2187 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2188 PVD->getFunctionScopeIndex())) 2189 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2190 AI->getArgNo() + 1, 2191 llvm::Attribute::NonNull)); 2192 2193 QualType OTy = PVD->getOriginalType(); 2194 if (const auto *ArrTy = 2195 getContext().getAsConstantArrayType(OTy)) { 2196 // A C99 array parameter declaration with the static keyword also 2197 // indicates dereferenceability, and if the size is constant we can 2198 // use the dereferenceable attribute (which requires the size in 2199 // bytes). 2200 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2201 QualType ETy = ArrTy->getElementType(); 2202 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2203 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2204 ArrSize) { 2205 llvm::AttrBuilder Attrs; 2206 Attrs.addDereferenceableAttr( 2207 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2208 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2209 AI->getArgNo() + 1, Attrs)); 2210 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2211 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2212 AI->getArgNo() + 1, 2213 llvm::Attribute::NonNull)); 2214 } 2215 } 2216 } else if (const auto *ArrTy = 2217 getContext().getAsVariableArrayType(OTy)) { 2218 // For C99 VLAs with the static keyword, we don't know the size so 2219 // we can't use the dereferenceable attribute, but in addrspace(0) 2220 // we know that it must be nonnull. 2221 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2222 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2223 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2224 AI->getArgNo() + 1, 2225 llvm::Attribute::NonNull)); 2226 } 2227 2228 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2229 if (!AVAttr) 2230 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2231 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2232 if (AVAttr) { 2233 llvm::Value *AlignmentValue = 2234 EmitScalarExpr(AVAttr->getAlignment()); 2235 llvm::ConstantInt *AlignmentCI = 2236 cast<llvm::ConstantInt>(AlignmentValue); 2237 unsigned Alignment = 2238 std::min((unsigned) AlignmentCI->getZExtValue(), 2239 +llvm::Value::MaximumAlignment); 2240 2241 llvm::AttrBuilder Attrs; 2242 Attrs.addAlignmentAttr(Alignment); 2243 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2244 AI->getArgNo() + 1, Attrs)); 2245 } 2246 } 2247 2248 if (Arg->getType().isRestrictQualified()) 2249 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2250 AI->getArgNo() + 1, 2251 llvm::Attribute::NoAlias)); 2252 2253 // LLVM expects swifterror parameters to be used in very restricted 2254 // ways. Copy the value into a less-restricted temporary. 2255 if (FI.getExtParameterInfo(ArgNo).getABI() 2256 == ParameterABI::SwiftErrorResult) { 2257 QualType pointeeTy = Ty->getPointeeType(); 2258 assert(pointeeTy->isPointerType()); 2259 Address temp = 2260 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2261 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2262 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2263 Builder.CreateStore(incomingErrorValue, temp); 2264 V = temp.getPointer(); 2265 2266 // Push a cleanup to copy the value back at the end of the function. 2267 // The convention does not guarantee that the value will be written 2268 // back if the function exits with an unwind exception. 2269 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2270 } 2271 2272 // Ensure the argument is the correct type. 2273 if (V->getType() != ArgI.getCoerceToType()) 2274 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2275 2276 if (isPromoted) 2277 V = emitArgumentDemotion(*this, Arg, V); 2278 2279 if (const CXXMethodDecl *MD = 2280 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 2281 if (MD->isVirtual() && Arg == CXXABIThisDecl) 2282 V = CGM.getCXXABI(). 2283 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V); 2284 } 2285 2286 // Because of merging of function types from multiple decls it is 2287 // possible for the type of an argument to not match the corresponding 2288 // type in the function type. Since we are codegening the callee 2289 // in here, add a cast to the argument type. 2290 llvm::Type *LTy = ConvertType(Arg->getType()); 2291 if (V->getType() != LTy) 2292 V = Builder.CreateBitCast(V, LTy); 2293 2294 ArgVals.push_back(ParamValue::forDirect(V)); 2295 break; 2296 } 2297 2298 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2299 Arg->getName()); 2300 2301 // Pointer to store into. 2302 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2303 2304 // Fast-isel and the optimizer generally like scalar values better than 2305 // FCAs, so we flatten them if this is safe to do for this argument. 2306 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2307 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2308 STy->getNumElements() > 1) { 2309 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2310 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2311 llvm::Type *DstTy = Ptr.getElementType(); 2312 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2313 2314 Address AddrToStoreInto = Address::invalid(); 2315 if (SrcSize <= DstSize) { 2316 AddrToStoreInto = 2317 Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 2318 } else { 2319 AddrToStoreInto = 2320 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2321 } 2322 2323 assert(STy->getNumElements() == NumIRArgs); 2324 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2325 auto AI = FnArgs[FirstIRArg + i]; 2326 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2327 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2328 Address EltPtr = 2329 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2330 Builder.CreateStore(AI, EltPtr); 2331 } 2332 2333 if (SrcSize > DstSize) { 2334 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2335 } 2336 2337 } else { 2338 // Simple case, just do a coerced store of the argument into the alloca. 2339 assert(NumIRArgs == 1); 2340 auto AI = FnArgs[FirstIRArg]; 2341 AI->setName(Arg->getName() + ".coerce"); 2342 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2343 } 2344 2345 // Match to what EmitParmDecl is expecting for this type. 2346 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2347 llvm::Value *V = 2348 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2349 if (isPromoted) 2350 V = emitArgumentDemotion(*this, Arg, V); 2351 ArgVals.push_back(ParamValue::forDirect(V)); 2352 } else { 2353 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2354 } 2355 break; 2356 } 2357 2358 case ABIArgInfo::CoerceAndExpand: { 2359 // Reconstruct into a temporary. 2360 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2361 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2362 2363 auto coercionType = ArgI.getCoerceAndExpandType(); 2364 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2365 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2366 2367 unsigned argIndex = FirstIRArg; 2368 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2369 llvm::Type *eltType = coercionType->getElementType(i); 2370 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2371 continue; 2372 2373 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2374 auto elt = FnArgs[argIndex++]; 2375 Builder.CreateStore(elt, eltAddr); 2376 } 2377 assert(argIndex == FirstIRArg + NumIRArgs); 2378 break; 2379 } 2380 2381 case ABIArgInfo::Expand: { 2382 // If this structure was expanded into multiple arguments then 2383 // we need to create a temporary and reconstruct it from the 2384 // arguments. 2385 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2386 LValue LV = MakeAddrLValue(Alloca, Ty); 2387 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2388 2389 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2390 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2391 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2392 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2393 auto AI = FnArgs[FirstIRArg + i]; 2394 AI->setName(Arg->getName() + "." + Twine(i)); 2395 } 2396 break; 2397 } 2398 2399 case ABIArgInfo::Ignore: 2400 assert(NumIRArgs == 0); 2401 // Initialize the local variable appropriately. 2402 if (!hasScalarEvaluationKind(Ty)) { 2403 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2404 } else { 2405 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2406 ArgVals.push_back(ParamValue::forDirect(U)); 2407 } 2408 break; 2409 } 2410 } 2411 2412 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2413 for (int I = Args.size() - 1; I >= 0; --I) 2414 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2415 } else { 2416 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2417 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2418 } 2419 } 2420 2421 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2422 while (insn->use_empty()) { 2423 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2424 if (!bitcast) return; 2425 2426 // This is "safe" because we would have used a ConstantExpr otherwise. 