1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69 
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
71 /// qualification.
72 /// FIXME: address space qualification?
73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
74   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
75   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
76 }
77 
78 /// Returns the canonical formal type of the given C++ method.
79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
80   return MD->getType()->getCanonicalTypeUnqualified()
81            .getAs<FunctionProtoType>();
82 }
83 
84 /// Returns the "extra-canonicalized" return type, which discards
85 /// qualifiers on the return type.  Codegen doesn't care about them,
86 /// and it makes ABI code a little easier to be able to assume that
87 /// all parameter and return types are top-level unqualified.
88 static CanQualType GetReturnType(QualType RetTy) {
89   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
90 }
91 
92 /// Arrange the argument and result information for a value of the given
93 /// unprototyped freestanding function type.
94 const CGFunctionInfo &
95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
96   // When translating an unprototyped function type, always use a
97   // variadic type.
98   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
99                                  /*instanceMethod=*/false,
100                                  /*chainCall=*/false, None,
101                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
102 }
103 
104 static void addExtParameterInfosForCall(
105          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
106                                         const FunctionProtoType *proto,
107                                         unsigned prefixArgs,
108                                         unsigned totalArgs) {
109   assert(proto->hasExtParameterInfos());
110   assert(paramInfos.size() <= prefixArgs);
111   assert(proto->getNumParams() + prefixArgs <= totalArgs);
112 
113   paramInfos.reserve(totalArgs);
114 
115   // Add default infos for any prefix args that don't already have infos.
116   paramInfos.resize(prefixArgs);
117 
118   // Add infos for the prototype.
119   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
120     paramInfos.push_back(ParamInfo);
121     // pass_object_size params have no parameter info.
122     if (ParamInfo.hasPassObjectSize())
123       paramInfos.emplace_back();
124   }
125 
126   assert(paramInfos.size() <= totalArgs &&
127          "Did we forget to insert pass_object_size args?");
128   // Add default infos for the variadic and/or suffix arguments.
129   paramInfos.resize(totalArgs);
130 }
131 
132 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in
133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
134 static void appendParameterTypes(const CodeGenTypes &CGT,
135                                  SmallVectorImpl<CanQualType> &prefix,
136               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
137                                  CanQual<FunctionProtoType> FPT) {
138   // Fast path: don't touch param info if we don't need to.
139   if (!FPT->hasExtParameterInfos()) {
140     assert(paramInfos.empty() &&
141            "We have paramInfos, but the prototype doesn't?");
142     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
143     return;
144   }
145 
146   unsigned PrefixSize = prefix.size();
147   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
148   // parameters; the only thing that can change this is the presence of
149   // pass_object_size. So, we preallocate for the common case.
150   prefix.reserve(prefix.size() + FPT->getNumParams());
151 
152   auto ExtInfos = FPT->getExtParameterInfos();
153   assert(ExtInfos.size() == FPT->getNumParams());
154   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
155     prefix.push_back(FPT->getParamType(I));
156     if (ExtInfos[I].hasPassObjectSize())
157       prefix.push_back(CGT.getContext().getSizeType());
158   }
159 
160   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
161                               prefix.size());
162 }
163 
164 /// Arrange the LLVM function layout for a value of the given function
165 /// type, on top of any implicit parameters already stored.
166 static const CGFunctionInfo &
167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
168                         SmallVectorImpl<CanQualType> &prefix,
169                         CanQual<FunctionProtoType> FTP,
170                         const FunctionDecl *FD) {
171   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
172   RequiredArgs Required =
173       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
174   // FIXME: Kill copy.
175   appendParameterTypes(CGT, prefix, paramInfos, FTP);
176   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
177 
178   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
179                                      /*chainCall=*/false, prefix,
180                                      FTP->getExtInfo(), paramInfos,
181                                      Required);
182 }
183 
184 /// Arrange the argument and result information for a value of the
185 /// given freestanding function type.
186 const CGFunctionInfo &
187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
188                                       const FunctionDecl *FD) {
189   SmallVector<CanQualType, 16> argTypes;
190   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
191                                    FTP, FD);
192 }
193 
194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
195   // Set the appropriate calling convention for the Function.
196   if (D->hasAttr<StdCallAttr>())
197     return CC_X86StdCall;
198 
199   if (D->hasAttr<FastCallAttr>())
200     return CC_X86FastCall;
201 
202   if (D->hasAttr<RegCallAttr>())
203     return CC_X86RegCall;
204 
205   if (D->hasAttr<ThisCallAttr>())
206     return CC_X86ThisCall;
207 
208   if (D->hasAttr<VectorCallAttr>())
209     return CC_X86VectorCall;
210 
211   if (D->hasAttr<PascalAttr>())
212     return CC_X86Pascal;
213 
214   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
215     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
216 
217   if (D->hasAttr<IntelOclBiccAttr>())
218     return CC_IntelOclBicc;
219 
220   if (D->hasAttr<MSABIAttr>())
221     return IsWindows ? CC_C : CC_X86_64Win64;
222 
223   if (D->hasAttr<SysVABIAttr>())
224     return IsWindows ? CC_X86_64SysV : CC_C;
225 
226   if (D->hasAttr<PreserveMostAttr>())
227     return CC_PreserveMost;
228 
229   if (D->hasAttr<PreserveAllAttr>())
230     return CC_PreserveAll;
231 
232   return CC_C;
233 }
234 
235 /// Arrange the argument and result information for a call to an
236 /// unknown C++ non-static member function of the given abstract type.
237 /// (Zero value of RD means we don't have any meaningful "this" argument type,
238 ///  so fall back to a generic pointer type).
239 /// The member function must be an ordinary function, i.e. not a
240 /// constructor or destructor.
241 const CGFunctionInfo &
242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
243                                    const FunctionProtoType *FTP,
244                                    const CXXMethodDecl *MD) {
245   SmallVector<CanQualType, 16> argTypes;
246 
247   // Add the 'this' pointer.
248   if (RD)
249     argTypes.push_back(GetThisType(Context, RD));
250   else
251     argTypes.push_back(Context.VoidPtrTy);
252 
253   return ::arrangeLLVMFunctionInfo(
254       *this, true, argTypes,
255       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
256 }
257 
258 /// Arrange the argument and result information for a declaration or
259 /// definition of the given C++ non-static member function.  The
260 /// member function must be an ordinary function, i.e. not a
261 /// constructor or destructor.
262 const CGFunctionInfo &
263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
264   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
265   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
266 
267   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
268 
269   if (MD->isInstance()) {
270     // The abstract case is perfectly fine.
271     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
272     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
273   }
274 
275   return arrangeFreeFunctionType(prototype, MD);
276 }
277 
278 bool CodeGenTypes::inheritingCtorHasParams(
279     const InheritedConstructor &Inherited, CXXCtorType Type) {
280   // Parameters are unnecessary if we're constructing a base class subobject
281   // and the inherited constructor lives in a virtual base.
282   return Type == Ctor_Complete ||
283          !Inherited.getShadowDecl()->constructsVirtualBase() ||
284          !Target.getCXXABI().hasConstructorVariants();
285   }
286 
287 const CGFunctionInfo &
288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
289                                             StructorType Type) {
290 
291   SmallVector<CanQualType, 16> argTypes;
292   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
293   argTypes.push_back(GetThisType(Context, MD->getParent()));
294 
295   bool PassParams = true;
296 
297   GlobalDecl GD;
298   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
299     GD = GlobalDecl(CD, toCXXCtorType(Type));
300 
301     // A base class inheriting constructor doesn't get forwarded arguments
302     // needed to construct a virtual base (or base class thereof).
303     if (auto Inherited = CD->getInheritedConstructor())
304       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
305   } else {
306     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
307     GD = GlobalDecl(DD, toCXXDtorType(Type));
308   }
309 
310   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
311 
312   // Add the formal parameters.
313   if (PassParams)
314     appendParameterTypes(*this, argTypes, paramInfos, FTP);
315 
316   CGCXXABI::AddedStructorArgs AddedArgs =
317       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
318   if (!paramInfos.empty()) {
319     // Note: prefix implies after the first param.
320     if (AddedArgs.Prefix)
321       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
322                         FunctionProtoType::ExtParameterInfo{});
323     if (AddedArgs.Suffix)
324       paramInfos.append(AddedArgs.Suffix,
325                         FunctionProtoType::ExtParameterInfo{});
326   }
327 
328   RequiredArgs required =
329       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
330                                       : RequiredArgs::All);
331 
332   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
333   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
334                                ? argTypes.front()
335                                : TheCXXABI.hasMostDerivedReturn(GD)
336                                      ? CGM.getContext().VoidPtrTy
337                                      : Context.VoidTy;
338   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
339                                  /*chainCall=*/false, argTypes, extInfo,
340                                  paramInfos, required);
341 }
342 
343 static SmallVector<CanQualType, 16>
344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
345   SmallVector<CanQualType, 16> argTypes;
346   for (auto &arg : args)
347     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
348   return argTypes;
349 }
350 
351 static SmallVector<CanQualType, 16>
352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
353   SmallVector<CanQualType, 16> argTypes;
354   for (auto &arg : args)
355     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
356   return argTypes;
357 }
358 
359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
360 getExtParameterInfosForCall(const FunctionProtoType *proto,
361                             unsigned prefixArgs, unsigned totalArgs) {
362   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
363   if (proto->hasExtParameterInfos()) {
364     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
365   }
366   return result;
367 }
368 
369 /// Arrange a call to a C++ method, passing the given arguments.
370 ///
371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
372 /// parameter.
373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
374 /// args.
375 /// PassProtoArgs indicates whether `args` has args for the parameters in the
376 /// given CXXConstructorDecl.
377 const CGFunctionInfo &
378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
379                                         const CXXConstructorDecl *D,
380                                         CXXCtorType CtorKind,
381                                         unsigned ExtraPrefixArgs,
382                                         unsigned ExtraSuffixArgs,
383                                         bool PassProtoArgs) {
384   // FIXME: Kill copy.
385   SmallVector<CanQualType, 16> ArgTypes;
386   for (const auto &Arg : args)
387     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
388 
389   // +1 for implicit this, which should always be args[0].
390   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
391 
392   CanQual<FunctionProtoType> FPT = GetFormalType(D);
393   RequiredArgs Required =
394       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
395   GlobalDecl GD(D, CtorKind);
396   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
397                                ? ArgTypes.front()
398                                : TheCXXABI.hasMostDerivedReturn(GD)
399                                      ? CGM.getContext().VoidPtrTy
400                                      : Context.VoidTy;
401 
402   FunctionType::ExtInfo Info = FPT->getExtInfo();
403   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
404   // If the prototype args are elided, we should only have ABI-specific args,
405   // which never have param info.
406   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
407     // ABI-specific suffix arguments are treated the same as variadic arguments.
408     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
409                                 ArgTypes.size());
410   }
411   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
412                                  /*chainCall=*/false, ArgTypes, Info,
413                                  ParamInfos, Required);
414 }
415 
416 /// Arrange the argument and result information for the declaration or
417 /// definition of the given function.
418 const CGFunctionInfo &
419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
420   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
421     if (MD->isInstance())
422       return arrangeCXXMethodDeclaration(MD);
423 
424   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
425 
426   assert(isa<FunctionType>(FTy));
427 
428   // When declaring a function without a prototype, always use a
429   // non-variadic type.
430   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
431     return arrangeLLVMFunctionInfo(
432         noProto->getReturnType(), /*instanceMethod=*/false,
433         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
434   }
435 
436   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
437 }
438 
439 /// Arrange the argument and result information for the declaration or
440 /// definition of an Objective-C method.
441 const CGFunctionInfo &
442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
443   // It happens that this is the same as a call with no optional
444   // arguments, except also using the formal 'self' type.
445   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
446 }
447 
448 /// Arrange the argument and result information for the function type
449 /// through which to perform a send to the given Objective-C method,
450 /// using the given receiver type.  The receiver type is not always
451 /// the 'self' type of the method or even an Objective-C pointer type.
452 /// This is *not* the right method for actually performing such a
453 /// message send, due to the possibility of optional arguments.
454 const CGFunctionInfo &
455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
456                                               QualType receiverType) {
457   SmallVector<CanQualType, 16> argTys;
458   argTys.push_back(Context.getCanonicalParamType(receiverType));
459   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
460   // FIXME: Kill copy?
461   for (const auto *I : MD->parameters()) {
462     argTys.push_back(Context.getCanonicalParamType(I->getType()));
463   }
464 
465   FunctionType::ExtInfo einfo;
466   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
467   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
468 
469   if (getContext().getLangOpts().ObjCAutoRefCount &&
470       MD->hasAttr<NSReturnsRetainedAttr>())
471     einfo = einfo.withProducesResult(true);
472 
473   RequiredArgs required =
474     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
475 
476   return arrangeLLVMFunctionInfo(
477       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
478       /*chainCall=*/false, argTys, einfo, {}, required);
479 }
480 
481 const CGFunctionInfo &
482 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
483                                                  const CallArgList &args) {
484   auto argTypes = getArgTypesForCall(Context, args);
485   FunctionType::ExtInfo einfo;
486 
487   return arrangeLLVMFunctionInfo(
488       GetReturnType(returnType), /*instanceMethod=*/false,
489       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
490 }
491 
492 const CGFunctionInfo &
493 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
494   // FIXME: Do we need to handle ObjCMethodDecl?
