1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /***/ 47 48 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 49 switch (CC) { 50 default: return llvm::CallingConv::C; 51 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 52 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 53 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 54 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 55 case CC_Win64: return llvm::CallingConv::Win64; 56 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 57 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 58 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 59 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 60 // TODO: Add support for __pascal to LLVM. 61 case CC_X86Pascal: return llvm::CallingConv::C; 62 // TODO: Add support for __vectorcall to LLVM. 63 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 64 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 65 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 66 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 67 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 68 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 69 case CC_Swift: return llvm::CallingConv::Swift; 70 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 71 } 72 } 73 74 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 75 /// qualification. Either or both of RD and MD may be null. A null RD indicates 76 /// that there is no meaningful 'this' type, and a null MD can occur when 77 /// calling a method pointer. 78 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 79 const CXXMethodDecl *MD) { 80 QualType RecTy; 81 if (RD) 82 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 83 else 84 RecTy = Context.VoidTy; 85 86 if (MD) 87 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 88 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 89 } 90 91 /// Returns the canonical formal type of the given C++ method. 92 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 93 return MD->getType()->getCanonicalTypeUnqualified() 94 .getAs<FunctionProtoType>(); 95 } 96 97 /// Returns the "extra-canonicalized" return type, which discards 98 /// qualifiers on the return type. Codegen doesn't care about them, 99 /// and it makes ABI code a little easier to be able to assume that 100 /// all parameter and return types are top-level unqualified. 101 static CanQualType GetReturnType(QualType RetTy) { 102 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 103 } 104 105 /// Arrange the argument and result information for a value of the given 106 /// unprototyped freestanding function type. 107 const CGFunctionInfo & 108 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 109 // When translating an unprototyped function type, always use a 110 // variadic type. 111 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 112 /*instanceMethod=*/false, 113 /*chainCall=*/false, None, 114 FTNP->getExtInfo(), {}, RequiredArgs(0)); 115 } 116 117 static void addExtParameterInfosForCall( 118 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 119 const FunctionProtoType *proto, 120 unsigned prefixArgs, 121 unsigned totalArgs) { 122 assert(proto->hasExtParameterInfos()); 123 assert(paramInfos.size() <= prefixArgs); 124 assert(proto->getNumParams() + prefixArgs <= totalArgs); 125 126 paramInfos.reserve(totalArgs); 127 128 // Add default infos for any prefix args that don't already have infos. 129 paramInfos.resize(prefixArgs); 130 131 // Add infos for the prototype. 132 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 133 paramInfos.push_back(ParamInfo); 134 // pass_object_size params have no parameter info. 135 if (ParamInfo.hasPassObjectSize()) 136 paramInfos.emplace_back(); 137 } 138 139 assert(paramInfos.size() <= totalArgs && 140 "Did we forget to insert pass_object_size args?"); 141 // Add default infos for the variadic and/or suffix arguments. 142 paramInfos.resize(totalArgs); 143 } 144 145 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 146 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 147 static void appendParameterTypes(const CodeGenTypes &CGT, 148 SmallVectorImpl<CanQualType> &prefix, 149 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 150 CanQual<FunctionProtoType> FPT) { 151 // Fast path: don't touch param info if we don't need to. 152 if (!FPT->hasExtParameterInfos()) { 153 assert(paramInfos.empty() && 154 "We have paramInfos, but the prototype doesn't?"); 155 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 156 return; 157 } 158 159 unsigned PrefixSize = prefix.size(); 160 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 161 // parameters; the only thing that can change this is the presence of 162 // pass_object_size. So, we preallocate for the common case. 163 prefix.reserve(prefix.size() + FPT->getNumParams()); 164 165 auto ExtInfos = FPT->getExtParameterInfos(); 166 assert(ExtInfos.size() == FPT->getNumParams()); 167 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 168 prefix.push_back(FPT->getParamType(I)); 169 if (ExtInfos[I].hasPassObjectSize()) 170 prefix.push_back(CGT.getContext().getSizeType()); 171 } 172 173 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 174 prefix.size()); 175 } 176 177 /// Arrange the LLVM function layout for a value of the given function 178 /// type, on top of any implicit parameters already stored. 179 static const CGFunctionInfo & 180 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 181 SmallVectorImpl<CanQualType> &prefix, 182 CanQual<FunctionProtoType> FTP) { 183 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 184 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 185 // FIXME: Kill copy. 186 appendParameterTypes(CGT, prefix, paramInfos, FTP); 187 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 188 189 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 190 /*chainCall=*/false, prefix, 191 FTP->getExtInfo(), paramInfos, 192 Required); 193 } 194 195 /// Arrange the argument and result information for a value of the 196 /// given freestanding function type. 197 const CGFunctionInfo & 198 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 199 SmallVector<CanQualType, 16> argTypes; 200 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 201 FTP); 202 } 203 204 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 205 bool IsWindows) { 206 // Set the appropriate calling convention for the Function. 207 if (D->hasAttr<StdCallAttr>()) 208 return CC_X86StdCall; 209 210 if (D->hasAttr<FastCallAttr>()) 211 return CC_X86FastCall; 212 213 if (D->hasAttr<RegCallAttr>()) 214 return CC_X86RegCall; 215 216 if (D->hasAttr<ThisCallAttr>()) 217 return CC_X86ThisCall; 218 219 if (D->hasAttr<VectorCallAttr>()) 220 return CC_X86VectorCall; 221 222 if (D->hasAttr<PascalAttr>()) 223 return CC_X86Pascal; 224 225 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 226 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 227 228 if (D->hasAttr<AArch64VectorPcsAttr>()) 229 return CC_AArch64VectorCall; 230 231 if (D->hasAttr<IntelOclBiccAttr>()) 232 return CC_IntelOclBicc; 233 234 if (D->hasAttr<MSABIAttr>()) 235 return IsWindows ? CC_C : CC_Win64; 236 237 if (D->hasAttr<SysVABIAttr>()) 238 return IsWindows ? CC_X86_64SysV : CC_C; 239 240 if (D->hasAttr<PreserveMostAttr>()) 241 return CC_PreserveMost; 242 243 if (D->hasAttr<PreserveAllAttr>()) 244 return CC_PreserveAll; 245 246 return CC_C; 247 } 248 249 /// Arrange the argument and result information for a call to an 250 /// unknown C++ non-static member function of the given abstract type. 251 /// (A null RD means we don't have any meaningful "this" argument type, 252 /// so fall back to a generic pointer type). 253 /// The member function must be an ordinary function, i.e. not a 254 /// constructor or destructor. 255 const CGFunctionInfo & 256 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 257 const FunctionProtoType *FTP, 258 const CXXMethodDecl *MD) { 259 SmallVector<CanQualType, 16> argTypes; 260 261 // Add the 'this' pointer. 262 argTypes.push_back(DeriveThisType(RD, MD)); 263 264 return ::arrangeLLVMFunctionInfo( 265 *this, true, argTypes, 266 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 267 } 268 269 /// Set calling convention for CUDA/HIP kernel. 270 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 271 const FunctionDecl *FD) { 272 if (FD->hasAttr<CUDAGlobalAttr>()) { 273 const FunctionType *FT = FTy->getAs<FunctionType>(); 274 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 275 FTy = FT->getCanonicalTypeUnqualified(); 276 } 277 } 278 279 /// Arrange the argument and result information for a declaration or 280 /// definition of the given C++ non-static member function. The 281 /// member function must be an ordinary function, i.e. not a 282 /// constructor or destructor. 283 const CGFunctionInfo & 284 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 285 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 286 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 287 288 CanQualType FT = GetFormalType(MD).getAs<Type>(); 289 setCUDAKernelCallingConvention(FT, CGM, MD); 290 auto prototype = FT.getAs<FunctionProtoType>(); 291 292 if (MD->isInstance()) { 293 // The abstract case is perfectly fine. 294 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 295 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 296 } 297 298 return arrangeFreeFunctionType(prototype); 299 } 300 301 bool CodeGenTypes::inheritingCtorHasParams( 302 const InheritedConstructor &Inherited, CXXCtorType Type) { 303 // Parameters are unnecessary if we're constructing a base class subobject 304 // and the inherited constructor lives in a virtual base. 305 return Type == Ctor_Complete || 306 !Inherited.getShadowDecl()->constructsVirtualBase() || 307 !Target.getCXXABI().hasConstructorVariants(); 308 } 309 310 const CGFunctionInfo & 311 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 312 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 313 314 SmallVector<CanQualType, 16> argTypes; 315 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 316 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 317 318 bool PassParams = true; 319 320 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 321 // A base class inheriting constructor doesn't get forwarded arguments 322 // needed to construct a virtual base (or base class thereof). 323 if (auto Inherited = CD->getInheritedConstructor()) 324 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 325 } 326 327 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 328 329 // Add the formal parameters. 330 if (PassParams) 331 appendParameterTypes(*this, argTypes, paramInfos, FTP); 332 333 CGCXXABI::AddedStructorArgCounts AddedArgs = 334 TheCXXABI.buildStructorSignature(GD, argTypes); 335 if (!paramInfos.empty()) { 336 // Note: prefix implies after the first param. 337 if (AddedArgs.Prefix) 338 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 339 FunctionProtoType::ExtParameterInfo{}); 340 if (AddedArgs.Suffix) 341 paramInfos.append(AddedArgs.Suffix, 342 FunctionProtoType::ExtParameterInfo{}); 343 } 344 345 RequiredArgs required = 346 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 347 : RequiredArgs::All); 348 349 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 350 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 351 ? argTypes.front() 352 : TheCXXABI.hasMostDerivedReturn(GD) 353 ? CGM.getContext().VoidPtrTy 354 : Context.VoidTy; 355 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 356 /*chainCall=*/false, argTypes, extInfo, 357 paramInfos, required); 358 } 359 360 static SmallVector<CanQualType, 16> 361 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 362 SmallVector<CanQualType, 16> argTypes; 363 for (auto &arg : args) 364 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 365 return argTypes; 366 } 367 368 static SmallVector<CanQualType, 16> 369 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 370 SmallVector<CanQualType, 16> argTypes; 371 for (auto &arg : args) 372 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 373 return argTypes; 374 } 375 376 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 377 getExtParameterInfosForCall(const FunctionProtoType *proto, 378 unsigned prefixArgs, unsigned totalArgs) { 379 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 380 if (proto->hasExtParameterInfos()) { 381 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 382 } 383 return result; 384 } 385 386 /// Arrange a call to a C++ method, passing the given arguments. 387 /// 388 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 389 /// parameter. 390 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 391 /// args. 392 /// PassProtoArgs indicates whether `args` has args for the parameters in the 393 /// given CXXConstructorDecl. 394 const CGFunctionInfo & 395 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 396 const CXXConstructorDecl *D, 397 CXXCtorType CtorKind, 398 unsigned ExtraPrefixArgs, 399 unsigned ExtraSuffixArgs, 400 bool PassProtoArgs) { 401 // FIXME: Kill copy. 402 SmallVector<CanQualType, 16> ArgTypes; 403 for (const auto &Arg : args) 404 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 405 406 // +1 for implicit this, which should always be args[0]. 407 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 408 409 CanQual<FunctionProtoType> FPT = GetFormalType(D); 410 RequiredArgs Required = PassProtoArgs 411 ? RequiredArgs::forPrototypePlus( 412 FPT, TotalPrefixArgs + ExtraSuffixArgs) 413 : RequiredArgs::All; 414 415 GlobalDecl GD(D, CtorKind); 416 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 417 ? ArgTypes.front() 418 : TheCXXABI.hasMostDerivedReturn(GD) 419 ? CGM.getContext().VoidPtrTy 420 : Context.VoidTy; 421 422 FunctionType::ExtInfo Info = FPT->getExtInfo(); 423 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 424 // If the prototype args are elided, we should only have ABI-specific args, 425 // which never have param info. 426 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 427 // ABI-specific suffix arguments are treated the same as variadic arguments. 428 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 429 ArgTypes.size()); 430 } 431 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 432 /*chainCall=*/false, ArgTypes, Info, 433 ParamInfos, Required); 434 } 435 436 /// Arrange the argument and result information for the declaration or 437 /// definition of the given function. 438 const CGFunctionInfo & 439 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 440 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 441 if (MD->isInstance()) 442 return arrangeCXXMethodDeclaration(MD); 443 444 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 445 446 assert(isa<FunctionType>(FTy)); 447 setCUDAKernelCallingConvention(FTy, CGM, FD); 448 449 // When declaring a function without a prototype, always use a 450 // non-variadic type. 451 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 452 return arrangeLLVMFunctionInfo( 453 noProto->getReturnType(), /*instanceMethod=*/false, 454 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 455 } 456 457 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 458 } 459 460 /// Arrange the argument and result information for the declaration or 461 /// definition of an Objective-C method. 462 const CGFunctionInfo & 463 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 464 // It happens that this is the same as a call with no optional 465 // arguments, except also using the formal 'self' type. 466 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 467 } 468 469 /// Arrange the argument and result information for the function type 470 /// through which to perform a send to the given Objective-C method, 471 /// using the given receiver type. The receiver type is not always 472 /// the 'self' type of the method or even an Objective-C pointer type. 473 /// This is *not* the right method for actually performing such a 474 /// message send, due to the possibility of optional arguments. 475 const CGFunctionInfo & 476 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 477 QualType receiverType) { 478 SmallVector<CanQualType, 16> argTys; 479 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 480 argTys.push_back(Context.getCanonicalParamType(receiverType)); 481 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 482 // FIXME: Kill copy? 483 for (const auto *I : MD->parameters()) { 484 argTys.push_back(Context.getCanonicalParamType(I->getType())); 485 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 486 I->hasAttr<NoEscapeAttr>()); 487 extParamInfos.push_back(extParamInfo); 488 } 489 490 FunctionType::ExtInfo einfo; 491 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 492 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 493 494 if (getContext().getLangOpts().ObjCAutoRefCount && 495 MD->hasAttr<NSReturnsRetainedAttr>()) 496 einfo = einfo.withProducesResult(true); 497 498 RequiredArgs required = 499 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 500 501 return arrangeLLVMFunctionInfo( 502 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 503 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 504 } 505 506 const CGFunctionInfo & 507 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 508 const CallArgList &args) { 509 auto argTypes = getArgTypesForCall(Context, args); 510 FunctionType::ExtInfo einfo; 511 512 return arrangeLLVMFunctionInfo( 513 GetReturnType(returnType), /*instanceMethod=*/false, 514 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 515 } 516 517 const CGFunctionInfo & 518 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 519 // FIXME: Do we need to handle ObjCMethodDecl? 520 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 521 522 if (isa<CXXConstructorDecl>(GD.getDecl()) || 523 isa<CXXDestructorDecl>(GD.getDecl())) 524 return arrangeCXXStructorDeclaration(GD); 525 526 return arrangeFunctionDeclaration(FD); 527 } 528 529 /// Arrange a thunk that takes 'this' as the first parameter followed by 530 /// varargs. Return a void pointer, regardless of the actual return type. 531 /// The body of the thunk will end in a musttail call to a function of the 532 /// correct type, and the caller will bitcast the function to the correct 533 /// prototype. 534 const CGFunctionInfo & 535 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 536 assert(MD->isVirtual() && "only methods have thunks"); 537 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 538 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 539 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 540 /*chainCall=*/false, ArgTys, 541 FTP->getExtInfo(), {}, RequiredArgs(1)); 542 } 543 544 const CGFunctionInfo & 545 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 546 CXXCtorType CT) { 547 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 548 549 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 550 SmallVector<CanQualType, 2> ArgTys; 551 const CXXRecordDecl *RD = CD->getParent(); 552 ArgTys.push_back(DeriveThisType(RD, CD)); 553 if (CT == Ctor_CopyingClosure) 554 ArgTys.push_back(*FTP->param_type_begin()); 555 if (RD->getNumVBases() > 0) 556 ArgTys.push_back(Context.IntTy); 557 CallingConv CC = Context.getDefaultCallingConvention( 558 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 559 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 560 /*chainCall=*/false, ArgTys, 561 FunctionType::ExtInfo(CC), {}, 562 RequiredArgs::All); 563 } 564 565 /// Arrange a call as unto a free function, except possibly with an 566 /// additional number of formal parameters considered required. 567 static const CGFunctionInfo & 568 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 569 CodeGenModule &CGM, 570 const CallArgList &args, 571 const FunctionType *fnType, 572 unsigned numExtraRequiredArgs, 573 bool chainCall) { 574 assert(args.size() >= numExtraRequiredArgs); 575 576 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 577 578 // In most cases, there are no optional arguments. 579 RequiredArgs required = RequiredArgs::All; 580 581 // If we have a variadic prototype, the required arguments are the 582 // extra prefix plus the arguments in the prototype. 583 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 584 if (proto->isVariadic()) 585 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 586 587 if (proto->hasExtParameterInfos()) 588 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 589 args.size()); 590 591 // If we don't have a prototype at all, but we're supposed to 592 // explicitly use the variadic convention for unprototyped calls, 593 // treat all of the arguments as required but preserve the nominal 594 // possibility of variadics. 595 } else if (CGM.getTargetCodeGenInfo() 596 .isNoProtoCallVariadic(args, 597 cast<FunctionNoProtoType>(fnType))) { 598 required = RequiredArgs(args.size()); 599 } 600 601 // FIXME: Kill copy. 602 SmallVector<CanQualType, 16> argTypes; 603 for (const auto &arg : args) 604 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 605 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 606 /*instanceMethod=*/false, chainCall, 607 argTypes, fnType->getExtInfo(), paramInfos, 608 required); 609 } 610 611 /// Figure out the rules for calling a function with the given formal 612 /// type using the given arguments. The arguments are necessary 613 /// because the function might be unprototyped, in which case it's 614 /// target-dependent in crazy ways. 615 const CGFunctionInfo & 616 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 617 const FunctionType *fnType, 618 bool chainCall) { 619 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 620 chainCall ? 1 : 0, chainCall); 621 } 622 623 /// A block function is essentially a free function with an 624 /// extra implicit argument. 625 const CGFunctionInfo & 626 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 627 const FunctionType *fnType) { 628 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 629 /*chainCall=*/false); 630 } 631 632 const CGFunctionInfo & 633 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 634 const FunctionArgList ¶ms) { 635 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 636 auto argTypes = getArgTypesForDeclaration(Context, params); 637 638 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 639 /*instanceMethod*/ false, /*chainCall*/ false, 640 argTypes, proto->getExtInfo(), paramInfos, 641 RequiredArgs::forPrototypePlus(proto, 1)); 642 } 643 644 const CGFunctionInfo & 645 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 646 const CallArgList &args) { 647 // FIXME: Kill copy. 648 SmallVector<CanQualType, 16> argTypes; 649 for (const auto &Arg : args) 650 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 651 return arrangeLLVMFunctionInfo( 652 GetReturnType(resultType), /*instanceMethod=*/false, 653 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 654 /*paramInfos=*/ {}, RequiredArgs::All); 655 } 656 657 const CGFunctionInfo & 658 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 659 const FunctionArgList &args) { 660 auto argTypes = getArgTypesForDeclaration(Context, args); 661 662 return arrangeLLVMFunctionInfo( 663 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 664 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 665 } 666 667 const CGFunctionInfo & 668 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 669 ArrayRef<CanQualType> argTypes) { 670 return arrangeLLVMFunctionInfo( 671 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 672 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 673 } 674 675 /// Arrange a call to a C++ method, passing the given arguments. 676 /// 677 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 678 /// does not count `this`. 679 const CGFunctionInfo & 680 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 681 const FunctionProtoType *proto, 682 RequiredArgs required, 683 unsigned numPrefixArgs) { 684 assert(numPrefixArgs + 1 <= args.size() && 685 "Emitting a call with less args than the required prefix?"); 686 // Add one to account for `this`. It's a bit awkward here, but we don't count 687 // `this` in similar places elsewhere. 688 auto paramInfos = 689 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 690 691 // FIXME: Kill copy. 692 auto argTypes = getArgTypesForCall(Context, args); 693 694 FunctionType::ExtInfo info = proto->getExtInfo(); 695 return arrangeLLVMFunctionInfo( 696 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 697 /*chainCall=*/false, argTypes, info, paramInfos, required); 698 } 699 700 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 701 return arrangeLLVMFunctionInfo( 702 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 703 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 704 } 705 706 const CGFunctionInfo & 707 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 708 const CallArgList &args) { 709 assert(signature.arg_size() <= args.size()); 710 if (signature.arg_size() == args.size()) 711 return signature; 712 713 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 714 auto sigParamInfos = signature.getExtParameterInfos(); 715 if (!sigParamInfos.empty()) { 716 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 717 paramInfos.resize(args.size()); 718 } 719 720 auto argTypes = getArgTypesForCall(Context, args); 721 722 assert(signature.getRequiredArgs().allowsOptionalArgs()); 723 return arrangeLLVMFunctionInfo(signature.getReturnType(), 724 signature.isInstanceMethod(), 725 signature.isChainCall(), 726 argTypes, 727 signature.getExtInfo(), 728 paramInfos, 729 signature.getRequiredArgs()); 730 } 731 732 namespace clang { 733 namespace CodeGen { 734 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 735 } 736 } 737 738 /// Arrange the argument and result information for an abstract value 739 /// of a given function type. This is the method which all of the 740 /// above functions ultimately defer to. 741 const CGFunctionInfo & 742 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 743 bool instanceMethod, 744 bool chainCall, 745 ArrayRef<CanQualType> argTypes, 746 FunctionType::ExtInfo info, 747 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 748 RequiredArgs required) { 749 assert(llvm::all_of(argTypes, 750 [](CanQualType T) { return T.isCanonicalAsParam(); })); 751 752 // Lookup or create unique function info. 753 llvm::FoldingSetNodeID ID; 754 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 755 required, resultType, argTypes); 756 757 void *insertPos = nullptr; 758 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 759 if (FI) 760 return *FI; 761 762 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 763 764 // Construct the function info. We co-allocate the ArgInfos. 