2427 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2428 bitcast->eraseFromParent(); 2429 } 2430 } 2431 2432 /// Try to emit a fused autorelease of a return result. 2433 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2434 llvm::Value *result) { 2435 // We must be immediately followed the cast. 2436 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2437 if (BB->empty()) return nullptr; 2438 if (&BB->back() != result) return nullptr; 2439 2440 llvm::Type *resultType = result->getType(); 2441 2442 // result is in a BasicBlock and is therefore an Instruction. 2443 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2444 2445 SmallVector<llvm::Instruction*,4> insnsToKill; 2446 2447 // Look for: 2448 // %generator = bitcast %type1* %generator2 to %type2* 2449 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2450 // We would have emitted this as a constant if the operand weren't 2451 // an Instruction. 2452 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2453 2454 // Require the generator to be immediately followed by the cast. 2455 if (generator->getNextNode() != bitcast) 2456 return nullptr; 2457 2458 insnsToKill.push_back(bitcast); 2459 } 2460 2461 // Look for: 2462 // %generator = call i8* @objc_retain(i8* %originalResult) 2463 // or 2464 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2465 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2466 if (!call) return nullptr; 2467 2468 bool doRetainAutorelease; 2469 2470 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2471 doRetainAutorelease = true; 2472 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2473 .objc_retainAutoreleasedReturnValue) { 2474 doRetainAutorelease = false; 2475 2476 // If we emitted an assembly marker for this call (and the 2477 // ARCEntrypoints field should have been set if so), go looking 2478 // for that call. If we can't find it, we can't do this 2479 // optimization. But it should always be the immediately previous 2480 // instruction, unless we needed bitcasts around the call. 2481 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2482 llvm::Instruction *prev = call->getPrevNode(); 2483 assert(prev); 2484 if (isa<llvm::BitCastInst>(prev)) { 2485 prev = prev->getPrevNode(); 2486 assert(prev); 2487 } 2488 assert(isa<llvm::CallInst>(prev)); 2489 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2490 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2491 insnsToKill.push_back(prev); 2492 } 2493 } else { 2494 return nullptr; 2495 } 2496 2497 result = call->getArgOperand(0); 2498 insnsToKill.push_back(call); 2499 2500 // Keep killing bitcasts, for sanity. Note that we no longer care 2501 // about precise ordering as long as there's exactly one use. 2502 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2503 if (!bitcast->hasOneUse()) break; 2504 insnsToKill.push_back(bitcast); 2505 result = bitcast->getOperand(0); 2506 } 2507 2508 // Delete all the unnecessary instructions, from latest to earliest. 2509 for (SmallVectorImpl<llvm::Instruction*>::iterator 2510 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 2511 (*i)->eraseFromParent(); 2512 2513 // Do the fused retain/autorelease if we were asked to. 2514 if (doRetainAutorelease) 2515 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2516 2517 // Cast back to the result type. 2518 return CGF.Builder.CreateBitCast(result, resultType); 2519 } 2520 2521 /// If this is a +1 of the value of an immutable 'self', remove it. 2522 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2523 llvm::Value *result) { 2524 // This is only applicable to a method with an immutable 'self'. 2525 const ObjCMethodDecl *method = 2526 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2527 if (!method) return nullptr; 2528 const VarDecl *self = method->getSelfDecl(); 2529 if (!self->getType().isConstQualified()) return nullptr; 2530 2531 // Look for a retain call. 2532 llvm::CallInst *retainCall = 2533 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2534 if (!retainCall || 2535 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2536 return nullptr; 2537 2538 // Look for an ordinary load of 'self'. 2539 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2540 llvm::LoadInst *load = 2541 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2542 if (!load || load->isAtomic() || load->isVolatile() || 2543 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2544 return nullptr; 2545 2546 // Okay! Burn it all down. This relies for correctness on the 2547 // assumption that the retain is emitted as part of the return and 2548 // that thereafter everything is used "linearly". 2549 llvm::Type *resultType = result->getType(); 2550 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2551 assert(retainCall->use_empty()); 2552 retainCall->eraseFromParent(); 2553 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2554 2555 return CGF.Builder.CreateBitCast(load, resultType); 2556 } 2557 2558 /// Emit an ARC autorelease of the result of a function. 2559 /// 2560 /// \return the value to actually return from the function 2561 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2562 llvm::Value *result) { 2563 // If we're returning 'self', kill the initial retain. This is a 2564 // heuristic attempt to "encourage correctness" in the really unfortunate 2565 // case where we have a return of self during a dealloc and we desperately 2566 // need to avoid the possible autorelease. 2567 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2568 return self; 2569 2570 // At -O0, try to emit a fused retain/autorelease. 2571 if (CGF.shouldUseFusedARCCalls()) 2572 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2573 return fused; 2574 2575 return CGF.EmitARCAutoreleaseReturnValue(result); 2576 } 2577 2578 /// Heuristically search for a dominating store to the return-value slot. 2579 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2580 // Check if a User is a store which pointerOperand is the ReturnValue. 2581 // We are looking for stores to the ReturnValue, not for stores of the 2582 // ReturnValue to some other location. 2583 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2584 auto *SI = dyn_cast<llvm::StoreInst>(U); 2585 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2586 return nullptr; 2587 // These aren't actually possible for non-coerced returns, and we 2588 // only care about non-coerced returns on this code path. 2589 assert(!SI->isAtomic() && !SI->isVolatile()); 2590 return SI; 2591 }; 2592 // If there are multiple uses of the return-value slot, just check 2593 // for something immediately preceding the IP. Sometimes this can 2594 // happen with how we generate implicit-returns; it can also happen 2595 // with noreturn cleanups. 2596 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2597 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2598 if (IP->empty()) return nullptr; 2599 llvm::Instruction *I = &IP->back(); 2600 2601 // Skip lifetime markers 2602 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2603 IE = IP->rend(); 2604 II != IE; ++II) { 2605 if (llvm::IntrinsicInst *Intrinsic = 2606 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2607 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2608 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2609 ++II; 2610 if (II == IE) 2611 break; 2612 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2613 continue; 2614 } 2615 } 2616 I = &*II; 2617 break; 2618 } 2619 2620 return GetStoreIfValid(I); 2621 } 2622 2623 llvm::StoreInst *store = 2624 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2625 if (!store) return nullptr; 2626 2627 // Now do a first-and-dirty dominance check: just walk up the 2628 // single-predecessors chain from the current insertion point. 2629 llvm::BasicBlock *StoreBB = store->getParent(); 2630 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2631 while (IP != StoreBB) { 2632 if (!(IP = IP->getSinglePredecessor())) 2633 return nullptr; 2634 } 2635 2636 // Okay, the store's basic block dominates the insertion point; we 2637 // can do our thing. 2638 return store; 2639 } 2640 2641 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2642 bool EmitRetDbgLoc, 2643 SourceLocation EndLoc) { 2644 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2645 // Naked functions don't have epilogues. 2646 Builder.CreateUnreachable(); 2647 return; 2648 } 2649 2650 // Functions with no result always return void. 2651 if (!ReturnValue.isValid()) { 2652 Builder.CreateRetVoid(); 2653 return; 2654 } 2655 2656 llvm::DebugLoc RetDbgLoc; 2657 llvm::Value *RV = nullptr; 2658 QualType RetTy = FI.getReturnType(); 2659 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2660 2661 switch (RetAI.getKind()) { 2662 case ABIArgInfo::InAlloca: 2663 // Aggregrates get evaluated directly into the destination. Sometimes we 2664 // need to return the sret value in a register, though. 