1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 using namespace clang;
43 using namespace CodeGen;
44 
45 /***/
46 
47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
48   switch (CC) {
49   default: return llvm::CallingConv::C;
50   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
51   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
52   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
53   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
54   case CC_Win64: return llvm::CallingConv::Win64;
55   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
56   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
57   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
58   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
59   // TODO: Add support for __pascal to LLVM.
60   case CC_X86Pascal: return llvm::CallingConv::C;
61   // TODO: Add support for __vectorcall to LLVM.
62   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
63   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
64   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
65   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
66   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
67   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
68   case CC_Swift: return llvm::CallingConv::Swift;
69   case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
70   }
71 }
72 
73 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
74 /// qualification. Either or both of RD and MD may be null. A null RD indicates
75 /// that there is no meaningful 'this' type, and a null MD can occur when
76 /// calling a method pointer.
77 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
78                                          const CXXMethodDecl *MD) {
79   QualType RecTy;
80   if (RD)
81     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
82   else
83     RecTy = Context.VoidTy;
84 
85   if (MD)
86     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
87   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
88 }
89 
90 /// Returns the canonical formal type of the given C++ method.
91 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
92   return MD->getType()->getCanonicalTypeUnqualified()
93            .getAs<FunctionProtoType>();
94 }
95 
96 /// Returns the "extra-canonicalized" return type, which discards
97 /// qualifiers on the return type.  Codegen doesn't care about them,
98 /// and it makes ABI code a little easier to be able to assume that
99 /// all parameter and return types are top-level unqualified.
100 static CanQualType GetReturnType(QualType RetTy) {
101   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
102 }
103 
104 /// Arrange the argument and result information for a value of the given
105 /// unprototyped freestanding function type.
106 const CGFunctionInfo &
107 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
108   // When translating an unprototyped function type, always use a
109   // variadic type.
110   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
111                                  /*instanceMethod=*/false,
112                                  /*chainCall=*/false, None,
113                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
114 }
115 
116 static void addExtParameterInfosForCall(
117          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
118                                         const FunctionProtoType *proto,
119                                         unsigned prefixArgs,
120                                         unsigned totalArgs) {
121   assert(proto->hasExtParameterInfos());
122   assert(paramInfos.size() <= prefixArgs);
123   assert(proto->getNumParams() + prefixArgs <= totalArgs);
124 
125   paramInfos.reserve(totalArgs);
126 
127   // Add default infos for any prefix args that don't already have infos.
128   paramInfos.resize(prefixArgs);
129 
130   // Add infos for the prototype.
131   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
132     paramInfos.push_back(ParamInfo);
133     // pass_object_size params have no parameter info.
134     if (ParamInfo.hasPassObjectSize())
135       paramInfos.emplace_back();
136   }
137 
138   assert(paramInfos.size() <= totalArgs &&
139          "Did we forget to insert pass_object_size args?");
140   // Add default infos for the variadic and/or suffix arguments.
141   paramInfos.resize(totalArgs);
142 }
143 
144 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
145 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
146 static void appendParameterTypes(const CodeGenTypes &CGT,
147                                  SmallVectorImpl<CanQualType> &prefix,
148               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
149                                  CanQual<FunctionProtoType> FPT) {
150   // Fast path: don't touch param info if we don't need to.
151   if (!FPT->hasExtParameterInfos()) {
152     assert(paramInfos.empty() &&
153            "We have paramInfos, but the prototype doesn't?");
154     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
155     return;
156   }
157 
158   unsigned PrefixSize = prefix.size();
159   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
160   // parameters; the only thing that can change this is the presence of
161   // pass_object_size. So, we preallocate for the common case.
162   prefix.reserve(prefix.size() + FPT->getNumParams());
163 
164   auto ExtInfos = FPT->getExtParameterInfos();
165   assert(ExtInfos.size() == FPT->getNumParams());
166   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
167     prefix.push_back(FPT->getParamType(I));
168     if (ExtInfos[I].hasPassObjectSize())
169       prefix.push_back(CGT.getContext().getSizeType());
170   }
171 
172   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
173                               prefix.size());
174 }
175 
176 /// Arrange the LLVM function layout for a value of the given function
177 /// type, on top of any implicit parameters already stored.
178 static const CGFunctionInfo &
179 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
180                         SmallVectorImpl<CanQualType> &prefix,
181                         CanQual<FunctionProtoType> FTP) {
182   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
183   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
184   // FIXME: Kill copy.
185   appendParameterTypes(CGT, prefix, paramInfos, FTP);
186   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
187 
188   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
189                                      /*chainCall=*/false, prefix,
190                                      FTP->getExtInfo(), paramInfos,
191                                      Required);
192 }
193 
194 /// Arrange the argument and result information for a value of the
195 /// given freestanding function type.
196 const CGFunctionInfo &
197 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
198   SmallVector<CanQualType, 16> argTypes;
199   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
200                                    FTP);
201 }
202 
203 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
204                                                bool IsWindows) {
205   // Set the appropriate calling convention for the Function.
206   if (D->hasAttr<StdCallAttr>())
207     return CC_X86StdCall;
208 
209   if (D->hasAttr<FastCallAttr>())
210     return CC_X86FastCall;
211 
212   if (D->hasAttr<RegCallAttr>())
213     return CC_X86RegCall;
214 
215   if (D->hasAttr<ThisCallAttr>())
216     return CC_X86ThisCall;
217 
218   if (D->hasAttr<VectorCallAttr>())
219     return CC_X86VectorCall;
220 
221   if (D->hasAttr<PascalAttr>())
222     return CC_X86Pascal;
223 
224   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
225     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
226 
227   if (D->hasAttr<AArch64VectorPcsAttr>())
228     return CC_AArch64VectorCall;
229 
230   if (D->hasAttr<IntelOclBiccAttr>())
231     return CC_IntelOclBicc;
232 
233   if (D->hasAttr<MSABIAttr>())
234     return IsWindows ? CC_C : CC_Win64;
235 
236   if (D->hasAttr<SysVABIAttr>())
237     return IsWindows ? CC_X86_64SysV : CC_C;
238 
239   if (D->hasAttr<PreserveMostAttr>())
240     return CC_PreserveMost;
241 
242   if (D->hasAttr<PreserveAllAttr>())
243     return CC_PreserveAll;
244 
245   return CC_C;
246 }
247 
248 /// Arrange the argument and result information for a call to an
249 /// unknown C++ non-static member function of the given abstract type.
250 /// (A null RD means we don't have any meaningful "this" argument type,
251 ///  so fall back to a generic pointer type).
252 /// The member function must be an ordinary function, i.e. not a
253 /// constructor or destructor.
254 const CGFunctionInfo &
255 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
256                                    const FunctionProtoType *FTP,
257                                    const CXXMethodDecl *MD) {
258   SmallVector<CanQualType, 16> argTypes;
259 
260   // Add the 'this' pointer.
261   argTypes.push_back(DeriveThisType(RD, MD));
262 
263   return ::arrangeLLVMFunctionInfo(
264       *this, true, argTypes,
265       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
266 }
267 
268 /// Set calling convention for CUDA/HIP kernel.
269 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
270                                            const FunctionDecl *FD) {
271   if (FD->hasAttr<CUDAGlobalAttr>()) {
272     const FunctionType *FT = FTy->getAs<FunctionType>();
273     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
274     FTy = FT->getCanonicalTypeUnqualified();
275   }
276 }
277 
278 /// Arrange the argument and result information for a declaration or
279 /// definition of the given C++ non-static member function.  The
280 /// member function must be an ordinary function, i.e. not a
281 /// constructor or destructor.
282 const CGFunctionInfo &
283 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
284   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
285   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
286 
287   CanQualType FT = GetFormalType(MD).getAs<Type>();
288   setCUDAKernelCallingConvention(FT, CGM, MD);
289   auto prototype = FT.getAs<FunctionProtoType>();
290 
291   if (MD->isInstance()) {
292     // The abstract case is perfectly fine.
293     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
294     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
295   }
296 
297   return arrangeFreeFunctionType(prototype);
298 }
299 
300 bool CodeGenTypes::inheritingCtorHasParams(
301     const InheritedConstructor &Inherited, CXXCtorType Type) {
302   // Parameters are unnecessary if we're constructing a base class subobject
303   // and the inherited constructor lives in a virtual base.
304   return Type == Ctor_Complete ||
305          !Inherited.getShadowDecl()->constructsVirtualBase() ||
306          !Target.getCXXABI().hasConstructorVariants();
307 }
308 
309 const CGFunctionInfo &
310 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
311   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
312 
313   SmallVector<CanQualType, 16> argTypes;
314   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
315   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
316 
317   bool PassParams = true;
318 
319   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
320     // A base class inheriting constructor doesn't get forwarded arguments
321     // needed to construct a virtual base (or base class thereof).
322     if (auto Inherited = CD->getInheritedConstructor())
323       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
324   }
325 
326   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
327 
328   // Add the formal parameters.
329   if (PassParams)
330     appendParameterTypes(*this, argTypes, paramInfos, FTP);
331 
332   CGCXXABI::AddedStructorArgCounts AddedArgs =
333       TheCXXABI.buildStructorSignature(GD, argTypes);
334   if (!paramInfos.empty()) {
335     // Note: prefix implies after the first param.
336     if (AddedArgs.Prefix)
337       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
338                         FunctionProtoType::ExtParameterInfo{});
339     if (AddedArgs.Suffix)
340       paramInfos.append(AddedArgs.Suffix,
341                         FunctionProtoType::ExtParameterInfo{});
342   }
343 
344   RequiredArgs required =
345       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
346                                       : RequiredArgs::All);
347 
348   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
349   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
350                                ? argTypes.front()
351                                : TheCXXABI.hasMostDerivedReturn(GD)
352                                      ? CGM.getContext().VoidPtrTy
353                                      : Context.VoidTy;
354   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
355                                  /*chainCall=*/false, argTypes, extInfo,
356                                  paramInfos, required);
357 }
358 
359 static SmallVector<CanQualType, 16>
360 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
361   SmallVector<CanQualType, 16> argTypes;
362   for (auto &arg : args)
363     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
364   return argTypes;
365 }
366 
367 static SmallVector<CanQualType, 16>
368 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
369   SmallVector<CanQualType, 16> argTypes;
370   for (auto &arg : args)
371     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
372   return argTypes;
373 }
374 
375 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
376 getExtParameterInfosForCall(const FunctionProtoType *proto,
377                             unsigned prefixArgs, unsigned totalArgs) {
378   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
379   if (proto->hasExtParameterInfos()) {
380     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
381   }
382   return result;
383 }
384 
385 /// Arrange a call to a C++ method, passing the given arguments.
386 ///
387 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
388 /// parameter.
389 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
390 /// args.
391 /// PassProtoArgs indicates whether `args` has args for the parameters in the
392 /// given CXXConstructorDecl.
393 const CGFunctionInfo &
394 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
395                                         const CXXConstructorDecl *D,
396                                         CXXCtorType CtorKind,
397                                         unsigned ExtraPrefixArgs,
398                                         unsigned ExtraSuffixArgs,
399                                         bool PassProtoArgs) {
400   // FIXME: Kill copy.
401   SmallVector<CanQualType, 16> ArgTypes;
402   for (const auto &Arg : args)
403     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
404 
405   // +1 for implicit this, which should always be args[0].
406   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
407 
408   CanQual<FunctionProtoType> FPT = GetFormalType(D);
409   RequiredArgs Required = PassProtoArgs
410                               ? RequiredArgs::forPrototypePlus(
411                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
412                               : RequiredArgs::All;
413 
414   GlobalDecl GD(D, CtorKind);
415   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
416                                ? ArgTypes.front()
417                                : TheCXXABI.hasMostDerivedReturn(GD)
418                                      ? CGM.getContext().VoidPtrTy
419                                      : Context.VoidTy;
420 
421   FunctionType::ExtInfo Info = FPT->getExtInfo();
422   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
423   // If the prototype args are elided, we should only have ABI-specific args,
424   // which never have param info.
425   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
426     // ABI-specific suffix arguments are treated the same as variadic arguments.
427     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
428                                 ArgTypes.size());
429   }
430   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
431                                  /*chainCall=*/false, ArgTypes, Info,
432                                  ParamInfos, Required);
433 }
434 
435 /// Arrange the argument and result information for the declaration or
436 /// definition of the given function.
437 const CGFunctionInfo &
438 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
439   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
440     if (MD->isInstance())
441       return arrangeCXXMethodDeclaration(MD);
442 
443   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
444 
445   assert(isa<FunctionType>(FTy));
446   setCUDAKernelCallingConvention(FTy, CGM, FD);
447 
448   // When declaring a function without a prototype, always use a
449   // non-variadic type.
450   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
451     return arrangeLLVMFunctionInfo(
452         noProto->getReturnType(), /*instanceMethod=*/false,
453         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
454   }
455 
456   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
457 }
458 
459 /// Arrange the argument and result information for the declaration or
460 /// definition of an Objective-C method.
461 const CGFunctionInfo &
462 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
463   // It happens that this is the same as a call with no optional
464   // arguments, except also using the formal 'self' type.
465   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
466 }
467 
468 /// Arrange the argument and result information for the function type
469 /// through which to perform a send to the given Objective-C method,
470 /// using the given receiver type.  The receiver type is not always
471 /// the 'self' type of the method or even an Objective-C pointer type.
472 /// This is *not* the right method for actually performing such a
473 /// message send, due to the possibility of optional arguments.
474 const CGFunctionInfo &
475 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
476                                               QualType receiverType) {
477   SmallVector<CanQualType, 16> argTys;
478   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
479   argTys.push_back(Context.getCanonicalParamType(receiverType));
480   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
481   // FIXME: Kill copy?
482   for (const auto *I : MD->parameters()) {
483     argTys.push_back(Context.getCanonicalParamType(I->getType()));
484     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
485         I->hasAttr<NoEscapeAttr>());
486     extParamInfos.push_back(extParamInfo);
487   }
488 
489   FunctionType::ExtInfo einfo;
490   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
491   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
492 
493   if (getContext().getLangOpts().ObjCAutoRefCount &&
494       MD->hasAttr<NSReturnsRetainedAttr>())
495     einfo = einfo.withProducesResult(true);
496 
497   RequiredArgs required =
498     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
499 
500   return arrangeLLVMFunctionInfo(
501       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
502       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
503 }
504 
505 const CGFunctionInfo &
506 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
507                                                  const CallArgList &args) {
508   auto argTypes = getArgTypesForCall(Context, args);
509   FunctionType::ExtInfo einfo;
510 
511   return arrangeLLVMFunctionInfo(
512       GetReturnType(returnType), /*instanceMethod=*/false,
513       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
514 }
515 
516 const CGFunctionInfo &
517 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
518   // FIXME: Do we need to handle ObjCMethodDecl?
519   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
520 
521   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
522       isa<CXXDestructorDecl>(GD.getDecl()))
523     return arrangeCXXStructorDeclaration(GD);
524 
525   return arrangeFunctionDeclaration(FD);
526 }
527 
528 /// Arrange a thunk that takes 'this' as the first parameter followed by
529 /// varargs.  Return a void pointer, regardless of the actual return type.
530 /// The body of the thunk will end in a musttail call to a function of the
531 /// correct type, and the caller will bitcast the function to the correct
532 /// prototype.
533 const CGFunctionInfo &
534 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
535   assert(MD->isVirtual() && "only methods have thunks");
536   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
537   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
538   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
539                                  /*chainCall=*/false, ArgTys,
540                                  FTP->getExtInfo(), {}, RequiredArgs(1));
541 }
542 
543 const CGFunctionInfo &
544 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
545                                    CXXCtorType CT) {
546   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
547 
548   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
549   SmallVector<CanQualType, 2> ArgTys;
550   const CXXRecordDecl *RD = CD->getParent();
551   ArgTys.push_back(DeriveThisType(RD, CD));
552   if (CT == Ctor_CopyingClosure)
553     ArgTys.push_back(*FTP->param_type_begin());
554   if (RD->getNumVBases() > 0)
555     ArgTys.push_back(Context.IntTy);
556   CallingConv CC = Context.getDefaultCallingConvention(
557       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
558   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
559                                  /*chainCall=*/false, ArgTys,
560                                  FunctionType::ExtInfo(CC), {},
561                                  RequiredArgs::All);
562 }
563 
564 /// Arrange a call as unto a free function, except possibly with an
565 /// additional number of formal parameters considered required.
566 static const CGFunctionInfo &
567 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
568                             CodeGenModule &CGM,
569                             const CallArgList &args,
570                             const FunctionType *fnType,
571                             unsigned numExtraRequiredArgs,
572                             bool chainCall) {
573   assert(args.size() >= numExtraRequiredArgs);
574 
575   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
576 
577   // In most cases, there are no optional arguments.
578   RequiredArgs required = RequiredArgs::All;
579 
580   // If we have a variadic prototype, the required arguments are the
581   // extra prefix plus the arguments in the prototype.
582   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
583     if (proto->isVariadic())
584       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
585 
586     if (proto->hasExtParameterInfos())
587       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
588                                   args.size());
589 
590   // If we don't have a prototype at all, but we're supposed to
591   // explicitly use the variadic convention for unprototyped calls,
592   // treat all of the arguments as required but preserve the nominal
593   // possibility of variadics.
594   } else if (CGM.getTargetCodeGenInfo()
595                 .isNoProtoCallVariadic(args,
596                                        cast<FunctionNoProtoType>(fnType))) {
597     required = RequiredArgs(args.size());
598   }
599 
600   // FIXME: Kill copy.
601   SmallVector<CanQualType, 16> argTypes;
602   for (const auto &arg : args)
603     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
604   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
605                                      /*instanceMethod=*/false, chainCall,
606                                      argTypes, fnType->getExtInfo(), paramInfos,
607                                      required);
608 }
609 
610 /// Figure out the rules for calling a function with the given formal
611 /// type using the given arguments.  The arguments are necessary
612 /// because the function might be unprototyped, in which case it's
613 /// target-dependent in crazy ways.
614 const CGFunctionInfo &
615 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
616                                       const FunctionType *fnType,
617                                       bool chainCall) {
618   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
619                                      chainCall ? 1 : 0, chainCall);
620 }
621 
622 /// A block function is essentially a free function with an
623 /// extra implicit argument.
624 const CGFunctionInfo &
625 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
626                                        const FunctionType *fnType) {
627   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
628                                      /*chainCall=*/false);
629 }
630 
631 const CGFunctionInfo &
632 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
633                                               const FunctionArgList &params) {
634   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
635   auto argTypes = getArgTypesForDeclaration(Context, params);
636 
637   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
638                                  /*instanceMethod*/ false, /*chainCall*/ false,
639                                  argTypes, proto->getExtInfo(), paramInfos,
640                                  RequiredArgs::forPrototypePlus(proto, 1));
641 }
642 
643 const CGFunctionInfo &
644 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
645                                          const CallArgList &args) {
646   // FIXME: Kill copy.
647   SmallVector<CanQualType, 16> argTypes;
648   for (const auto &Arg : args)
649     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
650   return arrangeLLVMFunctionInfo(
651       GetReturnType(resultType), /*instanceMethod=*/false,
652       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
653       /*paramInfos=*/ {}, RequiredArgs::All);
654 }
655 
656 const CGFunctionInfo &
657 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
658                                                 const FunctionArgList &args) {
659   auto argTypes = getArgTypesForDeclaration(Context, args);
660 
661   return arrangeLLVMFunctionInfo(
662       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
663       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
664 }
665 
666 const CGFunctionInfo &
667 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
668                                               ArrayRef<CanQualType> argTypes) {
669   return arrangeLLVMFunctionInfo(
670       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
671       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
672 }
673 
674 /// Arrange a call to a C++ method, passing the given arguments.
675 ///
676 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
677 /// does not count `this`.
678 const CGFunctionInfo &
679 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
680                                    const FunctionProtoType *proto,
681                                    RequiredArgs required,
682                                    unsigned numPrefixArgs) {
683   assert(numPrefixArgs + 1 <= args.size() &&
684          "Emitting a call with less args than the required prefix?");
685   // Add one to account for `this`. It's a bit awkward here, but we don't count
686   // `this` in similar places elsewhere.
687   auto paramInfos =
688     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
689 
690   // FIXME: Kill copy.
691   auto argTypes = getArgTypesForCall(Context, args);
692 
693   FunctionType::ExtInfo info = proto->getExtInfo();
694   return arrangeLLVMFunctionInfo(
695       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
696       /*chainCall=*/false, argTypes, info, paramInfos, required);
697 }
698 
699 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
700   return arrangeLLVMFunctionInfo(
701       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
702       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
703 }
704 
705 const CGFunctionInfo &
706 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
707                           const CallArgList &args) {
708   assert(signature.arg_size() <= args.size());
709   if (signature.arg_size() == args.size())
710     return signature;
711 
712   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
713   auto sigParamInfos = signature.getExtParameterInfos();
714   if (!sigParamInfos.empty()) {
715     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
716     paramInfos.resize(args.size());
717   }
718 
719   auto argTypes = getArgTypesForCall(Context, args);
720 
721   assert(signature.getRequiredArgs().allowsOptionalArgs());
722   return arrangeLLVMFunctionInfo(signature.getReturnType(),
723                                  signature.isInstanceMethod(),
724                                  signature.isChainCall(),
725                                  argTypes,
726                                  signature.getExtInfo(),
727                                  paramInfos,
728                                  signature.getRequiredArgs());
729 }
730 
731 namespace clang {
732 namespace CodeGen {
733 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
734 }
735 }
736 
737 /// Arrange the argument and result information for an abstract value
738 /// of a given function type.  This is the method which all of the
739 /// above functions ultimately defer to.
