1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 using namespace clang;
43 using namespace CodeGen;
44 
45 /***/
46 
47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
48   switch (CC) {
49   default: return llvm::CallingConv::C;
50   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
51   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
52   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
53   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
54   case CC_Win64: return llvm::CallingConv::Win64;
55   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
56   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
57   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
58   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
59   // TODO: Add support for __pascal to LLVM.
60   case CC_X86Pascal: return llvm::CallingConv::C;
61   // TODO: Add support for __vectorcall to LLVM.
62   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
63   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
64   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
65   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
66   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
67   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
68   case CC_Swift: return llvm::CallingConv::Swift;
69   case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
70   }
71 }
72 
73 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
74 /// qualification. Either or both of RD and MD may be null. A null RD indicates
75 /// that there is no meaningful 'this' type, and a null MD can occur when
76 /// calling a method pointer.
77 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
78                                          const CXXMethodDecl *MD) {
79   QualType RecTy;
80   if (RD)
81     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
82   else
83     RecTy = Context.VoidTy;
84 
85   if (MD)
86     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
87   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
88 }
89 
90 /// Returns the canonical formal type of the given C++ method.
91 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
92   return MD->getType()->getCanonicalTypeUnqualified()
93            .getAs<FunctionProtoType>();
94 }
95 
96 /// Returns the "extra-canonicalized" return type, which discards
97 /// qualifiers on the return type.  Codegen doesn't care about them,
98 /// and it makes ABI code a little easier to be able to assume that
99 /// all parameter and return types are top-level unqualified.
100 static CanQualType GetReturnType(QualType RetTy) {
101   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
102 }
103 
104 /// Arrange the argument and result information for a value of the given
105 /// unprototyped freestanding function type.
106 const CGFunctionInfo &
107 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
108   // When translating an unprototyped function type, always use a
109   // variadic type.
110   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
111                                  /*instanceMethod=*/false,
112                                  /*chainCall=*/false, None,
113                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
114 }
115 
116 static void addExtParameterInfosForCall(
117          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
118                                         const FunctionProtoType *proto,
119                                         unsigned prefixArgs,
120                                         unsigned totalArgs) {
121   assert(proto->hasExtParameterInfos());
122   assert(paramInfos.size() <= prefixArgs);
123   assert(proto->getNumParams() + prefixArgs <= totalArgs);
124 
125   paramInfos.reserve(totalArgs);
126 
127   // Add default infos for any prefix args that don't already have infos.
128   paramInfos.resize(prefixArgs);
129 
130   // Add infos for the prototype.
131   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
132     paramInfos.push_back(ParamInfo);
133     // pass_object_size params have no parameter info.
134     if (ParamInfo.hasPassObjectSize())
135       paramInfos.emplace_back();
136   }
137 
138   assert(paramInfos.size() <= totalArgs &&
139          "Did we forget to insert pass_object_size args?");
140   // Add default infos for the variadic and/or suffix arguments.
141   paramInfos.resize(totalArgs);
142 }
143 
144 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
145 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
146 static void appendParameterTypes(const CodeGenTypes &CGT,
147                                  SmallVectorImpl<CanQualType> &prefix,
148               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
149                                  CanQual<FunctionProtoType> FPT) {
150   // Fast path: don't touch param info if we don't need to.
151   if (!FPT->hasExtParameterInfos()) {
152     assert(paramInfos.empty() &&
153            "We have paramInfos, but the prototype doesn't?");
154     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
155     return;
156   }
157 
158   unsigned PrefixSize = prefix.size();
159   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
160   // parameters; the only thing that can change this is the presence of
161   // pass_object_size. So, we preallocate for the common case.
162   prefix.reserve(prefix.size() + FPT->getNumParams());
163 
164   auto ExtInfos = FPT->getExtParameterInfos();
165   assert(ExtInfos.size() == FPT->getNumParams());
166   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
167     prefix.push_back(FPT->getParamType(I));
168     if (ExtInfos[I].hasPassObjectSize())
169       prefix.push_back(CGT.getContext().getSizeType());
170   }
171 
172   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
173                               prefix.size());
174 }
175 
176 /// Arrange the LLVM function layout for a value of the given function
177 /// type, on top of any implicit parameters already stored.
178 static const CGFunctionInfo &
179 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
180                         SmallVectorImpl<CanQualType> &prefix,
181                         CanQual<FunctionProtoType> FTP) {
182   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
183   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
184   // FIXME: Kill copy.
185   appendParameterTypes(CGT, prefix, paramInfos, FTP);
186   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
187 
188   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
189                                      /*chainCall=*/false, prefix,
190                                      FTP->getExtInfo(), paramInfos,
191                                      Required);
192 }
193 
194 /// Arrange the argument and result information for a value of the
195 /// given freestanding function type.
196 const CGFunctionInfo &
197 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
198   SmallVector<CanQualType, 16> argTypes;
199   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
200                                    FTP);
201 }
202 
203 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
204                                                bool IsWindows) {
205   // Set the appropriate calling convention for the Function.
206   if (D->hasAttr<StdCallAttr>())
207     return CC_X86StdCall;
208 
209   if (D->hasAttr<FastCallAttr>())
210     return CC_X86FastCall;
211 
212   if (D->hasAttr<RegCallAttr>())
213     return CC_X86RegCall;
214 
215   if (D->hasAttr<ThisCallAttr>())
216     return CC_X86ThisCall;
217 
218   if (D->hasAttr<VectorCallAttr>())
219     return CC_X86VectorCall;
220 
221   if (D->hasAttr<PascalAttr>())
222     return CC_X86Pascal;
223 
224   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
225     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
226 
227   if (D->hasAttr<AArch64VectorPcsAttr>())
228     return CC_AArch64VectorCall;
229 
230   if (D->hasAttr<IntelOclBiccAttr>())
231     return CC_IntelOclBicc;
232 
233   if (D->hasAttr<MSABIAttr>())
234     return IsWindows ? CC_C : CC_Win64;
235 
236   if (D->hasAttr<SysVABIAttr>())
237     return IsWindows ? CC_X86_64SysV : CC_C;
238 
239   if (D->hasAttr<PreserveMostAttr>())
240     return CC_PreserveMost;
241 
242   if (D->hasAttr<PreserveAllAttr>())
243     return CC_PreserveAll;
244 
245   return CC_C;
246 }
247 
248 /// Arrange the argument and result information for a call to an
249 /// unknown C++ non-static member function of the given abstract type.
250 /// (A null RD means we don't have any meaningful "this" argument type,
251 ///  so fall back to a generic pointer type).
252 /// The member function must be an ordinary function, i.e. not a
253 /// constructor or destructor.
254 const CGFunctionInfo &
255 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
256                                    const FunctionProtoType *FTP,
257                                    const CXXMethodDecl *MD) {
258   SmallVector<CanQualType, 16> argTypes;
259 
260   // Add the 'this' pointer.
261   argTypes.push_back(DeriveThisType(RD, MD));
262 
263   return ::arrangeLLVMFunctionInfo(
264       *this, true, argTypes,
265       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
266 }
267 
268 /// Set calling convention for CUDA/HIP kernel.
269 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
270                                            const FunctionDecl *FD) {
271   if (FD->hasAttr<CUDAGlobalAttr>()) {
272     const FunctionType *FT = FTy->getAs<FunctionType>();
273     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
274     FTy = FT->getCanonicalTypeUnqualified();
275   }
276 }
277 
278 /// Arrange the argument and result information for a declaration or
279 /// definition of the given C++ non-static member function.  The
280 /// member function must be an ordinary function, i.e. not a
281 /// constructor or destructor.
282 const CGFunctionInfo &
283 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
284   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
285   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
286 
287   CanQualType FT = GetFormalType(MD).getAs<Type>();
288   setCUDAKernelCallingConvention(FT, CGM, MD);
289   auto prototype = FT.getAs<FunctionProtoType>();
290 
291   if (MD->isInstance()) {
292     // The abstract case is perfectly fine.
293     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
294     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
295   }
296 
297   return arrangeFreeFunctionType(prototype);
298 }
299 
300 bool CodeGenTypes::inheritingCtorHasParams(
301     const InheritedConstructor &Inherited, CXXCtorType Type) {
302   // Parameters are unnecessary if we're constructing a base class subobject
303   // and the inherited constructor lives in a virtual base.
304   return Type == Ctor_Complete ||
305          !Inherited.getShadowDecl()->constructsVirtualBase() ||
306          !Target.getCXXABI().hasConstructorVariants();
307 }
308 
309 const CGFunctionInfo &
310 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
311   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
312 
313   SmallVector<CanQualType, 16> argTypes;
314   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
315   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
316 
317   bool PassParams = true;
318 
319   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
320     // A base class inheriting constructor doesn't get forwarded arguments
321     // needed to construct a virtual base (or base class thereof).
322     if (auto Inherited = CD->getInheritedConstructor())
323       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
324   }
325 
326   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
327 
328   // Add the formal parameters.
329   if (PassParams)
330     appendParameterTypes(*this, argTypes, paramInfos, FTP);
331 
332   CGCXXABI::AddedStructorArgCounts AddedArgs =
333       TheCXXABI.buildStructorSignature(GD, argTypes);
334   if (!paramInfos.empty()) {
335     // Note: prefix implies after the first param.
336     if (AddedArgs.Prefix)
337       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
338                         FunctionProtoType::ExtParameterInfo{});
339     if (AddedArgs.Suffix)
340       paramInfos.append(AddedArgs.Suffix,
341                         FunctionProtoType::ExtParameterInfo{});
342   }
343 
344   RequiredArgs required =
345       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
346                                       : RequiredArgs::All);
347 
348   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
349   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
350                                ? argTypes.front()
351                                : TheCXXABI.hasMostDerivedReturn(GD)
352                                      ? CGM.getContext().VoidPtrTy
353                                      : Context.VoidTy;
354   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
355                                  /*chainCall=*/false, argTypes, extInfo,
356                                  paramInfos, required);
357 }
358 
359 static SmallVector<CanQualType, 16>
360 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
361   SmallVector<CanQualType, 16> argTypes;
362   for (auto &arg : args)
363     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
364   return argTypes;
365 }
366 
367 static SmallVector<CanQualType, 16>
368 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
369   SmallVector<CanQualType, 16> argTypes;
370   for (auto &arg : args)
371     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
372   return argTypes;
373 }
374 
375 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
376 getExtParameterInfosForCall(const FunctionProtoType *proto,
377                             unsigned prefixArgs, unsigned totalArgs) {
378   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
379   if (proto->hasExtParameterInfos()) {
380     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
381   }
382   return result;
383 }
384 
385 /// Arrange a call to a C++ method, passing the given arguments.
386 ///
387 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
388 /// parameter.
389 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
390 /// args.
391 /// PassProtoArgs indicates whether `args` has args for the parameters in the
392 /// given CXXConstructorDecl.
393 const CGFunctionInfo &
394 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
395                                         const CXXConstructorDecl *D,
396                                         CXXCtorType CtorKind,
397                                         unsigned ExtraPrefixArgs,
398                                         unsigned ExtraSuffixArgs,
399                                         bool PassProtoArgs) {
400   // FIXME: Kill copy.
401   SmallVector<CanQualType, 16> ArgTypes;
402   for (const auto &Arg : args)
403     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
404 
405   // +1 for implicit this, which should always be args[0].
406   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
407 
408   CanQual<FunctionProtoType> FPT = GetFormalType(D);
409   RequiredArgs Required = PassProtoArgs
410                               ? RequiredArgs::forPrototypePlus(
411                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
412                               : RequiredArgs::All;
413 
414   GlobalDecl GD(D, CtorKind);
415   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
416                                ? ArgTypes.front()
417                                : TheCXXABI.hasMostDerivedReturn(GD)
418                                      ? CGM.getContext().VoidPtrTy
419                                      : Context.VoidTy;
420 
421   FunctionType::ExtInfo Info = FPT->getExtInfo();
422   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
423   // If the prototype args are elided, we should only have ABI-specific args,
424   // which never have param info.
425   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
426     // ABI-specific suffix arguments are treated the same as variadic arguments.
427     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
428                                 ArgTypes.size());
429   }
430   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
431                                  /*chainCall=*/false, ArgTypes, Info,
432                                  ParamInfos, Required);
433 }
434 
435 /// Arrange the argument and result information for the declaration or
436 /// definition of the given function.
437 const CGFunctionInfo &
438 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
439   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
440     if (MD->isInstance())
441       return arrangeCXXMethodDeclaration(MD);
442 
443   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
444 
445   assert(isa<FunctionType>(FTy));
446   setCUDAKernelCallingConvention(FTy, CGM, FD);
447 
448   // When declaring a function without a prototype, always use a
449   // non-variadic type.
450   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
451     return arrangeLLVMFunctionInfo(
452         noProto->getReturnType(), /*instanceMethod=*/false,
453         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
454   }
455 
456   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
457 }
458 
459 /// Arrange the argument and result information for the declaration or
460 /// definition of an Objective-C method.
461 const CGFunctionInfo &
462 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
463   // It happens that this is the same as a call with no optional
464   // arguments, except also using the formal 'self' type.
465   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
466 }
467 
468 /// Arrange the argument and result information for the function type
469 /// through which to perform a send to the given Objective-C method,
470 /// using the given receiver type.  The receiver type is not always
471 /// the 'self' type of the method or even an Objective-C pointer type.
472 /// This is *not* the right method for actually performing such a
473 /// message send, due to the possibility of optional arguments.
474 const CGFunctionInfo &
475 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
476                                               QualType receiverType) {
477   SmallVector<CanQualType, 16> argTys;
478   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
479   argTys.push_back(Context.getCanonicalParamType(receiverType));
480   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
481   // FIXME: Kill copy?
482   for (const auto *I : MD->parameters()) {
483     argTys.push_back(Context.getCanonicalParamType(I->getType()));
484     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
485         I->hasAttr<NoEscapeAttr>());
486     extParamInfos.push_back(extParamInfo);
487   }
488 
489   FunctionType::ExtInfo einfo;
490   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
491   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
492 
493   if (getContext().getLangOpts().ObjCAutoRefCount &&
494       MD->hasAttr<NSReturnsRetainedAttr>())
495     einfo = einfo.withProducesResult(true);
496 
497   RequiredArgs required =
498     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
499 
500   return arrangeLLVMFunctionInfo(
501       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
502       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
503 }
504 
505 const CGFunctionInfo &
506 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
507                                                  const CallArgList &args) {
508   auto argTypes = getArgTypesForCall(Context, args);
509   FunctionType::ExtInfo einfo;
510 
511   return arrangeLLVMFunctionInfo(
512       GetReturnType(returnType), /*instanceMethod=*/false,
513       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
514 }
515 
516 const CGFunctionInfo &
517 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
518   // FIXME: Do we need to handle ObjCMethodDecl?
519   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
520 
521   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
522       isa<CXXDestructorDecl>(GD.getDecl()))
523     return arrangeCXXStructorDeclaration(GD);
524 
525   return arrangeFunctionDeclaration(FD);
526 }
527 
528 /// Arrange a thunk that takes 'this' as the first parameter followed by
529 /// varargs.  Return a void pointer, regardless of the actual return type.
530 /// The body of the thunk will end in a musttail call to a function of the
531 /// correct type, and the caller will bitcast the function to the correct
532 /// prototype.
533 const CGFunctionInfo &
534 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
535   assert(MD->isVirtual() && "only methods have thunks");
536   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
537   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
538   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
539                                  /*chainCall=*/false, ArgTys,
540                                  FTP->getExtInfo(), {}, RequiredArgs(1));
541 }
542 
543 const CGFunctionInfo &
544 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
545                                    CXXCtorType CT) {
546   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
547 
548   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
549   SmallVector<CanQualType, 2> ArgTys;
550   const CXXRecordDecl *RD = CD->getParent();
551   ArgTys.push_back(DeriveThisType(RD, CD));
552   if (CT == Ctor_CopyingClosure)
553     ArgTys.push_back(*FTP->param_type_begin());
554   if (RD->getNumVBases() > 0)
555     ArgTys.push_back(Context.IntTy);
556   CallingConv CC = Context.getDefaultCallingConvention(
557       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
558   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
559                                  /*chainCall=*/false, ArgTys,
560                                  FunctionType::ExtInfo(CC), {},
561                                  RequiredArgs::All);
562 }
563 
564 /// Arrange a call as unto a free function, except possibly with an
565 /// additional number of formal parameters considered required.
566 static const CGFunctionInfo &
567 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
568                             CodeGenModule &CGM,
569                             const CallArgList &args,
570                             const FunctionType *fnType,
571                             unsigned numExtraRequiredArgs,
572                             bool chainCall) {
573   assert(args.size() >= numExtraRequiredArgs);
574 
575   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
576 
577   // In most cases, there are no optional arguments.
578   RequiredArgs required = RequiredArgs::All;
579 
580   // If we have a variadic prototype, the required arguments are the
581   // extra prefix plus the arguments in the prototype.
582   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
583     if (proto->isVariadic())
584       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
585 
586     if (proto->hasExtParameterInfos())
587       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
588                                   args.size());
589 
590   // If we don't have a prototype at all, but we're supposed to
591   // explicitly use the variadic convention for unprototyped calls,
592   // treat all of the arguments as required but preserve the nominal
593   // possibility of variadics.
594   } else if (CGM.getTargetCodeGenInfo()
595                 .isNoProtoCallVariadic(args,
596                                        cast<FunctionNoProtoType>(fnType))) {
597     required = RequiredArgs(args.size());
598   }
599 
600   // FIXME: Kill copy.
601   SmallVector<CanQualType, 16> argTypes;
602   for (const auto &arg : args)
603     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
604   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
605                                      /*instanceMethod=*/false, chainCall,
606                                      argTypes, fnType->getExtInfo(), paramInfos,
607                                      required);
608 }
609 
610 /// Figure out the rules for calling a function with the given formal
611 /// type using the given arguments.  The arguments are necessary
612 /// because the function might be unprototyped, in which case it's
613 /// target-dependent in crazy ways.
614 const CGFunctionInfo &
615 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
616                                       const FunctionType *fnType,
617                                       bool chainCall) {
618   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
619                                      chainCall ? 1 : 0, chainCall);
620 }
621 
622 /// A block function is essentially a free function with an
623 /// extra implicit argument.
624 const CGFunctionInfo &
625 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
626                                        const FunctionType *fnType) {
627   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
628                                      /*chainCall=*/false);
629 }
630 
631 const CGFunctionInfo &
632 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
633                                               const FunctionArgList &params) {
634   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
635   auto argTypes = getArgTypesForDeclaration(Context, params);
636 
637   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
638                                  /*instanceMethod*/ false, /*chainCall*/ false,
639                                  argTypes, proto->getExtInfo(), paramInfos,
640                                  RequiredArgs::forPrototypePlus(proto, 1));
641 }
642 
643 const CGFunctionInfo &
644 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
645                                          const CallArgList &args) {
646   // FIXME: Kill copy.
647   SmallVector<CanQualType, 16> argTypes;
648   for (const auto &Arg : args)
649     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
650   return arrangeLLVMFunctionInfo(
651       GetReturnType(resultType), /*instanceMethod=*/false,
652       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
653       /*paramInfos=*/ {}, RequiredArgs::All);
654 }
655 
656 const CGFunctionInfo &
657 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
658                                                 const FunctionArgList &args) {
659   auto argTypes = getArgTypesForDeclaration(Context, args);
660 
661   return arrangeLLVMFunctionInfo(
662       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
663       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
664 }
665 
666 const CGFunctionInfo &
667 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
668                                               ArrayRef<CanQualType> argTypes) {
669   return arrangeLLVMFunctionInfo(
670       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
671       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
672 }
673 
674 /// Arrange a call to a C++ method, passing the given arguments.
675 ///
676 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
677 /// does not count `this`.
678 const CGFunctionInfo &
679 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
680                                    const FunctionProtoType *proto,
681                                    RequiredArgs required,
682                                    unsigned numPrefixArgs) {
683   assert(numPrefixArgs + 1 <= args.size() &&
684          "Emitting a call with less args than the required prefix?");
685   // Add one to account for `this`. It's a bit awkward here, but we don't count
686   // `this` in similar places elsewhere.
687   auto paramInfos =
688     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
689 
690   // FIXME: Kill copy.
691   auto argTypes = getArgTypesForCall(Context, args);
692 
693   FunctionType::ExtInfo info = proto->getExtInfo();
694   return arrangeLLVMFunctionInfo(
695       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
696       /*chainCall=*/false, argTypes, info, paramInfos, required);
697 }
698 
699 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
700   return arrangeLLVMFunctionInfo(
701       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
702       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
703 }
704 
705 const CGFunctionInfo &
706 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
707                           const CallArgList &args) {
708   assert(signature.arg_size() <= args.size());
709   if (signature.arg_size() == args.size())
710     return signature;
711 
712   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
713   auto sigParamInfos = signature.getExtParameterInfos();
714   if (!sigParamInfos.empty()) {
715     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
716     paramInfos.resize(args.size());
717   }
718 
719   auto argTypes = getArgTypesForCall(Context, args);
720 
721   assert(signature.getRequiredArgs().allowsOptionalArgs());
722   return arrangeLLVMFunctionInfo(signature.getReturnType(),
723                                  signature.isInstanceMethod(),
724                                  signature.isChainCall(),
725                                  argTypes,
726                                  signature.getExtInfo(),
727                                  paramInfos,
728                                  signature.getRequiredArgs());
729 }
730 
731 namespace clang {
732 namespace CodeGen {
733 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
734 }
735 }
736 
737 /// Arrange the argument and result information for an abstract value
738 /// of a given function type.  This is the method which all of the
739 /// above functions ultimately defer to.