2665 assert(hasAggregateEvaluationKind(RetTy)); 2666 if (RetAI.getInAllocaSRet()) { 2667 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2668 --EI; 2669 llvm::Value *ArgStruct = &*EI; 2670 llvm::Value *SRet = Builder.CreateStructGEP( 2671 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2672 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2673 } 2674 break; 2675 2676 case ABIArgInfo::Indirect: { 2677 auto AI = CurFn->arg_begin(); 2678 if (RetAI.isSRetAfterThis()) 2679 ++AI; 2680 switch (getEvaluationKind(RetTy)) { 2681 case TEK_Complex: { 2682 ComplexPairTy RT = 2683 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2684 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2685 /*isInit*/ true); 2686 break; 2687 } 2688 case TEK_Aggregate: 2689 // Do nothing; aggregrates get evaluated directly into the destination. 2690 break; 2691 case TEK_Scalar: 2692 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2693 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2694 /*isInit*/ true); 2695 break; 2696 } 2697 break; 2698 } 2699 2700 case ABIArgInfo::Extend: 2701 case ABIArgInfo::Direct: 2702 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2703 RetAI.getDirectOffset() == 0) { 2704 // The internal return value temp always will have pointer-to-return-type 2705 // type, just do a load. 2706 2707 // If there is a dominating store to ReturnValue, we can elide 2708 // the load, zap the store, and usually zap the alloca. 2709 if (llvm::StoreInst *SI = 2710 findDominatingStoreToReturnValue(*this)) { 2711 // Reuse the debug location from the store unless there is 2712 // cleanup code to be emitted between the store and return 2713 // instruction. 2714 if (EmitRetDbgLoc && !AutoreleaseResult) 2715 RetDbgLoc = SI->getDebugLoc(); 2716 // Get the stored value and nuke the now-dead store. 2717 RV = SI->getValueOperand(); 2718 SI->eraseFromParent(); 2719 2720 // If that was the only use of the return value, nuke it as well now. 2721 auto returnValueInst = ReturnValue.getPointer(); 2722 if (returnValueInst->use_empty()) { 2723 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2724 alloca->eraseFromParent(); 2725 ReturnValue = Address::invalid(); 2726 } 2727 } 2728 2729 // Otherwise, we have to do a simple load. 2730 } else { 2731 RV = Builder.CreateLoad(ReturnValue); 2732 } 2733 } else { 2734 // If the value is offset in memory, apply the offset now. 2735 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2736 2737 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2738 } 2739 2740 // In ARC, end functions that return a retainable type with a call 2741 // to objc_autoreleaseReturnValue. 2742 if (AutoreleaseResult) { 2743 #ifndef NDEBUG 2744 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2745 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2746 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2747 // CurCodeDecl or BlockInfo. 2748 QualType RT; 2749 2750 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2751 RT = FD->getReturnType(); 2752 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2753 RT = MD->getReturnType(); 2754 else if (isa<BlockDecl>(CurCodeDecl)) 2755 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2756 else 2757 llvm_unreachable("Unexpected function/method type"); 2758 2759 assert(getLangOpts().ObjCAutoRefCount && 2760 !FI.isReturnsRetained() && 2761 RT->isObjCRetainableType()); 2762 #endif 2763 RV = emitAutoreleaseOfResult(*this, RV); 2764 } 2765 2766 break; 2767 2768 case ABIArgInfo::Ignore: 2769 break; 2770 2771 case ABIArgInfo::CoerceAndExpand: { 2772 auto coercionType = RetAI.getCoerceAndExpandType(); 2773 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2774 2775 // Load all of the coerced elements out into results. 2776 llvm::SmallVector<llvm::Value*, 4> results; 2777 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2778 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2779 auto coercedEltType = coercionType->getElementType(i); 2780 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2781 continue; 2782 2783 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2784 auto elt = Builder.CreateLoad(eltAddr); 2785 results.push_back(elt); 2786 } 2787 2788 // If we have one result, it's the single direct result type. 2789 if (results.size() == 1) { 2790 RV = results[0]; 2791 2792 // Otherwise, we need to make a first-class aggregate. 2793 } else { 2794 // Construct a return type that lacks padding elements. 2795 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2796 2797 RV = llvm::UndefValue::get(returnType); 2798 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2799 RV = Builder.CreateInsertValue(RV, results[i], i); 2800 } 2801 } 2802 break; 2803 } 2804 2805 case ABIArgInfo::Expand: 2806 llvm_unreachable("Invalid ABI kind for return argument"); 2807 } 2808 2809 llvm::Instruction *Ret; 2810 if (RV) { 2811 if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) { 2812 if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) { 2813 SanitizerScope SanScope(this); 2814 llvm::Value *Cond = Builder.CreateICmpNE( 2815 RV, llvm::Constant::getNullValue(RV->getType())); 2816 llvm::Constant *StaticData[] = { 2817 EmitCheckSourceLocation(EndLoc), 2818 EmitCheckSourceLocation(RetNNAttr->getLocation()), 2819 }; 2820 EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute), 2821 "nonnull_return", StaticData, None); 2822 } 2823 } 2824 Ret = Builder.CreateRet(RV); 2825 } else { 2826 Ret = Builder.CreateRetVoid(); 2827 } 2828 2829 if (RetDbgLoc) 2830 Ret->setDebugLoc(std::move(RetDbgLoc)); 2831 } 2832 2833 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2834 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2835 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2836 } 2837 2838 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2839 QualType Ty) { 2840 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2841 // placeholders. 2842 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2843 llvm::Value *Placeholder = 2844 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo()); 2845 Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder); 2846 2847 // FIXME: When we generate this IR in one pass, we shouldn't need 2848 // this win32-specific alignment hack. 2849 CharUnits Align = CharUnits::fromQuantity(4); 2850 2851 return AggValueSlot::forAddr(Address(Placeholder, Align), 2852 Ty.getQualifiers(), 2853 AggValueSlot::IsNotDestructed, 2854 AggValueSlot::DoesNotNeedGCBarriers, 2855 AggValueSlot::IsNotAliased); 2856 } 2857 2858 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 2859 const VarDecl *param, 2860 SourceLocation loc) { 2861 // StartFunction converted the ABI-lowered parameter(s) into a 2862 // local alloca. We need to turn that into an r-value suitable 2863 // for EmitCall. 2864 Address local = GetAddrOfLocalVar(param); 2865 2866 QualType type = param->getType(); 2867 2868 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 2869 "cannot emit delegate call arguments for inalloca arguments!"); 2870 2871 // For the most part, we just need to load the alloca, except that 2872 // aggregate r-values are actually pointers to temporaries. 2873 if (type->isReferenceType()) 2874 args.add(RValue::get(Builder.CreateLoad(local)), type); 2875 else 2876 args.add(convertTempToRValue(local, type, loc), type); 2877 } 2878 2879 static bool isProvablyNull(llvm::Value *addr) { 2880 return isa<llvm::ConstantPointerNull>(addr); 2881 } 2882 2883 static bool isProvablyNonNull(llvm::Value *addr) { 2884 return isa<llvm::AllocaInst>(addr); 2885 } 2886 2887 /// Emit the actual writing-back of a writeback. 2888 static void emitWriteback(CodeGenFunction &CGF, 2889 const CallArgList::Writeback &writeback) { 2890 const LValue &srcLV = writeback.Source; 2891 Address srcAddr = srcLV.getAddress(); 2892 assert(!isProvablyNull(srcAddr.getPointer()) && 2893 "shouldn't have writeback for provably null argument"); 2894 2895 llvm::BasicBlock *contBB = nullptr; 2896 2897 // If the argument wasn't provably non-null, we need to null check 2898 // before doing the store. 2899 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 2900 if (!provablyNonNull) { 2901 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 2902 contBB = CGF.createBasicBlock("icr.done"); 2903 2904 llvm::Value *isNull = 2905 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2906 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 2907 CGF.EmitBlock(writebackBB); 2908 } 2909 2910 // Load the value to writeback. 2911 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 2912 2913 // Cast it back, in case we're writing an id to a Foo* or something. 