765 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 766 paramInfos, resultType, argTypes, required); 767 FunctionInfos.InsertNode(FI, insertPos); 768 769 bool inserted = FunctionsBeingProcessed.insert(FI).second; 770 (void)inserted; 771 assert(inserted && "Recursively being processed?"); 772 773 // Compute ABI information. 774 if (CC == llvm::CallingConv::SPIR_KERNEL) { 775 // Force target independent argument handling for the host visible 776 // kernel functions. 777 computeSPIRKernelABIInfo(CGM, *FI); 778 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 779 swiftcall::computeABIInfo(CGM, *FI); 780 } else { 781 getABIInfo().computeInfo(*FI); 782 } 783 784 // Loop over all of the computed argument and return value info. If any of 785 // them are direct or extend without a specified coerce type, specify the 786 // default now. 787 ABIArgInfo &retInfo = FI->getReturnInfo(); 788 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 789 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 790 791 for (auto &I : FI->arguments()) 792 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 793 I.info.setCoerceToType(ConvertType(I.type)); 794 795 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 796 assert(erased && "Not in set?"); 797 798 return *FI; 799 } 800 801 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 802 bool instanceMethod, 803 bool chainCall, 804 const FunctionType::ExtInfo &info, 805 ArrayRef<ExtParameterInfo> paramInfos, 806 CanQualType resultType, 807 ArrayRef<CanQualType> argTypes, 808 RequiredArgs required) { 809 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 810 assert(!required.allowsOptionalArgs() || 811 required.getNumRequiredArgs() <= argTypes.size()); 812 813 void *buffer = 814 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 815 argTypes.size() + 1, paramInfos.size())); 816 817 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 818 FI->CallingConvention = llvmCC; 819 FI->EffectiveCallingConvention = llvmCC; 820 FI->ASTCallingConvention = info.getCC(); 821 FI->InstanceMethod = instanceMethod; 822 FI->ChainCall = chainCall; 823 FI->CmseNSCall = info.getCmseNSCall(); 824 FI->NoReturn = info.getNoReturn(); 825 FI->ReturnsRetained = info.getProducesResult(); 826 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 827 FI->NoCfCheck = info.getNoCfCheck(); 828 FI->Required = required; 829 FI->HasRegParm = info.getHasRegParm(); 830 FI->RegParm = info.getRegParm(); 831 FI->ArgStruct = nullptr; 832 FI->ArgStructAlign = 0; 833 FI->NumArgs = argTypes.size(); 834 FI->HasExtParameterInfos = !paramInfos.empty(); 835 FI->getArgsBuffer()[0].type = resultType; 836 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 837 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 838 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 839 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 840 return FI; 841 } 842 843 /***/ 844 845 namespace { 846 // ABIArgInfo::Expand implementation. 847 848 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 849 struct TypeExpansion { 850 enum TypeExpansionKind { 851 // Elements of constant arrays are expanded recursively. 852 TEK_ConstantArray, 853 // Record fields are expanded recursively (but if record is a union, only 854 // the field with the largest size is expanded). 855 TEK_Record, 856 // For complex types, real and imaginary parts are expanded recursively. 857 TEK_Complex, 858 // All other types are not expandable. 859 TEK_None 860 }; 861 862 const TypeExpansionKind Kind; 863 864 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 865 virtual ~TypeExpansion() {} 866 }; 867 868 struct ConstantArrayExpansion : TypeExpansion { 869 QualType EltTy; 870 uint64_t NumElts; 871 872 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 873 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 874 static bool classof(const TypeExpansion *TE) { 875 return TE->Kind == TEK_ConstantArray; 876 } 877 }; 878 879 struct RecordExpansion : TypeExpansion { 880 SmallVector<const CXXBaseSpecifier *, 1> Bases; 881 882 SmallVector<const FieldDecl *, 1> Fields; 883 884 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 885 SmallVector<const FieldDecl *, 1> &&Fields) 886 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 887 Fields(std::move(Fields)) {} 888 static bool classof(const TypeExpansion *TE) { 889 return TE->Kind == TEK_Record; 890 } 891 }; 892 893 struct ComplexExpansion : TypeExpansion { 894 QualType EltTy; 895 896 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 897 static bool classof(const TypeExpansion *TE) { 898 return TE->Kind == TEK_Complex; 899 } 900 }; 901 902 struct NoExpansion : TypeExpansion { 903 NoExpansion() : TypeExpansion(TEK_None) {} 904 static bool classof(const TypeExpansion *TE) { 905 return TE->Kind == TEK_None; 906 } 907 }; 908 } // namespace 909 910 static std::unique_ptr<TypeExpansion> 911 getTypeExpansion(QualType Ty, const ASTContext &Context) { 912 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 913 return std::make_unique<ConstantArrayExpansion>( 914 AT->getElementType(), AT->getSize().getZExtValue()); 915 } 916 if (const RecordType *RT = Ty->getAs<RecordType>()) { 917 SmallVector<const CXXBaseSpecifier *, 1> Bases; 918 SmallVector<const FieldDecl *, 1> Fields; 919 const RecordDecl *RD = RT->getDecl(); 920 assert(!RD->hasFlexibleArrayMember() && 921 "Cannot expand structure with flexible array."); 922 if (RD->isUnion()) { 923 // Unions can be here only in degenerative cases - all the fields are same 924 // after flattening. Thus we have to use the "largest" field. 925 const FieldDecl *LargestFD = nullptr; 926 CharUnits UnionSize = CharUnits::Zero(); 927 928 for (const auto *FD : RD->fields()) { 929 if (FD->isZeroLengthBitField(Context)) 930 continue; 931 assert(!FD->isBitField() && 932 "Cannot expand structure with bit-field members."); 933 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 934 if (UnionSize < FieldSize) { 935 UnionSize = FieldSize; 936 LargestFD = FD; 937 } 938 } 939 if (LargestFD) 940 Fields.push_back(LargestFD); 941 } else { 942 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 943 assert(!CXXRD->isDynamicClass() && 944 "cannot expand vtable pointers in dynamic classes"); 945 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 946 Bases.push_back(&BS); 947 } 948 949 for (const auto *FD : RD->fields()) { 950 if (FD->isZeroLengthBitField(Context)) 951 continue; 952 assert(!FD->isBitField() && 953 "Cannot expand structure with bit-field members."); 954 Fields.push_back(FD); 955 } 956 } 957 return std::make_unique<RecordExpansion>(std::move(Bases), 958 std::move(Fields)); 959 } 960 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 961 return std::make_unique<ComplexExpansion>(CT->getElementType()); 962 } 963 return std::make_unique<NoExpansion>(); 964 } 965 966 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 967 auto Exp = getTypeExpansion(Ty, Context); 968 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 969 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 970 } 971 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 972 int Res = 0; 973 for (auto BS : RExp->Bases) 974 Res += getExpansionSize(BS->getType(), Context); 975 for (auto FD : RExp->Fields) 976 Res += getExpansionSize(FD->getType(), Context); 977 return Res; 978 } 979 if (isa<ComplexExpansion>(Exp.get())) 980 return 2; 981 assert(isa<NoExpansion>(Exp.get())); 982 return 1; 983 } 984 985 void 986 CodeGenTypes::getExpandedTypes(QualType Ty, 987 SmallVectorImpl<llvm::Type *>::iterator &TI) { 988 auto Exp = getTypeExpansion(Ty, Context); 989 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 990 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 991 getExpandedTypes(CAExp->EltTy, TI); 992 } 993 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 994 for (auto BS : RExp->Bases) 995 getExpandedTypes(BS->getType(), TI); 996 for (auto FD : RExp->Fields) 997 getExpandedTypes(FD->getType(), TI); 998 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 999 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1000 *TI++ = EltTy; 1001 *TI++ = EltTy; 1002 } else { 1003 assert(isa<NoExpansion>(Exp.get())); 1004 *TI++ = ConvertType(Ty); 1005 } 1006 } 1007 1008 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1009 ConstantArrayExpansion *CAE, 1010 Address BaseAddr, 1011 llvm::function_ref<void(Address)> Fn) { 1012 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1013 CharUnits EltAlign = 1014 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1015 1016 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1017 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( 1018 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); 1019 Fn(Address(EltAddr, EltAlign)); 1020 } 1021 } 1022 1023 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1024 llvm::Function::arg_iterator &AI) { 1025 assert(LV.isSimple() && 1026 "Unexpected non-simple lvalue during struct expansion."); 1027 1028 auto Exp = getTypeExpansion(Ty, getContext()); 1029 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1030 forConstantArrayExpansion( 1031 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1032 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1033 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1034 }); 1035 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1036 Address This = LV.getAddress(*this); 1037 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1038 // Perform a single step derived-to-base conversion. 1039 Address Base = 1040 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1041 /*NullCheckValue=*/false, SourceLocation()); 1042 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1043 1044 // Recurse onto bases. 1045 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1046 } 1047 for (auto FD : RExp->Fields) { 1048 // FIXME: What are the right qualifiers here? 1049 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1050 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1051 } 1052 } else if (isa<ComplexExpansion>(Exp.get())) { 1053 auto realValue = &*AI++; 1054 auto imagValue = &*AI++; 1055 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1056 } else { 1057 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1058 // primitive store. 1059 assert(isa<NoExpansion>(Exp.get())); 1060 llvm::Value *Arg = &*AI++; 1061 if (LV.isBitField()) { 1062 EmitStoreThroughLValue(RValue::get(Arg), LV); 1063 } else { 1064 // TODO: currently there are some places are inconsistent in what LLVM 1065 // pointer type they use (see D118744). Once clang uses opaque pointers 1066 // all LLVM pointer types will be the same and we can remove this check. 1067 if (Arg->getType()->isPointerTy()) { 1068 Address Addr = LV.getAddress(*this); 1069 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1070 } 1071 EmitStoreOfScalar(Arg, LV); 1072 } 1073 } 1074 } 1075 1076 void CodeGenFunction::ExpandTypeToArgs( 1077 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1078 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1079 auto Exp = getTypeExpansion(Ty, getContext()); 1080 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1081 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1082 : Arg.getKnownRValue().getAggregateAddress(); 1083 forConstantArrayExpansion( 1084 *this, CAExp, Addr, [&](Address EltAddr) { 1085 CallArg EltArg = CallArg( 1086 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1087 CAExp->EltTy); 1088 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1089 IRCallArgPos); 1090 }); 1091 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1092 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1093 : Arg.getKnownRValue().getAggregateAddress(); 1094 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1095 // Perform a single step derived-to-base conversion. 1096 Address Base = 1097 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1098 /*NullCheckValue=*/false, SourceLocation()); 1099 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1100 1101 // Recurse onto bases. 1102 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1103 IRCallArgPos); 1104 } 1105 1106 LValue LV = MakeAddrLValue(This, Ty); 1107 for (auto FD : RExp->Fields) { 1108 CallArg FldArg = 1109 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1110 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1111 IRCallArgPos); 1112 } 1113 } else if (isa<ComplexExpansion>(Exp.get())) { 1114 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1115 IRCallArgs[IRCallArgPos++] = CV.first; 1116 IRCallArgs[IRCallArgPos++] = CV.second; 1117 } else { 1118 assert(isa<NoExpansion>(Exp.get())); 1119 auto RV = Arg.getKnownRValue(); 1120 assert(RV.isScalar() && 1121 "Unexpected non-scalar rvalue during struct expansion."); 1122 1123 // Insert a bitcast as needed. 1124 llvm::Value *V = RV.getScalarVal(); 1125 if (IRCallArgPos < IRFuncTy->getNumParams() && 1126 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1127 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1128 1129 IRCallArgs[IRCallArgPos++] = V; 1130 } 1131 } 1132 1133 /// Create a temporary allocation for the purposes of coercion. 1134 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1135 CharUnits MinAlign, 1136 const Twine &Name = "tmp") { 1137 // Don't use an alignment that's worse than what LLVM would prefer. 1138 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1139 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1140 1141 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1142 } 1143 1144 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1145 /// accessing some number of bytes out of it, try to gep into the struct to get 1146 /// at its inner goodness. Dive as deep as possible without entering an element 1147 /// with an in-memory size smaller than DstSize. 1148 static Address 1149 EnterStructPointerForCoercedAccess(Address SrcPtr, 1150 llvm::StructType *SrcSTy, 1151 uint64_t DstSize, CodeGenFunction &CGF) { 1152 // We can't dive into a zero-element struct. 1153 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1154 1155 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1156 1157 // If the first elt is at least as large as what we're looking for, or if the 1158 // first element is the same size as the whole struct, we can enter it. The 1159 // comparison must be made on the store size and not the alloca size. Using 1160 // the alloca size may overstate the size of the load. 1161 uint64_t FirstEltSize = 1162 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1163 if (FirstEltSize < DstSize && 1164 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1165 return SrcPtr; 1166 1167 // GEP into the first element. 1168 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1169 1170 // If the first element is a struct, recurse. 1171 llvm::Type *SrcTy = SrcPtr.getElementType(); 1172 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1173 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1174 1175 return SrcPtr; 1176 } 1177 1178 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1179 /// are either integers or pointers. This does a truncation of the value if it 1180 /// is too large or a zero extension if it is too small. 1181 /// 1182 /// This behaves as if the value were coerced through memory, so on big-endian 1183 /// targets the high bits are preserved in a truncation, while little-endian 1184 /// targets preserve the low bits. 1185 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1186 llvm::Type *Ty, 1187 CodeGenFunction &CGF) { 1188 if (Val->getType() == Ty) 1189 return Val; 1190 1191 if (isa<llvm::PointerType>(Val->getType())) { 1192 // If this is Pointer->Pointer avoid conversion to and from int. 1193 if (isa<llvm::PointerType>(Ty)) 1194 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1195 1196 // Convert the pointer to an integer so we can play with its width. 1197 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1198 } 1199 1200 llvm::Type *DestIntTy = Ty; 1201 if (isa<llvm::PointerType>(DestIntTy)) 1202 DestIntTy = CGF.IntPtrTy; 1203 1204 if (Val->getType() != DestIntTy) { 1205 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1206 if (DL.isBigEndian()) { 1207 // Preserve the high bits on big-endian targets. 1208 // That is what memory coercion does. 1209 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1210 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1211 1212 if (SrcSize > DstSize) { 1213 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1214 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1215 } else { 1216 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1217 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1218 } 1219 } else { 1220 // Little-endian targets preserve the low bits. No shifts required. 1221 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1222 } 1223 } 1224 1225 if (isa<llvm::PointerType>(Ty)) 1226 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1227 return Val; 1228 } 1229 1230 1231 1232 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1233 /// a pointer to an object of type \arg Ty, known to be aligned to 1234 /// \arg SrcAlign bytes. 1235 /// 1236 /// This safely handles the case when the src type is smaller than the 1237 /// destination type; in this situation the values of bits which not 1238 /// present in the src are undefined. 1239 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1240 CodeGenFunction &CGF) { 1241 llvm::Type *SrcTy = Src.getElementType(); 1242 1243 // If SrcTy and Ty are the same, just do a load. 1244 if (SrcTy == Ty) 1245 return CGF.Builder.CreateLoad(Src); 1246 1247 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1248 1249 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1250 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1251 DstSize.getFixedSize(), CGF); 1252 SrcTy = Src.getElementType(); 1253 } 1254 1255 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1256 1257 // If the source and destination are integer or pointer types, just do an 1258 // extension or truncation to the desired type. 1259 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1260 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1261 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1262 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1263 } 1264 1265 // If load is legal, just bitcast the src pointer. 1266 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1267 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1268 // Generally SrcSize is never greater than DstSize, since this means we are 1269 // losing bits. However, this can happen in cases where the structure has 1270 // additional padding, for example due to a user specified alignment. 1271 // 1272 // FIXME: Assert that we aren't truncating non-padding bits when have access 1273 // to that information. 1274 Src = CGF.Builder.CreateElementBitCast(Src, Ty); 1275 return CGF.Builder.CreateLoad(Src); 1276 } 1277 1278 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1279 // the types match, use the llvm.experimental.vector.insert intrinsic to 1280 // perform the conversion. 1281 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1282 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1283 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 1284 // vector, use a vector insert and bitcast the result. 1285 bool NeedsBitcast = false; 1286 auto PredType = 1287 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16); 1288 llvm::Type *OrigType = Ty; 1289 if (ScalableDst == PredType && 1290 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) { 1291 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2); 1292 NeedsBitcast = true; 1293 } 1294 if (ScalableDst->getElementType() == FixedSrc->getElementType()) { 1295 auto *Load = CGF.Builder.CreateLoad(Src); 1296 auto *UndefVec = llvm::UndefValue::get(ScalableDst); 1297 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1298 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1299 ScalableDst, UndefVec, Load, Zero, "castScalableSve"); 1300 if (NeedsBitcast) 1301 Result = CGF.Builder.CreateBitCast(Result, OrigType); 1302 return Result; 1303 } 1304 } 1305 } 1306 1307 // Otherwise do coercion through memory. This is stupid, but simple. 1308 Address Tmp = 1309 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1310 CGF.Builder.CreateMemCpy( 1311 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1312 Src.getAlignment().getAsAlign(), 1313 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1314 return CGF.Builder.CreateLoad(Tmp); 1315 } 1316 1317 // Function to store a first-class aggregate into memory. We prefer to 1318 // store the elements rather than the aggregate to be more friendly to 1319 // fast-isel. 1320 // FIXME: Do we need to recurse here? 1321 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1322 bool DestIsVolatile) { 1323 // Prefer scalar stores to first-class aggregate stores. 1324 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1325 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1326 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1327 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1328 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1329 } 1330 } else { 1331 Builder.CreateStore(Val, Dest, DestIsVolatile); 1332 } 1333 } 1334 1335 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1336 /// where the source and destination may have different types. The 1337 /// destination is known to be aligned to \arg DstAlign bytes. 1338 /// 1339 /// This safely handles the case when the src type is larger than the 1340 /// destination type; the upper bits of the src will be lost. 1341 static void CreateCoercedStore(llvm::Value *Src, 1342 Address Dst, 1343 bool DstIsVolatile, 1344 CodeGenFunction &CGF) { 1345 llvm::Type *SrcTy = Src->getType(); 1346 llvm::Type *DstTy = Dst.getElementType(); 1347 if (SrcTy == DstTy) { 1348 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1349 return; 1350 } 1351 1352 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1353 1354 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1355 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1356 SrcSize.getFixedSize(), CGF); 1357 DstTy = Dst.getElementType(); 1358 } 1359 1360 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1361 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1362 if (SrcPtrTy && DstPtrTy && 1363 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1364 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1365 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1366 return; 1367 } 1368 1369 // If the source and destination are integer or pointer types, just do an 1370 // extension or truncation to the desired type. 1371 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1372 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1373 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1374 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1375 return; 1376 } 1377 1378 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1379 1380 // If store is legal, just bitcast the src pointer. 1381 if (isa<llvm::ScalableVectorType>(SrcTy) || 1382 isa<llvm::ScalableVectorType>(DstTy) || 1383 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1384 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1385 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1386 } else { 1387 // Otherwise do coercion through memory. This is stupid, but 1388 // simple. 1389 1390 // Generally SrcSize is never greater than DstSize, since this means we are 1391 // losing bits. However, this can happen in cases where the structure has 1392 // additional padding, for example due to a user specified alignment. 1393 // 1394 // FIXME: Assert that we aren't truncating non-padding bits when have access 1395 // to that information. 1396 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1397 CGF.Builder.CreateStore(Src, Tmp); 1398 CGF.Builder.CreateMemCpy( 1399 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1400 Tmp.getAlignment().getAsAlign(), 1401 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1402 } 1403 } 1404 1405 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1406 const ABIArgInfo &info) { 1407 if (unsigned offset = info.getDirectOffset()) { 1408 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1409 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1410 CharUnits::fromQuantity(offset)); 1411 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1412 } 1413 return addr; 1414 } 1415 1416 namespace { 1417 1418 /// Encapsulates information about the way function arguments from 1419 /// CGFunctionInfo should be passed to actual LLVM IR function. 1420 class ClangToLLVMArgMapping { 1421 static const unsigned InvalidIndex = ~0U; 1422 unsigned InallocaArgNo; 1423 unsigned SRetArgNo; 1424 unsigned TotalIRArgs; 1425 1426 /// Arguments of LLVM IR function corresponding to single Clang argument. 