1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 using namespace clang;
35 using namespace CodeGen;
36 
37 /***/
38 
39 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
40   switch (CC) {
41   default: return llvm::CallingConv::C;
42   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
43   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
44   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
45   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
46   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
47   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
48   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
49   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
50   // TODO: add support for CC_X86Pascal to llvm
51   }
52 }
53 
54 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
55 /// qualification.
56 /// FIXME: address space qualification?
57 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
58   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
59   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
60 }
61 
62 /// Returns the canonical formal type of the given C++ method.
63 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
64   return MD->getType()->getCanonicalTypeUnqualified()
65            .getAs<FunctionProtoType>();
66 }
67 
68 /// Returns the "extra-canonicalized" return type, which discards
69 /// qualifiers on the return type.  Codegen doesn't care about them,
70 /// and it makes ABI code a little easier to be able to assume that
71 /// all parameter and return types are top-level unqualified.
72 static CanQualType GetReturnType(QualType RetTy) {
73   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
74 }
75 
76 /// Arrange the argument and result information for a value of the given
77 /// unprototyped freestanding function type.
78 const CGFunctionInfo &
79 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
80   // When translating an unprototyped function type, always use a
81   // variadic type.
82   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
83                                  false, None, FTNP->getExtInfo(),
84                                  RequiredArgs(0));
85 }
86 
87 /// Arrange the LLVM function layout for a value of the given function
88 /// type, on top of any implicit parameters already stored.  Use the
89 /// given ExtInfo instead of the ExtInfo from the function type.
90 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
91                                                      bool IsInstanceMethod,
92                                        SmallVectorImpl<CanQualType> &prefix,
93                                              CanQual<FunctionProtoType> FTP,
94                                               FunctionType::ExtInfo extInfo) {
95   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
96   // FIXME: Kill copy.
97   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
98     prefix.push_back(FTP->getParamType(i));
99   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
100   return CGT.arrangeLLVMFunctionInfo(resultType, IsInstanceMethod, prefix,
101                                      extInfo, required);
102 }
103 
104 /// Arrange the argument and result information for a free function (i.e.
105 /// not a C++ or ObjC instance method) of the given type.
106 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
107                                       SmallVectorImpl<CanQualType> &prefix,
108                                             CanQual<FunctionProtoType> FTP) {
109   return arrangeLLVMFunctionInfo(CGT, false, prefix, FTP, FTP->getExtInfo());
110 }
111 
112 /// Arrange the argument and result information for a free function (i.e.
113 /// not a C++ or ObjC instance method) of the given type.
114 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
115                                       SmallVectorImpl<CanQualType> &prefix,
116                                             CanQual<FunctionProtoType> FTP) {
117   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
118   return arrangeLLVMFunctionInfo(CGT, true, prefix, FTP, extInfo);
119 }
120 
121 /// Arrange the argument and result information for a value of the
122 /// given freestanding function type.
123 const CGFunctionInfo &
124 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
125   SmallVector<CanQualType, 16> argTypes;
126   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
127 }
128 
129 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
130   // Set the appropriate calling convention for the Function.
131   if (D->hasAttr<StdCallAttr>())
132     return CC_X86StdCall;
133 
134   if (D->hasAttr<FastCallAttr>())
135     return CC_X86FastCall;
136 
137   if (D->hasAttr<ThisCallAttr>())
138     return CC_X86ThisCall;
139 
140   if (D->hasAttr<PascalAttr>())
141     return CC_X86Pascal;
142 
143   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
144     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
145 
146   if (D->hasAttr<PnaclCallAttr>())
147     return CC_PnaclCall;
148 
149   if (D->hasAttr<IntelOclBiccAttr>())
150     return CC_IntelOclBicc;
151 
152   if (D->hasAttr<MSABIAttr>())
153     return IsWindows ? CC_C : CC_X86_64Win64;
154 
155   if (D->hasAttr<SysVABIAttr>())
156     return IsWindows ? CC_X86_64SysV : CC_C;
157 
158   return CC_C;
159 }
160 
161 /// Arrange the argument and result information for a call to an
162 /// unknown C++ non-static member function of the given abstract type.
163 /// (Zero value of RD means we don't have any meaningful "this" argument type,
164 ///  so fall back to a generic pointer type).
165 /// The member function must be an ordinary function, i.e. not a
166 /// constructor or destructor.
167 const CGFunctionInfo &
168 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
169                                    const FunctionProtoType *FTP) {
170   SmallVector<CanQualType, 16> argTypes;
171 
172   // Add the 'this' pointer.
173   if (RD)
174     argTypes.push_back(GetThisType(Context, RD));
175   else
176     argTypes.push_back(Context.VoidPtrTy);
177 
178   return ::arrangeCXXMethodType(*this, argTypes,
179               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
180 }
181 
182 /// Arrange the argument and result information for a declaration or
183 /// definition of the given C++ non-static member function.  The
184 /// member function must be an ordinary function, i.e. not a
185 /// constructor or destructor.
186 const CGFunctionInfo &
187 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
188   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
189   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
190 
191   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
192 
193   if (MD->isInstance()) {
194     // The abstract case is perfectly fine.
195     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
196     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
197   }
198 
199   return arrangeFreeFunctionType(prototype);
200 }
201 
202 /// Arrange the argument and result information for a declaration
203 /// or definition to the given constructor variant.
204 const CGFunctionInfo &
205 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
206                                                CXXCtorType ctorKind) {
207   SmallVector<CanQualType, 16> argTypes;
208   argTypes.push_back(GetThisType(Context, D->getParent()));
209 
210   GlobalDecl GD(D, ctorKind);
211   CanQualType resultType =
212     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
213 
214   CanQual<FunctionProtoType> FTP = GetFormalType(D);
215 
216   // Add the formal parameters.
217   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
218     argTypes.push_back(FTP->getParamType(i));
219 
220   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
221 
222   RequiredArgs required =
223       (D->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
224 
225   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
226   return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo, required);
227 }
228 
229 /// Arrange a call to a C++ method, passing the given arguments.
230 const CGFunctionInfo &
231 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
232                                         const CXXConstructorDecl *D,
233                                         CXXCtorType CtorKind,
234                                         unsigned ExtraArgs) {
235   // FIXME: Kill copy.
236   SmallVector<CanQualType, 16> ArgTypes;
237   for (CallArgList::const_iterator i = args.begin(), e = args.end(); i != e;
238        ++i)
239     ArgTypes.push_back(Context.getCanonicalParamType(i->Ty));
240 
241   CanQual<FunctionProtoType> FPT = GetFormalType(D);
242   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
243   GlobalDecl GD(D, CtorKind);
244   CanQualType ResultType =
245       TheCXXABI.HasThisReturn(GD) ? ArgTypes.front() : Context.VoidTy;
246 
247   FunctionType::ExtInfo Info = FPT->getExtInfo();
248   return arrangeLLVMFunctionInfo(ResultType, true, ArgTypes, Info, Required);
249 }
250 
251 /// Arrange the argument and result information for a declaration,
252 /// definition, or call to the given destructor variant.  It so
253 /// happens that all three cases produce the same information.
254 const CGFunctionInfo &
255 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
256                                    CXXDtorType dtorKind) {
257   SmallVector<CanQualType, 2> argTypes;
258   argTypes.push_back(GetThisType(Context, D->getParent()));
259 
260   GlobalDecl GD(D, dtorKind);
261   CanQualType resultType =
262     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
263 
264   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
265 
266   CanQual<FunctionProtoType> FTP = GetFormalType(D);
267   assert(FTP->getNumParams() == 0 && "dtor with formal parameters");
268   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
269 
270   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
271   return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo,
272                                  RequiredArgs::All);
273 }
274 
275 /// Arrange the argument and result information for the declaration or
276 /// definition of the given function.
277 const CGFunctionInfo &
278 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
279   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
280     if (MD->isInstance())
281       return arrangeCXXMethodDeclaration(MD);
282 
283   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
284 
285   assert(isa<FunctionType>(FTy));
286 
287   // When declaring a function without a prototype, always use a
288   // non-variadic type.
289   if (isa<FunctionNoProtoType>(FTy)) {
290     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
291     return arrangeLLVMFunctionInfo(noProto->getReturnType(), false, None,
292                                    noProto->getExtInfo(), RequiredArgs::All);
293   }
294 
295   assert(isa<FunctionProtoType>(FTy));
296   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
297 }
298 
299 /// Arrange the argument and result information for the declaration or
300 /// definition of an Objective-C method.
301 const CGFunctionInfo &
302 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
303   // It happens that this is the same as a call with no optional
304   // arguments, except also using the formal 'self' type.
305   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
306 }
307 
308 /// Arrange the argument and result information for the function type
309 /// through which to perform a send to the given Objective-C method,
310 /// using the given receiver type.  The receiver type is not always
311 /// the 'self' type of the method or even an Objective-C pointer type.
312 /// This is *not* the right method for actually performing such a
313 /// message send, due to the possibility of optional arguments.
314 const CGFunctionInfo &
315 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
316                                               QualType receiverType) {
317   SmallVector<CanQualType, 16> argTys;
318   argTys.push_back(Context.getCanonicalParamType(receiverType));
319   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
320   // FIXME: Kill copy?
321   for (const auto *I : MD->params()) {
322     argTys.push_back(Context.getCanonicalParamType(I->getType()));
323   }
324 
325   FunctionType::ExtInfo einfo;
326   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
327   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
328 
329   if (getContext().getLangOpts().ObjCAutoRefCount &&
330       MD->hasAttr<NSReturnsRetainedAttr>())
331     einfo = einfo.withProducesResult(true);
332 
333   RequiredArgs required =
334     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
335 
336   return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), false,
337                                  argTys, einfo, required);
338 }
339 
340 const CGFunctionInfo &
341 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
342   // FIXME: Do we need to handle ObjCMethodDecl?
343   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
344 
345   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
346     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
347 
348   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
349     return arrangeCXXDestructor(DD, GD.getDtorType());
350 
351   return arrangeFunctionDeclaration(FD);
352 }
353 
354 /// Arrange a call as unto a free function, except possibly with an
355 /// additional number of formal parameters considered required.
356 static const CGFunctionInfo &
357 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
358                             CodeGenModule &CGM,
359                             const CallArgList &args,
360                             const FunctionType *fnType,
361                             unsigned numExtraRequiredArgs) {
362   assert(args.size() >= numExtraRequiredArgs);
363 
364   // In most cases, there are no optional arguments.
365   RequiredArgs required = RequiredArgs::All;
366 
367   // If we have a variadic prototype, the required arguments are the
368   // extra prefix plus the arguments in the prototype.
369   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
370     if (proto->isVariadic())
371       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
372 
373   // If we don't have a prototype at all, but we're supposed to
374   // explicitly use the variadic convention for unprototyped calls,
375   // treat all of the arguments as required but preserve the nominal
376   // possibility of variadics.
377   } else if (CGM.getTargetCodeGenInfo()
378                 .isNoProtoCallVariadic(args,
379                                        cast<FunctionNoProtoType>(fnType))) {
380     required = RequiredArgs(args.size());
381   }
382 
383   return CGT.arrangeFreeFunctionCall(fnType->getReturnType(), args,
384                                      fnType->getExtInfo(), required);
385 }
386 
387 /// Figure out the rules for calling a function with the given formal
388 /// type using the given arguments.  The arguments are necessary
389 /// because the function might be unprototyped, in which case it's
390 /// target-dependent in crazy ways.
391 const CGFunctionInfo &
392 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
393                                       const FunctionType *fnType) {
394   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 0);
395 }
396 
397 /// A block function call is essentially a free-function call with an
398 /// extra implicit argument.
399 const CGFunctionInfo &
400 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
401                                        const FunctionType *fnType) {
402   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1);
403 }
404 
405 const CGFunctionInfo &
406 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
407                                       const CallArgList &args,
408                                       FunctionType::ExtInfo info,
409                                       RequiredArgs required) {
410   // FIXME: Kill copy.