495   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
496 
497   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
498     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
499 
500   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
501     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
502 
503   return arrangeFunctionDeclaration(FD);
504 }
505 
506 /// Arrange a thunk that takes 'this' as the first parameter followed by
507 /// varargs.  Return a void pointer, regardless of the actual return type.
508 /// The body of the thunk will end in a musttail call to a function of the
509 /// correct type, and the caller will bitcast the function to the correct
510 /// prototype.
511 const CGFunctionInfo &
512 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
513   assert(MD->isVirtual() && "only virtual memptrs have thunks");
514   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
515   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
516   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
517                                  /*chainCall=*/false, ArgTys,
518                                  FTP->getExtInfo(), {}, RequiredArgs(1));
519 }
520 
521 const CGFunctionInfo &
522 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
523                                    CXXCtorType CT) {
524   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
525 
526   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
527   SmallVector<CanQualType, 2> ArgTys;
528   const CXXRecordDecl *RD = CD->getParent();
529   ArgTys.push_back(GetThisType(Context, RD));
530   if (CT == Ctor_CopyingClosure)
531     ArgTys.push_back(*FTP->param_type_begin());
532   if (RD->getNumVBases() > 0)
533     ArgTys.push_back(Context.IntTy);
534   CallingConv CC = Context.getDefaultCallingConvention(
535       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
536   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
537                                  /*chainCall=*/false, ArgTys,
538                                  FunctionType::ExtInfo(CC), {},
539                                  RequiredArgs::All);
540 }
541 
542 /// Arrange a call as unto a free function, except possibly with an
543 /// additional number of formal parameters considered required.
544 static const CGFunctionInfo &
545 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
546                             CodeGenModule &CGM,
547                             const CallArgList &args,
548                             const FunctionType *fnType,
549                             unsigned numExtraRequiredArgs,
550                             bool chainCall) {
551   assert(args.size() >= numExtraRequiredArgs);
552 
553   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
554 
555   // In most cases, there are no optional arguments.
556   RequiredArgs required = RequiredArgs::All;
557 
558   // If we have a variadic prototype, the required arguments are the
559   // extra prefix plus the arguments in the prototype.
560   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
561     if (proto->isVariadic())
562       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
563 
564     if (proto->hasExtParameterInfos())
565       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
566                                   args.size());
567 
568   // If we don't have a prototype at all, but we're supposed to
569   // explicitly use the variadic convention for unprototyped calls,
570   // treat all of the arguments as required but preserve the nominal
571   // possibility of variadics.
572   } else if (CGM.getTargetCodeGenInfo()
573                 .isNoProtoCallVariadic(args,
574                                        cast<FunctionNoProtoType>(fnType))) {
575     required = RequiredArgs(args.size());
576   }
577 
578   // FIXME: Kill copy.
579   SmallVector<CanQualType, 16> argTypes;
580   for (const auto &arg : args)
581     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
582   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
583                                      /*instanceMethod=*/false, chainCall,
584                                      argTypes, fnType->getExtInfo(), paramInfos,
585                                      required);
586 }
587 
588 /// Figure out the rules for calling a function with the given formal
589 /// type using the given arguments.  The arguments are necessary
590 /// because the function might be unprototyped, in which case it's
591 /// target-dependent in crazy ways.
592 const CGFunctionInfo &
593 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
594                                       const FunctionType *fnType,
595                                       bool chainCall) {
596   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
597                                      chainCall ? 1 : 0, chainCall);
598 }
599 
600 /// A block function is essentially a free function with an
601 /// extra implicit argument.
602 const CGFunctionInfo &
603 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
604                                        const FunctionType *fnType) {
605   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
606                                      /*chainCall=*/false);
607 }
608 
609 const CGFunctionInfo &
610 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
611                                               const FunctionArgList &params) {
612   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
613   auto argTypes = getArgTypesForDeclaration(Context, params);
614 
615   return arrangeLLVMFunctionInfo(
616       GetReturnType(proto->getReturnType()),
617       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
618       proto->getExtInfo(), paramInfos,
619       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
620 }
621 
622 const CGFunctionInfo &
623 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
624                                          const CallArgList &args) {
625   // FIXME: Kill copy.
626   SmallVector<CanQualType, 16> argTypes;
627   for (const auto &Arg : args)
628     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
629   return arrangeLLVMFunctionInfo(
630       GetReturnType(resultType), /*instanceMethod=*/false,
631       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
632       /*paramInfos=*/ {}, RequiredArgs::All);
633 }
634 
635 const CGFunctionInfo &
636 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
637                                                 const FunctionArgList &args) {
638   auto argTypes = getArgTypesForDeclaration(Context, args);
639 
640   return arrangeLLVMFunctionInfo(
641       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
642       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
643 }
644 
645 const CGFunctionInfo &
646 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
647                                               ArrayRef<CanQualType> argTypes) {
648   return arrangeLLVMFunctionInfo(
649       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
650       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
651 }
652 
653 /// Arrange a call to a C++ method, passing the given arguments.
654 ///
655 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
656 /// does not count `this`.
657 const CGFunctionInfo &
658 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
659                                    const FunctionProtoType *proto,
660                                    RequiredArgs required,
661                                    unsigned numPrefixArgs) {
662   assert(numPrefixArgs + 1 <= args.size() &&
663          "Emitting a call with less args than the required prefix?");
664   // Add one to account for `this`. It's a bit awkward here, but we don't count
665   // `this` in similar places elsewhere.
666   auto paramInfos =
667     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
668 
669   // FIXME: Kill copy.
670   auto argTypes = getArgTypesForCall(Context, args);
671 
672   FunctionType::ExtInfo info = proto->getExtInfo();
673   return arrangeLLVMFunctionInfo(
674       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
675       /*chainCall=*/false, argTypes, info, paramInfos, required);
676 }
677 
678 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
679   return arrangeLLVMFunctionInfo(
680       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
681       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
682 }
683 
684 const CGFunctionInfo &
685 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
686                           const CallArgList &args) {
687   assert(signature.arg_size() <= args.size());
688   if (signature.arg_size() == args.size())
689     return signature;
690 
691   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
692   auto sigParamInfos = signature.getExtParameterInfos();
693   if (!sigParamInfos.empty()) {
694     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
695     paramInfos.resize(args.size());
696   }
697 
698   auto argTypes = getArgTypesForCall(Context, args);
699 
700   assert(signature.getRequiredArgs().allowsOptionalArgs());
701   return arrangeLLVMFunctionInfo(signature.getReturnType(),
702                                  signature.isInstanceMethod(),
703                                  signature.isChainCall(),
704                                  argTypes,
705                                  signature.getExtInfo(),
706                                  paramInfos,
707                                  signature.getRequiredArgs());
708 }
709 
710 /// Arrange the argument and result information for an abstract value
711 /// of a given function type.  This is the method which all of the
712 /// above functions ultimately defer to.
713 const CGFunctionInfo &
714 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
715                                       bool instanceMethod,
716                                       bool chainCall,
717                                       ArrayRef<CanQualType> argTypes,
718                                       FunctionType::ExtInfo info,
719                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
720                                       RequiredArgs required) {
721   assert(std::all_of(argTypes.begin(), argTypes.end(),
722                      [](CanQualType T) { return T.isCanonicalAsParam(); }));
723 
724   // Lookup or create unique function info.
725   llvm::FoldingSetNodeID ID;
726   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
727                           required, resultType, argTypes);
728 
729   void *insertPos = nullptr;
730   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
731   if (FI)
732     return *FI;
733 
734   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
735 
736   // Construct the function info.  We co-allocate the ArgInfos.
737   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
738                               paramInfos, resultType, argTypes, required);
739   FunctionInfos.InsertNode(FI, insertPos);
740 
741   bool inserted = FunctionsBeingProcessed.insert(FI).second;
742   (void)inserted;
743   assert(inserted && "Recursively being processed?");
744 
745   // Compute ABI information.
746   if (info.getCC() != CC_Swift) {
747     getABIInfo().computeInfo(*FI);
748   } else {
749     swiftcall::computeABIInfo(CGM, *FI);
750   }
751 
752   // Loop over all of the computed argument and return value info.  If any of
753   // them are direct or extend without a specified coerce type, specify the
754   // default now.
755   ABIArgInfo &retInfo = FI->getReturnInfo();
756   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
757     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
758 
759   for (auto &I : FI->arguments())
760     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
761       I.info.setCoerceToType(ConvertType(I.type));
762 
763   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
764   assert(erased && "Not in set?");
765 
766   return *FI;
767 }
768 
769 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
770                                        bool instanceMethod,
771                                        bool chainCall,
772                                        const FunctionType::ExtInfo &info,
773                                        ArrayRef<ExtParameterInfo> paramInfos,
774                                        CanQualType resultType,
775                                        ArrayRef<CanQualType> argTypes,
776                                        RequiredArgs required) {
777   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
778 
779   void *buffer =
780     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
781                                   argTypes.size() + 1, paramInfos.size()));
782 
783   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
784   FI->CallingConvention = llvmCC;
785   FI->EffectiveCallingConvention = llvmCC;
786   FI->ASTCallingConvention = info.getCC();
787   FI->InstanceMethod = instanceMethod;
788   FI->ChainCall = chainCall;
789   FI->NoReturn = info.getNoReturn();
790   FI->ReturnsRetained = info.getProducesResult();
791   FI->Required = required;
792   FI->HasRegParm = info.getHasRegParm();
793   FI->RegParm = info.getRegParm();
794   FI->ArgStruct = nullptr;
795   FI->ArgStructAlign = 0;
796   FI->NumArgs = argTypes.size();
797   FI->HasExtParameterInfos = !paramInfos.empty();
798   FI->getArgsBuffer()[0].type = resultType;
799   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
800     FI->getArgsBuffer()[i + 1].type = argTypes[i];
801   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
802     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
803   return FI;
804 }
805 
806 /***/
807 
808 namespace {
809 // ABIArgInfo::Expand implementation.
810 
811 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
812 struct TypeExpansion {
813   enum TypeExpansionKind {
814     // Elements of constant arrays are expanded recursively.
815     TEK_ConstantArray,
816     // Record fields are expanded recursively (but if record is a union, only
817     // the field with the largest size is expanded).
818     TEK_Record,
819     // For complex types, real and imaginary parts are expanded recursively.
820     TEK_Complex,
821     // All other types are not expandable.
822     TEK_None
823   };
824 
825   const TypeExpansionKind Kind;
826 
827   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
828   virtual ~TypeExpansion() {}
829 };
830 
831 struct ConstantArrayExpansion : TypeExpansion {
832   QualType EltTy;
833   uint64_t NumElts;
834 
835   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
836       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
837   static bool classof(const TypeExpansion *TE) {
838     return TE->Kind == TEK_ConstantArray;
839   }
840 };
841 
842 struct RecordExpansion : TypeExpansion {
843   SmallVector<const CXXBaseSpecifier *, 1> Bases;
844 
845   SmallVector<const FieldDecl *, 1> Fields;
846 
847   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
848                   SmallVector<const FieldDecl *, 1> &&Fields)
849       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
850         Fields(std::move(Fields)) {}
851   static bool classof(const TypeExpansion *TE) {
852     return TE->Kind == TEK_Record;
853   }
854 };
855 
856 struct ComplexExpansion : TypeExpansion {
857   QualType EltTy;
858 
859   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
860   static bool classof(const TypeExpansion *TE) {
861     return TE->Kind == TEK_Complex;
862   }
863 };
864 
865 struct NoExpansion : TypeExpansion {
866   NoExpansion() : TypeExpansion(TEK_None) {}
867   static bool classof(const TypeExpansion *TE) {
868     return TE->Kind == TEK_None;
869   }
870 };
871 }  // namespace
872 
873 static std::unique_ptr<TypeExpansion>
874 getTypeExpansion(QualType Ty, const ASTContext &Context) {
875   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
876     return llvm::make_unique<ConstantArrayExpansion>(
877         AT->getElementType(), AT->getSize().getZExtValue());
878   }
879   if (const RecordType *RT = Ty->getAs<RecordType>()) {
880     SmallVector<const CXXBaseSpecifier *, 1> Bases;
881     SmallVector<const FieldDecl *, 1> Fields;
882     const RecordDecl *RD = RT->getDecl();
883     assert(!RD->hasFlexibleArrayMember() &&
884            "Cannot expand structure with flexible array.");
885     if (RD->isUnion()) {
886       // Unions can be here only in degenerative cases - all the fields are same
887       // after flattening. Thus we have to use the "largest" field.
888       const FieldDecl *LargestFD = nullptr;
889       CharUnits UnionSize = CharUnits::Zero();
890 
891       for (const auto *FD : RD->fields()) {
892         // Skip zero length bitfields.
893         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
894           continue;
895         assert(!FD->isBitField() &&
896                "Cannot expand structure with bit-field members.");
897         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
898         if (UnionSize < FieldSize) {
899           UnionSize = FieldSize;
900           LargestFD = FD;
901         }
902       }
903       if (LargestFD)
904         Fields.push_back(LargestFD);
905     } else {
906       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
907         assert(!CXXRD->isDynamicClass() &&
908                "cannot expand vtable pointers in dynamic classes");
909         for (const CXXBaseSpecifier &BS : CXXRD->bases())
910           Bases.push_back(&BS);
911       }
912 
913       for (const auto *FD : RD->fields()) {
914         // Skip zero length bitfields.