1427 struct IRArgs { 1428 unsigned PaddingArgIndex; 1429 // Argument is expanded to IR arguments at positions 1430 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1431 unsigned FirstArgIndex; 1432 unsigned NumberOfArgs; 1433 1434 IRArgs() 1435 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1436 NumberOfArgs(0) {} 1437 }; 1438 1439 SmallVector<IRArgs, 8> ArgInfo; 1440 1441 public: 1442 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1443 bool OnlyRequiredArgs = false) 1444 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1445 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1446 construct(Context, FI, OnlyRequiredArgs); 1447 } 1448 1449 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1450 unsigned getInallocaArgNo() const { 1451 assert(hasInallocaArg()); 1452 return InallocaArgNo; 1453 } 1454 1455 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1456 unsigned getSRetArgNo() const { 1457 assert(hasSRetArg()); 1458 return SRetArgNo; 1459 } 1460 1461 unsigned totalIRArgs() const { return TotalIRArgs; } 1462 1463 bool hasPaddingArg(unsigned ArgNo) const { 1464 assert(ArgNo < ArgInfo.size()); 1465 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1466 } 1467 unsigned getPaddingArgNo(unsigned ArgNo) const { 1468 assert(hasPaddingArg(ArgNo)); 1469 return ArgInfo[ArgNo].PaddingArgIndex; 1470 } 1471 1472 /// Returns index of first IR argument corresponding to ArgNo, and their 1473 /// quantity. 1474 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1475 assert(ArgNo < ArgInfo.size()); 1476 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1477 ArgInfo[ArgNo].NumberOfArgs); 1478 } 1479 1480 private: 1481 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1482 bool OnlyRequiredArgs); 1483 }; 1484 1485 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1486 const CGFunctionInfo &FI, 1487 bool OnlyRequiredArgs) { 1488 unsigned IRArgNo = 0; 1489 bool SwapThisWithSRet = false; 1490 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1491 1492 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1493 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1494 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1495 } 1496 1497 unsigned ArgNo = 0; 1498 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1499 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1500 ++I, ++ArgNo) { 1501 assert(I != FI.arg_end()); 1502 QualType ArgType = I->type; 1503 const ABIArgInfo &AI = I->info; 1504 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1505 auto &IRArgs = ArgInfo[ArgNo]; 1506 1507 if (AI.getPaddingType()) 1508 IRArgs.PaddingArgIndex = IRArgNo++; 1509 1510 switch (AI.getKind()) { 1511 case ABIArgInfo::Extend: 1512 case ABIArgInfo::Direct: { 1513 // FIXME: handle sseregparm someday... 1514 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1515 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1516 IRArgs.NumberOfArgs = STy->getNumElements(); 1517 } else { 1518 IRArgs.NumberOfArgs = 1; 1519 } 1520 break; 1521 } 1522 case ABIArgInfo::Indirect: 1523 case ABIArgInfo::IndirectAliased: 1524 IRArgs.NumberOfArgs = 1; 1525 break; 1526 case ABIArgInfo::Ignore: 1527 case ABIArgInfo::InAlloca: 1528 // ignore and inalloca doesn't have matching LLVM parameters. 1529 IRArgs.NumberOfArgs = 0; 1530 break; 1531 case ABIArgInfo::CoerceAndExpand: 1532 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1533 break; 1534 case ABIArgInfo::Expand: 1535 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1536 break; 1537 } 1538 1539 if (IRArgs.NumberOfArgs > 0) { 1540 IRArgs.FirstArgIndex = IRArgNo; 1541 IRArgNo += IRArgs.NumberOfArgs; 1542 } 1543 1544 // Skip over the sret parameter when it comes second. We already handled it 1545 // above. 1546 if (IRArgNo == 1 && SwapThisWithSRet) 1547 IRArgNo++; 1548 } 1549 assert(ArgNo == ArgInfo.size()); 1550 1551 if (FI.usesInAlloca()) 1552 InallocaArgNo = IRArgNo++; 1553 1554 TotalIRArgs = IRArgNo; 1555 } 1556 } // namespace 1557 1558 /***/ 1559 1560 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1561 const auto &RI = FI.getReturnInfo(); 1562 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1563 } 1564 1565 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1566 return ReturnTypeUsesSRet(FI) && 1567 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1568 } 1569 1570 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1571 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1572 switch (BT->getKind()) { 1573 default: 1574 return false; 1575 case BuiltinType::Float: 1576 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1577 case BuiltinType::Double: 1578 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1579 case BuiltinType::LongDouble: 1580 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1581 } 1582 } 1583 1584 return false; 1585 } 1586 1587 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1588 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1589 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1590 if (BT->getKind() == BuiltinType::LongDouble) 1591 return getTarget().useObjCFP2RetForComplexLongDouble(); 1592 } 1593 } 1594 1595 return false; 1596 } 1597 1598 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1599 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1600 return GetFunctionType(FI); 1601 } 1602 1603 llvm::FunctionType * 1604 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1605 1606 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1607 (void)Inserted; 1608 assert(Inserted && "Recursively being processed?"); 1609 1610 llvm::Type *resultType = nullptr; 1611 const ABIArgInfo &retAI = FI.getReturnInfo(); 1612 switch (retAI.getKind()) { 1613 case ABIArgInfo::Expand: 1614 case ABIArgInfo::IndirectAliased: 1615 llvm_unreachable("Invalid ABI kind for return argument"); 1616 1617 case ABIArgInfo::Extend: 1618 case ABIArgInfo::Direct: 1619 resultType = retAI.getCoerceToType(); 1620 break; 1621 1622 case ABIArgInfo::InAlloca: 1623 if (retAI.getInAllocaSRet()) { 1624 // sret things on win32 aren't void, they return the sret pointer. 1625 QualType ret = FI.getReturnType(); 1626 llvm::Type *ty = ConvertType(ret); 1627 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1628 resultType = llvm::PointerType::get(ty, addressSpace); 1629 } else { 1630 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1631 } 1632 break; 1633 1634 case ABIArgInfo::Indirect: 1635 case ABIArgInfo::Ignore: 1636 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1637 break; 1638 1639 case ABIArgInfo::CoerceAndExpand: 1640 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1641 break; 1642 } 1643 1644 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1645 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1646 1647 // Add type for sret argument. 1648 if (IRFunctionArgs.hasSRetArg()) { 1649 QualType Ret = FI.getReturnType(); 1650 llvm::Type *Ty = ConvertType(Ret); 1651 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1652 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1653 llvm::PointerType::get(Ty, AddressSpace); 1654 } 1655 1656 // Add type for inalloca argument. 1657 if (IRFunctionArgs.hasInallocaArg()) { 1658 auto ArgStruct = FI.getArgStruct(); 1659 assert(ArgStruct); 1660 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1661 } 1662 1663 // Add in all of the required arguments. 1664 unsigned ArgNo = 0; 1665 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1666 ie = it + FI.getNumRequiredArgs(); 1667 for (; it != ie; ++it, ++ArgNo) { 1668 const ABIArgInfo &ArgInfo = it->info; 1669 1670 // Insert a padding type to ensure proper alignment. 1671 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1672 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1673 ArgInfo.getPaddingType(); 1674 1675 unsigned FirstIRArg, NumIRArgs; 1676 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1677 1678 switch (ArgInfo.getKind()) { 1679 case ABIArgInfo::Ignore: 1680 case ABIArgInfo::InAlloca: 1681 assert(NumIRArgs == 0); 1682 break; 1683 1684 case ABIArgInfo::Indirect: { 1685 assert(NumIRArgs == 1); 1686 // indirect arguments are always on the stack, which is alloca addr space. 1687 llvm::Type *LTy = ConvertTypeForMem(it->type); 1688 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1689 CGM.getDataLayout().getAllocaAddrSpace()); 1690 break; 1691 } 1692 case ABIArgInfo::IndirectAliased: { 1693 assert(NumIRArgs == 1); 1694 llvm::Type *LTy = ConvertTypeForMem(it->type); 1695 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1696 break; 1697 } 1698 case ABIArgInfo::Extend: 1699 case ABIArgInfo::Direct: { 1700 // Fast-isel and the optimizer generally like scalar values better than 1701 // FCAs, so we flatten them if this is safe to do for this argument. 1702 llvm::Type *argType = ArgInfo.getCoerceToType(); 1703 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1704 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1705 assert(NumIRArgs == st->getNumElements()); 1706 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1707 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1708 } else { 1709 assert(NumIRArgs == 1); 1710 ArgTypes[FirstIRArg] = argType; 1711 } 1712 break; 1713 } 1714 1715 case ABIArgInfo::CoerceAndExpand: { 1716 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1717 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1718 *ArgTypesIter++ = EltTy; 1719 } 1720 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1721 break; 1722 } 1723 1724 case ABIArgInfo::Expand: 1725 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1726 getExpandedTypes(it->type, ArgTypesIter); 1727 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1728 break; 1729 } 1730 } 1731 1732 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1733 assert(Erased && "Not in set?"); 1734 1735 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1736 } 1737 1738 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1739 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1740 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1741 1742 if (!isFuncTypeConvertible(FPT)) 1743 return llvm::StructType::get(getLLVMContext()); 1744 1745 return GetFunctionType(GD); 1746 } 1747 1748 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1749 llvm::AttrBuilder &FuncAttrs, 1750 const FunctionProtoType *FPT) { 1751 if (!FPT) 1752 return; 1753 1754 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1755 FPT->isNothrow()) 1756 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1757 } 1758 1759 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs, 1760 const Decl *Callee) { 1761 if (!Callee) 1762 return; 1763 1764 SmallVector<StringRef, 4> Attrs; 1765 1766 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>()) 1767 AA->getAssumption().split(Attrs, ","); 1768 1769 if (!Attrs.empty()) 1770 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1771 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1772 } 1773 1774 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1775 QualType ReturnType) { 1776 // We can't just discard the return value for a record type with a 1777 // complex destructor or a non-trivially copyable type. 1778 if (const RecordType *RT = 1779 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1780 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1781 return ClassDecl->hasTrivialDestructor(); 1782 } 1783 return ReturnType.isTriviallyCopyableType(Context); 1784 } 1785 1786 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1787 bool HasOptnone, 1788 bool AttrOnCallSite, 1789 llvm::AttrBuilder &FuncAttrs) { 1790 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1791 if (!HasOptnone) { 1792 if (CodeGenOpts.OptimizeSize) 1793 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1794 if (CodeGenOpts.OptimizeSize == 2) 1795 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1796 } 1797 1798 if (CodeGenOpts.DisableRedZone) 1799 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1800 if (CodeGenOpts.IndirectTlsSegRefs) 1801 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1802 if (CodeGenOpts.NoImplicitFloat) 1803 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1804 1805 if (AttrOnCallSite) { 1806 // Attributes that should go on the call site only. 1807 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1808 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1809 if (!CodeGenOpts.TrapFuncName.empty()) 1810 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1811 } else { 1812 StringRef FpKind; 1813 switch (CodeGenOpts.getFramePointer()) { 1814 case CodeGenOptions::FramePointerKind::None: 1815 FpKind = "none"; 1816 break; 1817 case CodeGenOptions::FramePointerKind::NonLeaf: 1818 FpKind = "non-leaf"; 1819 break; 1820 case CodeGenOptions::FramePointerKind::All: 1821 FpKind = "all"; 1822 break; 1823 } 1824 FuncAttrs.addAttribute("frame-pointer", FpKind); 1825 1826 if (CodeGenOpts.LessPreciseFPMAD) 1827 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1828 1829 if (CodeGenOpts.NullPointerIsValid) 1830 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1831 1832 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1833 FuncAttrs.addAttribute("denormal-fp-math", 1834 CodeGenOpts.FPDenormalMode.str()); 1835 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1836 FuncAttrs.addAttribute( 1837 "denormal-fp-math-f32", 1838 CodeGenOpts.FP32DenormalMode.str()); 1839 } 1840 1841 if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore) 1842 FuncAttrs.addAttribute("no-trapping-math", "true"); 1843 1844 // TODO: Are these all needed? 1845 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1846 if (LangOpts.NoHonorInfs) 1847 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1848 if (LangOpts.NoHonorNaNs) 1849 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1850 if (LangOpts.ApproxFunc) 1851 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1852 if (LangOpts.UnsafeFPMath) 1853 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1854 if (CodeGenOpts.SoftFloat) 1855 FuncAttrs.addAttribute("use-soft-float", "true"); 1856 FuncAttrs.addAttribute("stack-protector-buffer-size", 1857 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1858 if (LangOpts.NoSignedZero) 1859 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1860 1861 // TODO: Reciprocal estimate codegen options should apply to instructions? 1862 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1863 if (!Recips.empty()) 1864 FuncAttrs.addAttribute("reciprocal-estimates", 1865 llvm::join(Recips, ",")); 1866 1867 if (!CodeGenOpts.PreferVectorWidth.empty() && 1868 CodeGenOpts.PreferVectorWidth != "none") 1869 FuncAttrs.addAttribute("prefer-vector-width", 1870 CodeGenOpts.PreferVectorWidth); 1871 1872 if (CodeGenOpts.StackRealignment) 1873 FuncAttrs.addAttribute("stackrealign"); 1874 if (CodeGenOpts.Backchain) 1875 FuncAttrs.addAttribute("backchain"); 1876 if (CodeGenOpts.EnableSegmentedStacks) 1877 FuncAttrs.addAttribute("split-stack"); 1878 1879 if (CodeGenOpts.SpeculativeLoadHardening) 1880 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1881 1882 // Add zero-call-used-regs attribute. 1883 switch (CodeGenOpts.getZeroCallUsedRegs()) { 1884 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 1885 FuncAttrs.removeAttribute("zero-call-used-regs"); 1886 break; 1887 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 1888 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 1889 break; 1890 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 1891 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 1892 break; 1893 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 1894 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 1895 break; 1896 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 1897 FuncAttrs.addAttribute("zero-call-used-regs", "used"); 1898 break; 1899 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 1900 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 1901 break; 1902 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 1903 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 1904 break; 1905 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 1906 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 1907 break; 1908 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 1909 FuncAttrs.addAttribute("zero-call-used-regs", "all"); 1910 break; 1911 } 1912 } 1913 1914 if (getLangOpts().assumeFunctionsAreConvergent()) { 1915 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1916 // convergent (meaning, they may call an intrinsically convergent op, such 1917 // as __syncthreads() / barrier(), and so can't have certain optimizations 1918 // applied around them). LLVM will remove this attribute where it safely 1919 // can. 1920 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1921 } 1922 1923 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1924 // Exceptions aren't supported in CUDA device code. 1925 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1926 } 1927 1928 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1929 StringRef Var, Value; 1930 std::tie(Var, Value) = Attr.split('='); 1931 FuncAttrs.addAttribute(Var, Value); 1932 } 1933 } 1934 1935 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1936 llvm::AttrBuilder FuncAttrs(F.getContext()); 1937 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1938 /* AttrOnCallSite = */ false, FuncAttrs); 1939 // TODO: call GetCPUAndFeaturesAttributes? 1940 F.addFnAttrs(FuncAttrs); 1941 } 1942 1943 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1944 llvm::AttrBuilder &attrs) { 1945 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1946 /*for call*/ false, attrs); 1947 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1948 } 1949 1950 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1951 const LangOptions &LangOpts, 1952 const NoBuiltinAttr *NBA = nullptr) { 1953 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1954 SmallString<32> AttributeName; 1955 AttributeName += "no-builtin-"; 1956 AttributeName += BuiltinName; 1957 FuncAttrs.addAttribute(AttributeName); 1958 }; 1959 1960 // First, handle the language options passed through -fno-builtin. 1961 if (LangOpts.NoBuiltin) { 1962 // -fno-builtin disables them all. 1963 FuncAttrs.addAttribute("no-builtins"); 1964 return; 1965 } 1966 1967 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1968 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1969 1970 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1971 // the source. 1972 if (!NBA) 1973 return; 1974 1975 // If there is a wildcard in the builtin names specified through the 1976 // attribute, disable them all. 1977 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1978 FuncAttrs.addAttribute("no-builtins"); 1979 return; 1980 } 1981 1982 // And last, add the rest of the builtin names. 1983 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1984 } 1985 1986 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 1987 const llvm::DataLayout &DL, const ABIArgInfo &AI, 1988 bool CheckCoerce = true) { 1989 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 1990 if (AI.getKind() == ABIArgInfo::Indirect) 1991 return true; 1992 if (AI.getKind() == ABIArgInfo::Extend) 1993 return true; 1994 if (!DL.typeSizeEqualsStoreSize(Ty)) 1995 // TODO: This will result in a modest amount of values not marked noundef 1996 // when they could be. We care about values that *invisibly* contain undef 1997 // bits from the perspective of LLVM IR. 1998 return false; 1999 if (CheckCoerce && AI.canHaveCoerceToType()) { 2000 llvm::Type *CoerceTy = AI.getCoerceToType(); 2001 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2002 DL.getTypeSizeInBits(Ty))) 2003 // If we're coercing to a type with a greater size than the canonical one, 2004 // we're introducing new undef bits. 2005 // Coercing to a type of smaller or equal size is ok, as we know that 2006 // there's no internal padding (typeSizeEqualsStoreSize). 2007 return false; 2008 } 2009 if (QTy->isBitIntType()) 2010 return true; 2011 if (QTy->isReferenceType()) 2012 return true; 2013 if (QTy->isNullPtrType()) 2014 return false; 2015 if (QTy->isMemberPointerType()) 2016 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2017 // now, never mark them. 2018 return false; 2019 if (QTy->isScalarType()) { 2020 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2021 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2022 return true; 2023 } 2024 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2025 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2026 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2027 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2028 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2029 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2030 2031 // TODO: Some structs may be `noundef`, in specific situations. 2032 return false; 2033 } 2034 2035 /// Construct the IR attribute list of a function or call. 2036 /// 2037 /// When adding an attribute, please consider where it should be handled: 2038 /// 2039 /// - getDefaultFunctionAttributes is for attributes that are essentially 2040 /// part of the global target configuration (but perhaps can be 2041 /// overridden on a per-function basis). Adding attributes there 2042 /// will cause them to also be set in frontends that build on Clang's 2043 /// target-configuration logic, as well as for code defined in library 2044 /// modules such as CUDA's libdevice. 2045 /// 2046 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2047 /// and adds declaration-specific, convention-specific, and 2048 /// frontend-specific logic. The last is of particular importance: 2049 /// attributes that restrict how the frontend generates code must be 2050 /// added here rather than getDefaultFunctionAttributes. 2051 /// 2052 void CodeGenModule::ConstructAttributeList(StringRef Name, 2053 const CGFunctionInfo &FI, 2054 CGCalleeInfo CalleeInfo, 2055 llvm::AttributeList &AttrList, 2056 unsigned &CallingConv, 2057 bool AttrOnCallSite, bool IsThunk) { 2058 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2059 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2060 2061 // Collect function IR attributes from the CC lowering. 2062 // We'll collect the paramete and result attributes later. 2063 CallingConv = FI.getEffectiveCallingConvention(); 2064 if (FI.isNoReturn()) 2065 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2066 if (FI.isCmseNSCall()) 2067 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2068 2069 // Collect function IR attributes from the callee prototype if we have one. 2070 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2071 CalleeInfo.getCalleeFunctionProtoType()); 2072 2073 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2074 2075 // Attach assumption attributes to the declaration. If this is a call 2076 // site, attach assumptions from the caller to the call as well. 2077 AddAttributesFromAssumes(FuncAttrs, TargetDecl); 2078 2079 bool HasOptnone = false; 2080 // The NoBuiltinAttr attached to the target FunctionDecl. 2081 const NoBuiltinAttr *NBA = nullptr; 2082 2083 // Collect function IR attributes based on declaration-specific 2084 // information. 2085 // FIXME: handle sseregparm someday... 2086 if (TargetDecl) { 2087 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2088 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2089 if (TargetDecl->hasAttr<NoThrowAttr>()) 2090 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2091 if (TargetDecl->hasAttr<NoReturnAttr>()) 2092 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2093 if (TargetDecl->hasAttr<ColdAttr>()) 2094 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2095 if (TargetDecl->hasAttr<HotAttr>()) 2096 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2097 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2098 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2099 if (TargetDecl->hasAttr<ConvergentAttr>()) 2100 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2101 2102 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2103 AddAttributesFromFunctionProtoType( 2104 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2105 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2106 // A sane operator new returns a non-aliasing pointer. 2107 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2108 if (getCodeGenOpts().AssumeSaneOperatorNew && 2109 (Kind == OO_New || Kind == OO_Array_New)) 2110 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2111 } 2112 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2113 const bool IsVirtualCall = MD && MD->isVirtual(); 2114 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2115 // virtual function. These attributes are not inherited by overloads. 2116 if (!(AttrOnCallSite && IsVirtualCall)) { 2117 if (Fn->isNoReturn()) 2118 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2119 NBA = Fn->getAttr<NoBuiltinAttr>(); 2120 } 2121 // Only place nomerge attribute on call sites, never functions. This 2122 // allows it to work on indirect virtual function calls. 2123 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2124 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2125 } 2126 2127 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2128 if (TargetDecl->hasAttr<ConstAttr>()) { 2129 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 2130 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2131 // gcc specifies that 'const' functions have greater restrictions than 2132 // 'pure' functions, so they also cannot have infinite loops. 2133 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2134 } else if (TargetDecl->hasAttr<PureAttr>()) { 2135 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 2136 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2137 // gcc specifies that 'pure' functions cannot have infinite loops. 