2914 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 2915 "icr.writeback-cast"); 2916 2917 // Perform the writeback. 2918 2919 // If we have a "to use" value, it's something we need to emit a use 2920 // of. This has to be carefully threaded in: if it's done after the 2921 // release it's potentially undefined behavior (and the optimizer 2922 // will ignore it), and if it happens before the retain then the 2923 // optimizer could move the release there. 2924 if (writeback.ToUse) { 2925 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 2926 2927 // Retain the new value. No need to block-copy here: the block's 2928 // being passed up the stack. 2929 value = CGF.EmitARCRetainNonBlock(value); 2930 2931 // Emit the intrinsic use here. 2932 CGF.EmitARCIntrinsicUse(writeback.ToUse); 2933 2934 // Load the old value (primitively). 2935 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 2936 2937 // Put the new value in place (primitively). 2938 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 2939 2940 // Release the old value. 2941 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 2942 2943 // Otherwise, we can just do a normal lvalue store. 2944 } else { 2945 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 2946 } 2947 2948 // Jump to the continuation block. 2949 if (!provablyNonNull) 2950 CGF.EmitBlock(contBB); 2951 } 2952 2953 static void emitWritebacks(CodeGenFunction &CGF, 2954 const CallArgList &args) { 2955 for (const auto &I : args.writebacks()) 2956 emitWriteback(CGF, I); 2957 } 2958 2959 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 2960 const CallArgList &CallArgs) { 2961 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 2962 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 2963 CallArgs.getCleanupsToDeactivate(); 2964 // Iterate in reverse to increase the likelihood of popping the cleanup. 2965 for (const auto &I : llvm::reverse(Cleanups)) { 2966 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 2967 I.IsActiveIP->eraseFromParent(); 2968 } 2969 } 2970 2971 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 2972 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 2973 if (uop->getOpcode() == UO_AddrOf) 2974 return uop->getSubExpr(); 2975 return nullptr; 2976 } 2977 2978 /// Emit an argument that's being passed call-by-writeback. That is, 2979 /// we are passing the address of an __autoreleased temporary; it 2980 /// might be copy-initialized with the current value of the given 2981 /// address, but it will definitely be copied out of after the call. 2982 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 2983 const ObjCIndirectCopyRestoreExpr *CRE) { 2984 LValue srcLV; 2985 2986 // Make an optimistic effort to emit the address as an l-value. 2987 // This can fail if the argument expression is more complicated. 2988 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 2989 srcLV = CGF.EmitLValue(lvExpr); 2990 2991 // Otherwise, just emit it as a scalar. 2992 } else { 2993 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 2994 2995 QualType srcAddrType = 2996 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 2997 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 2998 } 2999 Address srcAddr = srcLV.getAddress(); 3000 3001 // The dest and src types don't necessarily match in LLVM terms 3002 // because of the crazy ObjC compatibility rules. 3003 3004 llvm::PointerType *destType = 3005 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3006 3007 // If the address is a constant null, just pass the appropriate null. 3008 if (isProvablyNull(srcAddr.getPointer())) { 3009 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3010 CRE->getType()); 3011 return; 3012 } 3013 3014 // Create the temporary. 3015 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3016 CGF.getPointerAlign(), 3017 "icr.temp"); 3018 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3019 // and that cleanup will be conditional if we can't prove that the l-value 3020 // isn't null, so we need to register a dominating point so that the cleanups 3021 // system will make valid IR. 3022 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3023 3024 // Zero-initialize it if we're not doing a copy-initialization. 3025 bool shouldCopy = CRE->shouldCopy(); 3026 if (!shouldCopy) { 3027 llvm::Value *null = 3028 llvm::ConstantPointerNull::get( 3029 cast<llvm::PointerType>(destType->getElementType())); 3030 CGF.Builder.CreateStore(null, temp); 3031 } 3032 3033 llvm::BasicBlock *contBB = nullptr; 3034 llvm::BasicBlock *originBB = nullptr; 3035 3036 // If the address is *not* known to be non-null, we need to switch. 3037 llvm::Value *finalArgument; 3038 3039 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 3040 if (provablyNonNull) { 3041 finalArgument = temp.getPointer(); 3042 } else { 3043 llvm::Value *isNull = 3044 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3045 3046 finalArgument = CGF.Builder.CreateSelect(isNull, 3047 llvm::ConstantPointerNull::get(destType), 3048 temp.getPointer(), "icr.argument"); 3049 3050 // If we need to copy, then the load has to be conditional, which 3051 // means we need control flow. 3052 if (shouldCopy) { 3053 originBB = CGF.Builder.GetInsertBlock(); 3054 contBB = CGF.createBasicBlock("icr.cont"); 3055 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3056 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3057 CGF.EmitBlock(copyBB); 3058 condEval.begin(CGF); 3059 } 3060 } 3061 3062 llvm::Value *valueToUse = nullptr; 3063 3064 // Perform a copy if necessary. 3065 if (shouldCopy) { 3066 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3067 assert(srcRV.isScalar()); 3068 3069 llvm::Value *src = srcRV.getScalarVal(); 3070 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3071 "icr.cast"); 3072 3073 // Use an ordinary store, not a store-to-lvalue. 3074 CGF.Builder.CreateStore(src, temp); 3075 3076 // If optimization is enabled, and the value was held in a 3077 // __strong variable, we need to tell the optimizer that this 3078 // value has to stay alive until we're doing the store back. 3079 // This is because the temporary is effectively unretained, 3080 // and so otherwise we can violate the high-level semantics. 3081 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3082 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3083 valueToUse = src; 3084 } 3085 } 3086 3087 // Finish the control flow if we needed it. 3088 if (shouldCopy && !provablyNonNull) { 3089 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3090 CGF.EmitBlock(contBB); 3091 3092 // Make a phi for the value to intrinsically use. 3093 if (valueToUse) { 3094 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3095 "icr.to-use"); 3096 phiToUse->addIncoming(valueToUse, copyBB); 3097 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3098 originBB); 3099 valueToUse = phiToUse; 3100 } 3101 3102 condEval.end(CGF); 3103 } 3104 3105 args.addWriteback(srcLV, temp, valueToUse); 3106 args.add(RValue::get(finalArgument), CRE->getType()); 3107 } 3108 3109 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3110 assert(!StackBase && !StackCleanup.isValid()); 3111 3112 // Save the stack. 3113 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3114 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3115 } 3116 3117 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3118 if (StackBase) { 3119 // Restore the stack after the call. 3120 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3121 CGF.Builder.CreateCall(F, StackBase); 3122 } 3123 } 3124 3125 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3126 SourceLocation ArgLoc, 3127 const FunctionDecl *FD, 3128 unsigned ParmNum) { 3129 if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD) 3130 return; 3131 auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr; 3132 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3133 auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo); 3134 if (!NNAttr) 3135 return; 3136 SanitizerScope SanScope(this); 3137 assert(RV.isScalar()); 3138 llvm::Value *V = RV.getScalarVal(); 3139 llvm::Value *Cond = 3140 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3141 llvm::Constant *StaticData[] = { 3142 EmitCheckSourceLocation(ArgLoc), 3143 EmitCheckSourceLocation(NNAttr->getLocation()), 3144 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3145 }; 3146 EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute), 3147 "nonnull_arg", StaticData, None); 3148 } 3149 3150 void CodeGenFunction::EmitCallArgs( 3151 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3152 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3153 const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) { 3154 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3155 3156 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) { 3157 if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams()) 3158 return; 3159 auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3160 if (PS == nullptr) 3161 return; 3162 3163 const auto &Context = getContext(); 3164 auto SizeTy = Context.getSizeType(); 3165 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3166 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T); 3167 Args.add(RValue::get(V), SizeTy); 3168 }; 3169 3170 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3171 // because arguments are destroyed left to right in the callee. 