915         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
916           continue;
917         assert(!FD->isBitField() &&
918                "Cannot expand structure with bit-field members.");
919         Fields.push_back(FD);
920       }
921     }
922     return llvm::make_unique<RecordExpansion>(std::move(Bases),
923                                               std::move(Fields));
924   }
925   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
926     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
927   }
928   return llvm::make_unique<NoExpansion>();
929 }
930 
931 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
932   auto Exp = getTypeExpansion(Ty, Context);
933   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
934     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
935   }
936   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
937     int Res = 0;
938     for (auto BS : RExp->Bases)
939       Res += getExpansionSize(BS->getType(), Context);
940     for (auto FD : RExp->Fields)
941       Res += getExpansionSize(FD->getType(), Context);
942     return Res;
943   }
944   if (isa<ComplexExpansion>(Exp.get()))
945     return 2;
946   assert(isa<NoExpansion>(Exp.get()));
947   return 1;
948 }
949 
950 void
951 CodeGenTypes::getExpandedTypes(QualType Ty,
952                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
953   auto Exp = getTypeExpansion(Ty, Context);
954   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
955     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
956       getExpandedTypes(CAExp->EltTy, TI);
957     }
958   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
959     for (auto BS : RExp->Bases)
960       getExpandedTypes(BS->getType(), TI);
961     for (auto FD : RExp->Fields)
962       getExpandedTypes(FD->getType(), TI);
963   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
964     llvm::Type *EltTy = ConvertType(CExp->EltTy);
965     *TI++ = EltTy;
966     *TI++ = EltTy;
967   } else {
968     assert(isa<NoExpansion>(Exp.get()));
969     *TI++ = ConvertType(Ty);
970   }
971 }
972 
973 static void forConstantArrayExpansion(CodeGenFunction &CGF,
974                                       ConstantArrayExpansion *CAE,
975                                       Address BaseAddr,
976                                       llvm::function_ref<void(Address)> Fn) {
977   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
978   CharUnits EltAlign =
979     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
980 
981   for (int i = 0, n = CAE->NumElts; i < n; i++) {
982     llvm::Value *EltAddr =
983       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
984     Fn(Address(EltAddr, EltAlign));
985   }
986 }
987 
988 void CodeGenFunction::ExpandTypeFromArgs(
989     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
990   assert(LV.isSimple() &&
991          "Unexpected non-simple lvalue during struct expansion.");
992 
993   auto Exp = getTypeExpansion(Ty, getContext());
994   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
995     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
996                               [&](Address EltAddr) {
997       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
998       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
999     });
1000   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1001     Address This = LV.getAddress();
1002     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1003       // Perform a single step derived-to-base conversion.
1004       Address Base =
1005           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1006                                 /*NullCheckValue=*/false, SourceLocation());
1007       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1008 
1009       // Recurse onto bases.
1010       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1011     }
1012     for (auto FD : RExp->Fields) {
1013       // FIXME: What are the right qualifiers here?
1014       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1015       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1016     }
1017   } else if (isa<ComplexExpansion>(Exp.get())) {
1018     auto realValue = *AI++;
1019     auto imagValue = *AI++;
1020     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1021   } else {
1022     assert(isa<NoExpansion>(Exp.get()));
1023     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1024   }
1025 }
1026 
1027 void CodeGenFunction::ExpandTypeToArgs(
1028     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
1029     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1030   auto Exp = getTypeExpansion(Ty, getContext());
1031   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1032     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
1033                               [&](Address EltAddr) {
1034       RValue EltRV =
1035           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
1036       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
1037     });
1038   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1039     Address This = RV.getAggregateAddress();
1040     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1041       // Perform a single step derived-to-base conversion.
1042       Address Base =
1043           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1044                                 /*NullCheckValue=*/false, SourceLocation());
1045       RValue BaseRV = RValue::getAggregate(Base);
1046 
1047       // Recurse onto bases.
1048       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
1049                        IRCallArgPos);
1050     }
1051 
1052     LValue LV = MakeAddrLValue(This, Ty);
1053     for (auto FD : RExp->Fields) {
1054       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
1055       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
1056                        IRCallArgPos);
1057     }
1058   } else if (isa<ComplexExpansion>(Exp.get())) {
1059     ComplexPairTy CV = RV.getComplexVal();
1060     IRCallArgs[IRCallArgPos++] = CV.first;
1061     IRCallArgs[IRCallArgPos++] = CV.second;
1062   } else {
1063     assert(isa<NoExpansion>(Exp.get()));
1064     assert(RV.isScalar() &&
1065            "Unexpected non-scalar rvalue during struct expansion.");
1066 
1067     // Insert a bitcast as needed.
1068     llvm::Value *V = RV.getScalarVal();
1069     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1070         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1071       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1072 
1073     IRCallArgs[IRCallArgPos++] = V;
1074   }
1075 }
1076 
1077 /// Create a temporary allocation for the purposes of coercion.
1078 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1079                                            CharUnits MinAlign) {
1080   // Don't use an alignment that's worse than what LLVM would prefer.
1081   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1082   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1083 
1084   return CGF.CreateTempAlloca(Ty, Align);
1085 }
1086 
1087 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1088 /// accessing some number of bytes out of it, try to gep into the struct to get
1089 /// at its inner goodness.  Dive as deep as possible without entering an element
1090 /// with an in-memory size smaller than DstSize.
1091 static Address
1092 EnterStructPointerForCoercedAccess(Address SrcPtr,
1093                                    llvm::StructType *SrcSTy,
1094                                    uint64_t DstSize, CodeGenFunction &CGF) {
1095   // We can't dive into a zero-element struct.
1096   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1097 
1098   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1099 
1100   // If the first elt is at least as large as what we're looking for, or if the
1101   // first element is the same size as the whole struct, we can enter it. The
1102   // comparison must be made on the store size and not the alloca size. Using
1103   // the alloca size may overstate the size of the load.
1104   uint64_t FirstEltSize =
1105     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1106   if (FirstEltSize < DstSize &&
1107       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1108     return SrcPtr;
1109 
1110   // GEP into the first element.
1111   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1112 
1113   // If the first element is a struct, recurse.
1114   llvm::Type *SrcTy = SrcPtr.getElementType();
1115   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1116     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1117 
1118   return SrcPtr;
1119 }
1120 
1121 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1122 /// are either integers or pointers.  This does a truncation of the value if it
1123 /// is too large or a zero extension if it is too small.
1124 ///
1125 /// This behaves as if the value were coerced through memory, so on big-endian
1126 /// targets the high bits are preserved in a truncation, while little-endian
1127 /// targets preserve the low bits.
1128 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1129                                              llvm::Type *Ty,
1130                                              CodeGenFunction &CGF) {
1131   if (Val->getType() == Ty)
1132     return Val;
1133 
1134   if (isa<llvm::PointerType>(Val->getType())) {
1135     // If this is Pointer->Pointer avoid conversion to and from int.
1136     if (isa<llvm::PointerType>(Ty))
1137       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1138 
1139     // Convert the pointer to an integer so we can play with its width.
1140     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1141   }
1142 
1143   llvm::Type *DestIntTy = Ty;
1144   if (isa<llvm::PointerType>(DestIntTy))
1145     DestIntTy = CGF.IntPtrTy;
1146 
1147   if (Val->getType() != DestIntTy) {
1148     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1149     if (DL.isBigEndian()) {
1150       // Preserve the high bits on big-endian targets.
1151       // That is what memory coercion does.
1152       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1153       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1154 
1155       if (SrcSize > DstSize) {
1156         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1157         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1158       } else {
1159         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1160         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1161       }
1162     } else {
1163       // Little-endian targets preserve the low bits. No shifts required.
1164       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1165     }
1166   }
1167 
1168   if (isa<llvm::PointerType>(Ty))
1169     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1170   return Val;
1171 }
1172 
1173 
1174 
1175 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1176 /// a pointer to an object of type \arg Ty, known to be aligned to
1177 /// \arg SrcAlign bytes.
1178 ///
1179 /// This safely handles the case when the src type is smaller than the
1180 /// destination type; in this situation the values of bits which not
1181 /// present in the src are undefined.
1182 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1183                                       CodeGenFunction &CGF) {
1184   llvm::Type *SrcTy = Src.getElementType();
1185 
1186   // If SrcTy and Ty are the same, just do a load.
1187   if (SrcTy == Ty)
1188     return CGF.Builder.CreateLoad(Src);
1189 
1190   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1191 
1192   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1193     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1194     SrcTy = Src.getType()->getElementType();
1195   }
1196 
1197   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1198 
1199   // If the source and destination are integer or pointer types, just do an
1200   // extension or truncation to the desired type.
1201   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1202       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1203     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1204     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1205   }
1206 
1207   // If load is legal, just bitcast the src pointer.
1208   if (SrcSize >= DstSize) {
1209     // Generally SrcSize is never greater than DstSize, since this means we are
1210     // losing bits. However, this can happen in cases where the structure has
1211     // additional padding, for example due to a user specified alignment.
1212     //
1213     // FIXME: Assert that we aren't truncating non-padding bits when have access
1214     // to that information.
1215     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
1216     return CGF.Builder.CreateLoad(Src);
1217   }
1218 
1219   // Otherwise do coercion through memory. This is stupid, but simple.
1220   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1221   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1222   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
1223   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1224       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1225       false);
1226   return CGF.Builder.CreateLoad(Tmp);
1227 }
1228 
1229 // Function to store a first-class aggregate into memory.  We prefer to
1230 // store the elements rather than the aggregate to be more friendly to
1231 // fast-isel.
1232 // FIXME: Do we need to recurse here?
1233 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1234                           Address Dest, bool DestIsVolatile) {
1235   // Prefer scalar stores to first-class aggregate stores.
1236   if (llvm::StructType *STy =
1237         dyn_cast<llvm::StructType>(Val->getType())) {
1238     const llvm::StructLayout *Layout =
1239       CGF.CGM.getDataLayout().getStructLayout(STy);
1240 
1241     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1242       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1243       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1244       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1245       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1246     }
1247   } else {
1248     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1249   }
1250 }
1251 
1252 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1253 /// where the source and destination may have different types.  The
1254 /// destination is known to be aligned to \arg DstAlign bytes.
1255 ///
1256 /// This safely handles the case when the src type is larger than the
1257 /// destination type; the upper bits of the src will be lost.
1258 static void CreateCoercedStore(llvm::Value *Src,
1259                                Address Dst,
1260                                bool DstIsVolatile,
1261                                CodeGenFunction &CGF) {
1262   llvm::Type *SrcTy = Src->getType();
1263   llvm::Type *DstTy = Dst.getType()->getElementType();
1264   if (SrcTy == DstTy) {
1265     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1266     return;
1267   }
1268 
1269   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1270 
1271   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1272     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1273     DstTy = Dst.getType()->getElementType();
1274   }
1275 
1276   // If the source and destination are integer or pointer types, just do an
1277   // extension or truncation to the desired type.
1278   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1279       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1280     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1281     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1282     return;
1283   }
1284 
1285   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1286 
1287   // If store is legal, just bitcast the src pointer.
1288   if (SrcSize <= DstSize) {
1289     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1290     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1291   } else {
1292     // Otherwise do coercion through memory. This is stupid, but
1293     // simple.
1294 
1295     // Generally SrcSize is never greater than DstSize, since this means we are
1296     // losing bits. However, this can happen in cases where the structure has
1297     // additional padding, for example due to a user specified alignment.
1298     //
1299     // FIXME: Assert that we aren't truncating non-padding bits when have access
1300     // to that information.
1301     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1302     CGF.Builder.CreateStore(Src, Tmp);
1303     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1304     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1305     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1306         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1307         false);
1308   }
1309 }
1310 
1311 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1312                                    const ABIArgInfo &info) {
1313   if (unsigned offset = info.getDirectOffset()) {
1314     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1315     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1316                                              CharUnits::fromQuantity(offset));
1317     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1318   }
1319   return addr;
1320 }
1321 
1322 namespace {
1323 
1324 /// Encapsulates information about the way function arguments from
1325 /// CGFunctionInfo should be passed to actual LLVM IR function.
1326 class ClangToLLVMArgMapping {
1327   static const unsigned InvalidIndex = ~0U;
1328   unsigned InallocaArgNo;
1329   unsigned SRetArgNo;
1330   unsigned TotalIRArgs;
1331 
1332   /// Arguments of LLVM IR function corresponding to single Clang argument.
1333   struct IRArgs {
1334     unsigned PaddingArgIndex;
1335     // Argument is expanded to IR arguments at positions
1336     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1337     unsigned FirstArgIndex;
1338     unsigned NumberOfArgs;
1339 
1340     IRArgs()
1341         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1342           NumberOfArgs(0) {}
1343   };
1344 
1345   SmallVector<IRArgs, 8> ArgInfo;
1346 
1347 public:
1348   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1349                         bool OnlyRequiredArgs = false)
1350       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1351         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1352     construct(Context, FI, OnlyRequiredArgs);
1353   }
1354 
1355   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1356   unsigned getInallocaArgNo() const {
1357     assert(hasInallocaArg());
1358     return InallocaArgNo;
1359   }
1360 
1361   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1362   unsigned getSRetArgNo() const {
1363     assert(hasSRetArg());
1364     return SRetArgNo;
1365   }
1366 
1367   unsigned totalIRArgs() const { return TotalIRArgs; }
1368 
1369   bool hasPaddingArg(unsigned ArgNo) const {
1370     assert(ArgNo < ArgInfo.size());
1371     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1372   }
1373   unsigned getPaddingArgNo(unsigned ArgNo) const {
1374     assert(hasPaddingArg(ArgNo));
1375     return ArgInfo[ArgNo].PaddingArgIndex;
1376   }
1377 
1378   /// Returns index of first IR argument corresponding to ArgNo, and their
1379   /// quantity.