411   SmallVector<CanQualType, 16> argTypes;
412   for (CallArgList::const_iterator i = args.begin(), e = args.end();
413        i != e; ++i)
414     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
415   return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes,
416                                  info, required);
417 }
418 
419 /// Arrange a call to a C++ method, passing the given arguments.
420 const CGFunctionInfo &
421 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
422                                    const FunctionProtoType *FPT,
423                                    RequiredArgs required) {
424   // FIXME: Kill copy.
425   SmallVector<CanQualType, 16> argTypes;
426   for (CallArgList::const_iterator i = args.begin(), e = args.end();
427        i != e; ++i)
428     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
429 
430   FunctionType::ExtInfo info = FPT->getExtInfo();
431   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getReturnType()), true,
432                                  argTypes, info, required);
433 }
434 
435 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
436     QualType resultType, const FunctionArgList &args,
437     const FunctionType::ExtInfo &info, bool isVariadic) {
438   // FIXME: Kill copy.
439   SmallVector<CanQualType, 16> argTypes;
440   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
441        i != e; ++i)
442     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
443 
444   RequiredArgs required =
445     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
446   return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes, info,
447                                  required);
448 }
449 
450 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
451   return arrangeLLVMFunctionInfo(getContext().VoidTy, false, None,
452                                  FunctionType::ExtInfo(), RequiredArgs::All);
453 }
454 
455 /// Arrange the argument and result information for an abstract value
456 /// of a given function type.  This is the method which all of the
457 /// above functions ultimately defer to.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
460                                       bool IsInstanceMethod,
461                                       ArrayRef<CanQualType> argTypes,
462                                       FunctionType::ExtInfo info,
463                                       RequiredArgs required) {
464 #ifndef NDEBUG
465   for (ArrayRef<CanQualType>::const_iterator
466          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
467     assert(I->isCanonicalAsParam());
468 #endif
469 
470   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
471 
472   // Lookup or create unique function info.
473   llvm::FoldingSetNodeID ID;
474   CGFunctionInfo::Profile(ID, IsInstanceMethod, info, required, resultType,
475                           argTypes);
476 
477   void *insertPos = 0;
478   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
479   if (FI)
480     return *FI;
481 
482   // Construct the function info.  We co-allocate the ArgInfos.
483   FI = CGFunctionInfo::create(CC, IsInstanceMethod, info, resultType, argTypes,
484                               required);
485   FunctionInfos.InsertNode(FI, insertPos);
486 
487   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
488   assert(inserted && "Recursively being processed?");
489 
490   // Compute ABI information.
491   getABIInfo().computeInfo(*FI);
492 
493   // Loop over all of the computed argument and return value info.  If any of
494   // them are direct or extend without a specified coerce type, specify the
495   // default now.
496   ABIArgInfo &retInfo = FI->getReturnInfo();
497   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
498     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
499 
500   for (auto &I : FI->arguments())
501     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == 0)
502       I.info.setCoerceToType(ConvertType(I.type));
503 
504   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
505   assert(erased && "Not in set?");
506 
507   return *FI;
508 }
509 
510 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
511                                        bool IsInstanceMethod,
512                                        const FunctionType::ExtInfo &info,
513                                        CanQualType resultType,
514                                        ArrayRef<CanQualType> argTypes,
515                                        RequiredArgs required) {
516   void *buffer = operator new(sizeof(CGFunctionInfo) +
517                               sizeof(ArgInfo) * (argTypes.size() + 1));
518   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
519   FI->CallingConvention = llvmCC;
520   FI->EffectiveCallingConvention = llvmCC;
521   FI->ASTCallingConvention = info.getCC();
522   FI->InstanceMethod = IsInstanceMethod;
523   FI->NoReturn = info.getNoReturn();
524   FI->ReturnsRetained = info.getProducesResult();
525   FI->Required = required;
526   FI->HasRegParm = info.getHasRegParm();
527   FI->RegParm = info.getRegParm();
528   FI->ArgStruct = 0;
529   FI->NumArgs = argTypes.size();
530   FI->getArgsBuffer()[0].type = resultType;
531   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
532     FI->getArgsBuffer()[i + 1].type = argTypes[i];
533   return FI;
534 }
535 
536 /***/
537 
538 void CodeGenTypes::GetExpandedTypes(QualType type,
539                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
540   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
541     uint64_t NumElts = AT->getSize().getZExtValue();
542     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
543       GetExpandedTypes(AT->getElementType(), expandedTypes);
544   } else if (const RecordType *RT = type->getAs<RecordType>()) {
545     const RecordDecl *RD = RT->getDecl();
546     assert(!RD->hasFlexibleArrayMember() &&
547            "Cannot expand structure with flexible array.");
548     if (RD->isUnion()) {
549       // Unions can be here only in degenerative cases - all the fields are same
550       // after flattening. Thus we have to use the "largest" field.
551       const FieldDecl *LargestFD = 0;
552       CharUnits UnionSize = CharUnits::Zero();
553 
554       for (const auto *FD : RD->fields()) {
555         assert(!FD->isBitField() &&
556                "Cannot expand structure with bit-field members.");
557         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
558         if (UnionSize < FieldSize) {
559           UnionSize = FieldSize;
560           LargestFD = FD;
561         }
562       }
563       if (LargestFD)
564         GetExpandedTypes(LargestFD->getType(), expandedTypes);
565     } else {
566       for (const auto *I : RD->fields()) {
567         assert(!I->isBitField() &&
568                "Cannot expand structure with bit-field members.");
569         GetExpandedTypes(I->getType(), expandedTypes);
570       }
571     }
572   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
573     llvm::Type *EltTy = ConvertType(CT->getElementType());
574     expandedTypes.push_back(EltTy);
575     expandedTypes.push_back(EltTy);
576   } else
577     expandedTypes.push_back(ConvertType(type));
578 }
579 
580 llvm::Function::arg_iterator
581 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
582                                     llvm::Function::arg_iterator AI) {
583   assert(LV.isSimple() &&
584          "Unexpected non-simple lvalue during struct expansion.");
585 
586   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
587     unsigned NumElts = AT->getSize().getZExtValue();
588     QualType EltTy = AT->getElementType();
589     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
590       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
591       LValue LV = MakeAddrLValue(EltAddr, EltTy);
592       AI = ExpandTypeFromArgs(EltTy, LV, AI);
593     }
594   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
595     RecordDecl *RD = RT->getDecl();
596     if (RD->isUnion()) {
597       // Unions can be here only in degenerative cases - all the fields are same
598       // after flattening. Thus we have to use the "largest" field.
599       const FieldDecl *LargestFD = 0;
600       CharUnits UnionSize = CharUnits::Zero();
601 
602       for (const auto *FD : RD->fields()) {
603         assert(!FD->isBitField() &&
604                "Cannot expand structure with bit-field members.");
605         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
606         if (UnionSize < FieldSize) {
607           UnionSize = FieldSize;
608           LargestFD = FD;
609         }
610       }
611       if (LargestFD) {
612         // FIXME: What are the right qualifiers here?
613         LValue SubLV = EmitLValueForField(LV, LargestFD);
614         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
615       }
616     } else {
617       for (const auto *FD : RD->fields()) {
618         QualType FT = FD->getType();
619 
620         // FIXME: What are the right qualifiers here?
621         LValue SubLV = EmitLValueForField(LV, FD);
622         AI = ExpandTypeFromArgs(FT, SubLV, AI);
623       }
624     }
625   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
626     QualType EltTy = CT->getElementType();
627     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
628     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
629     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
630     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
631   } else {
632     EmitStoreThroughLValue(RValue::get(AI), LV);
633     ++AI;
634   }
635 
636   return AI;
637 }
638 
639 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
640 /// accessing some number of bytes out of it, try to gep into the struct to get
641 /// at its inner goodness.  Dive as deep as possible without entering an element
642 /// with an in-memory size smaller than DstSize.
643 static llvm::Value *
644 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
645                                    llvm::StructType *SrcSTy,
646                                    uint64_t DstSize, CodeGenFunction &CGF) {
647   // We can't dive into a zero-element struct.
648   if (SrcSTy->getNumElements() == 0) return SrcPtr;
649 
650   llvm::Type *FirstElt = SrcSTy->getElementType(0);
651 
652   // If the first elt is at least as large as what we're looking for, or if the
653   // first element is the same size as the whole struct, we can enter it.
654   uint64_t FirstEltSize =
655     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
656   if (FirstEltSize < DstSize &&
657       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
658     return SrcPtr;
659 
660   // GEP into the first element.
661   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
662 
663   // If the first element is a struct, recurse.
664   llvm::Type *SrcTy =
665     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
666   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
667     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
668 
669   return SrcPtr;
670 }
671 
672 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
673 /// are either integers or pointers.  This does a truncation of the value if it
674 /// is too large or a zero extension if it is too small.
675 ///
676 /// This behaves as if the value were coerced through memory, so on big-endian
677 /// targets the high bits are preserved in a truncation, while little-endian
678 /// targets preserve the low bits.
679 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
680                                              llvm::Type *Ty,
681                                              CodeGenFunction &CGF) {
682   if (Val->getType() == Ty)
683     return Val;
684 
685   if (isa<llvm::PointerType>(Val->getType())) {
686     // If this is Pointer->Pointer avoid conversion to and from int.
687     if (isa<llvm::PointerType>(Ty))
688       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
689 
690     // Convert the pointer to an integer so we can play with its width.
691     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
692   }
693 
694   llvm::Type *DestIntTy = Ty;
695   if (isa<llvm::PointerType>(DestIntTy))
696     DestIntTy = CGF.IntPtrTy;
697 
698   if (Val->getType() != DestIntTy) {
699     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
700     if (DL.isBigEndian()) {
701       // Preserve the high bits on big-endian targets.
702       // That is what memory coercion does.
703       uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType());
704       uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy);
705       if (SrcSize > DstSize) {
706         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
707         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
708       } else {
709         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
710         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
711       }
712     } else {
713       // Little-endian targets preserve the low bits. No shifts required.
714       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
715     }
716   }
717 
718   if (isa<llvm::PointerType>(Ty))
719     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
720   return Val;
721 }
722 
723 
724 
725 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
726 /// a pointer to an object of type \arg Ty.
727 ///
728 /// This safely handles the case when the src type is smaller than the
729 /// destination type; in this situation the values of bits which not
730 /// present in the src are undefined.
731 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
732                                       llvm::Type *Ty,
733                                       CodeGenFunction &CGF) {
734   llvm::Type *SrcTy =
735     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
736 
737   // If SrcTy and Ty are the same, just do a load.
738   if (SrcTy == Ty)
739     return CGF.Builder.CreateLoad(SrcPtr);
740 
741   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
742 
743   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
744     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
745     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
746   }
747 
748   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
749 
750   // If the source and destination are integer or pointer types, just do an
751   // extension or truncation to the desired type.
752   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
753       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
754     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
755     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
756   }
757 
758   // If load is legal, just bitcast the src pointer.
759   if (SrcSize >= DstSize) {
760     // Generally SrcSize is never greater than DstSize, since this means we are
761     // losing bits. However, this can happen in cases where the structure has
762     // additional padding, for example due to a user specified alignment.
763     //
764     // FIXME: Assert that we aren't truncating non-padding bits when have access
765     // to that information.
766     llvm::Value *Casted =
767       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
768     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
769     // FIXME: Use better alignment / avoid requiring aligned load.
770     Load->setAlignment(1);
771     return Load;
772   }
773 
774   // Otherwise do coercion through memory. This is stupid, but
775   // simple.
776   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
777   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
778   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
779   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
780   // FIXME: Use better alignment.
781   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
782       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
783       1, false);
784   return CGF.Builder.CreateLoad(Tmp);
785 }
786 
787 // Function to store a first-class aggregate into memory.  We prefer to
788 // store the elements rather than the aggregate to be more friendly to
789 // fast-isel.