3172 if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3173 // Insert a stack save if we're going to need any inalloca args. 3174 bool HasInAllocaArgs = false; 3175 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3176 I != E && !HasInAllocaArgs; ++I) 3177 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3178 if (HasInAllocaArgs) { 3179 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3180 Args.allocateArgumentMemory(*this); 3181 } 3182 3183 // Evaluate each argument. 3184 size_t CallArgsStart = Args.size(); 3185 for (int I = ArgTypes.size() - 1; I >= 0; --I) { 3186 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 3187 EmitCallArg(Args, *Arg, ArgTypes[I]); 3188 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 3189 CalleeDecl, ParamsToSkip + I); 3190 MaybeEmitImplicitObjectSize(I, *Arg); 3191 } 3192 3193 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3194 // IR function. 3195 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3196 return; 3197 } 3198 3199 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3200 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 3201 assert(Arg != ArgRange.end()); 3202 EmitCallArg(Args, *Arg, ArgTypes[I]); 3203 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 3204 CalleeDecl, ParamsToSkip + I); 3205 MaybeEmitImplicitObjectSize(I, *Arg); 3206 } 3207 } 3208 3209 namespace { 3210 3211 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3212 DestroyUnpassedArg(Address Addr, QualType Ty) 3213 : Addr(Addr), Ty(Ty) {} 3214 3215 Address Addr; 3216 QualType Ty; 3217 3218 void Emit(CodeGenFunction &CGF, Flags flags) override { 3219 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3220 assert(!Dtor->isTrivial()); 3221 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3222 /*Delegating=*/false, Addr); 3223 } 3224 }; 3225 3226 struct DisableDebugLocationUpdates { 3227 CodeGenFunction &CGF; 3228 bool disabledDebugInfo; 3229 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3230 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3231 CGF.disableDebugInfo(); 3232 } 3233 ~DisableDebugLocationUpdates() { 3234 if (disabledDebugInfo) 3235 CGF.enableDebugInfo(); 3236 } 3237 }; 3238 3239 } // end anonymous namespace 3240 3241 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3242 QualType type) { 3243 DisableDebugLocationUpdates Dis(*this, E); 3244 if (const ObjCIndirectCopyRestoreExpr *CRE 3245 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3246 assert(getLangOpts().ObjCAutoRefCount); 3247 assert(getContext().hasSameType(E->getType(), type)); 3248 return emitWritebackArg(*this, args, CRE); 3249 } 3250 3251 assert(type->isReferenceType() == E->isGLValue() && 3252 "reference binding to unmaterialized r-value!"); 3253 3254 if (E->isGLValue()) { 3255 assert(E->getObjectKind() == OK_Ordinary); 3256 return args.add(EmitReferenceBindingToExpr(E), type); 3257 } 3258 3259 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3260 3261 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3262 // However, we still have to push an EH-only cleanup in case we unwind before 3263 // we make it to the call. 3264 if (HasAggregateEvalKind && 3265 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3266 // If we're using inalloca, use the argument memory. Otherwise, use a 3267 // temporary. 3268 AggValueSlot Slot; 3269 if (args.isUsingInAlloca()) 3270 Slot = createPlaceholderSlot(*this, type); 3271 else 3272 Slot = CreateAggTemp(type, "agg.tmp"); 3273 3274 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3275 bool DestroyedInCallee = 3276 RD && RD->hasNonTrivialDestructor() && 3277 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 3278 if (DestroyedInCallee) 3279 Slot.setExternallyDestructed(); 3280 3281 EmitAggExpr(E, Slot); 3282 RValue RV = Slot.asRValue(); 3283 args.add(RV, type); 3284 3285 if (DestroyedInCallee) { 3286 // Create a no-op GEP between the placeholder and the cleanup so we can 3287 // RAUW it successfully. It also serves as a marker of the first 3288 // instruction where the cleanup is active. 3289 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3290 type); 3291 // This unreachable is a temporary marker which will be removed later. 3292 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3293 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3294 } 3295 return; 3296 } 3297 3298 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3299 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3300 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3301 assert(L.isSimple()); 3302 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 3303 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 3304 } else { 3305 // We can't represent a misaligned lvalue in the CallArgList, so copy 3306 // to an aligned temporary now. 3307 Address tmp = CreateMemTemp(type); 3308 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 3309 args.add(RValue::getAggregate(tmp), type); 3310 } 3311 return; 3312 } 3313 3314 args.add(EmitAnyExprToTemp(E), type); 3315 } 3316 3317 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3318 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3319 // implicitly widens null pointer constants that are arguments to varargs 3320 // functions to pointer-sized ints. 3321 if (!getTarget().getTriple().isOSWindows()) 3322 return Arg->getType(); 3323 3324 if (Arg->getType()->isIntegerType() && 3325 getContext().getTypeSize(Arg->getType()) < 3326 getContext().getTargetInfo().getPointerWidth(0) && 3327 Arg->isNullPointerConstant(getContext(), 3328 Expr::NPC_ValueDependentIsNotNull)) { 3329 return getContext().getIntPtrType(); 3330 } 3331 3332 return Arg->getType(); 3333 } 3334 3335 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3336 // optimizer it can aggressively ignore unwind edges. 3337 void 3338 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3339 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3340 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3341 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3342 CGM.getNoObjCARCExceptionsMetadata()); 3343 } 3344 3345 /// Emits a call to the given no-arguments nounwind runtime function. 3346 llvm::CallInst * 3347 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3348 const llvm::Twine &name) { 3349 return EmitNounwindRuntimeCall(callee, None, name); 3350 } 3351 3352 /// Emits a call to the given nounwind runtime function. 3353 llvm::CallInst * 3354 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3355 ArrayRef<llvm::Value*> args, 3356 const llvm::Twine &name) { 3357 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3358 call->setDoesNotThrow(); 3359 return call; 3360 } 3361 3362 /// Emits a simple call (never an invoke) to the given no-arguments 3363 /// runtime function. 3364 llvm::CallInst * 3365 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3366 const llvm::Twine &name) { 3367 return EmitRuntimeCall(callee, None, name); 3368 } 3369 3370 // Calls which may throw must have operand bundles indicating which funclet 3371 // they are nested within. 3372 static void 3373 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad, 3374 SmallVectorImpl<llvm::OperandBundleDef> &BundleList) { 3375 // There is no need for a funclet operand bundle if we aren't inside a 3376 // funclet. 3377 if (!CurrentFuncletPad) 3378 return; 3379 3380 // Skip intrinsics which cannot throw. 3381 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3382 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3383 return; 3384 3385 BundleList.emplace_back("funclet", CurrentFuncletPad); 3386 } 3387 3388 /// Emits a simple call (never an invoke) to the given runtime function. 3389 llvm::CallInst * 3390 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3391 ArrayRef<llvm::Value*> args, 3392 const llvm::Twine &name) { 3393 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3394 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3395 3396 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name); 3397 call->setCallingConv(getRuntimeCC()); 3398 return call; 3399 } 3400 3401 /// Emits a call or invoke to the given noreturn runtime function. 