1380   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1381     assert(ArgNo < ArgInfo.size());
1382     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1383                           ArgInfo[ArgNo].NumberOfArgs);
1384   }
1385 
1386 private:
1387   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1388                  bool OnlyRequiredArgs);
1389 };
1390 
1391 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1392                                       const CGFunctionInfo &FI,
1393                                       bool OnlyRequiredArgs) {
1394   unsigned IRArgNo = 0;
1395   bool SwapThisWithSRet = false;
1396   const ABIArgInfo &RetAI = FI.getReturnInfo();
1397 
1398   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1399     SwapThisWithSRet = RetAI.isSRetAfterThis();
1400     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1401   }
1402 
1403   unsigned ArgNo = 0;
1404   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1405   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1406        ++I, ++ArgNo) {
1407     assert(I != FI.arg_end());
1408     QualType ArgType = I->type;
1409     const ABIArgInfo &AI = I->info;
1410     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1411     auto &IRArgs = ArgInfo[ArgNo];
1412 
1413     if (AI.getPaddingType())
1414       IRArgs.PaddingArgIndex = IRArgNo++;
1415 
1416     switch (AI.getKind()) {
1417     case ABIArgInfo::Extend:
1418     case ABIArgInfo::Direct: {
1419       // FIXME: handle sseregparm someday...
1420       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1421       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1422         IRArgs.NumberOfArgs = STy->getNumElements();
1423       } else {
1424         IRArgs.NumberOfArgs = 1;
1425       }
1426       break;
1427     }
1428     case ABIArgInfo::Indirect:
1429       IRArgs.NumberOfArgs = 1;
1430       break;
1431     case ABIArgInfo::Ignore:
1432     case ABIArgInfo::InAlloca:
1433       // ignore and inalloca doesn't have matching LLVM parameters.
1434       IRArgs.NumberOfArgs = 0;
1435       break;
1436     case ABIArgInfo::CoerceAndExpand:
1437       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1438       break;
1439     case ABIArgInfo::Expand:
1440       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1441       break;
1442     }
1443 
1444     if (IRArgs.NumberOfArgs > 0) {
1445       IRArgs.FirstArgIndex = IRArgNo;
1446       IRArgNo += IRArgs.NumberOfArgs;
1447     }
1448 
1449     // Skip over the sret parameter when it comes second.  We already handled it
1450     // above.
1451     if (IRArgNo == 1 && SwapThisWithSRet)
1452       IRArgNo++;
1453   }
1454   assert(ArgNo == ArgInfo.size());
1455 
1456   if (FI.usesInAlloca())
1457     InallocaArgNo = IRArgNo++;
1458 
1459   TotalIRArgs = IRArgNo;
1460 }
1461 }  // namespace
1462 
1463 /***/
1464 
1465 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1466   return FI.getReturnInfo().isIndirect();
1467 }
1468 
1469 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1470   return ReturnTypeUsesSRet(FI) &&
1471          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1472 }
1473 
1474 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1475   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1476     switch (BT->getKind()) {
1477     default:
1478       return false;
1479     case BuiltinType::Float:
1480       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1481     case BuiltinType::Double:
1482       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1483     case BuiltinType::LongDouble:
1484       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1485     }
1486   }
1487 
1488   return false;
1489 }
1490 
1491 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1492   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1493     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1494       if (BT->getKind() == BuiltinType::LongDouble)
1495         return getTarget().useObjCFP2RetForComplexLongDouble();
1496     }
1497   }
1498 
1499   return false;
1500 }
1501 
1502 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1503   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1504   return GetFunctionType(FI);
1505 }
1506 
1507 llvm::FunctionType *
1508 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1509 
1510   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1511   (void)Inserted;
1512   assert(Inserted && "Recursively being processed?");
1513 
1514   llvm::Type *resultType = nullptr;
1515   const ABIArgInfo &retAI = FI.getReturnInfo();
1516   switch (retAI.getKind()) {
1517   case ABIArgInfo::Expand:
1518     llvm_unreachable("Invalid ABI kind for return argument");
1519 
1520   case ABIArgInfo::Extend:
1521   case ABIArgInfo::Direct:
1522     resultType = retAI.getCoerceToType();
1523     break;
1524 
1525   case ABIArgInfo::InAlloca:
1526     if (retAI.getInAllocaSRet()) {
1527       // sret things on win32 aren't void, they return the sret pointer.
1528       QualType ret = FI.getReturnType();
1529       llvm::Type *ty = ConvertType(ret);
1530       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1531       resultType = llvm::PointerType::get(ty, addressSpace);
1532     } else {
1533       resultType = llvm::Type::getVoidTy(getLLVMContext());
1534     }
1535     break;
1536 
1537   case ABIArgInfo::Indirect:
1538   case ABIArgInfo::Ignore:
1539     resultType = llvm::Type::getVoidTy(getLLVMContext());
1540     break;
1541 
1542   case ABIArgInfo::CoerceAndExpand:
1543     resultType = retAI.getUnpaddedCoerceAndExpandType();
1544     break;
1545   }
1546 
1547   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1548   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1549 
1550   // Add type for sret argument.
1551   if (IRFunctionArgs.hasSRetArg()) {
1552     QualType Ret = FI.getReturnType();
1553     llvm::Type *Ty = ConvertType(Ret);
1554     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1555     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1556         llvm::PointerType::get(Ty, AddressSpace);
1557   }
1558 
1559   // Add type for inalloca argument.
1560   if (IRFunctionArgs.hasInallocaArg()) {
1561     auto ArgStruct = FI.getArgStruct();
1562     assert(ArgStruct);
1563     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1564   }
1565 
1566   // Add in all of the required arguments.
1567   unsigned ArgNo = 0;
1568   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1569                                      ie = it + FI.getNumRequiredArgs();
1570   for (; it != ie; ++it, ++ArgNo) {
1571     const ABIArgInfo &ArgInfo = it->info;
1572 
1573     // Insert a padding type to ensure proper alignment.
1574     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1575       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1576           ArgInfo.getPaddingType();
1577 
1578     unsigned FirstIRArg, NumIRArgs;
1579     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1580 
1581     switch (ArgInfo.getKind()) {
1582     case ABIArgInfo::Ignore:
1583     case ABIArgInfo::InAlloca:
1584       assert(NumIRArgs == 0);
1585       break;
1586 
1587     case ABIArgInfo::Indirect: {
1588       assert(NumIRArgs == 1);
1589       // indirect arguments are always on the stack, which is alloca addr space.
1590       llvm::Type *LTy = ConvertTypeForMem(it->type);
1591       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1592           CGM.getDataLayout().getAllocaAddrSpace());
1593       break;
1594     }
1595 
1596     case ABIArgInfo::Extend:
1597     case ABIArgInfo::Direct: {
1598       // Fast-isel and the optimizer generally like scalar values better than
1599       // FCAs, so we flatten them if this is safe to do for this argument.
1600       llvm::Type *argType = ArgInfo.getCoerceToType();
1601       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1602       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1603         assert(NumIRArgs == st->getNumElements());
1604         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1605           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1606       } else {
1607         assert(NumIRArgs == 1);
1608         ArgTypes[FirstIRArg] = argType;
1609       }
1610       break;
1611     }
1612 
1613     case ABIArgInfo::CoerceAndExpand: {
1614       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1615       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1616         *ArgTypesIter++ = EltTy;
1617       }
1618       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1619       break;
1620     }
1621 
1622     case ABIArgInfo::Expand:
1623       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1624       getExpandedTypes(it->type, ArgTypesIter);
1625       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1626       break;
1627     }
1628   }
1629 
1630   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1631   assert(Erased && "Not in set?");
1632 
1633   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1634 }
1635 
1636 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1637   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1638   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1639 
1640   if (!isFuncTypeConvertible(FPT))
1641     return llvm::StructType::get(getLLVMContext());
1642 
1643   const CGFunctionInfo *Info;
1644   if (isa<CXXDestructorDecl>(MD))
1645     Info =
1646         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1647   else
1648     Info = &arrangeCXXMethodDeclaration(MD);
1649   return GetFunctionType(*Info);
1650 }
1651 
1652 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1653                                                llvm::AttrBuilder &FuncAttrs,
1654                                                const FunctionProtoType *FPT) {
1655   if (!FPT)
1656     return;
1657 
1658   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1659       FPT->isNothrow(Ctx))
1660     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1661 }
1662 
1663 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1664                                                bool AttrOnCallSite,
1665                                                llvm::AttrBuilder &FuncAttrs) {
1666   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1667   if (!HasOptnone) {
1668     if (CodeGenOpts.OptimizeSize)
1669       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1670     if (CodeGenOpts.OptimizeSize == 2)
1671       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1672   }
1673 
1674   if (CodeGenOpts.DisableRedZone)
1675     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1676   if (CodeGenOpts.NoImplicitFloat)
1677     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1678 
1679   if (AttrOnCallSite) {
1680     // Attributes that should go on the call site only.
1681     if (!CodeGenOpts.SimplifyLibCalls ||
1682         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1683       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1684     if (!CodeGenOpts.TrapFuncName.empty())
1685       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1686   } else {
1687     // Attributes that should go on the function, but not the call site.
1688     if (!CodeGenOpts.DisableFPElim) {
1689       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1690     } else if (CodeGenOpts.OmitLeafFramePointer) {
1691       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1692       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1693     } else {
1694       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1695       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1696     }
1697 
1698     FuncAttrs.addAttribute("less-precise-fpmad",
1699                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1700 
1701     if (!CodeGenOpts.FPDenormalMode.empty())
1702       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1703 
1704     FuncAttrs.addAttribute("no-trapping-math",
1705                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1706 
1707     // TODO: Are these all needed?
1708     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1709     FuncAttrs.addAttribute("no-infs-fp-math",
1710                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1711     FuncAttrs.addAttribute("no-nans-fp-math",
1712                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1713     FuncAttrs.addAttribute("unsafe-fp-math",
1714                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1715     FuncAttrs.addAttribute("use-soft-float",
1716                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1717     FuncAttrs.addAttribute("stack-protector-buffer-size",
1718                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1719     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1720                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1721     FuncAttrs.addAttribute(
1722         "correctly-rounded-divide-sqrt-fp-math",
1723         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1724 
1725     // TODO: Reciprocal estimate codegen options should apply to instructions?
1726     std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals;
1727     if (!Recips.empty())
1728       FuncAttrs.addAttribute("reciprocal-estimates",
1729                              llvm::join(Recips.begin(), Recips.end(), ","));
1730 
1731     if (CodeGenOpts.StackRealignment)
1732       FuncAttrs.addAttribute("stackrealign");
1733     if (CodeGenOpts.Backchain)
1734       FuncAttrs.addAttribute("backchain");
1735   }
1736 
1737   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1738     // Conservatively, mark all functions and calls in CUDA as convergent
1739     // (meaning, they may call an intrinsically convergent op, such as
1740     // __syncthreads(), and so can't have certain optimizations applied around
1741     // them).  LLVM will remove this attribute where it safely can.
1742     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1743 
1744     // Exceptions aren't supported in CUDA device code.
1745     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1746 
1747     // Respect -fcuda-flush-denormals-to-zero.
1748     if (getLangOpts().CUDADeviceFlushDenormalsToZero)
1749       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1750   }
1751 }
1752 
1753 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1754   llvm::AttrBuilder FuncAttrs;
1755   ConstructDefaultFnAttrList(F.getName(),
1756                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1757                              /* AttrOnCallsite = */ false, FuncAttrs);
1758   llvm::AttributeList AS = llvm::AttributeList::get(
1759       getLLVMContext(), llvm::AttributeList::FunctionIndex, FuncAttrs);
1760   F.addAttributes(llvm::AttributeList::FunctionIndex, AS);
1761 }
1762 
1763 void CodeGenModule::ConstructAttributeList(
1764     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1765     AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) {
1766   llvm::AttrBuilder FuncAttrs;
1767   llvm::AttrBuilder RetAttrs;
1768 
1769   CallingConv = FI.getEffectiveCallingConvention();
1770   if (FI.isNoReturn())
1771     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1772 
1773   // If we have information about the function prototype, we can learn
1774   // attributes form there.
1775   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1776                                      CalleeInfo.getCalleeFunctionProtoType());
1777 
1778   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1779 
1780   bool HasOptnone = false;
1781   // FIXME: handle sseregparm someday...
1782   if (TargetDecl) {
1783     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1784       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1785     if (TargetDecl->hasAttr<NoThrowAttr>())
1786       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1787     if (TargetDecl->hasAttr<NoReturnAttr>())
1788       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1789     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1790       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1791     if (TargetDecl->hasAttr<ConvergentAttr>())
1792       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1793 
1794     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1795       AddAttributesFromFunctionProtoType(
1796           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1797       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1798       // These attributes are not inherited by overloads.
1799       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1800       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1801         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1802     }
1803 
1804     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1805     if (TargetDecl->hasAttr<ConstAttr>()) {
1806       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1807       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1808     } else if (TargetDecl->hasAttr<PureAttr>()) {
1809       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1810       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1811     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1812       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1813       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1814     }
1815     if (TargetDecl->hasAttr<RestrictAttr>())
1816       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1817     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1818       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1819 
1820     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1821     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1822       Optional<unsigned> NumElemsParam;
1823       // alloc_size args are base-1, 0 means not present.