740 const CGFunctionInfo &
741 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
742                                       bool instanceMethod,
743                                       bool chainCall,
744                                       ArrayRef<CanQualType> argTypes,
745                                       FunctionType::ExtInfo info,
746                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
747                                       RequiredArgs required) {
748   assert(llvm::all_of(argTypes,
749                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
750 
751   // Lookup or create unique function info.
752   llvm::FoldingSetNodeID ID;
753   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
754                           required, resultType, argTypes);
755 
756   void *insertPos = nullptr;
757   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
758   if (FI)
759     return *FI;
760 
761   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
762 
763   // Construct the function info.  We co-allocate the ArgInfos.
764   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
765                               paramInfos, resultType, argTypes, required);
766   FunctionInfos.InsertNode(FI, insertPos);
767 
768   bool inserted = FunctionsBeingProcessed.insert(FI).second;
769   (void)inserted;
770   assert(inserted && "Recursively being processed?");
771 
772   // Compute ABI information.
773   if (CC == llvm::CallingConv::SPIR_KERNEL) {
774     // Force target independent argument handling for the host visible
775     // kernel functions.
776     computeSPIRKernelABIInfo(CGM, *FI);
777   } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
778     swiftcall::computeABIInfo(CGM, *FI);
779   } else {
780     getABIInfo().computeInfo(*FI);
781   }
782 
783   // Loop over all of the computed argument and return value info.  If any of
784   // them are direct or extend without a specified coerce type, specify the
785   // default now.
786   ABIArgInfo &retInfo = FI->getReturnInfo();
787   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
788     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
789 
790   for (auto &I : FI->arguments())
791     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
792       I.info.setCoerceToType(ConvertType(I.type));
793 
794   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
795   assert(erased && "Not in set?");
796 
797   return *FI;
798 }
799 
800 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
801                                        bool instanceMethod,
802                                        bool chainCall,
803                                        const FunctionType::ExtInfo &info,
804                                        ArrayRef<ExtParameterInfo> paramInfos,
805                                        CanQualType resultType,
806                                        ArrayRef<CanQualType> argTypes,
807                                        RequiredArgs required) {
808   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
809   assert(!required.allowsOptionalArgs() ||
810          required.getNumRequiredArgs() <= argTypes.size());
811 
812   void *buffer =
813     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
814                                   argTypes.size() + 1, paramInfos.size()));
815 
816   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
817   FI->CallingConvention = llvmCC;
818   FI->EffectiveCallingConvention = llvmCC;
819   FI->ASTCallingConvention = info.getCC();
820   FI->InstanceMethod = instanceMethod;
821   FI->ChainCall = chainCall;
822   FI->CmseNSCall = info.getCmseNSCall();
823   FI->NoReturn = info.getNoReturn();
824   FI->ReturnsRetained = info.getProducesResult();
825   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
826   FI->NoCfCheck = info.getNoCfCheck();
827   FI->Required = required;
828   FI->HasRegParm = info.getHasRegParm();
829   FI->RegParm = info.getRegParm();
830   FI->ArgStruct = nullptr;
831   FI->ArgStructAlign = 0;
832   FI->NumArgs = argTypes.size();
833   FI->HasExtParameterInfos = !paramInfos.empty();
834   FI->getArgsBuffer()[0].type = resultType;
835   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
836     FI->getArgsBuffer()[i + 1].type = argTypes[i];
837   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
838     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
839   return FI;
840 }
841 
842 /***/
843 
844 namespace {
845 // ABIArgInfo::Expand implementation.
846 
847 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
848 struct TypeExpansion {
849   enum TypeExpansionKind {
850     // Elements of constant arrays are expanded recursively.
851     TEK_ConstantArray,
852     // Record fields are expanded recursively (but if record is a union, only
853     // the field with the largest size is expanded).
854     TEK_Record,
855     // For complex types, real and imaginary parts are expanded recursively.
856     TEK_Complex,
857     // All other types are not expandable.
858     TEK_None
859   };
860 
861   const TypeExpansionKind Kind;
862 
863   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
864   virtual ~TypeExpansion() {}
865 };
866 
867 struct ConstantArrayExpansion : TypeExpansion {
868   QualType EltTy;
869   uint64_t NumElts;
870 
871   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
872       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
873   static bool classof(const TypeExpansion *TE) {
874     return TE->Kind == TEK_ConstantArray;
875   }
876 };
877 
878 struct RecordExpansion : TypeExpansion {
879   SmallVector<const CXXBaseSpecifier *, 1> Bases;
880 
881   SmallVector<const FieldDecl *, 1> Fields;
882 
883   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
884                   SmallVector<const FieldDecl *, 1> &&Fields)
885       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
886         Fields(std::move(Fields)) {}
887   static bool classof(const TypeExpansion *TE) {
888     return TE->Kind == TEK_Record;
889   }
890 };
891 
892 struct ComplexExpansion : TypeExpansion {
893   QualType EltTy;
894 
895   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
896   static bool classof(const TypeExpansion *TE) {
897     return TE->Kind == TEK_Complex;
898   }
899 };
900 
901 struct NoExpansion : TypeExpansion {
902   NoExpansion() : TypeExpansion(TEK_None) {}
903   static bool classof(const TypeExpansion *TE) {
904     return TE->Kind == TEK_None;
905   }
906 };
907 }  // namespace
908 
909 static std::unique_ptr<TypeExpansion>
910 getTypeExpansion(QualType Ty, const ASTContext &Context) {
911   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
912     return std::make_unique<ConstantArrayExpansion>(
913         AT->getElementType(), AT->getSize().getZExtValue());
914   }
915   if (const RecordType *RT = Ty->getAs<RecordType>()) {
916     SmallVector<const CXXBaseSpecifier *, 1> Bases;
917     SmallVector<const FieldDecl *, 1> Fields;
918     const RecordDecl *RD = RT->getDecl();
919     assert(!RD->hasFlexibleArrayMember() &&
920            "Cannot expand structure with flexible array.");
921     if (RD->isUnion()) {
922       // Unions can be here only in degenerative cases - all the fields are same
923       // after flattening. Thus we have to use the "largest" field.
924       const FieldDecl *LargestFD = nullptr;
925       CharUnits UnionSize = CharUnits::Zero();
926 
927       for (const auto *FD : RD->fields()) {
928         if (FD->isZeroLengthBitField(Context))
929           continue;
930         assert(!FD->isBitField() &&
931                "Cannot expand structure with bit-field members.");
932         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
933         if (UnionSize < FieldSize) {
934           UnionSize = FieldSize;
935           LargestFD = FD;
936         }
937       }
938       if (LargestFD)
939         Fields.push_back(LargestFD);
940     } else {
941       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
942         assert(!CXXRD->isDynamicClass() &&
943                "cannot expand vtable pointers in dynamic classes");
944         for (const CXXBaseSpecifier &BS : CXXRD->bases())
945           Bases.push_back(&BS);
946       }
947 
948       for (const auto *FD : RD->fields()) {
949         if (FD->isZeroLengthBitField(Context))
950           continue;
951         assert(!FD->isBitField() &&
952                "Cannot expand structure with bit-field members.");
953         Fields.push_back(FD);
954       }
955     }
956     return std::make_unique<RecordExpansion>(std::move(Bases),
957                                               std::move(Fields));
958   }
959   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
960     return std::make_unique<ComplexExpansion>(CT->getElementType());
961   }
962   return std::make_unique<NoExpansion>();
963 }
964 
965 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
966   auto Exp = getTypeExpansion(Ty, Context);
967   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
968     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
969   }
970   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
971     int Res = 0;
972     for (auto BS : RExp->Bases)
973       Res += getExpansionSize(BS->getType(), Context);
974     for (auto FD : RExp->Fields)
975       Res += getExpansionSize(FD->getType(), Context);
976     return Res;
977   }
978   if (isa<ComplexExpansion>(Exp.get()))
979     return 2;
980   assert(isa<NoExpansion>(Exp.get()));
981   return 1;
982 }
983 
984 void
985 CodeGenTypes::getExpandedTypes(QualType Ty,
986                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
987   auto Exp = getTypeExpansion(Ty, Context);
988   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
989     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
990       getExpandedTypes(CAExp->EltTy, TI);
991     }
992   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
993     for (auto BS : RExp->Bases)
994       getExpandedTypes(BS->getType(), TI);
995     for (auto FD : RExp->Fields)
996       getExpandedTypes(FD->getType(), TI);
997   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
998     llvm::Type *EltTy = ConvertType(CExp->EltTy);
999     *TI++ = EltTy;
1000     *TI++ = EltTy;
1001   } else {
1002     assert(isa<NoExpansion>(Exp.get()));
1003     *TI++ = ConvertType(Ty);
1004   }
1005 }
1006 
1007 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1008                                       ConstantArrayExpansion *CAE,
1009                                       Address BaseAddr,
1010                                       llvm::function_ref<void(Address)> Fn) {
1011   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1012   CharUnits EltAlign =
1013     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1014 
1015   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1016     llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1017         BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1018     Fn(Address(EltAddr, EltAlign));
1019   }
1020 }
1021 
1022 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1023                                          llvm::Function::arg_iterator &AI) {
1024   assert(LV.isSimple() &&
1025          "Unexpected non-simple lvalue during struct expansion.");
1026 
1027   auto Exp = getTypeExpansion(Ty, getContext());
1028   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1029     forConstantArrayExpansion(
1030         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1031           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1032           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1033         });
1034   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1035     Address This = LV.getAddress(*this);
1036     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1037       // Perform a single step derived-to-base conversion.
1038       Address Base =
1039           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1040                                 /*NullCheckValue=*/false, SourceLocation());
1041       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1042 
1043       // Recurse onto bases.
1044       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1045     }
1046     for (auto FD : RExp->Fields) {
1047       // FIXME: What are the right qualifiers here?
1048       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1049       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1050     }
1051   } else if (isa<ComplexExpansion>(Exp.get())) {
1052     auto realValue = &*AI++;
1053     auto imagValue = &*AI++;
1054     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1055   } else {
1056     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1057     // primitive store.
1058     assert(isa<NoExpansion>(Exp.get()));
1059     if (LV.isBitField())
1060       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1061     else
1062       EmitStoreOfScalar(&*AI++, LV);
1063   }
1064 }
1065 
1066 void CodeGenFunction::ExpandTypeToArgs(
1067     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1068     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1069   auto Exp = getTypeExpansion(Ty, getContext());
1070   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1071     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1072                                    : Arg.getKnownRValue().getAggregateAddress();
1073     forConstantArrayExpansion(
1074         *this, CAExp, Addr, [&](Address EltAddr) {
1075           CallArg EltArg = CallArg(
1076               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1077               CAExp->EltTy);
1078           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1079                            IRCallArgPos);
1080         });
1081   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1082     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1083                                    : Arg.getKnownRValue().getAggregateAddress();
1084     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1085       // Perform a single step derived-to-base conversion.
1086       Address Base =
1087           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1088                                 /*NullCheckValue=*/false, SourceLocation());
1089       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1090 
1091       // Recurse onto bases.
1092       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1093                        IRCallArgPos);
1094     }
1095 
1096     LValue LV = MakeAddrLValue(This, Ty);
1097     for (auto FD : RExp->Fields) {
1098       CallArg FldArg =
1099           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1100       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1101                        IRCallArgPos);
1102     }
1103   } else if (isa<ComplexExpansion>(Exp.get())) {
1104     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1105     IRCallArgs[IRCallArgPos++] = CV.first;
1106     IRCallArgs[IRCallArgPos++] = CV.second;
1107   } else {
1108     assert(isa<NoExpansion>(Exp.get()));
1109     auto RV = Arg.getKnownRValue();
1110     assert(RV.isScalar() &&
1111            "Unexpected non-scalar rvalue during struct expansion.");
1112 
1113     // Insert a bitcast as needed.
1114     llvm::Value *V = RV.getScalarVal();
1115     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1116         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1117       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1118 
1119     IRCallArgs[IRCallArgPos++] = V;
1120   }
1121 }
1122 
1123 /// Create a temporary allocation for the purposes of coercion.
1124 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1125                                            CharUnits MinAlign,
1126                                            const Twine &Name = "tmp") {
1127   // Don't use an alignment that's worse than what LLVM would prefer.
1128   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1129   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1130 
1131   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1132 }
1133 
1134 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1135 /// accessing some number of bytes out of it, try to gep into the struct to get
1136 /// at its inner goodness.  Dive as deep as possible without entering an element
1137 /// with an in-memory size smaller than DstSize.
1138 static Address
1139 EnterStructPointerForCoercedAccess(Address SrcPtr,
1140                                    llvm::StructType *SrcSTy,
1141                                    uint64_t DstSize, CodeGenFunction &CGF) {
1142   // We can't dive into a zero-element struct.
1143   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1144 
1145   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1146 
1147   // If the first elt is at least as large as what we're looking for, or if the
1148   // first element is the same size as the whole struct, we can enter it. The
1149   // comparison must be made on the store size and not the alloca size. Using
1150   // the alloca size may overstate the size of the load.
1151   uint64_t FirstEltSize =
1152     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1153   if (FirstEltSize < DstSize &&
1154       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1155     return SrcPtr;
1156 
1157   // GEP into the first element.
1158   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1159 
1160   // If the first element is a struct, recurse.
1161   llvm::Type *SrcTy = SrcPtr.getElementType();
1162   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1163     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1164 
1165   return SrcPtr;
1166 }
1167 
1168 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1169 /// are either integers or pointers.  This does a truncation of the value if it
1170 /// is too large or a zero extension if it is too small.
1171 ///
1172 /// This behaves as if the value were coerced through memory, so on big-endian
1173 /// targets the high bits are preserved in a truncation, while little-endian
1174 /// targets preserve the low bits.
1175 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1176                                              llvm::Type *Ty,
1177                                              CodeGenFunction &CGF) {
1178   if (Val->getType() == Ty)
1179     return Val;
1180 
1181   if (isa<llvm::PointerType>(Val->getType())) {
1182     // If this is Pointer->Pointer avoid conversion to and from int.
1183     if (isa<llvm::PointerType>(Ty))
1184       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1185 
1186     // Convert the pointer to an integer so we can play with its width.
1187     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1188   }
1189 
1190   llvm::Type *DestIntTy = Ty;
1191   if (isa<llvm::PointerType>(DestIntTy))
1192     DestIntTy = CGF.IntPtrTy;
1193 
1194   if (Val->getType() != DestIntTy) {
1195     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1196     if (DL.isBigEndian()) {
1197       // Preserve the high bits on big-endian targets.
1198       // That is what memory coercion does.
1199       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1200       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1201 
1202       if (SrcSize > DstSize) {
1203         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1204         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1205       } else {
1206         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1207         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1208       }
1209     } else {
1210       // Little-endian targets preserve the low bits. No shifts required.
1211       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1212     }
1213   }
1214 
1215   if (isa<llvm::PointerType>(Ty))
1216     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1217   return Val;
1218 }
1219 
1220 
1221 
1222 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1223 /// a pointer to an object of type \arg Ty, known to be aligned to
1224 /// \arg SrcAlign bytes.
1225 ///
1226 /// This safely handles the case when the src type is smaller than the
1227 /// destination type; in this situation the values of bits which not
1228 /// present in the src are undefined.
1229 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1230                                       CodeGenFunction &CGF) {
1231   llvm::Type *SrcTy = Src.getElementType();
1232 
1233   // If SrcTy and Ty are the same, just do a load.
1234   if (SrcTy == Ty)
1235     return CGF.Builder.CreateLoad(Src);
1236 
1237   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1238 
1239   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1240     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1241                                              DstSize.getFixedSize(), CGF);
1242     SrcTy = Src.getElementType();
1243   }
1244 
1245   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1246 
1247   // If the source and destination are integer or pointer types, just do an
1248   // extension or truncation to the desired type.
1249   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1250       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1251     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1252     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1253   }
1254 
1255   // If load is legal, just bitcast the src pointer.
1256   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1257       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1258     // Generally SrcSize is never greater than DstSize, since this means we are
1259     // losing bits. However, this can happen in cases where the structure has
1260     // additional padding, for example due to a user specified alignment.
1261     //
1262     // FIXME: Assert that we aren't truncating non-padding bits when have access
1263     // to that information.
1264     Src = CGF.Builder.CreateBitCast(Src,
1265                                     Ty->getPointerTo(Src.getAddressSpace()));
1266     return CGF.Builder.CreateLoad(Src);
1267   }
1268 
1269   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1270   // the types match, use the llvm.experimental.vector.insert intrinsic to
1271   // perform the conversion.
1272   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1273     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1274       // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1275       // vector, use a vector insert and bitcast the result.
1276       bool NeedsBitcast = false;
1277       auto PredType =
1278           llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1279       llvm::Type *OrigType = Ty;
1280       if (ScalableDst == PredType &&
1281           FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1282         ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1283         NeedsBitcast = true;
1284       }
1285       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1286         auto *Load = CGF.Builder.CreateLoad(Src);
1287         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1288         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1289         llvm::Value *Result = CGF.Builder.CreateInsertVector(
1290             ScalableDst, UndefVec, Load, Zero, "castScalableSve");
1291         if (NeedsBitcast)
1292           Result = CGF.Builder.CreateBitCast(Result, OrigType);
1293         return Result;
1294       }
1295     }
1296   }
1297 
1298   // Otherwise do coercion through memory. This is stupid, but simple.
1299   Address Tmp =
1300       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1301   CGF.Builder.CreateMemCpy(
1302       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1303       Src.getAlignment().getAsAlign(),
1304       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1305   return CGF.Builder.CreateLoad(Tmp);
1306 }
1307 
1308 // Function to store a first-class aggregate into memory.  We prefer to
1309 // store the elements rather than the aggregate to be more friendly to
1310 // fast-isel.
1311 // FIXME: Do we need to recurse here?
1312 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1313                                          bool DestIsVolatile) {
1314   // Prefer scalar stores to first-class aggregate stores.
1315   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1316     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1317       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1318       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1319       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1320     }
1321   } else {
1322     Builder.CreateStore(Val, Dest, DestIsVolatile);
1323   }
1324 }
1325 
1326 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1327 /// where the source and destination may have different types.  The
1328 /// destination is known to be aligned to \arg DstAlign bytes.
1329 ///
1330 /// This safely handles the case when the src type is larger than the
1331 /// destination type; the upper bits of the src will be lost.
1332 static void CreateCoercedStore(llvm::Value *Src,
1333                                Address Dst,
1334                                bool DstIsVolatile,
1335                                CodeGenFunction &CGF) {
1336   llvm::Type *SrcTy = Src->getType();
1337   llvm::Type *DstTy = Dst.getElementType();
1338   if (SrcTy == DstTy) {
1339     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1340     return;
1341   }
1342 
1343   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1344 
1345   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1346     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1347                                              SrcSize.getFixedSize(), CGF);
1348     DstTy = Dst.getElementType();
1349   }
1350 
1351   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1352   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1353   if (SrcPtrTy && DstPtrTy &&
1354       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1355     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1356     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1357     return;
1358   }
1359 
1360   // If the source and destination are integer or pointer types, just do an
1361   // extension or truncation to the desired type.
1362   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1363       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1364     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1365     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1366     return;
1367   }
1368 
1369   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1370 
1371   // If store is legal, just bitcast the src pointer.
1372   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1373       isa<llvm::ScalableVectorType>(DstTy) ||
1374       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1375     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1376     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1377   } else {
1378     // Otherwise do coercion through memory. This is stupid, but
1379     // simple.
1380 
1381     // Generally SrcSize is never greater than DstSize, since this means we are
1382     // losing bits. However, this can happen in cases where the structure has
1383     // additional padding, for example due to a user specified alignment.
1384     //
1385     // FIXME: Assert that we aren't truncating non-padding bits when have access
1386     // to that information.
1387     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1388     CGF.Builder.CreateStore(Src, Tmp);
1389     CGF.Builder.CreateMemCpy(
1390         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1391         Tmp.getAlignment().getAsAlign(),
1392         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1393   }
1394 }
1395 
1396 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1397                                    const ABIArgInfo &info) {
1398   if (unsigned offset = info.getDirectOffset()) {
1399     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1400     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1401                                              CharUnits::fromQuantity(offset));
1402     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1403   }
1404   return addr;
1405 }
1406 
1407 namespace {
1408 
1409 /// Encapsulates information about the way function arguments from
1410 /// CGFunctionInfo should be passed to actual LLVM IR function.
1411 class ClangToLLVMArgMapping {
1412   static const unsigned InvalidIndex = ~0U;
1413   unsigned InallocaArgNo;
1414   unsigned SRetArgNo;
1415   unsigned TotalIRArgs;
1416 
1417   /// Arguments of LLVM IR function corresponding to single Clang argument.
1418   struct IRArgs {
1419     unsigned PaddingArgIndex;
1420     // Argument is expanded to IR arguments at positions
1421     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1422     unsigned FirstArgIndex;
1423     unsigned NumberOfArgs;
1424 
1425     IRArgs()
1426         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1427           NumberOfArgs(0) {}
1428   };
1429 
1430   SmallVector<IRArgs, 8> ArgInfo;
1431 
1432 public:
1433   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1434                         bool OnlyRequiredArgs = false)
1435       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1436         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1437     construct(Context, FI, OnlyRequiredArgs);
1438   }
1439 
1440   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1441   unsigned getInallocaArgNo() const {
1442     assert(hasInallocaArg());
1443     return InallocaArgNo;
1444   }
1445 
1446   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1447   unsigned getSRetArgNo() const {
1448     assert(hasSRetArg());
1449     return SRetArgNo;
1450   }
1451 
1452   unsigned totalIRArgs() const { return TotalIRArgs; }
1453 
1454   bool hasPaddingArg(unsigned ArgNo) const {
1455     assert(ArgNo < ArgInfo.size());
1456     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1457   }
1458   unsigned getPaddingArgNo(unsigned ArgNo) const {
1459     assert(hasPaddingArg(ArgNo));
1460     return ArgInfo[ArgNo].PaddingArgIndex;
1461   }
1462 
1463   /// Returns index of first IR argument corresponding to ArgNo, and their
1464   /// quantity.