790 // FIXME: Do we need to recurse here?
791 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
792                           llvm::Value *DestPtr, bool DestIsVolatile,
793                           bool LowAlignment) {
794   // Prefer scalar stores to first-class aggregate stores.
795   if (llvm::StructType *STy =
796         dyn_cast<llvm::StructType>(Val->getType())) {
797     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
798       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
799       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
800       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
801                                                     DestIsVolatile);
802       if (LowAlignment)
803         SI->setAlignment(1);
804     }
805   } else {
806     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
807     if (LowAlignment)
808       SI->setAlignment(1);
809   }
810 }
811 
812 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
813 /// where the source and destination may have different types.
814 ///
815 /// This safely handles the case when the src type is larger than the
816 /// destination type; the upper bits of the src will be lost.
817 static void CreateCoercedStore(llvm::Value *Src,
818                                llvm::Value *DstPtr,
819                                bool DstIsVolatile,
820                                CodeGenFunction &CGF) {
821   llvm::Type *SrcTy = Src->getType();
822   llvm::Type *DstTy =
823     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
824   if (SrcTy == DstTy) {
825     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
826     return;
827   }
828 
829   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
830 
831   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
832     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
833     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
834   }
835 
836   // If the source and destination are integer or pointer types, just do an
837   // extension or truncation to the desired type.
838   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
839       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
840     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
841     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
842     return;
843   }
844 
845   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
846 
847   // If store is legal, just bitcast the src pointer.
848   if (SrcSize <= DstSize) {
849     llvm::Value *Casted =
850       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
851     // FIXME: Use better alignment / avoid requiring aligned store.
852     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
853   } else {
854     // Otherwise do coercion through memory. This is stupid, but
855     // simple.
856 
857     // Generally SrcSize is never greater than DstSize, since this means we are
858     // losing bits. However, this can happen in cases where the structure has
859     // additional padding, for example due to a user specified alignment.
860     //
861     // FIXME: Assert that we aren't truncating non-padding bits when have access
862     // to that information.
863     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
864     CGF.Builder.CreateStore(Src, Tmp);
865     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
866     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
867     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
868     // FIXME: Use better alignment.
869     CGF.Builder.CreateMemCpy(DstCasted, Casted,
870         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
871         1, false);
872   }
873 }
874 
875 /***/
876 
877 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
878   return FI.getReturnInfo().isIndirect();
879 }
880 
881 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
882   return ReturnTypeUsesSRet(FI) &&
883          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
884 }
885 
886 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
887   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
888     switch (BT->getKind()) {
889     default:
890       return false;
891     case BuiltinType::Float:
892       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
893     case BuiltinType::Double:
894       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
895     case BuiltinType::LongDouble:
896       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
897     }
898   }
899 
900   return false;
901 }
902 
903 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
904   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
905     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
906       if (BT->getKind() == BuiltinType::LongDouble)
907         return getTarget().useObjCFP2RetForComplexLongDouble();
908     }
909   }
910 
911   return false;
912 }
913 
914 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
915   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
916   return GetFunctionType(FI);
917 }
918 
919 llvm::FunctionType *
920 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
921 
922   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
923   assert(Inserted && "Recursively being processed?");
924 
925   SmallVector<llvm::Type*, 8> argTypes;
926   llvm::Type *resultType = 0;
927 
928   const ABIArgInfo &retAI = FI.getReturnInfo();
929   switch (retAI.getKind()) {
930   case ABIArgInfo::Expand:
931     llvm_unreachable("Invalid ABI kind for return argument");
932 
933   case ABIArgInfo::Extend:
934   case ABIArgInfo::Direct:
935     resultType = retAI.getCoerceToType();
936     break;
937 
938   case ABIArgInfo::InAlloca:
939     if (retAI.getInAllocaSRet()) {
940       // sret things on win32 aren't void, they return the sret pointer.
941       QualType ret = FI.getReturnType();
942       llvm::Type *ty = ConvertType(ret);
943       unsigned addressSpace = Context.getTargetAddressSpace(ret);
944       resultType = llvm::PointerType::get(ty, addressSpace);
945     } else {
946       resultType = llvm::Type::getVoidTy(getLLVMContext());
947     }
948     break;
949 
950   case ABIArgInfo::Indirect: {
951     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
952     resultType = llvm::Type::getVoidTy(getLLVMContext());
953 
954     QualType ret = FI.getReturnType();
955     llvm::Type *ty = ConvertType(ret);
956     unsigned addressSpace = Context.getTargetAddressSpace(ret);
957     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
958     break;
959   }
960 
961   case ABIArgInfo::Ignore:
962     resultType = llvm::Type::getVoidTy(getLLVMContext());
963     break;
964   }
965 
966   // Add in all of the required arguments.
967   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
968   if (FI.isVariadic()) {
969     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
970   } else {
971     ie = FI.arg_end();
972   }
973   for (; it != ie; ++it) {
974     const ABIArgInfo &argAI = it->info;
975 
976     // Insert a padding type to ensure proper alignment.
977     if (llvm::Type *PaddingType = argAI.getPaddingType())
978       argTypes.push_back(PaddingType);
979 
980     switch (argAI.getKind()) {
981     case ABIArgInfo::Ignore:
982     case ABIArgInfo::InAlloca:
983       break;
984 
985     case ABIArgInfo::Indirect: {
986       // indirect arguments are always on the stack, which is addr space #0.
987       llvm::Type *LTy = ConvertTypeForMem(it->type);
988       argTypes.push_back(LTy->getPointerTo());
989       break;
990     }
991 
992     case ABIArgInfo::Extend:
993     case ABIArgInfo::Direct: {
994       // If the coerce-to type is a first class aggregate, flatten it.  Either
995       // way is semantically identical, but fast-isel and the optimizer
996       // generally likes scalar values better than FCAs.
997       llvm::Type *argType = argAI.getCoerceToType();
998       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
999         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1000           argTypes.push_back(st->getElementType(i));
1001       } else {
1002         argTypes.push_back(argType);
1003       }
1004       break;
1005     }
1006 
1007     case ABIArgInfo::Expand:
1008       GetExpandedTypes(it->type, argTypes);
1009       break;
1010     }
1011   }
1012 
1013   // Add the inalloca struct as the last parameter type.
1014   if (llvm::StructType *ArgStruct = FI.getArgStruct())
1015     argTypes.push_back(ArgStruct->getPointerTo());
1016 
1017   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1018   assert(Erased && "Not in set?");
1019 
1020   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
1021 }
1022 
1023 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1024   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1025   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1026 
1027   if (!isFuncTypeConvertible(FPT))
1028     return llvm::StructType::get(getLLVMContext());
1029 
1030   const CGFunctionInfo *Info;
1031   if (isa<CXXDestructorDecl>(MD))
1032     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
1033   else
1034     Info = &arrangeCXXMethodDeclaration(MD);
1035   return GetFunctionType(*Info);
1036 }
1037 
1038 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1039                                            const Decl *TargetDecl,
1040                                            AttributeListType &PAL,
1041                                            unsigned &CallingConv,
1042                                            bool AttrOnCallSite) {
1043   llvm::AttrBuilder FuncAttrs;
1044   llvm::AttrBuilder RetAttrs;
1045 
1046   CallingConv = FI.getEffectiveCallingConvention();
1047 
1048   if (FI.isNoReturn())
1049     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1050 
1051   // FIXME: handle sseregparm someday...
1052   if (TargetDecl) {
1053     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1054       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1055     if (TargetDecl->hasAttr<NoThrowAttr>())
1056       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1057     if (TargetDecl->hasAttr<NoReturnAttr>())
1058       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1059     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1060       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1061 
1062     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1063       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1064       if (FPT && FPT->isNothrow(getContext()))
1065         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1066       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1067       // These attributes are not inherited by overloads.
1068       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1069       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1070         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1071     }
1072 
1073     // 'const' and 'pure' attribute functions are also nounwind.
1074     if (TargetDecl->hasAttr<ConstAttr>()) {
1075       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1076       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1077     } else if (TargetDecl->hasAttr<PureAttr>()) {
1078       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1079       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1080     }
1081     if (TargetDecl->hasAttr<MallocAttr>())
1082       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1083   }
1084 
1085   if (CodeGenOpts.OptimizeSize)
1086     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1087   if (CodeGenOpts.OptimizeSize == 2)
1088     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1089   if (CodeGenOpts.DisableRedZone)
1090     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1091   if (CodeGenOpts.NoImplicitFloat)
1092     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1093   if (CodeGenOpts.EnableSegmentedStacks)
1094     FuncAttrs.addAttribute("split-stack");
1095 
1096   if (AttrOnCallSite) {
1097     // Attributes that should go on the call site only.
1098     if (!CodeGenOpts.SimplifyLibCalls)
1099       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1100   } else {
1101     // Attributes that should go on the function, but not the call site.
1102     if (!CodeGenOpts.DisableFPElim) {
1103       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1104     } else if (CodeGenOpts.OmitLeafFramePointer) {
1105       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1106       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1107     } else {
1108       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1109       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1110     }
1111 
1112     FuncAttrs.addAttribute("less-precise-fpmad",
1113                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1114     FuncAttrs.addAttribute("no-infs-fp-math",
1115                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1116     FuncAttrs.addAttribute("no-nans-fp-math",
1117                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1118     FuncAttrs.addAttribute("unsafe-fp-math",
1119                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1120     FuncAttrs.addAttribute("use-soft-float",
1121                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1122     FuncAttrs.addAttribute("stack-protector-buffer-size",
1123                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1124 
1125     if (!CodeGenOpts.StackRealignment)
1126       FuncAttrs.addAttribute("no-realign-stack");
1127   }
1128 
1129   QualType RetTy = FI.getReturnType();
1130   unsigned Index = 1;
1131   const ABIArgInfo &RetAI = FI.getReturnInfo();
1132   switch (RetAI.getKind()) {
1133   case ABIArgInfo::Extend:
1134     if (RetTy->hasSignedIntegerRepresentation())
1135       RetAttrs.addAttribute(llvm::Attribute::SExt);
1136     else if (RetTy->hasUnsignedIntegerRepresentation())
1137       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1138     // FALL THROUGH
1139   case ABIArgInfo::Direct:
1140     if (RetAI.getInReg())
1141       RetAttrs.addAttribute(llvm::Attribute::InReg);
1142     break;
1143   case ABIArgInfo::Ignore:
1144     break;
1145 
1146   case ABIArgInfo::InAlloca: {
1147     // inalloca disables readnone and readonly
1148     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1149       .removeAttribute(llvm::Attribute::ReadNone);
1150     break;
1151   }
1152 
1153   case ABIArgInfo::Indirect: {
1154     llvm::AttrBuilder SRETAttrs;
1155     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1156     if (RetAI.getInReg())
1157       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1158     PAL.push_back(llvm::
1159                   AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
1160 
1161     ++Index;
1162     // sret disables readnone and readonly
1163     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1164       .removeAttribute(llvm::Attribute::ReadNone);
1165     break;
1166   }
1167 
1168   case ABIArgInfo::Expand:
1169     llvm_unreachable("Invalid ABI kind for return argument");
1170   }
1171 
1172   if (RetAttrs.hasAttributes())
1173     PAL.push_back(llvm::
1174                   AttributeSet::get(getLLVMContext(),
1175                                     llvm::AttributeSet::ReturnIndex,
1176                                     RetAttrs));
1177 
1178   for (const auto &I : FI.arguments()) {
1179     QualType ParamType = I.type;
1180     const ABIArgInfo &AI = I.info;
1181     llvm::AttrBuilder Attrs;
1182 
1183     if (AI.getPaddingType()) {
1184       if (AI.getPaddingInReg())
1185         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1186                                               llvm::Attribute::InReg));
1187       // Increment Index if there is padding.