2138 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2139 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2140 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 2141 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2142 } 2143 if (TargetDecl->hasAttr<RestrictAttr>()) 2144 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2145 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2146 !CodeGenOpts.NullPointerIsValid) 2147 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2148 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2149 FuncAttrs.addAttribute("no_caller_saved_registers"); 2150 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2151 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2152 if (TargetDecl->hasAttr<LeafAttr>()) 2153 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2154 2155 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2156 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2157 Optional<unsigned> NumElemsParam; 2158 if (AllocSize->getNumElemsParam().isValid()) 2159 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2160 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2161 NumElemsParam); 2162 } 2163 2164 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2165 if (getLangOpts().OpenCLVersion <= 120) { 2166 // OpenCL v1.2 Work groups are always uniform 2167 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2168 } else { 2169 // OpenCL v2.0 Work groups may be whether uniform or not. 2170 // '-cl-uniform-work-group-size' compile option gets a hint 2171 // to the compiler that the global work-size be a multiple of 2172 // the work-group size specified to clEnqueueNDRangeKernel 2173 // (i.e. work groups are uniform). 2174 FuncAttrs.addAttribute("uniform-work-group-size", 2175 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2176 } 2177 } 2178 } 2179 2180 // Attach "no-builtins" attributes to: 2181 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2182 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2183 // The attributes can come from: 2184 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2185 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2186 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2187 2188 // Collect function IR attributes based on global settiings. 2189 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2190 2191 // Override some default IR attributes based on declaration-specific 2192 // information. 2193 if (TargetDecl) { 2194 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2195 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2196 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2197 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2198 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2199 FuncAttrs.removeAttribute("split-stack"); 2200 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 2201 // A function "__attribute__((...))" overrides the command-line flag. 2202 auto Kind = 2203 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 2204 FuncAttrs.removeAttribute("zero-call-used-regs"); 2205 FuncAttrs.addAttribute( 2206 "zero-call-used-regs", 2207 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 2208 } 2209 2210 // Add NonLazyBind attribute to function declarations when -fno-plt 2211 // is used. 2212 // FIXME: what if we just haven't processed the function definition 2213 // yet, or if it's an external definition like C99 inline? 2214 if (CodeGenOpts.NoPLT) { 2215 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2216 if (!Fn->isDefined() && !AttrOnCallSite) { 2217 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2218 } 2219 } 2220 } 2221 } 2222 2223 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2224 // functions with -funique-internal-linkage-names. 2225 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2226 if (isa<FunctionDecl>(TargetDecl)) { 2227 if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) == 2228 llvm::GlobalValue::InternalLinkage) 2229 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2230 "selected"); 2231 } 2232 } 2233 2234 // Collect non-call-site function IR attributes from declaration-specific 2235 // information. 2236 if (!AttrOnCallSite) { 2237 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2238 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2239 2240 // Whether tail calls are enabled. 2241 auto shouldDisableTailCalls = [&] { 2242 // Should this be honored in getDefaultFunctionAttributes? 2243 if (CodeGenOpts.DisableTailCalls) 2244 return true; 2245 2246 if (!TargetDecl) 2247 return false; 2248 2249 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2250 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2251 return true; 2252 2253 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2254 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2255 if (!BD->doesNotEscape()) 2256 return true; 2257 } 2258 2259 return false; 2260 }; 2261 if (shouldDisableTailCalls()) 2262 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2263 2264 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2265 // handles these separately to set them based on the global defaults. 2266 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2267 } 2268 2269 // Collect attributes from arguments and return values. 2270 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2271 2272 QualType RetTy = FI.getReturnType(); 2273 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2274 const llvm::DataLayout &DL = getDataLayout(); 2275 2276 // C++ explicitly makes returning undefined values UB. C's rule only applies 2277 // to used values, so we never mark them noundef for now. 2278 bool HasStrictReturn = getLangOpts().CPlusPlus; 2279 if (TargetDecl && HasStrictReturn) { 2280 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) 2281 HasStrictReturn &= !FDecl->isExternC(); 2282 else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) 2283 // Function pointer 2284 HasStrictReturn &= !VDecl->isExternC(); 2285 } 2286 2287 // We don't want to be too aggressive with the return checking, unless 2288 // it's explicit in the code opts or we're using an appropriate sanitizer. 2289 // Try to respect what the programmer intended. 2290 HasStrictReturn &= getCodeGenOpts().StrictReturn || 2291 !MayDropFunctionReturn(getContext(), RetTy) || 2292 getLangOpts().Sanitize.has(SanitizerKind::Memory) || 2293 getLangOpts().Sanitize.has(SanitizerKind::Return); 2294 2295 // Determine if the return type could be partially undef 2296 if (!CodeGenOpts.DisableNoundefAttrs && HasStrictReturn) { 2297 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2298 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2299 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2300 } 2301 2302 switch (RetAI.getKind()) { 2303 case ABIArgInfo::Extend: 2304 if (RetAI.isSignExt()) 2305 RetAttrs.addAttribute(llvm::Attribute::SExt); 2306 else 2307 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2308 LLVM_FALLTHROUGH; 2309 case ABIArgInfo::Direct: 2310 if (RetAI.getInReg()) 2311 RetAttrs.addAttribute(llvm::Attribute::InReg); 2312 break; 2313 case ABIArgInfo::Ignore: 2314 break; 2315 2316 case ABIArgInfo::InAlloca: 2317 case ABIArgInfo::Indirect: { 2318 // inalloca and sret disable readnone and readonly 2319 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2320 .removeAttribute(llvm::Attribute::ReadNone); 2321 break; 2322 } 2323 2324 case ABIArgInfo::CoerceAndExpand: 2325 break; 2326 2327 case ABIArgInfo::Expand: 2328 case ABIArgInfo::IndirectAliased: 2329 llvm_unreachable("Invalid ABI kind for return argument"); 2330 } 2331 2332 if (!IsThunk) { 2333 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2334 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2335 QualType PTy = RefTy->getPointeeType(); 2336 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2337 RetAttrs.addDereferenceableAttr( 2338 getMinimumObjectSize(PTy).getQuantity()); 2339 if (getContext().getTargetAddressSpace(PTy) == 0 && 2340 !CodeGenOpts.NullPointerIsValid) 2341 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2342 if (PTy->isObjectType()) { 2343 llvm::Align Alignment = 2344 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2345 RetAttrs.addAlignmentAttr(Alignment); 2346 } 2347 } 2348 } 2349 2350 bool hasUsedSRet = false; 2351 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2352 2353 // Attach attributes to sret. 2354 if (IRFunctionArgs.hasSRetArg()) { 2355 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2356 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2357 hasUsedSRet = true; 2358 if (RetAI.getInReg()) 2359 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2360 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2361 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2362 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2363 } 2364 2365 // Attach attributes to inalloca argument. 2366 if (IRFunctionArgs.hasInallocaArg()) { 2367 llvm::AttrBuilder Attrs(getLLVMContext()); 2368 Attrs.addInAllocaAttr(FI.getArgStruct()); 2369 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2370 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2371 } 2372 2373 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2374 // unless this is a thunk function. 2375 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2376 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2377 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2378 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2379 2380 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2381 2382 llvm::AttrBuilder Attrs(getLLVMContext()); 2383 2384 QualType ThisTy = 2385 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType(); 2386 2387 if (!CodeGenOpts.NullPointerIsValid && 2388 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2389 Attrs.addAttribute(llvm::Attribute::NonNull); 2390 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2391 } else { 2392 // FIXME dereferenceable should be correct here, regardless of 2393 // NullPointerIsValid. However, dereferenceable currently does not always 2394 // respect NullPointerIsValid and may imply nonnull and break the program. 2395 // See https://reviews.llvm.org/D66618 for discussions. 2396 Attrs.addDereferenceableOrNullAttr( 2397 getMinimumObjectSize( 2398 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2399 .getQuantity()); 2400 } 2401 2402 llvm::Align Alignment = 2403 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2404 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2405 .getAsAlign(); 2406 Attrs.addAlignmentAttr(Alignment); 2407 2408 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2409 } 2410 2411 unsigned ArgNo = 0; 2412 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2413 E = FI.arg_end(); 2414 I != E; ++I, ++ArgNo) { 2415 QualType ParamType = I->type; 2416 const ABIArgInfo &AI = I->info; 2417 llvm::AttrBuilder Attrs(getLLVMContext()); 2418 2419 // Add attribute for padding argument, if necessary. 2420 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2421 if (AI.getPaddingInReg()) { 2422 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2423 llvm::AttributeSet::get( 2424 getLLVMContext(), 2425 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2426 } 2427 } 2428 2429 // Decide whether the argument we're handling could be partially undef 2430 if (!CodeGenOpts.DisableNoundefAttrs && 2431 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2432 Attrs.addAttribute(llvm::Attribute::NoUndef); 2433 } 2434 2435 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2436 // have the corresponding parameter variable. It doesn't make 2437 // sense to do it here because parameters are so messed up. 2438 switch (AI.getKind()) { 2439 case ABIArgInfo::Extend: 2440 if (AI.isSignExt()) 2441 Attrs.addAttribute(llvm::Attribute::SExt); 2442 else 2443 Attrs.addAttribute(llvm::Attribute::ZExt); 2444 LLVM_FALLTHROUGH; 2445 case ABIArgInfo::Direct: 2446 if (ArgNo == 0 && FI.isChainCall()) 2447 Attrs.addAttribute(llvm::Attribute::Nest); 2448 else if (AI.getInReg()) 2449 Attrs.addAttribute(llvm::Attribute::InReg); 2450 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2451 break; 2452 2453 case ABIArgInfo::Indirect: { 2454 if (AI.getInReg()) 2455 Attrs.addAttribute(llvm::Attribute::InReg); 2456 2457 if (AI.getIndirectByVal()) 2458 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2459 2460 auto *Decl = ParamType->getAsRecordDecl(); 2461 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2462 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2463 // When calling the function, the pointer passed in will be the only 2464 // reference to the underlying object. Mark it accordingly. 2465 Attrs.addAttribute(llvm::Attribute::NoAlias); 2466 2467 // TODO: We could add the byref attribute if not byval, but it would 2468 // require updating many testcases. 2469 2470 CharUnits Align = AI.getIndirectAlign(); 2471 2472 // In a byval argument, it is important that the required 2473 // alignment of the type is honored, as LLVM might be creating a 2474 // *new* stack object, and needs to know what alignment to give 2475 // it. (Sometimes it can deduce a sensible alignment on its own, 2476 // but not if clang decides it must emit a packed struct, or the 2477 // user specifies increased alignment requirements.) 2478 // 2479 // This is different from indirect *not* byval, where the object 2480 // exists already, and the align attribute is purely 2481 // informative. 2482 assert(!Align.isZero()); 2483 2484 // For now, only add this when we have a byval argument. 2485 // TODO: be less lazy about updating test cases. 2486 if (AI.getIndirectByVal()) 2487 Attrs.addAlignmentAttr(Align.getQuantity()); 2488 2489 // byval disables readnone and readonly. 2490 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2491 .removeAttribute(llvm::Attribute::ReadNone); 2492 2493 break; 2494 } 2495 case ABIArgInfo::IndirectAliased: { 2496 CharUnits Align = AI.getIndirectAlign(); 2497 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2498 Attrs.addAlignmentAttr(Align.getQuantity()); 2499 break; 2500 } 2501 case ABIArgInfo::Ignore: 2502 case ABIArgInfo::Expand: 2503 case ABIArgInfo::CoerceAndExpand: 2504 break; 2505 2506 case ABIArgInfo::InAlloca: 2507 // inalloca disables readnone and readonly. 2508 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2509 .removeAttribute(llvm::Attribute::ReadNone); 2510 continue; 2511 } 2512 2513 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2514 QualType PTy = RefTy->getPointeeType(); 2515 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2516 Attrs.addDereferenceableAttr( 2517 getMinimumObjectSize(PTy).getQuantity()); 2518 if (getContext().getTargetAddressSpace(PTy) == 0 && 2519 !CodeGenOpts.NullPointerIsValid) 2520 Attrs.addAttribute(llvm::Attribute::NonNull); 2521 if (PTy->isObjectType()) { 2522 llvm::Align Alignment = 2523 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2524 Attrs.addAlignmentAttr(Alignment); 2525 } 2526 } 2527 2528 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2529 // > For arguments to a __kernel function declared to be a pointer to a 2530 // > data type, the OpenCL compiler can assume that the pointee is always 2531 // > appropriately aligned as required by the data type. 2532 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2533 ParamType->isPointerType()) { 2534 QualType PTy = ParamType->getPointeeType(); 2535 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2536 llvm::Align Alignment = 2537 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2538 Attrs.addAlignmentAttr(Alignment); 2539 } 2540 } 2541 2542 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2543 case ParameterABI::Ordinary: 2544 break; 2545 2546 case ParameterABI::SwiftIndirectResult: { 2547 // Add 'sret' if we haven't already used it for something, but 2548 // only if the result is void. 2549 if (!hasUsedSRet && RetTy->isVoidType()) { 2550 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2551 hasUsedSRet = true; 2552 } 2553 2554 // Add 'noalias' in either case. 2555 Attrs.addAttribute(llvm::Attribute::NoAlias); 2556 2557 // Add 'dereferenceable' and 'alignment'. 2558 auto PTy = ParamType->getPointeeType(); 2559 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2560 auto info = getContext().getTypeInfoInChars(PTy); 2561 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2562 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2563 } 2564 break; 2565 } 2566 2567 case ParameterABI::SwiftErrorResult: 2568 Attrs.addAttribute(llvm::Attribute::SwiftError); 2569 break; 2570 2571 case ParameterABI::SwiftContext: 2572 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2573 break; 2574 2575 case ParameterABI::SwiftAsyncContext: 2576 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2577 break; 2578 } 2579 2580 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2581 Attrs.addAttribute(llvm::Attribute::NoCapture); 2582 2583 if (Attrs.hasAttributes()) { 2584 unsigned FirstIRArg, NumIRArgs; 2585 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2586 for (unsigned i = 0; i < NumIRArgs; i++) 2587 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2588 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2589 } 2590 } 2591 assert(ArgNo == FI.arg_size()); 2592 2593 AttrList = llvm::AttributeList::get( 2594 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2595 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2596 } 2597 2598 /// An argument came in as a promoted argument; demote it back to its 2599 /// declared type. 2600 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2601 const VarDecl *var, 2602 llvm::Value *value) { 2603 llvm::Type *varType = CGF.ConvertType(var->getType()); 2604 2605 // This can happen with promotions that actually don't change the 2606 // underlying type, like the enum promotions. 2607 if (value->getType() == varType) return value; 2608 2609 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2610 && "unexpected promotion type"); 2611 2612 if (isa<llvm::IntegerType>(varType)) 2613 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2614 2615 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2616 } 2617 2618 /// Returns the attribute (either parameter attribute, or function 2619 /// attribute), which declares argument ArgNo to be non-null. 2620 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2621 QualType ArgType, unsigned ArgNo) { 2622 // FIXME: __attribute__((nonnull)) can also be applied to: 2623 // - references to pointers, where the pointee is known to be 2624 // nonnull (apparently a Clang extension) 2625 // - transparent unions containing pointers 2626 // In the former case, LLVM IR cannot represent the constraint. In 2627 // the latter case, we have no guarantee that the transparent union 2628 // is in fact passed as a pointer. 2629 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2630 return nullptr; 2631 // First, check attribute on parameter itself. 2632 if (PVD) { 2633 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2634 return ParmNNAttr; 2635 } 2636 // Check function attributes. 2637 if (!FD) 2638 return nullptr; 2639 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2640 if (NNAttr->isNonNull(ArgNo)) 2641 return NNAttr; 2642 } 2643 return nullptr; 2644 } 2645 2646 namespace { 2647 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2648 Address Temp; 2649 Address Arg; 2650 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2651 void Emit(CodeGenFunction &CGF, Flags flags) override { 2652 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2653 CGF.Builder.CreateStore(errorValue, Arg); 2654 } 2655 }; 2656 } 2657 2658 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2659 llvm::Function *Fn, 2660 const FunctionArgList &Args) { 2661 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2662 // Naked functions don't have prologues. 2663 return; 2664 2665 // If this is an implicit-return-zero function, go ahead and 2666 // initialize the return value. TODO: it might be nice to have 2667 // a more general mechanism for this that didn't require synthesized 2668 // return statements. 2669 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2670 if (FD->hasImplicitReturnZero()) { 2671 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2672 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2673 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2674 Builder.CreateStore(Zero, ReturnValue); 2675 } 2676 } 2677 2678 // FIXME: We no longer need the types from FunctionArgList; lift up and 2679 // simplify. 2680 2681 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2682 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2683 2684 // If we're using inalloca, all the memory arguments are GEPs off of the last 2685 // parameter, which is a pointer to the complete memory area. 2686 Address ArgStruct = Address::invalid(); 2687 if (IRFunctionArgs.hasInallocaArg()) { 2688 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2689 FI.getArgStructAlignment()); 2690 2691 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2692 } 2693 2694 // Name the struct return parameter. 2695 if (IRFunctionArgs.hasSRetArg()) { 2696 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2697 AI->setName("agg.result"); 2698 AI->addAttr(llvm::Attribute::NoAlias); 2699 } 2700 2701 // Track if we received the parameter as a pointer (indirect, byval, or 2702 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2703 // into a local alloca for us. 2704 SmallVector<ParamValue, 16> ArgVals; 2705 ArgVals.reserve(Args.size()); 2706 2707 // Create a pointer value for every parameter declaration. This usually 2708 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2709 // any cleanups or do anything that might unwind. We do that separately, so 2710 // we can push the cleanups in the correct order for the ABI. 2711 assert(FI.arg_size() == Args.size() && 2712 "Mismatch between function signature & arguments."); 2713 unsigned ArgNo = 0; 2714 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2715 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2716 i != e; ++i, ++info_it, ++ArgNo) { 2717 const VarDecl *Arg = *i; 2718 const ABIArgInfo &ArgI = info_it->info; 2719 2720 bool isPromoted = 2721 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2722 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2723 // the parameter is promoted. In this case we convert to 2724 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2725 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2726 assert(hasScalarEvaluationKind(Ty) == 2727 hasScalarEvaluationKind(Arg->getType())); 2728 2729 unsigned FirstIRArg, NumIRArgs; 2730 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2731 2732 switch (ArgI.getKind()) { 2733 case ABIArgInfo::InAlloca: { 2734 assert(NumIRArgs == 0); 2735 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2736 Address V = 2737 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2738 if (ArgI.getInAllocaIndirect()) 2739 V = Address(Builder.CreateLoad(V), 2740 getContext().getTypeAlignInChars(Ty)); 2741 ArgVals.push_back(ParamValue::forIndirect(V)); 2742 break; 2743 } 2744 2745 case ABIArgInfo::Indirect: 2746 case ABIArgInfo::IndirectAliased: { 2747 assert(NumIRArgs == 1); 2748 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty), 2749 ArgI.getIndirectAlign()); 2750 2751 if (!hasScalarEvaluationKind(Ty)) { 2752 // Aggregates and complex variables are accessed by reference. All we 2753 // need to do is realign the value, if requested. Also, if the address 2754 // may be aliased, copy it to ensure that the parameter variable is 2755 // mutable and has a unique adress, as C requires. 2756 Address V = ParamAddr; 2757 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2758 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2759 2760 // Copy from the incoming argument pointer to the temporary with the 2761 // appropriate alignment. 2762 // 2763 // FIXME: We should have a common utility for generating an aggregate 2764 // copy. 2765 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2766 Builder.CreateMemCpy( 2767 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2768 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2769 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2770 V = AlignedTemp; 2771 } 2772 ArgVals.push_back(ParamValue::forIndirect(V)); 2773 } else { 2774 // Load scalar value from indirect argument. 2775 llvm::Value *V = 2776 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2777 2778 if (isPromoted) 2779 V = emitArgumentDemotion(*this, Arg, V); 2780 ArgVals.push_back(ParamValue::forDirect(V)); 2781 } 2782 break; 2783 } 2784 2785 case ABIArgInfo::Extend: 2786 case ABIArgInfo::Direct: { 2787 auto AI = Fn->getArg(FirstIRArg); 2788 llvm::Type *LTy = ConvertType(Arg->getType()); 2789 2790 // Prepare parameter attributes. So far, only attributes for pointer 2791 // parameters are prepared. See 2792 // http://llvm.org/docs/LangRef.html#paramattrs. 2793 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2794 ArgI.getCoerceToType()->isPointerTy()) { 2795 assert(NumIRArgs == 1); 2796 2797 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2798 // Set `nonnull` attribute if any. 2799 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2800 PVD->getFunctionScopeIndex()) && 2801 !CGM.getCodeGenOpts().NullPointerIsValid) 2802 AI->addAttr(llvm::Attribute::NonNull); 2803 2804 QualType OTy = PVD->getOriginalType(); 2805 if (const auto *ArrTy = 2806 getContext().getAsConstantArrayType(OTy)) { 2807 // A C99 array parameter declaration with the static keyword also 2808 // indicates dereferenceability, and if the size is constant we can 2809 // use the dereferenceable attribute (which requires the size in 2810 // bytes). 