1465   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1466     assert(ArgNo < ArgInfo.size());
1467     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1468                           ArgInfo[ArgNo].NumberOfArgs);
1469   }
1470 
1471 private:
1472   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1473                  bool OnlyRequiredArgs);
1474 };
1475 
1476 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1477                                       const CGFunctionInfo &FI,
1478                                       bool OnlyRequiredArgs) {
1479   unsigned IRArgNo = 0;
1480   bool SwapThisWithSRet = false;
1481   const ABIArgInfo &RetAI = FI.getReturnInfo();
1482 
1483   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1484     SwapThisWithSRet = RetAI.isSRetAfterThis();
1485     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1486   }
1487 
1488   unsigned ArgNo = 0;
1489   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1490   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1491        ++I, ++ArgNo) {
1492     assert(I != FI.arg_end());
1493     QualType ArgType = I->type;
1494     const ABIArgInfo &AI = I->info;
1495     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1496     auto &IRArgs = ArgInfo[ArgNo];
1497 
1498     if (AI.getPaddingType())
1499       IRArgs.PaddingArgIndex = IRArgNo++;
1500 
1501     switch (AI.getKind()) {
1502     case ABIArgInfo::Extend:
1503     case ABIArgInfo::Direct: {
1504       // FIXME: handle sseregparm someday...
1505       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1506       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1507         IRArgs.NumberOfArgs = STy->getNumElements();
1508       } else {
1509         IRArgs.NumberOfArgs = 1;
1510       }
1511       break;
1512     }
1513     case ABIArgInfo::Indirect:
1514     case ABIArgInfo::IndirectAliased:
1515       IRArgs.NumberOfArgs = 1;
1516       break;
1517     case ABIArgInfo::Ignore:
1518     case ABIArgInfo::InAlloca:
1519       // ignore and inalloca doesn't have matching LLVM parameters.
1520       IRArgs.NumberOfArgs = 0;
1521       break;
1522     case ABIArgInfo::CoerceAndExpand:
1523       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1524       break;
1525     case ABIArgInfo::Expand:
1526       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1527       break;
1528     }
1529 
1530     if (IRArgs.NumberOfArgs > 0) {
1531       IRArgs.FirstArgIndex = IRArgNo;
1532       IRArgNo += IRArgs.NumberOfArgs;
1533     }
1534 
1535     // Skip over the sret parameter when it comes second.  We already handled it
1536     // above.
1537     if (IRArgNo == 1 && SwapThisWithSRet)
1538       IRArgNo++;
1539   }
1540   assert(ArgNo == ArgInfo.size());
1541 
1542   if (FI.usesInAlloca())
1543     InallocaArgNo = IRArgNo++;
1544 
1545   TotalIRArgs = IRArgNo;
1546 }
1547 }  // namespace
1548 
1549 /***/
1550 
1551 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1552   const auto &RI = FI.getReturnInfo();
1553   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1554 }
1555 
1556 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1557   return ReturnTypeUsesSRet(FI) &&
1558          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1559 }
1560 
1561 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1562   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1563     switch (BT->getKind()) {
1564     default:
1565       return false;
1566     case BuiltinType::Float:
1567       return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1568     case BuiltinType::Double:
1569       return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1570     case BuiltinType::LongDouble:
1571       return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1572     }
1573   }
1574 
1575   return false;
1576 }
1577 
1578 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1579   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1580     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1581       if (BT->getKind() == BuiltinType::LongDouble)
1582         return getTarget().useObjCFP2RetForComplexLongDouble();
1583     }
1584   }
1585 
1586   return false;
1587 }
1588 
1589 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1590   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1591   return GetFunctionType(FI);
1592 }
1593 
1594 llvm::FunctionType *
1595 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1596 
1597   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1598   (void)Inserted;
1599   assert(Inserted && "Recursively being processed?");
1600 
1601   llvm::Type *resultType = nullptr;
1602   const ABIArgInfo &retAI = FI.getReturnInfo();
1603   switch (retAI.getKind()) {
1604   case ABIArgInfo::Expand:
1605   case ABIArgInfo::IndirectAliased:
1606     llvm_unreachable("Invalid ABI kind for return argument");
1607 
1608   case ABIArgInfo::Extend:
1609   case ABIArgInfo::Direct:
1610     resultType = retAI.getCoerceToType();
1611     break;
1612 
1613   case ABIArgInfo::InAlloca:
1614     if (retAI.getInAllocaSRet()) {
1615       // sret things on win32 aren't void, they return the sret pointer.
1616       QualType ret = FI.getReturnType();
1617       llvm::Type *ty = ConvertType(ret);
1618       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1619       resultType = llvm::PointerType::get(ty, addressSpace);
1620     } else {
1621       resultType = llvm::Type::getVoidTy(getLLVMContext());
1622     }
1623     break;
1624 
1625   case ABIArgInfo::Indirect:
1626   case ABIArgInfo::Ignore:
1627     resultType = llvm::Type::getVoidTy(getLLVMContext());
1628     break;
1629 
1630   case ABIArgInfo::CoerceAndExpand:
1631     resultType = retAI.getUnpaddedCoerceAndExpandType();
1632     break;
1633   }
1634 
1635   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1636   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1637 
1638   // Add type for sret argument.
1639   if (IRFunctionArgs.hasSRetArg()) {
1640     QualType Ret = FI.getReturnType();
1641     llvm::Type *Ty = ConvertType(Ret);
1642     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1643     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1644         llvm::PointerType::get(Ty, AddressSpace);
1645   }
1646 
1647   // Add type for inalloca argument.
1648   if (IRFunctionArgs.hasInallocaArg()) {
1649     auto ArgStruct = FI.getArgStruct();
1650     assert(ArgStruct);
1651     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1652   }
1653 
1654   // Add in all of the required arguments.
1655   unsigned ArgNo = 0;
1656   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1657                                      ie = it + FI.getNumRequiredArgs();
1658   for (; it != ie; ++it, ++ArgNo) {
1659     const ABIArgInfo &ArgInfo = it->info;
1660 
1661     // Insert a padding type to ensure proper alignment.
1662     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1663       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1664           ArgInfo.getPaddingType();
1665 
1666     unsigned FirstIRArg, NumIRArgs;
1667     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1668 
1669     switch (ArgInfo.getKind()) {
1670     case ABIArgInfo::Ignore:
1671     case ABIArgInfo::InAlloca:
1672       assert(NumIRArgs == 0);
1673       break;
1674 
1675     case ABIArgInfo::Indirect: {
1676       assert(NumIRArgs == 1);
1677       // indirect arguments are always on the stack, which is alloca addr space.
1678       llvm::Type *LTy = ConvertTypeForMem(it->type);
1679       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1680           CGM.getDataLayout().getAllocaAddrSpace());
1681       break;
1682     }
1683     case ABIArgInfo::IndirectAliased: {
1684       assert(NumIRArgs == 1);
1685       llvm::Type *LTy = ConvertTypeForMem(it->type);
1686       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1687       break;
1688     }
1689     case ABIArgInfo::Extend:
1690     case ABIArgInfo::Direct: {
1691       // Fast-isel and the optimizer generally like scalar values better than
1692       // FCAs, so we flatten them if this is safe to do for this argument.
1693       llvm::Type *argType = ArgInfo.getCoerceToType();
1694       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1695       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1696         assert(NumIRArgs == st->getNumElements());
1697         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1698           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1699       } else {
1700         assert(NumIRArgs == 1);
1701         ArgTypes[FirstIRArg] = argType;
1702       }
1703       break;
1704     }
1705 
1706     case ABIArgInfo::CoerceAndExpand: {
1707       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1708       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1709         *ArgTypesIter++ = EltTy;
1710       }
1711       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1712       break;
1713     }
1714 
1715     case ABIArgInfo::Expand:
1716       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1717       getExpandedTypes(it->type, ArgTypesIter);
1718       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1719       break;
1720     }
1721   }
1722 
1723   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1724   assert(Erased && "Not in set?");
1725 
1726   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1727 }
1728 
1729 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1730   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1731   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1732 
1733   if (!isFuncTypeConvertible(FPT))
1734     return llvm::StructType::get(getLLVMContext());
1735 
1736   return GetFunctionType(GD);
1737 }
1738 
1739 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1740                                                llvm::AttrBuilder &FuncAttrs,
1741                                                const FunctionProtoType *FPT) {
1742   if (!FPT)
1743     return;
1744 
1745   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1746       FPT->isNothrow())
1747     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1748 }
1749 
1750 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
1751                                      const Decl *Callee, const Decl *Caller,
1752                                      bool AssumptionOnCallSite) {
1753   if (!Callee)
1754     return;
1755 
1756   SmallVector<StringRef, 4> Attrs;
1757 
1758   for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
1759     AA->getAssumption().split(Attrs, ",");
1760 
1761   if (Caller && Caller->hasAttrs() && AssumptionOnCallSite)
1762     for (const AssumptionAttr *AA : Caller->specific_attrs<AssumptionAttr>())
1763       AA->getAssumption().split(Attrs, ",");
1764 
1765   if (!Attrs.empty())
1766     FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1767                            llvm::join(Attrs.begin(), Attrs.end(), ","));
1768 }
1769 
1770 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1771                                           QualType ReturnType) {
1772   // We can't just discard the return value for a record type with a
1773   // complex destructor or a non-trivially copyable type.
1774   if (const RecordType *RT =
1775           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1776     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1777       return ClassDecl->hasTrivialDestructor();
1778   }
1779   return ReturnType.isTriviallyCopyableType(Context);
1780 }
1781 
1782 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1783                                                  bool HasOptnone,
1784                                                  bool AttrOnCallSite,
1785                                                llvm::AttrBuilder &FuncAttrs) {
1786   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1787   if (!HasOptnone) {
1788     if (CodeGenOpts.OptimizeSize)
1789       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1790     if (CodeGenOpts.OptimizeSize == 2)
1791       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1792   }
1793 
1794   if (CodeGenOpts.DisableRedZone)
1795     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1796   if (CodeGenOpts.IndirectTlsSegRefs)
1797     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1798   if (CodeGenOpts.NoImplicitFloat)
1799     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1800 
1801   if (AttrOnCallSite) {
1802     // Attributes that should go on the call site only.
1803     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1804       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1805     if (!CodeGenOpts.TrapFuncName.empty())
1806       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1807   } else {
1808     StringRef FpKind;
1809     switch (CodeGenOpts.getFramePointer()) {
1810     case CodeGenOptions::FramePointerKind::None:
1811       FpKind = "none";
1812       break;
1813     case CodeGenOptions::FramePointerKind::NonLeaf:
1814       FpKind = "non-leaf";
1815       break;
1816     case CodeGenOptions::FramePointerKind::All:
1817       FpKind = "all";
1818       break;
1819     }
1820     FuncAttrs.addAttribute("frame-pointer", FpKind);
1821 
1822     if (CodeGenOpts.LessPreciseFPMAD)
1823       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1824 
1825     if (CodeGenOpts.NullPointerIsValid)
1826       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1827 
1828     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1829       FuncAttrs.addAttribute("denormal-fp-math",
1830                              CodeGenOpts.FPDenormalMode.str());
1831     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1832       FuncAttrs.addAttribute(
1833           "denormal-fp-math-f32",
1834           CodeGenOpts.FP32DenormalMode.str());
1835     }
1836 
1837     if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1838       FuncAttrs.addAttribute("no-trapping-math", "true");
1839 
1840     // Strict (compliant) code is the default, so only add this attribute to
1841     // indicate that we are trying to workaround a problem case.
1842     if (!CodeGenOpts.StrictFloatCastOverflow)
1843       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1844 
1845     // TODO: Are these all needed?
1846     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1847     if (LangOpts.NoHonorInfs)
1848       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1849     if (LangOpts.NoHonorNaNs)
1850       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1851     if (LangOpts.ApproxFunc)
1852       FuncAttrs.addAttribute("approx-func-fp-math", "true");
1853     if (LangOpts.UnsafeFPMath)
1854       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1855     if (CodeGenOpts.SoftFloat)
1856       FuncAttrs.addAttribute("use-soft-float", "true");
1857     FuncAttrs.addAttribute("stack-protector-buffer-size",
1858                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1859     if (LangOpts.NoSignedZero)
1860       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1861 
1862     // TODO: Reciprocal estimate codegen options should apply to instructions?
1863     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1864     if (!Recips.empty())
1865       FuncAttrs.addAttribute("reciprocal-estimates",
1866                              llvm::join(Recips, ","));
1867 
1868     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1869         CodeGenOpts.PreferVectorWidth != "none")
1870       FuncAttrs.addAttribute("prefer-vector-width",
1871                              CodeGenOpts.PreferVectorWidth);
1872 
1873     if (CodeGenOpts.StackRealignment)
1874       FuncAttrs.addAttribute("stackrealign");
1875     if (CodeGenOpts.Backchain)
1876       FuncAttrs.addAttribute("backchain");
1877     if (CodeGenOpts.EnableSegmentedStacks)
1878       FuncAttrs.addAttribute("split-stack");
1879 
1880     if (CodeGenOpts.SpeculativeLoadHardening)
1881       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1882   }
1883 
1884   if (getLangOpts().assumeFunctionsAreConvergent()) {
1885     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1886     // convergent (meaning, they may call an intrinsically convergent op, such
1887     // as __syncthreads() / barrier(), and so can't have certain optimizations
1888     // applied around them).  LLVM will remove this attribute where it safely
1889     // can.
1890     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1891   }
1892 
1893   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1894     // Exceptions aren't supported in CUDA device code.
1895     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1896   }
1897 
1898   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1899     StringRef Var, Value;
1900     std::tie(Var, Value) = Attr.split('=');
1901     FuncAttrs.addAttribute(Var, Value);
1902   }
1903 }
1904 
1905 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1906   llvm::AttrBuilder FuncAttrs;
1907   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1908                                /* AttrOnCallSite = */ false, FuncAttrs);
1909   // TODO: call GetCPUAndFeaturesAttributes?
1910   F.addFnAttrs(FuncAttrs);
1911 }
1912 
1913 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1914                                                    llvm::AttrBuilder &attrs) {
1915   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1916                                /*for call*/ false, attrs);
1917   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1918 }
1919 
1920 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1921                                    const LangOptions &LangOpts,
1922                                    const NoBuiltinAttr *NBA = nullptr) {
1923   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1924     SmallString<32> AttributeName;
1925     AttributeName += "no-builtin-";
1926     AttributeName += BuiltinName;
1927     FuncAttrs.addAttribute(AttributeName);
1928   };
1929 
1930   // First, handle the language options passed through -fno-builtin.
1931   if (LangOpts.NoBuiltin) {
1932     // -fno-builtin disables them all.
1933     FuncAttrs.addAttribute("no-builtins");
1934     return;
1935   }
1936 
1937   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1938   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1939 
1940   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1941   // the source.
1942   if (!NBA)
1943     return;
1944 
1945   // If there is a wildcard in the builtin names specified through the
1946   // attribute, disable them all.
1947   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1948     FuncAttrs.addAttribute("no-builtins");
1949     return;
1950   }
1951 
1952   // And last, add the rest of the builtin names.
1953   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1954 }
1955 
1956 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
1957                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
1958                              bool CheckCoerce = true) {
1959   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
1960   if (AI.getKind() == ABIArgInfo::Indirect)
1961     return true;
1962   if (AI.getKind() == ABIArgInfo::Extend)
1963     return true;
1964   if (!DL.typeSizeEqualsStoreSize(Ty))
1965     // TODO: This will result in a modest amount of values not marked noundef
1966     // when they could be. We care about values that *invisibly* contain undef
1967     // bits from the perspective of LLVM IR.
1968     return false;
1969   if (CheckCoerce && AI.canHaveCoerceToType()) {
1970     llvm::Type *CoerceTy = AI.getCoerceToType();
1971     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
1972                                   DL.getTypeSizeInBits(Ty)))
1973       // If we're coercing to a type with a greater size than the canonical one,
1974       // we're introducing new undef bits.
1975       // Coercing to a type of smaller or equal size is ok, as we know that
1976       // there's no internal padding (typeSizeEqualsStoreSize).
1977       return false;
1978   }
1979   if (QTy->isExtIntType())
1980     return true;
1981   if (QTy->isReferenceType())
1982     return true;
1983   if (QTy->isNullPtrType())
1984     return false;
1985   if (QTy->isMemberPointerType())
1986     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
1987     // now, never mark them.
1988     return false;
1989   if (QTy->isScalarType()) {
1990     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
1991       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
1992     return true;
1993   }
1994   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
1995     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
1996   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
1997     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
1998   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
1999     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
2000 
2001   // TODO: Some structs may be `noundef`, in specific situations.
2002   return false;
2003 }
2004 
2005 /// Construct the IR attribute list of a function or call.
2006 ///
2007 /// When adding an attribute, please consider where it should be handled:
2008 ///
2009 ///   - getDefaultFunctionAttributes is for attributes that are essentially
2010 ///     part of the global target configuration (but perhaps can be
2011 ///     overridden on a per-function basis).  Adding attributes there
2012 ///     will cause them to also be set in frontends that build on Clang's
2013 ///     target-configuration logic, as well as for code defined in library
2014 ///     modules such as CUDA's libdevice.
2015 ///
2016 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2017 ///     and adds declaration-specific, convention-specific, and
2018 ///     frontend-specific logic.  The last is of particular importance:
2019 ///     attributes that restrict how the frontend generates code must be
2020 ///     added here rather than getDefaultFunctionAttributes.
2021 ///
2022 void CodeGenModule::ConstructAttributeList(
2023     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
2024     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite,
2025     bool IsThunk, const Decl *Caller) {
2026   llvm::AttrBuilder FuncAttrs;
2027   llvm::AttrBuilder RetAttrs;
2028 
2029   // Collect function IR attributes from the CC lowering.
2030   // We'll collect the paramete and result attributes later.
2031   CallingConv = FI.getEffectiveCallingConvention();
2032   if (FI.isNoReturn())
2033     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2034   if (FI.isCmseNSCall())
2035     FuncAttrs.addAttribute("cmse_nonsecure_call");
2036 
2037   // Collect function IR attributes from the callee prototype if we have one.
2038   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2039                                      CalleeInfo.getCalleeFunctionProtoType());
2040 
2041   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2042 
2043   // Only attach assumptions to call sites in OpenMP mode.
2044   bool AssumptionOnCallSite = getLangOpts().OpenMP && AttrOnCallSite;
2045 
2046   // Attach assumption attributes to the declaration. If this is a call
2047   // site, attach assumptions from the caller to the call as well.
2048   AddAttributesFromAssumes(FuncAttrs, TargetDecl, Caller, AssumptionOnCallSite);
2049 
2050   bool HasOptnone = false;
2051   // The NoBuiltinAttr attached to the target FunctionDecl.
2052   const NoBuiltinAttr *NBA = nullptr;
2053 
2054   // Collect function IR attributes based on declaration-specific
2055   // information.
2056   // FIXME: handle sseregparm someday...
2057   if (TargetDecl) {
2058     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2059       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2060     if (TargetDecl->hasAttr<NoThrowAttr>())
2061       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2062     if (TargetDecl->hasAttr<NoReturnAttr>())
2063       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2064     if (TargetDecl->hasAttr<ColdAttr>())
2065       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2066     if (TargetDecl->hasAttr<HotAttr>())
2067       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2068     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2069       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2070     if (TargetDecl->hasAttr<ConvergentAttr>())
2071       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2072 
2073     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2074       AddAttributesFromFunctionProtoType(
2075           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2076       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2077         // A sane operator new returns a non-aliasing pointer.
2078         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2079         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2080             (Kind == OO_New || Kind == OO_Array_New))
2081           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2082       }
2083       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2084       const bool IsVirtualCall = MD && MD->isVirtual();
2085       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2086       // virtual function. These attributes are not inherited by overloads.
2087       if (!(AttrOnCallSite && IsVirtualCall)) {
2088         if (Fn->isNoReturn())
2089           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2090         NBA = Fn->getAttr<NoBuiltinAttr>();
2091       }
2092       // Only place nomerge attribute on call sites, never functions. This
2093       // allows it to work on indirect virtual function calls.
2094       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2095         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2096     }
2097 
2098     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2099     if (TargetDecl->hasAttr<ConstAttr>()) {
2100       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2101       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2102       // gcc specifies that 'const' functions have greater restrictions than
2103       // 'pure' functions, so they also cannot have infinite loops.
2104       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2105     } else if (TargetDecl->hasAttr<PureAttr>()) {
2106       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2107       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2108       // gcc specifies that 'pure' functions cannot have infinite loops.
2109       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2110     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2111       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2112       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2113     }
2114     if (TargetDecl->hasAttr<RestrictAttr>())
2115       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2116     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2117         !CodeGenOpts.NullPointerIsValid)
2118       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2119     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2120       FuncAttrs.addAttribute("no_caller_saved_registers");
2121     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2122       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2123     if (TargetDecl->hasAttr<LeafAttr>())
2124       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2125 
2126     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2127     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2128       Optional<unsigned> NumElemsParam;
2129       if (AllocSize->getNumElemsParam().isValid())
2130         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2131       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2132                                  NumElemsParam);
2133     }
2134 
2135     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2136       if (getLangOpts().OpenCLVersion <= 120) {
2137         // OpenCL v1.2 Work groups are always uniform
2138         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2139       } else {
2140         // OpenCL v2.0 Work groups may be whether uniform or not.
2141         // '-cl-uniform-work-group-size' compile option gets a hint
2142         // to the compiler that the global work-size be a multiple of
2143         // the work-group size specified to clEnqueueNDRangeKernel
2144         // (i.e. work groups are uniform).