1824       if (unsigned N = AllocSize->getNumElemsParam())
1825         NumElemsParam = N - 1;
1826       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1,
1827                                  NumElemsParam);
1828     }
1829   }
1830 
1831   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1832 
1833   if (CodeGenOpts.EnableSegmentedStacks &&
1834       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1835     FuncAttrs.addAttribute("split-stack");
1836 
1837   if (!AttrOnCallSite) {
1838     bool DisableTailCalls =
1839         CodeGenOpts.DisableTailCalls ||
1840         (TargetDecl && (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1841                         TargetDecl->hasAttr<AnyX86InterruptAttr>()));
1842     FuncAttrs.addAttribute("disable-tail-calls",
1843                            llvm::toStringRef(DisableTailCalls));
1844 
1845     // Add target-cpu and target-features attributes to functions. If
1846     // we have a decl for the function and it has a target attribute then
1847     // parse that and add it to the feature set.
1848     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1849     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1850     if (FD && FD->hasAttr<TargetAttr>()) {
1851       llvm::StringMap<bool> FeatureMap;
1852       getFunctionFeatureMap(FeatureMap, FD);
1853 
1854       // Produce the canonical string for this set of features.
1855       std::vector<std::string> Features;
1856       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1857                                                  ie = FeatureMap.end();
1858            it != ie; ++it)
1859         Features.push_back((it->second ? "+" : "-") + it->first().str());
1860 
1861       // Now add the target-cpu and target-features to the function.
1862       // While we populated the feature map above, we still need to
1863       // get and parse the target attribute so we can get the cpu for
1864       // the function.
1865       const auto *TD = FD->getAttr<TargetAttr>();
1866       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1867       if (ParsedAttr.second != "")
1868         TargetCPU = ParsedAttr.second;
1869       if (TargetCPU != "")
1870         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1871       if (!Features.empty()) {
1872         std::sort(Features.begin(), Features.end());
1873         FuncAttrs.addAttribute(
1874             "target-features",
1875             llvm::join(Features.begin(), Features.end(), ","));
1876       }
1877     } else {
1878       // Otherwise just add the existing target cpu and target features to the
1879       // function.
1880       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1881       if (TargetCPU != "")
1882         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1883       if (!Features.empty()) {
1884         std::sort(Features.begin(), Features.end());
1885         FuncAttrs.addAttribute(
1886             "target-features",
1887             llvm::join(Features.begin(), Features.end(), ","));
1888       }
1889     }
1890   }
1891 
1892   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1893 
1894   QualType RetTy = FI.getReturnType();
1895   const ABIArgInfo &RetAI = FI.getReturnInfo();
1896   switch (RetAI.getKind()) {
1897   case ABIArgInfo::Extend:
1898     if (RetTy->hasSignedIntegerRepresentation())
1899       RetAttrs.addAttribute(llvm::Attribute::SExt);
1900     else if (RetTy->hasUnsignedIntegerRepresentation())
1901       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1902     // FALL THROUGH
1903   case ABIArgInfo::Direct:
1904     if (RetAI.getInReg())
1905       RetAttrs.addAttribute(llvm::Attribute::InReg);
1906     break;
1907   case ABIArgInfo::Ignore:
1908     break;
1909 
1910   case ABIArgInfo::InAlloca:
1911   case ABIArgInfo::Indirect: {
1912     // inalloca and sret disable readnone and readonly
1913     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1914       .removeAttribute(llvm::Attribute::ReadNone);
1915     break;
1916   }
1917 
1918   case ABIArgInfo::CoerceAndExpand:
1919     break;
1920 
1921   case ABIArgInfo::Expand:
1922     llvm_unreachable("Invalid ABI kind for return argument");
1923   }
1924 
1925   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1926     QualType PTy = RefTy->getPointeeType();
1927     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1928       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1929                                         .getQuantity());
1930     else if (getContext().getTargetAddressSpace(PTy) == 0)
1931       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1932   }
1933 
1934   // Attach return attributes.
1935   if (RetAttrs.hasAttributes()) {
1936     PAL.push_back(llvm::AttributeList::get(
1937         getLLVMContext(), llvm::AttributeList::ReturnIndex, RetAttrs));
1938   }
1939 
1940   bool hasUsedSRet = false;
1941 
1942   // Attach attributes to sret.
1943   if (IRFunctionArgs.hasSRetArg()) {
1944     llvm::AttrBuilder SRETAttrs;
1945     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1946     hasUsedSRet = true;
1947     if (RetAI.getInReg())
1948       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1949     PAL.push_back(llvm::AttributeList::get(
1950         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1951   }
1952 
1953   // Attach attributes to inalloca argument.
1954   if (IRFunctionArgs.hasInallocaArg()) {
1955     llvm::AttrBuilder Attrs;
1956     Attrs.addAttribute(llvm::Attribute::InAlloca);
1957     PAL.push_back(llvm::AttributeList::get(
1958         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1959   }
1960 
1961   unsigned ArgNo = 0;
1962   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1963                                           E = FI.arg_end();
1964        I != E; ++I, ++ArgNo) {
1965     QualType ParamType = I->type;
1966     const ABIArgInfo &AI = I->info;
1967     llvm::AttrBuilder Attrs;
1968 
1969     // Add attribute for padding argument, if necessary.
1970     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1971       if (AI.getPaddingInReg())
1972         PAL.push_back(llvm::AttributeList::get(
1973             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1974             llvm::Attribute::InReg));
1975     }
1976 
1977     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1978     // have the corresponding parameter variable.  It doesn't make
1979     // sense to do it here because parameters are so messed up.
1980     switch (AI.getKind()) {
1981     case ABIArgInfo::Extend:
1982       if (ParamType->isSignedIntegerOrEnumerationType())
1983         Attrs.addAttribute(llvm::Attribute::SExt);
1984       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1985         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1986           Attrs.addAttribute(llvm::Attribute::SExt);
1987         else
1988           Attrs.addAttribute(llvm::Attribute::ZExt);
1989       }
1990       // FALL THROUGH
1991     case ABIArgInfo::Direct:
1992       if (ArgNo == 0 && FI.isChainCall())
1993         Attrs.addAttribute(llvm::Attribute::Nest);
1994       else if (AI.getInReg())
1995         Attrs.addAttribute(llvm::Attribute::InReg);
1996       break;
1997 
1998     case ABIArgInfo::Indirect: {
1999       if (AI.getInReg())
2000         Attrs.addAttribute(llvm::Attribute::InReg);
2001 
2002       if (AI.getIndirectByVal())
2003         Attrs.addAttribute(llvm::Attribute::ByVal);
2004 
2005       CharUnits Align = AI.getIndirectAlign();
2006 
2007       // In a byval argument, it is important that the required
2008       // alignment of the type is honored, as LLVM might be creating a
2009       // *new* stack object, and needs to know what alignment to give
2010       // it. (Sometimes it can deduce a sensible alignment on its own,
2011       // but not if clang decides it must emit a packed struct, or the
2012       // user specifies increased alignment requirements.)
2013       //
2014       // This is different from indirect *not* byval, where the object
2015       // exists already, and the align attribute is purely
2016       // informative.
2017       assert(!Align.isZero());
2018 
2019       // For now, only add this when we have a byval argument.
2020       // TODO: be less lazy about updating test cases.
2021       if (AI.getIndirectByVal())
2022         Attrs.addAlignmentAttr(Align.getQuantity());
2023 
2024       // byval disables readnone and readonly.
2025       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2026         .removeAttribute(llvm::Attribute::ReadNone);
2027       break;
2028     }
2029     case ABIArgInfo::Ignore:
2030     case ABIArgInfo::Expand:
2031     case ABIArgInfo::CoerceAndExpand:
2032       break;
2033 
2034     case ABIArgInfo::InAlloca:
2035       // inalloca disables readnone and readonly.
2036       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2037           .removeAttribute(llvm::Attribute::ReadNone);
2038       continue;
2039     }
2040 
2041     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2042       QualType PTy = RefTy->getPointeeType();
2043       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2044         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2045                                        .getQuantity());
2046       else if (getContext().getTargetAddressSpace(PTy) == 0)
2047         Attrs.addAttribute(llvm::Attribute::NonNull);
2048     }
2049 
2050     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2051     case ParameterABI::Ordinary:
2052       break;
2053 
2054     case ParameterABI::SwiftIndirectResult: {
2055       // Add 'sret' if we haven't already used it for something, but
2056       // only if the result is void.
2057       if (!hasUsedSRet && RetTy->isVoidType()) {
2058         Attrs.addAttribute(llvm::Attribute::StructRet);
2059         hasUsedSRet = true;
2060       }
2061 
2062       // Add 'noalias' in either case.
2063       Attrs.addAttribute(llvm::Attribute::NoAlias);
2064 
2065       // Add 'dereferenceable' and 'alignment'.
2066       auto PTy = ParamType->getPointeeType();
2067       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2068         auto info = getContext().getTypeInfoInChars(PTy);
2069         Attrs.addDereferenceableAttr(info.first.getQuantity());
2070         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2071                                                  info.second.getQuantity()));
2072       }
2073       break;
2074     }
2075 
2076     case ParameterABI::SwiftErrorResult:
2077       Attrs.addAttribute(llvm::Attribute::SwiftError);
2078       break;
2079 
2080     case ParameterABI::SwiftContext:
2081       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2082       break;
2083     }
2084 
2085     if (Attrs.hasAttributes()) {
2086       unsigned FirstIRArg, NumIRArgs;
2087       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2088       for (unsigned i = 0; i < NumIRArgs; i++)
2089         PAL.push_back(llvm::AttributeList::get(getLLVMContext(),
2090                                                FirstIRArg + i + 1, Attrs));
2091     }
2092   }
2093   assert(ArgNo == FI.arg_size());
2094 
2095   if (FuncAttrs.hasAttributes())
2096     PAL.push_back(llvm::AttributeList::get(
2097         getLLVMContext(), llvm::AttributeList::FunctionIndex, FuncAttrs));
2098 }
2099 
2100 /// An argument came in as a promoted argument; demote it back to its
2101 /// declared type.
2102 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2103                                          const VarDecl *var,
2104                                          llvm::Value *value) {
2105   llvm::Type *varType = CGF.ConvertType(var->getType());
2106 
2107   // This can happen with promotions that actually don't change the
2108   // underlying type, like the enum promotions.
2109   if (value->getType() == varType) return value;
2110 
2111   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2112          && "unexpected promotion type");
2113 
2114   if (isa<llvm::IntegerType>(varType))
2115     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2116 
2117   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2118 }
2119 
2120 /// Returns the attribute (either parameter attribute, or function
2121 /// attribute), which declares argument ArgNo to be non-null.
2122 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2123                                          QualType ArgType, unsigned ArgNo) {
2124   // FIXME: __attribute__((nonnull)) can also be applied to:
2125   //   - references to pointers, where the pointee is known to be
2126   //     nonnull (apparently a Clang extension)
2127   //   - transparent unions containing pointers
2128   // In the former case, LLVM IR cannot represent the constraint. In
2129   // the latter case, we have no guarantee that the transparent union
2130   // is in fact passed as a pointer.
2131   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2132     return nullptr;
2133   // First, check attribute on parameter itself.
2134   if (PVD) {
2135     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2136       return ParmNNAttr;
2137   }
2138   // Check function attributes.
2139   if (!FD)
2140     return nullptr;
2141   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2142     if (NNAttr->isNonNull(ArgNo))
2143       return NNAttr;
2144   }
2145   return nullptr;
2146 }
2147 
2148 namespace {
2149   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2150     Address Temp;
2151     Address Arg;
2152     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2153     void Emit(CodeGenFunction &CGF, Flags flags) override {
2154       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2155       CGF.Builder.CreateStore(errorValue, Arg);
2156     }
2157   };
2158 }
2159 
2160 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2161                                          llvm::Function *Fn,
2162                                          const FunctionArgList &Args) {
2163   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2164     // Naked functions don't have prologues.
2165     return;
2166 
2167   // If this is an implicit-return-zero function, go ahead and
2168   // initialize the return value.  TODO: it might be nice to have
2169   // a more general mechanism for this that didn't require synthesized
2170   // return statements.
2171   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2172     if (FD->hasImplicitReturnZero()) {
2173       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2174       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2175       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2176       Builder.CreateStore(Zero, ReturnValue);
2177     }
2178   }
2179 
2180   // FIXME: We no longer need the types from FunctionArgList; lift up and
2181   // simplify.
2182 
2183   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2184   // Flattened function arguments.
2185   SmallVector<llvm::Value *, 16> FnArgs;
2186   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2187   for (auto &Arg : Fn->args()) {
2188     FnArgs.push_back(&Arg);
2189   }
2190   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2191 
2192   // If we're using inalloca, all the memory arguments are GEPs off of the last
2193   // parameter, which is a pointer to the complete memory area.
2194   Address ArgStruct = Address::invalid();
2195   const llvm::StructLayout *ArgStructLayout = nullptr;
2196   if (IRFunctionArgs.hasInallocaArg()) {
2197     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2198     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2199                         FI.getArgStructAlignment());
2200 
2201     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2202   }
2203 
2204   // Name the struct return parameter.