740 const CGFunctionInfo &
741 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
742                                       bool instanceMethod,
743                                       bool chainCall,
744                                       ArrayRef<CanQualType> argTypes,
745                                       FunctionType::ExtInfo info,
746                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
747                                       RequiredArgs required) {
748   assert(llvm::all_of(argTypes,
749                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
750 
751   // Lookup or create unique function info.
752   llvm::FoldingSetNodeID ID;
753   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
754                           required, resultType, argTypes);
755 
756   void *insertPos = nullptr;
757   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
758   if (FI)
759     return *FI;
760 
761   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
762 
763   // Construct the function info.  We co-allocate the ArgInfos.
764   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
765                               paramInfos, resultType, argTypes, required);
766   FunctionInfos.InsertNode(FI, insertPos);
767 
768   bool inserted = FunctionsBeingProcessed.insert(FI).second;
769   (void)inserted;
770   assert(inserted && "Recursively being processed?");
771 
772   // Compute ABI information.
773   if (CC == llvm::CallingConv::SPIR_KERNEL) {
774     // Force target independent argument handling for the host visible
775     // kernel functions.
776     computeSPIRKernelABIInfo(CGM, *FI);
777   } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
778     swiftcall::computeABIInfo(CGM, *FI);
779   } else {
780     getABIInfo().computeInfo(*FI);
781   }
782 
783   // Loop over all of the computed argument and return value info.  If any of
784   // them are direct or extend without a specified coerce type, specify the
785   // default now.
786   ABIArgInfo &retInfo = FI->getReturnInfo();
787   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
788     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
789 
790   for (auto &I : FI->arguments())
791     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
792       I.info.setCoerceToType(ConvertType(I.type));
793 
794   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
795   assert(erased && "Not in set?");
796 
797   return *FI;
798 }
799 
800 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
801                                        bool instanceMethod,
802                                        bool chainCall,
803                                        const FunctionType::ExtInfo &info,
804                                        ArrayRef<ExtParameterInfo> paramInfos,
805                                        CanQualType resultType,
806                                        ArrayRef<CanQualType> argTypes,
807                                        RequiredArgs required) {
808   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
809   assert(!required.allowsOptionalArgs() ||
810          required.getNumRequiredArgs() <= argTypes.size());
811 
812   void *buffer =
813     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
814                                   argTypes.size() + 1, paramInfos.size()));
815 
816   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
817   FI->CallingConvention = llvmCC;
818   FI->EffectiveCallingConvention = llvmCC;
819   FI->ASTCallingConvention = info.getCC();
820   FI->InstanceMethod = instanceMethod;
821   FI->ChainCall = chainCall;
822   FI->CmseNSCall = info.getCmseNSCall();
823   FI->NoReturn = info.getNoReturn();
824   FI->ReturnsRetained = info.getProducesResult();
825   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
826   FI->NoCfCheck = info.getNoCfCheck();
827   FI->Required = required;
828   FI->HasRegParm = info.getHasRegParm();
829   FI->RegParm = info.getRegParm();
830   FI->ArgStruct = nullptr;
831   FI->ArgStructAlign = 0;
832   FI->NumArgs = argTypes.size();
833   FI->HasExtParameterInfos = !paramInfos.empty();
834   FI->getArgsBuffer()[0].type = resultType;
835   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
836     FI->getArgsBuffer()[i + 1].type = argTypes[i];
837   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
838     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
839   return FI;
840 }
841 
842 /***/
843 
844 namespace {
845 // ABIArgInfo::Expand implementation.
846 
847 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
848 struct TypeExpansion {
849   enum TypeExpansionKind {
850     // Elements of constant arrays are expanded recursively.
851     TEK_ConstantArray,
852     // Record fields are expanded recursively (but if record is a union, only
853     // the field with the largest size is expanded).
854     TEK_Record,
855     // For complex types, real and imaginary parts are expanded recursively.
856     TEK_Complex,
857     // All other types are not expandable.
858     TEK_None
859   };
860 
861   const TypeExpansionKind Kind;
862 
863   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
864   virtual ~TypeExpansion() {}
865 };
866 
867 struct ConstantArrayExpansion : TypeExpansion {
868   QualType EltTy;
869   uint64_t NumElts;
870 
871   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
872       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
873   static bool classof(const TypeExpansion *TE) {
874     return TE->Kind == TEK_ConstantArray;
875   }
876 };
877 
878 struct RecordExpansion : TypeExpansion {
879   SmallVector<const CXXBaseSpecifier *, 1> Bases;
880 
881   SmallVector<const FieldDecl *, 1> Fields;
882 
883   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
884                   SmallVector<const FieldDecl *, 1> &&Fields)
885       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
886         Fields(std::move(Fields)) {}
887   static bool classof(const TypeExpansion *TE) {
888     return TE->Kind == TEK_Record;
889   }
890 };
891 
892 struct ComplexExpansion : TypeExpansion {
893   QualType EltTy;
894 
895   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
896   static bool classof(const TypeExpansion *TE) {
897     return TE->Kind == TEK_Complex;
898   }
899 };
900 
901 struct NoExpansion : TypeExpansion {
902   NoExpansion() : TypeExpansion(TEK_None) {}
903   static bool classof(const TypeExpansion *TE) {
904     return TE->Kind == TEK_None;
905   }
906 };
907 }  // namespace
908 
909 static std::unique_ptr<TypeExpansion>
910 getTypeExpansion(QualType Ty, const ASTContext &Context) {
911   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
912     return std::make_unique<ConstantArrayExpansion>(
913         AT->getElementType(), AT->getSize().getZExtValue());
914   }
915   if (const RecordType *RT = Ty->getAs<RecordType>()) {
916     SmallVector<const CXXBaseSpecifier *, 1> Bases;
917     SmallVector<const FieldDecl *, 1> Fields;
918     const RecordDecl *RD = RT->getDecl();
919     assert(!RD->hasFlexibleArrayMember() &&
920            "Cannot expand structure with flexible array.");
921     if (RD->isUnion()) {
922       // Unions can be here only in degenerative cases - all the fields are same
923       // after flattening. Thus we have to use the "largest" field.
924       const FieldDecl *LargestFD = nullptr;
925       CharUnits UnionSize = CharUnits::Zero();
926 
927       for (const auto *FD : RD->fields()) {
928         if (FD->isZeroLengthBitField(Context))
929           continue;
930         assert(!FD->isBitField() &&
931                "Cannot expand structure with bit-field members.");
932         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
933         if (UnionSize < FieldSize) {
934           UnionSize = FieldSize;
935           LargestFD = FD;
936         }
937       }
938       if (LargestFD)
939         Fields.push_back(LargestFD);
940     } else {
941       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
942         assert(!CXXRD->isDynamicClass() &&
943                "cannot expand vtable pointers in dynamic classes");
944         for (const CXXBaseSpecifier &BS : CXXRD->bases())
945           Bases.push_back(&BS);
946       }
947 
948       for (const auto *FD : RD->fields()) {
949         if (FD->isZeroLengthBitField(Context))
950           continue;
951         assert(!FD->isBitField() &&
952                "Cannot expand structure with bit-field members.");
953         Fields.push_back(FD);
954       }
955     }
956     return std::make_unique<RecordExpansion>(std::move(Bases),
957                                               std::move(Fields));
958   }
959   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
960     return std::make_unique<ComplexExpansion>(CT->getElementType());
961   }
962   return std::make_unique<NoExpansion>();
963 }
964 
965 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
966   auto Exp = getTypeExpansion(Ty, Context);
967   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
968     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
969   }
970   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
971     int Res = 0;
972     for (auto BS : RExp->Bases)
973       Res += getExpansionSize(BS->getType(), Context);
974     for (auto FD : RExp->Fields)
975       Res += getExpansionSize(FD->getType(), Context);
976     return Res;
977   }
978   if (isa<ComplexExpansion>(Exp.get()))
979     return 2;
980   assert(isa<NoExpansion>(Exp.get()));
981   return 1;
982 }
983 
984 void
985 CodeGenTypes::getExpandedTypes(QualType Ty,
986                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
987   auto Exp = getTypeExpansion(Ty, Context);
988   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
989     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
990       getExpandedTypes(CAExp->EltTy, TI);
991     }
992   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
993     for (auto BS : RExp->Bases)
994       getExpandedTypes(BS->getType(), TI);
995     for (auto FD : RExp->Fields)
996       getExpandedTypes(FD->getType(), TI);
997   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
998     llvm::Type *EltTy = ConvertType(CExp->EltTy);
999     *TI++ = EltTy;
1000     *TI++ = EltTy;
1001   } else {
1002     assert(isa<NoExpansion>(Exp.get()));
1003     *TI++ = ConvertType(Ty);
1004   }
1005 }
1006 
1007 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1008                                       ConstantArrayExpansion *CAE,
1009                                       Address BaseAddr,
1010                                       llvm::function_ref<void(Address)> Fn) {
1011   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1012   CharUnits EltAlign =
1013     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1014 
1015   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1016     llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1017         BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1018     Fn(Address(EltAddr, EltAlign));
1019   }
1020 }
1021 
1022 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1023                                          llvm::Function::arg_iterator &AI) {
1024   assert(LV.isSimple() &&
1025          "Unexpected non-simple lvalue during struct expansion.");
1026 
1027   auto Exp = getTypeExpansion(Ty, getContext());
1028   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1029     forConstantArrayExpansion(
1030         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1031           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1032           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1033         });
1034   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1035     Address This = LV.getAddress(*this);
1036     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1037       // Perform a single step derived-to-base conversion.
1038       Address Base =
1039           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1040                                 /*NullCheckValue=*/false, SourceLocation());
1041       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1042 
1043       // Recurse onto bases.
1044       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1045     }
1046     for (auto FD : RExp->Fields) {
1047       // FIXME: What are the right qualifiers here?
1048       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1049       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1050     }
1051   } else if (isa<ComplexExpansion>(Exp.get())) {
1052     auto realValue = &*AI++;
1053     auto imagValue = &*AI++;
1054     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1055   } else {
1056     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1057     // primitive store.
1058     assert(isa<NoExpansion>(Exp.get()));
1059     if (LV.isBitField())
1060       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1061     else
1062       EmitStoreOfScalar(&*AI++, LV);
1063   }
1064 }
1065 
1066 void CodeGenFunction::ExpandTypeToArgs(
1067     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1068     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1069   auto Exp = getTypeExpansion(Ty, getContext());
1070   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1071     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1072                                    : Arg.getKnownRValue().getAggregateAddress();
1073     forConstantArrayExpansion(
1074         *this, CAExp, Addr, [&](Address EltAddr) {
1075           CallArg EltArg = CallArg(
1076               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1077               CAExp->EltTy);
1078           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1079                            IRCallArgPos);
1080         });
1081   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1082     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1083                                    : Arg.getKnownRValue().getAggregateAddress();
1084     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1085       // Perform a single step derived-to-base conversion.
1086       Address Base =
1087           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1088                                 /*NullCheckValue=*/false, SourceLocation());
1089       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1090 
1091       // Recurse onto bases.
1092       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1093                        IRCallArgPos);
1094     }
1095 
1096     LValue LV = MakeAddrLValue(This, Ty);
1097     for (auto FD : RExp->Fields) {
1098       CallArg FldArg =
1099           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1100       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1101                        IRCallArgPos);
1102     }
1103   } else if (isa<ComplexExpansion>(Exp.get())) {
1104     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1105     IRCallArgs[IRCallArgPos++] = CV.first;
1106     IRCallArgs[IRCallArgPos++] = CV.second;
1107   } else {
1108     assert(isa<NoExpansion>(Exp.get()));
1109     auto RV = Arg.getKnownRValue();
1110     assert(RV.isScalar() &&
1111            "Unexpected non-scalar rvalue during struct expansion.");
1112 
1113     // Insert a bitcast as needed.
1114     llvm::Value *V = RV.getScalarVal();
1115     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1116         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1117       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1118 
1119     IRCallArgs[IRCallArgPos++] = V;
1120   }
1121 }
1122 
1123 /// Create a temporary allocation for the purposes of coercion.
1124 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1125                                            CharUnits MinAlign,
1126                                            const Twine &Name = "tmp") {
1127   // Don't use an alignment that's worse than what LLVM would prefer.
1128   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1129   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1130 
1131   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1132 }
1133 
1134 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1135 /// accessing some number of bytes out of it, try to gep into the struct to get
1136 /// at its inner goodness.  Dive as deep as possible without entering an element
1137 /// with an in-memory size smaller than DstSize.
1138 static Address
1139 EnterStructPointerForCoercedAccess(Address SrcPtr,
1140                                    llvm::StructType *SrcSTy,
1141                                    uint64_t DstSize, CodeGenFunction &CGF) {
1142   // We can't dive into a zero-element struct.
1143   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1144 
1145   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1146 
1147   // If the first elt is at least as large as what we're looking for, or if the
1148   // first element is the same size as the whole struct, we can enter it. The
1149   // comparison must be made on the store size and not the alloca size. Using
1150   // the alloca size may overstate the size of the load.
1151   uint64_t FirstEltSize =
1152     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1153   if (FirstEltSize < DstSize &&
1154       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1155     return SrcPtr;
1156 
1157   // GEP into the first element.
1158   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1159 
1160   // If the first element is a struct, recurse.
1161   llvm::Type *SrcTy = SrcPtr.getElementType();
1162   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1163     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1164 
1165   return SrcPtr;
1166 }
1167 
1168 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1169 /// are either integers or pointers.  This does a truncation of the value if it
1170 /// is too large or a zero extension if it is too small.
1171 ///
1172 /// This behaves as if the value were coerced through memory, so on big-endian
1173 /// targets the high bits are preserved in a truncation, while little-endian
1174 /// targets preserve the low bits.
1175 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1176                                              llvm::Type *Ty,
1177                                              CodeGenFunction &CGF) {
1178   if (Val->getType() == Ty)
1179     return Val;
1180 
1181   if (isa<llvm::PointerType>(Val->getType())) {
1182     // If this is Pointer->Pointer avoid conversion to and from int.
1183     if (isa<llvm::PointerType>(Ty))
1184       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1185 
1186     // Convert the pointer to an integer so we can play with its width.
1187     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1188   }
1189 
1190   llvm::Type *DestIntTy = Ty;
1191   if (isa<llvm::PointerType>(DestIntTy))
1192     DestIntTy = CGF.IntPtrTy;
1193 
1194   if (Val->getType() != DestIntTy) {
1195     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1196     if (DL.isBigEndian()) {
1197       // Preserve the high bits on big-endian targets.
1198       // That is what memory coercion does.
1199       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1200       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1201 
1202       if (SrcSize > DstSize) {
1203         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1204         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1205       } else {
1206         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1207         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1208       }
1209     } else {
1210       // Little-endian targets preserve the low bits. No shifts required.
1211       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1212     }
1213   }
1214 
1215   if (isa<llvm::PointerType>(Ty))
1216     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1217   return Val;
1218 }
1219 
1220 
1221 
1222 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1223 /// a pointer to an object of type \arg Ty, known to be aligned to
1224 /// \arg SrcAlign bytes.
1225 ///
1226 /// This safely handles the case when the src type is smaller than the
1227 /// destination type; in this situation the values of bits which not
1228 /// present in the src are undefined.
1229 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1230                                       CodeGenFunction &CGF) {
1231   llvm::Type *SrcTy = Src.getElementType();
1232 
1233   // If SrcTy and Ty are the same, just do a load.
1234   if (SrcTy == Ty)
1235     return CGF.Builder.CreateLoad(Src);
1236 
1237   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1238 
1239   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1240     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1241                                              DstSize.getFixedSize(), CGF);
1242     SrcTy = Src.getElementType();
1243   }
1244 
1245   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1246 
1247   // If the source and destination are integer or pointer types, just do an
1248   // extension or truncation to the desired type.
1249   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1250       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1251     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1252     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1253   }
1254 
1255   // If load is legal, just bitcast the src pointer.
1256   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1257       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1258     // Generally SrcSize is never greater than DstSize, since this means we are
1259     // losing bits. However, this can happen in cases where the structure has
1260     // additional padding, for example due to a user specified alignment.
1261     //
1262     // FIXME: Assert that we aren't truncating non-padding bits when have access
1263     // to that information.
1264     Src = CGF.Builder.CreateBitCast(Src,
1265                                     Ty->getPointerTo(Src.getAddressSpace()));
1266     return CGF.Builder.CreateLoad(Src);
1267   }
1268 
1269   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1270   // the types match, use the llvm.experimental.vector.insert intrinsic to
1271   // perform the conversion.
1272   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1273     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1274       // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1275       // vector, use a vector insert and bitcast the result.
1276       bool NeedsBitcast = false;
1277       auto PredType =
1278           llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1279       llvm::Type *OrigType = Ty;
1280       if (ScalableDst == PredType &&
1281           FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1282         ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1283         NeedsBitcast = true;
1284       }
1285       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1286         auto *Load = CGF.Builder.CreateLoad(Src);
1287         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1288         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1289         llvm::Value *Result = CGF.Builder.CreateInsertVector(
1290             ScalableDst, UndefVec, Load, Zero, "castScalableSve");
1291         if (NeedsBitcast)
1292           Result = CGF.Builder.CreateBitCast(Result, OrigType);
1293         return Result;
1294       }
1295     }
1296   }
1297 
1298   // Otherwise do coercion through memory. This is stupid, but simple.
1299   Address Tmp =
1300       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1301   CGF.Builder.CreateMemCpy(
1302       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1303       Src.getAlignment().getAsAlign(),
1304       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1305   return CGF.Builder.CreateLoad(Tmp);
1306 }
1307 
1308 // Function to store a first-class aggregate into memory.  We prefer to
1309 // store the elements rather than the aggregate to be more friendly to
1310 // fast-isel.
1311 // FIXME: Do we need to recurse here?
1312 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1313                                          bool DestIsVolatile) {
1314   // Prefer scalar stores to first-class aggregate stores.
1315   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1316     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1317       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1318       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1319       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1320     }
1321   } else {
1322     Builder.CreateStore(Val, Dest, DestIsVolatile);
1323   }
1324 }
1325 
1326 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1327 /// where the source and destination may have different types.  The
1328 /// destination is known to be aligned to \arg DstAlign bytes.
1329 ///
1330 /// This safely handles the case when the src type is larger than the
1331 /// destination type; the upper bits of the src will be lost.
1332 static void CreateCoercedStore(llvm::Value *Src,
1333                                Address Dst,
1334                                bool DstIsVolatile,
1335                                CodeGenFunction &CGF) {
1336   llvm::Type *SrcTy = Src->getType();
1337   llvm::Type *DstTy = Dst.getElementType();
1338   if (SrcTy == DstTy) {
1339     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1340     return;
1341   }
1342 
1343   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1344 
1345   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1346     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1347                                              SrcSize.getFixedSize(), CGF);
1348     DstTy = Dst.getElementType();
1349   }
1350 
1351   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1352   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1353   if (SrcPtrTy && DstPtrTy &&
1354       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1355     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1356     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1357     return;
1358   }
1359 
1360   // If the source and destination are integer or pointer types, just do an
1361   // extension or truncation to the desired type.
1362   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1363       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1364     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1365     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1366     return;
1367   }
1368 
1369   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1370 
1371   // If store is legal, just bitcast the src pointer.
1372   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1373       isa<llvm::ScalableVectorType>(DstTy) ||
1374       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1375     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1376     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1377   } else {
1378     // Otherwise do coercion through memory. This is stupid, but
1379     // simple.
1380 
1381     // Generally SrcSize is never greater than DstSize, since this means we are
1382     // losing bits. However, this can happen in cases where the structure has
1383     // additional padding, for example due to a user specified alignment.
1384     //
1385     // FIXME: Assert that we aren't truncating non-padding bits when have access
1386     // to that information.
1387     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1388     CGF.Builder.CreateStore(Src, Tmp);
1389     CGF.Builder.CreateMemCpy(
1390         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1391         Tmp.getAlignment().getAsAlign(),
1392         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1393   }
1394 }
1395 
1396 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1397                                    const ABIArgInfo &info) {
1398   if (unsigned offset = info.getDirectOffset()) {
1399     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1400     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1401                                              CharUnits::fromQuantity(offset));
1402     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1403   }
1404   return addr;
1405 }
1406 
1407 namespace {
1408 
1409 /// Encapsulates information about the way function arguments from
1410 /// CGFunctionInfo should be passed to actual LLVM IR function.
1411 class ClangToLLVMArgMapping {
1412   static const unsigned InvalidIndex = ~0U;
1413   unsigned InallocaArgNo;
1414   unsigned SRetArgNo;
1415   unsigned TotalIRArgs;
1416 
1417   /// Arguments of LLVM IR function corresponding to single Clang argument.
1418   struct IRArgs {
1419     unsigned PaddingArgIndex;
1420     // Argument is expanded to IR arguments at positions
1421     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1422     unsigned FirstArgIndex;
1423     unsigned NumberOfArgs;
1424 
1425     IRArgs()
1426         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1427           NumberOfArgs(0) {}
1428   };
1429 
1430   SmallVector<IRArgs, 8> ArgInfo;
1431 
1432 public:
1433   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1434                         bool OnlyRequiredArgs = false)
1435       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1436         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1437     construct(Context, FI, OnlyRequiredArgs);
1438   }
1439 
1440   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1441   unsigned getInallocaArgNo() const {
1442     assert(hasInallocaArg());
1443     return InallocaArgNo;
1444   }
1445 
1446   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1447   unsigned getSRetArgNo() const {
1448     assert(hasSRetArg());
1449     return SRetArgNo;
1450   }
1451 
1452   unsigned totalIRArgs() const { return TotalIRArgs; }
1453 
1454   bool hasPaddingArg(unsigned ArgNo) const {
1455     assert(ArgNo < ArgInfo.size());
1456     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1457   }
1458   unsigned getPaddingArgNo(unsigned ArgNo) const {
1459     assert(hasPaddingArg(ArgNo));
1460     return ArgInfo[ArgNo].PaddingArgIndex;
1461   }
1462 
1463   /// Returns index of first IR argument corresponding to ArgNo, and their
1464   /// quantity.