3402 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3403 ArrayRef<llvm::Value*> args) { 3404 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3405 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3406 3407 if (getInvokeDest()) { 3408 llvm::InvokeInst *invoke = 3409 Builder.CreateInvoke(callee, 3410 getUnreachableBlock(), 3411 getInvokeDest(), 3412 args, 3413 BundleList); 3414 invoke->setDoesNotReturn(); 3415 invoke->setCallingConv(getRuntimeCC()); 3416 } else { 3417 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3418 call->setDoesNotReturn(); 3419 call->setCallingConv(getRuntimeCC()); 3420 Builder.CreateUnreachable(); 3421 } 3422 } 3423 3424 /// Emits a call or invoke instruction to the given nullary runtime function. 3425 llvm::CallSite 3426 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3427 const Twine &name) { 3428 return EmitRuntimeCallOrInvoke(callee, None, name); 3429 } 3430 3431 /// Emits a call or invoke instruction to the given runtime function. 3432 llvm::CallSite 3433 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3434 ArrayRef<llvm::Value*> args, 3435 const Twine &name) { 3436 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3437 callSite.setCallingConv(getRuntimeCC()); 3438 return callSite; 3439 } 3440 3441 /// Emits a call or invoke instruction to the given function, depending 3442 /// on the current state of the EH stack. 3443 llvm::CallSite 3444 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3445 ArrayRef<llvm::Value *> Args, 3446 const Twine &Name) { 3447 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3448 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3449 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3450 3451 llvm::Instruction *Inst; 3452 if (!InvokeDest) 3453 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3454 else { 3455 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3456 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3457 Name); 3458 EmitBlock(ContBB); 3459 } 3460 3461 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3462 // optimizer it can aggressively ignore unwind edges. 3463 if (CGM.getLangOpts().ObjCAutoRefCount) 3464 AddObjCARCExceptionMetadata(Inst); 3465 3466 return llvm::CallSite(Inst); 3467 } 3468 3469 /// \brief Store a non-aggregate value to an address to initialize it. For 3470 /// initialization, a non-atomic store will be used. 3471 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3472 LValue Dst) { 3473 if (Src.isScalar()) 3474 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3475 else 3476 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3477 } 3478 3479 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3480 llvm::Value *New) { 3481 DeferredReplacements.push_back(std::make_pair(Old, New)); 3482 } 3483 3484 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3485 llvm::Value *Callee, 3486 ReturnValueSlot ReturnValue, 3487 const CallArgList &CallArgs, 3488 CGCalleeInfo CalleeInfo, 3489 llvm::Instruction **callOrInvoke) { 3490 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3491 3492 // Handle struct-return functions by passing a pointer to the 3493 // location that we would like to return into. 3494 QualType RetTy = CallInfo.getReturnType(); 3495 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3496 3497 llvm::FunctionType *IRFuncTy = 3498 cast<llvm::FunctionType>( 3499 cast<llvm::PointerType>(Callee->getType())->getElementType()); 3500 3501 // If we're using inalloca, insert the allocation after the stack save. 3502 // FIXME: Do this earlier rather than hacking it in here! 3503 Address ArgMemory = Address::invalid(); 3504 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3505 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3506 ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct); 3507 llvm::Instruction *IP = CallArgs.getStackBase(); 3508 llvm::AllocaInst *AI; 3509 if (IP) { 3510 IP = IP->getNextNode(); 3511 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP); 3512 } else { 3513 AI = CreateTempAlloca(ArgStruct, "argmem"); 3514 } 3515 auto Align = CallInfo.getArgStructAlignment(); 3516 AI->setAlignment(Align.getQuantity()); 3517 AI->setUsedWithInAlloca(true); 3518 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3519 ArgMemory = Address(AI, Align); 3520 } 3521 3522 // Helper function to drill into the inalloca allocation. 3523 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3524 auto FieldOffset = 3525 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3526 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3527 }; 3528 3529 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3530 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3531 3532 // If the call returns a temporary with struct return, create a temporary 3533 // alloca to hold the result, unless one is given to us. 3534 Address SRetPtr = Address::invalid(); 3535 size_t UnusedReturnSize = 0; 3536 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3537 if (!ReturnValue.isNull()) { 3538 SRetPtr = ReturnValue.getValue(); 3539 } else { 3540 SRetPtr = CreateMemTemp(RetTy); 3541 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3542 uint64_t size = 3543 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3544 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3545 UnusedReturnSize = size; 3546 } 3547 } 3548 if (IRFunctionArgs.hasSRetArg()) { 3549 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3550 } else if (RetAI.isInAlloca()) { 3551 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3552 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3553 } 3554 } 3555 3556 Address swiftErrorTemp = Address::invalid(); 3557 Address swiftErrorArg = Address::invalid(); 3558 3559 assert(CallInfo.arg_size() == CallArgs.size() && 3560 "Mismatch between function signature & arguments."); 3561 unsigned ArgNo = 0; 3562 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3563 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3564 I != E; ++I, ++info_it, ++ArgNo) { 3565 const ABIArgInfo &ArgInfo = info_it->info; 3566 RValue RV = I->RV; 3567 3568 // Insert a padding argument to ensure proper alignment. 3569 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3570 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3571 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3572 3573 unsigned FirstIRArg, NumIRArgs; 3574 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3575 3576 switch (ArgInfo.getKind()) { 3577 case ABIArgInfo::InAlloca: { 3578 assert(NumIRArgs == 0); 3579 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3580 if (RV.isAggregate()) { 3581 // Replace the placeholder with the appropriate argument slot GEP. 3582 llvm::Instruction *Placeholder = 3583 cast<llvm::Instruction>(RV.getAggregatePointer()); 3584 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3585 Builder.SetInsertPoint(Placeholder); 3586 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3587 Builder.restoreIP(IP); 3588 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3589 } else { 3590 // Store the RValue into the argument struct. 3591 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3592 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3593 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3594 // There are some cases where a trivial bitcast is not avoidable. The 3595 // definition of a type later in a translation unit may change it's type 3596 // from {}* to (%struct.foo*)*. 3597 if (Addr.getType() != MemType) 3598 Addr = Builder.CreateBitCast(Addr, MemType); 3599 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3600 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3601 } 3602 break; 3603 } 3604 3605 case ABIArgInfo::Indirect: { 3606 assert(NumIRArgs == 1); 3607 if (RV.isScalar() || RV.isComplex()) { 3608 // Make a temporary alloca to pass the argument. 3609 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3610 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3611 3612 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3613 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3614 } else { 3615 // We want to avoid creating an unnecessary temporary+copy here; 3616 // however, we need one in three cases: 3617 // 1. If the argument is not byval, and we are required to copy the 3618 // source. (This case doesn't occur on any common architecture.) 3619 // 2. If the argument is byval, RV is not sufficiently aligned, and 3620 // we cannot force it to be sufficiently aligned. 3621 // 3. If the argument is byval, but RV is located in an address space 3622 // different than that of the argument (0). 