2811 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2812 QualType ETy = ArrTy->getElementType(); 2813 llvm::Align Alignment = 2814 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2815 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2816 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2817 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2818 ArrSize) { 2819 llvm::AttrBuilder Attrs(getLLVMContext()); 2820 Attrs.addDereferenceableAttr( 2821 getContext().getTypeSizeInChars(ETy).getQuantity() * 2822 ArrSize); 2823 AI->addAttrs(Attrs); 2824 } else if (getContext().getTargetInfo().getNullPointerValue( 2825 ETy.getAddressSpace()) == 0 && 2826 !CGM.getCodeGenOpts().NullPointerIsValid) { 2827 AI->addAttr(llvm::Attribute::NonNull); 2828 } 2829 } 2830 } else if (const auto *ArrTy = 2831 getContext().getAsVariableArrayType(OTy)) { 2832 // For C99 VLAs with the static keyword, we don't know the size so 2833 // we can't use the dereferenceable attribute, but in addrspace(0) 2834 // we know that it must be nonnull. 2835 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2836 QualType ETy = ArrTy->getElementType(); 2837 llvm::Align Alignment = 2838 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2839 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2840 if (!getContext().getTargetAddressSpace(ETy) && 2841 !CGM.getCodeGenOpts().NullPointerIsValid) 2842 AI->addAttr(llvm::Attribute::NonNull); 2843 } 2844 } 2845 2846 // Set `align` attribute if any. 2847 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2848 if (!AVAttr) 2849 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2850 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2851 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2852 // If alignment-assumption sanitizer is enabled, we do *not* add 2853 // alignment attribute here, but emit normal alignment assumption, 2854 // so the UBSAN check could function. 2855 llvm::ConstantInt *AlignmentCI = 2856 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2857 uint64_t AlignmentInt = 2858 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2859 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2860 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2861 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 2862 llvm::Align(AlignmentInt))); 2863 } 2864 } 2865 } 2866 2867 // Set 'noalias' if an argument type has the `restrict` qualifier. 2868 if (Arg->getType().isRestrictQualified()) 2869 AI->addAttr(llvm::Attribute::NoAlias); 2870 } 2871 2872 // Prepare the argument value. If we have the trivial case, handle it 2873 // with no muss and fuss. 2874 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2875 ArgI.getCoerceToType() == ConvertType(Ty) && 2876 ArgI.getDirectOffset() == 0) { 2877 assert(NumIRArgs == 1); 2878 2879 // LLVM expects swifterror parameters to be used in very restricted 2880 // ways. Copy the value into a less-restricted temporary. 2881 llvm::Value *V = AI; 2882 if (FI.getExtParameterInfo(ArgNo).getABI() 2883 == ParameterABI::SwiftErrorResult) { 2884 QualType pointeeTy = Ty->getPointeeType(); 2885 assert(pointeeTy->isPointerType()); 2886 Address temp = 2887 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2888 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2889 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2890 Builder.CreateStore(incomingErrorValue, temp); 2891 V = temp.getPointer(); 2892 2893 // Push a cleanup to copy the value back at the end of the function. 2894 // The convention does not guarantee that the value will be written 2895 // back if the function exits with an unwind exception. 2896 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2897 } 2898 2899 // Ensure the argument is the correct type. 2900 if (V->getType() != ArgI.getCoerceToType()) 2901 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2902 2903 if (isPromoted) 2904 V = emitArgumentDemotion(*this, Arg, V); 2905 2906 // Because of merging of function types from multiple decls it is 2907 // possible for the type of an argument to not match the corresponding 2908 // type in the function type. Since we are codegening the callee 2909 // in here, add a cast to the argument type. 2910 llvm::Type *LTy = ConvertType(Arg->getType()); 2911 if (V->getType() != LTy) 2912 V = Builder.CreateBitCast(V, LTy); 2913 2914 ArgVals.push_back(ParamValue::forDirect(V)); 2915 break; 2916 } 2917 2918 // VLST arguments are coerced to VLATs at the function boundary for 2919 // ABI consistency. If this is a VLST that was coerced to 2920 // a VLAT at the function boundary and the types match up, use 2921 // llvm.experimental.vector.extract to convert back to the original 2922 // VLST. 2923 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 2924 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 2925 if (auto *VecTyFrom = 2926 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 2927 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2928 // vector, bitcast the source and use a vector extract. 2929 auto PredType = 2930 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2931 if (VecTyFrom == PredType && 2932 VecTyTo->getElementType() == Builder.getInt8Ty()) { 2933 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2934 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 2935 } 2936 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 2937 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 2938 2939 assert(NumIRArgs == 1); 2940 Coerced->setName(Arg->getName() + ".coerce"); 2941 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 2942 VecTyTo, Coerced, Zero, "castFixedSve"))); 2943 break; 2944 } 2945 } 2946 } 2947 2948 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2949 Arg->getName()); 2950 2951 // Pointer to store into. 2952 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2953 2954 // Fast-isel and the optimizer generally like scalar values better than 2955 // FCAs, so we flatten them if this is safe to do for this argument. 2956 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2957 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2958 STy->getNumElements() > 1) { 2959 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2960 llvm::Type *DstTy = Ptr.getElementType(); 2961 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2962 2963 Address AddrToStoreInto = Address::invalid(); 2964 if (SrcSize <= DstSize) { 2965 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2966 } else { 2967 AddrToStoreInto = 2968 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2969 } 2970 2971 assert(STy->getNumElements() == NumIRArgs); 2972 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2973 auto AI = Fn->getArg(FirstIRArg + i); 2974 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2975 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2976 Builder.CreateStore(AI, EltPtr); 2977 } 2978 2979 if (SrcSize > DstSize) { 2980 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2981 } 2982 2983 } else { 2984 // Simple case, just do a coerced store of the argument into the alloca. 2985 assert(NumIRArgs == 1); 2986 auto AI = Fn->getArg(FirstIRArg); 2987 AI->setName(Arg->getName() + ".coerce"); 2988 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2989 } 2990 2991 // Match to what EmitParmDecl is expecting for this type. 2992 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2993 llvm::Value *V = 2994 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2995 if (isPromoted) 2996 V = emitArgumentDemotion(*this, Arg, V); 2997 ArgVals.push_back(ParamValue::forDirect(V)); 2998 } else { 2999 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3000 } 3001 break; 3002 } 3003 3004 case ABIArgInfo::CoerceAndExpand: { 3005 // Reconstruct into a temporary. 3006 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3007 ArgVals.push_back(ParamValue::forIndirect(alloca)); 3008 3009 auto coercionType = ArgI.getCoerceAndExpandType(); 3010 alloca = Builder.CreateElementBitCast(alloca, coercionType); 3011 3012 unsigned argIndex = FirstIRArg; 3013 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3014 llvm::Type *eltType = coercionType->getElementType(i); 3015 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 3016 continue; 3017 3018 auto eltAddr = Builder.CreateStructGEP(alloca, i); 3019 auto elt = Fn->getArg(argIndex++); 3020 Builder.CreateStore(elt, eltAddr); 3021 } 3022 assert(argIndex == FirstIRArg + NumIRArgs); 3023 break; 3024 } 3025 3026 case ABIArgInfo::Expand: { 3027 // If this structure was expanded into multiple arguments then 3028 // we need to create a temporary and reconstruct it from the 3029 // arguments. 3030 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3031 LValue LV = MakeAddrLValue(Alloca, Ty); 3032 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3033 3034 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 3035 ExpandTypeFromArgs(Ty, LV, FnArgIter); 3036 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 3037 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 3038 auto AI = Fn->getArg(FirstIRArg + i); 3039 AI->setName(Arg->getName() + "." + Twine(i)); 3040 } 3041 break; 3042 } 3043 3044 case ABIArgInfo::Ignore: 3045 assert(NumIRArgs == 0); 3046 // Initialize the local variable appropriately. 3047 if (!hasScalarEvaluationKind(Ty)) { 3048 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3049 } else { 3050 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3051 ArgVals.push_back(ParamValue::forDirect(U)); 3052 } 3053 break; 3054 } 3055 } 3056 3057 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3058 for (int I = Args.size() - 1; I >= 0; --I) 3059 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3060 } else { 3061 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3062 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3063 } 3064 } 3065 3066 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3067 while (insn->use_empty()) { 3068 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3069 if (!bitcast) return; 3070 3071 // This is "safe" because we would have used a ConstantExpr otherwise. 3072 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3073 bitcast->eraseFromParent(); 3074 } 3075 } 3076 3077 /// Try to emit a fused autorelease of a return result. 3078 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3079 llvm::Value *result) { 3080 // We must be immediately followed the cast. 3081 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3082 if (BB->empty()) return nullptr; 3083 if (&BB->back() != result) return nullptr; 3084 3085 llvm::Type *resultType = result->getType(); 3086 3087 // result is in a BasicBlock and is therefore an Instruction. 3088 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3089 3090 SmallVector<llvm::Instruction *, 4> InstsToKill; 3091 3092 // Look for: 3093 // %generator = bitcast %type1* %generator2 to %type2* 3094 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3095 // We would have emitted this as a constant if the operand weren't 3096 // an Instruction. 3097 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3098 3099 // Require the generator to be immediately followed by the cast. 3100 if (generator->getNextNode() != bitcast) 3101 return nullptr; 3102 3103 InstsToKill.push_back(bitcast); 3104 } 3105 3106 // Look for: 3107 // %generator = call i8* @objc_retain(i8* %originalResult) 3108 // or 3109 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3110 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3111 if (!call) return nullptr; 3112 3113 bool doRetainAutorelease; 3114 3115 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3116 doRetainAutorelease = true; 3117 } else if (call->getCalledOperand() == 3118 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3119 doRetainAutorelease = false; 3120 3121 // If we emitted an assembly marker for this call (and the 3122 // ARCEntrypoints field should have been set if so), go looking 3123 // for that call. If we can't find it, we can't do this 3124 // optimization. But it should always be the immediately previous 3125 // instruction, unless we needed bitcasts around the call. 3126 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3127 llvm::Instruction *prev = call->getPrevNode(); 3128 assert(prev); 3129 if (isa<llvm::BitCastInst>(prev)) { 3130 prev = prev->getPrevNode(); 3131 assert(prev); 3132 } 3133 assert(isa<llvm::CallInst>(prev)); 3134 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3135 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3136 InstsToKill.push_back(prev); 3137 } 3138 } else { 3139 return nullptr; 3140 } 3141 3142 result = call->getArgOperand(0); 3143 InstsToKill.push_back(call); 3144 3145 // Keep killing bitcasts, for sanity. Note that we no longer care 3146 // about precise ordering as long as there's exactly one use. 3147 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3148 if (!bitcast->hasOneUse()) break; 3149 InstsToKill.push_back(bitcast); 3150 result = bitcast->getOperand(0); 3151 } 3152 3153 // Delete all the unnecessary instructions, from latest to earliest. 3154 for (auto *I : InstsToKill) 3155 I->eraseFromParent(); 3156 3157 // Do the fused retain/autorelease if we were asked to. 3158 if (doRetainAutorelease) 3159 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3160 3161 // Cast back to the result type. 3162 return CGF.Builder.CreateBitCast(result, resultType); 3163 } 3164 3165 /// If this is a +1 of the value of an immutable 'self', remove it. 3166 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3167 llvm::Value *result) { 3168 // This is only applicable to a method with an immutable 'self'. 3169 const ObjCMethodDecl *method = 3170 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3171 if (!method) return nullptr; 3172 const VarDecl *self = method->getSelfDecl(); 3173 if (!self->getType().isConstQualified()) return nullptr; 3174 3175 // Look for a retain call. 3176 llvm::CallInst *retainCall = 3177 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 3178 if (!retainCall || retainCall->getCalledOperand() != 3179 CGF.CGM.getObjCEntrypoints().objc_retain) 3180 return nullptr; 3181 3182 // Look for an ordinary load of 'self'. 3183 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3184 llvm::LoadInst *load = 3185 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3186 if (!load || load->isAtomic() || load->isVolatile() || 3187 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 3188 return nullptr; 3189 3190 // Okay! Burn it all down. This relies for correctness on the 3191 // assumption that the retain is emitted as part of the return and 3192 // that thereafter everything is used "linearly". 3193 llvm::Type *resultType = result->getType(); 3194 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3195 assert(retainCall->use_empty()); 3196 retainCall->eraseFromParent(); 3197 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3198 3199 return CGF.Builder.CreateBitCast(load, resultType); 3200 } 3201 3202 /// Emit an ARC autorelease of the result of a function. 3203 /// 3204 /// \return the value to actually return from the function 3205 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3206 llvm::Value *result) { 3207 // If we're returning 'self', kill the initial retain. This is a 3208 // heuristic attempt to "encourage correctness" in the really unfortunate 3209 // case where we have a return of self during a dealloc and we desperately 3210 // need to avoid the possible autorelease. 3211 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3212 return self; 3213 3214 // At -O0, try to emit a fused retain/autorelease. 3215 if (CGF.shouldUseFusedARCCalls()) 3216 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3217 return fused; 3218 3219 return CGF.EmitARCAutoreleaseReturnValue(result); 3220 } 3221 3222 /// Heuristically search for a dominating store to the return-value slot. 3223 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3224 // Check if a User is a store which pointerOperand is the ReturnValue. 3225 // We are looking for stores to the ReturnValue, not for stores of the 3226 // ReturnValue to some other location. 3227 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 3228 auto *SI = dyn_cast<llvm::StoreInst>(U); 3229 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 3230 return nullptr; 3231 // These aren't actually possible for non-coerced returns, and we 3232 // only care about non-coerced returns on this code path. 3233 assert(!SI->isAtomic() && !SI->isVolatile()); 3234 return SI; 3235 }; 3236 // If there are multiple uses of the return-value slot, just check 3237 // for something immediately preceding the IP. Sometimes this can 3238 // happen with how we generate implicit-returns; it can also happen 3239 // with noreturn cleanups. 3240 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3241 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3242 if (IP->empty()) return nullptr; 3243 llvm::Instruction *I = &IP->back(); 3244 3245 // Skip lifetime markers 3246 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 3247 IE = IP->rend(); 3248 II != IE; ++II) { 3249 if (llvm::IntrinsicInst *Intrinsic = 3250 dyn_cast<llvm::IntrinsicInst>(&*II)) { 3251 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 3252 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 3253 ++II; 3254 if (II == IE) 3255 break; 3256 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 3257 continue; 3258 } 3259 } 3260 I = &*II; 3261 break; 3262 } 3263 3264 return GetStoreIfValid(I); 3265 } 3266 3267 llvm::StoreInst *store = 3268 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3269 if (!store) return nullptr; 3270 3271 // Now do a first-and-dirty dominance check: just walk up the 3272 // single-predecessors chain from the current insertion point. 3273 llvm::BasicBlock *StoreBB = store->getParent(); 3274 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3275 while (IP != StoreBB) { 3276 if (!(IP = IP->getSinglePredecessor())) 3277 return nullptr; 3278 } 3279 3280 // Okay, the store's basic block dominates the insertion point; we 3281 // can do our thing. 3282 return store; 3283 } 3284 3285 // Helper functions for EmitCMSEClearRecord 3286 3287 // Set the bits corresponding to a field having width `BitWidth` and located at 3288 // offset `BitOffset` (from the least significant bit) within a storage unit of 3289 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3290 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3291 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3292 int BitWidth, int CharWidth) { 3293 assert(CharWidth <= 64); 3294 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3295 3296 int Pos = 0; 3297 if (BitOffset >= CharWidth) { 3298 Pos += BitOffset / CharWidth; 3299 BitOffset = BitOffset % CharWidth; 3300 } 3301 3302 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3303 if (BitOffset + BitWidth >= CharWidth) { 3304 Bits[Pos++] |= (Used << BitOffset) & Used; 3305 BitWidth -= CharWidth - BitOffset; 3306 BitOffset = 0; 3307 } 3308 3309 while (BitWidth >= CharWidth) { 3310 Bits[Pos++] = Used; 3311 BitWidth -= CharWidth; 3312 } 3313 3314 if (BitWidth > 0) 3315 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3316 } 3317 3318 // Set the bits corresponding to a field having width `BitWidth` and located at 3319 // offset `BitOffset` (from the least significant bit) within a storage unit of 3320 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3321 // `Bits` corresponds to one target byte. Use target endian layout. 3322 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3323 int StorageSize, int BitOffset, int BitWidth, 3324 int CharWidth, bool BigEndian) { 3325 3326 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3327 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3328 3329 if (BigEndian) 3330 std::reverse(TmpBits.begin(), TmpBits.end()); 3331 3332 for (uint64_t V : TmpBits) 3333 Bits[StorageOffset++] |= V; 3334 } 3335 3336 static void setUsedBits(CodeGenModule &, QualType, int, 3337 SmallVectorImpl<uint64_t> &); 3338 3339 // Set the bits in `Bits`, which correspond to the value representations of 3340 // the actual members of the record type `RTy`. Note that this function does 3341 // not handle base classes, virtual tables, etc, since they cannot happen in 3342 // CMSE function arguments or return. The bit mask corresponds to the target 3343 // memory layout, i.e. it's endian dependent. 3344 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3345 SmallVectorImpl<uint64_t> &Bits) { 3346 ASTContext &Context = CGM.getContext(); 3347 int CharWidth = Context.getCharWidth(); 3348 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3349 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3350 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3351 3352 int Idx = 0; 3353 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3354 const FieldDecl *F = *I; 3355 3356 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3357 F->getType()->isIncompleteArrayType()) 3358 continue; 3359 3360 if (F->isBitField()) { 3361 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3362 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3363 BFI.StorageSize / CharWidth, BFI.Offset, 3364 BFI.Size, CharWidth, 3365 CGM.getDataLayout().isBigEndian()); 3366 continue; 3367 } 3368 3369 setUsedBits(CGM, F->getType(), 3370 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3371 } 3372 } 3373 3374 // Set the bits in `Bits`, which correspond to the value representations of 3375 // the elements of an array type `ATy`. 3376 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3377 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3378 const ASTContext &Context = CGM.getContext(); 3379 3380 QualType ETy = Context.getBaseElementType(ATy); 3381 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3382 SmallVector<uint64_t, 4> TmpBits(Size); 3383 setUsedBits(CGM, ETy, 0, TmpBits); 3384 3385 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3386 auto Src = TmpBits.begin(); 3387 auto Dst = Bits.begin() + Offset + I * Size; 3388 for (int J = 0; J < Size; ++J) 3389 *Dst++ |= *Src++; 3390 } 3391 } 3392 3393 // Set the bits in `Bits`, which correspond to the value representations of 3394 // the type `QTy`. 3395 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3396 SmallVectorImpl<uint64_t> &Bits) { 3397 if (const auto *RTy = QTy->getAs<RecordType>()) 3398 return setUsedBits(CGM, RTy, Offset, Bits); 3399 3400 ASTContext &Context = CGM.getContext(); 3401 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3402 return setUsedBits(CGM, ATy, Offset, Bits); 3403 3404 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3405 if (Size <= 0) 3406 return; 3407 3408 std::fill_n(Bits.begin() + Offset, Size, 3409 (uint64_t(1) << Context.getCharWidth()) - 1); 3410 } 3411 3412 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3413 int Pos, int Size, int CharWidth, 3414 bool BigEndian) { 3415 assert(Size > 0); 3416 uint64_t Mask = 0; 3417 if (BigEndian) { 3418 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3419 ++P) 3420 Mask = (Mask << CharWidth) | *P; 3421 } else { 3422 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3423 do 3424 Mask = (Mask << CharWidth) | *--P; 3425 while (P != End); 3426 } 3427 return Mask; 3428 } 3429 3430 // Emit code to clear the bits in a record, which aren't a part of any user 3431 // declared member, when the record is a function return. 3432 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3433 llvm::IntegerType *ITy, 3434 QualType QTy) { 3435 assert(Src->getType() == ITy); 3436 assert(ITy->getScalarSizeInBits() <= 64); 3437 3438 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3439 int Size = DataLayout.getTypeStoreSize(ITy); 3440 SmallVector<uint64_t, 4> Bits(Size); 3441 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3442 3443 int CharWidth = CGM.getContext().getCharWidth(); 3444 uint64_t Mask = 3445 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3446 3447 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3448 } 3449 3450 // Emit code to clear the bits in a record, which aren't a part of any user 3451 // declared member, when the record is a function argument. 3452 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3453 llvm::ArrayType *ATy, 3454 QualType QTy) { 3455 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3456 int Size = DataLayout.getTypeStoreSize(ATy); 3457 SmallVector<uint64_t, 16> Bits(Size); 3458 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3459 3460 // Clear each element of the LLVM array. 3461 int CharWidth = CGM.getContext().getCharWidth(); 3462 int CharsPerElt = 3463 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3464 int MaskIndex = 0; 3465 llvm::Value *R = llvm::UndefValue::get(ATy); 3466 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3467 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3468 DataLayout.isBigEndian()); 3469 MaskIndex += CharsPerElt; 3470 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3471 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3472 R = Builder.CreateInsertValue(R, T1, I); 3473 } 3474 3475 return R; 3476 } 3477 3478 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3479 bool EmitRetDbgLoc, 3480 SourceLocation EndLoc) { 3481 if (FI.isNoReturn()) { 3482 // Noreturn functions don't return. 3483 EmitUnreachable(EndLoc); 3484 return; 3485 } 3486 3487 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3488 // Naked functions don't have epilogues. 3489 Builder.CreateUnreachable(); 3490 return; 3491 } 3492 3493 // Functions with no result always return void. 3494 if (!ReturnValue.isValid()) { 3495 Builder.CreateRetVoid(); 3496 return; 3497 } 3498 3499 llvm::DebugLoc RetDbgLoc; 3500 llvm::Value *RV = nullptr; 3501 QualType RetTy = FI.getReturnType(); 3502 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3503 3504 switch (RetAI.getKind()) { 3505 case ABIArgInfo::InAlloca: 3506 // Aggregrates get evaluated directly into the destination. Sometimes we 3507 // need to return the sret value in a register, though. 