1465   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1466     assert(ArgNo < ArgInfo.size());
1467     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1468                           ArgInfo[ArgNo].NumberOfArgs);
1469   }
1470 
1471 private:
1472   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1473                  bool OnlyRequiredArgs);
1474 };
1475 
1476 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1477                                       const CGFunctionInfo &FI,
1478                                       bool OnlyRequiredArgs) {
1479   unsigned IRArgNo = 0;
1480   bool SwapThisWithSRet = false;
1481   const ABIArgInfo &RetAI = FI.getReturnInfo();
1482 
1483   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1484     SwapThisWithSRet = RetAI.isSRetAfterThis();
1485     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1486   }
1487 
1488   unsigned ArgNo = 0;
1489   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1490   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1491        ++I, ++ArgNo) {
1492     assert(I != FI.arg_end());
1493     QualType ArgType = I->type;
1494     const ABIArgInfo &AI = I->info;
1495     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1496     auto &IRArgs = ArgInfo[ArgNo];
1497 
1498     if (AI.getPaddingType())
1499       IRArgs.PaddingArgIndex = IRArgNo++;
1500 
1501     switch (AI.getKind()) {
1502     case ABIArgInfo::Extend:
1503     case ABIArgInfo::Direct: {
1504       // FIXME: handle sseregparm someday...
1505       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1506       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1507         IRArgs.NumberOfArgs = STy->getNumElements();
1508       } else {
1509         IRArgs.NumberOfArgs = 1;
1510       }
1511       break;
1512     }
1513     case ABIArgInfo::Indirect:
1514     case ABIArgInfo::IndirectAliased:
1515       IRArgs.NumberOfArgs = 1;
1516       break;
1517     case ABIArgInfo::Ignore:
1518     case ABIArgInfo::InAlloca:
1519       // ignore and inalloca doesn't have matching LLVM parameters.
1520       IRArgs.NumberOfArgs = 0;
1521       break;
1522     case ABIArgInfo::CoerceAndExpand:
1523       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1524       break;
1525     case ABIArgInfo::Expand:
1526       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1527       break;
1528     }
1529 
1530     if (IRArgs.NumberOfArgs > 0) {
1531       IRArgs.FirstArgIndex = IRArgNo;
1532       IRArgNo += IRArgs.NumberOfArgs;
1533     }
1534 
1535     // Skip over the sret parameter when it comes second.  We already handled it
1536     // above.
1537     if (IRArgNo == 1 && SwapThisWithSRet)
1538       IRArgNo++;
1539   }
1540   assert(ArgNo == ArgInfo.size());
1541 
1542   if (FI.usesInAlloca())
1543     InallocaArgNo = IRArgNo++;
1544 
1545   TotalIRArgs = IRArgNo;
1546 }
1547 }  // namespace
1548 
1549 /***/
1550 
1551 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1552   const auto &RI = FI.getReturnInfo();
1553   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1554 }
1555 
1556 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1557   return ReturnTypeUsesSRet(FI) &&
1558          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1559 }
1560 
1561 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1562   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1563     switch (BT->getKind()) {
1564     default:
1565       return false;
1566     case BuiltinType::Float:
1567       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1568     case BuiltinType::Double:
1569       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1570     case BuiltinType::LongDouble:
1571       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1572     }
1573   }
1574 
1575   return false;
1576 }
1577 
1578 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1579   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1580     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1581       if (BT->getKind() == BuiltinType::LongDouble)
1582         return getTarget().useObjCFP2RetForComplexLongDouble();
1583     }
1584   }
1585 
1586   return false;
1587 }
1588 
1589 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1590   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1591   return GetFunctionType(FI);
1592 }
1593 
1594 llvm::FunctionType *
1595 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1596 
1597   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1598   (void)Inserted;
1599   assert(Inserted && "Recursively being processed?");
1600 
1601   llvm::Type *resultType = nullptr;
1602   const ABIArgInfo &retAI = FI.getReturnInfo();
1603   switch (retAI.getKind()) {
1604   case ABIArgInfo::Expand:
1605   case ABIArgInfo::IndirectAliased:
1606     llvm_unreachable("Invalid ABI kind for return argument");
1607 
1608   case ABIArgInfo::Extend:
1609   case ABIArgInfo::Direct:
1610     resultType = retAI.getCoerceToType();
1611     break;
1612 
1613   case ABIArgInfo::InAlloca:
1614     if (retAI.getInAllocaSRet()) {
1615       // sret things on win32 aren't void, they return the sret pointer.
1616       QualType ret = FI.getReturnType();
1617       llvm::Type *ty = ConvertType(ret);
1618       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1619       resultType = llvm::PointerType::get(ty, addressSpace);
1620     } else {
1621       resultType = llvm::Type::getVoidTy(getLLVMContext());
1622     }
1623     break;
1624 
1625   case ABIArgInfo::Indirect:
1626   case ABIArgInfo::Ignore:
1627     resultType = llvm::Type::getVoidTy(getLLVMContext());
1628     break;
1629 
1630   case ABIArgInfo::CoerceAndExpand:
1631     resultType = retAI.getUnpaddedCoerceAndExpandType();
1632     break;
1633   }
1634 
1635   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1636   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1637 
1638   // Add type for sret argument.
1639   if (IRFunctionArgs.hasSRetArg()) {
1640     QualType Ret = FI.getReturnType();
1641     llvm::Type *Ty = ConvertType(Ret);
1642     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1643     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1644         llvm::PointerType::get(Ty, AddressSpace);
1645   }
1646 
1647   // Add type for inalloca argument.
1648   if (IRFunctionArgs.hasInallocaArg()) {
1649     auto ArgStruct = FI.getArgStruct();
1650     assert(ArgStruct);
1651     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1652   }
1653 
1654   // Add in all of the required arguments.
1655   unsigned ArgNo = 0;
1656   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1657                                      ie = it + FI.getNumRequiredArgs();
1658   for (; it != ie; ++it, ++ArgNo) {
1659     const ABIArgInfo &ArgInfo = it->info;
1660 
1661     // Insert a padding type to ensure proper alignment.
1662     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1663       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1664           ArgInfo.getPaddingType();
1665 
1666     unsigned FirstIRArg, NumIRArgs;
1667     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1668 
1669     switch (ArgInfo.getKind()) {
1670     case ABIArgInfo::Ignore:
1671     case ABIArgInfo::InAlloca:
1672       assert(NumIRArgs == 0);
1673       break;
1674 
1675     case ABIArgInfo::Indirect: {
1676       assert(NumIRArgs == 1);
1677       // indirect arguments are always on the stack, which is alloca addr space.
1678       llvm::Type *LTy = ConvertTypeForMem(it->type);
1679       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1680           CGM.getDataLayout().getAllocaAddrSpace());
1681       break;
1682     }
1683     case ABIArgInfo::IndirectAliased: {
1684       assert(NumIRArgs == 1);
1685       llvm::Type *LTy = ConvertTypeForMem(it->type);
1686       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1687       break;
1688     }
1689     case ABIArgInfo::Extend:
1690     case ABIArgInfo::Direct: {
1691       // Fast-isel and the optimizer generally like scalar values better than
1692       // FCAs, so we flatten them if this is safe to do for this argument.
1693       llvm::Type *argType = ArgInfo.getCoerceToType();
1694       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1695       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1696         assert(NumIRArgs == st->getNumElements());
1697         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1698           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1699       } else {
1700         assert(NumIRArgs == 1);
1701         ArgTypes[FirstIRArg] = argType;
1702       }
1703       break;
1704     }
1705 
1706     case ABIArgInfo::CoerceAndExpand: {
1707       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1708       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1709         *ArgTypesIter++ = EltTy;
1710       }
1711       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1712       break;
1713     }
1714 
1715     case ABIArgInfo::Expand:
1716       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1717       getExpandedTypes(it->type, ArgTypesIter);
1718       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1719       break;
1720     }
1721   }
1722 
1723   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1724   assert(Erased && "Not in set?");
1725 
1726   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1727 }
1728 
1729 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1730   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1731   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1732 
1733   if (!isFuncTypeConvertible(FPT))
1734     return llvm::StructType::get(getLLVMContext());
1735 
1736   return GetFunctionType(GD);
1737 }
1738 
1739 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1740                                                llvm::AttrBuilder &FuncAttrs,
1741                                                const FunctionProtoType *FPT) {
1742   if (!FPT)
1743     return;
1744 
1745   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1746       FPT->isNothrow())
1747     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1748 }
1749 
1750 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
1751                                      const Decl *Callee, const Decl *Caller,
1752                                      bool AssumptionOnCallSite) {
1753   if (!Callee)
1754     return;
1755 
1756   SmallVector<StringRef, 4> Attrs;
1757 
1758   for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
1759     AA->getAssumption().split(Attrs, ",");
1760 
1761   if (Caller && Caller->hasAttrs() && AssumptionOnCallSite)
1762     for (const AssumptionAttr *AA : Caller->specific_attrs<AssumptionAttr>())
1763       AA->getAssumption().split(Attrs, ",");
1764 
1765   if (!Attrs.empty())
1766     FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1767                            llvm::join(Attrs.begin(), Attrs.end(), ","));
1768 }
1769 
1770 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1771                                           QualType ReturnType) {
1772   // We can't just discard the return value for a record type with a
1773   // complex destructor or a non-trivially copyable type.
1774   if (const RecordType *RT =
1775           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1776     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1777       return ClassDecl->hasTrivialDestructor();
1778   }
1779   return ReturnType.isTriviallyCopyableType(Context);
1780 }
1781 
1782 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1783                                                  bool HasOptnone,
1784                                                  bool AttrOnCallSite,
1785                                                llvm::AttrBuilder &FuncAttrs) {
1786   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1787   if (!HasOptnone) {
1788     if (CodeGenOpts.OptimizeSize)
1789       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1790     if (CodeGenOpts.OptimizeSize == 2)
1791       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1792   }
1793 
1794   if (CodeGenOpts.DisableRedZone)
1795     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1796   if (CodeGenOpts.IndirectTlsSegRefs)
1797     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1798   if (CodeGenOpts.NoImplicitFloat)
1799     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1800 
1801   if (AttrOnCallSite) {
1802     // Attributes that should go on the call site only.
1803     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1804       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1805     if (!CodeGenOpts.TrapFuncName.empty())
1806       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1807   } else {
1808     StringRef FpKind;
1809     switch (CodeGenOpts.getFramePointer()) {
1810     case CodeGenOptions::FramePointerKind::None:
1811       FpKind = "none";
1812       break;
1813     case CodeGenOptions::FramePointerKind::NonLeaf:
1814       FpKind = "non-leaf";
1815       break;
1816     case CodeGenOptions::FramePointerKind::All:
1817       FpKind = "all";
1818       break;
1819     }
1820     FuncAttrs.addAttribute("frame-pointer", FpKind);
1821 
1822     if (CodeGenOpts.LessPreciseFPMAD)
1823       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1824 
1825     if (CodeGenOpts.NullPointerIsValid)
1826       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1827 
1828     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1829       FuncAttrs.addAttribute("denormal-fp-math",
1830                              CodeGenOpts.FPDenormalMode.str());
1831     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1832       FuncAttrs.addAttribute(
1833           "denormal-fp-math-f32",
1834           CodeGenOpts.FP32DenormalMode.str());
1835     }
1836 
1837     if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1838       FuncAttrs.addAttribute("no-trapping-math", "true");
1839 
1840     // Strict (compliant) code is the default, so only add this attribute to
1841     // indicate that we are trying to workaround a problem case.
1842     if (!CodeGenOpts.StrictFloatCastOverflow)
1843       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1844 
1845     // TODO: Are these all needed?
1846     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1847     if (LangOpts.NoHonorInfs)
1848       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1849     if (LangOpts.NoHonorNaNs)
1850       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1851     if (LangOpts.UnsafeFPMath)
1852       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1853     if (CodeGenOpts.SoftFloat)
1854       FuncAttrs.addAttribute("use-soft-float", "true");
1855     FuncAttrs.addAttribute("stack-protector-buffer-size",
1856                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1857     if (LangOpts.NoSignedZero)
1858       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1859 
1860     // TODO: Reciprocal estimate codegen options should apply to instructions?
1861     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1862     if (!Recips.empty())
1863       FuncAttrs.addAttribute("reciprocal-estimates",
1864                              llvm::join(Recips, ","));
1865 
1866     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1867         CodeGenOpts.PreferVectorWidth != "none")
1868       FuncAttrs.addAttribute("prefer-vector-width",
1869                              CodeGenOpts.PreferVectorWidth);
1870 
1871     if (CodeGenOpts.StackRealignment)
1872       FuncAttrs.addAttribute("stackrealign");
1873     if (CodeGenOpts.Backchain)
1874       FuncAttrs.addAttribute("backchain");
1875     if (CodeGenOpts.EnableSegmentedStacks)
1876       FuncAttrs.addAttribute("split-stack");
1877 
1878     if (CodeGenOpts.SpeculativeLoadHardening)
1879       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1880   }
1881 
1882   if (getLangOpts().assumeFunctionsAreConvergent()) {
1883     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1884     // convergent (meaning, they may call an intrinsically convergent op, such
1885     // as __syncthreads() / barrier(), and so can't have certain optimizations
1886     // applied around them).  LLVM will remove this attribute where it safely
1887     // can.
1888     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1889   }
1890 
1891   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1892     // Exceptions aren't supported in CUDA device code.
1893     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1894   }
1895 
1896   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1897     StringRef Var, Value;
1898     std::tie(Var, Value) = Attr.split('=');
1899     FuncAttrs.addAttribute(Var, Value);
1900   }
1901 }
1902 
1903 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1904   llvm::AttrBuilder FuncAttrs;
1905   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1906                                /* AttrOnCallSite = */ false, FuncAttrs);
1907   // TODO: call GetCPUAndFeaturesAttributes?
1908   F.addFnAttrs(FuncAttrs);
1909 }
1910 
1911 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1912                                                    llvm::AttrBuilder &attrs) {
1913   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1914                                /*for call*/ false, attrs);
1915   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1916 }
1917 
1918 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1919                                    const LangOptions &LangOpts,
1920                                    const NoBuiltinAttr *NBA = nullptr) {
1921   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1922     SmallString<32> AttributeName;
1923     AttributeName += "no-builtin-";
1924     AttributeName += BuiltinName;
1925     FuncAttrs.addAttribute(AttributeName);
1926   };
1927 
1928   // First, handle the language options passed through -fno-builtin.
1929   if (LangOpts.NoBuiltin) {
1930     // -fno-builtin disables them all.
1931     FuncAttrs.addAttribute("no-builtins");
1932     return;
1933   }
1934 
1935   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1936   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1937 
1938   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1939   // the source.
1940   if (!NBA)
1941     return;
1942 
1943   // If there is a wildcard in the builtin names specified through the
1944   // attribute, disable them all.
1945   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1946     FuncAttrs.addAttribute("no-builtins");
1947     return;
1948   }
1949 
1950   // And last, add the rest of the builtin names.
1951   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1952 }
1953 
1954 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
1955                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
1956                              bool CheckCoerce = true) {
1957   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
1958   if (AI.getKind() == ABIArgInfo::Indirect)
1959     return true;
1960   if (AI.getKind() == ABIArgInfo::Extend)
1961     return true;
1962   if (!DL.typeSizeEqualsStoreSize(Ty))
1963     // TODO: This will result in a modest amount of values not marked noundef
1964     // when they could be. We care about values that *invisibly* contain undef
1965     // bits from the perspective of LLVM IR.
1966     return false;
1967   if (CheckCoerce && AI.canHaveCoerceToType()) {
1968     llvm::Type *CoerceTy = AI.getCoerceToType();
1969     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
1970                                   DL.getTypeSizeInBits(Ty)))
1971       // If we're coercing to a type with a greater size than the canonical one,
1972       // we're introducing new undef bits.
1973       // Coercing to a type of smaller or equal size is ok, as we know that
1974       // there's no internal padding (typeSizeEqualsStoreSize).
1975       return false;
1976   }
1977   if (QTy->isExtIntType())
1978     return true;
1979   if (QTy->isReferenceType())
1980     return true;
1981   if (QTy->isNullPtrType())
1982     return false;
1983   if (QTy->isMemberPointerType())
1984     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
1985     // now, never mark them.
1986     return false;
1987   if (QTy->isScalarType()) {
1988     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
1989       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
1990     return true;
1991   }
1992   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
1993     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
1994   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
1995     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
1996   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
1997     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
1998 
1999   // TODO: Some structs may be `noundef`, in specific situations.
2000   return false;
2001 }
2002 
2003 /// Construct the IR attribute list of a function or call.
2004 ///
2005 /// When adding an attribute, please consider where it should be handled:
2006 ///
2007 ///   - getDefaultFunctionAttributes is for attributes that are essentially
2008 ///     part of the global target configuration (but perhaps can be
2009 ///     overridden on a per-function basis).  Adding attributes there
2010 ///     will cause them to also be set in frontends that build on Clang's
2011 ///     target-configuration logic, as well as for code defined in library
2012 ///     modules such as CUDA's libdevice.
2013 ///
2014 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2015 ///     and adds declaration-specific, convention-specific, and
2016 ///     frontend-specific logic.  The last is of particular importance:
2017 ///     attributes that restrict how the frontend generates code must be
2018 ///     added here rather than getDefaultFunctionAttributes.
2019 ///
2020 void CodeGenModule::ConstructAttributeList(
2021     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
2022     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite,
2023     bool IsThunk, const Decl *Caller) {
2024   llvm::AttrBuilder FuncAttrs;
2025   llvm::AttrBuilder RetAttrs;
2026 
2027   // Collect function IR attributes from the CC lowering.
2028   // We'll collect the paramete and result attributes later.
2029   CallingConv = FI.getEffectiveCallingConvention();
2030   if (FI.isNoReturn())
2031     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2032   if (FI.isCmseNSCall())
2033     FuncAttrs.addAttribute("cmse_nonsecure_call");
2034 
2035   // Collect function IR attributes from the callee prototype if we have one.
2036   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2037                                      CalleeInfo.getCalleeFunctionProtoType());
2038 
2039   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2040 
2041   // Only attach assumptions to call sites in OpenMP mode.
2042   bool AssumptionOnCallSite = getLangOpts().OpenMP && AttrOnCallSite;
2043 
2044   // Attach assumption attributes to the declaration. If this is a call
2045   // site, attach assumptions from the caller to the call as well.
2046   AddAttributesFromAssumes(FuncAttrs, TargetDecl, Caller, AssumptionOnCallSite);
2047 
2048   bool HasOptnone = false;
2049   // The NoBuiltinAttr attached to the target FunctionDecl.
2050   const NoBuiltinAttr *NBA = nullptr;
2051 
2052   // Collect function IR attributes based on declaration-specific
2053   // information.
2054   // FIXME: handle sseregparm someday...
2055   if (TargetDecl) {
2056     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2057       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2058     if (TargetDecl->hasAttr<NoThrowAttr>())
2059       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2060     if (TargetDecl->hasAttr<NoReturnAttr>())
2061       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2062     if (TargetDecl->hasAttr<ColdAttr>())
2063       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2064     if (TargetDecl->hasAttr<HotAttr>())
2065       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2066     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2067       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2068     if (TargetDecl->hasAttr<ConvergentAttr>())
2069       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2070 
2071     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2072       AddAttributesFromFunctionProtoType(
2073           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2074       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2075         // A sane operator new returns a non-aliasing pointer.
2076         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2077         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2078             (Kind == OO_New || Kind == OO_Array_New))
2079           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2080       }
2081       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2082       const bool IsVirtualCall = MD && MD->isVirtual();
2083       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2084       // virtual function. These attributes are not inherited by overloads.
2085       if (!(AttrOnCallSite && IsVirtualCall)) {
2086         if (Fn->isNoReturn())
2087           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2088         NBA = Fn->getAttr<NoBuiltinAttr>();
2089       }
2090       // Only place nomerge attribute on call sites, never functions. This
2091       // allows it to work on indirect virtual function calls.
2092       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2093         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2094     }
2095 
2096     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2097     if (TargetDecl->hasAttr<ConstAttr>()) {
2098       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2099       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2100       // gcc specifies that 'const' functions have greater restrictions than
2101       // 'pure' functions, so they also cannot have infinite loops.
2102       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2103     } else if (TargetDecl->hasAttr<PureAttr>()) {
2104       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2105       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2106       // gcc specifies that 'pure' functions cannot have infinite loops.
2107       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2108     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2109       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2110       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2111     }
2112     if (TargetDecl->hasAttr<RestrictAttr>())
2113       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2114     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2115         !CodeGenOpts.NullPointerIsValid)
2116       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2117     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2118       FuncAttrs.addAttribute("no_caller_saved_registers");
2119     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2120       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2121     if (TargetDecl->hasAttr<LeafAttr>())
2122       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2123 
2124     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2125     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2126       Optional<unsigned> NumElemsParam;
2127       if (AllocSize->getNumElemsParam().isValid())
2128         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2129       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2130                                  NumElemsParam);
2131     }
2132 
2133     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2134       if (getLangOpts().OpenCLVersion <= 120) {
2135         // OpenCL v1.2 Work groups are always uniform
2136         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2137       } else {
2138         // OpenCL v2.0 Work groups may be whether uniform or not.
2139         // '-cl-uniform-work-group-size' compile option gets a hint
2140         // to the compiler that the global work-size be a multiple of
2141         // the work-group size specified to clEnqueueNDRangeKernel
2142         // (i.e. work groups are uniform).