1188       ++Index;
1189     }
1190 
1191     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1192     // have the corresponding parameter variable.  It doesn't make
1193     // sense to do it here because parameters are so messed up.
1194     switch (AI.getKind()) {
1195     case ABIArgInfo::Extend:
1196       if (ParamType->isSignedIntegerOrEnumerationType())
1197         Attrs.addAttribute(llvm::Attribute::SExt);
1198       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1199         Attrs.addAttribute(llvm::Attribute::ZExt);
1200       // FALL THROUGH
1201     case ABIArgInfo::Direct:
1202       if (AI.getInReg())
1203         Attrs.addAttribute(llvm::Attribute::InReg);
1204 
1205       // FIXME: handle sseregparm someday...
1206 
1207       if (llvm::StructType *STy =
1208           dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1209         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1210         if (Attrs.hasAttributes())
1211           for (unsigned I = 0; I < Extra; ++I)
1212             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1213                                                   Attrs));
1214         Index += Extra;
1215       }
1216       break;
1217 
1218     case ABIArgInfo::Indirect:
1219       if (AI.getInReg())
1220         Attrs.addAttribute(llvm::Attribute::InReg);
1221 
1222       if (AI.getIndirectByVal())
1223         Attrs.addAttribute(llvm::Attribute::ByVal);
1224 
1225       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1226 
1227       // byval disables readnone and readonly.
1228       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1229         .removeAttribute(llvm::Attribute::ReadNone);
1230       break;
1231 
1232     case ABIArgInfo::Ignore:
1233       // Skip increment, no matching LLVM parameter.
1234       continue;
1235 
1236     case ABIArgInfo::InAlloca:
1237       // inalloca disables readnone and readonly.
1238       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1239           .removeAttribute(llvm::Attribute::ReadNone);
1240       // Skip increment, no matching LLVM parameter.
1241       continue;
1242 
1243     case ABIArgInfo::Expand: {
1244       SmallVector<llvm::Type*, 8> types;
1245       // FIXME: This is rather inefficient. Do we ever actually need to do
1246       // anything here? The result should be just reconstructed on the other
1247       // side, so extension should be a non-issue.
1248       getTypes().GetExpandedTypes(ParamType, types);
1249       Index += types.size();
1250       continue;
1251     }
1252     }
1253 
1254     if (Attrs.hasAttributes())
1255       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1256     ++Index;
1257   }
1258 
1259   // Add the inalloca attribute to the trailing inalloca parameter if present.
1260   if (FI.usesInAlloca()) {
1261     llvm::AttrBuilder Attrs;
1262     Attrs.addAttribute(llvm::Attribute::InAlloca);
1263     PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1264   }
1265 
1266   if (FuncAttrs.hasAttributes())
1267     PAL.push_back(llvm::
1268                   AttributeSet::get(getLLVMContext(),
1269                                     llvm::AttributeSet::FunctionIndex,
1270                                     FuncAttrs));
1271 }
1272 
1273 /// An argument came in as a promoted argument; demote it back to its
1274 /// declared type.
1275 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1276                                          const VarDecl *var,
1277                                          llvm::Value *value) {
1278   llvm::Type *varType = CGF.ConvertType(var->getType());
1279 
1280   // This can happen with promotions that actually don't change the
1281   // underlying type, like the enum promotions.
1282   if (value->getType() == varType) return value;
1283 
1284   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1285          && "unexpected promotion type");
1286 
1287   if (isa<llvm::IntegerType>(varType))
1288     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1289 
1290   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1291 }
1292 
1293 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1294                                          llvm::Function *Fn,
1295                                          const FunctionArgList &Args) {
1296   // If this is an implicit-return-zero function, go ahead and
1297   // initialize the return value.  TODO: it might be nice to have
1298   // a more general mechanism for this that didn't require synthesized
1299   // return statements.
1300   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1301     if (FD->hasImplicitReturnZero()) {
1302       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1303       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1304       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1305       Builder.CreateStore(Zero, ReturnValue);
1306     }
1307   }
1308 
1309   // FIXME: We no longer need the types from FunctionArgList; lift up and
1310   // simplify.
1311 
1312   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1313   llvm::Function::arg_iterator AI = Fn->arg_begin();
1314 
1315   // If we're using inalloca, all the memory arguments are GEPs off of the last
1316   // parameter, which is a pointer to the complete memory area.
1317   llvm::Value *ArgStruct = 0;
1318   if (FI.usesInAlloca()) {
1319     llvm::Function::arg_iterator EI = Fn->arg_end();
1320     --EI;
1321     ArgStruct = EI;
1322     assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1323   }
1324 
1325   // Name the struct return argument.
1326   if (CGM.ReturnTypeUsesSRet(FI)) {
1327     AI->setName("agg.result");
1328     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1329                                         AI->getArgNo() + 1,
1330                                         llvm::Attribute::NoAlias));
1331     ++AI;
1332   }
1333 
1334   // Track if we received the parameter as a pointer (indirect, byval, or
1335   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1336   // into a local alloca for us.
1337   enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1338   typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1339   SmallVector<ValueAndIsPtr, 16> ArgVals;
1340   ArgVals.reserve(Args.size());
1341 
1342   // Create a pointer value for every parameter declaration.  This usually
1343   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1344   // any cleanups or do anything that might unwind.  We do that separately, so
1345   // we can push the cleanups in the correct order for the ABI.
1346   assert(FI.arg_size() == Args.size() &&
1347          "Mismatch between function signature & arguments.");
1348   unsigned ArgNo = 1;
1349   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1350   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1351        i != e; ++i, ++info_it, ++ArgNo) {
1352     const VarDecl *Arg = *i;
1353     QualType Ty = info_it->type;
1354     const ABIArgInfo &ArgI = info_it->info;
1355 
1356     bool isPromoted =
1357       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1358 
1359     // Skip the dummy padding argument.
1360     if (ArgI.getPaddingType())
1361       ++AI;
1362 
1363     switch (ArgI.getKind()) {
1364     case ABIArgInfo::InAlloca: {
1365       llvm::Value *V = Builder.CreateStructGEP(
1366           ArgStruct, ArgI.getInAllocaFieldIndex(), Arg->getName());
1367       ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1368       continue;  // Don't increment AI!
1369     }
1370 
1371     case ABIArgInfo::Indirect: {
1372       llvm::Value *V = AI;
1373 
1374       if (!hasScalarEvaluationKind(Ty)) {
1375         // Aggregates and complex variables are accessed by reference.  All we
1376         // need to do is realign the value, if requested
1377         if (ArgI.getIndirectRealign()) {
1378           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1379 
1380           // Copy from the incoming argument pointer to the temporary with the
1381           // appropriate alignment.
1382           //
1383           // FIXME: We should have a common utility for generating an aggregate
1384           // copy.
1385           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1386           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1387           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1388           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1389           Builder.CreateMemCpy(Dst,
1390                                Src,
1391                                llvm::ConstantInt::get(IntPtrTy,
1392                                                       Size.getQuantity()),
1393                                ArgI.getIndirectAlign(),
1394                                false);
1395           V = AlignedTemp;
1396         }
1397         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1398       } else {
1399         // Load scalar value from indirect argument.
1400         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1401         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1402                              Arg->getLocStart());
1403 
1404         if (isPromoted)
1405           V = emitArgumentDemotion(*this, Arg, V);
1406         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1407       }
1408       break;
1409     }
1410 
1411     case ABIArgInfo::Extend:
1412     case ABIArgInfo::Direct: {
1413 
1414       // If we have the trivial case, handle it with no muss and fuss.
1415       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1416           ArgI.getCoerceToType() == ConvertType(Ty) &&
1417           ArgI.getDirectOffset() == 0) {
1418         assert(AI != Fn->arg_end() && "Argument mismatch!");
1419         llvm::Value *V = AI;
1420 
1421         if (Arg->getType().isRestrictQualified())
1422           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1423                                               AI->getArgNo() + 1,
1424                                               llvm::Attribute::NoAlias));
1425 
1426         // Ensure the argument is the correct type.
1427         if (V->getType() != ArgI.getCoerceToType())
1428           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1429 
1430         if (isPromoted)
1431           V = emitArgumentDemotion(*this, Arg, V);
1432 
1433         if (const CXXMethodDecl *MD =
1434             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1435           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1436             V = CGM.getCXXABI().
1437                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1438         }
1439 
1440         // Because of merging of function types from multiple decls it is
1441         // possible for the type of an argument to not match the corresponding
1442         // type in the function type. Since we are codegening the callee
1443         // in here, add a cast to the argument type.
1444         llvm::Type *LTy = ConvertType(Arg->getType());
1445         if (V->getType() != LTy)
1446           V = Builder.CreateBitCast(V, LTy);
1447 
1448         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1449         break;
1450       }
1451 
1452       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1453 
1454       // The alignment we need to use is the max of the requested alignment for
1455       // the argument plus the alignment required by our access code below.
1456       unsigned AlignmentToUse =
1457         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1458       AlignmentToUse = std::max(AlignmentToUse,
1459                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1460 
1461       Alloca->setAlignment(AlignmentToUse);
1462       llvm::Value *V = Alloca;
1463       llvm::Value *Ptr = V;    // Pointer to store into.
1464 
1465       // If the value is offset in memory, apply the offset now.
1466       if (unsigned Offs = ArgI.getDirectOffset()) {
1467         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1468         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1469         Ptr = Builder.CreateBitCast(Ptr,
1470                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1471       }
1472 
1473       // If the coerce-to type is a first class aggregate, we flatten it and
1474       // pass the elements. Either way is semantically identical, but fast-isel
1475       // and the optimizer generally likes scalar values better than FCAs.
1476       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1477       if (STy && STy->getNumElements() > 1) {
1478         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1479         llvm::Type *DstTy =
1480           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1481         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1482 
1483         if (SrcSize <= DstSize) {
1484           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1485 
1486           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1487             assert(AI != Fn->arg_end() && "Argument mismatch!");
1488             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1489             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1490             Builder.CreateStore(AI++, EltPtr);
1491           }
1492         } else {
1493           llvm::AllocaInst *TempAlloca =
1494             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1495           TempAlloca->setAlignment(AlignmentToUse);
1496           llvm::Value *TempV = TempAlloca;
1497 
1498           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1499             assert(AI != Fn->arg_end() && "Argument mismatch!");
1500             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1501             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1502             Builder.CreateStore(AI++, EltPtr);
1503           }
1504 
1505           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1506         }
1507       } else {
1508         // Simple case, just do a coerced store of the argument into the alloca.
1509         assert(AI != Fn->arg_end() && "Argument mismatch!");
1510         AI->setName(Arg->getName() + ".coerce");
1511         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1512       }
1513 
1514 
1515       // Match to what EmitParmDecl is expecting for this type.
1516       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1517         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
1518         if (isPromoted)
1519           V = emitArgumentDemotion(*this, Arg, V);
1520         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1521       } else {
1522         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1523       }
1524       continue;  // Skip ++AI increment, already done.
1525     }
1526 
1527     case ABIArgInfo::Expand: {
1528       // If this structure was expanded into multiple arguments then
1529       // we need to create a temporary and reconstruct it from the
1530       // arguments.
1531       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1532       CharUnits Align = getContext().getDeclAlign(Arg);
1533       Alloca->setAlignment(Align.getQuantity());
1534       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1535       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1536       ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
1537 
1538       // Name the arguments used in expansion and increment AI.
1539       unsigned Index = 0;
1540       for (; AI != End; ++AI, ++Index)
1541         AI->setName(Arg->getName() + "." + Twine(Index));
1542       continue;
1543     }
1544 
1545     case ABIArgInfo::Ignore:
1546       // Initialize the local variable appropriately.
1547       if (!hasScalarEvaluationKind(Ty)) {
1548         ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
1549       } else {
1550         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
1551         ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
1552       }
1553 
1554       // Skip increment, no matching LLVM parameter.