3623 Address Addr = RV.getAggregateAddress(); 3624 CharUnits Align = ArgInfo.getIndirectAlign(); 3625 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3626 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3627 const unsigned ArgAddrSpace = 3628 (FirstIRArg < IRFuncTy->getNumParams() 3629 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3630 : 0); 3631 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3632 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3633 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3634 Align.getQuantity(), *TD) 3635 < Align.getQuantity()) || 3636 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3637 // Create an aligned temporary, and copy to it. 3638 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3639 IRCallArgs[FirstIRArg] = AI.getPointer(); 3640 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3641 } else { 3642 // Skip the extra memcpy call. 3643 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3644 } 3645 } 3646 break; 3647 } 3648 3649 case ABIArgInfo::Ignore: 3650 assert(NumIRArgs == 0); 3651 break; 3652 3653 case ABIArgInfo::Extend: 3654 case ABIArgInfo::Direct: { 3655 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3656 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3657 ArgInfo.getDirectOffset() == 0) { 3658 assert(NumIRArgs == 1); 3659 llvm::Value *V; 3660 if (RV.isScalar()) 3661 V = RV.getScalarVal(); 3662 else 3663 V = Builder.CreateLoad(RV.getAggregateAddress()); 3664 3665 // Implement swifterror by copying into a new swifterror argument. 3666 // We'll write back in the normal path out of the call. 3667 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3668 == ParameterABI::SwiftErrorResult) { 3669 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3670 3671 QualType pointeeTy = I->Ty->getPointeeType(); 3672 swiftErrorArg = 3673 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3674 3675 swiftErrorTemp = 3676 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3677 V = swiftErrorTemp.getPointer(); 3678 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3679 3680 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3681 Builder.CreateStore(errorValue, swiftErrorTemp); 3682 } 3683 3684 // We might have to widen integers, but we should never truncate. 3685 if (ArgInfo.getCoerceToType() != V->getType() && 3686 V->getType()->isIntegerTy()) 3687 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3688 3689 // If the argument doesn't match, perform a bitcast to coerce it. This 3690 // can happen due to trivial type mismatches. 3691 if (FirstIRArg < IRFuncTy->getNumParams() && 3692 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3693 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3694 3695 IRCallArgs[FirstIRArg] = V; 3696 break; 3697 } 3698 3699 // FIXME: Avoid the conversion through memory if possible. 3700 Address Src = Address::invalid(); 3701 if (RV.isScalar() || RV.isComplex()) { 3702 Src = CreateMemTemp(I->Ty, "coerce"); 3703 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3704 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3705 } else { 3706 Src = RV.getAggregateAddress(); 3707 } 3708 3709 // If the value is offset in memory, apply the offset now. 3710 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3711 3712 // Fast-isel and the optimizer generally like scalar values better than 3713 // FCAs, so we flatten them if this is safe to do for this argument. 3714 llvm::StructType *STy = 3715 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3716 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3717 llvm::Type *SrcTy = Src.getType()->getElementType(); 3718 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3719 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3720 3721 // If the source type is smaller than the destination type of the 3722 // coerce-to logic, copy the source value into a temp alloca the size 3723 // of the destination type to allow loading all of it. The bits past 3724 // the source value are left undef. 3725 if (SrcSize < DstSize) { 3726 Address TempAlloca 3727 = CreateTempAlloca(STy, Src.getAlignment(), 3728 Src.getName() + ".coerce"); 3729 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3730 Src = TempAlloca; 3731 } else { 3732 Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy)); 3733 } 3734 3735 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3736 assert(NumIRArgs == STy->getNumElements()); 3737 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3738 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3739 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3740 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3741 IRCallArgs[FirstIRArg + i] = LI; 3742 } 3743 } else { 3744 // In the simple case, just pass the coerced loaded value. 3745 assert(NumIRArgs == 1); 3746 IRCallArgs[FirstIRArg] = 3747 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3748 } 3749 3750 break; 3751 } 3752 3753 case ABIArgInfo::CoerceAndExpand: { 3754 auto coercionType = ArgInfo.getCoerceAndExpandType(); 3755 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 3756 3757 llvm::Value *tempSize = nullptr; 3758 Address addr = Address::invalid(); 3759 if (RV.isAggregate()) { 3760 addr = RV.getAggregateAddress(); 3761 } else { 3762 assert(RV.isScalar()); // complex should always just be direct 3763 3764 llvm::Type *scalarType = RV.getScalarVal()->getType(); 3765 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 3766 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 3767 3768 tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize); 3769 3770 // Materialize to a temporary. 3771 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 3772 CharUnits::fromQuantity(std::max(layout->getAlignment(), 3773 scalarAlign))); 3774 EmitLifetimeStart(scalarSize, addr.getPointer()); 3775 3776 Builder.CreateStore(RV.getScalarVal(), addr); 3777 } 3778 3779 addr = Builder.CreateElementBitCast(addr, coercionType); 3780 3781 unsigned IRArgPos = FirstIRArg; 3782 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3783 llvm::Type *eltType = coercionType->getElementType(i); 3784 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 3785 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 3786 llvm::Value *elt = Builder.CreateLoad(eltAddr); 3787 IRCallArgs[IRArgPos++] = elt; 3788 } 3789 assert(IRArgPos == FirstIRArg + NumIRArgs); 3790 3791 if (tempSize) { 3792 EmitLifetimeEnd(tempSize, addr.getPointer()); 3793 } 3794 3795 break; 3796 } 3797 3798 case ABIArgInfo::Expand: 3799 unsigned IRArgPos = FirstIRArg; 3800 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 3801 assert(IRArgPos == FirstIRArg + NumIRArgs); 3802 break; 3803 } 3804 } 3805 3806 if (ArgMemory.isValid()) { 3807 llvm::Value *Arg = ArgMemory.getPointer(); 3808 if (CallInfo.isVariadic()) { 3809 // When passing non-POD arguments by value to variadic functions, we will 3810 // end up with a variadic prototype and an inalloca call site. In such 3811 // cases, we can't do any parameter mismatch checks. Give up and bitcast 3812 // the callee. 3813 unsigned CalleeAS = 3814 cast<llvm::PointerType>(Callee->getType())->getAddressSpace(); 3815 Callee = Builder.CreateBitCast( 3816 Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS)); 3817 } else { 3818 llvm::Type *LastParamTy = 3819 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 3820 if (Arg->getType() != LastParamTy) { 3821 #ifndef NDEBUG 3822 // Assert that these structs have equivalent element types. 3823 llvm::StructType *FullTy = CallInfo.getArgStruct(); 3824 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 3825 cast<llvm::PointerType>(LastParamTy)->getElementType()); 3826 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 3827 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 3828 DE = DeclaredTy->element_end(), 3829 FI = FullTy->element_begin(); 3830 DI != DE; ++DI, ++FI) 3831 assert(*DI == *FI); 3832 #endif 3833 Arg = Builder.CreateBitCast(Arg, LastParamTy); 3834 } 3835 } 3836 assert(IRFunctionArgs.hasInallocaArg()); 3837 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 3838 } 3839 3840 if (!CallArgs.getCleanupsToDeactivate().empty()) 3841 deactivateArgCleanupsBeforeCall(*this, CallArgs); 3842 3843 // If the callee is a bitcast of a function to a varargs pointer to function 3844 // type, check to see if we can remove the bitcast. This handles some cases 3845 // with unprototyped functions. 3846 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 3847 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 3848 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 3849 llvm::FunctionType *CurFT = 3850 cast<llvm::FunctionType>(CurPT->getElementType()); 3851 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 3852 3853 if (CE->getOpcode() == llvm::Instruction::BitCast && 3854 ActualFT->getReturnType() == CurFT->getReturnType() && 3855 ActualFT->getNumParams() == CurFT->getNumParams() && 3856 ActualFT->getNumParams() == IRCallArgs.size() && 3857 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 3858 bool ArgsMatch = true; 3859 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 3860 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 3861 ArgsMatch = false; 3862 break; 3863 } 3864 3865 // Strip the cast if we can get away with it. This is a nice cleanup, 3866 // but also allows us to inline the function at -O0 if it is marked 3867 // always_inline. 