2205   if (IRFunctionArgs.hasSRetArg()) {
2206     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2207     AI->setName("agg.result");
2208     AI->addAttr(llvm::AttributeList::get(getLLVMContext(), AI->getArgNo() + 1,
2209                                          llvm::Attribute::NoAlias));
2210   }
2211 
2212   // Track if we received the parameter as a pointer (indirect, byval, or
2213   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2214   // into a local alloca for us.
2215   SmallVector<ParamValue, 16> ArgVals;
2216   ArgVals.reserve(Args.size());
2217 
2218   // Create a pointer value for every parameter declaration.  This usually
2219   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2220   // any cleanups or do anything that might unwind.  We do that separately, so
2221   // we can push the cleanups in the correct order for the ABI.
2222   assert(FI.arg_size() == Args.size() &&
2223          "Mismatch between function signature & arguments.");
2224   unsigned ArgNo = 0;
2225   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2226   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2227        i != e; ++i, ++info_it, ++ArgNo) {
2228     const VarDecl *Arg = *i;
2229     QualType Ty = info_it->type;
2230     const ABIArgInfo &ArgI = info_it->info;
2231 
2232     bool isPromoted =
2233       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2234 
2235     unsigned FirstIRArg, NumIRArgs;
2236     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2237 
2238     switch (ArgI.getKind()) {
2239     case ABIArgInfo::InAlloca: {
2240       assert(NumIRArgs == 0);
2241       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2242       CharUnits FieldOffset =
2243         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2244       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2245                                           Arg->getName());
2246       ArgVals.push_back(ParamValue::forIndirect(V));
2247       break;
2248     }
2249 
2250     case ABIArgInfo::Indirect: {
2251       assert(NumIRArgs == 1);
2252       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2253 
2254       if (!hasScalarEvaluationKind(Ty)) {
2255         // Aggregates and complex variables are accessed by reference.  All we
2256         // need to do is realign the value, if requested.
2257         Address V = ParamAddr;
2258         if (ArgI.getIndirectRealign()) {
2259           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2260 
2261           // Copy from the incoming argument pointer to the temporary with the
2262           // appropriate alignment.
2263           //
2264           // FIXME: We should have a common utility for generating an aggregate
2265           // copy.
2266           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2267           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2268           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2269           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2270           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2271           V = AlignedTemp;
2272         }
2273         ArgVals.push_back(ParamValue::forIndirect(V));
2274       } else {
2275         // Load scalar value from indirect argument.
2276         llvm::Value *V =
2277           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
2278 
2279         if (isPromoted)
2280           V = emitArgumentDemotion(*this, Arg, V);
2281         ArgVals.push_back(ParamValue::forDirect(V));
2282       }
2283       break;
2284     }
2285 
2286     case ABIArgInfo::Extend:
2287     case ABIArgInfo::Direct: {
2288 
2289       // If we have the trivial case, handle it with no muss and fuss.
2290       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2291           ArgI.getCoerceToType() == ConvertType(Ty) &&
2292           ArgI.getDirectOffset() == 0) {
2293         assert(NumIRArgs == 1);
2294         llvm::Value *V = FnArgs[FirstIRArg];
2295         auto AI = cast<llvm::Argument>(V);
2296 
2297         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2298           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2299                              PVD->getFunctionScopeIndex()))
2300             AI->addAttr(llvm::AttributeList::get(getLLVMContext(),
2301                                                  AI->getArgNo() + 1,
2302                                                  llvm::Attribute::NonNull));
2303 
2304           QualType OTy = PVD->getOriginalType();
2305           if (const auto *ArrTy =
2306               getContext().getAsConstantArrayType(OTy)) {
2307             // A C99 array parameter declaration with the static keyword also
2308             // indicates dereferenceability, and if the size is constant we can
2309             // use the dereferenceable attribute (which requires the size in
2310             // bytes).
2311             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2312               QualType ETy = ArrTy->getElementType();
2313               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2314               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2315                   ArrSize) {
2316                 llvm::AttrBuilder Attrs;
2317                 Attrs.addDereferenceableAttr(
2318                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2319                 AI->addAttr(llvm::AttributeList::get(
2320                     getLLVMContext(), AI->getArgNo() + 1, Attrs));
2321               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
2322                 AI->addAttr(llvm::AttributeList::get(getLLVMContext(),
2323                                                      AI->getArgNo() + 1,
2324                                                      llvm::Attribute::NonNull));
2325               }
2326             }
2327           } else if (const auto *ArrTy =
2328                      getContext().getAsVariableArrayType(OTy)) {
2329             // For C99 VLAs with the static keyword, we don't know the size so
2330             // we can't use the dereferenceable attribute, but in addrspace(0)
2331             // we know that it must be nonnull.
2332             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2333                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
2334               AI->addAttr(llvm::AttributeList::get(getLLVMContext(),
2335                                                    AI->getArgNo() + 1,
2336                                                    llvm::Attribute::NonNull));
2337           }
2338 
2339           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2340           if (!AVAttr)
2341             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2342               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2343           if (AVAttr) {
2344             llvm::Value *AlignmentValue =
2345               EmitScalarExpr(AVAttr->getAlignment());
2346             llvm::ConstantInt *AlignmentCI =
2347               cast<llvm::ConstantInt>(AlignmentValue);
2348             unsigned Alignment =
2349               std::min((unsigned) AlignmentCI->getZExtValue(),
2350                        +llvm::Value::MaximumAlignment);
2351 
2352             llvm::AttrBuilder Attrs;
2353             Attrs.addAlignmentAttr(Alignment);
2354             AI->addAttr(llvm::AttributeList::get(getLLVMContext(),
2355                                                  AI->getArgNo() + 1, Attrs));
2356           }
2357         }
2358 
2359         if (Arg->getType().isRestrictQualified())
2360           AI->addAttr(llvm::AttributeList::get(
2361               getLLVMContext(), AI->getArgNo() + 1, llvm::Attribute::NoAlias));
2362 
2363         // LLVM expects swifterror parameters to be used in very restricted
2364         // ways.  Copy the value into a less-restricted temporary.
2365         if (FI.getExtParameterInfo(ArgNo).getABI()
2366               == ParameterABI::SwiftErrorResult) {
2367           QualType pointeeTy = Ty->getPointeeType();
2368           assert(pointeeTy->isPointerType());
2369           Address temp =
2370             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2371           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2372           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2373           Builder.CreateStore(incomingErrorValue, temp);
2374           V = temp.getPointer();
2375 
2376           // Push a cleanup to copy the value back at the end of the function.
2377           // The convention does not guarantee that the value will be written
2378           // back if the function exits with an unwind exception.
2379           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2380         }
2381 
2382         // Ensure the argument is the correct type.
2383         if (V->getType() != ArgI.getCoerceToType())
2384           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2385 
2386         if (isPromoted)
2387           V = emitArgumentDemotion(*this, Arg, V);
2388 
2389         // Because of merging of function types from multiple decls it is
2390         // possible for the type of an argument to not match the corresponding
2391         // type in the function type. Since we are codegening the callee
2392         // in here, add a cast to the argument type.
2393         llvm::Type *LTy = ConvertType(Arg->getType());
2394         if (V->getType() != LTy)
2395           V = Builder.CreateBitCast(V, LTy);
2396 
2397         ArgVals.push_back(ParamValue::forDirect(V));
2398         break;
2399       }
2400 
2401       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2402                                      Arg->getName());
2403 
2404       // Pointer to store into.
2405       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2406 
2407       // Fast-isel and the optimizer generally like scalar values better than
2408       // FCAs, so we flatten them if this is safe to do for this argument.
2409       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2410       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2411           STy->getNumElements() > 1) {
2412         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2413         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2414         llvm::Type *DstTy = Ptr.getElementType();
2415         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2416 
2417         Address AddrToStoreInto = Address::invalid();
2418         if (SrcSize <= DstSize) {
2419           AddrToStoreInto =
2420             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2421         } else {
2422           AddrToStoreInto =
2423             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2424         }
2425 
2426         assert(STy->getNumElements() == NumIRArgs);
2427         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2428           auto AI = FnArgs[FirstIRArg + i];
2429           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2430           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2431           Address EltPtr =
2432             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2433           Builder.CreateStore(AI, EltPtr);
2434         }
2435 
2436         if (SrcSize > DstSize) {
2437           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2438         }
2439 
2440       } else {
2441         // Simple case, just do a coerced store of the argument into the alloca.
2442         assert(NumIRArgs == 1);
2443         auto AI = FnArgs[FirstIRArg];
2444         AI->setName(Arg->getName() + ".coerce");
2445         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2446       }
2447 
2448       // Match to what EmitParmDecl is expecting for this type.
2449       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2450         llvm::Value *V =
2451           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2452         if (isPromoted)
2453           V = emitArgumentDemotion(*this, Arg, V);
2454         ArgVals.push_back(ParamValue::forDirect(V));
2455       } else {
2456         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2457       }
2458       break;
2459     }
2460 
2461     case ABIArgInfo::CoerceAndExpand: {
2462       // Reconstruct into a temporary.
2463       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2464       ArgVals.push_back(ParamValue::forIndirect(alloca));
2465 
2466       auto coercionType = ArgI.getCoerceAndExpandType();
2467       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2468       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2469 
2470       unsigned argIndex = FirstIRArg;
2471       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2472         llvm::Type *eltType = coercionType->getElementType(i);
2473         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2474           continue;
2475 
2476         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2477         auto elt = FnArgs[argIndex++];
2478         Builder.CreateStore(elt, eltAddr);
2479       }
2480       assert(argIndex == FirstIRArg + NumIRArgs);
2481       break;
2482     }
2483 
2484     case ABIArgInfo::Expand: {
2485       // If this structure was expanded into multiple arguments then
2486       // we need to create a temporary and reconstruct it from the
2487       // arguments.
2488       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2489       LValue LV = MakeAddrLValue(Alloca, Ty);
2490       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2491 
2492       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2493       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2494       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2495       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2496         auto AI = FnArgs[FirstIRArg + i];
2497         AI->setName(Arg->getName() + "." + Twine(i));
2498       }
2499       break;
2500     }
2501 
2502     case ABIArgInfo::Ignore:
2503       assert(NumIRArgs == 0);
2504       // Initialize the local variable appropriately.
2505       if (!hasScalarEvaluationKind(Ty)) {
2506         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2507       } else {
2508         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2509         ArgVals.push_back(ParamValue::forDirect(U));
2510       }
2511       break;
2512     }
2513   }
2514 
2515   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2516     for (int I = Args.size() - 1; I >= 0; --I)
2517       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2518   } else {
2519     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2520       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2521   }
2522 }
2523 
2524 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2525   while (insn->use_empty()) {
2526     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2527     if (!bitcast) return;
2528 
2529     // This is "safe" because we would have used a ConstantExpr otherwise.
2530     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2531     bitcast->eraseFromParent();
2532   }
2533 }
2534 
2535 /// Try to emit a fused autorelease of a return result.
2536 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2537                                                     llvm::Value *result) {
2538   // We must be immediately followed the cast.
2539   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2540   if (BB->empty()) return nullptr;
2541   if (&BB->back() != result) return nullptr;
2542 
2543   llvm::Type *resultType = result->getType();
2544 
2545   // result is in a BasicBlock and is therefore an Instruction.
2546   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2547 
2548   SmallVector<llvm::Instruction *, 4> InstsToKill;
2549 
2550   // Look for:
2551   //  %generator = bitcast %type1* %generator2 to %type2*
2552   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2553     // We would have emitted this as a constant if the operand weren't
2554     // an Instruction.
2555     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2556 
2557     // Require the generator to be immediately followed by the cast.
2558     if (generator->getNextNode() != bitcast)
2559       return nullptr;
2560 
2561     InstsToKill.push_back(bitcast);
2562   }
2563 
2564   // Look for:
2565   //   %generator = call i8* @objc_retain(i8* %originalResult)
2566   // or
2567   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2568   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2569   if (!call) return nullptr;
2570 
2571   bool doRetainAutorelease;
2572 
2573   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2574     doRetainAutorelease = true;
2575   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2576                                           .objc_retainAutoreleasedReturnValue) {
2577     doRetainAutorelease = false;
2578 
2579     // If we emitted an assembly marker for this call (and the
2580     // ARCEntrypoints field should have been set if so), go looking
2581     // for that call.  If we can't find it, we can't do this
2582     // optimization.  But it should always be the immediately previous
2583     // instruction, unless we needed bitcasts around the call.
2584     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2585       llvm::Instruction *prev = call->getPrevNode();
2586       assert(prev);
2587       if (isa<llvm::BitCastInst>(prev)) {
2588         prev = prev->getPrevNode();
2589         assert(prev);
2590       }
2591       assert(isa<llvm::CallInst>(prev));
2592       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2593                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2594       InstsToKill.push_back(prev);
2595     }
2596   } else {
2597     return nullptr;
2598   }
2599 
2600   result = call->getArgOperand(0);
2601   InstsToKill.push_back(call);
2602 
2603   // Keep killing bitcasts, for sanity.  Note that we no longer care
2604   // about precise ordering as long as there's exactly one use.
2605   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2606     if (!bitcast->hasOneUse()) break;
2607     InstsToKill.push_back(bitcast);
2608     result = bitcast->getOperand(0);
2609   }
2610 
2611   // Delete all the unnecessary instructions, from latest to earliest.
2612   for (auto *I : InstsToKill)
2613     I->eraseFromParent();
2614 
2615   // Do the fused retain/autorelease if we were asked to.
2616   if (doRetainAutorelease)
2617     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2618 
2619   // Cast back to the result type.