2145         FuncAttrs.addAttribute("uniform-work-group-size",
2146                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2147       }
2148     }
2149   }
2150 
2151   // Attach "no-builtins" attributes to:
2152   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2153   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2154   // The attributes can come from:
2155   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2156   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2157   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2158 
2159   // Collect function IR attributes based on global settiings.
2160   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2161 
2162   // Override some default IR attributes based on declaration-specific
2163   // information.
2164   if (TargetDecl) {
2165     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2166       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2167     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2168       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2169     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2170       FuncAttrs.removeAttribute("split-stack");
2171 
2172     // Add NonLazyBind attribute to function declarations when -fno-plt
2173     // is used.
2174     // FIXME: what if we just haven't processed the function definition
2175     // yet, or if it's an external definition like C99 inline?
2176     if (CodeGenOpts.NoPLT) {
2177       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2178         if (!Fn->isDefined() && !AttrOnCallSite) {
2179           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2180         }
2181       }
2182     }
2183   }
2184 
2185   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2186   // functions with -funique-internal-linkage-names.
2187   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2188     if (isa<FunctionDecl>(TargetDecl)) {
2189       if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) ==
2190           llvm::GlobalValue::InternalLinkage)
2191         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2192                                "selected");
2193     }
2194   }
2195 
2196   // Collect non-call-site function IR attributes from declaration-specific
2197   // information.
2198   if (!AttrOnCallSite) {
2199     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2200       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2201 
2202     // Whether tail calls are enabled.
2203     auto shouldDisableTailCalls = [&] {
2204       // Should this be honored in getDefaultFunctionAttributes?
2205       if (CodeGenOpts.DisableTailCalls)
2206         return true;
2207 
2208       if (!TargetDecl)
2209         return false;
2210 
2211       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2212           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2213         return true;
2214 
2215       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2216         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2217           if (!BD->doesNotEscape())
2218             return true;
2219       }
2220 
2221       return false;
2222     };
2223     if (shouldDisableTailCalls())
2224       FuncAttrs.addAttribute("disable-tail-calls", "true");
2225 
2226     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2227     // handles these separately to set them based on the global defaults.
2228     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2229   }
2230 
2231   // Collect attributes from arguments and return values.
2232   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2233 
2234   QualType RetTy = FI.getReturnType();
2235   const ABIArgInfo &RetAI = FI.getReturnInfo();
2236   const llvm::DataLayout &DL = getDataLayout();
2237 
2238   // C++ explicitly makes returning undefined values UB. C's rule only applies
2239   // to used values, so we never mark them noundef for now.
2240   bool HasStrictReturn = getLangOpts().CPlusPlus;
2241   if (TargetDecl && HasStrictReturn) {
2242     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2243       HasStrictReturn &= !FDecl->isExternC();
2244     else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2245       // Function pointer
2246       HasStrictReturn &= !VDecl->isExternC();
2247   }
2248 
2249   // We don't want to be too aggressive with the return checking, unless
2250   // it's explicit in the code opts or we're using an appropriate sanitizer.
2251   // Try to respect what the programmer intended.
2252   HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2253                      !MayDropFunctionReturn(getContext(), RetTy) ||
2254                      getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2255                      getLangOpts().Sanitize.has(SanitizerKind::Return);
2256 
2257   // Determine if the return type could be partially undef
2258   if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2259     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2260         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2261       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2262   }
2263 
2264   switch (RetAI.getKind()) {
2265   case ABIArgInfo::Extend:
2266     if (RetAI.isSignExt())
2267       RetAttrs.addAttribute(llvm::Attribute::SExt);
2268     else
2269       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2270     LLVM_FALLTHROUGH;
2271   case ABIArgInfo::Direct:
2272     if (RetAI.getInReg())
2273       RetAttrs.addAttribute(llvm::Attribute::InReg);
2274     break;
2275   case ABIArgInfo::Ignore:
2276     break;
2277 
2278   case ABIArgInfo::InAlloca:
2279   case ABIArgInfo::Indirect: {
2280     // inalloca and sret disable readnone and readonly
2281     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2282       .removeAttribute(llvm::Attribute::ReadNone);
2283     break;
2284   }
2285 
2286   case ABIArgInfo::CoerceAndExpand:
2287     break;
2288 
2289   case ABIArgInfo::Expand:
2290   case ABIArgInfo::IndirectAliased:
2291     llvm_unreachable("Invalid ABI kind for return argument");
2292   }
2293 
2294   if (!IsThunk) {
2295     // FIXME: fix this properly, https://reviews.llvm.org/D100388
2296     if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2297       QualType PTy = RefTy->getPointeeType();
2298       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2299         RetAttrs.addDereferenceableAttr(
2300             getMinimumObjectSize(PTy).getQuantity());
2301       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2302           !CodeGenOpts.NullPointerIsValid)
2303         RetAttrs.addAttribute(llvm::Attribute::NonNull);
2304       if (PTy->isObjectType()) {
2305         llvm::Align Alignment =
2306             getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2307         RetAttrs.addAlignmentAttr(Alignment);
2308       }
2309     }
2310   }
2311 
2312   bool hasUsedSRet = false;
2313   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2314 
2315   // Attach attributes to sret.
2316   if (IRFunctionArgs.hasSRetArg()) {
2317     llvm::AttrBuilder SRETAttrs;
2318     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2319     hasUsedSRet = true;
2320     if (RetAI.getInReg())
2321       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2322     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2323     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2324         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2325   }
2326 
2327   // Attach attributes to inalloca argument.
2328   if (IRFunctionArgs.hasInallocaArg()) {
2329     llvm::AttrBuilder Attrs;
2330     Attrs.addInAllocaAttr(FI.getArgStruct());
2331     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2332         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2333   }
2334 
2335   // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2336   // unless this is a thunk function.
2337   // FIXME: fix this properly, https://reviews.llvm.org/D100388
2338   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2339       !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2340     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2341 
2342     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2343 
2344     llvm::AttrBuilder Attrs;
2345 
2346     QualType ThisTy =
2347         FI.arg_begin()->type.castAs<PointerType>()->getPointeeType();
2348 
2349     if (!CodeGenOpts.NullPointerIsValid &&
2350         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2351       Attrs.addAttribute(llvm::Attribute::NonNull);
2352       Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2353     } else {
2354       // FIXME dereferenceable should be correct here, regardless of
2355       // NullPointerIsValid. However, dereferenceable currently does not always
2356       // respect NullPointerIsValid and may imply nonnull and break the program.
2357       // See https://reviews.llvm.org/D66618 for discussions.
2358       Attrs.addDereferenceableOrNullAttr(
2359           getMinimumObjectSize(
2360               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2361               .getQuantity());
2362     }
2363 
2364     llvm::Align Alignment =
2365         getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2366                                 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2367             .getAsAlign();
2368     Attrs.addAlignmentAttr(Alignment);
2369 
2370     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2371   }
2372 
2373   unsigned ArgNo = 0;
2374   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2375                                           E = FI.arg_end();
2376        I != E; ++I, ++ArgNo) {
2377     QualType ParamType = I->type;
2378     const ABIArgInfo &AI = I->info;
2379     llvm::AttrBuilder Attrs;
2380 
2381     // Add attribute for padding argument, if necessary.
2382     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2383       if (AI.getPaddingInReg()) {
2384         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2385             llvm::AttributeSet::get(
2386                 getLLVMContext(),
2387                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2388       }
2389     }
2390 
2391     // Decide whether the argument we're handling could be partially undef
2392     bool ArgNoUndef = DetermineNoUndef(ParamType, getTypes(), DL, AI);
2393     if (CodeGenOpts.EnableNoundefAttrs && ArgNoUndef)
2394       Attrs.addAttribute(llvm::Attribute::NoUndef);
2395 
2396     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2397     // have the corresponding parameter variable.  It doesn't make
2398     // sense to do it here because parameters are so messed up.
2399     switch (AI.getKind()) {
2400     case ABIArgInfo::Extend:
2401       if (AI.isSignExt())
2402         Attrs.addAttribute(llvm::Attribute::SExt);
2403       else
2404         Attrs.addAttribute(llvm::Attribute::ZExt);
2405       LLVM_FALLTHROUGH;
2406     case ABIArgInfo::Direct:
2407       if (ArgNo == 0 && FI.isChainCall())
2408         Attrs.addAttribute(llvm::Attribute::Nest);
2409       else if (AI.getInReg())
2410         Attrs.addAttribute(llvm::Attribute::InReg);
2411       Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2412       break;
2413 
2414     case ABIArgInfo::Indirect: {
2415       if (AI.getInReg())
2416         Attrs.addAttribute(llvm::Attribute::InReg);
2417 
2418       if (AI.getIndirectByVal())
2419         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2420 
2421       auto *Decl = ParamType->getAsRecordDecl();
2422       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2423           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2424         // When calling the function, the pointer passed in will be the only
2425         // reference to the underlying object. Mark it accordingly.
2426         Attrs.addAttribute(llvm::Attribute::NoAlias);
2427 
2428       // TODO: We could add the byref attribute if not byval, but it would
2429       // require updating many testcases.
2430 
2431       CharUnits Align = AI.getIndirectAlign();
2432 
2433       // In a byval argument, it is important that the required
2434       // alignment of the type is honored, as LLVM might be creating a
2435       // *new* stack object, and needs to know what alignment to give
2436       // it. (Sometimes it can deduce a sensible alignment on its own,
2437       // but not if clang decides it must emit a packed struct, or the
2438       // user specifies increased alignment requirements.)
2439       //
2440       // This is different from indirect *not* byval, where the object
2441       // exists already, and the align attribute is purely
2442       // informative.
2443       assert(!Align.isZero());
2444 
2445       // For now, only add this when we have a byval argument.
2446       // TODO: be less lazy about updating test cases.
2447       if (AI.getIndirectByVal())
2448         Attrs.addAlignmentAttr(Align.getQuantity());
2449 
2450       // byval disables readnone and readonly.
2451       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2452         .removeAttribute(llvm::Attribute::ReadNone);
2453 
2454       break;
2455     }
2456     case ABIArgInfo::IndirectAliased: {
2457       CharUnits Align = AI.getIndirectAlign();
2458       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2459       Attrs.addAlignmentAttr(Align.getQuantity());
2460       break;
2461     }
2462     case ABIArgInfo::Ignore:
2463     case ABIArgInfo::Expand:
2464     case ABIArgInfo::CoerceAndExpand:
2465       break;
2466 
2467     case ABIArgInfo::InAlloca:
2468       // inalloca disables readnone and readonly.
2469       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2470           .removeAttribute(llvm::Attribute::ReadNone);
2471       continue;
2472     }
2473 
2474     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2475       QualType PTy = RefTy->getPointeeType();
2476       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2477         Attrs.addDereferenceableAttr(
2478             getMinimumObjectSize(PTy).getQuantity());
2479       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2480           !CodeGenOpts.NullPointerIsValid)
2481         Attrs.addAttribute(llvm::Attribute::NonNull);
2482       if (PTy->isObjectType()) {
2483         llvm::Align Alignment =
2484             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2485         Attrs.addAlignmentAttr(Alignment);
2486       }
2487     }
2488 
2489     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2490     case ParameterABI::Ordinary:
2491       break;
2492 
2493     case ParameterABI::SwiftIndirectResult: {
2494       // Add 'sret' if we haven't already used it for something, but
2495       // only if the result is void.
2496       if (!hasUsedSRet && RetTy->isVoidType()) {
2497         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2498         hasUsedSRet = true;
2499       }
2500 
2501       // Add 'noalias' in either case.
2502       Attrs.addAttribute(llvm::Attribute::NoAlias);
2503 
2504       // Add 'dereferenceable' and 'alignment'.
2505       auto PTy = ParamType->getPointeeType();
2506       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2507         auto info = getContext().getTypeInfoInChars(PTy);
2508         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2509         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2510       }
2511       break;
2512     }
2513 
2514     case ParameterABI::SwiftErrorResult:
2515       Attrs.addAttribute(llvm::Attribute::SwiftError);
2516       break;
2517 
2518     case ParameterABI::SwiftContext:
2519       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2520       break;
2521 
2522     case ParameterABI::SwiftAsyncContext:
2523       Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2524       break;
2525     }
2526 
2527     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2528       Attrs.addAttribute(llvm::Attribute::NoCapture);
2529 
2530     if (Attrs.hasAttributes()) {
2531       unsigned FirstIRArg, NumIRArgs;
2532       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2533       for (unsigned i = 0; i < NumIRArgs; i++)
2534         ArgAttrs[FirstIRArg + i] =
2535             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2536     }
2537   }
2538   assert(ArgNo == FI.arg_size());
2539 
2540   AttrList = llvm::AttributeList::get(
2541       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2542       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2543 }
2544 
2545 /// An argument came in as a promoted argument; demote it back to its
2546 /// declared type.
2547 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2548                                          const VarDecl *var,
2549                                          llvm::Value *value) {
2550   llvm::Type *varType = CGF.ConvertType(var->getType());
2551 
2552   // This can happen with promotions that actually don't change the
2553   // underlying type, like the enum promotions.
2554   if (value->getType() == varType) return value;
2555 
2556   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2557          && "unexpected promotion type");
2558 
2559   if (isa<llvm::IntegerType>(varType))
2560     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2561 
2562   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2563 }
2564 
2565 /// Returns the attribute (either parameter attribute, or function
2566 /// attribute), which declares argument ArgNo to be non-null.
2567 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2568                                          QualType ArgType, unsigned ArgNo) {
2569   // FIXME: __attribute__((nonnull)) can also be applied to:
2570   //   - references to pointers, where the pointee is known to be
2571   //     nonnull (apparently a Clang extension)
2572   //   - transparent unions containing pointers
2573   // In the former case, LLVM IR cannot represent the constraint. In
2574   // the latter case, we have no guarantee that the transparent union
2575   // is in fact passed as a pointer.
2576   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2577     return nullptr;
2578   // First, check attribute on parameter itself.
2579   if (PVD) {
2580     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2581       return ParmNNAttr;
2582   }
2583   // Check function attributes.
2584   if (!FD)
2585     return nullptr;
2586   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2587     if (NNAttr->isNonNull(ArgNo))
2588       return NNAttr;
2589   }
2590   return nullptr;
2591 }
2592 
2593 namespace {
2594   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2595     Address Temp;
2596     Address Arg;
2597     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2598     void Emit(CodeGenFunction &CGF, Flags flags) override {
2599       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2600       CGF.Builder.CreateStore(errorValue, Arg);
2601     }
2602   };
2603 }
2604 
2605 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2606                                          llvm::Function *Fn,
2607                                          const FunctionArgList &Args) {
2608   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2609     // Naked functions don't have prologues.
2610     return;
2611 
2612   // If this is an implicit-return-zero function, go ahead and
2613   // initialize the return value.  TODO: it might be nice to have
2614   // a more general mechanism for this that didn't require synthesized
2615   // return statements.
2616   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2617     if (FD->hasImplicitReturnZero()) {
2618       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2619       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2620       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2621       Builder.CreateStore(Zero, ReturnValue);
2622     }
2623   }
2624 
2625   // FIXME: We no longer need the types from FunctionArgList; lift up and
2626   // simplify.
2627 
2628   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2629   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2630 
2631   // If we're using inalloca, all the memory arguments are GEPs off of the last
2632   // parameter, which is a pointer to the complete memory area.
2633   Address ArgStruct = Address::invalid();
2634   if (IRFunctionArgs.hasInallocaArg()) {
2635     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2636                         FI.getArgStructAlignment());
2637 
2638     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2639   }
2640 
2641   // Name the struct return parameter.
2642   if (IRFunctionArgs.hasSRetArg()) {
2643     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2644     AI->setName("agg.result");
2645     AI->addAttr(llvm::Attribute::NoAlias);
2646   }
2647 
2648   // Track if we received the parameter as a pointer (indirect, byval, or
2649   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2650   // into a local alloca for us.
2651   SmallVector<ParamValue, 16> ArgVals;
2652   ArgVals.reserve(Args.size());
2653 
2654   // Create a pointer value for every parameter declaration.  This usually
2655   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2656   // any cleanups or do anything that might unwind.  We do that separately, so
2657   // we can push the cleanups in the correct order for the ABI.
2658   assert(FI.arg_size() == Args.size() &&
2659          "Mismatch between function signature & arguments.");
2660   unsigned ArgNo = 0;
2661   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2662   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2663        i != e; ++i, ++info_it, ++ArgNo) {
2664     const VarDecl *Arg = *i;
2665     const ABIArgInfo &ArgI = info_it->info;
2666 
2667     bool isPromoted =
2668       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2669     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2670     // the parameter is promoted. In this case we convert to
2671     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2672     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2673     assert(hasScalarEvaluationKind(Ty) ==
2674            hasScalarEvaluationKind(Arg->getType()));
2675 
2676     unsigned FirstIRArg, NumIRArgs;
2677     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2678 
2679     switch (ArgI.getKind()) {
2680     case ABIArgInfo::InAlloca: {
2681       assert(NumIRArgs == 0);
2682       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2683       Address V =
2684           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2685       if (ArgI.getInAllocaIndirect())
2686         V = Address(Builder.CreateLoad(V),
2687                     getContext().getTypeAlignInChars(Ty));
2688       ArgVals.push_back(ParamValue::forIndirect(V));
2689       break;
2690     }
2691 
2692     case ABIArgInfo::Indirect:
2693     case ABIArgInfo::IndirectAliased: {
2694       assert(NumIRArgs == 1);
2695       Address ParamAddr =
2696           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2697 
2698       if (!hasScalarEvaluationKind(Ty)) {
2699         // Aggregates and complex variables are accessed by reference. All we
2700         // need to do is realign the value, if requested. Also, if the address
2701         // may be aliased, copy it to ensure that the parameter variable is
2702         // mutable and has a unique adress, as C requires.
2703         Address V = ParamAddr;
2704         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2705           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2706 
2707           // Copy from the incoming argument pointer to the temporary with the
2708           // appropriate alignment.
2709           //
2710           // FIXME: We should have a common utility for generating an aggregate
2711           // copy.
2712           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2713           Builder.CreateMemCpy(
2714               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2715               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2716               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2717           V = AlignedTemp;
2718         }
2719         ArgVals.push_back(ParamValue::forIndirect(V));
2720       } else {
2721         // Load scalar value from indirect argument.
2722         llvm::Value *V =
2723             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2724 
2725         if (isPromoted)
2726           V = emitArgumentDemotion(*this, Arg, V);
2727         ArgVals.push_back(ParamValue::forDirect(V));
2728       }
2729       break;
2730     }
2731 
2732     case ABIArgInfo::Extend:
2733     case ABIArgInfo::Direct: {
2734       auto AI = Fn->getArg(FirstIRArg);
2735       llvm::Type *LTy = ConvertType(Arg->getType());
2736 
2737       // Prepare parameter attributes. So far, only attributes for pointer
2738       // parameters are prepared. See
2739       // http://llvm.org/docs/LangRef.html#paramattrs.
2740       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2741           ArgI.getCoerceToType()->isPointerTy()) {
2742         assert(NumIRArgs == 1);
2743 
2744         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2745           // Set `nonnull` attribute if any.
2746           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2747                              PVD->getFunctionScopeIndex()) &&
2748               !CGM.getCodeGenOpts().NullPointerIsValid)
2749             AI->addAttr(llvm::Attribute::NonNull);
2750 
2751           QualType OTy = PVD->getOriginalType();
2752           if (const auto *ArrTy =
2753               getContext().getAsConstantArrayType(OTy)) {
2754             // A C99 array parameter declaration with the static keyword also
2755             // indicates dereferenceability, and if the size is constant we can
2756             // use the dereferenceable attribute (which requires the size in
2757             // bytes).
2758             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2759               QualType ETy = ArrTy->getElementType();
2760               llvm::Align Alignment =
2761                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2762               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2763               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2764               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2765                   ArrSize) {
2766                 llvm::AttrBuilder Attrs;
2767                 Attrs.addDereferenceableAttr(
2768                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2769                     ArrSize);
2770                 AI->addAttrs(Attrs);
2771               } else if (getContext().getTargetInfo().getNullPointerValue(
2772                              ETy.getAddressSpace()) == 0 &&
2773                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2774                 AI->addAttr(llvm::Attribute::NonNull);
2775               }
2776             }
2777           } else if (const auto *ArrTy =
2778                      getContext().getAsVariableArrayType(OTy)) {
2779             // For C99 VLAs with the static keyword, we don't know the size so
2780             // we can't use the dereferenceable attribute, but in addrspace(0)
2781             // we know that it must be nonnull.
2782             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2783               QualType ETy = ArrTy->getElementType();
2784               llvm::Align Alignment =
2785                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2786               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2787               if (!getContext().getTargetAddressSpace(ETy) &&
2788                   !CGM.getCodeGenOpts().NullPointerIsValid)
2789                 AI->addAttr(llvm::Attribute::NonNull);
2790             }
2791           }
2792 
2793           // Set `align` attribute if any.
2794           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2795           if (!AVAttr)
2796             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2797               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2798           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2799             // If alignment-assumption sanitizer is enabled, we do *not* add
2800             // alignment attribute here, but emit normal alignment assumption,
2801             // so the UBSAN check could function.
2802             llvm::ConstantInt *AlignmentCI =
2803                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2804             uint64_t AlignmentInt =
2805                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2806             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2807               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2808               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2809                   llvm::Align(AlignmentInt)));
2810             }
2811           }
2812         }
2813 
2814         // Set 'noalias' if an argument type has the `restrict` qualifier.
2815         if (Arg->getType().isRestrictQualified())
2816           AI->addAttr(llvm::Attribute::NoAlias);
2817       }
2818 
2819       // Prepare the argument value. If we have the trivial case, handle it
2820       // with no muss and fuss.