2143         FuncAttrs.addAttribute("uniform-work-group-size",
2144                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2145       }
2146     }
2147   }
2148 
2149   // Attach "no-builtins" attributes to:
2150   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2151   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2152   // The attributes can come from:
2153   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2154   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2155   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2156 
2157   // Collect function IR attributes based on global settiings.
2158   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2159 
2160   // Override some default IR attributes based on declaration-specific
2161   // information.
2162   if (TargetDecl) {
2163     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2164       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2165     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2166       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2167     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2168       FuncAttrs.removeAttribute("split-stack");
2169 
2170     // Add NonLazyBind attribute to function declarations when -fno-plt
2171     // is used.
2172     // FIXME: what if we just haven't processed the function definition
2173     // yet, or if it's an external definition like C99 inline?
2174     if (CodeGenOpts.NoPLT) {
2175       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2176         if (!Fn->isDefined() && !AttrOnCallSite) {
2177           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2178         }
2179       }
2180     }
2181   }
2182 
2183   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2184   // functions with -funique-internal-linkage-names.
2185   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2186     if (isa<FunctionDecl>(TargetDecl)) {
2187       if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) ==
2188           llvm::GlobalValue::InternalLinkage)
2189         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2190                                "selected");
2191     }
2192   }
2193 
2194   // Collect non-call-site function IR attributes from declaration-specific
2195   // information.
2196   if (!AttrOnCallSite) {
2197     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2198       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2199 
2200     // Whether tail calls are enabled.
2201     auto shouldDisableTailCalls = [&] {
2202       // Should this be honored in getDefaultFunctionAttributes?
2203       if (CodeGenOpts.DisableTailCalls)
2204         return true;
2205 
2206       if (!TargetDecl)
2207         return false;
2208 
2209       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2210           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2211         return true;
2212 
2213       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2214         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2215           if (!BD->doesNotEscape())
2216             return true;
2217       }
2218 
2219       return false;
2220     };
2221     if (shouldDisableTailCalls())
2222       FuncAttrs.addAttribute("disable-tail-calls", "true");
2223 
2224     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2225     // handles these separately to set them based on the global defaults.
2226     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2227   }
2228 
2229   // Collect attributes from arguments and return values.
2230   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2231 
2232   QualType RetTy = FI.getReturnType();
2233   const ABIArgInfo &RetAI = FI.getReturnInfo();
2234   const llvm::DataLayout &DL = getDataLayout();
2235 
2236   // C++ explicitly makes returning undefined values UB. C's rule only applies
2237   // to used values, so we never mark them noundef for now.
2238   bool HasStrictReturn = getLangOpts().CPlusPlus;
2239   if (TargetDecl && HasStrictReturn) {
2240     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2241       HasStrictReturn &= !FDecl->isExternC();
2242     else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2243       // Function pointer
2244       HasStrictReturn &= !VDecl->isExternC();
2245   }
2246 
2247   // We don't want to be too aggressive with the return checking, unless
2248   // it's explicit in the code opts or we're using an appropriate sanitizer.
2249   // Try to respect what the programmer intended.
2250   HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2251                      !MayDropFunctionReturn(getContext(), RetTy) ||
2252                      getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2253                      getLangOpts().Sanitize.has(SanitizerKind::Return);
2254 
2255   // Determine if the return type could be partially undef
2256   if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2257     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2258         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2259       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2260   }
2261 
2262   switch (RetAI.getKind()) {
2263   case ABIArgInfo::Extend:
2264     if (RetAI.isSignExt())
2265       RetAttrs.addAttribute(llvm::Attribute::SExt);
2266     else
2267       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2268     LLVM_FALLTHROUGH;
2269   case ABIArgInfo::Direct:
2270     if (RetAI.getInReg())
2271       RetAttrs.addAttribute(llvm::Attribute::InReg);
2272     break;
2273   case ABIArgInfo::Ignore:
2274     break;
2275 
2276   case ABIArgInfo::InAlloca:
2277   case ABIArgInfo::Indirect: {
2278     // inalloca and sret disable readnone and readonly
2279     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2280       .removeAttribute(llvm::Attribute::ReadNone);
2281     break;
2282   }
2283 
2284   case ABIArgInfo::CoerceAndExpand:
2285     break;
2286 
2287   case ABIArgInfo::Expand:
2288   case ABIArgInfo::IndirectAliased:
2289     llvm_unreachable("Invalid ABI kind for return argument");
2290   }
2291 
2292   if (!IsThunk) {
2293     // FIXME: fix this properly, https://reviews.llvm.org/D100388
2294     if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2295       QualType PTy = RefTy->getPointeeType();
2296       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2297         RetAttrs.addDereferenceableAttr(
2298             getMinimumObjectSize(PTy).getQuantity());
2299       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2300           !CodeGenOpts.NullPointerIsValid)
2301         RetAttrs.addAttribute(llvm::Attribute::NonNull);
2302       if (PTy->isObjectType()) {
2303         llvm::Align Alignment =
2304             getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2305         RetAttrs.addAlignmentAttr(Alignment);
2306       }
2307     }
2308   }
2309 
2310   bool hasUsedSRet = false;
2311   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2312 
2313   // Attach attributes to sret.
2314   if (IRFunctionArgs.hasSRetArg()) {
2315     llvm::AttrBuilder SRETAttrs;
2316     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2317     hasUsedSRet = true;
2318     if (RetAI.getInReg())
2319       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2320     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2321     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2322         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2323   }
2324 
2325   // Attach attributes to inalloca argument.
2326   if (IRFunctionArgs.hasInallocaArg()) {
2327     llvm::AttrBuilder Attrs;
2328     Attrs.addInAllocaAttr(FI.getArgStruct());
2329     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2330         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2331   }
2332 
2333   // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2334   // unless this is a thunk function.
2335   // FIXME: fix this properly, https://reviews.llvm.org/D100388
2336   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2337       !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2338     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2339 
2340     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2341 
2342     llvm::AttrBuilder Attrs;
2343 
2344     QualType ThisTy =
2345         FI.arg_begin()->type.castAs<PointerType>()->getPointeeType();
2346 
2347     if (!CodeGenOpts.NullPointerIsValid &&
2348         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2349       Attrs.addAttribute(llvm::Attribute::NonNull);
2350       Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2351     } else {
2352       // FIXME dereferenceable should be correct here, regardless of
2353       // NullPointerIsValid. However, dereferenceable currently does not always
2354       // respect NullPointerIsValid and may imply nonnull and break the program.
2355       // See https://reviews.llvm.org/D66618 for discussions.
2356       Attrs.addDereferenceableOrNullAttr(
2357           getMinimumObjectSize(
2358               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2359               .getQuantity());
2360     }
2361 
2362     llvm::Align Alignment =
2363         getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2364                                 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2365             .getAsAlign();
2366     Attrs.addAlignmentAttr(Alignment);
2367 
2368     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2369   }
2370 
2371   unsigned ArgNo = 0;
2372   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2373                                           E = FI.arg_end();
2374        I != E; ++I, ++ArgNo) {
2375     QualType ParamType = I->type;
2376     const ABIArgInfo &AI = I->info;
2377     llvm::AttrBuilder Attrs;
2378 
2379     // Add attribute for padding argument, if necessary.
2380     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2381       if (AI.getPaddingInReg()) {
2382         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2383             llvm::AttributeSet::get(
2384                 getLLVMContext(),
2385                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2386       }
2387     }
2388 
2389     // Decide whether the argument we're handling could be partially undef
2390     bool ArgNoUndef = DetermineNoUndef(ParamType, getTypes(), DL, AI);
2391     if (CodeGenOpts.EnableNoundefAttrs && ArgNoUndef)
2392       Attrs.addAttribute(llvm::Attribute::NoUndef);
2393 
2394     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2395     // have the corresponding parameter variable.  It doesn't make
2396     // sense to do it here because parameters are so messed up.
2397     switch (AI.getKind()) {
2398     case ABIArgInfo::Extend:
2399       if (AI.isSignExt())
2400         Attrs.addAttribute(llvm::Attribute::SExt);
2401       else
2402         Attrs.addAttribute(llvm::Attribute::ZExt);
2403       LLVM_FALLTHROUGH;
2404     case ABIArgInfo::Direct:
2405       if (ArgNo == 0 && FI.isChainCall())
2406         Attrs.addAttribute(llvm::Attribute::Nest);
2407       else if (AI.getInReg())
2408         Attrs.addAttribute(llvm::Attribute::InReg);
2409       Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2410       break;
2411 
2412     case ABIArgInfo::Indirect: {
2413       if (AI.getInReg())
2414         Attrs.addAttribute(llvm::Attribute::InReg);
2415 
2416       if (AI.getIndirectByVal())
2417         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2418 
2419       auto *Decl = ParamType->getAsRecordDecl();
2420       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2421           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2422         // When calling the function, the pointer passed in will be the only
2423         // reference to the underlying object. Mark it accordingly.
2424         Attrs.addAttribute(llvm::Attribute::NoAlias);
2425 
2426       // TODO: We could add the byref attribute if not byval, but it would
2427       // require updating many testcases.
2428 
2429       CharUnits Align = AI.getIndirectAlign();
2430 
2431       // In a byval argument, it is important that the required
2432       // alignment of the type is honored, as LLVM might be creating a
2433       // *new* stack object, and needs to know what alignment to give
2434       // it. (Sometimes it can deduce a sensible alignment on its own,
2435       // but not if clang decides it must emit a packed struct, or the
2436       // user specifies increased alignment requirements.)
2437       //
2438       // This is different from indirect *not* byval, where the object
2439       // exists already, and the align attribute is purely
2440       // informative.
2441       assert(!Align.isZero());
2442 
2443       // For now, only add this when we have a byval argument.
2444       // TODO: be less lazy about updating test cases.
2445       if (AI.getIndirectByVal())
2446         Attrs.addAlignmentAttr(Align.getQuantity());
2447 
2448       // byval disables readnone and readonly.
2449       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2450         .removeAttribute(llvm::Attribute::ReadNone);
2451 
2452       break;
2453     }
2454     case ABIArgInfo::IndirectAliased: {
2455       CharUnits Align = AI.getIndirectAlign();
2456       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2457       Attrs.addAlignmentAttr(Align.getQuantity());
2458       break;
2459     }
2460     case ABIArgInfo::Ignore:
2461     case ABIArgInfo::Expand:
2462     case ABIArgInfo::CoerceAndExpand:
2463       break;
2464 
2465     case ABIArgInfo::InAlloca:
2466       // inalloca disables readnone and readonly.
2467       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2468           .removeAttribute(llvm::Attribute::ReadNone);
2469       continue;
2470     }
2471 
2472     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2473       QualType PTy = RefTy->getPointeeType();
2474       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2475         Attrs.addDereferenceableAttr(
2476             getMinimumObjectSize(PTy).getQuantity());
2477       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2478           !CodeGenOpts.NullPointerIsValid)
2479         Attrs.addAttribute(llvm::Attribute::NonNull);
2480       if (PTy->isObjectType()) {
2481         llvm::Align Alignment =
2482             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2483         Attrs.addAlignmentAttr(Alignment);
2484       }
2485     }
2486 
2487     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2488     case ParameterABI::Ordinary:
2489       break;
2490 
2491     case ParameterABI::SwiftIndirectResult: {
2492       // Add 'sret' if we haven't already used it for something, but
2493       // only if the result is void.
2494       if (!hasUsedSRet && RetTy->isVoidType()) {
2495         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2496         hasUsedSRet = true;
2497       }
2498 
2499       // Add 'noalias' in either case.
2500       Attrs.addAttribute(llvm::Attribute::NoAlias);
2501 
2502       // Add 'dereferenceable' and 'alignment'.
2503       auto PTy = ParamType->getPointeeType();
2504       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2505         auto info = getContext().getTypeInfoInChars(PTy);
2506         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2507         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2508       }
2509       break;
2510     }
2511 
2512     case ParameterABI::SwiftErrorResult:
2513       Attrs.addAttribute(llvm::Attribute::SwiftError);
2514       break;
2515 
2516     case ParameterABI::SwiftContext:
2517       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2518       break;
2519 
2520     case ParameterABI::SwiftAsyncContext:
2521       Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2522       break;
2523     }
2524 
2525     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2526       Attrs.addAttribute(llvm::Attribute::NoCapture);
2527 
2528     if (Attrs.hasAttributes()) {
2529       unsigned FirstIRArg, NumIRArgs;
2530       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2531       for (unsigned i = 0; i < NumIRArgs; i++)
2532         ArgAttrs[FirstIRArg + i] =
2533             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2534     }
2535   }
2536   assert(ArgNo == FI.arg_size());
2537 
2538   AttrList = llvm::AttributeList::get(
2539       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2540       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2541 }
2542 
2543 /// An argument came in as a promoted argument; demote it back to its
2544 /// declared type.
2545 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2546                                          const VarDecl *var,
2547                                          llvm::Value *value) {
2548   llvm::Type *varType = CGF.ConvertType(var->getType());
2549 
2550   // This can happen with promotions that actually don't change the
2551   // underlying type, like the enum promotions.
2552   if (value->getType() == varType) return value;
2553 
2554   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2555          && "unexpected promotion type");
2556 
2557   if (isa<llvm::IntegerType>(varType))
2558     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2559 
2560   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2561 }
2562 
2563 /// Returns the attribute (either parameter attribute, or function
2564 /// attribute), which declares argument ArgNo to be non-null.
2565 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2566                                          QualType ArgType, unsigned ArgNo) {
2567   // FIXME: __attribute__((nonnull)) can also be applied to:
2568   //   - references to pointers, where the pointee is known to be
2569   //     nonnull (apparently a Clang extension)
2570   //   - transparent unions containing pointers
2571   // In the former case, LLVM IR cannot represent the constraint. In
2572   // the latter case, we have no guarantee that the transparent union
2573   // is in fact passed as a pointer.
2574   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2575     return nullptr;
2576   // First, check attribute on parameter itself.
2577   if (PVD) {
2578     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2579       return ParmNNAttr;
2580   }
2581   // Check function attributes.
2582   if (!FD)
2583     return nullptr;
2584   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2585     if (NNAttr->isNonNull(ArgNo))
2586       return NNAttr;
2587   }
2588   return nullptr;
2589 }
2590 
2591 namespace {
2592   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2593     Address Temp;
2594     Address Arg;
2595     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2596     void Emit(CodeGenFunction &CGF, Flags flags) override {
2597       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2598       CGF.Builder.CreateStore(errorValue, Arg);
2599     }
2600   };
2601 }
2602 
2603 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2604                                          llvm::Function *Fn,
2605                                          const FunctionArgList &Args) {
2606   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2607     // Naked functions don't have prologues.
2608     return;
2609 
2610   // If this is an implicit-return-zero function, go ahead and
2611   // initialize the return value.  TODO: it might be nice to have
2612   // a more general mechanism for this that didn't require synthesized
2613   // return statements.
2614   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2615     if (FD->hasImplicitReturnZero()) {
2616       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2617       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2618       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2619       Builder.CreateStore(Zero, ReturnValue);
2620     }
2621   }
2622 
2623   // FIXME: We no longer need the types from FunctionArgList; lift up and
2624   // simplify.
2625 
2626   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2627   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2628 
2629   // If we're using inalloca, all the memory arguments are GEPs off of the last
2630   // parameter, which is a pointer to the complete memory area.
2631   Address ArgStruct = Address::invalid();
2632   if (IRFunctionArgs.hasInallocaArg()) {
2633     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2634                         FI.getArgStructAlignment());
2635 
2636     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2637   }
2638 
2639   // Name the struct return parameter.
2640   if (IRFunctionArgs.hasSRetArg()) {
2641     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2642     AI->setName("agg.result");
2643     AI->addAttr(llvm::Attribute::NoAlias);
2644   }
2645 
2646   // Track if we received the parameter as a pointer (indirect, byval, or
2647   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2648   // into a local alloca for us.
2649   SmallVector<ParamValue, 16> ArgVals;
2650   ArgVals.reserve(Args.size());
2651 
2652   // Create a pointer value for every parameter declaration.  This usually
2653   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2654   // any cleanups or do anything that might unwind.  We do that separately, so
2655   // we can push the cleanups in the correct order for the ABI.
2656   assert(FI.arg_size() == Args.size() &&
2657          "Mismatch between function signature & arguments.");
2658   unsigned ArgNo = 0;
2659   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2660   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2661        i != e; ++i, ++info_it, ++ArgNo) {
2662     const VarDecl *Arg = *i;
2663     const ABIArgInfo &ArgI = info_it->info;
2664 
2665     bool isPromoted =
2666       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2667     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2668     // the parameter is promoted. In this case we convert to
2669     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2670     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2671     assert(hasScalarEvaluationKind(Ty) ==
2672            hasScalarEvaluationKind(Arg->getType()));
2673 
2674     unsigned FirstIRArg, NumIRArgs;
2675     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2676 
2677     switch (ArgI.getKind()) {
2678     case ABIArgInfo::InAlloca: {
2679       assert(NumIRArgs == 0);
2680       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2681       Address V =
2682           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2683       if (ArgI.getInAllocaIndirect())
2684         V = Address(Builder.CreateLoad(V),
2685                     getContext().getTypeAlignInChars(Ty));
2686       ArgVals.push_back(ParamValue::forIndirect(V));
2687       break;
2688     }
2689 
2690     case ABIArgInfo::Indirect:
2691     case ABIArgInfo::IndirectAliased: {
2692       assert(NumIRArgs == 1);
2693       Address ParamAddr =
2694           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2695 
2696       if (!hasScalarEvaluationKind(Ty)) {
2697         // Aggregates and complex variables are accessed by reference. All we
2698         // need to do is realign the value, if requested. Also, if the address
2699         // may be aliased, copy it to ensure that the parameter variable is
2700         // mutable and has a unique adress, as C requires.
2701         Address V = ParamAddr;
2702         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2703           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2704 
2705           // Copy from the incoming argument pointer to the temporary with the
2706           // appropriate alignment.
2707           //
2708           // FIXME: We should have a common utility for generating an aggregate
2709           // copy.
2710           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2711           Builder.CreateMemCpy(
2712               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2713               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2714               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2715           V = AlignedTemp;
2716         }
2717         ArgVals.push_back(ParamValue::forIndirect(V));
2718       } else {
2719         // Load scalar value from indirect argument.
2720         llvm::Value *V =
2721             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2722 
2723         if (isPromoted)
2724           V = emitArgumentDemotion(*this, Arg, V);
2725         ArgVals.push_back(ParamValue::forDirect(V));
2726       }
2727       break;
2728     }
2729 
2730     case ABIArgInfo::Extend:
2731     case ABIArgInfo::Direct: {
2732       auto AI = Fn->getArg(FirstIRArg);
2733       llvm::Type *LTy = ConvertType(Arg->getType());
2734 
2735       // Prepare parameter attributes. So far, only attributes for pointer
2736       // parameters are prepared. See
2737       // http://llvm.org/docs/LangRef.html#paramattrs.
2738       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2739           ArgI.getCoerceToType()->isPointerTy()) {
2740         assert(NumIRArgs == 1);
2741 
2742         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2743           // Set `nonnull` attribute if any.
2744           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2745                              PVD->getFunctionScopeIndex()) &&
2746               !CGM.getCodeGenOpts().NullPointerIsValid)
2747             AI->addAttr(llvm::Attribute::NonNull);
2748 
2749           QualType OTy = PVD->getOriginalType();
2750           if (const auto *ArrTy =
2751               getContext().getAsConstantArrayType(OTy)) {
2752             // A C99 array parameter declaration with the static keyword also
2753             // indicates dereferenceability, and if the size is constant we can
2754             // use the dereferenceable attribute (which requires the size in
2755             // bytes).
2756             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2757               QualType ETy = ArrTy->getElementType();
2758               llvm::Align Alignment =
2759                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2760               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2761               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2762               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2763                   ArrSize) {
2764                 llvm::AttrBuilder Attrs;
2765                 Attrs.addDereferenceableAttr(
2766                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2767                     ArrSize);
2768                 AI->addAttrs(Attrs);
2769               } else if (getContext().getTargetInfo().getNullPointerValue(
2770                              ETy.getAddressSpace()) == 0 &&
2771                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2772                 AI->addAttr(llvm::Attribute::NonNull);
2773               }
2774             }
2775           } else if (const auto *ArrTy =
2776                      getContext().getAsVariableArrayType(OTy)) {
2777             // For C99 VLAs with the static keyword, we don't know the size so
2778             // we can't use the dereferenceable attribute, but in addrspace(0)
2779             // we know that it must be nonnull.
2780             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2781               QualType ETy = ArrTy->getElementType();
2782               llvm::Align Alignment =
2783                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2784               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2785               if (!getContext().getTargetAddressSpace(ETy) &&
2786                   !CGM.getCodeGenOpts().NullPointerIsValid)
2787                 AI->addAttr(llvm::Attribute::NonNull);
2788             }
2789           }
2790 
2791           // Set `align` attribute if any.
2792           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2793           if (!AVAttr)
2794             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2795               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2796           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2797             // If alignment-assumption sanitizer is enabled, we do *not* add
2798             // alignment attribute here, but emit normal alignment assumption,
2799             // so the UBSAN check could function.
2800             llvm::ConstantInt *AlignmentCI =
2801                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2802             unsigned AlignmentInt =
2803                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2804             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2805               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2806               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2807                   llvm::Align(AlignmentInt)));
2808             }
2809           }
2810         }
2811 
2812         // Set 'noalias' if an argument type has the `restrict` qualifier.
2813         if (Arg->getType().isRestrictQualified())
2814           AI->addAttr(llvm::Attribute::NoAlias);
2815       }
2816 
2817       // Prepare the argument value. If we have the trivial case, handle it
2818       // with no muss and fuss.