2620   return CGF.Builder.CreateBitCast(result, resultType);
2621 }
2622 
2623 /// If this is a +1 of the value of an immutable 'self', remove it.
2624 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2625                                           llvm::Value *result) {
2626   // This is only applicable to a method with an immutable 'self'.
2627   const ObjCMethodDecl *method =
2628     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2629   if (!method) return nullptr;
2630   const VarDecl *self = method->getSelfDecl();
2631   if (!self->getType().isConstQualified()) return nullptr;
2632 
2633   // Look for a retain call.
2634   llvm::CallInst *retainCall =
2635     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2636   if (!retainCall ||
2637       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2638     return nullptr;
2639 
2640   // Look for an ordinary load of 'self'.
2641   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2642   llvm::LoadInst *load =
2643     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2644   if (!load || load->isAtomic() || load->isVolatile() ||
2645       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2646     return nullptr;
2647 
2648   // Okay!  Burn it all down.  This relies for correctness on the
2649   // assumption that the retain is emitted as part of the return and
2650   // that thereafter everything is used "linearly".
2651   llvm::Type *resultType = result->getType();
2652   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2653   assert(retainCall->use_empty());
2654   retainCall->eraseFromParent();
2655   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2656 
2657   return CGF.Builder.CreateBitCast(load, resultType);
2658 }
2659 
2660 /// Emit an ARC autorelease of the result of a function.
2661 ///
2662 /// \return the value to actually return from the function
2663 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2664                                             llvm::Value *result) {
2665   // If we're returning 'self', kill the initial retain.  This is a
2666   // heuristic attempt to "encourage correctness" in the really unfortunate
2667   // case where we have a return of self during a dealloc and we desperately
2668   // need to avoid the possible autorelease.
2669   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2670     return self;
2671 
2672   // At -O0, try to emit a fused retain/autorelease.
2673   if (CGF.shouldUseFusedARCCalls())
2674     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2675       return fused;
2676 
2677   return CGF.EmitARCAutoreleaseReturnValue(result);
2678 }
2679 
2680 /// Heuristically search for a dominating store to the return-value slot.
2681 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2682   // Check if a User is a store which pointerOperand is the ReturnValue.
2683   // We are looking for stores to the ReturnValue, not for stores of the
2684   // ReturnValue to some other location.
2685   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2686     auto *SI = dyn_cast<llvm::StoreInst>(U);
2687     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2688       return nullptr;
2689     // These aren't actually possible for non-coerced returns, and we
2690     // only care about non-coerced returns on this code path.
2691     assert(!SI->isAtomic() && !SI->isVolatile());
2692     return SI;
2693   };
2694   // If there are multiple uses of the return-value slot, just check
2695   // for something immediately preceding the IP.  Sometimes this can
2696   // happen with how we generate implicit-returns; it can also happen
2697   // with noreturn cleanups.
2698   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2699     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2700     if (IP->empty()) return nullptr;
2701     llvm::Instruction *I = &IP->back();
2702 
2703     // Skip lifetime markers
2704     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2705                                             IE = IP->rend();
2706          II != IE; ++II) {
2707       if (llvm::IntrinsicInst *Intrinsic =
2708               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2709         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2710           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2711           ++II;
2712           if (II == IE)
2713             break;
2714           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2715             continue;
2716         }
2717       }
2718       I = &*II;
2719       break;
2720     }
2721 
2722     return GetStoreIfValid(I);
2723   }
2724 
2725   llvm::StoreInst *store =
2726       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2727   if (!store) return nullptr;
2728 
2729   // Now do a first-and-dirty dominance check: just walk up the
2730   // single-predecessors chain from the current insertion point.
2731   llvm::BasicBlock *StoreBB = store->getParent();
2732   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2733   while (IP != StoreBB) {
2734     if (!(IP = IP->getSinglePredecessor()))
2735       return nullptr;
2736   }
2737 
2738   // Okay, the store's basic block dominates the insertion point; we
2739   // can do our thing.
2740   return store;
2741 }
2742 
2743 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2744                                          bool EmitRetDbgLoc,
2745                                          SourceLocation EndLoc) {
2746   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2747     // Naked functions don't have epilogues.
2748     Builder.CreateUnreachable();
2749     return;
2750   }
2751 
2752   // Functions with no result always return void.
2753   if (!ReturnValue.isValid()) {
2754     Builder.CreateRetVoid();
2755     return;
2756   }
2757 
2758   llvm::DebugLoc RetDbgLoc;
2759   llvm::Value *RV = nullptr;
2760   QualType RetTy = FI.getReturnType();
2761   const ABIArgInfo &RetAI = FI.getReturnInfo();
2762 
2763   switch (RetAI.getKind()) {
2764   case ABIArgInfo::InAlloca:
2765     // Aggregrates get evaluated directly into the destination.  Sometimes we
2766     // need to return the sret value in a register, though.
2767     assert(hasAggregateEvaluationKind(RetTy));
2768     if (RetAI.getInAllocaSRet()) {
2769       llvm::Function::arg_iterator EI = CurFn->arg_end();
2770       --EI;
2771       llvm::Value *ArgStruct = &*EI;
2772       llvm::Value *SRet = Builder.CreateStructGEP(
2773           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2774       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2775     }
2776     break;
2777 
2778   case ABIArgInfo::Indirect: {
2779     auto AI = CurFn->arg_begin();
2780     if (RetAI.isSRetAfterThis())
2781       ++AI;
2782     switch (getEvaluationKind(RetTy)) {
2783     case TEK_Complex: {
2784       ComplexPairTy RT =
2785         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2786       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2787                          /*isInit*/ true);
2788       break;
2789     }
2790     case TEK_Aggregate:
2791       // Do nothing; aggregrates get evaluated directly into the destination.
2792       break;
2793     case TEK_Scalar:
2794       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2795                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2796                         /*isInit*/ true);
2797       break;
2798     }
2799     break;
2800   }
2801 
2802   case ABIArgInfo::Extend:
2803   case ABIArgInfo::Direct:
2804     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2805         RetAI.getDirectOffset() == 0) {
2806       // The internal return value temp always will have pointer-to-return-type
2807       // type, just do a load.
2808 
2809       // If there is a dominating store to ReturnValue, we can elide
2810       // the load, zap the store, and usually zap the alloca.
2811       if (llvm::StoreInst *SI =
2812               findDominatingStoreToReturnValue(*this)) {
2813         // Reuse the debug location from the store unless there is
2814         // cleanup code to be emitted between the store and return
2815         // instruction.
2816         if (EmitRetDbgLoc && !AutoreleaseResult)
2817           RetDbgLoc = SI->getDebugLoc();
2818         // Get the stored value and nuke the now-dead store.
2819         RV = SI->getValueOperand();
2820         SI->eraseFromParent();
2821 
2822         // If that was the only use of the return value, nuke it as well now.
2823         auto returnValueInst = ReturnValue.getPointer();
2824         if (returnValueInst->use_empty()) {
2825           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2826             alloca->eraseFromParent();
2827             ReturnValue = Address::invalid();
2828           }
2829         }
2830 
2831       // Otherwise, we have to do a simple load.
2832       } else {
2833         RV = Builder.CreateLoad(ReturnValue);
2834       }
2835     } else {
2836       // If the value is offset in memory, apply the offset now.
2837       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2838 
2839       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2840     }
2841 
2842     // In ARC, end functions that return a retainable type with a call
2843     // to objc_autoreleaseReturnValue.
2844     if (AutoreleaseResult) {
2845 #ifndef NDEBUG
2846       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2847       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2848       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2849       // CurCodeDecl or BlockInfo.
2850       QualType RT;
2851 
2852       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2853         RT = FD->getReturnType();
2854       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2855         RT = MD->getReturnType();
2856       else if (isa<BlockDecl>(CurCodeDecl))
2857         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2858       else
2859         llvm_unreachable("Unexpected function/method type");
2860 
2861       assert(getLangOpts().ObjCAutoRefCount &&
2862              !FI.isReturnsRetained() &&
2863              RT->isObjCRetainableType());
2864 #endif
2865       RV = emitAutoreleaseOfResult(*this, RV);
2866     }
2867 
2868     break;
2869 
2870   case ABIArgInfo::Ignore:
2871     break;
2872 
2873   case ABIArgInfo::CoerceAndExpand: {
2874     auto coercionType = RetAI.getCoerceAndExpandType();
2875     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2876 
2877     // Load all of the coerced elements out into results.
2878     llvm::SmallVector<llvm::Value*, 4> results;
2879     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2880     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2881       auto coercedEltType = coercionType->getElementType(i);
2882       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2883         continue;
2884 
2885       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2886       auto elt = Builder.CreateLoad(eltAddr);
2887       results.push_back(elt);
2888     }
2889 
2890     // If we have one result, it's the single direct result type.
2891     if (results.size() == 1) {
2892       RV = results[0];
2893 
2894     // Otherwise, we need to make a first-class aggregate.
2895     } else {
2896       // Construct a return type that lacks padding elements.
2897       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2898 
2899       RV = llvm::UndefValue::get(returnType);
2900       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2901         RV = Builder.CreateInsertValue(RV, results[i], i);
2902       }
2903     }
2904     break;
2905   }
2906 
2907   case ABIArgInfo::Expand:
2908     llvm_unreachable("Invalid ABI kind for return argument");
2909   }
2910 
2911   llvm::Instruction *Ret;
2912   if (RV) {
2913     EmitReturnValueCheck(RV, EndLoc);
2914     Ret = Builder.CreateRet(RV);
2915   } else {
2916     Ret = Builder.CreateRetVoid();
2917   }
2918 
2919   if (RetDbgLoc)
2920     Ret->setDebugLoc(std::move(RetDbgLoc));
2921 }
2922 
2923 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV,
2924                                            SourceLocation EndLoc) {
2925   // A current decl may not be available when emitting vtable thunks.
2926   if (!CurCodeDecl)
2927     return;
2928 
2929   ReturnsNonNullAttr *RetNNAttr = nullptr;
2930   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2931     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
2932 
2933   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
2934     return;
2935 
2936   // Prefer the returns_nonnull attribute if it's present.
2937   SourceLocation AttrLoc;
2938   SanitizerMask CheckKind;
2939   SanitizerHandler Handler;
2940   if (RetNNAttr) {
2941     assert(!requiresReturnValueNullabilityCheck() &&
2942            "Cannot check nullability and the nonnull attribute");
2943     AttrLoc = RetNNAttr->getLocation();
2944     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
2945     Handler = SanitizerHandler::NonnullReturn;
2946   } else {
2947     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
2948       if (auto *TSI = DD->getTypeSourceInfo())
2949         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
2950           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
2951     CheckKind = SanitizerKind::NullabilityReturn;
2952     Handler = SanitizerHandler::NullabilityReturn;
2953   }
2954 
2955   SanitizerScope SanScope(this);
2956 
2957   llvm::BasicBlock *Check = nullptr;
2958   llvm::BasicBlock *NoCheck = nullptr;
2959   if (requiresReturnValueNullabilityCheck()) {
2960     // Before doing the nullability check, make sure that the preconditions for
2961     // the check are met.
2962     Check = createBasicBlock("nullcheck");
2963     NoCheck = createBasicBlock("no.nullcheck");
2964     Builder.CreateCondBr(RetValNullabilityPrecondition, Check, NoCheck);
2965     EmitBlock(Check);
2966   }
2967 
2968   // Now do the null check. If the returns_nonnull attribute is present, this
2969   // is done unconditionally.
2970   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
2971   llvm::Constant *StaticData[] = {
2972       EmitCheckSourceLocation(EndLoc), EmitCheckSourceLocation(AttrLoc),
2973   };
2974   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
2975 
2976   if (requiresReturnValueNullabilityCheck())
2977     EmitBlock(NoCheck);
2978 }
2979 
2980 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2981   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2982   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2983 }
2984 
2985 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2986                                           QualType Ty) {
2987   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2988   // placeholders.
2989   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2990   llvm::Type *IRPtrTy = IRTy->getPointerTo();
2991   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
2992 
2993   // FIXME: When we generate this IR in one pass, we shouldn't need
2994   // this win32-specific alignment hack.
2995   CharUnits Align = CharUnits::fromQuantity(4);
2996   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
2997 
2998   return AggValueSlot::forAddr(Address(Placeholder, Align),
2999                                Ty.getQualifiers(),
3000                                AggValueSlot::IsNotDestructed,
3001                                AggValueSlot::DoesNotNeedGCBarriers,
3002                                AggValueSlot::IsNotAliased);
3003 }
3004 
3005 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3006                                           const VarDecl *param,
3007                                           SourceLocation loc) {
3008   // StartFunction converted the ABI-lowered parameter(s) into a
3009   // local alloca.  We need to turn that into an r-value suitable
3010   // for EmitCall.
3011   Address local = GetAddrOfLocalVar(param);
3012 
3013   QualType type = param->getType();
3014 
3015   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
3016          "cannot emit delegate call arguments for inalloca arguments!");
3017 
3018   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3019   // but the argument needs to be the original pointer.
3020   if (type->isReferenceType()) {
3021     args.add(RValue::get(Builder.CreateLoad(local)), type);
3022 
3023   // In ARC, move out of consumed arguments so that the release cleanup
3024   // entered by StartFunction doesn't cause an over-release.  This isn't
3025   // optimal -O0 code generation, but it should get cleaned up when
3026   // optimization is enabled.  This also assumes that delegate calls are
3027   // performed exactly once for a set of arguments, but that should be safe.