2821       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2822           ArgI.getCoerceToType() == ConvertType(Ty) &&
2823           ArgI.getDirectOffset() == 0) {
2824         assert(NumIRArgs == 1);
2825 
2826         // LLVM expects swifterror parameters to be used in very restricted
2827         // ways.  Copy the value into a less-restricted temporary.
2828         llvm::Value *V = AI;
2829         if (FI.getExtParameterInfo(ArgNo).getABI()
2830               == ParameterABI::SwiftErrorResult) {
2831           QualType pointeeTy = Ty->getPointeeType();
2832           assert(pointeeTy->isPointerType());
2833           Address temp =
2834             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2835           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2836           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2837           Builder.CreateStore(incomingErrorValue, temp);
2838           V = temp.getPointer();
2839 
2840           // Push a cleanup to copy the value back at the end of the function.
2841           // The convention does not guarantee that the value will be written
2842           // back if the function exits with an unwind exception.
2843           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2844         }
2845 
2846         // Ensure the argument is the correct type.
2847         if (V->getType() != ArgI.getCoerceToType())
2848           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2849 
2850         if (isPromoted)
2851           V = emitArgumentDemotion(*this, Arg, V);
2852 
2853         // Because of merging of function types from multiple decls it is
2854         // possible for the type of an argument to not match the corresponding
2855         // type in the function type. Since we are codegening the callee
2856         // in here, add a cast to the argument type.
2857         llvm::Type *LTy = ConvertType(Arg->getType());
2858         if (V->getType() != LTy)
2859           V = Builder.CreateBitCast(V, LTy);
2860 
2861         ArgVals.push_back(ParamValue::forDirect(V));
2862         break;
2863       }
2864 
2865       // VLST arguments are coerced to VLATs at the function boundary for
2866       // ABI consistency. If this is a VLST that was coerced to
2867       // a VLAT at the function boundary and the types match up, use
2868       // llvm.experimental.vector.extract to convert back to the original
2869       // VLST.
2870       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2871         llvm::Value *Coerced = Fn->getArg(FirstIRArg);
2872         if (auto *VecTyFrom =
2873                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2874           // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2875           // vector, bitcast the source and use a vector extract.
2876           auto PredType =
2877               llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2878           if (VecTyFrom == PredType &&
2879               VecTyTo->getElementType() == Builder.getInt8Ty()) {
2880             VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2881             Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
2882           }
2883           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2884             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2885 
2886             assert(NumIRArgs == 1);
2887             Coerced->setName(Arg->getName() + ".coerce");
2888             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2889                 VecTyTo, Coerced, Zero, "castFixedSve")));
2890             break;
2891           }
2892         }
2893       }
2894 
2895       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2896                                      Arg->getName());
2897 
2898       // Pointer to store into.
2899       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2900 
2901       // Fast-isel and the optimizer generally like scalar values better than
2902       // FCAs, so we flatten them if this is safe to do for this argument.
2903       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2904       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2905           STy->getNumElements() > 1) {
2906         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2907         llvm::Type *DstTy = Ptr.getElementType();
2908         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2909 
2910         Address AddrToStoreInto = Address::invalid();
2911         if (SrcSize <= DstSize) {
2912           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2913         } else {
2914           AddrToStoreInto =
2915             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2916         }
2917 
2918         assert(STy->getNumElements() == NumIRArgs);
2919         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2920           auto AI = Fn->getArg(FirstIRArg + i);
2921           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2922           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2923           Builder.CreateStore(AI, EltPtr);
2924         }
2925 
2926         if (SrcSize > DstSize) {
2927           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2928         }
2929 
2930       } else {
2931         // Simple case, just do a coerced store of the argument into the alloca.
2932         assert(NumIRArgs == 1);
2933         auto AI = Fn->getArg(FirstIRArg);
2934         AI->setName(Arg->getName() + ".coerce");
2935         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2936       }
2937 
2938       // Match to what EmitParmDecl is expecting for this type.
2939       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2940         llvm::Value *V =
2941             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2942         if (isPromoted)
2943           V = emitArgumentDemotion(*this, Arg, V);
2944         ArgVals.push_back(ParamValue::forDirect(V));
2945       } else {
2946         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2947       }
2948       break;
2949     }
2950 
2951     case ABIArgInfo::CoerceAndExpand: {
2952       // Reconstruct into a temporary.
2953       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2954       ArgVals.push_back(ParamValue::forIndirect(alloca));
2955 
2956       auto coercionType = ArgI.getCoerceAndExpandType();
2957       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2958 
2959       unsigned argIndex = FirstIRArg;
2960       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2961         llvm::Type *eltType = coercionType->getElementType(i);
2962         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2963           continue;
2964 
2965         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2966         auto elt = Fn->getArg(argIndex++);
2967         Builder.CreateStore(elt, eltAddr);
2968       }
2969       assert(argIndex == FirstIRArg + NumIRArgs);
2970       break;
2971     }
2972 
2973     case ABIArgInfo::Expand: {
2974       // If this structure was expanded into multiple arguments then
2975       // we need to create a temporary and reconstruct it from the
2976       // arguments.
2977       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2978       LValue LV = MakeAddrLValue(Alloca, Ty);
2979       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2980 
2981       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2982       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2983       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2984       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2985         auto AI = Fn->getArg(FirstIRArg + i);
2986         AI->setName(Arg->getName() + "." + Twine(i));
2987       }
2988       break;
2989     }
2990 
2991     case ABIArgInfo::Ignore:
2992       assert(NumIRArgs == 0);
2993       // Initialize the local variable appropriately.
2994       if (!hasScalarEvaluationKind(Ty)) {
2995         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2996       } else {
2997         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2998         ArgVals.push_back(ParamValue::forDirect(U));
2999       }
3000       break;
3001     }
3002   }
3003 
3004   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3005     for (int I = Args.size() - 1; I >= 0; --I)
3006       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3007   } else {
3008     for (unsigned I = 0, E = Args.size(); I != E; ++I)
3009       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3010   }
3011 }
3012 
3013 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3014   while (insn->use_empty()) {
3015     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3016     if (!bitcast) return;
3017 
3018     // This is "safe" because we would have used a ConstantExpr otherwise.
3019     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3020     bitcast->eraseFromParent();
3021   }
3022 }
3023 
3024 /// Try to emit a fused autorelease of a return result.
3025 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3026                                                     llvm::Value *result) {
3027   // We must be immediately followed the cast.
3028   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3029   if (BB->empty()) return nullptr;
3030   if (&BB->back() != result) return nullptr;
3031 
3032   llvm::Type *resultType = result->getType();
3033 
3034   // result is in a BasicBlock and is therefore an Instruction.
3035   llvm::Instruction *generator = cast<llvm::Instruction>(result);
3036 
3037   SmallVector<llvm::Instruction *, 4> InstsToKill;
3038 
3039   // Look for:
3040   //  %generator = bitcast %type1* %generator2 to %type2*
3041   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3042     // We would have emitted this as a constant if the operand weren't
3043     // an Instruction.
3044     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3045 
3046     // Require the generator to be immediately followed by the cast.
3047     if (generator->getNextNode() != bitcast)
3048       return nullptr;
3049 
3050     InstsToKill.push_back(bitcast);
3051   }
3052 
3053   // Look for:
3054   //   %generator = call i8* @objc_retain(i8* %originalResult)
3055   // or
3056   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3057   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3058   if (!call) return nullptr;
3059 
3060   bool doRetainAutorelease;
3061 
3062   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3063     doRetainAutorelease = true;
3064   } else if (call->getCalledOperand() ==
3065              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3066     doRetainAutorelease = false;
3067 
3068     // If we emitted an assembly marker for this call (and the
3069     // ARCEntrypoints field should have been set if so), go looking
3070     // for that call.  If we can't find it, we can't do this
3071     // optimization.  But it should always be the immediately previous
3072     // instruction, unless we needed bitcasts around the call.
3073     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3074       llvm::Instruction *prev = call->getPrevNode();
3075       assert(prev);
3076       if (isa<llvm::BitCastInst>(prev)) {
3077         prev = prev->getPrevNode();
3078         assert(prev);
3079       }
3080       assert(isa<llvm::CallInst>(prev));
3081       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3082              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3083       InstsToKill.push_back(prev);
3084     }
3085   } else {
3086     return nullptr;
3087   }
3088 
3089   result = call->getArgOperand(0);
3090   InstsToKill.push_back(call);
3091 
3092   // Keep killing bitcasts, for sanity.  Note that we no longer care
3093   // about precise ordering as long as there's exactly one use.
3094   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3095     if (!bitcast->hasOneUse()) break;
3096     InstsToKill.push_back(bitcast);
3097     result = bitcast->getOperand(0);
3098   }
3099 
3100   // Delete all the unnecessary instructions, from latest to earliest.
3101   for (auto *I : InstsToKill)
3102     I->eraseFromParent();
3103 
3104   // Do the fused retain/autorelease if we were asked to.
3105   if (doRetainAutorelease)
3106     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3107 
3108   // Cast back to the result type.
3109   return CGF.Builder.CreateBitCast(result, resultType);
3110 }
3111 
3112 /// If this is a +1 of the value of an immutable 'self', remove it.
3113 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3114                                           llvm::Value *result) {
3115   // This is only applicable to a method with an immutable 'self'.
3116   const ObjCMethodDecl *method =
3117     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3118   if (!method) return nullptr;
3119   const VarDecl *self = method->getSelfDecl();
3120   if (!self->getType().isConstQualified()) return nullptr;
3121 
3122   // Look for a retain call.
3123   llvm::CallInst *retainCall =
3124     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3125   if (!retainCall || retainCall->getCalledOperand() !=
3126                          CGF.CGM.getObjCEntrypoints().objc_retain)
3127     return nullptr;
3128 
3129   // Look for an ordinary load of 'self'.
3130   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3131   llvm::LoadInst *load =
3132     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3133   if (!load || load->isAtomic() || load->isVolatile() ||
3134       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3135     return nullptr;
3136 
3137   // Okay!  Burn it all down.  This relies for correctness on the
3138   // assumption that the retain is emitted as part of the return and
3139   // that thereafter everything is used "linearly".
3140   llvm::Type *resultType = result->getType();
3141   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3142   assert(retainCall->use_empty());
3143   retainCall->eraseFromParent();
3144   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3145 
3146   return CGF.Builder.CreateBitCast(load, resultType);
3147 }
3148 
3149 /// Emit an ARC autorelease of the result of a function.
3150 ///
3151 /// \return the value to actually return from the function
3152 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3153                                             llvm::Value *result) {
3154   // If we're returning 'self', kill the initial retain.  This is a
3155   // heuristic attempt to "encourage correctness" in the really unfortunate
3156   // case where we have a return of self during a dealloc and we desperately
3157   // need to avoid the possible autorelease.
3158   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3159     return self;
3160 
3161   // At -O0, try to emit a fused retain/autorelease.
3162   if (CGF.shouldUseFusedARCCalls())
3163     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3164       return fused;
3165 
3166   return CGF.EmitARCAutoreleaseReturnValue(result);
3167 }
3168 
3169 /// Heuristically search for a dominating store to the return-value slot.
3170 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3171   // Check if a User is a store which pointerOperand is the ReturnValue.
3172   // We are looking for stores to the ReturnValue, not for stores of the
3173   // ReturnValue to some other location.
3174   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3175     auto *SI = dyn_cast<llvm::StoreInst>(U);
3176     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
3177       return nullptr;
3178     // These aren't actually possible for non-coerced returns, and we
3179     // only care about non-coerced returns on this code path.
3180     assert(!SI->isAtomic() && !SI->isVolatile());
3181     return SI;
3182   };
3183   // If there are multiple uses of the return-value slot, just check
3184   // for something immediately preceding the IP.  Sometimes this can
3185   // happen with how we generate implicit-returns; it can also happen
3186   // with noreturn cleanups.
3187   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3188     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3189     if (IP->empty()) return nullptr;
3190     llvm::Instruction *I = &IP->back();
3191 
3192     // Skip lifetime markers
3193     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
3194                                             IE = IP->rend();
3195          II != IE; ++II) {
3196       if (llvm::IntrinsicInst *Intrinsic =
3197               dyn_cast<llvm::IntrinsicInst>(&*II)) {
3198         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
3199           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
3200           ++II;
3201           if (II == IE)
3202             break;
3203           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
3204             continue;
3205         }
3206       }
3207       I = &*II;
3208       break;
3209     }
3210 
3211     return GetStoreIfValid(I);
3212   }
3213 
3214   llvm::StoreInst *store =
3215       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3216   if (!store) return nullptr;
3217 
3218   // Now do a first-and-dirty dominance check: just walk up the
3219   // single-predecessors chain from the current insertion point.
3220   llvm::BasicBlock *StoreBB = store->getParent();
3221   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3222   while (IP != StoreBB) {
3223     if (!(IP = IP->getSinglePredecessor()))
3224       return nullptr;
3225   }
3226 
3227   // Okay, the store's basic block dominates the insertion point; we
3228   // can do our thing.
3229   return store;
3230 }
3231 
3232 // Helper functions for EmitCMSEClearRecord
3233 
3234 // Set the bits corresponding to a field having width `BitWidth` and located at
3235 // offset `BitOffset` (from the least significant bit) within a storage unit of
3236 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3237 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3238 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3239                         int BitWidth, int CharWidth) {
3240   assert(CharWidth <= 64);
3241   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3242 
3243   int Pos = 0;
3244   if (BitOffset >= CharWidth) {
3245     Pos += BitOffset / CharWidth;
3246     BitOffset = BitOffset % CharWidth;
3247   }
3248 
3249   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3250   if (BitOffset + BitWidth >= CharWidth) {
3251     Bits[Pos++] |= (Used << BitOffset) & Used;
3252     BitWidth -= CharWidth - BitOffset;
3253     BitOffset = 0;
3254   }
3255 
3256   while (BitWidth >= CharWidth) {
3257     Bits[Pos++] = Used;
3258     BitWidth -= CharWidth;
3259   }
3260 
3261   if (BitWidth > 0)
3262     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3263 }
3264 
3265 // Set the bits corresponding to a field having width `BitWidth` and located at
3266 // offset `BitOffset` (from the least significant bit) within a storage unit of
3267 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3268 // `Bits` corresponds to one target byte. Use target endian layout.
3269 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3270                         int StorageSize, int BitOffset, int BitWidth,
3271                         int CharWidth, bool BigEndian) {
3272 
3273   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3274   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3275 
3276   if (BigEndian)
3277     std::reverse(TmpBits.begin(), TmpBits.end());
3278 
3279   for (uint64_t V : TmpBits)
3280     Bits[StorageOffset++] |= V;
3281 }
3282 
3283 static void setUsedBits(CodeGenModule &, QualType, int,
3284                         SmallVectorImpl<uint64_t> &);
3285 
3286 // Set the bits in `Bits`, which correspond to the value representations of
3287 // the actual members of the record type `RTy`. Note that this function does
3288 // not handle base classes, virtual tables, etc, since they cannot happen in
3289 // CMSE function arguments or return. The bit mask corresponds to the target
3290 // memory layout, i.e. it's endian dependent.
3291 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3292                         SmallVectorImpl<uint64_t> &Bits) {
3293   ASTContext &Context = CGM.getContext();
3294   int CharWidth = Context.getCharWidth();
3295   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3296   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3297   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3298 
3299   int Idx = 0;
3300   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3301     const FieldDecl *F = *I;
3302 
3303     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3304         F->getType()->isIncompleteArrayType())
3305       continue;
3306 
3307     if (F->isBitField()) {
3308       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3309       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3310                   BFI.StorageSize / CharWidth, BFI.Offset,
3311                   BFI.Size, CharWidth,
3312                   CGM.getDataLayout().isBigEndian());
3313       continue;
3314     }
3315 
3316     setUsedBits(CGM, F->getType(),
3317                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3318   }
3319 }
3320 
3321 // Set the bits in `Bits`, which correspond to the value representations of
3322 // the elements of an array type `ATy`.
3323 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3324                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3325   const ASTContext &Context = CGM.getContext();
3326 
3327   QualType ETy = Context.getBaseElementType(ATy);
3328   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3329   SmallVector<uint64_t, 4> TmpBits(Size);
3330   setUsedBits(CGM, ETy, 0, TmpBits);
3331 
3332   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3333     auto Src = TmpBits.begin();
3334     auto Dst = Bits.begin() + Offset + I * Size;
3335     for (int J = 0; J < Size; ++J)
3336       *Dst++ |= *Src++;
3337   }
3338 }
3339 
3340 // Set the bits in `Bits`, which correspond to the value representations of
3341 // the type `QTy`.
3342 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3343                         SmallVectorImpl<uint64_t> &Bits) {
3344   if (const auto *RTy = QTy->getAs<RecordType>())
3345     return setUsedBits(CGM, RTy, Offset, Bits);
3346 
3347   ASTContext &Context = CGM.getContext();
3348   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3349     return setUsedBits(CGM, ATy, Offset, Bits);
3350 
3351   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3352   if (Size <= 0)
3353     return;
3354 
3355   std::fill_n(Bits.begin() + Offset, Size,
3356               (uint64_t(1) << Context.getCharWidth()) - 1);
3357 }
3358 
3359 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3360                                    int Pos, int Size, int CharWidth,
3361                                    bool BigEndian) {
3362   assert(Size > 0);
3363   uint64_t Mask = 0;
3364   if (BigEndian) {
3365     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3366          ++P)
3367       Mask = (Mask << CharWidth) | *P;
3368   } else {
3369     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3370     do
3371       Mask = (Mask << CharWidth) | *--P;
3372     while (P != End);
3373   }
3374   return Mask;
3375 }
3376 
3377 // Emit code to clear the bits in a record, which aren't a part of any user
3378 // declared member, when the record is a function return.
3379 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3380                                                   llvm::IntegerType *ITy,
3381                                                   QualType QTy) {
3382   assert(Src->getType() == ITy);
3383   assert(ITy->getScalarSizeInBits() <= 64);
3384 
3385   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3386   int Size = DataLayout.getTypeStoreSize(ITy);
3387   SmallVector<uint64_t, 4> Bits(Size);
3388   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3389 
3390   int CharWidth = CGM.getContext().getCharWidth();
3391   uint64_t Mask =
3392       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3393 
3394   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3395 }
3396 
3397 // Emit code to clear the bits in a record, which aren't a part of any user
3398 // declared member, when the record is a function argument.
3399 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3400                                                   llvm::ArrayType *ATy,
3401                                                   QualType QTy) {
3402   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3403   int Size = DataLayout.getTypeStoreSize(ATy);
3404   SmallVector<uint64_t, 16> Bits(Size);
3405   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3406 
3407   // Clear each element of the LLVM array.
3408   int CharWidth = CGM.getContext().getCharWidth();
3409   int CharsPerElt =
3410       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3411   int MaskIndex = 0;
3412   llvm::Value *R = llvm::UndefValue::get(ATy);
3413   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3414     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3415                                        DataLayout.isBigEndian());
3416     MaskIndex += CharsPerElt;
3417     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3418     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3419     R = Builder.CreateInsertValue(R, T1, I);
3420   }
3421 
3422   return R;
3423 }
3424 
3425 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3426                                          bool EmitRetDbgLoc,
3427                                          SourceLocation EndLoc) {
3428   if (FI.isNoReturn()) {
3429     // Noreturn functions don't return.
3430     EmitUnreachable(EndLoc);
3431     return;
3432   }
3433 
3434   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3435     // Naked functions don't have epilogues.
3436     Builder.CreateUnreachable();
3437     return;
3438   }
3439 
3440   // Functions with no result always return void.
3441   if (!ReturnValue.isValid()) {
3442     Builder.CreateRetVoid();
3443     return;
3444   }
3445 
3446   llvm::DebugLoc RetDbgLoc;
3447   llvm::Value *RV = nullptr;
3448   QualType RetTy = FI.getReturnType();
3449   const ABIArgInfo &RetAI = FI.getReturnInfo();
3450 
3451   switch (RetAI.getKind()) {
3452   case ABIArgInfo::InAlloca:
3453     // Aggregrates get evaluated directly into the destination.  Sometimes we
3454     // need to return the sret value in a register, though.
3455     assert(hasAggregateEvaluationKind(RetTy));
3456     if (RetAI.getInAllocaSRet()) {
3457       llvm::Function::arg_iterator EI = CurFn->arg_end();
3458       --EI;
3459       llvm::Value *ArgStruct = &*EI;
3460       llvm::Value *SRet = Builder.CreateStructGEP(
3461           EI->getType()->getPointerElementType(), ArgStruct,
3462           RetAI.getInAllocaFieldIndex());
3463       llvm::Type *Ty =
3464           cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3465       RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3466     }
3467     break;
3468 
3469   case ABIArgInfo::Indirect: {
3470     auto AI = CurFn->arg_begin();
3471     if (RetAI.isSRetAfterThis())
3472       ++AI;
3473     switch (getEvaluationKind(RetTy)) {
3474     case TEK_Complex: {
3475       ComplexPairTy RT =
3476         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3477       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3478                          /*isInit*/ true);
3479       break;
3480     }
3481     case TEK_Aggregate:
3482       // Do nothing; aggregrates get evaluated directly into the destination.
3483       break;
3484     case TEK_Scalar:
3485       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3486                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3487                         /*isInit*/ true);
3488       break;
3489     }
3490     break;
3491   }
3492 
3493   case ABIArgInfo::Extend:
3494   case ABIArgInfo::Direct:
3495     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3496         RetAI.getDirectOffset() == 0) {
3497       // The internal return value temp always will have pointer-to-return-type
3498       // type, just do a load.
3499 
3500       // If there is a dominating store to ReturnValue, we can elide
3501       // the load, zap the store, and usually zap the alloca.