1555       continue;
1556     }
1557 
1558     ++AI;
1559   }
1560 
1561   if (FI.usesInAlloca())
1562     ++AI;
1563   assert(AI == Fn->arg_end() && "Argument mismatch!");
1564 
1565   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1566     for (int I = Args.size() - 1; I >= 0; --I)
1567       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1568                    I + 1);
1569   } else {
1570     for (unsigned I = 0, E = Args.size(); I != E; ++I)
1571       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1572                    I + 1);
1573   }
1574 }
1575 
1576 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1577   while (insn->use_empty()) {
1578     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1579     if (!bitcast) return;
1580 
1581     // This is "safe" because we would have used a ConstantExpr otherwise.
1582     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1583     bitcast->eraseFromParent();
1584   }
1585 }
1586 
1587 /// Try to emit a fused autorelease of a return result.
1588 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1589                                                     llvm::Value *result) {
1590   // We must be immediately followed the cast.
1591   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1592   if (BB->empty()) return 0;
1593   if (&BB->back() != result) return 0;
1594 
1595   llvm::Type *resultType = result->getType();
1596 
1597   // result is in a BasicBlock and is therefore an Instruction.
1598   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1599 
1600   SmallVector<llvm::Instruction*,4> insnsToKill;
1601 
1602   // Look for:
1603   //  %generator = bitcast %type1* %generator2 to %type2*
1604   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1605     // We would have emitted this as a constant if the operand weren't
1606     // an Instruction.
1607     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1608 
1609     // Require the generator to be immediately followed by the cast.
1610     if (generator->getNextNode() != bitcast)
1611       return 0;
1612 
1613     insnsToKill.push_back(bitcast);
1614   }
1615 
1616   // Look for:
1617   //   %generator = call i8* @objc_retain(i8* %originalResult)
1618   // or
1619   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1620   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1621   if (!call) return 0;
1622 
1623   bool doRetainAutorelease;
1624 
1625   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1626     doRetainAutorelease = true;
1627   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1628                                           .objc_retainAutoreleasedReturnValue) {
1629     doRetainAutorelease = false;
1630 
1631     // If we emitted an assembly marker for this call (and the
1632     // ARCEntrypoints field should have been set if so), go looking
1633     // for that call.  If we can't find it, we can't do this
1634     // optimization.  But it should always be the immediately previous
1635     // instruction, unless we needed bitcasts around the call.
1636     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1637       llvm::Instruction *prev = call->getPrevNode();
1638       assert(prev);
1639       if (isa<llvm::BitCastInst>(prev)) {
1640         prev = prev->getPrevNode();
1641         assert(prev);
1642       }
1643       assert(isa<llvm::CallInst>(prev));
1644       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1645                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1646       insnsToKill.push_back(prev);
1647     }
1648   } else {
1649     return 0;
1650   }
1651 
1652   result = call->getArgOperand(0);
1653   insnsToKill.push_back(call);
1654 
1655   // Keep killing bitcasts, for sanity.  Note that we no longer care
1656   // about precise ordering as long as there's exactly one use.
1657   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1658     if (!bitcast->hasOneUse()) break;
1659     insnsToKill.push_back(bitcast);
1660     result = bitcast->getOperand(0);
1661   }
1662 
1663   // Delete all the unnecessary instructions, from latest to earliest.
1664   for (SmallVectorImpl<llvm::Instruction*>::iterator
1665          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1666     (*i)->eraseFromParent();
1667 
1668   // Do the fused retain/autorelease if we were asked to.
1669   if (doRetainAutorelease)
1670     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1671 
1672   // Cast back to the result type.
1673   return CGF.Builder.CreateBitCast(result, resultType);
1674 }
1675 
1676 /// If this is a +1 of the value of an immutable 'self', remove it.
1677 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1678                                           llvm::Value *result) {
1679   // This is only applicable to a method with an immutable 'self'.
1680   const ObjCMethodDecl *method =
1681     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1682   if (!method) return 0;
1683   const VarDecl *self = method->getSelfDecl();
1684   if (!self->getType().isConstQualified()) return 0;
1685 
1686   // Look for a retain call.
1687   llvm::CallInst *retainCall =
1688     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1689   if (!retainCall ||
1690       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1691     return 0;
1692 
1693   // Look for an ordinary load of 'self'.
1694   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1695   llvm::LoadInst *load =
1696     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1697   if (!load || load->isAtomic() || load->isVolatile() ||
1698       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1699     return 0;
1700 
1701   // Okay!  Burn it all down.  This relies for correctness on the
1702   // assumption that the retain is emitted as part of the return and
1703   // that thereafter everything is used "linearly".
1704   llvm::Type *resultType = result->getType();
1705   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1706   assert(retainCall->use_empty());
1707   retainCall->eraseFromParent();
1708   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1709 
1710   return CGF.Builder.CreateBitCast(load, resultType);
1711 }
1712 
1713 /// Emit an ARC autorelease of the result of a function.
1714 ///
1715 /// \return the value to actually return from the function
1716 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1717                                             llvm::Value *result) {
1718   // If we're returning 'self', kill the initial retain.  This is a
1719   // heuristic attempt to "encourage correctness" in the really unfortunate
1720   // case where we have a return of self during a dealloc and we desperately
1721   // need to avoid the possible autorelease.
1722   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1723     return self;
1724 
1725   // At -O0, try to emit a fused retain/autorelease.
1726   if (CGF.shouldUseFusedARCCalls())
1727     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1728       return fused;
1729 
1730   return CGF.EmitARCAutoreleaseReturnValue(result);
1731 }
1732 
1733 /// Heuristically search for a dominating store to the return-value slot.
1734 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1735   // If there are multiple uses of the return-value slot, just check
1736   // for something immediately preceding the IP.  Sometimes this can
1737   // happen with how we generate implicit-returns; it can also happen
1738   // with noreturn cleanups.
1739   if (!CGF.ReturnValue->hasOneUse()) {
1740     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1741     if (IP->empty()) return 0;
1742     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1743     if (!store) return 0;
1744     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1745     assert(!store->isAtomic() && !store->isVolatile()); // see below
1746     return store;
1747   }
1748 
1749   llvm::StoreInst *store =
1750     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
1751   if (!store) return 0;
1752 
1753   // These aren't actually possible for non-coerced returns, and we
1754   // only care about non-coerced returns on this code path.
1755   assert(!store->isAtomic() && !store->isVolatile());
1756 
1757   // Now do a first-and-dirty dominance check: just walk up the
1758   // single-predecessors chain from the current insertion point.
1759   llvm::BasicBlock *StoreBB = store->getParent();
1760   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1761   while (IP != StoreBB) {
1762     if (!(IP = IP->getSinglePredecessor()))
1763       return 0;
1764   }
1765 
1766   // Okay, the store's basic block dominates the insertion point; we
1767   // can do our thing.
1768   return store;
1769 }
1770 
1771 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1772                                          bool EmitRetDbgLoc,
1773                                          SourceLocation EndLoc) {
1774   // Functions with no result always return void.
1775   if (ReturnValue == 0) {
1776     Builder.CreateRetVoid();
1777     return;
1778   }
1779 
1780   llvm::DebugLoc RetDbgLoc;
1781   llvm::Value *RV = 0;
1782   QualType RetTy = FI.getReturnType();
1783   const ABIArgInfo &RetAI = FI.getReturnInfo();
1784 
1785   switch (RetAI.getKind()) {
1786   case ABIArgInfo::InAlloca:
1787     // Aggregrates get evaluated directly into the destination.  Sometimes we
1788     // need to return the sret value in a register, though.
1789     assert(hasAggregateEvaluationKind(RetTy));
1790     if (RetAI.getInAllocaSRet()) {
1791       llvm::Function::arg_iterator EI = CurFn->arg_end();
1792       --EI;
1793       llvm::Value *ArgStruct = EI;
1794       llvm::Value *SRet =
1795           Builder.CreateStructGEP(ArgStruct, RetAI.getInAllocaFieldIndex());
1796       RV = Builder.CreateLoad(SRet, "sret");
1797     }
1798     break;
1799 
1800   case ABIArgInfo::Indirect: {
1801     switch (getEvaluationKind(RetTy)) {
1802     case TEK_Complex: {
1803       ComplexPairTy RT =
1804         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
1805                           EndLoc);
1806       EmitStoreOfComplex(RT,
1807                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1808                          /*isInit*/ true);
1809       break;
1810     }
1811     case TEK_Aggregate:
1812       // Do nothing; aggregrates get evaluated directly into the destination.
1813       break;
1814     case TEK_Scalar:
1815       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1816                         MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1817                         /*isInit*/ true);
1818       break;
1819     }
1820     break;
1821   }
1822 
1823   case ABIArgInfo::Extend:
1824   case ABIArgInfo::Direct:
1825     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1826         RetAI.getDirectOffset() == 0) {
1827       // The internal return value temp always will have pointer-to-return-type
1828       // type, just do a load.
1829 
1830       // If there is a dominating store to ReturnValue, we can elide
1831       // the load, zap the store, and usually zap the alloca.
1832       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1833         // Reuse the debug location from the store unless there is
1834         // cleanup code to be emitted between the store and return
1835         // instruction.
1836         if (EmitRetDbgLoc && !AutoreleaseResult)
1837           RetDbgLoc = SI->getDebugLoc();
1838         // Get the stored value and nuke the now-dead store.
1839         RV = SI->getValueOperand();
1840         SI->eraseFromParent();
1841 
1842         // If that was the only use of the return value, nuke it as well now.
1843         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1844           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1845           ReturnValue = 0;
1846         }
1847 
1848       // Otherwise, we have to do a simple load.
1849       } else {
1850         RV = Builder.CreateLoad(ReturnValue);
1851       }
1852     } else {
1853       llvm::Value *V = ReturnValue;
1854       // If the value is offset in memory, apply the offset now.
1855       if (unsigned Offs = RetAI.getDirectOffset()) {
1856         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1857         V = Builder.CreateConstGEP1_32(V, Offs);
1858         V = Builder.CreateBitCast(V,
1859                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1860       }
1861 
1862       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1863     }
1864 
1865     // In ARC, end functions that return a retainable type with a call
1866     // to objc_autoreleaseReturnValue.
1867     if (AutoreleaseResult) {
1868       assert(getLangOpts().ObjCAutoRefCount &&
1869              !FI.isReturnsRetained() &&
1870              RetTy->isObjCRetainableType());
1871       RV = emitAutoreleaseOfResult(*this, RV);
1872     }
1873 
1874     break;
1875 
1876   case ABIArgInfo::Ignore:
1877     break;
1878 
1879   case ABIArgInfo::Expand:
1880     llvm_unreachable("Invalid ABI kind for return argument");
1881   }
1882 
1883   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1884   if (!RetDbgLoc.isUnknown())
1885     Ret->setDebugLoc(RetDbgLoc);
1886 }
1887 
1888 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
1889   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
1890   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
1891 }
1892 
1893 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
1894   // FIXME: Generate IR in one pass, rather than going back and fixing up these
1895   // placeholders.
1896   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
1897   llvm::Value *Placeholder =
1898       llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
1899   Placeholder = CGF.Builder.CreateLoad(Placeholder);
1900   return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
1901                                Ty.getQualifiers(),
1902                                AggValueSlot::IsNotDestructed,
1903                                AggValueSlot::DoesNotNeedGCBarriers,
1904                                AggValueSlot::IsNotAliased);
1905 }
1906 
1907 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1908                                           const VarDecl *param,
1909                                           SourceLocation loc) {
1910   // StartFunction converted the ABI-lowered parameter(s) into a
1911   // local alloca.  We need to turn that into an r-value suitable
1912   // for EmitCall.