3868 if (ArgsMatch) 3869 Callee = CalleeF; 3870 } 3871 } 3872 3873 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 3874 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 3875 // Inalloca argument can have different type. 3876 if (IRFunctionArgs.hasInallocaArg() && 3877 i == IRFunctionArgs.getInallocaArgNo()) 3878 continue; 3879 if (i < IRFuncTy->getNumParams()) 3880 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 3881 } 3882 3883 unsigned CallingConv; 3884 CodeGen::AttributeListType AttributeList; 3885 CGM.ConstructAttributeList(Callee->getName(), CallInfo, CalleeInfo, 3886 AttributeList, CallingConv, 3887 /*AttrOnCallSite=*/true); 3888 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 3889 AttributeList); 3890 3891 bool CannotThrow; 3892 if (currentFunctionUsesSEHTry()) { 3893 // SEH cares about asynchronous exceptions, everything can "throw." 3894 CannotThrow = false; 3895 } else if (isCleanupPadScope() && 3896 EHPersonality::get(*this).isMSVCXXPersonality()) { 3897 // The MSVC++ personality will implicitly terminate the program if an 3898 // exception is thrown. An unwind edge cannot be reached. 3899 CannotThrow = true; 3900 } else { 3901 // Otherwise, nowunind callsites will never throw. 3902 CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 3903 llvm::Attribute::NoUnwind); 3904 } 3905 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 3906 3907 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3908 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3909 3910 llvm::CallSite CS; 3911 if (!InvokeDest) { 3912 CS = Builder.CreateCall(Callee, IRCallArgs, BundleList); 3913 } else { 3914 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 3915 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs, 3916 BundleList); 3917 EmitBlock(Cont); 3918 } 3919 if (callOrInvoke) 3920 *callOrInvoke = CS.getInstruction(); 3921 3922 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 3923 !CS.hasFnAttr(llvm::Attribute::NoInline)) 3924 Attrs = 3925 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3926 llvm::Attribute::AlwaysInline); 3927 3928 // Disable inlining inside SEH __try blocks. 3929 if (isSEHTryScope()) 3930 Attrs = 3931 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3932 llvm::Attribute::NoInline); 3933 3934 CS.setAttributes(Attrs); 3935 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 3936 3937 // Insert instrumentation or attach profile metadata at indirect call sites. 3938 // For more details, see the comment before the definition of 3939 // IPVK_IndirectCallTarget in InstrProfData.inc. 3940 if (!CS.getCalledFunction()) 3941 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 3942 CS.getInstruction(), Callee); 3943 3944 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3945 // optimizer it can aggressively ignore unwind edges. 3946 if (CGM.getLangOpts().ObjCAutoRefCount) 3947 AddObjCARCExceptionMetadata(CS.getInstruction()); 3948 3949 // If the call doesn't return, finish the basic block and clear the 3950 // insertion point; this allows the rest of IRgen to discard 3951 // unreachable code. 3952 if (CS.doesNotReturn()) { 3953 if (UnusedReturnSize) 3954 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3955 SRetPtr.getPointer()); 3956 3957 Builder.CreateUnreachable(); 3958 Builder.ClearInsertionPoint(); 3959 3960 // FIXME: For now, emit a dummy basic block because expr emitters in 3961 // generally are not ready to handle emitting expressions at unreachable 3962 // points. 3963 EnsureInsertPoint(); 3964 3965 // Return a reasonable RValue. 3966 return GetUndefRValue(RetTy); 3967 } 3968 3969 llvm::Instruction *CI = CS.getInstruction(); 3970 if (!CI->getType()->isVoidTy()) 3971 CI->setName("call"); 3972 3973 // Perform the swifterror writeback. 3974 if (swiftErrorTemp.isValid()) { 3975 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 3976 Builder.CreateStore(errorResult, swiftErrorArg); 3977 } 3978 3979 // Emit any writebacks immediately. Arguably this should happen 3980 // after any return-value munging. 3981 if (CallArgs.hasWritebacks()) 3982 emitWritebacks(*this, CallArgs); 3983 3984 // The stack cleanup for inalloca arguments has to run out of the normal 3985 // lexical order, so deactivate it and run it manually here. 3986 CallArgs.freeArgumentMemory(*this); 3987 3988 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 3989 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 3990 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 3991 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 3992 } 3993 3994 RValue Ret = [&] { 3995 switch (RetAI.getKind()) { 3996 case ABIArgInfo::CoerceAndExpand: { 3997 auto coercionType = RetAI.getCoerceAndExpandType(); 3998 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 3999 4000 Address addr = SRetPtr; 4001 addr = Builder.CreateElementBitCast(addr, coercionType); 4002 4003 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4004 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4005 4006 unsigned unpaddedIndex = 0; 4007 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4008 llvm::Type *eltType = coercionType->getElementType(i); 4009 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4010 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4011 llvm::Value *elt = CI; 4012 if (requiresExtract) 4013 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4014 else 4015 assert(unpaddedIndex == 0); 4016 Builder.CreateStore(elt, eltAddr); 4017 } 4018 // FALLTHROUGH 4019 } 4020 4021 case ABIArgInfo::InAlloca: 4022 case ABIArgInfo::Indirect: { 4023 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4024 if (UnusedReturnSize) 4025 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4026 SRetPtr.getPointer()); 4027 return ret; 4028 } 4029 4030 case ABIArgInfo::Ignore: 4031 // If we are ignoring an argument that had a result, make sure to 4032 // construct the appropriate return value for our caller. 4033 return GetUndefRValue(RetTy); 4034 4035 case ABIArgInfo::Extend: 4036 case ABIArgInfo::Direct: { 4037 llvm::Type *RetIRTy = ConvertType(RetTy); 4038 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4039 switch (getEvaluationKind(RetTy)) { 4040 case TEK_Complex: { 4041 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4042 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4043 return RValue::getComplex(std::make_pair(Real, Imag)); 4044 } 4045 case TEK_Aggregate: { 4046 Address DestPtr = ReturnValue.getValue(); 4047 bool DestIsVolatile = ReturnValue.isVolatile(); 4048 4049 if (!DestPtr.isValid()) { 4050 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4051 DestIsVolatile = false; 4052 } 4053 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4054 return RValue::getAggregate(DestPtr); 4055 } 4056 case TEK_Scalar: { 4057 // If the argument doesn't match, perform a bitcast to coerce it. This 4058 // can happen due to trivial type mismatches. 4059 llvm::Value *V = CI; 4060 if (V->getType() != RetIRTy) 4061 V = Builder.CreateBitCast(V, RetIRTy); 4062 return RValue::get(V); 4063 } 4064 } 4065 llvm_unreachable("bad evaluation kind"); 4066 } 4067 4068 Address DestPtr = ReturnValue.getValue(); 4069 bool DestIsVolatile = ReturnValue.isVolatile(); 4070 4071 if (!DestPtr.isValid()) { 4072 DestPtr = CreateMemTemp(RetTy, "coerce"); 4073 DestIsVolatile = false; 4074 } 4075 4076 // If the value is offset in memory, apply the offset now. 4077 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4078 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4079 4080 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4081 } 4082 4083 case ABIArgInfo::Expand: 4084 llvm_unreachable("Invalid ABI kind for return argument"); 4085 } 4086 4087 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4088 } (); 4089 4090 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 4091 4092 if (Ret.isScalar() && TargetDecl) { 4093 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4094 llvm::Value *OffsetValue = nullptr; 4095 if (const auto *Offset = AA->getOffset()) 4096 OffsetValue = EmitScalarExpr(Offset); 4097 4098 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4099 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4100 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4101 OffsetValue); 4102 } 4103 } 4104 4105 return Ret; 4106 } 4107 4108 /* VarArg handling */ 4109 4110 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4111 VAListAddr = VE->isMicrosoftABI() 4112 ? EmitMSVAListRef(VE->getSubExpr()) 4113 : EmitVAListRef(VE->getSubExpr()); 4114 QualType Ty = VE->getType(); 4115 if (VE->isMicrosoftABI()) 4116 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4117 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4118 } 4119