3508 assert(hasAggregateEvaluationKind(RetTy)); 3509 if (RetAI.getInAllocaSRet()) { 3510 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3511 --EI; 3512 llvm::Value *ArgStruct = &*EI; 3513 llvm::Value *SRet = Builder.CreateStructGEP( 3514 EI->getType()->getPointerElementType(), ArgStruct, 3515 RetAI.getInAllocaFieldIndex()); 3516 llvm::Type *Ty = 3517 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3518 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3519 } 3520 break; 3521 3522 case ABIArgInfo::Indirect: { 3523 auto AI = CurFn->arg_begin(); 3524 if (RetAI.isSRetAfterThis()) 3525 ++AI; 3526 switch (getEvaluationKind(RetTy)) { 3527 case TEK_Complex: { 3528 ComplexPairTy RT = 3529 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3530 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3531 /*isInit*/ true); 3532 break; 3533 } 3534 case TEK_Aggregate: 3535 // Do nothing; aggregrates get evaluated directly into the destination. 3536 break; 3537 case TEK_Scalar: { 3538 LValueBaseInfo BaseInfo; 3539 TBAAAccessInfo TBAAInfo; 3540 CharUnits Alignment = 3541 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3542 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3543 LValue ArgVal = 3544 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3545 EmitStoreOfScalar( 3546 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true); 3547 break; 3548 } 3549 } 3550 break; 3551 } 3552 3553 case ABIArgInfo::Extend: 3554 case ABIArgInfo::Direct: 3555 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3556 RetAI.getDirectOffset() == 0) { 3557 // The internal return value temp always will have pointer-to-return-type 3558 // type, just do a load. 3559 3560 // If there is a dominating store to ReturnValue, we can elide 3561 // the load, zap the store, and usually zap the alloca. 3562 if (llvm::StoreInst *SI = 3563 findDominatingStoreToReturnValue(*this)) { 3564 // Reuse the debug location from the store unless there is 3565 // cleanup code to be emitted between the store and return 3566 // instruction. 3567 if (EmitRetDbgLoc && !AutoreleaseResult) 3568 RetDbgLoc = SI->getDebugLoc(); 3569 // Get the stored value and nuke the now-dead store. 3570 RV = SI->getValueOperand(); 3571 SI->eraseFromParent(); 3572 3573 // Otherwise, we have to do a simple load. 3574 } else { 3575 RV = Builder.CreateLoad(ReturnValue); 3576 } 3577 } else { 3578 // If the value is offset in memory, apply the offset now. 3579 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3580 3581 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3582 } 3583 3584 // In ARC, end functions that return a retainable type with a call 3585 // to objc_autoreleaseReturnValue. 3586 if (AutoreleaseResult) { 3587 #ifndef NDEBUG 3588 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3589 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3590 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3591 // CurCodeDecl or BlockInfo. 3592 QualType RT; 3593 3594 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3595 RT = FD->getReturnType(); 3596 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3597 RT = MD->getReturnType(); 3598 else if (isa<BlockDecl>(CurCodeDecl)) 3599 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3600 else 3601 llvm_unreachable("Unexpected function/method type"); 3602 3603 assert(getLangOpts().ObjCAutoRefCount && 3604 !FI.isReturnsRetained() && 3605 RT->isObjCRetainableType()); 3606 #endif 3607 RV = emitAutoreleaseOfResult(*this, RV); 3608 } 3609 3610 break; 3611 3612 case ABIArgInfo::Ignore: 3613 break; 3614 3615 case ABIArgInfo::CoerceAndExpand: { 3616 auto coercionType = RetAI.getCoerceAndExpandType(); 3617 3618 // Load all of the coerced elements out into results. 3619 llvm::SmallVector<llvm::Value*, 4> results; 3620 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3621 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3622 auto coercedEltType = coercionType->getElementType(i); 3623 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3624 continue; 3625 3626 auto eltAddr = Builder.CreateStructGEP(addr, i); 3627 auto elt = Builder.CreateLoad(eltAddr); 3628 results.push_back(elt); 3629 } 3630 3631 // If we have one result, it's the single direct result type. 3632 if (results.size() == 1) { 3633 RV = results[0]; 3634 3635 // Otherwise, we need to make a first-class aggregate. 3636 } else { 3637 // Construct a return type that lacks padding elements. 3638 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3639 3640 RV = llvm::UndefValue::get(returnType); 3641 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3642 RV = Builder.CreateInsertValue(RV, results[i], i); 3643 } 3644 } 3645 break; 3646 } 3647 case ABIArgInfo::Expand: 3648 case ABIArgInfo::IndirectAliased: 3649 llvm_unreachable("Invalid ABI kind for return argument"); 3650 } 3651 3652 llvm::Instruction *Ret; 3653 if (RV) { 3654 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3655 // For certain return types, clear padding bits, as they may reveal 3656 // sensitive information. 3657 // Small struct/union types are passed as integers. 3658 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3659 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3660 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3661 } 3662 EmitReturnValueCheck(RV); 3663 Ret = Builder.CreateRet(RV); 3664 } else { 3665 Ret = Builder.CreateRetVoid(); 3666 } 3667 3668 if (RetDbgLoc) 3669 Ret->setDebugLoc(std::move(RetDbgLoc)); 3670 } 3671 3672 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3673 // A current decl may not be available when emitting vtable thunks. 3674 if (!CurCodeDecl) 3675 return; 3676 3677 // If the return block isn't reachable, neither is this check, so don't emit 3678 // it. 3679 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3680 return; 3681 3682 ReturnsNonNullAttr *RetNNAttr = nullptr; 3683 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3684 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3685 3686 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3687 return; 3688 3689 // Prefer the returns_nonnull attribute if it's present. 3690 SourceLocation AttrLoc; 3691 SanitizerMask CheckKind; 3692 SanitizerHandler Handler; 3693 if (RetNNAttr) { 3694 assert(!requiresReturnValueNullabilityCheck() && 3695 "Cannot check nullability and the nonnull attribute"); 3696 AttrLoc = RetNNAttr->getLocation(); 3697 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3698 Handler = SanitizerHandler::NonnullReturn; 3699 } else { 3700 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3701 if (auto *TSI = DD->getTypeSourceInfo()) 3702 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3703 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3704 CheckKind = SanitizerKind::NullabilityReturn; 3705 Handler = SanitizerHandler::NullabilityReturn; 3706 } 3707 3708 SanitizerScope SanScope(this); 3709 3710 // Make sure the "return" source location is valid. If we're checking a 3711 // nullability annotation, make sure the preconditions for the check are met. 3712 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3713 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3714 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3715 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3716 if (requiresReturnValueNullabilityCheck()) 3717 CanNullCheck = 3718 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3719 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3720 EmitBlock(Check); 3721 3722 // Now do the null check. 3723 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3724 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3725 llvm::Value *DynamicData[] = {SLocPtr}; 3726 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3727 3728 EmitBlock(NoCheck); 3729 3730 #ifndef NDEBUG 3731 // The return location should not be used after the check has been emitted. 3732 ReturnLocation = Address::invalid(); 3733 #endif 3734 } 3735 3736 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3737 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3738 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3739 } 3740 3741 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3742 QualType Ty) { 3743 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3744 // placeholders. 3745 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3746 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3747 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3748 3749 // FIXME: When we generate this IR in one pass, we shouldn't need 3750 // this win32-specific alignment hack. 3751 CharUnits Align = CharUnits::fromQuantity(4); 3752 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3753 3754 return AggValueSlot::forAddr(Address(Placeholder, Align), 3755 Ty.getQualifiers(), 3756 AggValueSlot::IsNotDestructed, 3757 AggValueSlot::DoesNotNeedGCBarriers, 3758 AggValueSlot::IsNotAliased, 3759 AggValueSlot::DoesNotOverlap); 3760 } 3761 3762 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3763 const VarDecl *param, 3764 SourceLocation loc) { 3765 // StartFunction converted the ABI-lowered parameter(s) into a 3766 // local alloca. We need to turn that into an r-value suitable 3767 // for EmitCall. 3768 Address local = GetAddrOfLocalVar(param); 3769 3770 QualType type = param->getType(); 3771 3772 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3773 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3774 } 3775 3776 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3777 // but the argument needs to be the original pointer. 3778 if (type->isReferenceType()) { 3779 args.add(RValue::get(Builder.CreateLoad(local)), type); 3780 3781 // In ARC, move out of consumed arguments so that the release cleanup 3782 // entered by StartFunction doesn't cause an over-release. This isn't 3783 // optimal -O0 code generation, but it should get cleaned up when 3784 // optimization is enabled. This also assumes that delegate calls are 3785 // performed exactly once for a set of arguments, but that should be safe. 3786 } else if (getLangOpts().ObjCAutoRefCount && 3787 param->hasAttr<NSConsumedAttr>() && 3788 type->isObjCRetainableType()) { 3789 llvm::Value *ptr = Builder.CreateLoad(local); 3790 auto null = 3791 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3792 Builder.CreateStore(null, local); 3793 args.add(RValue::get(ptr), type); 3794 3795 // For the most part, we just need to load the alloca, except that 3796 // aggregate r-values are actually pointers to temporaries. 3797 } else { 3798 args.add(convertTempToRValue(local, type, loc), type); 3799 } 3800 3801 // Deactivate the cleanup for the callee-destructed param that was pushed. 3802 if (type->isRecordType() && !CurFuncIsThunk && 3803 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3804 param->needsDestruction(getContext())) { 3805 EHScopeStack::stable_iterator cleanup = 3806 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3807 assert(cleanup.isValid() && 3808 "cleanup for callee-destructed param not recorded"); 3809 // This unreachable is a temporary marker which will be removed later. 3810 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3811 args.addArgCleanupDeactivation(cleanup, isActive); 3812 } 3813 } 3814 3815 static bool isProvablyNull(llvm::Value *addr) { 3816 return isa<llvm::ConstantPointerNull>(addr); 3817 } 3818 3819 /// Emit the actual writing-back of a writeback. 3820 static void emitWriteback(CodeGenFunction &CGF, 3821 const CallArgList::Writeback &writeback) { 3822 const LValue &srcLV = writeback.Source; 3823 Address srcAddr = srcLV.getAddress(CGF); 3824 assert(!isProvablyNull(srcAddr.getPointer()) && 3825 "shouldn't have writeback for provably null argument"); 3826 3827 llvm::BasicBlock *contBB = nullptr; 3828 3829 // If the argument wasn't provably non-null, we need to null check 3830 // before doing the store. 3831 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3832 CGF.CGM.getDataLayout()); 3833 if (!provablyNonNull) { 3834 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3835 contBB = CGF.createBasicBlock("icr.done"); 3836 3837 llvm::Value *isNull = 3838 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3839 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3840 CGF.EmitBlock(writebackBB); 3841 } 3842 3843 // Load the value to writeback. 3844 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3845 3846 // Cast it back, in case we're writing an id to a Foo* or something. 3847 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3848 "icr.writeback-cast"); 3849 3850 // Perform the writeback. 3851 3852 // If we have a "to use" value, it's something we need to emit a use 3853 // of. This has to be carefully threaded in: if it's done after the 3854 // release it's potentially undefined behavior (and the optimizer 3855 // will ignore it), and if it happens before the retain then the 3856 // optimizer could move the release there. 3857 if (writeback.ToUse) { 3858 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3859 3860 // Retain the new value. No need to block-copy here: the block's 3861 // being passed up the stack. 3862 value = CGF.EmitARCRetainNonBlock(value); 3863 3864 // Emit the intrinsic use here. 3865 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3866 3867 // Load the old value (primitively). 3868 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3869 3870 // Put the new value in place (primitively). 3871 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3872 3873 // Release the old value. 3874 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3875 3876 // Otherwise, we can just do a normal lvalue store. 3877 } else { 3878 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3879 } 3880 3881 // Jump to the continuation block. 3882 if (!provablyNonNull) 3883 CGF.EmitBlock(contBB); 3884 } 3885 3886 static void emitWritebacks(CodeGenFunction &CGF, 3887 const CallArgList &args) { 3888 for (const auto &I : args.writebacks()) 3889 emitWriteback(CGF, I); 3890 } 3891 3892 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3893 const CallArgList &CallArgs) { 3894 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3895 CallArgs.getCleanupsToDeactivate(); 3896 // Iterate in reverse to increase the likelihood of popping the cleanup. 3897 for (const auto &I : llvm::reverse(Cleanups)) { 3898 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3899 I.IsActiveIP->eraseFromParent(); 3900 } 3901 } 3902 3903 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3904 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3905 if (uop->getOpcode() == UO_AddrOf) 3906 return uop->getSubExpr(); 3907 return nullptr; 3908 } 3909 3910 /// Emit an argument that's being passed call-by-writeback. That is, 3911 /// we are passing the address of an __autoreleased temporary; it 3912 /// might be copy-initialized with the current value of the given 3913 /// address, but it will definitely be copied out of after the call. 3914 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3915 const ObjCIndirectCopyRestoreExpr *CRE) { 3916 LValue srcLV; 3917 3918 // Make an optimistic effort to emit the address as an l-value. 3919 // This can fail if the argument expression is more complicated. 3920 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3921 srcLV = CGF.EmitLValue(lvExpr); 3922 3923 // Otherwise, just emit it as a scalar. 3924 } else { 3925 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3926 3927 QualType srcAddrType = 3928 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3929 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3930 } 3931 Address srcAddr = srcLV.getAddress(CGF); 3932 3933 // The dest and src types don't necessarily match in LLVM terms 3934 // because of the crazy ObjC compatibility rules. 3935 3936 llvm::PointerType *destType = 3937 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3938 3939 // If the address is a constant null, just pass the appropriate null. 3940 if (isProvablyNull(srcAddr.getPointer())) { 3941 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3942 CRE->getType()); 3943 return; 3944 } 3945 3946 // Create the temporary. 3947 Address temp = CGF.CreateTempAlloca(destType->getPointerElementType(), 3948 CGF.getPointerAlign(), "icr.temp"); 3949 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3950 // and that cleanup will be conditional if we can't prove that the l-value 3951 // isn't null, so we need to register a dominating point so that the cleanups 3952 // system will make valid IR. 3953 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3954 3955 // Zero-initialize it if we're not doing a copy-initialization. 3956 bool shouldCopy = CRE->shouldCopy(); 3957 if (!shouldCopy) { 3958 llvm::Value *null = llvm::ConstantPointerNull::get( 3959 cast<llvm::PointerType>(destType->getPointerElementType())); 3960 CGF.Builder.CreateStore(null, temp); 3961 } 3962 3963 llvm::BasicBlock *contBB = nullptr; 3964 llvm::BasicBlock *originBB = nullptr; 3965 3966 // If the address is *not* known to be non-null, we need to switch. 3967 llvm::Value *finalArgument; 3968 3969 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3970 CGF.CGM.getDataLayout()); 3971 if (provablyNonNull) { 3972 finalArgument = temp.getPointer(); 3973 } else { 3974 llvm::Value *isNull = 3975 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3976 3977 finalArgument = CGF.Builder.CreateSelect(isNull, 3978 llvm::ConstantPointerNull::get(destType), 3979 temp.getPointer(), "icr.argument"); 3980 3981 // If we need to copy, then the load has to be conditional, which 3982 // means we need control flow. 3983 if (shouldCopy) { 3984 originBB = CGF.Builder.GetInsertBlock(); 3985 contBB = CGF.createBasicBlock("icr.cont"); 3986 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3987 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3988 CGF.EmitBlock(copyBB); 3989 condEval.begin(CGF); 3990 } 3991 } 3992 3993 llvm::Value *valueToUse = nullptr; 3994 3995 // Perform a copy if necessary. 3996 if (shouldCopy) { 3997 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3998 assert(srcRV.isScalar()); 3999 4000 llvm::Value *src = srcRV.getScalarVal(); 4001 src = CGF.Builder.CreateBitCast(src, destType->getPointerElementType(), 4002 "icr.cast"); 4003 4004 // Use an ordinary store, not a store-to-lvalue. 4005 CGF.Builder.CreateStore(src, temp); 4006 4007 // If optimization is enabled, and the value was held in a 4008 // __strong variable, we need to tell the optimizer that this 4009 // value has to stay alive until we're doing the store back. 4010 // This is because the temporary is effectively unretained, 4011 // and so otherwise we can violate the high-level semantics. 4012 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 4013 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 4014 valueToUse = src; 4015 } 4016 } 4017 4018 // Finish the control flow if we needed it. 4019 if (shouldCopy && !provablyNonNull) { 4020 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 4021 CGF.EmitBlock(contBB); 4022 4023 // Make a phi for the value to intrinsically use. 4024 if (valueToUse) { 4025 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 4026 "icr.to-use"); 4027 phiToUse->addIncoming(valueToUse, copyBB); 4028 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 4029 originBB); 4030 valueToUse = phiToUse; 4031 } 4032 4033 condEval.end(CGF); 4034 } 4035 4036 args.addWriteback(srcLV, temp, valueToUse); 4037 args.add(RValue::get(finalArgument), CRE->getType()); 4038 } 4039 4040 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4041 assert(!StackBase); 4042 4043 // Save the stack. 4044 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 4045 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 4046 } 4047 4048 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4049 if (StackBase) { 4050 // Restore the stack after the call. 4051 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 4052 CGF.Builder.CreateCall(F, StackBase); 4053 } 4054 } 4055 4056 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4057 SourceLocation ArgLoc, 4058 AbstractCallee AC, 4059 unsigned ParmNum) { 4060 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4061 SanOpts.has(SanitizerKind::NullabilityArg))) 4062 return; 4063 4064 // The param decl may be missing in a variadic function. 4065 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4066 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4067 4068 // Prefer the nonnull attribute if it's present. 4069 const NonNullAttr *NNAttr = nullptr; 4070 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4071 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4072 4073 bool CanCheckNullability = false; 4074 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 4075 auto Nullability = PVD->getType()->getNullability(getContext()); 4076 CanCheckNullability = Nullability && 4077 *Nullability == NullabilityKind::NonNull && 4078 PVD->getTypeSourceInfo(); 4079 } 4080 4081 if (!NNAttr && !CanCheckNullability) 4082 return; 4083 4084 SourceLocation AttrLoc; 4085 SanitizerMask CheckKind; 4086 SanitizerHandler Handler; 4087 if (NNAttr) { 4088 AttrLoc = NNAttr->getLocation(); 4089 CheckKind = SanitizerKind::NonnullAttribute; 4090 Handler = SanitizerHandler::NonnullArg; 4091 } else { 4092 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4093 CheckKind = SanitizerKind::NullabilityArg; 4094 Handler = SanitizerHandler::NullabilityArg; 4095 } 4096 4097 SanitizerScope SanScope(this); 4098 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4099 llvm::Constant *StaticData[] = { 4100 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4101 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4102 }; 4103 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 4104 } 4105 4106 // Check if the call is going to use the inalloca convention. This needs to 4107 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4108 // later, so we can't check it directly. 4109 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4110 ArrayRef<QualType> ArgTypes) { 4111 // The Swift calling conventions don't go through the target-specific 4112 // argument classification, they never use inalloca. 4113 // TODO: Consider limiting inalloca use to only calling conventions supported 4114 // by MSVC. 4115 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4116 return false; 4117 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4118 return false; 4119 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4120 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4121 }); 4122 } 4123 4124 #ifndef NDEBUG 4125 // Determine whether the given argument is an Objective-C method 4126 // that may have type parameters in its signature. 4127 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4128 const DeclContext *dc = method->getDeclContext(); 4129 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4130 return classDecl->getTypeParamListAsWritten(); 4131 } 4132 4133 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4134 return catDecl->getTypeParamList(); 4135 } 4136 4137 return false; 4138 } 4139 #endif 4140 4141 /// EmitCallArgs - Emit call arguments for a function. 4142 void CodeGenFunction::EmitCallArgs( 4143 CallArgList &Args, PrototypeWrapper Prototype, 4144 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4145 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4146 SmallVector<QualType, 16> ArgTypes; 4147 4148 assert((ParamsToSkip == 0 || Prototype.P) && 4149 "Can't skip parameters if type info is not provided"); 4150 4151 // This variable only captures *explicitly* written conventions, not those 4152 // applied by default via command line flags or target defaults, such as 4153 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4154 // require knowing if this is a C++ instance method or being able to see 4155 // unprototyped FunctionTypes. 4156 CallingConv ExplicitCC = CC_C; 4157 4158 // First, if a prototype was provided, use those argument types. 4159 bool IsVariadic = false; 4160 if (Prototype.P) { 4161 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4162 if (MD) { 4163 IsVariadic = MD->isVariadic(); 4164 ExplicitCC = getCallingConventionForDecl( 4165 MD, CGM.getTarget().getTriple().isOSWindows()); 4166 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4167 MD->param_type_end()); 4168 } else { 4169 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4170 IsVariadic = FPT->isVariadic(); 4171 ExplicitCC = FPT->getExtInfo().getCC(); 4172 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4173 FPT->param_type_end()); 4174 } 4175 4176 #ifndef NDEBUG 4177 // Check that the prototyped types match the argument expression types. 4178 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4179 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4180 for (QualType Ty : ArgTypes) { 4181 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4182 assert( 4183 (isGenericMethod || Ty->isVariablyModifiedType() || 4184 Ty.getNonReferenceType()->isObjCRetainableType() || 4185 getContext() 4186 .getCanonicalType(Ty.getNonReferenceType()) 4187 .getTypePtr() == 4188 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4189 "type mismatch in call argument!"); 4190 ++Arg; 4191 } 4192 4193 // Either we've emitted all the call args, or we have a call to variadic 4194 // function. 4195 assert((Arg == ArgRange.end() || IsVariadic) && 4196 "Extra arguments in non-variadic function!"); 4197 #endif 4198 } 4199 4200 // If we still have any arguments, emit them using the type of the argument. 4201 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4202 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4203 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4204 4205 // We must evaluate arguments from right to left in the MS C++ ABI, 4206 // because arguments are destroyed left to right in the callee. As a special 4207 // case, there are certain language constructs that require left-to-right 4208 // evaluation, and in those cases we consider the evaluation order requirement 4209 // to trump the "destruction order is reverse construction order" guarantee. 