2819       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2820           ArgI.getCoerceToType() == ConvertType(Ty) &&
2821           ArgI.getDirectOffset() == 0) {
2822         assert(NumIRArgs == 1);
2823 
2824         // LLVM expects swifterror parameters to be used in very restricted
2825         // ways.  Copy the value into a less-restricted temporary.
2826         llvm::Value *V = AI;
2827         if (FI.getExtParameterInfo(ArgNo).getABI()
2828               == ParameterABI::SwiftErrorResult) {
2829           QualType pointeeTy = Ty->getPointeeType();
2830           assert(pointeeTy->isPointerType());
2831           Address temp =
2832             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2833           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2834           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2835           Builder.CreateStore(incomingErrorValue, temp);
2836           V = temp.getPointer();
2837 
2838           // Push a cleanup to copy the value back at the end of the function.
2839           // The convention does not guarantee that the value will be written
2840           // back if the function exits with an unwind exception.
2841           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2842         }
2843 
2844         // Ensure the argument is the correct type.
2845         if (V->getType() != ArgI.getCoerceToType())
2846           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2847 
2848         if (isPromoted)
2849           V = emitArgumentDemotion(*this, Arg, V);
2850 
2851         // Because of merging of function types from multiple decls it is
2852         // possible for the type of an argument to not match the corresponding
2853         // type in the function type. Since we are codegening the callee
2854         // in here, add a cast to the argument type.
2855         llvm::Type *LTy = ConvertType(Arg->getType());
2856         if (V->getType() != LTy)
2857           V = Builder.CreateBitCast(V, LTy);
2858 
2859         ArgVals.push_back(ParamValue::forDirect(V));
2860         break;
2861       }
2862 
2863       // VLST arguments are coerced to VLATs at the function boundary for
2864       // ABI consistency. If this is a VLST that was coerced to
2865       // a VLAT at the function boundary and the types match up, use
2866       // llvm.experimental.vector.extract to convert back to the original
2867       // VLST.
2868       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2869         llvm::Value *Coerced = Fn->getArg(FirstIRArg);
2870         if (auto *VecTyFrom =
2871                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2872           // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2873           // vector, bitcast the source and use a vector extract.
2874           auto PredType =
2875               llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2876           if (VecTyFrom == PredType &&
2877               VecTyTo->getElementType() == Builder.getInt8Ty()) {
2878             VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2879             Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
2880           }
2881           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2882             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2883 
2884             assert(NumIRArgs == 1);
2885             Coerced->setName(Arg->getName() + ".coerce");
2886             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2887                 VecTyTo, Coerced, Zero, "castFixedSve")));
2888             break;
2889           }
2890         }
2891       }
2892 
2893       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2894                                      Arg->getName());
2895 
2896       // Pointer to store into.
2897       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2898 
2899       // Fast-isel and the optimizer generally like scalar values better than
2900       // FCAs, so we flatten them if this is safe to do for this argument.
2901       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2902       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2903           STy->getNumElements() > 1) {
2904         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2905         llvm::Type *DstTy = Ptr.getElementType();
2906         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2907 
2908         Address AddrToStoreInto = Address::invalid();
2909         if (SrcSize <= DstSize) {
2910           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2911         } else {
2912           AddrToStoreInto =
2913             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2914         }
2915 
2916         assert(STy->getNumElements() == NumIRArgs);
2917         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2918           auto AI = Fn->getArg(FirstIRArg + i);
2919           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2920           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2921           Builder.CreateStore(AI, EltPtr);
2922         }
2923 
2924         if (SrcSize > DstSize) {
2925           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2926         }
2927 
2928       } else {
2929         // Simple case, just do a coerced store of the argument into the alloca.
2930         assert(NumIRArgs == 1);
2931         auto AI = Fn->getArg(FirstIRArg);
2932         AI->setName(Arg->getName() + ".coerce");
2933         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2934       }
2935 
2936       // Match to what EmitParmDecl is expecting for this type.
2937       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2938         llvm::Value *V =
2939             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2940         if (isPromoted)
2941           V = emitArgumentDemotion(*this, Arg, V);
2942         ArgVals.push_back(ParamValue::forDirect(V));
2943       } else {
2944         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2945       }
2946       break;
2947     }
2948 
2949     case ABIArgInfo::CoerceAndExpand: {
2950       // Reconstruct into a temporary.
2951       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2952       ArgVals.push_back(ParamValue::forIndirect(alloca));
2953 
2954       auto coercionType = ArgI.getCoerceAndExpandType();
2955       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2956 
2957       unsigned argIndex = FirstIRArg;
2958       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2959         llvm::Type *eltType = coercionType->getElementType(i);
2960         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2961           continue;
2962 
2963         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2964         auto elt = Fn->getArg(argIndex++);
2965         Builder.CreateStore(elt, eltAddr);
2966       }
2967       assert(argIndex == FirstIRArg + NumIRArgs);
2968       break;
2969     }
2970 
2971     case ABIArgInfo::Expand: {
2972       // If this structure was expanded into multiple arguments then
2973       // we need to create a temporary and reconstruct it from the
2974       // arguments.
2975       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2976       LValue LV = MakeAddrLValue(Alloca, Ty);
2977       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2978 
2979       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2980       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2981       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2982       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2983         auto AI = Fn->getArg(FirstIRArg + i);
2984         AI->setName(Arg->getName() + "." + Twine(i));
2985       }
2986       break;
2987     }
2988 
2989     case ABIArgInfo::Ignore:
2990       assert(NumIRArgs == 0);
2991       // Initialize the local variable appropriately.
2992       if (!hasScalarEvaluationKind(Ty)) {
2993         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2994       } else {
2995         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2996         ArgVals.push_back(ParamValue::forDirect(U));
2997       }
2998       break;
2999     }
3000   }
3001 
3002   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3003     for (int I = Args.size() - 1; I >= 0; --I)
3004       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3005   } else {
3006     for (unsigned I = 0, E = Args.size(); I != E; ++I)
3007       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3008   }
3009 }
3010 
3011 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3012   while (insn->use_empty()) {
3013     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3014     if (!bitcast) return;
3015 
3016     // This is "safe" because we would have used a ConstantExpr otherwise.
3017     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3018     bitcast->eraseFromParent();
3019   }
3020 }
3021 
3022 /// Try to emit a fused autorelease of a return result.
3023 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3024                                                     llvm::Value *result) {
3025   // We must be immediately followed the cast.
3026   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3027   if (BB->empty()) return nullptr;
3028   if (&BB->back() != result) return nullptr;
3029 
3030   llvm::Type *resultType = result->getType();
3031 
3032   // result is in a BasicBlock and is therefore an Instruction.
3033   llvm::Instruction *generator = cast<llvm::Instruction>(result);
3034 
3035   SmallVector<llvm::Instruction *, 4> InstsToKill;
3036 
3037   // Look for:
3038   //  %generator = bitcast %type1* %generator2 to %type2*
3039   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3040     // We would have emitted this as a constant if the operand weren't
3041     // an Instruction.
3042     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3043 
3044     // Require the generator to be immediately followed by the cast.
3045     if (generator->getNextNode() != bitcast)
3046       return nullptr;
3047 
3048     InstsToKill.push_back(bitcast);
3049   }
3050 
3051   // Look for:
3052   //   %generator = call i8* @objc_retain(i8* %originalResult)
3053   // or
3054   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3055   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3056   if (!call) return nullptr;
3057 
3058   bool doRetainAutorelease;
3059 
3060   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3061     doRetainAutorelease = true;
3062   } else if (call->getCalledOperand() ==
3063              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3064     doRetainAutorelease = false;
3065 
3066     // If we emitted an assembly marker for this call (and the
3067     // ARCEntrypoints field should have been set if so), go looking
3068     // for that call.  If we can't find it, we can't do this
3069     // optimization.  But it should always be the immediately previous
3070     // instruction, unless we needed bitcasts around the call.
3071     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3072       llvm::Instruction *prev = call->getPrevNode();
3073       assert(prev);
3074       if (isa<llvm::BitCastInst>(prev)) {
3075         prev = prev->getPrevNode();
3076         assert(prev);
3077       }
3078       assert(isa<llvm::CallInst>(prev));
3079       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3080              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3081       InstsToKill.push_back(prev);
3082     }
3083   } else {
3084     return nullptr;
3085   }
3086 
3087   result = call->getArgOperand(0);
3088   InstsToKill.push_back(call);
3089 
3090   // Keep killing bitcasts, for sanity.  Note that we no longer care
3091   // about precise ordering as long as there's exactly one use.
3092   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3093     if (!bitcast->hasOneUse()) break;
3094     InstsToKill.push_back(bitcast);
3095     result = bitcast->getOperand(0);
3096   }
3097 
3098   // Delete all the unnecessary instructions, from latest to earliest.
3099   for (auto *I : InstsToKill)
3100     I->eraseFromParent();
3101 
3102   // Do the fused retain/autorelease if we were asked to.
3103   if (doRetainAutorelease)
3104     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3105 
3106   // Cast back to the result type.
3107   return CGF.Builder.CreateBitCast(result, resultType);
3108 }
3109 
3110 /// If this is a +1 of the value of an immutable 'self', remove it.
3111 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3112                                           llvm::Value *result) {
3113   // This is only applicable to a method with an immutable 'self'.
3114   const ObjCMethodDecl *method =
3115     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3116   if (!method) return nullptr;
3117   const VarDecl *self = method->getSelfDecl();
3118   if (!self->getType().isConstQualified()) return nullptr;
3119 
3120   // Look for a retain call.
3121   llvm::CallInst *retainCall =
3122     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3123   if (!retainCall || retainCall->getCalledOperand() !=
3124                          CGF.CGM.getObjCEntrypoints().objc_retain)
3125     return nullptr;
3126 
3127   // Look for an ordinary load of 'self'.
3128   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3129   llvm::LoadInst *load =
3130     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3131   if (!load || load->isAtomic() || load->isVolatile() ||
3132       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3133     return nullptr;
3134 
3135   // Okay!  Burn it all down.  This relies for correctness on the
3136   // assumption that the retain is emitted as part of the return and
3137   // that thereafter everything is used "linearly".
3138   llvm::Type *resultType = result->getType();
3139   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3140   assert(retainCall->use_empty());
3141   retainCall->eraseFromParent();
3142   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3143 
3144   return CGF.Builder.CreateBitCast(load, resultType);
3145 }
3146 
3147 /// Emit an ARC autorelease of the result of a function.
3148 ///
3149 /// \return the value to actually return from the function
3150 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3151                                             llvm::Value *result) {
3152   // If we're returning 'self', kill the initial retain.  This is a
3153   // heuristic attempt to "encourage correctness" in the really unfortunate
3154   // case where we have a return of self during a dealloc and we desperately
3155   // need to avoid the possible autorelease.
3156   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3157     return self;
3158 
3159   // At -O0, try to emit a fused retain/autorelease.
3160   if (CGF.shouldUseFusedARCCalls())
3161     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3162       return fused;
3163 
3164   return CGF.EmitARCAutoreleaseReturnValue(result);
3165 }
3166 
3167 /// Heuristically search for a dominating store to the return-value slot.
3168 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3169   // Check if a User is a store which pointerOperand is the ReturnValue.
3170   // We are looking for stores to the ReturnValue, not for stores of the
3171   // ReturnValue to some other location.
3172   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3173     auto *SI = dyn_cast<llvm::StoreInst>(U);
3174     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
3175       return nullptr;
3176     // These aren't actually possible for non-coerced returns, and we
3177     // only care about non-coerced returns on this code path.
3178     assert(!SI->isAtomic() && !SI->isVolatile());
3179     return SI;
3180   };
3181   // If there are multiple uses of the return-value slot, just check
3182   // for something immediately preceding the IP.  Sometimes this can
3183   // happen with how we generate implicit-returns; it can also happen
3184   // with noreturn cleanups.
3185   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3186     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3187     if (IP->empty()) return nullptr;
3188     llvm::Instruction *I = &IP->back();
3189 
3190     // Skip lifetime markers
3191     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
3192                                             IE = IP->rend();
3193          II != IE; ++II) {
3194       if (llvm::IntrinsicInst *Intrinsic =
3195               dyn_cast<llvm::IntrinsicInst>(&*II)) {
3196         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
3197           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
3198           ++II;
3199           if (II == IE)
3200             break;
3201           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
3202             continue;
3203         }
3204       }
3205       I = &*II;
3206       break;
3207     }
3208 
3209     return GetStoreIfValid(I);
3210   }
3211 
3212   llvm::StoreInst *store =
3213       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3214   if (!store) return nullptr;
3215 
3216   // Now do a first-and-dirty dominance check: just walk up the
3217   // single-predecessors chain from the current insertion point.
3218   llvm::BasicBlock *StoreBB = store->getParent();
3219   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3220   while (IP != StoreBB) {
3221     if (!(IP = IP->getSinglePredecessor()))
3222       return nullptr;
3223   }
3224 
3225   // Okay, the store's basic block dominates the insertion point; we
3226   // can do our thing.
3227   return store;
3228 }
3229 
3230 // Helper functions for EmitCMSEClearRecord
3231 
3232 // Set the bits corresponding to a field having width `BitWidth` and located at
3233 // offset `BitOffset` (from the least significant bit) within a storage unit of
3234 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3235 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3236 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3237                         int BitWidth, int CharWidth) {
3238   assert(CharWidth <= 64);
3239   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3240 
3241   int Pos = 0;
3242   if (BitOffset >= CharWidth) {
3243     Pos += BitOffset / CharWidth;
3244     BitOffset = BitOffset % CharWidth;
3245   }
3246 
3247   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3248   if (BitOffset + BitWidth >= CharWidth) {
3249     Bits[Pos++] |= (Used << BitOffset) & Used;
3250     BitWidth -= CharWidth - BitOffset;
3251     BitOffset = 0;
3252   }
3253 
3254   while (BitWidth >= CharWidth) {
3255     Bits[Pos++] = Used;
3256     BitWidth -= CharWidth;
3257   }
3258 
3259   if (BitWidth > 0)
3260     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3261 }
3262 
3263 // Set the bits corresponding to a field having width `BitWidth` and located at
3264 // offset `BitOffset` (from the least significant bit) within a storage unit of
3265 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3266 // `Bits` corresponds to one target byte. Use target endian layout.
3267 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3268                         int StorageSize, int BitOffset, int BitWidth,
3269                         int CharWidth, bool BigEndian) {
3270 
3271   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3272   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3273 
3274   if (BigEndian)
3275     std::reverse(TmpBits.begin(), TmpBits.end());
3276 
3277   for (uint64_t V : TmpBits)
3278     Bits[StorageOffset++] |= V;
3279 }
3280 
3281 static void setUsedBits(CodeGenModule &, QualType, int,
3282                         SmallVectorImpl<uint64_t> &);
3283 
3284 // Set the bits in `Bits`, which correspond to the value representations of
3285 // the actual members of the record type `RTy`. Note that this function does
3286 // not handle base classes, virtual tables, etc, since they cannot happen in
3287 // CMSE function arguments or return. The bit mask corresponds to the target
3288 // memory layout, i.e. it's endian dependent.
3289 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3290                         SmallVectorImpl<uint64_t> &Bits) {
3291   ASTContext &Context = CGM.getContext();
3292   int CharWidth = Context.getCharWidth();
3293   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3294   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3295   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3296 
3297   int Idx = 0;
3298   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3299     const FieldDecl *F = *I;
3300 
3301     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3302         F->getType()->isIncompleteArrayType())
3303       continue;
3304 
3305     if (F->isBitField()) {
3306       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3307       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3308                   BFI.StorageSize / CharWidth, BFI.Offset,
3309                   BFI.Size, CharWidth,
3310                   CGM.getDataLayout().isBigEndian());
3311       continue;
3312     }
3313 
3314     setUsedBits(CGM, F->getType(),
3315                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3316   }
3317 }
3318 
3319 // Set the bits in `Bits`, which correspond to the value representations of
3320 // the elements of an array type `ATy`.
3321 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3322                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3323   const ASTContext &Context = CGM.getContext();
3324 
3325   QualType ETy = Context.getBaseElementType(ATy);
3326   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3327   SmallVector<uint64_t, 4> TmpBits(Size);
3328   setUsedBits(CGM, ETy, 0, TmpBits);
3329 
3330   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3331     auto Src = TmpBits.begin();
3332     auto Dst = Bits.begin() + Offset + I * Size;
3333     for (int J = 0; J < Size; ++J)
3334       *Dst++ |= *Src++;
3335   }
3336 }
3337 
3338 // Set the bits in `Bits`, which correspond to the value representations of
3339 // the type `QTy`.
3340 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3341                         SmallVectorImpl<uint64_t> &Bits) {
3342   if (const auto *RTy = QTy->getAs<RecordType>())
3343     return setUsedBits(CGM, RTy, Offset, Bits);
3344 
3345   ASTContext &Context = CGM.getContext();
3346   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3347     return setUsedBits(CGM, ATy, Offset, Bits);
3348 
3349   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3350   if (Size <= 0)
3351     return;
3352 
3353   std::fill_n(Bits.begin() + Offset, Size,
3354               (uint64_t(1) << Context.getCharWidth()) - 1);
3355 }
3356 
3357 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3358                                    int Pos, int Size, int CharWidth,
3359                                    bool BigEndian) {
3360   assert(Size > 0);
3361   uint64_t Mask = 0;
3362   if (BigEndian) {
3363     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3364          ++P)
3365       Mask = (Mask << CharWidth) | *P;
3366   } else {
3367     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3368     do
3369       Mask = (Mask << CharWidth) | *--P;
3370     while (P != End);
3371   }
3372   return Mask;
3373 }
3374 
3375 // Emit code to clear the bits in a record, which aren't a part of any user
3376 // declared member, when the record is a function return.
3377 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3378                                                   llvm::IntegerType *ITy,
3379                                                   QualType QTy) {
3380   assert(Src->getType() == ITy);
3381   assert(ITy->getScalarSizeInBits() <= 64);
3382 
3383   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3384   int Size = DataLayout.getTypeStoreSize(ITy);
3385   SmallVector<uint64_t, 4> Bits(Size);
3386   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3387 
3388   int CharWidth = CGM.getContext().getCharWidth();
3389   uint64_t Mask =
3390       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3391 
3392   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3393 }
3394 
3395 // Emit code to clear the bits in a record, which aren't a part of any user
3396 // declared member, when the record is a function argument.
3397 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3398                                                   llvm::ArrayType *ATy,
3399                                                   QualType QTy) {
3400   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3401   int Size = DataLayout.getTypeStoreSize(ATy);
3402   SmallVector<uint64_t, 16> Bits(Size);
3403   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3404 
3405   // Clear each element of the LLVM array.
3406   int CharWidth = CGM.getContext().getCharWidth();
3407   int CharsPerElt =
3408       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3409   int MaskIndex = 0;
3410   llvm::Value *R = llvm::UndefValue::get(ATy);
3411   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3412     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3413                                        DataLayout.isBigEndian());
3414     MaskIndex += CharsPerElt;
3415     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3416     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3417     R = Builder.CreateInsertValue(R, T1, I);
3418   }
3419 
3420   return R;
3421 }
3422 
3423 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3424                                          bool EmitRetDbgLoc,
3425                                          SourceLocation EndLoc) {
3426   if (FI.isNoReturn()) {
3427     // Noreturn functions don't return.
3428     EmitUnreachable(EndLoc);
3429     return;
3430   }
3431 
3432   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3433     // Naked functions don't have epilogues.
3434     Builder.CreateUnreachable();
3435     return;
3436   }
3437 
3438   // Functions with no result always return void.
3439   if (!ReturnValue.isValid()) {
3440     Builder.CreateRetVoid();
3441     return;
3442   }
3443 
3444   llvm::DebugLoc RetDbgLoc;
3445   llvm::Value *RV = nullptr;
3446   QualType RetTy = FI.getReturnType();
3447   const ABIArgInfo &RetAI = FI.getReturnInfo();
3448 
3449   switch (RetAI.getKind()) {
3450   case ABIArgInfo::InAlloca:
3451     // Aggregrates get evaluated directly into the destination.  Sometimes we
3452     // need to return the sret value in a register, though.
3453     assert(hasAggregateEvaluationKind(RetTy));
3454     if (RetAI.getInAllocaSRet()) {
3455       llvm::Function::arg_iterator EI = CurFn->arg_end();
3456       --EI;
3457       llvm::Value *ArgStruct = &*EI;
3458       llvm::Value *SRet = Builder.CreateStructGEP(
3459           EI->getType()->getPointerElementType(), ArgStruct,
3460           RetAI.getInAllocaFieldIndex());
3461       llvm::Type *Ty =
3462           cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3463       RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3464     }
3465     break;
3466 
3467   case ABIArgInfo::Indirect: {
3468     auto AI = CurFn->arg_begin();
3469     if (RetAI.isSRetAfterThis())
3470       ++AI;
3471     switch (getEvaluationKind(RetTy)) {
3472     case TEK_Complex: {
3473       ComplexPairTy RT =
3474         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3475       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3476                          /*isInit*/ true);
3477       break;
3478     }
3479     case TEK_Aggregate:
3480       // Do nothing; aggregrates get evaluated directly into the destination.
3481       break;
3482     case TEK_Scalar:
3483       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3484                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3485                         /*isInit*/ true);
3486       break;
3487     }
3488     break;
3489   }
3490 
3491   case ABIArgInfo::Extend:
3492   case ABIArgInfo::Direct:
3493     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3494         RetAI.getDirectOffset() == 0) {
3495       // The internal return value temp always will have pointer-to-return-type
3496       // type, just do a load.
3497 
3498       // If there is a dominating store to ReturnValue, we can elide
3499       // the load, zap the store, and usually zap the alloca.