3502       if (llvm::StoreInst *SI =
3503               findDominatingStoreToReturnValue(*this)) {
3504         // Reuse the debug location from the store unless there is
3505         // cleanup code to be emitted between the store and return
3506         // instruction.
3507         if (EmitRetDbgLoc && !AutoreleaseResult)
3508           RetDbgLoc = SI->getDebugLoc();
3509         // Get the stored value and nuke the now-dead store.
3510         RV = SI->getValueOperand();
3511         SI->eraseFromParent();
3512 
3513       // Otherwise, we have to do a simple load.
3514       } else {
3515         RV = Builder.CreateLoad(ReturnValue);
3516       }
3517     } else {
3518       // If the value is offset in memory, apply the offset now.
3519       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3520 
3521       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3522     }
3523 
3524     // In ARC, end functions that return a retainable type with a call
3525     // to objc_autoreleaseReturnValue.
3526     if (AutoreleaseResult) {
3527 #ifndef NDEBUG
3528       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3529       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3530       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3531       // CurCodeDecl or BlockInfo.
3532       QualType RT;
3533 
3534       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3535         RT = FD->getReturnType();
3536       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3537         RT = MD->getReturnType();
3538       else if (isa<BlockDecl>(CurCodeDecl))
3539         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3540       else
3541         llvm_unreachable("Unexpected function/method type");
3542 
3543       assert(getLangOpts().ObjCAutoRefCount &&
3544              !FI.isReturnsRetained() &&
3545              RT->isObjCRetainableType());
3546 #endif
3547       RV = emitAutoreleaseOfResult(*this, RV);
3548     }
3549 
3550     break;
3551 
3552   case ABIArgInfo::Ignore:
3553     break;
3554 
3555   case ABIArgInfo::CoerceAndExpand: {
3556     auto coercionType = RetAI.getCoerceAndExpandType();
3557 
3558     // Load all of the coerced elements out into results.
3559     llvm::SmallVector<llvm::Value*, 4> results;
3560     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3561     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3562       auto coercedEltType = coercionType->getElementType(i);
3563       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3564         continue;
3565 
3566       auto eltAddr = Builder.CreateStructGEP(addr, i);
3567       auto elt = Builder.CreateLoad(eltAddr);
3568       results.push_back(elt);
3569     }
3570 
3571     // If we have one result, it's the single direct result type.
3572     if (results.size() == 1) {
3573       RV = results[0];
3574 
3575     // Otherwise, we need to make a first-class aggregate.
3576     } else {
3577       // Construct a return type that lacks padding elements.
3578       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3579 
3580       RV = llvm::UndefValue::get(returnType);
3581       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3582         RV = Builder.CreateInsertValue(RV, results[i], i);
3583       }
3584     }
3585     break;
3586   }
3587   case ABIArgInfo::Expand:
3588   case ABIArgInfo::IndirectAliased:
3589     llvm_unreachable("Invalid ABI kind for return argument");
3590   }
3591 
3592   llvm::Instruction *Ret;
3593   if (RV) {
3594     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3595       // For certain return types, clear padding bits, as they may reveal
3596       // sensitive information.
3597       // Small struct/union types are passed as integers.
3598       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3599       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3600         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3601     }
3602     EmitReturnValueCheck(RV);
3603     Ret = Builder.CreateRet(RV);
3604   } else {
3605     Ret = Builder.CreateRetVoid();
3606   }
3607 
3608   if (RetDbgLoc)
3609     Ret->setDebugLoc(std::move(RetDbgLoc));
3610 }
3611 
3612 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3613   // A current decl may not be available when emitting vtable thunks.
3614   if (!CurCodeDecl)
3615     return;
3616 
3617   // If the return block isn't reachable, neither is this check, so don't emit
3618   // it.
3619   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3620     return;
3621 
3622   ReturnsNonNullAttr *RetNNAttr = nullptr;
3623   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3624     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3625 
3626   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3627     return;
3628 
3629   // Prefer the returns_nonnull attribute if it's present.
3630   SourceLocation AttrLoc;
3631   SanitizerMask CheckKind;
3632   SanitizerHandler Handler;
3633   if (RetNNAttr) {
3634     assert(!requiresReturnValueNullabilityCheck() &&
3635            "Cannot check nullability and the nonnull attribute");
3636     AttrLoc = RetNNAttr->getLocation();
3637     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3638     Handler = SanitizerHandler::NonnullReturn;
3639   } else {
3640     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3641       if (auto *TSI = DD->getTypeSourceInfo())
3642         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3643           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3644     CheckKind = SanitizerKind::NullabilityReturn;
3645     Handler = SanitizerHandler::NullabilityReturn;
3646   }
3647 
3648   SanitizerScope SanScope(this);
3649 
3650   // Make sure the "return" source location is valid. If we're checking a
3651   // nullability annotation, make sure the preconditions for the check are met.
3652   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3653   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3654   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3655   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3656   if (requiresReturnValueNullabilityCheck())
3657     CanNullCheck =
3658         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3659   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3660   EmitBlock(Check);
3661 
3662   // Now do the null check.
3663   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3664   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3665   llvm::Value *DynamicData[] = {SLocPtr};
3666   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3667 
3668   EmitBlock(NoCheck);
3669 
3670 #ifndef NDEBUG
3671   // The return location should not be used after the check has been emitted.
3672   ReturnLocation = Address::invalid();
3673 #endif
3674 }
3675 
3676 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3677   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3678   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3679 }
3680 
3681 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3682                                           QualType Ty) {
3683   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3684   // placeholders.
3685   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3686   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3687   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3688 
3689   // FIXME: When we generate this IR in one pass, we shouldn't need
3690   // this win32-specific alignment hack.
3691   CharUnits Align = CharUnits::fromQuantity(4);
3692   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3693 
3694   return AggValueSlot::forAddr(Address(Placeholder, Align),
3695                                Ty.getQualifiers(),
3696                                AggValueSlot::IsNotDestructed,
3697                                AggValueSlot::DoesNotNeedGCBarriers,
3698                                AggValueSlot::IsNotAliased,
3699                                AggValueSlot::DoesNotOverlap);
3700 }
3701 
3702 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3703                                           const VarDecl *param,
3704                                           SourceLocation loc) {
3705   // StartFunction converted the ABI-lowered parameter(s) into a
3706   // local alloca.  We need to turn that into an r-value suitable
3707   // for EmitCall.
3708   Address local = GetAddrOfLocalVar(param);
3709 
3710   QualType type = param->getType();
3711 
3712   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3713     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3714   }
3715 
3716   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3717   // but the argument needs to be the original pointer.
3718   if (type->isReferenceType()) {
3719     args.add(RValue::get(Builder.CreateLoad(local)), type);
3720 
3721   // In ARC, move out of consumed arguments so that the release cleanup
3722   // entered by StartFunction doesn't cause an over-release.  This isn't
3723   // optimal -O0 code generation, but it should get cleaned up when
3724   // optimization is enabled.  This also assumes that delegate calls are
3725   // performed exactly once for a set of arguments, but that should be safe.
3726   } else if (getLangOpts().ObjCAutoRefCount &&
3727              param->hasAttr<NSConsumedAttr>() &&
3728              type->isObjCRetainableType()) {
3729     llvm::Value *ptr = Builder.CreateLoad(local);
3730     auto null =
3731       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3732     Builder.CreateStore(null, local);
3733     args.add(RValue::get(ptr), type);
3734 
3735   // For the most part, we just need to load the alloca, except that
3736   // aggregate r-values are actually pointers to temporaries.
3737   } else {
3738     args.add(convertTempToRValue(local, type, loc), type);
3739   }
3740 
3741   // Deactivate the cleanup for the callee-destructed param that was pushed.
3742   if (type->isRecordType() && !CurFuncIsThunk &&
3743       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3744       param->needsDestruction(getContext())) {
3745     EHScopeStack::stable_iterator cleanup =
3746         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3747     assert(cleanup.isValid() &&
3748            "cleanup for callee-destructed param not recorded");
3749     // This unreachable is a temporary marker which will be removed later.
3750     llvm::Instruction *isActive = Builder.CreateUnreachable();
3751     args.addArgCleanupDeactivation(cleanup, isActive);
3752   }
3753 }
3754 
3755 static bool isProvablyNull(llvm::Value *addr) {
3756   return isa<llvm::ConstantPointerNull>(addr);
3757 }
3758 
3759 /// Emit the actual writing-back of a writeback.
3760 static void emitWriteback(CodeGenFunction &CGF,
3761                           const CallArgList::Writeback &writeback) {
3762   const LValue &srcLV = writeback.Source;
3763   Address srcAddr = srcLV.getAddress(CGF);
3764   assert(!isProvablyNull(srcAddr.getPointer()) &&
3765          "shouldn't have writeback for provably null argument");
3766 
3767   llvm::BasicBlock *contBB = nullptr;
3768 
3769   // If the argument wasn't provably non-null, we need to null check
3770   // before doing the store.
3771   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3772                                               CGF.CGM.getDataLayout());
3773   if (!provablyNonNull) {
3774     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3775     contBB = CGF.createBasicBlock("icr.done");
3776 
3777     llvm::Value *isNull =
3778       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3779     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3780     CGF.EmitBlock(writebackBB);
3781   }
3782 
3783   // Load the value to writeback.
3784   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3785 
3786   // Cast it back, in case we're writing an id to a Foo* or something.
3787   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3788                                     "icr.writeback-cast");
3789 
3790   // Perform the writeback.
3791 
3792   // If we have a "to use" value, it's something we need to emit a use
3793   // of.  This has to be carefully threaded in: if it's done after the
3794   // release it's potentially undefined behavior (and the optimizer
3795   // will ignore it), and if it happens before the retain then the
3796   // optimizer could move the release there.
3797   if (writeback.ToUse) {
3798     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3799 
3800     // Retain the new value.  No need to block-copy here:  the block's
3801     // being passed up the stack.
3802     value = CGF.EmitARCRetainNonBlock(value);
3803 
3804     // Emit the intrinsic use here.
3805     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3806 
3807     // Load the old value (primitively).
3808     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3809 
3810     // Put the new value in place (primitively).
3811     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3812 
3813     // Release the old value.
3814     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3815 
3816   // Otherwise, we can just do a normal lvalue store.
3817   } else {
3818     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3819   }
3820 
3821   // Jump to the continuation block.
3822   if (!provablyNonNull)
3823     CGF.EmitBlock(contBB);
3824 }
3825 
3826 static void emitWritebacks(CodeGenFunction &CGF,
3827                            const CallArgList &args) {
3828   for (const auto &I : args.writebacks())
3829     emitWriteback(CGF, I);
3830 }
3831 
3832 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3833                                             const CallArgList &CallArgs) {
3834   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3835     CallArgs.getCleanupsToDeactivate();
3836   // Iterate in reverse to increase the likelihood of popping the cleanup.
3837   for (const auto &I : llvm::reverse(Cleanups)) {
3838     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3839     I.IsActiveIP->eraseFromParent();
3840   }
3841 }
3842 
3843 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3844   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3845     if (uop->getOpcode() == UO_AddrOf)
3846       return uop->getSubExpr();
3847   return nullptr;
3848 }
3849 
3850 /// Emit an argument that's being passed call-by-writeback.  That is,
3851 /// we are passing the address of an __autoreleased temporary; it
3852 /// might be copy-initialized with the current value of the given
3853 /// address, but it will definitely be copied out of after the call.
3854 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3855                              const ObjCIndirectCopyRestoreExpr *CRE) {
3856   LValue srcLV;
3857 
3858   // Make an optimistic effort to emit the address as an l-value.
3859   // This can fail if the argument expression is more complicated.
3860   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3861     srcLV = CGF.EmitLValue(lvExpr);
3862 
3863   // Otherwise, just emit it as a scalar.
3864   } else {
3865     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3866 
3867     QualType srcAddrType =
3868       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3869     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3870   }
3871   Address srcAddr = srcLV.getAddress(CGF);
3872 
3873   // The dest and src types don't necessarily match in LLVM terms
3874   // because of the crazy ObjC compatibility rules.
3875 
3876   llvm::PointerType *destType =
3877     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3878 
3879   // If the address is a constant null, just pass the appropriate null.
3880   if (isProvablyNull(srcAddr.getPointer())) {
3881     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3882              CRE->getType());
3883     return;
3884   }
3885 
3886   // Create the temporary.
3887   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3888                                       CGF.getPointerAlign(),
3889                                       "icr.temp");
3890   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3891   // and that cleanup will be conditional if we can't prove that the l-value
3892   // isn't null, so we need to register a dominating point so that the cleanups
3893   // system will make valid IR.
3894   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3895 
3896   // Zero-initialize it if we're not doing a copy-initialization.
3897   bool shouldCopy = CRE->shouldCopy();
3898   if (!shouldCopy) {
3899     llvm::Value *null =
3900       llvm::ConstantPointerNull::get(
3901         cast<llvm::PointerType>(destType->getElementType()));
3902     CGF.Builder.CreateStore(null, temp);
3903   }
3904 
3905   llvm::BasicBlock *contBB = nullptr;
3906   llvm::BasicBlock *originBB = nullptr;
3907 
3908   // If the address is *not* known to be non-null, we need to switch.
3909   llvm::Value *finalArgument;
3910 
3911   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3912                                               CGF.CGM.getDataLayout());
3913   if (provablyNonNull) {
3914     finalArgument = temp.getPointer();
3915   } else {
3916     llvm::Value *isNull =
3917       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3918 
3919     finalArgument = CGF.Builder.CreateSelect(isNull,
3920                                    llvm::ConstantPointerNull::get(destType),
3921                                              temp.getPointer(), "icr.argument");
3922 
3923     // If we need to copy, then the load has to be conditional, which
3924     // means we need control flow.
3925     if (shouldCopy) {
3926       originBB = CGF.Builder.GetInsertBlock();
3927       contBB = CGF.createBasicBlock("icr.cont");
3928       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3929       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3930       CGF.EmitBlock(copyBB);
3931       condEval.begin(CGF);
3932     }
3933   }
3934 
3935   llvm::Value *valueToUse = nullptr;
3936 
3937   // Perform a copy if necessary.
3938   if (shouldCopy) {
3939     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3940     assert(srcRV.isScalar());
3941 
3942     llvm::Value *src = srcRV.getScalarVal();
3943     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3944                                     "icr.cast");
3945 
3946     // Use an ordinary store, not a store-to-lvalue.
3947     CGF.Builder.CreateStore(src, temp);
3948 
3949     // If optimization is enabled, and the value was held in a
3950     // __strong variable, we need to tell the optimizer that this
3951     // value has to stay alive until we're doing the store back.
3952     // This is because the temporary is effectively unretained,
3953     // and so otherwise we can violate the high-level semantics.
3954     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3955         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3956       valueToUse = src;
3957     }
3958   }
3959 
3960   // Finish the control flow if we needed it.
3961   if (shouldCopy && !provablyNonNull) {
3962     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3963     CGF.EmitBlock(contBB);
3964 
3965     // Make a phi for the value to intrinsically use.
3966     if (valueToUse) {
3967       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3968                                                       "icr.to-use");
3969       phiToUse->addIncoming(valueToUse, copyBB);
3970       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3971                             originBB);
3972       valueToUse = phiToUse;
3973     }
3974 
3975     condEval.end(CGF);
3976   }
3977 
3978   args.addWriteback(srcLV, temp, valueToUse);
3979   args.add(RValue::get(finalArgument), CRE->getType());
3980 }
3981 
3982 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3983   assert(!StackBase);
3984 
3985   // Save the stack.
3986   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3987   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3988 }
3989 
3990 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3991   if (StackBase) {
3992     // Restore the stack after the call.
3993     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3994     CGF.Builder.CreateCall(F, StackBase);
3995   }
3996 }
3997 
3998 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3999                                           SourceLocation ArgLoc,
4000                                           AbstractCallee AC,
4001                                           unsigned ParmNum) {
4002   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4003                          SanOpts.has(SanitizerKind::NullabilityArg)))
4004     return;
4005 
4006   // The param decl may be missing in a variadic function.
4007   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4008   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4009 
4010   // Prefer the nonnull attribute if it's present.
4011   const NonNullAttr *NNAttr = nullptr;
4012   if (SanOpts.has(SanitizerKind::NonnullAttribute))
4013     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4014 
4015   bool CanCheckNullability = false;
4016   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4017     auto Nullability = PVD->getType()->getNullability(getContext());
4018     CanCheckNullability = Nullability &&
4019                           *Nullability == NullabilityKind::NonNull &&
4020                           PVD->getTypeSourceInfo();
4021   }
4022 
4023   if (!NNAttr && !CanCheckNullability)
4024     return;
4025 
4026   SourceLocation AttrLoc;
4027   SanitizerMask CheckKind;
4028   SanitizerHandler Handler;
4029   if (NNAttr) {
4030     AttrLoc = NNAttr->getLocation();
4031     CheckKind = SanitizerKind::NonnullAttribute;
4032     Handler = SanitizerHandler::NonnullArg;
4033   } else {
4034     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4035     CheckKind = SanitizerKind::NullabilityArg;
4036     Handler = SanitizerHandler::NullabilityArg;
4037   }
4038 
4039   SanitizerScope SanScope(this);
4040   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4041   llvm::Constant *StaticData[] = {
4042       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4043       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4044   };
4045   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
4046 }
4047 
4048 // Check if the call is going to use the inalloca convention. This needs to
4049 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4050 // later, so we can't check it directly.
4051 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4052                             ArrayRef<QualType> ArgTypes) {
4053   // The Swift calling conventions don't go through the target-specific
4054   // argument classification, they never use inalloca.
4055   // TODO: Consider limiting inalloca use to only calling conventions supported
4056   // by MSVC.
4057   if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4058     return false;
4059   if (!CGM.getTarget().getCXXABI().isMicrosoft())
4060     return false;
4061   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4062     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4063   });
4064 }
4065 
4066 #ifndef NDEBUG
4067 // Determine whether the given argument is an Objective-C method
4068 // that may have type parameters in its signature.
4069 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4070   const DeclContext *dc = method->getDeclContext();
4071   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4072     return classDecl->getTypeParamListAsWritten();
4073   }
4074 
4075   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4076     return catDecl->getTypeParamList();
4077   }
4078 
4079   return false;
4080 }
4081 #endif
4082 
4083 /// EmitCallArgs - Emit call arguments for a function.
4084 void CodeGenFunction::EmitCallArgs(
4085     CallArgList &Args, PrototypeWrapper Prototype,
4086     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4087     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4088   SmallVector<QualType, 16> ArgTypes;
4089 
4090   assert((ParamsToSkip == 0 || Prototype.P) &&
4091          "Can't skip parameters if type info is not provided");
4092 
4093   // This variable only captures *explicitly* written conventions, not those
4094   // applied by default via command line flags or target defaults, such as
4095   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4096   // require knowing if this is a C++ instance method or being able to see
4097   // unprototyped FunctionTypes.
4098   CallingConv ExplicitCC = CC_C;
4099 
4100   // First, if a prototype was provided, use those argument types.
4101   bool IsVariadic = false;
4102   if (Prototype.P) {
4103     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4104     if (MD) {
4105       IsVariadic = MD->isVariadic();
4106       ExplicitCC = getCallingConventionForDecl(
4107           MD, CGM.getTarget().getTriple().isOSWindows());
4108       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4109                       MD->param_type_end());
4110     } else {
4111       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4112       IsVariadic = FPT->isVariadic();
4113       ExplicitCC = FPT->getExtInfo().getCC();
4114       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4115                       FPT->param_type_end());
4116     }
4117 
4118 #ifndef NDEBUG
4119     // Check that the prototyped types match the argument expression types.
4120     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4121     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4122     for (QualType Ty : ArgTypes) {
4123       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4124       assert(
4125           (isGenericMethod || Ty->isVariablyModifiedType() ||
4126            Ty.getNonReferenceType()->isObjCRetainableType() ||
4127            getContext()
4128                    .getCanonicalType(Ty.getNonReferenceType())
4129                    .getTypePtr() ==
4130                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4131           "type mismatch in call argument!");
4132       ++Arg;
4133     }
4134 
4135     // Either we've emitted all the call args, or we have a call to variadic
4136     // function.
4137     assert((Arg == ArgRange.end() || IsVariadic) &&
4138            "Extra arguments in non-variadic function!");
4139 #endif
4140   }
4141 
4142   // If we still have any arguments, emit them using the type of the argument.
4143   for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()),
4144                                   ArgRange.end()))
4145     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4146   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4147 
4148   // We must evaluate arguments from right to left in the MS C++ ABI,
4149   // because arguments are destroyed left to right in the callee. As a special
4150   // case, there are certain language constructs that require left-to-right
4151   // evaluation, and in those cases we consider the evaluation order requirement
4152   // to trump the "destruction order is reverse construction order" guarantee.
4153   bool LeftToRight =
4154       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4155           ? Order == EvaluationOrder::ForceLeftToRight
4156           : Order != EvaluationOrder::ForceRightToLeft;
4157 
4158   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4159                                          RValue EmittedArg) {
4160     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4161       return;
4162     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4163     if (PS == nullptr)
4164       return;
4165 
4166     const auto &Context = getContext();
4167     auto SizeTy = Context.getSizeType();
4168     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4169     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4170     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4171                                                      EmittedArg.getScalarVal(),
4172                                                      PS->isDynamic());
4173     Args.add(RValue::get(V), SizeTy);
4174     // If we're emitting args in reverse, be sure to do so with
4175     // pass_object_size, as well.
4176     if (!LeftToRight)
4177       std::swap(Args.back(), *(&Args.back() - 1));
4178   };
4179 
4180   // Insert a stack save if we're going to need any inalloca args.