4210 bool LeftToRight = 4211 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4212 ? Order == EvaluationOrder::ForceLeftToRight 4213 : Order != EvaluationOrder::ForceRightToLeft; 4214 4215 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4216 RValue EmittedArg) { 4217 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4218 return; 4219 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4220 if (PS == nullptr) 4221 return; 4222 4223 const auto &Context = getContext(); 4224 auto SizeTy = Context.getSizeType(); 4225 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4226 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4227 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4228 EmittedArg.getScalarVal(), 4229 PS->isDynamic()); 4230 Args.add(RValue::get(V), SizeTy); 4231 // If we're emitting args in reverse, be sure to do so with 4232 // pass_object_size, as well. 4233 if (!LeftToRight) 4234 std::swap(Args.back(), *(&Args.back() - 1)); 4235 }; 4236 4237 // Insert a stack save if we're going to need any inalloca args. 4238 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4239 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4240 "inalloca only supported on x86"); 4241 Args.allocateArgumentMemory(*this); 4242 } 4243 4244 // Evaluate each argument in the appropriate order. 4245 size_t CallArgsStart = Args.size(); 4246 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4247 unsigned Idx = LeftToRight ? I : E - I - 1; 4248 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4249 unsigned InitialArgSize = Args.size(); 4250 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4251 // the argument and parameter match or the objc method is parameterized. 4252 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4253 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4254 ArgTypes[Idx]) || 4255 (isa<ObjCMethodDecl>(AC.getDecl()) && 4256 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4257 "Argument and parameter types don't match"); 4258 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4259 // In particular, we depend on it being the last arg in Args, and the 4260 // objectsize bits depend on there only being one arg if !LeftToRight. 4261 assert(InitialArgSize + 1 == Args.size() && 4262 "The code below depends on only adding one arg per EmitCallArg"); 4263 (void)InitialArgSize; 4264 // Since pointer argument are never emitted as LValue, it is safe to emit 4265 // non-null argument check for r-value only. 4266 if (!Args.back().hasLValue()) { 4267 RValue RVArg = Args.back().getKnownRValue(); 4268 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4269 ParamsToSkip + Idx); 4270 // @llvm.objectsize should never have side-effects and shouldn't need 4271 // destruction/cleanups, so we can safely "emit" it after its arg, 4272 // regardless of right-to-leftness 4273 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4274 } 4275 } 4276 4277 if (!LeftToRight) { 4278 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4279 // IR function. 4280 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4281 } 4282 } 4283 4284 namespace { 4285 4286 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4287 DestroyUnpassedArg(Address Addr, QualType Ty) 4288 : Addr(Addr), Ty(Ty) {} 4289 4290 Address Addr; 4291 QualType Ty; 4292 4293 void Emit(CodeGenFunction &CGF, Flags flags) override { 4294 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4295 if (DtorKind == QualType::DK_cxx_destructor) { 4296 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4297 assert(!Dtor->isTrivial()); 4298 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4299 /*Delegating=*/false, Addr, Ty); 4300 } else { 4301 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4302 } 4303 } 4304 }; 4305 4306 struct DisableDebugLocationUpdates { 4307 CodeGenFunction &CGF; 4308 bool disabledDebugInfo; 4309 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4310 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4311 CGF.disableDebugInfo(); 4312 } 4313 ~DisableDebugLocationUpdates() { 4314 if (disabledDebugInfo) 4315 CGF.enableDebugInfo(); 4316 } 4317 }; 4318 4319 } // end anonymous namespace 4320 4321 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4322 if (!HasLV) 4323 return RV; 4324 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4325 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4326 LV.isVolatile()); 4327 IsUsed = true; 4328 return RValue::getAggregate(Copy.getAddress(CGF)); 4329 } 4330 4331 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4332 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4333 if (!HasLV && RV.isScalar()) 4334 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4335 else if (!HasLV && RV.isComplex()) 4336 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4337 else { 4338 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4339 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4340 // We assume that call args are never copied into subobjects. 4341 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4342 HasLV ? LV.isVolatileQualified() 4343 : RV.isVolatileQualified()); 4344 } 4345 IsUsed = true; 4346 } 4347 4348 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4349 QualType type) { 4350 DisableDebugLocationUpdates Dis(*this, E); 4351 if (const ObjCIndirectCopyRestoreExpr *CRE 4352 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4353 assert(getLangOpts().ObjCAutoRefCount); 4354 return emitWritebackArg(*this, args, CRE); 4355 } 4356 4357 assert(type->isReferenceType() == E->isGLValue() && 4358 "reference binding to unmaterialized r-value!"); 4359 4360 if (E->isGLValue()) { 4361 assert(E->getObjectKind() == OK_Ordinary); 4362 return args.add(EmitReferenceBindingToExpr(E), type); 4363 } 4364 4365 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4366 4367 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4368 // However, we still have to push an EH-only cleanup in case we unwind before 4369 // we make it to the call. 4370 if (type->isRecordType() && 4371 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4372 // If we're using inalloca, use the argument memory. Otherwise, use a 4373 // temporary. 4374 AggValueSlot Slot = args.isUsingInAlloca() 4375 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4376 4377 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4378 if (const auto *RD = type->getAsCXXRecordDecl()) 4379 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4380 else 4381 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4382 4383 if (DestroyedInCallee) 4384 Slot.setExternallyDestructed(); 4385 4386 EmitAggExpr(E, Slot); 4387 RValue RV = Slot.asRValue(); 4388 args.add(RV, type); 4389 4390 if (DestroyedInCallee && NeedsEHCleanup) { 4391 // Create a no-op GEP between the placeholder and the cleanup so we can 4392 // RAUW it successfully. It also serves as a marker of the first 4393 // instruction where the cleanup is active. 4394 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4395 type); 4396 // This unreachable is a temporary marker which will be removed later. 4397 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4398 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4399 } 4400 return; 4401 } 4402 4403 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4404 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4405 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4406 assert(L.isSimple()); 4407 args.addUncopiedAggregate(L, type); 4408 return; 4409 } 4410 4411 args.add(EmitAnyExprToTemp(E), type); 4412 } 4413 4414 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4415 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4416 // implicitly widens null pointer constants that are arguments to varargs 4417 // functions to pointer-sized ints. 4418 if (!getTarget().getTriple().isOSWindows()) 4419 return Arg->getType(); 4420 4421 if (Arg->getType()->isIntegerType() && 4422 getContext().getTypeSize(Arg->getType()) < 4423 getContext().getTargetInfo().getPointerWidth(0) && 4424 Arg->isNullPointerConstant(getContext(), 4425 Expr::NPC_ValueDependentIsNotNull)) { 4426 return getContext().getIntPtrType(); 4427 } 4428 4429 return Arg->getType(); 4430 } 4431 4432 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4433 // optimizer it can aggressively ignore unwind edges. 4434 void 4435 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4436 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4437 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4438 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4439 CGM.getNoObjCARCExceptionsMetadata()); 4440 } 4441 4442 /// Emits a call to the given no-arguments nounwind runtime function. 4443 llvm::CallInst * 4444 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4445 const llvm::Twine &name) { 4446 return EmitNounwindRuntimeCall(callee, None, name); 4447 } 4448 4449 /// Emits a call to the given nounwind runtime function. 4450 llvm::CallInst * 4451 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4452 ArrayRef<llvm::Value *> args, 4453 const llvm::Twine &name) { 4454 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4455 call->setDoesNotThrow(); 4456 return call; 4457 } 4458 4459 /// Emits a simple call (never an invoke) to the given no-arguments 4460 /// runtime function. 4461 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4462 const llvm::Twine &name) { 4463 return EmitRuntimeCall(callee, None, name); 4464 } 4465 4466 // Calls which may throw must have operand bundles indicating which funclet 4467 // they are nested within. 4468 SmallVector<llvm::OperandBundleDef, 1> 4469 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4470 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4471 // There is no need for a funclet operand bundle if we aren't inside a 4472 // funclet. 4473 if (!CurrentFuncletPad) 4474 return BundleList; 4475 4476 // Skip intrinsics which cannot throw. 4477 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4478 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4479 return BundleList; 4480 4481 BundleList.emplace_back("funclet", CurrentFuncletPad); 4482 return BundleList; 4483 } 4484 4485 /// Emits a simple call (never an invoke) to the given runtime function. 4486 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4487 ArrayRef<llvm::Value *> args, 4488 const llvm::Twine &name) { 4489 llvm::CallInst *call = Builder.CreateCall( 4490 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4491 call->setCallingConv(getRuntimeCC()); 4492 return call; 4493 } 4494 4495 /// Emits a call or invoke to the given noreturn runtime function. 4496 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4497 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4498 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4499 getBundlesForFunclet(callee.getCallee()); 4500 4501 if (getInvokeDest()) { 4502 llvm::InvokeInst *invoke = 4503 Builder.CreateInvoke(callee, 4504 getUnreachableBlock(), 4505 getInvokeDest(), 4506 args, 4507 BundleList); 4508 invoke->setDoesNotReturn(); 4509 invoke->setCallingConv(getRuntimeCC()); 4510 } else { 4511 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4512 call->setDoesNotReturn(); 4513 call->setCallingConv(getRuntimeCC()); 4514 Builder.CreateUnreachable(); 4515 } 4516 } 4517 4518 /// Emits a call or invoke instruction to the given nullary runtime function. 4519 llvm::CallBase * 4520 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4521 const Twine &name) { 4522 return EmitRuntimeCallOrInvoke(callee, None, name); 4523 } 4524 4525 /// Emits a call or invoke instruction to the given runtime function. 4526 llvm::CallBase * 4527 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4528 ArrayRef<llvm::Value *> args, 4529 const Twine &name) { 4530 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4531 call->setCallingConv(getRuntimeCC()); 4532 return call; 4533 } 4534 4535 /// Emits a call or invoke instruction to the given function, depending 4536 /// on the current state of the EH stack. 4537 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4538 ArrayRef<llvm::Value *> Args, 4539 const Twine &Name) { 4540 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4541 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4542 getBundlesForFunclet(Callee.getCallee()); 4543 4544 llvm::CallBase *Inst; 4545 if (!InvokeDest) 4546 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4547 else { 4548 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4549 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4550 Name); 4551 EmitBlock(ContBB); 4552 } 4553 4554 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4555 // optimizer it can aggressively ignore unwind edges. 4556 if (CGM.getLangOpts().ObjCAutoRefCount) 4557 AddObjCARCExceptionMetadata(Inst); 4558 4559 return Inst; 4560 } 4561 4562 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4563 llvm::Value *New) { 4564 DeferredReplacements.push_back( 4565 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4566 } 4567 4568 namespace { 4569 4570 /// Specify given \p NewAlign as the alignment of return value attribute. If 4571 /// such attribute already exists, re-set it to the maximal one of two options. 4572 LLVM_NODISCARD llvm::AttributeList 4573 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4574 const llvm::AttributeList &Attrs, 4575 llvm::Align NewAlign) { 4576 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4577 if (CurAlign >= NewAlign) 4578 return Attrs; 4579 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4580 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4581 .addRetAttribute(Ctx, AlignAttr); 4582 } 4583 4584 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4585 protected: 4586 CodeGenFunction &CGF; 4587 4588 /// We do nothing if this is, or becomes, nullptr. 4589 const AlignedAttrTy *AA = nullptr; 4590 4591 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4592 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4593 4594 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4595 : CGF(CGF_) { 4596 if (!FuncDecl) 4597 return; 4598 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4599 } 4600 4601 public: 4602 /// If we can, materialize the alignment as an attribute on return value. 4603 LLVM_NODISCARD llvm::AttributeList 4604 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4605 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4606 return Attrs; 4607 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4608 if (!AlignmentCI) 4609 return Attrs; 4610 // We may legitimately have non-power-of-2 alignment here. 4611 // If so, this is UB land, emit it via `@llvm.assume` instead. 4612 if (!AlignmentCI->getValue().isPowerOf2()) 4613 return Attrs; 4614 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4615 CGF.getLLVMContext(), Attrs, 4616 llvm::Align( 4617 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4618 AA = nullptr; // We're done. Disallow doing anything else. 4619 return NewAttrs; 4620 } 4621 4622 /// Emit alignment assumption. 4623 /// This is a general fallback that we take if either there is an offset, 4624 /// or the alignment is variable or we are sanitizing for alignment. 4625 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4626 if (!AA) 4627 return; 4628 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4629 AA->getLocation(), Alignment, OffsetCI); 4630 AA = nullptr; // We're done. Disallow doing anything else. 4631 } 4632 }; 4633 4634 /// Helper data structure to emit `AssumeAlignedAttr`. 4635 class AssumeAlignedAttrEmitter final 4636 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4637 public: 4638 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4639 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4640 if (!AA) 4641 return; 4642 // It is guaranteed that the alignment/offset are constants. 4643 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4644 if (Expr *Offset = AA->getOffset()) { 4645 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4646 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4647 OffsetCI = nullptr; 4648 } 4649 } 4650 }; 4651 4652 /// Helper data structure to emit `AllocAlignAttr`. 4653 class AllocAlignAttrEmitter final 4654 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4655 public: 4656 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4657 const CallArgList &CallArgs) 4658 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4659 if (!AA) 4660 return; 4661 // Alignment may or may not be a constant, and that is okay. 4662 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4663 .getRValue(CGF) 4664 .getScalarVal(); 4665 } 4666 }; 4667 4668 } // namespace 4669 4670 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4671 const CGCallee &Callee, 4672 ReturnValueSlot ReturnValue, 4673 const CallArgList &CallArgs, 4674 llvm::CallBase **callOrInvoke, bool IsMustTail, 4675 SourceLocation Loc) { 4676 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4677 4678 assert(Callee.isOrdinary() || Callee.isVirtual()); 4679 4680 // Handle struct-return functions by passing a pointer to the 4681 // location that we would like to return into. 4682 QualType RetTy = CallInfo.getReturnType(); 4683 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4684 4685 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4686 4687 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4688 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4689 // We can only guarantee that a function is called from the correct 4690 // context/function based on the appropriate target attributes, 4691 // so only check in the case where we have both always_inline and target 4692 // since otherwise we could be making a conditional call after a check for 4693 // the proper cpu features (and it won't cause code generation issues due to 4694 // function based code generation). 4695 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4696 TargetDecl->hasAttr<TargetAttr>()) 4697 checkTargetFeatures(Loc, FD); 4698 4699 // Some architectures (such as x86-64) have the ABI changed based on 4700 // attribute-target/features. Give them a chance to diagnose. 4701 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4702 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4703 } 4704 4705 #ifndef NDEBUG 4706 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4707 // For an inalloca varargs function, we don't expect CallInfo to match the 4708 // function pointer's type, because the inalloca struct a will have extra 4709 // fields in it for the varargs parameters. Code later in this function 4710 // bitcasts the function pointer to the type derived from CallInfo. 4711 // 4712 // In other cases, we assert that the types match up (until pointers stop 4713 // having pointee types). 4714 if (Callee.isVirtual()) 4715 assert(IRFuncTy == Callee.getVirtualFunctionType()); 4716 else { 4717 llvm::PointerType *PtrTy = 4718 llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType()); 4719 assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy)); 4720 } 4721 } 4722 #endif 4723 4724 // 1. Set up the arguments. 4725 4726 // If we're using inalloca, insert the allocation after the stack save. 4727 // FIXME: Do this earlier rather than hacking it in here! 4728 Address ArgMemory = Address::invalid(); 4729 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4730 const llvm::DataLayout &DL = CGM.getDataLayout(); 4731 llvm::Instruction *IP = CallArgs.getStackBase(); 4732 llvm::AllocaInst *AI; 4733 if (IP) { 4734 IP = IP->getNextNode(); 4735 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4736 "argmem", IP); 4737 } else { 4738 AI = CreateTempAlloca(ArgStruct, "argmem"); 4739 } 4740 auto Align = CallInfo.getArgStructAlignment(); 4741 AI->setAlignment(Align.getAsAlign()); 4742 AI->setUsedWithInAlloca(true); 4743 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4744 ArgMemory = Address(AI, Align); 4745 } 4746 4747 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4748 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4749 4750 // If the call returns a temporary with struct return, create a temporary 4751 // alloca to hold the result, unless one is given to us. 4752 Address SRetPtr = Address::invalid(); 4753 Address SRetAlloca = Address::invalid(); 4754 llvm::Value *UnusedReturnSizePtr = nullptr; 4755 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4756 if (!ReturnValue.isNull()) { 4757 SRetPtr = ReturnValue.getValue(); 4758 } else { 4759 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4760 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4761 llvm::TypeSize size = 4762 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4763 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4764 } 4765 } 4766 if (IRFunctionArgs.hasSRetArg()) { 4767 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4768 } else if (RetAI.isInAlloca()) { 4769 Address Addr = 4770 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4771 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4772 } 4773 } 4774 4775 Address swiftErrorTemp = Address::invalid(); 4776 Address swiftErrorArg = Address::invalid(); 4777 4778 // When passing arguments using temporary allocas, we need to add the 4779 // appropriate lifetime markers. This vector keeps track of all the lifetime 4780 // markers that need to be ended right after the call. 4781 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4782 4783 // Translate all of the arguments as necessary to match the IR lowering. 4784 assert(CallInfo.arg_size() == CallArgs.size() && 4785 "Mismatch between function signature & arguments."); 4786 unsigned ArgNo = 0; 4787 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4788 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4789 I != E; ++I, ++info_it, ++ArgNo) { 4790 const ABIArgInfo &ArgInfo = info_it->info; 4791 4792 // Insert a padding argument to ensure proper alignment. 4793 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4794 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4795 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4796 4797 unsigned FirstIRArg, NumIRArgs; 4798 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4799 4800 switch (ArgInfo.getKind()) { 4801 case ABIArgInfo::InAlloca: { 4802 assert(NumIRArgs == 0); 4803 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4804 if (I->isAggregate()) { 4805 Address Addr = I->hasLValue() 4806 ? I->getKnownLValue().getAddress(*this) 4807 : I->getKnownRValue().getAggregateAddress(); 4808 llvm::Instruction *Placeholder = 4809 cast<llvm::Instruction>(Addr.getPointer()); 4810 4811 if (!ArgInfo.getInAllocaIndirect()) { 4812 // Replace the placeholder with the appropriate argument slot GEP. 4813 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4814 Builder.SetInsertPoint(Placeholder); 4815 Addr = Builder.CreateStructGEP(ArgMemory, 4816 ArgInfo.getInAllocaFieldIndex()); 4817 Builder.restoreIP(IP); 4818 } else { 4819 // For indirect things such as overaligned structs, replace the 4820 // placeholder with a regular aggregate temporary alloca. Store the 4821 // address of this alloca into the struct. 4822 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4823 Address ArgSlot = Builder.CreateStructGEP( 4824 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4825 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4826 } 4827 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4828 } else if (ArgInfo.getInAllocaIndirect()) { 4829 // Make a temporary alloca and store the address of it into the argument 4830 // struct. 4831 Address Addr = CreateMemTempWithoutCast( 4832 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4833 "indirect-arg-temp"); 4834 I->copyInto(*this, Addr); 4835 Address ArgSlot = 4836 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4837 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4838 } else { 4839 // Store the RValue into the argument struct. 4840 Address Addr = 4841 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4842 // There are some cases where a trivial bitcast is not avoidable. The 4843 // definition of a type later in a translation unit may change it's type 4844 // from {}* to (%struct.foo*)*. 4845 Addr = Builder.CreateElementBitCast(Addr, ConvertTypeForMem(I->Ty)); 4846 I->copyInto(*this, Addr); 4847 } 4848 break; 4849 } 4850 4851 case ABIArgInfo::Indirect: 4852 case ABIArgInfo::IndirectAliased: { 4853 assert(NumIRArgs == 1); 4854 if (!I->isAggregate()) { 4855 // Make a temporary alloca to pass the argument. 4856 Address Addr = CreateMemTempWithoutCast( 4857 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4858 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4859 4860 I->copyInto(*this, Addr); 4861 } else { 4862 // We want to avoid creating an unnecessary temporary+copy here; 4863 // however, we need one in three cases: 4864 // 1. If the argument is not byval, and we are required to copy the 4865 // source. (This case doesn't occur on any common architecture.) 4866 // 2. If the argument is byval, RV is not sufficiently aligned, and 4867 // we cannot force it to be sufficiently aligned. 4868 // 3. If the argument is byval, but RV is not located in default 4869 // or alloca address space. 