3500       if (llvm::StoreInst *SI =
3501               findDominatingStoreToReturnValue(*this)) {
3502         // Reuse the debug location from the store unless there is
3503         // cleanup code to be emitted between the store and return
3504         // instruction.
3505         if (EmitRetDbgLoc && !AutoreleaseResult)
3506           RetDbgLoc = SI->getDebugLoc();
3507         // Get the stored value and nuke the now-dead store.
3508         RV = SI->getValueOperand();
3509         SI->eraseFromParent();
3510 
3511       // Otherwise, we have to do a simple load.
3512       } else {
3513         RV = Builder.CreateLoad(ReturnValue);
3514       }
3515     } else {
3516       // If the value is offset in memory, apply the offset now.
3517       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3518 
3519       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3520     }
3521 
3522     // In ARC, end functions that return a retainable type with a call
3523     // to objc_autoreleaseReturnValue.
3524     if (AutoreleaseResult) {
3525 #ifndef NDEBUG
3526       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3527       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3528       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3529       // CurCodeDecl or BlockInfo.
3530       QualType RT;
3531 
3532       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3533         RT = FD->getReturnType();
3534       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3535         RT = MD->getReturnType();
3536       else if (isa<BlockDecl>(CurCodeDecl))
3537         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3538       else
3539         llvm_unreachable("Unexpected function/method type");
3540 
3541       assert(getLangOpts().ObjCAutoRefCount &&
3542              !FI.isReturnsRetained() &&
3543              RT->isObjCRetainableType());
3544 #endif
3545       RV = emitAutoreleaseOfResult(*this, RV);
3546     }
3547 
3548     break;
3549 
3550   case ABIArgInfo::Ignore:
3551     break;
3552 
3553   case ABIArgInfo::CoerceAndExpand: {
3554     auto coercionType = RetAI.getCoerceAndExpandType();
3555 
3556     // Load all of the coerced elements out into results.
3557     llvm::SmallVector<llvm::Value*, 4> results;
3558     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3559     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3560       auto coercedEltType = coercionType->getElementType(i);
3561       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3562         continue;
3563 
3564       auto eltAddr = Builder.CreateStructGEP(addr, i);
3565       auto elt = Builder.CreateLoad(eltAddr);
3566       results.push_back(elt);
3567     }
3568 
3569     // If we have one result, it's the single direct result type.
3570     if (results.size() == 1) {
3571       RV = results[0];
3572 
3573     // Otherwise, we need to make a first-class aggregate.
3574     } else {
3575       // Construct a return type that lacks padding elements.
3576       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3577 
3578       RV = llvm::UndefValue::get(returnType);
3579       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3580         RV = Builder.CreateInsertValue(RV, results[i], i);
3581       }
3582     }
3583     break;
3584   }
3585   case ABIArgInfo::Expand:
3586   case ABIArgInfo::IndirectAliased:
3587     llvm_unreachable("Invalid ABI kind for return argument");
3588   }
3589 
3590   llvm::Instruction *Ret;
3591   if (RV) {
3592     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3593       // For certain return types, clear padding bits, as they may reveal
3594       // sensitive information.
3595       // Small struct/union types are passed as integers.
3596       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3597       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3598         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3599     }
3600     EmitReturnValueCheck(RV);
3601     Ret = Builder.CreateRet(RV);
3602   } else {
3603     Ret = Builder.CreateRetVoid();
3604   }
3605 
3606   if (RetDbgLoc)
3607     Ret->setDebugLoc(std::move(RetDbgLoc));
3608 }
3609 
3610 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3611   // A current decl may not be available when emitting vtable thunks.
3612   if (!CurCodeDecl)
3613     return;
3614 
3615   // If the return block isn't reachable, neither is this check, so don't emit
3616   // it.
3617   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3618     return;
3619 
3620   ReturnsNonNullAttr *RetNNAttr = nullptr;
3621   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3622     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3623 
3624   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3625     return;
3626 
3627   // Prefer the returns_nonnull attribute if it's present.
3628   SourceLocation AttrLoc;
3629   SanitizerMask CheckKind;
3630   SanitizerHandler Handler;
3631   if (RetNNAttr) {
3632     assert(!requiresReturnValueNullabilityCheck() &&
3633            "Cannot check nullability and the nonnull attribute");
3634     AttrLoc = RetNNAttr->getLocation();
3635     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3636     Handler = SanitizerHandler::NonnullReturn;
3637   } else {
3638     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3639       if (auto *TSI = DD->getTypeSourceInfo())
3640         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3641           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3642     CheckKind = SanitizerKind::NullabilityReturn;
3643     Handler = SanitizerHandler::NullabilityReturn;
3644   }
3645 
3646   SanitizerScope SanScope(this);
3647 
3648   // Make sure the "return" source location is valid. If we're checking a
3649   // nullability annotation, make sure the preconditions for the check are met.
3650   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3651   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3652   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3653   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3654   if (requiresReturnValueNullabilityCheck())
3655     CanNullCheck =
3656         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3657   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3658   EmitBlock(Check);
3659 
3660   // Now do the null check.
3661   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3662   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3663   llvm::Value *DynamicData[] = {SLocPtr};
3664   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3665 
3666   EmitBlock(NoCheck);
3667 
3668 #ifndef NDEBUG
3669   // The return location should not be used after the check has been emitted.
3670   ReturnLocation = Address::invalid();
3671 #endif
3672 }
3673 
3674 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3675   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3676   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3677 }
3678 
3679 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3680                                           QualType Ty) {
3681   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3682   // placeholders.
3683   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3684   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3685   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3686 
3687   // FIXME: When we generate this IR in one pass, we shouldn't need
3688   // this win32-specific alignment hack.
3689   CharUnits Align = CharUnits::fromQuantity(4);
3690   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3691 
3692   return AggValueSlot::forAddr(Address(Placeholder, Align),
3693                                Ty.getQualifiers(),
3694                                AggValueSlot::IsNotDestructed,
3695                                AggValueSlot::DoesNotNeedGCBarriers,
3696                                AggValueSlot::IsNotAliased,
3697                                AggValueSlot::DoesNotOverlap);
3698 }
3699 
3700 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3701                                           const VarDecl *param,
3702                                           SourceLocation loc) {
3703   // StartFunction converted the ABI-lowered parameter(s) into a
3704   // local alloca.  We need to turn that into an r-value suitable
3705   // for EmitCall.
3706   Address local = GetAddrOfLocalVar(param);
3707 
3708   QualType type = param->getType();
3709 
3710   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3711     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3712   }
3713 
3714   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3715   // but the argument needs to be the original pointer.
3716   if (type->isReferenceType()) {
3717     args.add(RValue::get(Builder.CreateLoad(local)), type);
3718 
3719   // In ARC, move out of consumed arguments so that the release cleanup
3720   // entered by StartFunction doesn't cause an over-release.  This isn't
3721   // optimal -O0 code generation, but it should get cleaned up when
3722   // optimization is enabled.  This also assumes that delegate calls are
3723   // performed exactly once for a set of arguments, but that should be safe.
3724   } else if (getLangOpts().ObjCAutoRefCount &&
3725              param->hasAttr<NSConsumedAttr>() &&
3726              type->isObjCRetainableType()) {
3727     llvm::Value *ptr = Builder.CreateLoad(local);
3728     auto null =
3729       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3730     Builder.CreateStore(null, local);
3731     args.add(RValue::get(ptr), type);
3732 
3733   // For the most part, we just need to load the alloca, except that
3734   // aggregate r-values are actually pointers to temporaries.
3735   } else {
3736     args.add(convertTempToRValue(local, type, loc), type);
3737   }
3738 
3739   // Deactivate the cleanup for the callee-destructed param that was pushed.
3740   if (type->isRecordType() && !CurFuncIsThunk &&
3741       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3742       param->needsDestruction(getContext())) {
3743     EHScopeStack::stable_iterator cleanup =
3744         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3745     assert(cleanup.isValid() &&
3746            "cleanup for callee-destructed param not recorded");
3747     // This unreachable is a temporary marker which will be removed later.
3748     llvm::Instruction *isActive = Builder.CreateUnreachable();
3749     args.addArgCleanupDeactivation(cleanup, isActive);
3750   }
3751 }
3752 
3753 static bool isProvablyNull(llvm::Value *addr) {
3754   return isa<llvm::ConstantPointerNull>(addr);
3755 }
3756 
3757 /// Emit the actual writing-back of a writeback.
3758 static void emitWriteback(CodeGenFunction &CGF,
3759                           const CallArgList::Writeback &writeback) {
3760   const LValue &srcLV = writeback.Source;
3761   Address srcAddr = srcLV.getAddress(CGF);
3762   assert(!isProvablyNull(srcAddr.getPointer()) &&
3763          "shouldn't have writeback for provably null argument");
3764 
3765   llvm::BasicBlock *contBB = nullptr;
3766 
3767   // If the argument wasn't provably non-null, we need to null check
3768   // before doing the store.
3769   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3770                                               CGF.CGM.getDataLayout());
3771   if (!provablyNonNull) {
3772     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3773     contBB = CGF.createBasicBlock("icr.done");
3774 
3775     llvm::Value *isNull =
3776       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3777     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3778     CGF.EmitBlock(writebackBB);
3779   }
3780 
3781   // Load the value to writeback.
3782   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3783 
3784   // Cast it back, in case we're writing an id to a Foo* or something.
3785   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3786                                     "icr.writeback-cast");
3787 
3788   // Perform the writeback.
3789 
3790   // If we have a "to use" value, it's something we need to emit a use
3791   // of.  This has to be carefully threaded in: if it's done after the
3792   // release it's potentially undefined behavior (and the optimizer
3793   // will ignore it), and if it happens before the retain then the
3794   // optimizer could move the release there.
3795   if (writeback.ToUse) {
3796     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3797 
3798     // Retain the new value.  No need to block-copy here:  the block's
3799     // being passed up the stack.
3800     value = CGF.EmitARCRetainNonBlock(value);
3801 
3802     // Emit the intrinsic use here.
3803     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3804 
3805     // Load the old value (primitively).
3806     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3807 
3808     // Put the new value in place (primitively).
3809     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3810 
3811     // Release the old value.
3812     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3813 
3814   // Otherwise, we can just do a normal lvalue store.
3815   } else {
3816     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3817   }
3818 
3819   // Jump to the continuation block.
3820   if (!provablyNonNull)
3821     CGF.EmitBlock(contBB);
3822 }
3823 
3824 static void emitWritebacks(CodeGenFunction &CGF,
3825                            const CallArgList &args) {
3826   for (const auto &I : args.writebacks())
3827     emitWriteback(CGF, I);
3828 }
3829 
3830 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3831                                             const CallArgList &CallArgs) {
3832   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3833     CallArgs.getCleanupsToDeactivate();
3834   // Iterate in reverse to increase the likelihood of popping the cleanup.
3835   for (const auto &I : llvm::reverse(Cleanups)) {
3836     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3837     I.IsActiveIP->eraseFromParent();
3838   }
3839 }
3840 
3841 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3842   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3843     if (uop->getOpcode() == UO_AddrOf)
3844       return uop->getSubExpr();
3845   return nullptr;
3846 }
3847 
3848 /// Emit an argument that's being passed call-by-writeback.  That is,
3849 /// we are passing the address of an __autoreleased temporary; it
3850 /// might be copy-initialized with the current value of the given
3851 /// address, but it will definitely be copied out of after the call.
3852 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3853                              const ObjCIndirectCopyRestoreExpr *CRE) {
3854   LValue srcLV;
3855 
3856   // Make an optimistic effort to emit the address as an l-value.
3857   // This can fail if the argument expression is more complicated.
3858   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3859     srcLV = CGF.EmitLValue(lvExpr);
3860 
3861   // Otherwise, just emit it as a scalar.
3862   } else {
3863     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3864 
3865     QualType srcAddrType =
3866       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3867     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3868   }
3869   Address srcAddr = srcLV.getAddress(CGF);
3870 
3871   // The dest and src types don't necessarily match in LLVM terms
3872   // because of the crazy ObjC compatibility rules.
3873 
3874   llvm::PointerType *destType =
3875     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3876 
3877   // If the address is a constant null, just pass the appropriate null.
3878   if (isProvablyNull(srcAddr.getPointer())) {
3879     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3880              CRE->getType());
3881     return;
3882   }
3883 
3884   // Create the temporary.
3885   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3886                                       CGF.getPointerAlign(),
3887                                       "icr.temp");
3888   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3889   // and that cleanup will be conditional if we can't prove that the l-value
3890   // isn't null, so we need to register a dominating point so that the cleanups
3891   // system will make valid IR.
3892   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3893 
3894   // Zero-initialize it if we're not doing a copy-initialization.
3895   bool shouldCopy = CRE->shouldCopy();
3896   if (!shouldCopy) {
3897     llvm::Value *null =
3898       llvm::ConstantPointerNull::get(
3899         cast<llvm::PointerType>(destType->getElementType()));
3900     CGF.Builder.CreateStore(null, temp);
3901   }
3902 
3903   llvm::BasicBlock *contBB = nullptr;
3904   llvm::BasicBlock *originBB = nullptr;
3905 
3906   // If the address is *not* known to be non-null, we need to switch.
3907   llvm::Value *finalArgument;
3908 
3909   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3910                                               CGF.CGM.getDataLayout());
3911   if (provablyNonNull) {
3912     finalArgument = temp.getPointer();
3913   } else {
3914     llvm::Value *isNull =
3915       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3916 
3917     finalArgument = CGF.Builder.CreateSelect(isNull,
3918                                    llvm::ConstantPointerNull::get(destType),
3919                                              temp.getPointer(), "icr.argument");
3920 
3921     // If we need to copy, then the load has to be conditional, which
3922     // means we need control flow.
3923     if (shouldCopy) {
3924       originBB = CGF.Builder.GetInsertBlock();
3925       contBB = CGF.createBasicBlock("icr.cont");
3926       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3927       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3928       CGF.EmitBlock(copyBB);
3929       condEval.begin(CGF);
3930     }
3931   }
3932 
3933   llvm::Value *valueToUse = nullptr;
3934 
3935   // Perform a copy if necessary.
3936   if (shouldCopy) {
3937     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3938     assert(srcRV.isScalar());
3939 
3940     llvm::Value *src = srcRV.getScalarVal();
3941     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3942                                     "icr.cast");
3943 
3944     // Use an ordinary store, not a store-to-lvalue.
3945     CGF.Builder.CreateStore(src, temp);
3946 
3947     // If optimization is enabled, and the value was held in a
3948     // __strong variable, we need to tell the optimizer that this
3949     // value has to stay alive until we're doing the store back.
3950     // This is because the temporary is effectively unretained,
3951     // and so otherwise we can violate the high-level semantics.
3952     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3953         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3954       valueToUse = src;
3955     }
3956   }
3957 
3958   // Finish the control flow if we needed it.
3959   if (shouldCopy && !provablyNonNull) {
3960     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3961     CGF.EmitBlock(contBB);
3962 
3963     // Make a phi for the value to intrinsically use.
3964     if (valueToUse) {
3965       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3966                                                       "icr.to-use");
3967       phiToUse->addIncoming(valueToUse, copyBB);
3968       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3969                             originBB);
3970       valueToUse = phiToUse;
3971     }
3972 
3973     condEval.end(CGF);
3974   }
3975 
3976   args.addWriteback(srcLV, temp, valueToUse);
3977   args.add(RValue::get(finalArgument), CRE->getType());
3978 }
3979 
3980 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3981   assert(!StackBase);
3982 
3983   // Save the stack.
3984   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3985   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3986 }
3987 
3988 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3989   if (StackBase) {
3990     // Restore the stack after the call.
3991     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3992     CGF.Builder.CreateCall(F, StackBase);
3993   }
3994 }
3995 
3996 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3997                                           SourceLocation ArgLoc,
3998                                           AbstractCallee AC,
3999                                           unsigned ParmNum) {
4000   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4001                          SanOpts.has(SanitizerKind::NullabilityArg)))
4002     return;
4003 
4004   // The param decl may be missing in a variadic function.
4005   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4006   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4007 
4008   // Prefer the nonnull attribute if it's present.
4009   const NonNullAttr *NNAttr = nullptr;
4010   if (SanOpts.has(SanitizerKind::NonnullAttribute))
4011     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4012 
4013   bool CanCheckNullability = false;
4014   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4015     auto Nullability = PVD->getType()->getNullability(getContext());
4016     CanCheckNullability = Nullability &&
4017                           *Nullability == NullabilityKind::NonNull &&
4018                           PVD->getTypeSourceInfo();
4019   }
4020 
4021   if (!NNAttr && !CanCheckNullability)
4022     return;
4023 
4024   SourceLocation AttrLoc;
4025   SanitizerMask CheckKind;
4026   SanitizerHandler Handler;
4027   if (NNAttr) {
4028     AttrLoc = NNAttr->getLocation();
4029     CheckKind = SanitizerKind::NonnullAttribute;
4030     Handler = SanitizerHandler::NonnullArg;
4031   } else {
4032     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4033     CheckKind = SanitizerKind::NullabilityArg;
4034     Handler = SanitizerHandler::NullabilityArg;
4035   }
4036 
4037   SanitizerScope SanScope(this);
4038   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4039   llvm::Constant *StaticData[] = {
4040       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4041       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4042   };
4043   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
4044 }
4045 
4046 // Check if the call is going to use the inalloca convention. This needs to
4047 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4048 // later, so we can't check it directly.
4049 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4050                             ArrayRef<QualType> ArgTypes) {
4051   // The Swift calling conventions don't go through the target-specific
4052   // argument classification, they never use inalloca.
4053   // TODO: Consider limiting inalloca use to only calling conventions supported
4054   // by MSVC.
4055   if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4056     return false;
4057   if (!CGM.getTarget().getCXXABI().isMicrosoft())
4058     return false;
4059   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4060     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4061   });
4062 }
4063 
4064 #ifndef NDEBUG
4065 // Determine whether the given argument is an Objective-C method
4066 // that may have type parameters in its signature.
4067 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4068   const DeclContext *dc = method->getDeclContext();
4069   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4070     return classDecl->getTypeParamListAsWritten();
4071   }
4072 
4073   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4074     return catDecl->getTypeParamList();
4075   }
4076 
4077   return false;
4078 }
4079 #endif
4080 
4081 /// EmitCallArgs - Emit call arguments for a function.
4082 void CodeGenFunction::EmitCallArgs(
4083     CallArgList &Args, PrototypeWrapper Prototype,
4084     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4085     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4086   SmallVector<QualType, 16> ArgTypes;
4087 
4088   assert((ParamsToSkip == 0 || Prototype.P) &&
4089          "Can't skip parameters if type info is not provided");
4090 
4091   // This variable only captures *explicitly* written conventions, not those
4092   // applied by default via command line flags or target defaults, such as
4093   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4094   // require knowing if this is a C++ instance method or being able to see
4095   // unprototyped FunctionTypes.
4096   CallingConv ExplicitCC = CC_C;
4097 
4098   // First, if a prototype was provided, use those argument types.
4099   bool IsVariadic = false;
4100   if (Prototype.P) {
4101     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4102     if (MD) {
4103       IsVariadic = MD->isVariadic();
4104       ExplicitCC = getCallingConventionForDecl(
4105           MD, CGM.getTarget().getTriple().isOSWindows());
4106       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4107                       MD->param_type_end());
4108     } else {
4109       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4110       IsVariadic = FPT->isVariadic();
4111       ExplicitCC = FPT->getExtInfo().getCC();
4112       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4113                       FPT->param_type_end());
4114     }
4115 
4116 #ifndef NDEBUG
4117     // Check that the prototyped types match the argument expression types.
4118     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4119     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4120     for (QualType Ty : ArgTypes) {
4121       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4122       assert(
4123           (isGenericMethod || Ty->isVariablyModifiedType() ||
4124            Ty.getNonReferenceType()->isObjCRetainableType() ||
4125            getContext()
4126                    .getCanonicalType(Ty.getNonReferenceType())
4127                    .getTypePtr() ==
4128                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4129           "type mismatch in call argument!");
4130       ++Arg;
4131     }
4132 
4133     // Either we've emitted all the call args, or we have a call to variadic
4134     // function.
4135     assert((Arg == ArgRange.end() || IsVariadic) &&
4136            "Extra arguments in non-variadic function!");
4137 #endif
4138   }
4139 
4140   // If we still have any arguments, emit them using the type of the argument.
4141   for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()),
4142                                   ArgRange.end()))
4143     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4144   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4145 
4146   // We must evaluate arguments from right to left in the MS C++ ABI,
4147   // because arguments are destroyed left to right in the callee. As a special
4148   // case, there are certain language constructs that require left-to-right
4149   // evaluation, and in those cases we consider the evaluation order requirement
4150   // to trump the "destruction order is reverse construction order" guarantee.
4151   bool LeftToRight =
4152       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4153           ? Order == EvaluationOrder::ForceLeftToRight
4154           : Order != EvaluationOrder::ForceRightToLeft;
4155 
4156   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4157                                          RValue EmittedArg) {
4158     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4159       return;
4160     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4161     if (PS == nullptr)
4162       return;
4163 
4164     const auto &Context = getContext();
4165     auto SizeTy = Context.getSizeType();
4166     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4167     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4168     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4169                                                      EmittedArg.getScalarVal(),
4170                                                      PS->isDynamic());
4171     Args.add(RValue::get(V), SizeTy);
4172     // If we're emitting args in reverse, be sure to do so with
4173     // pass_object_size, as well.
4174     if (!LeftToRight)
4175       std::swap(Args.back(), *(&Args.back() - 1));
4176   };
4177 
4178   // Insert a stack save if we're going to need any inalloca args.
4179   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4180     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4181            "inalloca only supported on x86");
4182     Args.allocateArgumentMemory(*this);
4183   }
4184 
4185   // Evaluate each argument in the appropriate order.