1913   llvm::Value *local = GetAddrOfLocalVar(param);
1914 
1915   QualType type = param->getType();
1916 
1917   // For the most part, we just need to load the alloca, except:
1918   // 1) aggregate r-values are actually pointers to temporaries, and
1919   // 2) references to non-scalars are pointers directly to the aggregate.
1920   // I don't know why references to scalars are different here.
1921   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1922     if (!hasScalarEvaluationKind(ref->getPointeeType()))
1923       return args.add(RValue::getAggregate(local), type);
1924 
1925     // Locals which are references to scalars are represented
1926     // with allocas holding the pointer.
1927     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1928   }
1929 
1930   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
1931     AggValueSlot Slot = createPlaceholderSlot(*this, type);
1932     Slot.setExternallyDestructed();
1933 
1934     // FIXME: Either emit a copy constructor call, or figure out how to do
1935     // guaranteed tail calls with perfect forwarding in LLVM.
1936     CGM.ErrorUnsupported(param, "non-trivial argument copy for thunk");
1937     EmitNullInitialization(Slot.getAddr(), type);
1938 
1939     RValue RV = Slot.asRValue();
1940     args.add(RV, type);
1941     return;
1942   }
1943 
1944   args.add(convertTempToRValue(local, type, loc), type);
1945 }
1946 
1947 static bool isProvablyNull(llvm::Value *addr) {
1948   return isa<llvm::ConstantPointerNull>(addr);
1949 }
1950 
1951 static bool isProvablyNonNull(llvm::Value *addr) {
1952   return isa<llvm::AllocaInst>(addr);
1953 }
1954 
1955 /// Emit the actual writing-back of a writeback.
1956 static void emitWriteback(CodeGenFunction &CGF,
1957                           const CallArgList::Writeback &writeback) {
1958   const LValue &srcLV = writeback.Source;
1959   llvm::Value *srcAddr = srcLV.getAddress();
1960   assert(!isProvablyNull(srcAddr) &&
1961          "shouldn't have writeback for provably null argument");
1962 
1963   llvm::BasicBlock *contBB = 0;
1964 
1965   // If the argument wasn't provably non-null, we need to null check
1966   // before doing the store.
1967   bool provablyNonNull = isProvablyNonNull(srcAddr);
1968   if (!provablyNonNull) {
1969     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1970     contBB = CGF.createBasicBlock("icr.done");
1971 
1972     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1973     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1974     CGF.EmitBlock(writebackBB);
1975   }
1976 
1977   // Load the value to writeback.
1978   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1979 
1980   // Cast it back, in case we're writing an id to a Foo* or something.
1981   value = CGF.Builder.CreateBitCast(value,
1982                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1983                             "icr.writeback-cast");
1984 
1985   // Perform the writeback.
1986 
1987   // If we have a "to use" value, it's something we need to emit a use
1988   // of.  This has to be carefully threaded in: if it's done after the
1989   // release it's potentially undefined behavior (and the optimizer
1990   // will ignore it), and if it happens before the retain then the
1991   // optimizer could move the release there.
1992   if (writeback.ToUse) {
1993     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
1994 
1995     // Retain the new value.  No need to block-copy here:  the block's
1996     // being passed up the stack.
1997     value = CGF.EmitARCRetainNonBlock(value);
1998 
1999     // Emit the intrinsic use here.
2000     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2001 
2002     // Load the old value (primitively).
2003     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2004 
2005     // Put the new value in place (primitively).
2006     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2007 
2008     // Release the old value.
2009     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2010 
2011   // Otherwise, we can just do a normal lvalue store.
2012   } else {
2013     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2014   }
2015 
2016   // Jump to the continuation block.
2017   if (!provablyNonNull)
2018     CGF.EmitBlock(contBB);
2019 }
2020 
2021 static void emitWritebacks(CodeGenFunction &CGF,
2022                            const CallArgList &args) {
2023   for (const auto &I : args.writebacks())
2024     emitWriteback(CGF, I);
2025 }
2026 
2027 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2028                                             const CallArgList &CallArgs) {
2029   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2030   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2031     CallArgs.getCleanupsToDeactivate();
2032   // Iterate in reverse to increase the likelihood of popping the cleanup.
2033   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2034          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2035     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2036     I->IsActiveIP->eraseFromParent();
2037   }
2038 }
2039 
2040 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2041   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2042     if (uop->getOpcode() == UO_AddrOf)
2043       return uop->getSubExpr();
2044   return 0;
2045 }
2046 
2047 /// Emit an argument that's being passed call-by-writeback.  That is,
2048 /// we are passing the address of
2049 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2050                              const ObjCIndirectCopyRestoreExpr *CRE) {
2051   LValue srcLV;
2052 
2053   // Make an optimistic effort to emit the address as an l-value.
2054   // This can fail if the the argument expression is more complicated.
2055   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2056     srcLV = CGF.EmitLValue(lvExpr);
2057 
2058   // Otherwise, just emit it as a scalar.
2059   } else {
2060     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2061 
2062     QualType srcAddrType =
2063       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2064     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2065   }
2066   llvm::Value *srcAddr = srcLV.getAddress();
2067 
2068   // The dest and src types don't necessarily match in LLVM terms
2069   // because of the crazy ObjC compatibility rules.
2070 
2071   llvm::PointerType *destType =
2072     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2073 
2074   // If the address is a constant null, just pass the appropriate null.
2075   if (isProvablyNull(srcAddr)) {
2076     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2077              CRE->getType());
2078     return;
2079   }
2080 
2081   // Create the temporary.
2082   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2083                                            "icr.temp");
2084   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2085   // and that cleanup will be conditional if we can't prove that the l-value
2086   // isn't null, so we need to register a dominating point so that the cleanups
2087   // system will make valid IR.
2088   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2089 
2090   // Zero-initialize it if we're not doing a copy-initialization.
2091   bool shouldCopy = CRE->shouldCopy();
2092   if (!shouldCopy) {
2093     llvm::Value *null =
2094       llvm::ConstantPointerNull::get(
2095         cast<llvm::PointerType>(destType->getElementType()));
2096     CGF.Builder.CreateStore(null, temp);
2097   }
2098 
2099   llvm::BasicBlock *contBB = 0;
2100   llvm::BasicBlock *originBB = 0;
2101 
2102   // If the address is *not* known to be non-null, we need to switch.
2103   llvm::Value *finalArgument;
2104 
2105   bool provablyNonNull = isProvablyNonNull(srcAddr);
2106   if (provablyNonNull) {
2107     finalArgument = temp;
2108   } else {
2109     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2110 
2111     finalArgument = CGF.Builder.CreateSelect(isNull,
2112                                    llvm::ConstantPointerNull::get(destType),
2113                                              temp, "icr.argument");
2114 
2115     // If we need to copy, then the load has to be conditional, which
2116     // means we need control flow.
2117     if (shouldCopy) {
2118       originBB = CGF.Builder.GetInsertBlock();
2119       contBB = CGF.createBasicBlock("icr.cont");
2120       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2121       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2122       CGF.EmitBlock(copyBB);
2123       condEval.begin(CGF);
2124     }
2125   }
2126 
2127   llvm::Value *valueToUse = 0;
2128 
2129   // Perform a copy if necessary.
2130   if (shouldCopy) {
2131     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2132     assert(srcRV.isScalar());
2133 
2134     llvm::Value *src = srcRV.getScalarVal();
2135     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2136                                     "icr.cast");
2137 
2138     // Use an ordinary store, not a store-to-lvalue.
2139     CGF.Builder.CreateStore(src, temp);
2140 
2141     // If optimization is enabled, and the value was held in a
2142     // __strong variable, we need to tell the optimizer that this
2143     // value has to stay alive until we're doing the store back.
2144     // This is because the temporary is effectively unretained,
2145     // and so otherwise we can violate the high-level semantics.
2146     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2147         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2148       valueToUse = src;
2149     }
2150   }
2151 
2152   // Finish the control flow if we needed it.
2153   if (shouldCopy && !provablyNonNull) {
2154     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2155     CGF.EmitBlock(contBB);
2156 
2157     // Make a phi for the value to intrinsically use.
2158     if (valueToUse) {
2159       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2160                                                       "icr.to-use");
2161       phiToUse->addIncoming(valueToUse, copyBB);
2162       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2163                             originBB);
2164       valueToUse = phiToUse;
2165     }
2166 
2167     condEval.end(CGF);
2168   }
2169 
2170   args.addWriteback(srcLV, temp, valueToUse);
2171   args.add(RValue::get(finalArgument), CRE->getType());
2172 }
2173 
2174 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2175   assert(!StackBase && !StackCleanup.isValid());
2176 
2177   // Save the stack.
2178   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2179   StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
2180 
2181   // Control gets really tied up in landing pads, so we have to spill the
2182   // stacksave to an alloca to avoid violating SSA form.
2183   // TODO: This is dead if we never emit the cleanup.  We should create the
2184   // alloca and store lazily on the first cleanup emission.
2185   StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2186   CGF.Builder.CreateStore(StackBase, StackBaseMem);
2187   CGF.pushStackRestore(EHCleanup, StackBaseMem);
2188   StackCleanup = CGF.EHStack.getInnermostEHScope();
2189   assert(StackCleanup.isValid());
2190 }
2191 
2192 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2193   if (StackBase) {
2194     CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2195     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2196     // We could load StackBase from StackBaseMem, but in the non-exceptional
2197     // case we can skip it.
2198     CGF.Builder.CreateCall(F, StackBase);
2199   }
2200 }
2201 
2202 void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2203                                    ArrayRef<QualType> ArgTypes,
2204                                    CallExpr::const_arg_iterator ArgBeg,
2205                                    CallExpr::const_arg_iterator ArgEnd,
2206                                    bool ForceColumnInfo) {
2207   CGDebugInfo *DI = getDebugInfo();
2208   SourceLocation CallLoc;
2209   if (DI) CallLoc = DI->getLocation();
2210 
2211   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2212   // because arguments are destroyed left to right in the callee.
2213   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2214     // Insert a stack save if we're going to need any inalloca args.
2215     bool HasInAllocaArgs = false;
2216     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2217          I != E && !HasInAllocaArgs; ++I)
2218       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2219     if (HasInAllocaArgs) {
2220       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2221       Args.allocateArgumentMemory(*this);
2222     }
2223 
2224     // Evaluate each argument.
2225     size_t CallArgsStart = Args.size();
2226     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2227       CallExpr::const_arg_iterator Arg = ArgBeg + I;
2228       EmitCallArg(Args, *Arg, ArgTypes[I]);
2229       // Restore the debug location.
2230       if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2231     }
2232 
2233     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2234     // IR function.
2235     std::reverse(Args.begin() + CallArgsStart, Args.end());
2236     return;
2237   }
2238 
2239   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2240     CallExpr::const_arg_iterator Arg = ArgBeg + I;
2241     assert(Arg != ArgEnd);
2242     EmitCallArg(Args, *Arg, ArgTypes[I]);
2243     // Restore the debug location.
2244     if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2245   }
2246 }
2247 
2248 namespace {
2249 
2250 struct DestroyUnpassedArg : EHScopeStack::Cleanup {
2251   DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2252       : Addr(Addr), Ty(Ty) {}
2253 
2254   llvm::Value *Addr;
2255   QualType Ty;
2256 
2257   void Emit(CodeGenFunction &CGF, Flags flags) override {
2258     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2259     assert(!Dtor->isTrivial());
2260     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2261                               /*Delegating=*/false, Addr);
2262   }
2263 };
2264 
2265 }
2266 
2267 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2268                                   QualType type) {
2269   if (const ObjCIndirectCopyRestoreExpr *CRE
2270         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2271     assert(getLangOpts().ObjCAutoRefCount);
2272     assert(getContext().hasSameType(E->getType(), type));
2273     return emitWritebackArg(*this, args, CRE);
2274   }
2275 
2276   assert(type->isReferenceType() == E->isGLValue() &&
2277          "reference binding to unmaterialized r-value!");
2278 
2279   if (E->isGLValue()) {
2280     assert(E->getObjectKind() == OK_Ordinary);
2281     return args.add(EmitReferenceBindingToExpr(E), type);
2282   }
2283 
2284   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2285 
2286   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2287   // However, we still have to push an EH-only cleanup in case we unwind before
2288   // we make it to the call.