4870 Address Addr = I->hasLValue() 4871 ? I->getKnownLValue().getAddress(*this) 4872 : I->getKnownRValue().getAggregateAddress(); 4873 llvm::Value *V = Addr.getPointer(); 4874 CharUnits Align = ArgInfo.getIndirectAlign(); 4875 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4876 4877 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4878 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4879 TD->getAllocaAddrSpace()) && 4880 "indirect argument must be in alloca address space"); 4881 4882 bool NeedCopy = false; 4883 4884 if (Addr.getAlignment() < Align && 4885 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4886 Align.getAsAlign()) { 4887 NeedCopy = true; 4888 } else if (I->hasLValue()) { 4889 auto LV = I->getKnownLValue(); 4890 auto AS = LV.getAddressSpace(); 4891 4892 if (!ArgInfo.getIndirectByVal() || 4893 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4894 NeedCopy = true; 4895 } 4896 if (!getLangOpts().OpenCL) { 4897 if ((ArgInfo.getIndirectByVal() && 4898 (AS != LangAS::Default && 4899 AS != CGM.getASTAllocaAddressSpace()))) { 4900 NeedCopy = true; 4901 } 4902 } 4903 // For OpenCL even if RV is located in default or alloca address space 4904 // we don't want to perform address space cast for it. 4905 else if ((ArgInfo.getIndirectByVal() && 4906 Addr.getType()->getAddressSpace() != IRFuncTy-> 4907 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4908 NeedCopy = true; 4909 } 4910 } 4911 4912 if (NeedCopy) { 4913 // Create an aligned temporary, and copy to it. 4914 Address AI = CreateMemTempWithoutCast( 4915 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4916 IRCallArgs[FirstIRArg] = AI.getPointer(); 4917 4918 // Emit lifetime markers for the temporary alloca. 4919 llvm::TypeSize ByvalTempElementSize = 4920 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4921 llvm::Value *LifetimeSize = 4922 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4923 4924 // Add cleanup code to emit the end lifetime marker after the call. 4925 if (LifetimeSize) // In case we disabled lifetime markers. 4926 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4927 4928 // Generate the copy. 4929 I->copyInto(*this, AI); 4930 } else { 4931 // Skip the extra memcpy call. 4932 auto *T = llvm::PointerType::getWithSamePointeeType( 4933 cast<llvm::PointerType>(V->getType()), 4934 CGM.getDataLayout().getAllocaAddrSpace()); 4935 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4936 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4937 true); 4938 } 4939 } 4940 break; 4941 } 4942 4943 case ABIArgInfo::Ignore: 4944 assert(NumIRArgs == 0); 4945 break; 4946 4947 case ABIArgInfo::Extend: 4948 case ABIArgInfo::Direct: { 4949 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4950 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4951 ArgInfo.getDirectOffset() == 0) { 4952 assert(NumIRArgs == 1); 4953 llvm::Value *V; 4954 if (!I->isAggregate()) 4955 V = I->getKnownRValue().getScalarVal(); 4956 else 4957 V = Builder.CreateLoad( 4958 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4959 : I->getKnownRValue().getAggregateAddress()); 4960 4961 // Implement swifterror by copying into a new swifterror argument. 4962 // We'll write back in the normal path out of the call. 4963 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4964 == ParameterABI::SwiftErrorResult) { 4965 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4966 4967 QualType pointeeTy = I->Ty->getPointeeType(); 4968 swiftErrorArg = 4969 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4970 4971 swiftErrorTemp = 4972 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4973 V = swiftErrorTemp.getPointer(); 4974 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4975 4976 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4977 Builder.CreateStore(errorValue, swiftErrorTemp); 4978 } 4979 4980 // We might have to widen integers, but we should never truncate. 4981 if (ArgInfo.getCoerceToType() != V->getType() && 4982 V->getType()->isIntegerTy()) 4983 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4984 4985 // If the argument doesn't match, perform a bitcast to coerce it. This 4986 // can happen due to trivial type mismatches. 4987 if (FirstIRArg < IRFuncTy->getNumParams() && 4988 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4989 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4990 4991 IRCallArgs[FirstIRArg] = V; 4992 break; 4993 } 4994 4995 // FIXME: Avoid the conversion through memory if possible. 4996 Address Src = Address::invalid(); 4997 if (!I->isAggregate()) { 4998 Src = CreateMemTemp(I->Ty, "coerce"); 4999 I->copyInto(*this, Src); 5000 } else { 5001 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5002 : I->getKnownRValue().getAggregateAddress(); 5003 } 5004 5005 // If the value is offset in memory, apply the offset now. 5006 Src = emitAddressAtOffset(*this, Src, ArgInfo); 5007 5008 // Fast-isel and the optimizer generally like scalar values better than 5009 // FCAs, so we flatten them if this is safe to do for this argument. 5010 llvm::StructType *STy = 5011 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 5012 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 5013 llvm::Type *SrcTy = Src.getElementType(); 5014 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5015 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 5016 5017 // If the source type is smaller than the destination type of the 5018 // coerce-to logic, copy the source value into a temp alloca the size 5019 // of the destination type to allow loading all of it. The bits past 5020 // the source value are left undef. 5021 if (SrcSize < DstSize) { 5022 Address TempAlloca 5023 = CreateTempAlloca(STy, Src.getAlignment(), 5024 Src.getName() + ".coerce"); 5025 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 5026 Src = TempAlloca; 5027 } else { 5028 Src = Builder.CreateElementBitCast(Src, STy); 5029 } 5030 5031 assert(NumIRArgs == STy->getNumElements()); 5032 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5033 Address EltPtr = Builder.CreateStructGEP(Src, i); 5034 llvm::Value *LI = Builder.CreateLoad(EltPtr); 5035 IRCallArgs[FirstIRArg + i] = LI; 5036 } 5037 } else { 5038 // In the simple case, just pass the coerced loaded value. 5039 assert(NumIRArgs == 1); 5040 llvm::Value *Load = 5041 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5042 5043 if (CallInfo.isCmseNSCall()) { 5044 // For certain parameter types, clear padding bits, as they may reveal 5045 // sensitive information. 5046 // Small struct/union types are passed as integer arrays. 5047 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5048 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5049 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5050 } 5051 IRCallArgs[FirstIRArg] = Load; 5052 } 5053 5054 break; 5055 } 5056 5057 case ABIArgInfo::CoerceAndExpand: { 5058 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5059 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5060 5061 llvm::Value *tempSize = nullptr; 5062 Address addr = Address::invalid(); 5063 Address AllocaAddr = Address::invalid(); 5064 if (I->isAggregate()) { 5065 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5066 : I->getKnownRValue().getAggregateAddress(); 5067 5068 } else { 5069 RValue RV = I->getKnownRValue(); 5070 assert(RV.isScalar()); // complex should always just be direct 5071 5072 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5073 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5074 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 5075 5076 // Materialize to a temporary. 5077 addr = 5078 CreateTempAlloca(RV.getScalarVal()->getType(), 5079 CharUnits::fromQuantity(std::max( 5080 layout->getAlignment().value(), scalarAlign)), 5081 "tmp", 5082 /*ArraySize=*/nullptr, &AllocaAddr); 5083 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5084 5085 Builder.CreateStore(RV.getScalarVal(), addr); 5086 } 5087 5088 addr = Builder.CreateElementBitCast(addr, coercionType); 5089 5090 unsigned IRArgPos = FirstIRArg; 5091 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5092 llvm::Type *eltType = coercionType->getElementType(i); 5093 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5094 Address eltAddr = Builder.CreateStructGEP(addr, i); 5095 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5096 IRCallArgs[IRArgPos++] = elt; 5097 } 5098 assert(IRArgPos == FirstIRArg + NumIRArgs); 5099 5100 if (tempSize) { 5101 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5102 } 5103 5104 break; 5105 } 5106 5107 case ABIArgInfo::Expand: { 5108 unsigned IRArgPos = FirstIRArg; 5109 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5110 assert(IRArgPos == FirstIRArg + NumIRArgs); 5111 break; 5112 } 5113 } 5114 } 5115 5116 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5117 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5118 5119 // If we're using inalloca, set up that argument. 5120 if (ArgMemory.isValid()) { 5121 llvm::Value *Arg = ArgMemory.getPointer(); 5122 if (CallInfo.isVariadic()) { 5123 // When passing non-POD arguments by value to variadic functions, we will 5124 // end up with a variadic prototype and an inalloca call site. In such 5125 // cases, we can't do any parameter mismatch checks. Give up and bitcast 5126 // the callee. 5127 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 5128 CalleePtr = 5129 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 5130 } else { 5131 llvm::Type *LastParamTy = 5132 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 5133 if (Arg->getType() != LastParamTy) { 5134 #ifndef NDEBUG 5135 // Assert that these structs have equivalent element types. 5136 llvm::StructType *FullTy = CallInfo.getArgStruct(); 5137 llvm::StructType *DeclaredTy = 5138 cast<llvm::StructType>(LastParamTy->getPointerElementType()); 5139 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 5140 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 5141 DE = DeclaredTy->element_end(), 5142 FI = FullTy->element_begin(); 5143 DI != DE; ++DI, ++FI) 5144 assert(*DI == *FI); 5145 #endif 5146 Arg = Builder.CreateBitCast(Arg, LastParamTy); 5147 } 5148 } 5149 assert(IRFunctionArgs.hasInallocaArg()); 5150 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5151 } 5152 5153 // 2. Prepare the function pointer. 5154 5155 // If the callee is a bitcast of a non-variadic function to have a 5156 // variadic function pointer type, check to see if we can remove the 5157 // bitcast. This comes up with unprototyped functions. 5158 // 5159 // This makes the IR nicer, but more importantly it ensures that we 5160 // can inline the function at -O0 if it is marked always_inline. 5161 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5162 llvm::Value *Ptr) -> llvm::Function * { 5163 if (!CalleeFT->isVarArg()) 5164 return nullptr; 5165 5166 // Get underlying value if it's a bitcast 5167 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5168 if (CE->getOpcode() == llvm::Instruction::BitCast) 5169 Ptr = CE->getOperand(0); 5170 } 5171 5172 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5173 if (!OrigFn) 5174 return nullptr; 5175 5176 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5177 5178 // If the original type is variadic, or if any of the component types 5179 // disagree, we cannot remove the cast. 5180 if (OrigFT->isVarArg() || 5181 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5182 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5183 return nullptr; 5184 5185 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5186 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5187 return nullptr; 5188 5189 return OrigFn; 5190 }; 5191 5192 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5193 CalleePtr = OrigFn; 5194 IRFuncTy = OrigFn->getFunctionType(); 5195 } 5196 5197 // 3. Perform the actual call. 5198 5199 // Deactivate any cleanups that we're supposed to do immediately before 5200 // the call. 5201 if (!CallArgs.getCleanupsToDeactivate().empty()) 5202 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5203 5204 // Assert that the arguments we computed match up. The IR verifier 5205 // will catch this, but this is a common enough source of problems 5206 // during IRGen changes that it's way better for debugging to catch 5207 // it ourselves here. 5208 #ifndef NDEBUG 5209 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5210 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5211 // Inalloca argument can have different type. 5212 if (IRFunctionArgs.hasInallocaArg() && 5213 i == IRFunctionArgs.getInallocaArgNo()) 5214 continue; 5215 if (i < IRFuncTy->getNumParams()) 5216 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5217 } 5218 #endif 5219 5220 // Update the largest vector width if any arguments have vector types. 5221 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5222 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 5223 LargestVectorWidth = 5224 std::max((uint64_t)LargestVectorWidth, 5225 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5226 } 5227 5228 // Compute the calling convention and attributes. 5229 unsigned CallingConv; 5230 llvm::AttributeList Attrs; 5231 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5232 Callee.getAbstractInfo(), Attrs, CallingConv, 5233 /*AttrOnCallSite=*/true, 5234 /*IsThunk=*/false); 5235 5236 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5237 if (FD->hasAttr<StrictFPAttr>()) 5238 // All calls within a strictfp function are marked strictfp 5239 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5240 5241 // Add call-site nomerge attribute if exists. 5242 if (InNoMergeAttributedStmt) 5243 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5244 5245 // Apply some call-site-specific attributes. 5246 // TODO: work this into building the attribute set. 5247 5248 // Apply always_inline to all calls within flatten functions. 5249 // FIXME: should this really take priority over __try, below? 5250 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5251 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5252 Attrs = 5253 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5254 } 5255 5256 // Disable inlining inside SEH __try blocks. 5257 if (isSEHTryScope()) { 5258 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5259 } 5260 5261 // Decide whether to use a call or an invoke. 5262 bool CannotThrow; 5263 if (currentFunctionUsesSEHTry()) { 5264 // SEH cares about asynchronous exceptions, so everything can "throw." 5265 CannotThrow = false; 5266 } else if (isCleanupPadScope() && 5267 EHPersonality::get(*this).isMSVCXXPersonality()) { 5268 // The MSVC++ personality will implicitly terminate the program if an 5269 // exception is thrown during a cleanup outside of a try/catch. 5270 // We don't need to model anything in IR to get this behavior. 5271 CannotThrow = true; 5272 } else { 5273 // Otherwise, nounwind call sites will never throw. 5274 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5275 5276 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5277 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5278 CannotThrow = true; 5279 } 5280 5281 // If we made a temporary, be sure to clean up after ourselves. Note that we 5282 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5283 // pop this cleanup later on. Being eager about this is OK, since this 5284 // temporary is 'invisible' outside of the callee. 5285 if (UnusedReturnSizePtr) 5286 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5287 UnusedReturnSizePtr); 5288 5289 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5290 5291 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5292 getBundlesForFunclet(CalleePtr); 5293 5294 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5295 if (FD->hasAttr<StrictFPAttr>()) 5296 // All calls within a strictfp function are marked strictfp 5297 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5298 5299 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5300 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5301 5302 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5303 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5304 5305 // Emit the actual call/invoke instruction. 5306 llvm::CallBase *CI; 5307 if (!InvokeDest) { 5308 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5309 } else { 5310 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5311 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5312 BundleList); 5313 EmitBlock(Cont); 5314 } 5315 if (callOrInvoke) 5316 *callOrInvoke = CI; 5317 5318 // If this is within a function that has the guard(nocf) attribute and is an 5319 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5320 // Control Flow Guard checks should not be added, even if the call is inlined. 5321 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5322 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5323 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5324 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5325 } 5326 } 5327 5328 // Apply the attributes and calling convention. 5329 CI->setAttributes(Attrs); 5330 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5331 5332 // Apply various metadata. 5333 5334 if (!CI->getType()->isVoidTy()) 5335 CI->setName("call"); 5336 5337 // Update largest vector width from the return type. 5338 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 5339 LargestVectorWidth = 5340 std::max((uint64_t)LargestVectorWidth, 5341 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5342 5343 // Insert instrumentation or attach profile metadata at indirect call sites. 5344 // For more details, see the comment before the definition of 5345 // IPVK_IndirectCallTarget in InstrProfData.inc. 5346 if (!CI->getCalledFunction()) 5347 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5348 CI, CalleePtr); 5349 5350 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5351 // optimizer it can aggressively ignore unwind edges. 5352 if (CGM.getLangOpts().ObjCAutoRefCount) 5353 AddObjCARCExceptionMetadata(CI); 5354 5355 // Set tail call kind if necessary. 5356 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5357 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5358 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5359 else if (IsMustTail) 5360 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5361 } 5362 5363 // Add metadata for calls to MSAllocator functions 5364 if (getDebugInfo() && TargetDecl && 5365 TargetDecl->hasAttr<MSAllocatorAttr>()) 5366 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5367 5368 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5369 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5370 llvm::ConstantInt *Line = 5371 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding()); 5372 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5373 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5374 CI->setMetadata("srcloc", MDT); 5375 } 5376 5377 // 4. Finish the call. 5378 5379 // If the call doesn't return, finish the basic block and clear the 5380 // insertion point; this allows the rest of IRGen to discard 5381 // unreachable code. 5382 if (CI->doesNotReturn()) { 5383 if (UnusedReturnSizePtr) 5384 PopCleanupBlock(); 5385 5386 // Strip away the noreturn attribute to better diagnose unreachable UB. 5387 if (SanOpts.has(SanitizerKind::Unreachable)) { 5388 // Also remove from function since CallBase::hasFnAttr additionally checks 5389 // attributes of the called function. 5390 if (auto *F = CI->getCalledFunction()) 5391 F->removeFnAttr(llvm::Attribute::NoReturn); 5392 CI->removeFnAttr(llvm::Attribute::NoReturn); 5393 5394 // Avoid incompatibility with ASan which relies on the `noreturn` 5395 // attribute to insert handler calls. 5396 if (SanOpts.hasOneOf(SanitizerKind::Address | 5397 SanitizerKind::KernelAddress)) { 5398 SanitizerScope SanScope(this); 5399 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5400 Builder.SetInsertPoint(CI); 5401 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5402 llvm::FunctionCallee Fn = 5403 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5404 EmitNounwindRuntimeCall(Fn); 5405 } 5406 } 5407 5408 EmitUnreachable(Loc); 5409 Builder.ClearInsertionPoint(); 5410 5411 // FIXME: For now, emit a dummy basic block because expr emitters in 5412 // generally are not ready to handle emitting expressions at unreachable 5413 // points. 5414 EnsureInsertPoint(); 5415 5416 // Return a reasonable RValue. 5417 return GetUndefRValue(RetTy); 5418 } 5419 5420 // If this is a musttail call, return immediately. We do not branch to the 5421 // epilogue in this case. 5422 if (IsMustTail) { 5423 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5424 ++it) { 5425 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5426 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5427 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5428 } 5429 if (CI->getType()->isVoidTy()) 5430 Builder.CreateRetVoid(); 5431 else 5432 Builder.CreateRet(CI); 5433 Builder.ClearInsertionPoint(); 5434 EnsureInsertPoint(); 5435 return GetUndefRValue(RetTy); 5436 } 5437 5438 // Perform the swifterror writeback. 5439 if (swiftErrorTemp.isValid()) { 5440 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5441 Builder.CreateStore(errorResult, swiftErrorArg); 5442 } 5443 5444 // Emit any call-associated writebacks immediately. Arguably this 5445 // should happen after any return-value munging. 5446 if (CallArgs.hasWritebacks()) 5447 emitWritebacks(*this, CallArgs); 5448 5449 // The stack cleanup for inalloca arguments has to run out of the normal 5450 // lexical order, so deactivate it and run it manually here. 5451 CallArgs.freeArgumentMemory(*this); 5452 5453 // Extract the return value. 5454 RValue Ret = [&] { 5455 switch (RetAI.getKind()) { 5456 case ABIArgInfo::CoerceAndExpand: { 5457 auto coercionType = RetAI.getCoerceAndExpandType(); 5458 5459 Address addr = SRetPtr; 5460 addr = Builder.CreateElementBitCast(addr, coercionType); 5461 5462 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5463 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5464 5465 unsigned unpaddedIndex = 0; 5466 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5467 llvm::Type *eltType = coercionType->getElementType(i); 5468 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5469 Address eltAddr = Builder.CreateStructGEP(addr, i); 5470 llvm::Value *elt = CI; 5471 if (requiresExtract) 5472 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5473 else 5474 assert(unpaddedIndex == 0); 5475 Builder.CreateStore(elt, eltAddr); 5476 } 5477 // FALLTHROUGH 5478 LLVM_FALLTHROUGH; 5479 } 5480 5481 case ABIArgInfo::InAlloca: 5482 case ABIArgInfo::Indirect: { 5483 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5484 if (UnusedReturnSizePtr) 5485 PopCleanupBlock(); 5486 return ret; 5487 } 5488 5489 case ABIArgInfo::Ignore: 5490 // If we are ignoring an argument that had a result, make sure to 5491 // construct the appropriate return value for our caller. 5492 return GetUndefRValue(RetTy); 5493 5494 case ABIArgInfo::Extend: 5495 case ABIArgInfo::Direct: { 5496 llvm::Type *RetIRTy = ConvertType(RetTy); 5497 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5498 switch (getEvaluationKind(RetTy)) { 5499 case TEK_Complex: { 5500 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5501 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5502 return RValue::getComplex(std::make_pair(Real, Imag)); 5503 } 5504 case TEK_Aggregate: { 5505 Address DestPtr = ReturnValue.getValue(); 5506 bool DestIsVolatile = ReturnValue.isVolatile(); 5507 5508 if (!DestPtr.isValid()) { 5509 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5510 DestIsVolatile = false; 5511 } 5512 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5513 return RValue::getAggregate(DestPtr); 5514 } 5515 case TEK_Scalar: { 5516 // If the argument doesn't match, perform a bitcast to coerce it. This 5517 // can happen due to trivial type mismatches. 5518 llvm::Value *V = CI; 5519 if (V->getType() != RetIRTy) 5520 V = Builder.CreateBitCast(V, RetIRTy); 5521 return RValue::get(V); 5522 } 5523 } 5524 llvm_unreachable("bad evaluation kind"); 5525 } 5526 5527 Address DestPtr = ReturnValue.getValue(); 5528 bool DestIsVolatile = ReturnValue.isVolatile(); 5529 5530 if (!DestPtr.isValid()) { 5531 DestPtr = CreateMemTemp(RetTy, "coerce"); 5532 DestIsVolatile = false; 5533 } 5534 5535 // If the value is offset in memory, apply the offset now. 5536 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5537 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5538 5539 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5540 } 5541 5542 case ABIArgInfo::Expand: 5543 case ABIArgInfo::IndirectAliased: 5544 llvm_unreachable("Invalid ABI kind for return argument"); 5545 } 5546 5547 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5548 } (); 5549 5550 // Emit the assume_aligned check on the return value. 5551 if (Ret.isScalar() && TargetDecl) { 5552 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5553 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5554 } 5555 5556 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5557 // we can't use the full cleanup mechanism. 5558 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5559 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5560 5561 if (!ReturnValue.isExternallyDestructed() && 5562 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5563 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5564 RetTy); 5565 5566 return Ret; 5567 } 5568 5569 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5570 if (isVirtual()) { 5571 const CallExpr *CE = getVirtualCallExpr(); 5572 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5573 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5574 CE ? CE->getBeginLoc() : SourceLocation()); 5575 } 5576 5577 return *this; 5578 } 5579 5580 /* VarArg handling */ 5581 5582 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5583 VAListAddr = VE->isMicrosoftABI() 5584 ? EmitMSVAListRef(VE->getSubExpr()) 5585 : EmitVAListRef(VE->getSubExpr()); 5586 QualType Ty = VE->getType(); 5587 if (VE->isMicrosoftABI()) 5588 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5589 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5590 } 5591