4181   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4182     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4183            "inalloca only supported on x86");
4184     Args.allocateArgumentMemory(*this);
4185   }
4186 
4187   // Evaluate each argument in the appropriate order.
4188   size_t CallArgsStart = Args.size();
4189   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4190     unsigned Idx = LeftToRight ? I : E - I - 1;
4191     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4192     unsigned InitialArgSize = Args.size();
4193     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4194     // the argument and parameter match or the objc method is parameterized.
4195     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4196             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4197                                                 ArgTypes[Idx]) ||
4198             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4199              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4200            "Argument and parameter types don't match");
4201     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4202     // In particular, we depend on it being the last arg in Args, and the
4203     // objectsize bits depend on there only being one arg if !LeftToRight.
4204     assert(InitialArgSize + 1 == Args.size() &&
4205            "The code below depends on only adding one arg per EmitCallArg");
4206     (void)InitialArgSize;
4207     // Since pointer argument are never emitted as LValue, it is safe to emit
4208     // non-null argument check for r-value only.
4209     if (!Args.back().hasLValue()) {
4210       RValue RVArg = Args.back().getKnownRValue();
4211       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4212                           ParamsToSkip + Idx);
4213       // @llvm.objectsize should never have side-effects and shouldn't need
4214       // destruction/cleanups, so we can safely "emit" it after its arg,
4215       // regardless of right-to-leftness
4216       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4217     }
4218   }
4219 
4220   if (!LeftToRight) {
4221     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4222     // IR function.
4223     std::reverse(Args.begin() + CallArgsStart, Args.end());
4224   }
4225 }
4226 
4227 namespace {
4228 
4229 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4230   DestroyUnpassedArg(Address Addr, QualType Ty)
4231       : Addr(Addr), Ty(Ty) {}
4232 
4233   Address Addr;
4234   QualType Ty;
4235 
4236   void Emit(CodeGenFunction &CGF, Flags flags) override {
4237     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4238     if (DtorKind == QualType::DK_cxx_destructor) {
4239       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4240       assert(!Dtor->isTrivial());
4241       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4242                                 /*Delegating=*/false, Addr, Ty);
4243     } else {
4244       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4245     }
4246   }
4247 };
4248 
4249 struct DisableDebugLocationUpdates {
4250   CodeGenFunction &CGF;
4251   bool disabledDebugInfo;
4252   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4253     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4254       CGF.disableDebugInfo();
4255   }
4256   ~DisableDebugLocationUpdates() {
4257     if (disabledDebugInfo)
4258       CGF.enableDebugInfo();
4259   }
4260 };
4261 
4262 } // end anonymous namespace
4263 
4264 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4265   if (!HasLV)
4266     return RV;
4267   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4268   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4269                         LV.isVolatile());
4270   IsUsed = true;
4271   return RValue::getAggregate(Copy.getAddress(CGF));
4272 }
4273 
4274 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4275   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4276   if (!HasLV && RV.isScalar())
4277     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4278   else if (!HasLV && RV.isComplex())
4279     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4280   else {
4281     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4282     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4283     // We assume that call args are never copied into subobjects.
4284     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4285                           HasLV ? LV.isVolatileQualified()
4286                                 : RV.isVolatileQualified());
4287   }
4288   IsUsed = true;
4289 }
4290 
4291 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4292                                   QualType type) {
4293   DisableDebugLocationUpdates Dis(*this, E);
4294   if (const ObjCIndirectCopyRestoreExpr *CRE
4295         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4296     assert(getLangOpts().ObjCAutoRefCount);
4297     return emitWritebackArg(*this, args, CRE);
4298   }
4299 
4300   assert(type->isReferenceType() == E->isGLValue() &&
4301          "reference binding to unmaterialized r-value!");
4302 
4303   if (E->isGLValue()) {
4304     assert(E->getObjectKind() == OK_Ordinary);
4305     return args.add(EmitReferenceBindingToExpr(E), type);
4306   }
4307 
4308   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4309 
4310   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4311   // However, we still have to push an EH-only cleanup in case we unwind before
4312   // we make it to the call.
4313   if (type->isRecordType() &&
4314       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4315     // If we're using inalloca, use the argument memory.  Otherwise, use a
4316     // temporary.
4317     AggValueSlot Slot;
4318     if (args.isUsingInAlloca())
4319       Slot = createPlaceholderSlot(*this, type);
4320     else
4321       Slot = CreateAggTemp(type, "agg.tmp");
4322 
4323     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4324     if (const auto *RD = type->getAsCXXRecordDecl())
4325       DestroyedInCallee = RD->hasNonTrivialDestructor();
4326     else
4327       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4328 
4329     if (DestroyedInCallee)
4330       Slot.setExternallyDestructed();
4331 
4332     EmitAggExpr(E, Slot);
4333     RValue RV = Slot.asRValue();
4334     args.add(RV, type);
4335 
4336     if (DestroyedInCallee && NeedsEHCleanup) {
4337       // Create a no-op GEP between the placeholder and the cleanup so we can
4338       // RAUW it successfully.  It also serves as a marker of the first
4339       // instruction where the cleanup is active.
4340       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4341                                               type);
4342       // This unreachable is a temporary marker which will be removed later.
4343       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4344       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4345     }
4346     return;
4347   }
4348 
4349   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4350       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4351     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4352     assert(L.isSimple());
4353     args.addUncopiedAggregate(L, type);
4354     return;
4355   }
4356 
4357   args.add(EmitAnyExprToTemp(E), type);
4358 }
4359 
4360 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4361   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4362   // implicitly widens null pointer constants that are arguments to varargs
4363   // functions to pointer-sized ints.
4364   if (!getTarget().getTriple().isOSWindows())
4365     return Arg->getType();
4366 
4367   if (Arg->getType()->isIntegerType() &&
4368       getContext().getTypeSize(Arg->getType()) <
4369           getContext().getTargetInfo().getPointerWidth(0) &&
4370       Arg->isNullPointerConstant(getContext(),
4371                                  Expr::NPC_ValueDependentIsNotNull)) {
4372     return getContext().getIntPtrType();
4373   }
4374 
4375   return Arg->getType();
4376 }
4377 
4378 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4379 // optimizer it can aggressively ignore unwind edges.
4380 void
4381 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4382   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4383       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4384     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4385                       CGM.getNoObjCARCExceptionsMetadata());
4386 }
4387 
4388 /// Emits a call to the given no-arguments nounwind runtime function.
4389 llvm::CallInst *
4390 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4391                                          const llvm::Twine &name) {
4392   return EmitNounwindRuntimeCall(callee, None, name);
4393 }
4394 
4395 /// Emits a call to the given nounwind runtime function.
4396 llvm::CallInst *
4397 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4398                                          ArrayRef<llvm::Value *> args,
4399                                          const llvm::Twine &name) {
4400   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4401   call->setDoesNotThrow();
4402   return call;
4403 }
4404 
4405 /// Emits a simple call (never an invoke) to the given no-arguments
4406 /// runtime function.
4407 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4408                                                  const llvm::Twine &name) {
4409   return EmitRuntimeCall(callee, None, name);
4410 }
4411 
4412 // Calls which may throw must have operand bundles indicating which funclet
4413 // they are nested within.
4414 SmallVector<llvm::OperandBundleDef, 1>
4415 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4416   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4417   // There is no need for a funclet operand bundle if we aren't inside a
4418   // funclet.
4419   if (!CurrentFuncletPad)
4420     return BundleList;
4421 
4422   // Skip intrinsics which cannot throw.
4423   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4424   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4425     return BundleList;
4426 
4427   BundleList.emplace_back("funclet", CurrentFuncletPad);
4428   return BundleList;
4429 }
4430 
4431 /// Emits a simple call (never an invoke) to the given runtime function.
4432 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4433                                                  ArrayRef<llvm::Value *> args,
4434                                                  const llvm::Twine &name) {
4435   llvm::CallInst *call = Builder.CreateCall(
4436       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4437   call->setCallingConv(getRuntimeCC());
4438   return call;
4439 }
4440 
4441 /// Emits a call or invoke to the given noreturn runtime function.
4442 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4443     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4444   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4445       getBundlesForFunclet(callee.getCallee());
4446 
4447   if (getInvokeDest()) {
4448     llvm::InvokeInst *invoke =
4449       Builder.CreateInvoke(callee,
4450                            getUnreachableBlock(),
4451                            getInvokeDest(),
4452                            args,
4453                            BundleList);
4454     invoke->setDoesNotReturn();
4455     invoke->setCallingConv(getRuntimeCC());
4456   } else {
4457     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4458     call->setDoesNotReturn();
4459     call->setCallingConv(getRuntimeCC());
4460     Builder.CreateUnreachable();
4461   }
4462 }
4463 
4464 /// Emits a call or invoke instruction to the given nullary runtime function.
4465 llvm::CallBase *
4466 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4467                                          const Twine &name) {
4468   return EmitRuntimeCallOrInvoke(callee, None, name);
4469 }
4470 
4471 /// Emits a call or invoke instruction to the given runtime function.
4472 llvm::CallBase *
4473 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4474                                          ArrayRef<llvm::Value *> args,
4475                                          const Twine &name) {
4476   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4477   call->setCallingConv(getRuntimeCC());
4478   return call;
4479 }
4480 
4481 /// Emits a call or invoke instruction to the given function, depending
4482 /// on the current state of the EH stack.
4483 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4484                                                   ArrayRef<llvm::Value *> Args,
4485                                                   const Twine &Name) {
4486   llvm::BasicBlock *InvokeDest = getInvokeDest();
4487   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4488       getBundlesForFunclet(Callee.getCallee());
4489 
4490   llvm::CallBase *Inst;
4491   if (!InvokeDest)
4492     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4493   else {
4494     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4495     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4496                                 Name);
4497     EmitBlock(ContBB);
4498   }
4499 
4500   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4501   // optimizer it can aggressively ignore unwind edges.
4502   if (CGM.getLangOpts().ObjCAutoRefCount)
4503     AddObjCARCExceptionMetadata(Inst);
4504 
4505   return Inst;
4506 }
4507 
4508 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4509                                                   llvm::Value *New) {
4510   DeferredReplacements.push_back(
4511       std::make_pair(llvm::WeakTrackingVH(Old), New));
4512 }
4513 
4514 namespace {
4515 
4516 /// Specify given \p NewAlign as the alignment of return value attribute. If
4517 /// such attribute already exists, re-set it to the maximal one of two options.
4518 LLVM_NODISCARD llvm::AttributeList
4519 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4520                                 const llvm::AttributeList &Attrs,
4521                                 llvm::Align NewAlign) {
4522   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4523   if (CurAlign >= NewAlign)
4524     return Attrs;
4525   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4526   return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4527       .addRetAttribute(Ctx, AlignAttr);
4528 }
4529 
4530 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4531 protected:
4532   CodeGenFunction &CGF;
4533 
4534   /// We do nothing if this is, or becomes, nullptr.
4535   const AlignedAttrTy *AA = nullptr;
4536 
4537   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4538   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4539 
4540   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4541       : CGF(CGF_) {
4542     if (!FuncDecl)
4543       return;
4544     AA = FuncDecl->getAttr<AlignedAttrTy>();
4545   }
4546 
4547 public:
4548   /// If we can, materialize the alignment as an attribute on return value.
4549   LLVM_NODISCARD llvm::AttributeList
4550   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4551     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4552       return Attrs;
4553     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4554     if (!AlignmentCI)
4555       return Attrs;
4556     // We may legitimately have non-power-of-2 alignment here.
4557     // If so, this is UB land, emit it via `@llvm.assume` instead.
4558     if (!AlignmentCI->getValue().isPowerOf2())
4559       return Attrs;
4560     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4561         CGF.getLLVMContext(), Attrs,
4562         llvm::Align(
4563             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4564     AA = nullptr; // We're done. Disallow doing anything else.
4565     return NewAttrs;
4566   }
4567 
4568   /// Emit alignment assumption.
4569   /// This is a general fallback that we take if either there is an offset,
4570   /// or the alignment is variable or we are sanitizing for alignment.
4571   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4572     if (!AA)
4573       return;
4574     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4575                                 AA->getLocation(), Alignment, OffsetCI);
4576     AA = nullptr; // We're done. Disallow doing anything else.
4577   }
4578 };
4579 
4580 /// Helper data structure to emit `AssumeAlignedAttr`.
4581 class AssumeAlignedAttrEmitter final
4582     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4583 public:
4584   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4585       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4586     if (!AA)
4587       return;
4588     // It is guaranteed that the alignment/offset are constants.
4589     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4590     if (Expr *Offset = AA->getOffset()) {
4591       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4592       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4593         OffsetCI = nullptr;
4594     }
4595   }
4596 };
4597 
4598 /// Helper data structure to emit `AllocAlignAttr`.
4599 class AllocAlignAttrEmitter final
4600     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4601 public:
4602   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4603                         const CallArgList &CallArgs)
4604       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4605     if (!AA)
4606       return;
4607     // Alignment may or may not be a constant, and that is okay.
4608     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4609                     .getRValue(CGF)
4610                     .getScalarVal();
4611   }
4612 };
4613 
4614 } // namespace
4615 
4616 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4617                                  const CGCallee &Callee,
4618                                  ReturnValueSlot ReturnValue,
4619                                  const CallArgList &CallArgs,
4620                                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4621                                  SourceLocation Loc) {
4622   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4623 
4624   assert(Callee.isOrdinary() || Callee.isVirtual());
4625 
4626   // Handle struct-return functions by passing a pointer to the
4627   // location that we would like to return into.
4628   QualType RetTy = CallInfo.getReturnType();
4629   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4630 
4631   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4632 
4633   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4634   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4635     // We can only guarantee that a function is called from the correct
4636     // context/function based on the appropriate target attributes,
4637     // so only check in the case where we have both always_inline and target
4638     // since otherwise we could be making a conditional call after a check for
4639     // the proper cpu features (and it won't cause code generation issues due to
4640     // function based code generation).
4641     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4642         TargetDecl->hasAttr<TargetAttr>())
4643       checkTargetFeatures(Loc, FD);
4644 
4645     // Some architectures (such as x86-64) have the ABI changed based on
4646     // attribute-target/features. Give them a chance to diagnose.
4647     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4648         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4649   }
4650 
4651 #ifndef NDEBUG
4652   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4653     // For an inalloca varargs function, we don't expect CallInfo to match the
4654     // function pointer's type, because the inalloca struct a will have extra
4655     // fields in it for the varargs parameters.  Code later in this function
4656     // bitcasts the function pointer to the type derived from CallInfo.
4657     //
4658     // In other cases, we assert that the types match up (until pointers stop
4659     // having pointee types).
4660     llvm::Type *TypeFromVal;
4661     if (Callee.isVirtual())
4662       TypeFromVal = Callee.getVirtualFunctionType();
4663     else
4664       TypeFromVal =
4665           Callee.getFunctionPointer()->getType()->getPointerElementType();
4666     assert(IRFuncTy == TypeFromVal);
4667   }
4668 #endif
4669 
4670   // 1. Set up the arguments.
4671 
4672   // If we're using inalloca, insert the allocation after the stack save.
4673   // FIXME: Do this earlier rather than hacking it in here!
4674   Address ArgMemory = Address::invalid();
4675   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4676     const llvm::DataLayout &DL = CGM.getDataLayout();
4677     llvm::Instruction *IP = CallArgs.getStackBase();
4678     llvm::AllocaInst *AI;
4679     if (IP) {
4680       IP = IP->getNextNode();
4681       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4682                                 "argmem", IP);
4683     } else {
4684       AI = CreateTempAlloca(ArgStruct, "argmem");
4685     }
4686     auto Align = CallInfo.getArgStructAlignment();
4687     AI->setAlignment(Align.getAsAlign());
4688     AI->setUsedWithInAlloca(true);
4689     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4690     ArgMemory = Address(AI, Align);
4691   }
4692 
4693   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4694   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4695 
4696   // If the call returns a temporary with struct return, create a temporary
4697   // alloca to hold the result, unless one is given to us.
4698   Address SRetPtr = Address::invalid();
4699   Address SRetAlloca = Address::invalid();
4700   llvm::Value *UnusedReturnSizePtr = nullptr;
4701   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4702     if (!ReturnValue.isNull()) {
4703       SRetPtr = ReturnValue.getValue();
4704     } else {
4705       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4706       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4707         llvm::TypeSize size =
4708             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4709         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4710       }
4711     }
4712     if (IRFunctionArgs.hasSRetArg()) {
4713       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4714     } else if (RetAI.isInAlloca()) {
4715       Address Addr =
4716           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4717       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4718     }
4719   }
4720 
4721   Address swiftErrorTemp = Address::invalid();
4722   Address swiftErrorArg = Address::invalid();
4723 
4724   // When passing arguments using temporary allocas, we need to add the
4725   // appropriate lifetime markers. This vector keeps track of all the lifetime
4726   // markers that need to be ended right after the call.
4727   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4728 
4729   // Translate all of the arguments as necessary to match the IR lowering.
4730   assert(CallInfo.arg_size() == CallArgs.size() &&
4731          "Mismatch between function signature & arguments.");
4732   unsigned ArgNo = 0;
4733   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4734   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4735        I != E; ++I, ++info_it, ++ArgNo) {
4736     const ABIArgInfo &ArgInfo = info_it->info;
4737 
4738     // Insert a padding argument to ensure proper alignment.
4739     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4740       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4741           llvm::UndefValue::get(ArgInfo.getPaddingType());
4742 
4743     unsigned FirstIRArg, NumIRArgs;
4744     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4745 
4746     switch (ArgInfo.getKind()) {
4747     case ABIArgInfo::InAlloca: {
4748       assert(NumIRArgs == 0);
4749       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4750       if (I->isAggregate()) {
4751         Address Addr = I->hasLValue()
4752                            ? I->getKnownLValue().getAddress(*this)
4753                            : I->getKnownRValue().getAggregateAddress();
4754         llvm::Instruction *Placeholder =
4755             cast<llvm::Instruction>(Addr.getPointer());
4756 
4757         if (!ArgInfo.getInAllocaIndirect()) {
4758           // Replace the placeholder with the appropriate argument slot GEP.
4759           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4760           Builder.SetInsertPoint(Placeholder);
4761           Addr = Builder.CreateStructGEP(ArgMemory,
4762                                          ArgInfo.getInAllocaFieldIndex());
4763           Builder.restoreIP(IP);
4764         } else {
4765           // For indirect things such as overaligned structs, replace the
4766           // placeholder with a regular aggregate temporary alloca. Store the
4767           // address of this alloca into the struct.
4768           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4769           Address ArgSlot = Builder.CreateStructGEP(
4770               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4771           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4772         }
4773         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4774       } else if (ArgInfo.getInAllocaIndirect()) {
4775         // Make a temporary alloca and store the address of it into the argument
4776         // struct.
4777         Address Addr = CreateMemTempWithoutCast(
4778             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4779             "indirect-arg-temp");
4780         I->copyInto(*this, Addr);
4781         Address ArgSlot =
4782             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4783         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4784       } else {
4785         // Store the RValue into the argument struct.
4786         Address Addr =
4787             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4788         unsigned AS = Addr.getType()->getPointerAddressSpace();
4789         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4790         // There are some cases where a trivial bitcast is not avoidable.  The
4791         // definition of a type later in a translation unit may change it's type
4792         // from {}* to (%struct.foo*)*.
4793         if (Addr.getType() != MemType)
4794           Addr = Builder.CreateBitCast(Addr, MemType);
4795         I->copyInto(*this, Addr);
4796       }
4797       break;
4798     }
4799 
4800     case ABIArgInfo::Indirect:
4801     case ABIArgInfo::IndirectAliased: {
4802       assert(NumIRArgs == 1);
4803       if (!I->isAggregate()) {
4804         // Make a temporary alloca to pass the argument.
4805         Address Addr = CreateMemTempWithoutCast(
4806             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4807         IRCallArgs[FirstIRArg] = Addr.getPointer();
4808 
4809         I->copyInto(*this, Addr);
4810       } else {
4811         // We want to avoid creating an unnecessary temporary+copy here;
4812         // however, we need one in three cases:
4813         // 1. If the argument is not byval, and we are required to copy the
4814         //    source.  (This case doesn't occur on any common architecture.)
4815         // 2. If the argument is byval, RV is not sufficiently aligned, and
4816         //    we cannot force it to be sufficiently aligned.
4817         // 3. If the argument is byval, but RV is not located in default
4818         //    or alloca address space.
4819         Address Addr = I->hasLValue()
4820                            ? I->getKnownLValue().getAddress(*this)
4821                            : I->getKnownRValue().getAggregateAddress();
4822         llvm::Value *V = Addr.getPointer();
4823         CharUnits Align = ArgInfo.getIndirectAlign();
4824         const llvm::DataLayout *TD = &CGM.getDataLayout();
4825 
4826         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4827                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4828                     TD->getAllocaAddrSpace()) &&
4829                "indirect argument must be in alloca address space");
4830 
4831         bool NeedCopy = false;
4832 
4833         if (Addr.getAlignment() < Align &&
4834             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4835                 Align.getAsAlign()) {
4836           NeedCopy = true;
4837         } else if (I->hasLValue()) {
4838           auto LV = I->getKnownLValue();
4839           auto AS = LV.getAddressSpace();
4840 
4841           if (!ArgInfo.getIndirectByVal() ||
4842               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4843             NeedCopy = true;
4844           }
4845           if (!getLangOpts().OpenCL) {
4846             if ((ArgInfo.getIndirectByVal() &&
4847                 (AS != LangAS::Default &&
4848                  AS != CGM.getASTAllocaAddressSpace()))) {
4849               NeedCopy = true;
4850             }
4851           }
4852           // For OpenCL even if RV is located in default or alloca address space
4853           // we don't want to perform address space cast for it.