2289   if (HasAggregateEvalKind &&
2290       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2291     // If we're using inalloca, use the argument memory.  Otherwise, use a
2292     // temporary.
2293     AggValueSlot Slot;
2294     if (args.isUsingInAlloca())
2295       Slot = createPlaceholderSlot(*this, type);
2296     else
2297       Slot = CreateAggTemp(type, "agg.tmp");
2298 
2299     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2300     bool DestroyedInCallee =
2301         RD && RD->hasNonTrivialDestructor() &&
2302         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2303     if (DestroyedInCallee)
2304       Slot.setExternallyDestructed();
2305 
2306     EmitAggExpr(E, Slot);
2307     RValue RV = Slot.asRValue();
2308     args.add(RV, type);
2309 
2310     if (DestroyedInCallee) {
2311       // Create a no-op GEP between the placeholder and the cleanup so we can
2312       // RAUW it successfully.  It also serves as a marker of the first
2313       // instruction where the cleanup is active.
2314       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2315       // This unreachable is a temporary marker which will be removed later.
2316       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2317       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2318     }
2319     return;
2320   }
2321 
2322   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2323       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2324     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2325     assert(L.isSimple());
2326     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2327       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2328     } else {
2329       // We can't represent a misaligned lvalue in the CallArgList, so copy
2330       // to an aligned temporary now.
2331       llvm::Value *tmp = CreateMemTemp(type);
2332       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2333                         L.getAlignment());
2334       args.add(RValue::getAggregate(tmp), type);
2335     }
2336     return;
2337   }
2338 
2339   args.add(EmitAnyExprToTemp(E), type);
2340 }
2341 
2342 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2343 // optimizer it can aggressively ignore unwind edges.
2344 void
2345 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2346   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2347       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2348     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2349                       CGM.getNoObjCARCExceptionsMetadata());
2350 }
2351 
2352 /// Emits a call to the given no-arguments nounwind runtime function.
2353 llvm::CallInst *
2354 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2355                                          const llvm::Twine &name) {
2356   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2357 }
2358 
2359 /// Emits a call to the given nounwind runtime function.
2360 llvm::CallInst *
2361 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2362                                          ArrayRef<llvm::Value*> args,
2363                                          const llvm::Twine &name) {
2364   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2365   call->setDoesNotThrow();
2366   return call;
2367 }
2368 
2369 /// Emits a simple call (never an invoke) to the given no-arguments
2370 /// runtime function.
2371 llvm::CallInst *
2372 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2373                                  const llvm::Twine &name) {
2374   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2375 }
2376 
2377 /// Emits a simple call (never an invoke) to the given runtime
2378 /// function.
2379 llvm::CallInst *
2380 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2381                                  ArrayRef<llvm::Value*> args,
2382                                  const llvm::Twine &name) {
2383   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2384   call->setCallingConv(getRuntimeCC());
2385   return call;
2386 }
2387 
2388 /// Emits a call or invoke to the given noreturn runtime function.
2389 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2390                                                ArrayRef<llvm::Value*> args) {
2391   if (getInvokeDest()) {
2392     llvm::InvokeInst *invoke =
2393       Builder.CreateInvoke(callee,
2394                            getUnreachableBlock(),
2395                            getInvokeDest(),
2396                            args);
2397     invoke->setDoesNotReturn();
2398     invoke->setCallingConv(getRuntimeCC());
2399   } else {
2400     llvm::CallInst *call = Builder.CreateCall(callee, args);
2401     call->setDoesNotReturn();
2402     call->setCallingConv(getRuntimeCC());
2403     Builder.CreateUnreachable();
2404   }
2405   PGO.setCurrentRegionUnreachable();
2406 }
2407 
2408 /// Emits a call or invoke instruction to the given nullary runtime
2409 /// function.
2410 llvm::CallSite
2411 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2412                                          const Twine &name) {
2413   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2414 }
2415 
2416 /// Emits a call or invoke instruction to the given runtime function.
2417 llvm::CallSite
2418 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2419                                          ArrayRef<llvm::Value*> args,
2420                                          const Twine &name) {
2421   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2422   callSite.setCallingConv(getRuntimeCC());
2423   return callSite;
2424 }
2425 
2426 llvm::CallSite
2427 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2428                                   const Twine &Name) {
2429   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2430 }
2431 
2432 /// Emits a call or invoke instruction to the given function, depending
2433 /// on the current state of the EH stack.
2434 llvm::CallSite
2435 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2436                                   ArrayRef<llvm::Value *> Args,
2437                                   const Twine &Name) {
2438   llvm::BasicBlock *InvokeDest = getInvokeDest();
2439 
2440   llvm::Instruction *Inst;
2441   if (!InvokeDest)
2442     Inst = Builder.CreateCall(Callee, Args, Name);
2443   else {
2444     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2445     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2446     EmitBlock(ContBB);
2447   }
2448 
2449   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2450   // optimizer it can aggressively ignore unwind edges.
2451   if (CGM.getLangOpts().ObjCAutoRefCount)
2452     AddObjCARCExceptionMetadata(Inst);
2453 
2454   return Inst;
2455 }
2456 
2457 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2458                             llvm::FunctionType *FTy) {
2459   if (ArgNo < FTy->getNumParams())
2460     assert(Elt->getType() == FTy->getParamType(ArgNo));
2461   else
2462     assert(FTy->isVarArg());
2463   ++ArgNo;
2464 }
2465 
2466 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2467                                        SmallVectorImpl<llvm::Value *> &Args,
2468                                        llvm::FunctionType *IRFuncTy) {
2469   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2470     unsigned NumElts = AT->getSize().getZExtValue();
2471     QualType EltTy = AT->getElementType();
2472     llvm::Value *Addr = RV.getAggregateAddr();
2473     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2474       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2475       RValue EltRV = convertTempToRValue(EltAddr, EltTy, SourceLocation());
2476       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2477     }
2478   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2479     RecordDecl *RD = RT->getDecl();
2480     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2481     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2482 
2483     if (RD->isUnion()) {
2484       const FieldDecl *LargestFD = 0;
2485       CharUnits UnionSize = CharUnits::Zero();
2486 
2487       for (const auto *FD : RD->fields()) {
2488         assert(!FD->isBitField() &&
2489                "Cannot expand structure with bit-field members.");
2490         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2491         if (UnionSize < FieldSize) {
2492           UnionSize = FieldSize;
2493           LargestFD = FD;
2494         }
2495       }
2496       if (LargestFD) {
2497         RValue FldRV = EmitRValueForField(LV, LargestFD, SourceLocation());
2498         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2499       }
2500     } else {
2501       for (const auto *FD : RD->fields()) {
2502         RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
2503         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2504       }
2505     }
2506   } else if (Ty->isAnyComplexType()) {
2507     ComplexPairTy CV = RV.getComplexVal();
2508     Args.push_back(CV.first);
2509     Args.push_back(CV.second);
2510   } else {
2511     assert(RV.isScalar() &&
2512            "Unexpected non-scalar rvalue during struct expansion.");
2513 
2514     // Insert a bitcast as needed.
2515     llvm::Value *V = RV.getScalarVal();
2516     if (Args.size() < IRFuncTy->getNumParams() &&
2517         V->getType() != IRFuncTy->getParamType(Args.size()))
2518       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2519 
2520     Args.push_back(V);
2521   }
2522 }
2523 
2524 /// \brief Store a non-aggregate value to an address to initialize it.  For
2525 /// initialization, a non-atomic store will be used.
2526 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
2527                                         LValue Dst) {
2528   if (Src.isScalar())
2529     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
2530   else
2531     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
2532 }
2533 
2534 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
2535                                                   llvm::Value *New) {
2536   DeferredReplacements.push_back(std::make_pair(Old, New));
2537 }
2538 
2539 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2540                                  llvm::Value *Callee,
2541                                  ReturnValueSlot ReturnValue,
2542                                  const CallArgList &CallArgs,
2543                                  const Decl *TargetDecl,
2544                                  llvm::Instruction **callOrInvoke) {
2545   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2546   SmallVector<llvm::Value*, 16> Args;
2547 
2548   // Handle struct-return functions by passing a pointer to the
2549   // location that we would like to return into.
2550   QualType RetTy = CallInfo.getReturnType();
2551   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2552 
2553   // IRArgNo - Keep track of the argument number in the callee we're looking at.
2554   unsigned IRArgNo = 0;
2555   llvm::FunctionType *IRFuncTy =
2556     cast<llvm::FunctionType>(
2557                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2558 
2559   // If we're using inalloca, insert the allocation after the stack save.
2560   // FIXME: Do this earlier rather than hacking it in here!
2561   llvm::Value *ArgMemory = 0;
2562   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
2563     llvm::Instruction *IP = CallArgs.getStackBase();
2564     llvm::AllocaInst *AI;
2565     if (IP) {
2566       IP = IP->getNextNode();
2567       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
2568     } else {
2569       AI = Builder.CreateAlloca(ArgStruct, nullptr, "argmem");
2570     }
2571     AI->setUsedWithInAlloca(true);
2572     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
2573     ArgMemory = AI;
2574   }
2575 
2576   // If the call returns a temporary with struct return, create a temporary
2577   // alloca to hold the result, unless one is given to us.
2578   llvm::Value *SRetPtr = 0;
2579   if (CGM.ReturnTypeUsesSRet(CallInfo) || RetAI.isInAlloca()) {
2580     SRetPtr = ReturnValue.getValue();
2581     if (!SRetPtr)
2582       SRetPtr = CreateMemTemp(RetTy);
2583     if (CGM.ReturnTypeUsesSRet(CallInfo)) {
2584       Args.push_back(SRetPtr);
2585       checkArgMatches(SRetPtr, IRArgNo, IRFuncTy);
2586     } else {
2587       llvm::Value *Addr =
2588           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
2589       Builder.CreateStore(SRetPtr, Addr);
2590     }
2591   }
2592 
2593   assert(CallInfo.arg_size() == CallArgs.size() &&
2594          "Mismatch between function signature & arguments.");
2595   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2596   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2597        I != E; ++I, ++info_it) {
2598     const ABIArgInfo &ArgInfo = info_it->info;
2599     RValue RV = I->RV;
2600 
2601     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2602 
2603     // Insert a padding argument to ensure proper alignment.
2604     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2605       Args.push_back(llvm::UndefValue::get(PaddingType));
2606       ++IRArgNo;
2607     }
2608 
2609     switch (ArgInfo.getKind()) {
2610     case ABIArgInfo::InAlloca: {
2611       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2612       if (RV.isAggregate()) {
2613         // Replace the placeholder with the appropriate argument slot GEP.
2614         llvm::Instruction *Placeholder =
2615             cast<llvm::Instruction>(RV.getAggregateAddr());
2616         CGBuilderTy::InsertPoint IP = Builder.saveIP();
2617         Builder.SetInsertPoint(Placeholder);
2618         llvm::Value *Addr = Builder.CreateStructGEP(
2619             ArgMemory, ArgInfo.getInAllocaFieldIndex());
2620         Builder.restoreIP(IP);
2621         deferPlaceholderReplacement(Placeholder, Addr);
2622       } else {
2623         // Store the RValue into the argument struct.
2624         llvm::Value *Addr =
2625             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
2626         unsigned AS = Addr->getType()->getPointerAddressSpace();
2627         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
2628         // There are some cases where a trivial bitcast is not avoidable.  The
2629         // definition of a type later in a translation unit may change it's type
2630         // from {}* to (%struct.foo*)*.