4186   size_t CallArgsStart = Args.size();
4187   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4188     unsigned Idx = LeftToRight ? I : E - I - 1;
4189     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4190     unsigned InitialArgSize = Args.size();
4191     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4192     // the argument and parameter match or the objc method is parameterized.
4193     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4194             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4195                                                 ArgTypes[Idx]) ||
4196             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4197              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4198            "Argument and parameter types don't match");
4199     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4200     // In particular, we depend on it being the last arg in Args, and the
4201     // objectsize bits depend on there only being one arg if !LeftToRight.
4202     assert(InitialArgSize + 1 == Args.size() &&
4203            "The code below depends on only adding one arg per EmitCallArg");
4204     (void)InitialArgSize;
4205     // Since pointer argument are never emitted as LValue, it is safe to emit
4206     // non-null argument check for r-value only.
4207     if (!Args.back().hasLValue()) {
4208       RValue RVArg = Args.back().getKnownRValue();
4209       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4210                           ParamsToSkip + Idx);
4211       // @llvm.objectsize should never have side-effects and shouldn't need
4212       // destruction/cleanups, so we can safely "emit" it after its arg,
4213       // regardless of right-to-leftness
4214       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4215     }
4216   }
4217 
4218   if (!LeftToRight) {
4219     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4220     // IR function.
4221     std::reverse(Args.begin() + CallArgsStart, Args.end());
4222   }
4223 }
4224 
4225 namespace {
4226 
4227 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4228   DestroyUnpassedArg(Address Addr, QualType Ty)
4229       : Addr(Addr), Ty(Ty) {}
4230 
4231   Address Addr;
4232   QualType Ty;
4233 
4234   void Emit(CodeGenFunction &CGF, Flags flags) override {
4235     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4236     if (DtorKind == QualType::DK_cxx_destructor) {
4237       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4238       assert(!Dtor->isTrivial());
4239       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4240                                 /*Delegating=*/false, Addr, Ty);
4241     } else {
4242       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4243     }
4244   }
4245 };
4246 
4247 struct DisableDebugLocationUpdates {
4248   CodeGenFunction &CGF;
4249   bool disabledDebugInfo;
4250   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4251     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4252       CGF.disableDebugInfo();
4253   }
4254   ~DisableDebugLocationUpdates() {
4255     if (disabledDebugInfo)
4256       CGF.enableDebugInfo();
4257   }
4258 };
4259 
4260 } // end anonymous namespace
4261 
4262 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4263   if (!HasLV)
4264     return RV;
4265   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4266   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4267                         LV.isVolatile());
4268   IsUsed = true;
4269   return RValue::getAggregate(Copy.getAddress(CGF));
4270 }
4271 
4272 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4273   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4274   if (!HasLV && RV.isScalar())
4275     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4276   else if (!HasLV && RV.isComplex())
4277     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4278   else {
4279     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4280     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4281     // We assume that call args are never copied into subobjects.
4282     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4283                           HasLV ? LV.isVolatileQualified()
4284                                 : RV.isVolatileQualified());
4285   }
4286   IsUsed = true;
4287 }
4288 
4289 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4290                                   QualType type) {
4291   DisableDebugLocationUpdates Dis(*this, E);
4292   if (const ObjCIndirectCopyRestoreExpr *CRE
4293         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4294     assert(getLangOpts().ObjCAutoRefCount);
4295     return emitWritebackArg(*this, args, CRE);
4296   }
4297 
4298   assert(type->isReferenceType() == E->isGLValue() &&
4299          "reference binding to unmaterialized r-value!");
4300 
4301   if (E->isGLValue()) {
4302     assert(E->getObjectKind() == OK_Ordinary);
4303     return args.add(EmitReferenceBindingToExpr(E), type);
4304   }
4305 
4306   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4307 
4308   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4309   // However, we still have to push an EH-only cleanup in case we unwind before
4310   // we make it to the call.
4311   if (type->isRecordType() &&
4312       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4313     // If we're using inalloca, use the argument memory.  Otherwise, use a
4314     // temporary.
4315     AggValueSlot Slot;
4316     if (args.isUsingInAlloca())
4317       Slot = createPlaceholderSlot(*this, type);
4318     else
4319       Slot = CreateAggTemp(type, "agg.tmp");
4320 
4321     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4322     if (const auto *RD = type->getAsCXXRecordDecl())
4323       DestroyedInCallee = RD->hasNonTrivialDestructor();
4324     else
4325       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4326 
4327     if (DestroyedInCallee)
4328       Slot.setExternallyDestructed();
4329 
4330     EmitAggExpr(E, Slot);
4331     RValue RV = Slot.asRValue();
4332     args.add(RV, type);
4333 
4334     if (DestroyedInCallee && NeedsEHCleanup) {
4335       // Create a no-op GEP between the placeholder and the cleanup so we can
4336       // RAUW it successfully.  It also serves as a marker of the first
4337       // instruction where the cleanup is active.
4338       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4339                                               type);
4340       // This unreachable is a temporary marker which will be removed later.
4341       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4342       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4343     }
4344     return;
4345   }
4346 
4347   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4348       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4349     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4350     assert(L.isSimple());
4351     args.addUncopiedAggregate(L, type);
4352     return;
4353   }
4354 
4355   args.add(EmitAnyExprToTemp(E), type);
4356 }
4357 
4358 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4359   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4360   // implicitly widens null pointer constants that are arguments to varargs
4361   // functions to pointer-sized ints.
4362   if (!getTarget().getTriple().isOSWindows())
4363     return Arg->getType();
4364 
4365   if (Arg->getType()->isIntegerType() &&
4366       getContext().getTypeSize(Arg->getType()) <
4367           getContext().getTargetInfo().getPointerWidth(0) &&
4368       Arg->isNullPointerConstant(getContext(),
4369                                  Expr::NPC_ValueDependentIsNotNull)) {
4370     return getContext().getIntPtrType();
4371   }
4372 
4373   return Arg->getType();
4374 }
4375 
4376 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4377 // optimizer it can aggressively ignore unwind edges.
4378 void
4379 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4380   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4381       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4382     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4383                       CGM.getNoObjCARCExceptionsMetadata());
4384 }
4385 
4386 /// Emits a call to the given no-arguments nounwind runtime function.
4387 llvm::CallInst *
4388 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4389                                          const llvm::Twine &name) {
4390   return EmitNounwindRuntimeCall(callee, None, name);
4391 }
4392 
4393 /// Emits a call to the given nounwind runtime function.
4394 llvm::CallInst *
4395 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4396                                          ArrayRef<llvm::Value *> args,
4397                                          const llvm::Twine &name) {
4398   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4399   call->setDoesNotThrow();
4400   return call;
4401 }
4402 
4403 /// Emits a simple call (never an invoke) to the given no-arguments
4404 /// runtime function.
4405 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4406                                                  const llvm::Twine &name) {
4407   return EmitRuntimeCall(callee, None, name);
4408 }
4409 
4410 // Calls which may throw must have operand bundles indicating which funclet
4411 // they are nested within.
4412 SmallVector<llvm::OperandBundleDef, 1>
4413 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4414   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4415   // There is no need for a funclet operand bundle if we aren't inside a
4416   // funclet.
4417   if (!CurrentFuncletPad)
4418     return BundleList;
4419 
4420   // Skip intrinsics which cannot throw.
4421   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4422   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4423     return BundleList;
4424 
4425   BundleList.emplace_back("funclet", CurrentFuncletPad);
4426   return BundleList;
4427 }
4428 
4429 /// Emits a simple call (never an invoke) to the given runtime function.
4430 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4431                                                  ArrayRef<llvm::Value *> args,
4432                                                  const llvm::Twine &name) {
4433   llvm::CallInst *call = Builder.CreateCall(
4434       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4435   call->setCallingConv(getRuntimeCC());
4436   return call;
4437 }
4438 
4439 /// Emits a call or invoke to the given noreturn runtime function.
4440 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4441     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4442   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4443       getBundlesForFunclet(callee.getCallee());
4444 
4445   if (getInvokeDest()) {
4446     llvm::InvokeInst *invoke =
4447       Builder.CreateInvoke(callee,
4448                            getUnreachableBlock(),
4449                            getInvokeDest(),
4450                            args,
4451                            BundleList);
4452     invoke->setDoesNotReturn();
4453     invoke->setCallingConv(getRuntimeCC());
4454   } else {
4455     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4456     call->setDoesNotReturn();
4457     call->setCallingConv(getRuntimeCC());
4458     Builder.CreateUnreachable();
4459   }
4460 }
4461 
4462 /// Emits a call or invoke instruction to the given nullary runtime function.
4463 llvm::CallBase *
4464 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4465                                          const Twine &name) {
4466   return EmitRuntimeCallOrInvoke(callee, None, name);
4467 }
4468 
4469 /// Emits a call or invoke instruction to the given runtime function.
4470 llvm::CallBase *
4471 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4472                                          ArrayRef<llvm::Value *> args,
4473                                          const Twine &name) {
4474   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4475   call->setCallingConv(getRuntimeCC());
4476   return call;
4477 }
4478 
4479 /// Emits a call or invoke instruction to the given function, depending
4480 /// on the current state of the EH stack.
4481 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4482                                                   ArrayRef<llvm::Value *> Args,
4483                                                   const Twine &Name) {
4484   llvm::BasicBlock *InvokeDest = getInvokeDest();
4485   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4486       getBundlesForFunclet(Callee.getCallee());
4487 
4488   llvm::CallBase *Inst;
4489   if (!InvokeDest)
4490     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4491   else {
4492     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4493     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4494                                 Name);
4495     EmitBlock(ContBB);
4496   }
4497 
4498   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4499   // optimizer it can aggressively ignore unwind edges.
4500   if (CGM.getLangOpts().ObjCAutoRefCount)
4501     AddObjCARCExceptionMetadata(Inst);
4502 
4503   return Inst;
4504 }
4505 
4506 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4507                                                   llvm::Value *New) {
4508   DeferredReplacements.push_back(
4509       std::make_pair(llvm::WeakTrackingVH(Old), New));
4510 }
4511 
4512 namespace {
4513 
4514 /// Specify given \p NewAlign as the alignment of return value attribute. If
4515 /// such attribute already exists, re-set it to the maximal one of two options.
4516 LLVM_NODISCARD llvm::AttributeList
4517 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4518                                 const llvm::AttributeList &Attrs,
4519                                 llvm::Align NewAlign) {
4520   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4521   if (CurAlign >= NewAlign)
4522     return Attrs;
4523   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4524   return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4525       .addRetAttribute(Ctx, AlignAttr);
4526 }
4527 
4528 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4529 protected:
4530   CodeGenFunction &CGF;
4531 
4532   /// We do nothing if this is, or becomes, nullptr.
4533   const AlignedAttrTy *AA = nullptr;
4534 
4535   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4536   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4537 
4538   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4539       : CGF(CGF_) {
4540     if (!FuncDecl)
4541       return;
4542     AA = FuncDecl->getAttr<AlignedAttrTy>();
4543   }
4544 
4545 public:
4546   /// If we can, materialize the alignment as an attribute on return value.
4547   LLVM_NODISCARD llvm::AttributeList
4548   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4549     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4550       return Attrs;
4551     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4552     if (!AlignmentCI)
4553       return Attrs;
4554     // We may legitimately have non-power-of-2 alignment here.
4555     // If so, this is UB land, emit it via `@llvm.assume` instead.
4556     if (!AlignmentCI->getValue().isPowerOf2())
4557       return Attrs;
4558     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4559         CGF.getLLVMContext(), Attrs,
4560         llvm::Align(
4561             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4562     AA = nullptr; // We're done. Disallow doing anything else.
4563     return NewAttrs;
4564   }
4565 
4566   /// Emit alignment assumption.
4567   /// This is a general fallback that we take if either there is an offset,
4568   /// or the alignment is variable or we are sanitizing for alignment.
4569   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4570     if (!AA)
4571       return;
4572     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4573                                 AA->getLocation(), Alignment, OffsetCI);
4574     AA = nullptr; // We're done. Disallow doing anything else.
4575   }
4576 };
4577 
4578 /// Helper data structure to emit `AssumeAlignedAttr`.
4579 class AssumeAlignedAttrEmitter final
4580     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4581 public:
4582   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4583       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4584     if (!AA)
4585       return;
4586     // It is guaranteed that the alignment/offset are constants.
4587     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4588     if (Expr *Offset = AA->getOffset()) {
4589       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4590       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4591         OffsetCI = nullptr;
4592     }
4593   }
4594 };
4595 
4596 /// Helper data structure to emit `AllocAlignAttr`.
4597 class AllocAlignAttrEmitter final
4598     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4599 public:
4600   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4601                         const CallArgList &CallArgs)
4602       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4603     if (!AA)
4604       return;
4605     // Alignment may or may not be a constant, and that is okay.
4606     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4607                     .getRValue(CGF)
4608                     .getScalarVal();
4609   }
4610 };
4611 
4612 } // namespace
4613 
4614 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4615                                  const CGCallee &Callee,
4616                                  ReturnValueSlot ReturnValue,
4617                                  const CallArgList &CallArgs,
4618                                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4619                                  SourceLocation Loc) {
4620   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4621 
4622   assert(Callee.isOrdinary() || Callee.isVirtual());
4623 
4624   // Handle struct-return functions by passing a pointer to the
4625   // location that we would like to return into.
4626   QualType RetTy = CallInfo.getReturnType();
4627   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4628 
4629   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4630 
4631   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4632   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4633     // We can only guarantee that a function is called from the correct
4634     // context/function based on the appropriate target attributes,
4635     // so only check in the case where we have both always_inline and target
4636     // since otherwise we could be making a conditional call after a check for
4637     // the proper cpu features (and it won't cause code generation issues due to
4638     // function based code generation).
4639     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4640         TargetDecl->hasAttr<TargetAttr>())
4641       checkTargetFeatures(Loc, FD);
4642 
4643     // Some architectures (such as x86-64) have the ABI changed based on
4644     // attribute-target/features. Give them a chance to diagnose.
4645     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4646         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4647   }
4648 
4649 #ifndef NDEBUG
4650   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4651     // For an inalloca varargs function, we don't expect CallInfo to match the
4652     // function pointer's type, because the inalloca struct a will have extra
4653     // fields in it for the varargs parameters.  Code later in this function
4654     // bitcasts the function pointer to the type derived from CallInfo.
4655     //
4656     // In other cases, we assert that the types match up (until pointers stop
4657     // having pointee types).
4658     llvm::Type *TypeFromVal;
4659     if (Callee.isVirtual())
4660       TypeFromVal = Callee.getVirtualFunctionType();
4661     else
4662       TypeFromVal =
4663           Callee.getFunctionPointer()->getType()->getPointerElementType();
4664     assert(IRFuncTy == TypeFromVal);
4665   }
4666 #endif
4667 
4668   // 1. Set up the arguments.
4669 
4670   // If we're using inalloca, insert the allocation after the stack save.
4671   // FIXME: Do this earlier rather than hacking it in here!
4672   Address ArgMemory = Address::invalid();
4673   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4674     const llvm::DataLayout &DL = CGM.getDataLayout();
4675     llvm::Instruction *IP = CallArgs.getStackBase();
4676     llvm::AllocaInst *AI;
4677     if (IP) {
4678       IP = IP->getNextNode();
4679       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4680                                 "argmem", IP);
4681     } else {
4682       AI = CreateTempAlloca(ArgStruct, "argmem");
4683     }
4684     auto Align = CallInfo.getArgStructAlignment();
4685     AI->setAlignment(Align.getAsAlign());
4686     AI->setUsedWithInAlloca(true);
4687     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4688     ArgMemory = Address(AI, Align);
4689   }
4690 
4691   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4692   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4693 
4694   // If the call returns a temporary with struct return, create a temporary
4695   // alloca to hold the result, unless one is given to us.
4696   Address SRetPtr = Address::invalid();
4697   Address SRetAlloca = Address::invalid();
4698   llvm::Value *UnusedReturnSizePtr = nullptr;
4699   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4700     if (!ReturnValue.isNull()) {
4701       SRetPtr = ReturnValue.getValue();
4702     } else {
4703       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4704       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4705         llvm::TypeSize size =
4706             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4707         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4708       }
4709     }
4710     if (IRFunctionArgs.hasSRetArg()) {
4711       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4712     } else if (RetAI.isInAlloca()) {
4713       Address Addr =
4714           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4715       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4716     }
4717   }
4718 
4719   Address swiftErrorTemp = Address::invalid();
4720   Address swiftErrorArg = Address::invalid();
4721 
4722   // When passing arguments using temporary allocas, we need to add the
4723   // appropriate lifetime markers. This vector keeps track of all the lifetime
4724   // markers that need to be ended right after the call.
4725   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4726 
4727   // Translate all of the arguments as necessary to match the IR lowering.
4728   assert(CallInfo.arg_size() == CallArgs.size() &&
4729          "Mismatch between function signature & arguments.");
4730   unsigned ArgNo = 0;
4731   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4732   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4733        I != E; ++I, ++info_it, ++ArgNo) {
4734     const ABIArgInfo &ArgInfo = info_it->info;
4735 
4736     // Insert a padding argument to ensure proper alignment.
4737     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4738       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4739           llvm::UndefValue::get(ArgInfo.getPaddingType());
4740 
4741     unsigned FirstIRArg, NumIRArgs;
4742     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4743 
4744     switch (ArgInfo.getKind()) {
4745     case ABIArgInfo::InAlloca: {
4746       assert(NumIRArgs == 0);
4747       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4748       if (I->isAggregate()) {
4749         Address Addr = I->hasLValue()
4750                            ? I->getKnownLValue().getAddress(*this)
4751                            : I->getKnownRValue().getAggregateAddress();
4752         llvm::Instruction *Placeholder =
4753             cast<llvm::Instruction>(Addr.getPointer());
4754 
4755         if (!ArgInfo.getInAllocaIndirect()) {
4756           // Replace the placeholder with the appropriate argument slot GEP.
4757           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4758           Builder.SetInsertPoint(Placeholder);
4759           Addr = Builder.CreateStructGEP(ArgMemory,
4760                                          ArgInfo.getInAllocaFieldIndex());
4761           Builder.restoreIP(IP);
4762         } else {
4763           // For indirect things such as overaligned structs, replace the
4764           // placeholder with a regular aggregate temporary alloca. Store the
4765           // address of this alloca into the struct.
4766           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4767           Address ArgSlot = Builder.CreateStructGEP(
4768               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4769           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4770         }
4771         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4772       } else if (ArgInfo.getInAllocaIndirect()) {
4773         // Make a temporary alloca and store the address of it into the argument
4774         // struct.
4775         Address Addr = CreateMemTempWithoutCast(
4776             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4777             "indirect-arg-temp");
4778         I->copyInto(*this, Addr);
4779         Address ArgSlot =
4780             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4781         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4782       } else {
4783         // Store the RValue into the argument struct.
4784         Address Addr =
4785             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4786         unsigned AS = Addr.getType()->getPointerAddressSpace();
4787         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4788         // There are some cases where a trivial bitcast is not avoidable.  The
4789         // definition of a type later in a translation unit may change it's type
4790         // from {}* to (%struct.foo*)*.
4791         if (Addr.getType() != MemType)
4792           Addr = Builder.CreateBitCast(Addr, MemType);
4793         I->copyInto(*this, Addr);
4794       }
4795       break;
4796     }
4797 
4798     case ABIArgInfo::Indirect:
4799     case ABIArgInfo::IndirectAliased: {
4800       assert(NumIRArgs == 1);
4801       if (!I->isAggregate()) {
4802         // Make a temporary alloca to pass the argument.
4803         Address Addr = CreateMemTempWithoutCast(
4804             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4805         IRCallArgs[FirstIRArg] = Addr.getPointer();
4806 
4807         I->copyInto(*this, Addr);
4808       } else {
4809         // We want to avoid creating an unnecessary temporary+copy here;
4810         // however, we need one in three cases:
4811         // 1. If the argument is not byval, and we are required to copy the
4812         //    source.  (This case doesn't occur on any common architecture.)
4813         // 2. If the argument is byval, RV is not sufficiently aligned, and
4814         //    we cannot force it to be sufficiently aligned.
4815         // 3. If the argument is byval, but RV is not located in default
4816         //    or alloca address space.
4817         Address Addr = I->hasLValue()
4818                            ? I->getKnownLValue().getAddress(*this)
4819                            : I->getKnownRValue().getAggregateAddress();
4820         llvm::Value *V = Addr.getPointer();
4821         CharUnits Align = ArgInfo.getIndirectAlign();
4822         const llvm::DataLayout *TD = &CGM.getDataLayout();
4823 
4824         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4825                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4826                     TD->getAllocaAddrSpace()) &&
4827                "indirect argument must be in alloca address space");
4828 
4829         bool NeedCopy = false;
4830 
4831         if (Addr.getAlignment() < Align &&
4832             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4833                 Align.getAsAlign()) {
4834           NeedCopy = true;
4835         } else if (I->hasLValue()) {
4836           auto LV = I->getKnownLValue();
4837           auto AS = LV.getAddressSpace();
4838 
4839           if (!ArgInfo.getIndirectByVal() ||
4840               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4841             NeedCopy = true;
4842           }
4843           if (!getLangOpts().OpenCL) {
4844             if ((ArgInfo.getIndirectByVal() &&
4845                 (AS != LangAS::Default &&
4846                  AS != CGM.getASTAllocaAddressSpace()))) {
4847               NeedCopy = true;
4848             }
4849           }
4850           // For OpenCL even if RV is located in default or alloca address space
4851           // we don't want to perform address space cast for it.