4854           else if ((ArgInfo.getIndirectByVal() &&
4855                     Addr.getType()->getAddressSpace() != IRFuncTy->
4856                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4857             NeedCopy = true;
4858           }
4859         }
4860 
4861         if (NeedCopy) {
4862           // Create an aligned temporary, and copy to it.
4863           Address AI = CreateMemTempWithoutCast(
4864               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4865           IRCallArgs[FirstIRArg] = AI.getPointer();
4866 
4867           // Emit lifetime markers for the temporary alloca.
4868           llvm::TypeSize ByvalTempElementSize =
4869               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4870           llvm::Value *LifetimeSize =
4871               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4872 
4873           // Add cleanup code to emit the end lifetime marker after the call.
4874           if (LifetimeSize) // In case we disabled lifetime markers.
4875             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4876 
4877           // Generate the copy.
4878           I->copyInto(*this, AI);
4879         } else {
4880           // Skip the extra memcpy call.
4881           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4882               CGM.getDataLayout().getAllocaAddrSpace());
4883           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4884               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4885               true);
4886         }
4887       }
4888       break;
4889     }
4890 
4891     case ABIArgInfo::Ignore:
4892       assert(NumIRArgs == 0);
4893       break;
4894 
4895     case ABIArgInfo::Extend:
4896     case ABIArgInfo::Direct: {
4897       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4898           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4899           ArgInfo.getDirectOffset() == 0) {
4900         assert(NumIRArgs == 1);
4901         llvm::Value *V;
4902         if (!I->isAggregate())
4903           V = I->getKnownRValue().getScalarVal();
4904         else
4905           V = Builder.CreateLoad(
4906               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4907                              : I->getKnownRValue().getAggregateAddress());
4908 
4909         // Implement swifterror by copying into a new swifterror argument.
4910         // We'll write back in the normal path out of the call.
4911         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4912               == ParameterABI::SwiftErrorResult) {
4913           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4914 
4915           QualType pointeeTy = I->Ty->getPointeeType();
4916           swiftErrorArg =
4917             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4918 
4919           swiftErrorTemp =
4920             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4921           V = swiftErrorTemp.getPointer();
4922           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4923 
4924           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4925           Builder.CreateStore(errorValue, swiftErrorTemp);
4926         }
4927 
4928         // We might have to widen integers, but we should never truncate.
4929         if (ArgInfo.getCoerceToType() != V->getType() &&
4930             V->getType()->isIntegerTy())
4931           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4932 
4933         // If the argument doesn't match, perform a bitcast to coerce it.  This
4934         // can happen due to trivial type mismatches.
4935         if (FirstIRArg < IRFuncTy->getNumParams() &&
4936             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4937           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4938 
4939         IRCallArgs[FirstIRArg] = V;
4940         break;
4941       }
4942 
4943       // FIXME: Avoid the conversion through memory if possible.
4944       Address Src = Address::invalid();
4945       if (!I->isAggregate()) {
4946         Src = CreateMemTemp(I->Ty, "coerce");
4947         I->copyInto(*this, Src);
4948       } else {
4949         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4950                              : I->getKnownRValue().getAggregateAddress();
4951       }
4952 
4953       // If the value is offset in memory, apply the offset now.
4954       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4955 
4956       // Fast-isel and the optimizer generally like scalar values better than
4957       // FCAs, so we flatten them if this is safe to do for this argument.
4958       llvm::StructType *STy =
4959             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4960       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4961         llvm::Type *SrcTy = Src.getElementType();
4962         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4963         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4964 
4965         // If the source type is smaller than the destination type of the
4966         // coerce-to logic, copy the source value into a temp alloca the size
4967         // of the destination type to allow loading all of it. The bits past
4968         // the source value are left undef.
4969         if (SrcSize < DstSize) {
4970           Address TempAlloca
4971             = CreateTempAlloca(STy, Src.getAlignment(),
4972                                Src.getName() + ".coerce");
4973           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4974           Src = TempAlloca;
4975         } else {
4976           Src = Builder.CreateBitCast(Src,
4977                                       STy->getPointerTo(Src.getAddressSpace()));
4978         }
4979 
4980         assert(NumIRArgs == STy->getNumElements());
4981         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4982           Address EltPtr = Builder.CreateStructGEP(Src, i);
4983           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4984           IRCallArgs[FirstIRArg + i] = LI;
4985         }
4986       } else {
4987         // In the simple case, just pass the coerced loaded value.
4988         assert(NumIRArgs == 1);
4989         llvm::Value *Load =
4990             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4991 
4992         if (CallInfo.isCmseNSCall()) {
4993           // For certain parameter types, clear padding bits, as they may reveal
4994           // sensitive information.
4995           // Small struct/union types are passed as integer arrays.
4996           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4997           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4998             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4999         }
5000         IRCallArgs[FirstIRArg] = Load;
5001       }
5002 
5003       break;
5004     }
5005 
5006     case ABIArgInfo::CoerceAndExpand: {
5007       auto coercionType = ArgInfo.getCoerceAndExpandType();
5008       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5009 
5010       llvm::Value *tempSize = nullptr;
5011       Address addr = Address::invalid();
5012       Address AllocaAddr = Address::invalid();
5013       if (I->isAggregate()) {
5014         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5015                               : I->getKnownRValue().getAggregateAddress();
5016 
5017       } else {
5018         RValue RV = I->getKnownRValue();
5019         assert(RV.isScalar()); // complex should always just be direct
5020 
5021         llvm::Type *scalarType = RV.getScalarVal()->getType();
5022         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5023         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
5024 
5025         // Materialize to a temporary.
5026         addr =
5027             CreateTempAlloca(RV.getScalarVal()->getType(),
5028                              CharUnits::fromQuantity(std::max(
5029                                  layout->getAlignment().value(), scalarAlign)),
5030                              "tmp",
5031                              /*ArraySize=*/nullptr, &AllocaAddr);
5032         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5033 
5034         Builder.CreateStore(RV.getScalarVal(), addr);
5035       }
5036 
5037       addr = Builder.CreateElementBitCast(addr, coercionType);
5038 
5039       unsigned IRArgPos = FirstIRArg;
5040       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5041         llvm::Type *eltType = coercionType->getElementType(i);
5042         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5043         Address eltAddr = Builder.CreateStructGEP(addr, i);
5044         llvm::Value *elt = Builder.CreateLoad(eltAddr);
5045         IRCallArgs[IRArgPos++] = elt;
5046       }
5047       assert(IRArgPos == FirstIRArg + NumIRArgs);
5048 
5049       if (tempSize) {
5050         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5051       }
5052 
5053       break;
5054     }
5055 
5056     case ABIArgInfo::Expand: {
5057       unsigned IRArgPos = FirstIRArg;
5058       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5059       assert(IRArgPos == FirstIRArg + NumIRArgs);
5060       break;
5061     }
5062     }
5063   }
5064 
5065   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5066   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5067 
5068   // If we're using inalloca, set up that argument.
5069   if (ArgMemory.isValid()) {
5070     llvm::Value *Arg = ArgMemory.getPointer();
5071     if (CallInfo.isVariadic()) {
5072       // When passing non-POD arguments by value to variadic functions, we will
5073       // end up with a variadic prototype and an inalloca call site.  In such
5074       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
5075       // the callee.
5076       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5077       CalleePtr =
5078           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5079     } else {
5080       llvm::Type *LastParamTy =
5081           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5082       if (Arg->getType() != LastParamTy) {
5083 #ifndef NDEBUG
5084         // Assert that these structs have equivalent element types.
5085         llvm::StructType *FullTy = CallInfo.getArgStruct();
5086         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5087             cast<llvm::PointerType>(LastParamTy)->getElementType());
5088         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5089         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
5090                                                 DE = DeclaredTy->element_end(),
5091                                                 FI = FullTy->element_begin();
5092              DI != DE; ++DI, ++FI)
5093           assert(*DI == *FI);
5094 #endif
5095         Arg = Builder.CreateBitCast(Arg, LastParamTy);
5096       }
5097     }
5098     assert(IRFunctionArgs.hasInallocaArg());
5099     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5100   }
5101 
5102   // 2. Prepare the function pointer.
5103 
5104   // If the callee is a bitcast of a non-variadic function to have a
5105   // variadic function pointer type, check to see if we can remove the
5106   // bitcast.  This comes up with unprototyped functions.
5107   //
5108   // This makes the IR nicer, but more importantly it ensures that we
5109   // can inline the function at -O0 if it is marked always_inline.
5110   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5111                                    llvm::Value *Ptr) -> llvm::Function * {
5112     if (!CalleeFT->isVarArg())
5113       return nullptr;
5114 
5115     // Get underlying value if it's a bitcast
5116     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5117       if (CE->getOpcode() == llvm::Instruction::BitCast)
5118         Ptr = CE->getOperand(0);
5119     }
5120 
5121     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5122     if (!OrigFn)
5123       return nullptr;
5124 
5125     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5126 
5127     // If the original type is variadic, or if any of the component types
5128     // disagree, we cannot remove the cast.
5129     if (OrigFT->isVarArg() ||
5130         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5131         OrigFT->getReturnType() != CalleeFT->getReturnType())
5132       return nullptr;
5133 
5134     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5135       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5136         return nullptr;
5137 
5138     return OrigFn;
5139   };
5140 
5141   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5142     CalleePtr = OrigFn;
5143     IRFuncTy = OrigFn->getFunctionType();
5144   }
5145 
5146   // 3. Perform the actual call.
5147 
5148   // Deactivate any cleanups that we're supposed to do immediately before
5149   // the call.
5150   if (!CallArgs.getCleanupsToDeactivate().empty())
5151     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5152 
5153   // Assert that the arguments we computed match up.  The IR verifier
5154   // will catch this, but this is a common enough source of problems
5155   // during IRGen changes that it's way better for debugging to catch
5156   // it ourselves here.
5157 #ifndef NDEBUG
5158   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5159   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5160     // Inalloca argument can have different type.
5161     if (IRFunctionArgs.hasInallocaArg() &&
5162         i == IRFunctionArgs.getInallocaArgNo())
5163       continue;
5164     if (i < IRFuncTy->getNumParams())
5165       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5166   }
5167 #endif
5168 
5169   // Update the largest vector width if any arguments have vector types.
5170   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5171     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
5172       LargestVectorWidth =
5173           std::max((uint64_t)LargestVectorWidth,
5174                    VT->getPrimitiveSizeInBits().getKnownMinSize());
5175   }
5176 
5177   // Compute the calling convention and attributes.
5178   unsigned CallingConv;
5179   llvm::AttributeList Attrs;
5180   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5181                              Callee.getAbstractInfo(), Attrs, CallingConv,
5182                              /*AttrOnCallSite=*/true,
5183                              /*IsThunk=*/false, CurFuncDecl);
5184 
5185   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5186     if (FD->hasAttr<StrictFPAttr>())
5187       // All calls within a strictfp function are marked strictfp
5188       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5189 
5190   // Add call-site nomerge attribute if exists.
5191   if (InNoMergeAttributedStmt)
5192     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5193 
5194   // Apply some call-site-specific attributes.
5195   // TODO: work this into building the attribute set.
5196 
5197   // Apply always_inline to all calls within flatten functions.
5198   // FIXME: should this really take priority over __try, below?
5199   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5200       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5201     Attrs =
5202         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5203   }
5204 
5205   // Disable inlining inside SEH __try blocks.
5206   if (isSEHTryScope()) {
5207     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5208   }
5209 
5210   // Decide whether to use a call or an invoke.
5211   bool CannotThrow;
5212   if (currentFunctionUsesSEHTry()) {
5213     // SEH cares about asynchronous exceptions, so everything can "throw."
5214     CannotThrow = false;
5215   } else if (isCleanupPadScope() &&
5216              EHPersonality::get(*this).isMSVCXXPersonality()) {
5217     // The MSVC++ personality will implicitly terminate the program if an
5218     // exception is thrown during a cleanup outside of a try/catch.
5219     // We don't need to model anything in IR to get this behavior.
5220     CannotThrow = true;
5221   } else {
5222     // Otherwise, nounwind call sites will never throw.
5223     CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5224 
5225     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5226       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5227         CannotThrow = true;
5228   }
5229 
5230   // If we made a temporary, be sure to clean up after ourselves. Note that we
5231   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5232   // pop this cleanup later on. Being eager about this is OK, since this
5233   // temporary is 'invisible' outside of the callee.
5234   if (UnusedReturnSizePtr)
5235     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5236                                          UnusedReturnSizePtr);
5237 
5238   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5239 
5240   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5241       getBundlesForFunclet(CalleePtr);
5242 
5243   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5244     if (FD->hasAttr<StrictFPAttr>())
5245       // All calls within a strictfp function are marked strictfp
5246       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5247 
5248   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5249   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5250 
5251   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5252   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5253 
5254   // Emit the actual call/invoke instruction.
5255   llvm::CallBase *CI;
5256   if (!InvokeDest) {
5257     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5258   } else {
5259     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5260     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5261                               BundleList);
5262     EmitBlock(Cont);
5263   }
5264   if (callOrInvoke)
5265     *callOrInvoke = CI;
5266 
5267   // If this is within a function that has the guard(nocf) attribute and is an
5268   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5269   // Control Flow Guard checks should not be added, even if the call is inlined.
5270   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5271     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5272       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5273         Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5274     }
5275   }
5276 
5277   // Apply the attributes and calling convention.
5278   CI->setAttributes(Attrs);
5279   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5280 
5281   // Apply various metadata.
5282 
5283   if (!CI->getType()->isVoidTy())
5284     CI->setName("call");
5285 
5286   // Update largest vector width from the return type.
5287   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
5288     LargestVectorWidth =
5289         std::max((uint64_t)LargestVectorWidth,
5290                  VT->getPrimitiveSizeInBits().getKnownMinSize());
5291 
5292   // Insert instrumentation or attach profile metadata at indirect call sites.
5293   // For more details, see the comment before the definition of
5294   // IPVK_IndirectCallTarget in InstrProfData.inc.
5295   if (!CI->getCalledFunction())
5296     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5297                      CI, CalleePtr);
5298 
5299   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5300   // optimizer it can aggressively ignore unwind edges.
5301   if (CGM.getLangOpts().ObjCAutoRefCount)
5302     AddObjCARCExceptionMetadata(CI);
5303 
5304   // Set tail call kind if necessary.
5305   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5306     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5307       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5308     else if (IsMustTail)
5309       Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5310   }
5311 
5312   // Add metadata for calls to MSAllocator functions
5313   if (getDebugInfo() && TargetDecl &&
5314       TargetDecl->hasAttr<MSAllocatorAttr>())
5315     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5316 
5317   // Add metadata if calling an __attribute__((error(""))) or warning fn.
5318   if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5319     llvm::ConstantInt *Line =
5320         llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5321     llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5322     llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5323     CI->setMetadata("srcloc", MDT);
5324   }
5325 
5326   // 4. Finish the call.
5327 
5328   // If the call doesn't return, finish the basic block and clear the
5329   // insertion point; this allows the rest of IRGen to discard
5330   // unreachable code.
5331   if (CI->doesNotReturn()) {
5332     if (UnusedReturnSizePtr)
5333       PopCleanupBlock();
5334 
5335     // Strip away the noreturn attribute to better diagnose unreachable UB.
5336     if (SanOpts.has(SanitizerKind::Unreachable)) {
5337       // Also remove from function since CallBase::hasFnAttr additionally checks
5338       // attributes of the called function.
5339       if (auto *F = CI->getCalledFunction())
5340         F->removeFnAttr(llvm::Attribute::NoReturn);
5341       CI->removeFnAttr(llvm::Attribute::NoReturn);
5342 
5343       // Avoid incompatibility with ASan which relies on the `noreturn`
5344       // attribute to insert handler calls.
5345       if (SanOpts.hasOneOf(SanitizerKind::Address |
5346                            SanitizerKind::KernelAddress)) {
5347         SanitizerScope SanScope(this);
5348         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5349         Builder.SetInsertPoint(CI);
5350         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5351         llvm::FunctionCallee Fn =
5352             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5353         EmitNounwindRuntimeCall(Fn);
5354       }
5355     }
5356 
5357     EmitUnreachable(Loc);
5358     Builder.ClearInsertionPoint();
5359 
5360     // FIXME: For now, emit a dummy basic block because expr emitters in
5361     // generally are not ready to handle emitting expressions at unreachable
5362     // points.
5363     EnsureInsertPoint();
5364 
5365     // Return a reasonable RValue.
5366     return GetUndefRValue(RetTy);
5367   }
5368 
5369   // If this is a musttail call, return immediately. We do not branch to the
5370   // epilogue in this case.
5371   if (IsMustTail) {
5372     for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5373          ++it) {
5374       EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5375       if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5376         CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5377     }
5378     if (CI->getType()->isVoidTy())
5379       Builder.CreateRetVoid();
5380     else
5381       Builder.CreateRet(CI);
5382     Builder.ClearInsertionPoint();
5383     EnsureInsertPoint();
5384     return GetUndefRValue(RetTy);
5385   }
5386 
5387   // Perform the swifterror writeback.
5388   if (swiftErrorTemp.isValid()) {
5389     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5390     Builder.CreateStore(errorResult, swiftErrorArg);
5391   }
5392 
5393   // Emit any call-associated writebacks immediately.  Arguably this
5394   // should happen after any return-value munging.
5395   if (CallArgs.hasWritebacks())
5396     emitWritebacks(*this, CallArgs);
5397 
5398   // The stack cleanup for inalloca arguments has to run out of the normal
5399   // lexical order, so deactivate it and run it manually here.
5400   CallArgs.freeArgumentMemory(*this);
5401 
5402   // Extract the return value.
5403   RValue Ret = [&] {
5404     switch (RetAI.getKind()) {
5405     case ABIArgInfo::CoerceAndExpand: {
5406       auto coercionType = RetAI.getCoerceAndExpandType();
5407 
5408       Address addr = SRetPtr;
5409       addr = Builder.CreateElementBitCast(addr, coercionType);
5410 
5411       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5412       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5413 
5414       unsigned unpaddedIndex = 0;
5415       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5416         llvm::Type *eltType = coercionType->getElementType(i);
5417         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5418         Address eltAddr = Builder.CreateStructGEP(addr, i);
5419         llvm::Value *elt = CI;
5420         if (requiresExtract)
5421           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5422         else
5423           assert(unpaddedIndex == 0);
5424         Builder.CreateStore(elt, eltAddr);
5425       }
5426       // FALLTHROUGH
5427       LLVM_FALLTHROUGH;
5428     }
5429 
5430     case ABIArgInfo::InAlloca:
5431     case ABIArgInfo::Indirect: {
5432       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5433       if (UnusedReturnSizePtr)
5434         PopCleanupBlock();
5435       return ret;
5436     }
5437 
5438     case ABIArgInfo::Ignore:
5439       // If we are ignoring an argument that had a result, make sure to
5440       // construct the appropriate return value for our caller.
5441       return GetUndefRValue(RetTy);
5442 
5443     case ABIArgInfo::Extend:
5444     case ABIArgInfo::Direct: {
5445       llvm::Type *RetIRTy = ConvertType(RetTy);
5446       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5447         switch (getEvaluationKind(RetTy)) {
5448         case TEK_Complex: {
5449           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5450           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5451           return RValue::getComplex(std::make_pair(Real, Imag));
5452         }
5453         case TEK_Aggregate: {
5454           Address DestPtr = ReturnValue.getValue();
5455           bool DestIsVolatile = ReturnValue.isVolatile();
5456 
5457           if (!DestPtr.isValid()) {
5458             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5459             DestIsVolatile = false;
5460           }
5461           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5462           return RValue::getAggregate(DestPtr);
5463         }
5464         case TEK_Scalar: {
5465           // If the argument doesn't match, perform a bitcast to coerce it.  This
5466           // can happen due to trivial type mismatches.
5467           llvm::Value *V = CI;
5468           if (V->getType() != RetIRTy)
5469             V = Builder.CreateBitCast(V, RetIRTy);
5470           return RValue::get(V);
5471         }
5472         }
5473         llvm_unreachable("bad evaluation kind");
5474       }
5475 
5476       Address DestPtr = ReturnValue.getValue();
5477       bool DestIsVolatile = ReturnValue.isVolatile();
5478 
5479       if (!DestPtr.isValid()) {
5480         DestPtr = CreateMemTemp(RetTy, "coerce");
5481         DestIsVolatile = false;
5482       }
5483 
5484       // If the value is offset in memory, apply the offset now.
5485       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5486       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5487 
5488       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5489     }
5490 
5491     case ABIArgInfo::Expand:
5492     case ABIArgInfo::IndirectAliased:
5493       llvm_unreachable("Invalid ABI kind for return argument");
5494     }
5495 
5496     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5497   } ();
5498 
5499   // Emit the assume_aligned check on the return value.
5500   if (Ret.isScalar() && TargetDecl) {
5501     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5502     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5503   }
5504 
5505   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5506   // we can't use the full cleanup mechanism.
5507   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5508     LifetimeEnd.Emit(*this, /*Flags=*/{});
5509 
5510   if (!ReturnValue.isExternallyDestructed() &&
5511       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5512     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5513                 RetTy);
5514 
5515   return Ret;
5516 }
5517 
5518 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5519   if (isVirtual()) {
5520     const CallExpr *CE = getVirtualCallExpr();
5521     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5522         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5523         CE ? CE->getBeginLoc() : SourceLocation());
5524   }
5525 
5526   return *this;
5527 }
5528 
5529 /* VarArg handling */
5530 
5531 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5532   VAListAddr = VE->isMicrosoftABI()
5533                  ? EmitMSVAListRef(VE->getSubExpr())
5534                  : EmitVAListRef(VE->getSubExpr());
5535   QualType Ty = VE->getType();
5536   if (VE->isMicrosoftABI())
5537     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5538   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5539 }
5540