2631         if (Addr->getType() != MemType)
2632           Addr = Builder.CreateBitCast(Addr, MemType);
2633         LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
2634         EmitInitStoreOfNonAggregate(*this, RV, argLV);
2635       }
2636       break; // Don't increment IRArgNo!
2637     }
2638 
2639     case ABIArgInfo::Indirect: {
2640       if (RV.isScalar() || RV.isComplex()) {
2641         // Make a temporary alloca to pass the argument.
2642         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2643         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2644           AI->setAlignment(ArgInfo.getIndirectAlign());
2645         Args.push_back(AI);
2646 
2647         LValue argLV = MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2648         EmitInitStoreOfNonAggregate(*this, RV, argLV);
2649 
2650         // Validate argument match.
2651         checkArgMatches(AI, IRArgNo, IRFuncTy);
2652       } else {
2653         // We want to avoid creating an unnecessary temporary+copy here;
2654         // however, we need one in three cases:
2655         // 1. If the argument is not byval, and we are required to copy the
2656         //    source.  (This case doesn't occur on any common architecture.)
2657         // 2. If the argument is byval, RV is not sufficiently aligned, and
2658         //    we cannot force it to be sufficiently aligned.
2659         // 3. If the argument is byval, but RV is located in an address space
2660         //    different than that of the argument (0).
2661         llvm::Value *Addr = RV.getAggregateAddr();
2662         unsigned Align = ArgInfo.getIndirectAlign();
2663         const llvm::DataLayout *TD = &CGM.getDataLayout();
2664         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2665         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2666           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2667         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2668             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2669              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2670              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2671           // Create an aligned temporary, and copy to it.
2672           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2673           if (Align > AI->getAlignment())
2674             AI->setAlignment(Align);
2675           Args.push_back(AI);
2676           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2677 
2678           // Validate argument match.
2679           checkArgMatches(AI, IRArgNo, IRFuncTy);
2680         } else {
2681           // Skip the extra memcpy call.
2682           Args.push_back(Addr);
2683 
2684           // Validate argument match.
2685           checkArgMatches(Addr, IRArgNo, IRFuncTy);
2686         }
2687       }
2688       break;
2689     }
2690 
2691     case ABIArgInfo::Ignore:
2692       break;
2693 
2694     case ABIArgInfo::Extend:
2695     case ABIArgInfo::Direct: {
2696       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2697           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2698           ArgInfo.getDirectOffset() == 0) {
2699         llvm::Value *V;
2700         if (RV.isScalar())
2701           V = RV.getScalarVal();
2702         else
2703           V = Builder.CreateLoad(RV.getAggregateAddr());
2704 
2705         // If the argument doesn't match, perform a bitcast to coerce it.  This
2706         // can happen due to trivial type mismatches.
2707         if (IRArgNo < IRFuncTy->getNumParams() &&
2708             V->getType() != IRFuncTy->getParamType(IRArgNo))
2709           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2710         Args.push_back(V);
2711 
2712         checkArgMatches(V, IRArgNo, IRFuncTy);
2713         break;
2714       }
2715 
2716       // FIXME: Avoid the conversion through memory if possible.
2717       llvm::Value *SrcPtr;
2718       if (RV.isScalar() || RV.isComplex()) {
2719         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2720         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2721         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
2722       } else
2723         SrcPtr = RV.getAggregateAddr();
2724 
2725       // If the value is offset in memory, apply the offset now.
2726       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2727         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2728         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2729         SrcPtr = Builder.CreateBitCast(SrcPtr,
2730                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2731 
2732       }
2733 
2734       // If the coerce-to type is a first class aggregate, we flatten it and
2735       // pass the elements. Either way is semantically identical, but fast-isel
2736       // and the optimizer generally likes scalar values better than FCAs.
2737       if (llvm::StructType *STy =
2738             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2739         llvm::Type *SrcTy =
2740           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2741         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2742         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2743 
2744         // If the source type is smaller than the destination type of the
2745         // coerce-to logic, copy the source value into a temp alloca the size
2746         // of the destination type to allow loading all of it. The bits past
2747         // the source value are left undef.
2748         if (SrcSize < DstSize) {
2749           llvm::AllocaInst *TempAlloca
2750             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2751           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2752           SrcPtr = TempAlloca;
2753         } else {
2754           SrcPtr = Builder.CreateBitCast(SrcPtr,
2755                                          llvm::PointerType::getUnqual(STy));
2756         }
2757 
2758         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2759           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2760           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2761           // We don't know what we're loading from.
2762           LI->setAlignment(1);
2763           Args.push_back(LI);
2764 
2765           // Validate argument match.
2766           checkArgMatches(LI, IRArgNo, IRFuncTy);
2767         }
2768       } else {
2769         // In the simple case, just pass the coerced loaded value.
2770         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2771                                          *this));
2772 
2773         // Validate argument match.
2774         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2775       }
2776 
2777       break;
2778     }
2779 
2780     case ABIArgInfo::Expand:
2781       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2782       IRArgNo = Args.size();
2783       break;
2784     }
2785   }
2786 
2787   if (ArgMemory) {
2788     llvm::Value *Arg = ArgMemory;
2789     llvm::Type *LastParamTy =
2790         IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
2791     if (Arg->getType() != LastParamTy) {
2792 #ifndef NDEBUG
2793       // Assert that these structs have equivalent element types.
2794       llvm::StructType *FullTy = CallInfo.getArgStruct();
2795       llvm::StructType *Prefix = cast<llvm::StructType>(
2796           cast<llvm::PointerType>(LastParamTy)->getElementType());
2797 
2798       // For variadic functions, the caller might supply a larger struct than
2799       // the callee expects, and that's OK.
2800       assert(Prefix->getNumElements() == FullTy->getNumElements() ||
2801              (CallInfo.isVariadic() &&
2802               Prefix->getNumElements() <= FullTy->getNumElements()));
2803 
2804       for (llvm::StructType::element_iterator PI = Prefix->element_begin(),
2805                                               PE = Prefix->element_end(),
2806                                               FI = FullTy->element_begin();
2807            PI != PE; ++PI, ++FI)
2808         assert(*PI == *FI);
2809 #endif
2810       Arg = Builder.CreateBitCast(Arg, LastParamTy);
2811     }
2812     Args.push_back(Arg);
2813   }
2814 
2815   if (!CallArgs.getCleanupsToDeactivate().empty())
2816     deactivateArgCleanupsBeforeCall(*this, CallArgs);
2817 
2818   // If the callee is a bitcast of a function to a varargs pointer to function
2819   // type, check to see if we can remove the bitcast.  This handles some cases
2820   // with unprototyped functions.
2821   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2822     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2823       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2824       llvm::FunctionType *CurFT =
2825         cast<llvm::FunctionType>(CurPT->getElementType());
2826       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2827 
2828       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2829           ActualFT->getReturnType() == CurFT->getReturnType() &&
2830           ActualFT->getNumParams() == CurFT->getNumParams() &&
2831           ActualFT->getNumParams() == Args.size() &&
2832           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2833         bool ArgsMatch = true;
2834         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2835           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2836             ArgsMatch = false;
2837             break;
2838           }
2839 
2840         // Strip the cast if we can get away with it.  This is a nice cleanup,
2841         // but also allows us to inline the function at -O0 if it is marked
2842         // always_inline.
2843         if (ArgsMatch)
2844           Callee = CalleeF;
2845       }
2846     }
2847 
2848   unsigned CallingConv;
2849   CodeGen::AttributeListType AttributeList;
2850   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2851                              CallingConv, true);
2852   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2853                                                      AttributeList);
2854 
2855   llvm::BasicBlock *InvokeDest = 0;
2856   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2857                           llvm::Attribute::NoUnwind))
2858     InvokeDest = getInvokeDest();
2859 
2860   llvm::CallSite CS;
2861   if (!InvokeDest) {
2862     CS = Builder.CreateCall(Callee, Args);
2863   } else {
2864     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2865     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2866     EmitBlock(Cont);
2867   }
2868   if (callOrInvoke)
2869     *callOrInvoke = CS.getInstruction();
2870 
2871   CS.setAttributes(Attrs);
2872   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2873 
2874   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2875   // optimizer it can aggressively ignore unwind edges.
2876   if (CGM.getLangOpts().ObjCAutoRefCount)
2877     AddObjCARCExceptionMetadata(CS.getInstruction());
2878 
2879   // If the call doesn't return, finish the basic block and clear the
2880   // insertion point; this allows the rest of IRgen to discard
2881   // unreachable code.
2882   if (CS.doesNotReturn()) {
2883     Builder.CreateUnreachable();
2884     Builder.ClearInsertionPoint();
2885 
2886     // FIXME: For now, emit a dummy basic block because expr emitters in
2887     // generally are not ready to handle emitting expressions at unreachable
2888     // points.
2889     EnsureInsertPoint();
2890 
2891     // Return a reasonable RValue.
2892     return GetUndefRValue(RetTy);
2893   }
2894 
2895   llvm::Instruction *CI = CS.getInstruction();
2896   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2897     CI->setName("call");
2898 
2899   // Emit any writebacks immediately.  Arguably this should happen
2900   // after any return-value munging.
2901   if (CallArgs.hasWritebacks())
2902     emitWritebacks(*this, CallArgs);
2903 
2904   // The stack cleanup for inalloca arguments has to run out of the normal
2905   // lexical order, so deactivate it and run it manually here.
2906   CallArgs.freeArgumentMemory(*this);
2907 
2908   switch (RetAI.getKind()) {
2909   case ABIArgInfo::InAlloca:
2910   case ABIArgInfo::Indirect:
2911     return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
2912 
2913   case ABIArgInfo::Ignore:
2914     // If we are ignoring an argument that had a result, make sure to
2915     // construct the appropriate return value for our caller.
2916     return GetUndefRValue(RetTy);
2917 
2918   case ABIArgInfo::Extend:
2919   case ABIArgInfo::Direct: {
2920     llvm::Type *RetIRTy = ConvertType(RetTy);
2921     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2922       switch (getEvaluationKind(RetTy)) {
2923       case TEK_Complex: {
2924         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2925         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2926         return RValue::getComplex(std::make_pair(Real, Imag));
2927       }
2928       case TEK_Aggregate: {
2929         llvm::Value *DestPtr = ReturnValue.getValue();
2930         bool DestIsVolatile = ReturnValue.isVolatile();
2931 
2932         if (!DestPtr) {
2933           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2934           DestIsVolatile = false;
2935         }
2936         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2937         return RValue::getAggregate(DestPtr);
2938       }
2939       case TEK_Scalar: {
2940         // If the argument doesn't match, perform a bitcast to coerce it.  This
2941         // can happen due to trivial type mismatches.
2942         llvm::Value *V = CI;
2943         if (V->getType() != RetIRTy)
2944           V = Builder.CreateBitCast(V, RetIRTy);
2945         return RValue::get(V);
2946       }
2947       }
2948       llvm_unreachable("bad evaluation kind");
2949     }
2950 
2951     llvm::Value *DestPtr = ReturnValue.getValue();
2952     bool DestIsVolatile = ReturnValue.isVolatile();
2953 
2954     if (!DestPtr) {
2955       DestPtr = CreateMemTemp(RetTy, "coerce");
2956       DestIsVolatile = false;
2957     }
2958 
2959     // If the value is offset in memory, apply the offset now.
2960     llvm::Value *StorePtr = DestPtr;
2961     if (unsigned Offs = RetAI.getDirectOffset()) {
2962       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2963       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2964       StorePtr = Builder.CreateBitCast(StorePtr,
2965                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2966     }
2967     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2968 
2969     return convertTempToRValue(DestPtr, RetTy, SourceLocation());
2970   }
2971 
2972   case ABIArgInfo::Expand:
2973     llvm_unreachable("Invalid ABI kind for return argument");
2974   }
2975 
2976   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2977 }
2978 
2979 /* VarArg handling */
2980 
2981 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2982   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2983 }
2984