4852           else if ((ArgInfo.getIndirectByVal() &&
4853                     Addr.getType()->getAddressSpace() != IRFuncTy->
4854                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4855             NeedCopy = true;
4856           }
4857         }
4858 
4859         if (NeedCopy) {
4860           // Create an aligned temporary, and copy to it.
4861           Address AI = CreateMemTempWithoutCast(
4862               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4863           IRCallArgs[FirstIRArg] = AI.getPointer();
4864 
4865           // Emit lifetime markers for the temporary alloca.
4866           llvm::TypeSize ByvalTempElementSize =
4867               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4868           llvm::Value *LifetimeSize =
4869               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4870 
4871           // Add cleanup code to emit the end lifetime marker after the call.
4872           if (LifetimeSize) // In case we disabled lifetime markers.
4873             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4874 
4875           // Generate the copy.
4876           I->copyInto(*this, AI);
4877         } else {
4878           // Skip the extra memcpy call.
4879           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4880               CGM.getDataLayout().getAllocaAddrSpace());
4881           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4882               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4883               true);
4884         }
4885       }
4886       break;
4887     }
4888 
4889     case ABIArgInfo::Ignore:
4890       assert(NumIRArgs == 0);
4891       break;
4892 
4893     case ABIArgInfo::Extend:
4894     case ABIArgInfo::Direct: {
4895       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4896           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4897           ArgInfo.getDirectOffset() == 0) {
4898         assert(NumIRArgs == 1);
4899         llvm::Value *V;
4900         if (!I->isAggregate())
4901           V = I->getKnownRValue().getScalarVal();
4902         else
4903           V = Builder.CreateLoad(
4904               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4905                              : I->getKnownRValue().getAggregateAddress());
4906 
4907         // Implement swifterror by copying into a new swifterror argument.
4908         // We'll write back in the normal path out of the call.
4909         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4910               == ParameterABI::SwiftErrorResult) {
4911           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4912 
4913           QualType pointeeTy = I->Ty->getPointeeType();
4914           swiftErrorArg =
4915             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4916 
4917           swiftErrorTemp =
4918             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4919           V = swiftErrorTemp.getPointer();
4920           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4921 
4922           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4923           Builder.CreateStore(errorValue, swiftErrorTemp);
4924         }
4925 
4926         // We might have to widen integers, but we should never truncate.
4927         if (ArgInfo.getCoerceToType() != V->getType() &&
4928             V->getType()->isIntegerTy())
4929           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4930 
4931         // If the argument doesn't match, perform a bitcast to coerce it.  This
4932         // can happen due to trivial type mismatches.
4933         if (FirstIRArg < IRFuncTy->getNumParams() &&
4934             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4935           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4936 
4937         IRCallArgs[FirstIRArg] = V;
4938         break;
4939       }
4940 
4941       // FIXME: Avoid the conversion through memory if possible.
4942       Address Src = Address::invalid();
4943       if (!I->isAggregate()) {
4944         Src = CreateMemTemp(I->Ty, "coerce");
4945         I->copyInto(*this, Src);
4946       } else {
4947         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4948                              : I->getKnownRValue().getAggregateAddress();
4949       }
4950 
4951       // If the value is offset in memory, apply the offset now.
4952       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4953 
4954       // Fast-isel and the optimizer generally like scalar values better than
4955       // FCAs, so we flatten them if this is safe to do for this argument.
4956       llvm::StructType *STy =
4957             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4958       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4959         llvm::Type *SrcTy = Src.getElementType();
4960         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4961         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4962 
4963         // If the source type is smaller than the destination type of the
4964         // coerce-to logic, copy the source value into a temp alloca the size
4965         // of the destination type to allow loading all of it. The bits past
4966         // the source value are left undef.
4967         if (SrcSize < DstSize) {
4968           Address TempAlloca
4969             = CreateTempAlloca(STy, Src.getAlignment(),
4970                                Src.getName() + ".coerce");
4971           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4972           Src = TempAlloca;
4973         } else {
4974           Src = Builder.CreateBitCast(Src,
4975                                       STy->getPointerTo(Src.getAddressSpace()));
4976         }
4977 
4978         assert(NumIRArgs == STy->getNumElements());
4979         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4980           Address EltPtr = Builder.CreateStructGEP(Src, i);
4981           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4982           IRCallArgs[FirstIRArg + i] = LI;
4983         }
4984       } else {
4985         // In the simple case, just pass the coerced loaded value.
4986         assert(NumIRArgs == 1);
4987         llvm::Value *Load =
4988             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4989 
4990         if (CallInfo.isCmseNSCall()) {
4991           // For certain parameter types, clear padding bits, as they may reveal
4992           // sensitive information.
4993           // Small struct/union types are passed as integer arrays.
4994           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4995           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4996             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4997         }
4998         IRCallArgs[FirstIRArg] = Load;
4999       }
5000 
5001       break;
5002     }
5003 
5004     case ABIArgInfo::CoerceAndExpand: {
5005       auto coercionType = ArgInfo.getCoerceAndExpandType();
5006       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5007 
5008       llvm::Value *tempSize = nullptr;
5009       Address addr = Address::invalid();
5010       Address AllocaAddr = Address::invalid();
5011       if (I->isAggregate()) {
5012         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5013                               : I->getKnownRValue().getAggregateAddress();
5014 
5015       } else {
5016         RValue RV = I->getKnownRValue();
5017         assert(RV.isScalar()); // complex should always just be direct
5018 
5019         llvm::Type *scalarType = RV.getScalarVal()->getType();
5020         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5021         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
5022 
5023         // Materialize to a temporary.
5024         addr = CreateTempAlloca(
5025             RV.getScalarVal()->getType(),
5026             CharUnits::fromQuantity(std::max(
5027                 (unsigned)layout->getAlignment().value(), scalarAlign)),
5028             "tmp",
5029             /*ArraySize=*/nullptr, &AllocaAddr);
5030         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5031 
5032         Builder.CreateStore(RV.getScalarVal(), addr);
5033       }
5034 
5035       addr = Builder.CreateElementBitCast(addr, coercionType);
5036 
5037       unsigned IRArgPos = FirstIRArg;
5038       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5039         llvm::Type *eltType = coercionType->getElementType(i);
5040         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5041         Address eltAddr = Builder.CreateStructGEP(addr, i);
5042         llvm::Value *elt = Builder.CreateLoad(eltAddr);
5043         IRCallArgs[IRArgPos++] = elt;
5044       }
5045       assert(IRArgPos == FirstIRArg + NumIRArgs);
5046 
5047       if (tempSize) {
5048         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5049       }
5050 
5051       break;
5052     }
5053 
5054     case ABIArgInfo::Expand: {
5055       unsigned IRArgPos = FirstIRArg;
5056       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5057       assert(IRArgPos == FirstIRArg + NumIRArgs);
5058       break;
5059     }
5060     }
5061   }
5062 
5063   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5064   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5065 
5066   // If we're using inalloca, set up that argument.
5067   if (ArgMemory.isValid()) {
5068     llvm::Value *Arg = ArgMemory.getPointer();
5069     if (CallInfo.isVariadic()) {
5070       // When passing non-POD arguments by value to variadic functions, we will
5071       // end up with a variadic prototype and an inalloca call site.  In such
5072       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
5073       // the callee.
5074       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5075       CalleePtr =
5076           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5077     } else {
5078       llvm::Type *LastParamTy =
5079           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5080       if (Arg->getType() != LastParamTy) {
5081 #ifndef NDEBUG
5082         // Assert that these structs have equivalent element types.
5083         llvm::StructType *FullTy = CallInfo.getArgStruct();
5084         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5085             cast<llvm::PointerType>(LastParamTy)->getElementType());
5086         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5087         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
5088                                                 DE = DeclaredTy->element_end(),
5089                                                 FI = FullTy->element_begin();
5090              DI != DE; ++DI, ++FI)
5091           assert(*DI == *FI);
5092 #endif
5093         Arg = Builder.CreateBitCast(Arg, LastParamTy);
5094       }
5095     }
5096     assert(IRFunctionArgs.hasInallocaArg());
5097     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5098   }
5099 
5100   // 2. Prepare the function pointer.
5101 
5102   // If the callee is a bitcast of a non-variadic function to have a
5103   // variadic function pointer type, check to see if we can remove the
5104   // bitcast.  This comes up with unprototyped functions.
5105   //
5106   // This makes the IR nicer, but more importantly it ensures that we
5107   // can inline the function at -O0 if it is marked always_inline.
5108   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5109                                    llvm::Value *Ptr) -> llvm::Function * {
5110     if (!CalleeFT->isVarArg())
5111       return nullptr;
5112 
5113     // Get underlying value if it's a bitcast
5114     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5115       if (CE->getOpcode() == llvm::Instruction::BitCast)
5116         Ptr = CE->getOperand(0);
5117     }
5118 
5119     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5120     if (!OrigFn)
5121       return nullptr;
5122 
5123     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5124 
5125     // If the original type is variadic, or if any of the component types
5126     // disagree, we cannot remove the cast.
5127     if (OrigFT->isVarArg() ||
5128         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5129         OrigFT->getReturnType() != CalleeFT->getReturnType())
5130       return nullptr;
5131 
5132     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5133       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5134         return nullptr;
5135 
5136     return OrigFn;
5137   };
5138 
5139   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5140     CalleePtr = OrigFn;
5141     IRFuncTy = OrigFn->getFunctionType();
5142   }
5143 
5144   // 3. Perform the actual call.
5145 
5146   // Deactivate any cleanups that we're supposed to do immediately before
5147   // the call.
5148   if (!CallArgs.getCleanupsToDeactivate().empty())
5149     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5150 
5151   // Assert that the arguments we computed match up.  The IR verifier
5152   // will catch this, but this is a common enough source of problems
5153   // during IRGen changes that it's way better for debugging to catch
5154   // it ourselves here.
5155 #ifndef NDEBUG
5156   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5157   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5158     // Inalloca argument can have different type.
5159     if (IRFunctionArgs.hasInallocaArg() &&
5160         i == IRFunctionArgs.getInallocaArgNo())
5161       continue;
5162     if (i < IRFuncTy->getNumParams())
5163       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5164   }
5165 #endif
5166 
5167   // Update the largest vector width if any arguments have vector types.
5168   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5169     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
5170       LargestVectorWidth =
5171           std::max((uint64_t)LargestVectorWidth,
5172                    VT->getPrimitiveSizeInBits().getKnownMinSize());
5173   }
5174 
5175   // Compute the calling convention and attributes.
5176   unsigned CallingConv;
5177   llvm::AttributeList Attrs;
5178   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5179                              Callee.getAbstractInfo(), Attrs, CallingConv,
5180                              /*AttrOnCallSite=*/true,
5181                              /*IsThunk=*/false, CurFuncDecl);
5182 
5183   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5184     if (FD->hasAttr<StrictFPAttr>())
5185       // All calls within a strictfp function are marked strictfp
5186       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5187 
5188   // Add call-site nomerge attribute if exists.
5189   if (InNoMergeAttributedStmt)
5190     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5191 
5192   // Apply some call-site-specific attributes.
5193   // TODO: work this into building the attribute set.
5194 
5195   // Apply always_inline to all calls within flatten functions.
5196   // FIXME: should this really take priority over __try, below?
5197   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5198       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5199     Attrs =
5200         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5201   }
5202 
5203   // Disable inlining inside SEH __try blocks.
5204   if (isSEHTryScope()) {
5205     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5206   }
5207 
5208   // Decide whether to use a call or an invoke.
5209   bool CannotThrow;
5210   if (currentFunctionUsesSEHTry()) {
5211     // SEH cares about asynchronous exceptions, so everything can "throw."
5212     CannotThrow = false;
5213   } else if (isCleanupPadScope() &&
5214              EHPersonality::get(*this).isMSVCXXPersonality()) {
5215     // The MSVC++ personality will implicitly terminate the program if an
5216     // exception is thrown during a cleanup outside of a try/catch.
5217     // We don't need to model anything in IR to get this behavior.
5218     CannotThrow = true;
5219   } else {
5220     // Otherwise, nounwind call sites will never throw.
5221     CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5222 
5223     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5224       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5225         CannotThrow = true;
5226   }
5227 
5228   // If we made a temporary, be sure to clean up after ourselves. Note that we
5229   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5230   // pop this cleanup later on. Being eager about this is OK, since this
5231   // temporary is 'invisible' outside of the callee.
5232   if (UnusedReturnSizePtr)
5233     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5234                                          UnusedReturnSizePtr);
5235 
5236   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5237 
5238   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5239       getBundlesForFunclet(CalleePtr);
5240 
5241   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5242     if (FD->hasAttr<StrictFPAttr>())
5243       // All calls within a strictfp function are marked strictfp
5244       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5245 
5246   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5247   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5248 
5249   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5250   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5251 
5252   // Emit the actual call/invoke instruction.
5253   llvm::CallBase *CI;
5254   if (!InvokeDest) {
5255     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5256   } else {
5257     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5258     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5259                               BundleList);
5260     EmitBlock(Cont);
5261   }
5262   if (callOrInvoke)
5263     *callOrInvoke = CI;
5264 
5265   // If this is within a function that has the guard(nocf) attribute and is an
5266   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5267   // Control Flow Guard checks should not be added, even if the call is inlined.
5268   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5269     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5270       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5271         Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5272     }
5273   }
5274 
5275   // Apply the attributes and calling convention.
5276   CI->setAttributes(Attrs);
5277   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5278 
5279   // Apply various metadata.
5280 
5281   if (!CI->getType()->isVoidTy())
5282     CI->setName("call");
5283 
5284   // Update largest vector width from the return type.
5285   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
5286     LargestVectorWidth =
5287         std::max((uint64_t)LargestVectorWidth,
5288                  VT->getPrimitiveSizeInBits().getKnownMinSize());
5289 
5290   // Insert instrumentation or attach profile metadata at indirect call sites.
5291   // For more details, see the comment before the definition of
5292   // IPVK_IndirectCallTarget in InstrProfData.inc.
5293   if (!CI->getCalledFunction())
5294     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5295                      CI, CalleePtr);
5296 
5297   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5298   // optimizer it can aggressively ignore unwind edges.
5299   if (CGM.getLangOpts().ObjCAutoRefCount)
5300     AddObjCARCExceptionMetadata(CI);
5301 
5302   // Set tail call kind if necessary.
5303   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5304     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5305       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5306     else if (IsMustTail)
5307       Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5308   }
5309 
5310   // Add metadata for calls to MSAllocator functions
5311   if (getDebugInfo() && TargetDecl &&
5312       TargetDecl->hasAttr<MSAllocatorAttr>())
5313     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5314 
5315   // Add metadata if calling an __attribute__((error(""))) or warning fn.
5316   if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5317     llvm::ConstantInt *Line =
5318         llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5319     llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5320     llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5321     CI->setMetadata("srcloc", MDT);
5322   }
5323 
5324   // 4. Finish the call.
5325 
5326   // If the call doesn't return, finish the basic block and clear the
5327   // insertion point; this allows the rest of IRGen to discard
5328   // unreachable code.
5329   if (CI->doesNotReturn()) {
5330     if (UnusedReturnSizePtr)
5331       PopCleanupBlock();
5332 
5333     // Strip away the noreturn attribute to better diagnose unreachable UB.
5334     if (SanOpts.has(SanitizerKind::Unreachable)) {
5335       // Also remove from function since CallBase::hasFnAttr additionally checks
5336       // attributes of the called function.
5337       if (auto *F = CI->getCalledFunction())
5338         F->removeFnAttr(llvm::Attribute::NoReturn);
5339       CI->removeFnAttr(llvm::Attribute::NoReturn);
5340 
5341       // Avoid incompatibility with ASan which relies on the `noreturn`
5342       // attribute to insert handler calls.
5343       if (SanOpts.hasOneOf(SanitizerKind::Address |
5344                            SanitizerKind::KernelAddress)) {
5345         SanitizerScope SanScope(this);
5346         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5347         Builder.SetInsertPoint(CI);
5348         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5349         llvm::FunctionCallee Fn =
5350             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5351         EmitNounwindRuntimeCall(Fn);
5352       }
5353     }
5354 
5355     EmitUnreachable(Loc);
5356     Builder.ClearInsertionPoint();
5357 
5358     // FIXME: For now, emit a dummy basic block because expr emitters in
5359     // generally are not ready to handle emitting expressions at unreachable
5360     // points.
5361     EnsureInsertPoint();
5362 
5363     // Return a reasonable RValue.
5364     return GetUndefRValue(RetTy);
5365   }
5366 
5367   // If this is a musttail call, return immediately. We do not branch to the
5368   // epilogue in this case.
5369   if (IsMustTail) {
5370     for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5371          ++it) {
5372       EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5373       if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5374         CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5375     }
5376     if (CI->getType()->isVoidTy())
5377       Builder.CreateRetVoid();
5378     else
5379       Builder.CreateRet(CI);
5380     Builder.ClearInsertionPoint();
5381     EnsureInsertPoint();
5382     return GetUndefRValue(RetTy);
5383   }
5384 
5385   // Perform the swifterror writeback.
5386   if (swiftErrorTemp.isValid()) {
5387     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5388     Builder.CreateStore(errorResult, swiftErrorArg);
5389   }
5390 
5391   // Emit any call-associated writebacks immediately.  Arguably this
5392   // should happen after any return-value munging.
5393   if (CallArgs.hasWritebacks())
5394     emitWritebacks(*this, CallArgs);
5395 
5396   // The stack cleanup for inalloca arguments has to run out of the normal
5397   // lexical order, so deactivate it and run it manually here.
5398   CallArgs.freeArgumentMemory(*this);
5399 
5400   // Extract the return value.
5401   RValue Ret = [&] {
5402     switch (RetAI.getKind()) {
5403     case ABIArgInfo::CoerceAndExpand: {
5404       auto coercionType = RetAI.getCoerceAndExpandType();
5405 
5406       Address addr = SRetPtr;
5407       addr = Builder.CreateElementBitCast(addr, coercionType);
5408 
5409       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5410       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5411 
5412       unsigned unpaddedIndex = 0;
5413       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5414         llvm::Type *eltType = coercionType->getElementType(i);
5415         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5416         Address eltAddr = Builder.CreateStructGEP(addr, i);
5417         llvm::Value *elt = CI;
5418         if (requiresExtract)
5419           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5420         else
5421           assert(unpaddedIndex == 0);
5422         Builder.CreateStore(elt, eltAddr);
5423       }
5424       // FALLTHROUGH
5425       LLVM_FALLTHROUGH;
5426     }
5427 
5428     case ABIArgInfo::InAlloca:
5429     case ABIArgInfo::Indirect: {
5430       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5431       if (UnusedReturnSizePtr)
5432         PopCleanupBlock();
5433       return ret;
5434     }
5435 
5436     case ABIArgInfo::Ignore:
5437       // If we are ignoring an argument that had a result, make sure to
5438       // construct the appropriate return value for our caller.
5439       return GetUndefRValue(RetTy);
5440 
5441     case ABIArgInfo::Extend:
5442     case ABIArgInfo::Direct: {
5443       llvm::Type *RetIRTy = ConvertType(RetTy);
5444       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5445         switch (getEvaluationKind(RetTy)) {
5446         case TEK_Complex: {
5447           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5448           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5449           return RValue::getComplex(std::make_pair(Real, Imag));
5450         }
5451         case TEK_Aggregate: {
5452           Address DestPtr = ReturnValue.getValue();
5453           bool DestIsVolatile = ReturnValue.isVolatile();
5454 
5455           if (!DestPtr.isValid()) {
5456             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5457             DestIsVolatile = false;
5458           }
5459           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5460           return RValue::getAggregate(DestPtr);
5461         }
5462         case TEK_Scalar: {
5463           // If the argument doesn't match, perform a bitcast to coerce it.  This
5464           // can happen due to trivial type mismatches.
5465           llvm::Value *V = CI;
5466           if (V->getType() != RetIRTy)
5467             V = Builder.CreateBitCast(V, RetIRTy);
5468           return RValue::get(V);
5469         }
5470         }
5471         llvm_unreachable("bad evaluation kind");
5472       }
5473 
5474       Address DestPtr = ReturnValue.getValue();
5475       bool DestIsVolatile = ReturnValue.isVolatile();
5476 
5477       if (!DestPtr.isValid()) {
5478         DestPtr = CreateMemTemp(RetTy, "coerce");
5479         DestIsVolatile = false;
5480       }
5481 
5482       // If the value is offset in memory, apply the offset now.
5483       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5484       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5485 
5486       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5487     }
5488 
5489     case ABIArgInfo::Expand:
5490     case ABIArgInfo::IndirectAliased:
5491       llvm_unreachable("Invalid ABI kind for return argument");
5492     }
5493 
5494     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5495   } ();
5496 
5497   // Emit the assume_aligned check on the return value.
5498   if (Ret.isScalar() && TargetDecl) {
5499     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5500     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5501   }
5502 
5503   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5504   // we can't use the full cleanup mechanism.
5505   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5506     LifetimeEnd.Emit(*this, /*Flags=*/{});
5507 
5508   if (!ReturnValue.isExternallyDestructed() &&
5509       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5510     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5511                 RetTy);
5512 
5513   return Ret;
5514 }
5515 
5516 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5517   if (isVirtual()) {
5518     const CallExpr *CE = getVirtualCallExpr();
5519     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5520         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5521         CE ? CE->getBeginLoc() : SourceLocation());
5522   }
5523 
5524   return *this;
5525 }
5526 
5527 /* VarArg handling */
5528 
5529 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5530   VAListAddr = VE->isMicrosoftABI()
5531                  ? EmitMSVAListRef(VE->getSubExpr())
5532                  : EmitVAListRef(VE->getSubExpr());
5533   QualType Ty = VE->getType();
5534   if (VE->isMicrosoftABI())
5535     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5536   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5537 }
5538