3028   } else if (getLangOpts().ObjCAutoRefCount &&
3029              param->hasAttr<NSConsumedAttr>() &&
3030              type->isObjCRetainableType()) {
3031     llvm::Value *ptr = Builder.CreateLoad(local);
3032     auto null =
3033       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3034     Builder.CreateStore(null, local);
3035     args.add(RValue::get(ptr), type);
3036 
3037   // For the most part, we just need to load the alloca, except that
3038   // aggregate r-values are actually pointers to temporaries.
3039   } else {
3040     args.add(convertTempToRValue(local, type, loc), type);
3041   }
3042 }
3043 
3044 static bool isProvablyNull(llvm::Value *addr) {
3045   return isa<llvm::ConstantPointerNull>(addr);
3046 }
3047 
3048 /// Emit the actual writing-back of a writeback.
3049 static void emitWriteback(CodeGenFunction &CGF,
3050                           const CallArgList::Writeback &writeback) {
3051   const LValue &srcLV = writeback.Source;
3052   Address srcAddr = srcLV.getAddress();
3053   assert(!isProvablyNull(srcAddr.getPointer()) &&
3054          "shouldn't have writeback for provably null argument");
3055 
3056   llvm::BasicBlock *contBB = nullptr;
3057 
3058   // If the argument wasn't provably non-null, we need to null check
3059   // before doing the store.
3060   bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer());
3061   if (!provablyNonNull) {
3062     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3063     contBB = CGF.createBasicBlock("icr.done");
3064 
3065     llvm::Value *isNull =
3066       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3067     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3068     CGF.EmitBlock(writebackBB);
3069   }
3070 
3071   // Load the value to writeback.
3072   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3073 
3074   // Cast it back, in case we're writing an id to a Foo* or something.
3075   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3076                                     "icr.writeback-cast");
3077 
3078   // Perform the writeback.
3079 
3080   // If we have a "to use" value, it's something we need to emit a use
3081   // of.  This has to be carefully threaded in: if it's done after the
3082   // release it's potentially undefined behavior (and the optimizer
3083   // will ignore it), and if it happens before the retain then the
3084   // optimizer could move the release there.
3085   if (writeback.ToUse) {
3086     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3087 
3088     // Retain the new value.  No need to block-copy here:  the block's
3089     // being passed up the stack.
3090     value = CGF.EmitARCRetainNonBlock(value);
3091 
3092     // Emit the intrinsic use here.
3093     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3094 
3095     // Load the old value (primitively).
3096     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3097 
3098     // Put the new value in place (primitively).
3099     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3100 
3101     // Release the old value.
3102     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3103 
3104   // Otherwise, we can just do a normal lvalue store.
3105   } else {
3106     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3107   }
3108 
3109   // Jump to the continuation block.
3110   if (!provablyNonNull)
3111     CGF.EmitBlock(contBB);
3112 }
3113 
3114 static void emitWritebacks(CodeGenFunction &CGF,
3115                            const CallArgList &args) {
3116   for (const auto &I : args.writebacks())
3117     emitWriteback(CGF, I);
3118 }
3119 
3120 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3121                                             const CallArgList &CallArgs) {
3122   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
3123   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3124     CallArgs.getCleanupsToDeactivate();
3125   // Iterate in reverse to increase the likelihood of popping the cleanup.
3126   for (const auto &I : llvm::reverse(Cleanups)) {
3127     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3128     I.IsActiveIP->eraseFromParent();
3129   }
3130 }
3131 
3132 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3133   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3134     if (uop->getOpcode() == UO_AddrOf)
3135       return uop->getSubExpr();
3136   return nullptr;
3137 }
3138 
3139 /// Emit an argument that's being passed call-by-writeback.  That is,
3140 /// we are passing the address of an __autoreleased temporary; it
3141 /// might be copy-initialized with the current value of the given
3142 /// address, but it will definitely be copied out of after the call.
3143 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3144                              const ObjCIndirectCopyRestoreExpr *CRE) {
3145   LValue srcLV;
3146 
3147   // Make an optimistic effort to emit the address as an l-value.
3148   // This can fail if the argument expression is more complicated.
3149   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3150     srcLV = CGF.EmitLValue(lvExpr);
3151 
3152   // Otherwise, just emit it as a scalar.
3153   } else {
3154     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3155 
3156     QualType srcAddrType =
3157       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3158     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3159   }
3160   Address srcAddr = srcLV.getAddress();
3161 
3162   // The dest and src types don't necessarily match in LLVM terms
3163   // because of the crazy ObjC compatibility rules.
3164 
3165   llvm::PointerType *destType =
3166     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3167 
3168   // If the address is a constant null, just pass the appropriate null.
3169   if (isProvablyNull(srcAddr.getPointer())) {
3170     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3171              CRE->getType());
3172     return;
3173   }
3174 
3175   // Create the temporary.
3176   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3177                                       CGF.getPointerAlign(),
3178                                       "icr.temp");
3179   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3180   // and that cleanup will be conditional if we can't prove that the l-value
3181   // isn't null, so we need to register a dominating point so that the cleanups
3182   // system will make valid IR.
3183   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3184 
3185   // Zero-initialize it if we're not doing a copy-initialization.
3186   bool shouldCopy = CRE->shouldCopy();
3187   if (!shouldCopy) {
3188     llvm::Value *null =
3189       llvm::ConstantPointerNull::get(
3190         cast<llvm::PointerType>(destType->getElementType()));
3191     CGF.Builder.CreateStore(null, temp);
3192   }
3193 
3194   llvm::BasicBlock *contBB = nullptr;
3195   llvm::BasicBlock *originBB = nullptr;
3196 
3197   // If the address is *not* known to be non-null, we need to switch.
3198   llvm::Value *finalArgument;
3199 
3200   bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer());
3201   if (provablyNonNull) {
3202     finalArgument = temp.getPointer();
3203   } else {
3204     llvm::Value *isNull =
3205       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3206 
3207     finalArgument = CGF.Builder.CreateSelect(isNull,
3208                                    llvm::ConstantPointerNull::get(destType),
3209                                              temp.getPointer(), "icr.argument");
3210 
3211     // If we need to copy, then the load has to be conditional, which
3212     // means we need control flow.
3213     if (shouldCopy) {
3214       originBB = CGF.Builder.GetInsertBlock();
3215       contBB = CGF.createBasicBlock("icr.cont");
3216       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3217       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3218       CGF.EmitBlock(copyBB);
3219       condEval.begin(CGF);
3220     }
3221   }
3222 
3223   llvm::Value *valueToUse = nullptr;
3224 
3225   // Perform a copy if necessary.
3226   if (shouldCopy) {
3227     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3228     assert(srcRV.isScalar());
3229 
3230     llvm::Value *src = srcRV.getScalarVal();
3231     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3232                                     "icr.cast");
3233 
3234     // Use an ordinary store, not a store-to-lvalue.
3235     CGF.Builder.CreateStore(src, temp);
3236 
3237     // If optimization is enabled, and the value was held in a
3238     // __strong variable, we need to tell the optimizer that this
3239     // value has to stay alive until we're doing the store back.
3240     // This is because the temporary is effectively unretained,
3241     // and so otherwise we can violate the high-level semantics.
3242     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3243         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3244       valueToUse = src;
3245     }
3246   }
3247 
3248   // Finish the control flow if we needed it.
3249   if (shouldCopy && !provablyNonNull) {
3250     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3251     CGF.EmitBlock(contBB);
3252 
3253     // Make a phi for the value to intrinsically use.
3254     if (valueToUse) {
3255       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3256                                                       "icr.to-use");
3257       phiToUse->addIncoming(valueToUse, copyBB);
3258       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3259                             originBB);
3260       valueToUse = phiToUse;
3261     }
3262 
3263     condEval.end(CGF);
3264   }
3265 
3266   args.addWriteback(srcLV, temp, valueToUse);
3267   args.add(RValue::get(finalArgument), CRE->getType());
3268 }
3269 
3270 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3271   assert(!StackBase);
3272 
3273   // Save the stack.
3274   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3275   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3276 }
3277 
3278 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3279   if (StackBase) {
3280     // Restore the stack after the call.
3281     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3282     CGF.Builder.CreateCall(F, StackBase);
3283   }
3284 }
3285 
3286 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3287                                           SourceLocation ArgLoc,
3288                                           AbstractCallee AC,
3289                                           unsigned ParmNum) {
3290   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3291                          SanOpts.has(SanitizerKind::NullabilityArg)))
3292     return;
3293 
3294   // The param decl may be missing in a variadic function.
3295   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3296   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3297 
3298   // Prefer the nonnull attribute if it's present.
3299   const NonNullAttr *NNAttr = nullptr;
3300   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3301     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3302 
3303   bool CanCheckNullability = false;
3304   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3305     auto Nullability = PVD->getType()->getNullability(getContext());
3306     CanCheckNullability = Nullability &&
3307                           *Nullability == NullabilityKind::NonNull &&
3308                           PVD->getTypeSourceInfo();
3309   }
3310 
3311   if (!NNAttr && !CanCheckNullability)
3312     return;
3313 
3314   SourceLocation AttrLoc;
3315   SanitizerMask CheckKind;
3316   SanitizerHandler Handler;
3317   if (NNAttr) {
3318     AttrLoc = NNAttr->getLocation();
3319     CheckKind = SanitizerKind::NonnullAttribute;
3320     Handler = SanitizerHandler::NonnullArg;
3321   } else {
3322     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3323     CheckKind = SanitizerKind::NullabilityArg;
3324     Handler = SanitizerHandler::NullabilityArg;
3325   }
3326 
3327   SanitizerScope SanScope(this);
3328   assert(RV.isScalar());
3329   llvm::Value *V = RV.getScalarVal();
3330   llvm::Value *Cond =
3331       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3332   llvm::Constant *StaticData[] = {
3333       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3334       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3335   };
3336   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3337 }
3338 
3339 void CodeGenFunction::EmitCallArgs(
3340     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3341     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3342     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3343   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3344 
3345   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3346   // because arguments are destroyed left to right in the callee. As a special
3347   // case, there are certain language constructs that require left-to-right
3348   // evaluation, and in those cases we consider the evaluation order requirement
3349   // to trump the "destruction order is reverse construction order" guarantee.
3350   bool LeftToRight =
3351       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3352           ? Order == EvaluationOrder::ForceLeftToRight
3353           : Order != EvaluationOrder::ForceRightToLeft;
3354 
3355   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3356                                          RValue EmittedArg) {
3357     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3358       return;
3359     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3360     if (PS == nullptr)
3361       return;
3362 
3363     const auto &Context = getContext();
3364     auto SizeTy = Context.getSizeType();
3365     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3366     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3367     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3368                                                      EmittedArg.getScalarVal());
3369     Args.add(RValue::get(V), SizeTy);
3370     // If we're emitting args in reverse, be sure to do so with
3371     // pass_object_size, as well.
3372     if (!LeftToRight)
3373       std::swap(Args.back(), *(&Args.back() - 1));
3374   };
3375 
3376   // Insert a stack save if we're going to need any inalloca args.
3377   bool HasInAllocaArgs = false;
3378   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3379     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3380          I != E && !HasInAllocaArgs; ++I)
3381       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3382     if (HasInAllocaArgs) {
3383       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3384       Args.allocateArgumentMemory(*this);
3385     }
3386   }
3387 
3388   // Evaluate each argument in the appropriate order.
3389   size_t CallArgsStart = Args.size();
3390   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3391     unsigned Idx = LeftToRight ? I : E - I - 1;
3392     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3393     unsigned InitialArgSize = Args.size();
3394     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3395     // In particular, we depend on it being the last arg in Args, and the
3396     // objectsize bits depend on there only being one arg if !LeftToRight.
3397     assert(InitialArgSize + 1 == Args.size() &&
3398            "The code below depends on only adding one arg per EmitCallArg");
3399     (void)InitialArgSize;
3400     RValue RVArg = Args.back().RV;
3401     EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3402                         ParamsToSkip + Idx);
3403     // @llvm.objectsize should never have side-effects and shouldn't need
3404     // destruction/cleanups, so we can safely "emit" it after its arg,
3405     // regardless of right-to-leftness
3406     MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3407   }
3408 
3409   if (!LeftToRight) {
3410     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3411     // IR function.
3412     std::reverse(Args.begin() + CallArgsStart, Args.end());
3413   }
3414 }
3415 
3416 namespace {
3417 
3418 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3419   DestroyUnpassedArg(Address Addr, QualType Ty)
3420       : Addr(Addr), Ty(Ty) {}
3421 
3422   Address Addr;
3423   QualType Ty;
3424 
3425   void Emit(CodeGenFunction &CGF, Flags flags) override {
3426     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3427     assert(!Dtor->isTrivial());
3428     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3429                               /*Delegating=*/false, Addr);
3430   }
3431 };
3432 
3433 struct DisableDebugLocationUpdates {
3434   CodeGenFunction &CGF;
3435   bool disabledDebugInfo;
3436   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3437     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3438       CGF.disableDebugInfo();
3439   }
3440   ~DisableDebugLocationUpdates() {
3441     if (disabledDebugInfo)
3442       CGF.enableDebugInfo();
3443   }
3444 };
3445 
3446 } // end anonymous namespace
3447 
3448 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3449                                   QualType type) {
3450   DisableDebugLocationUpdates Dis(*this, E);
3451   if (const ObjCIndirectCopyRestoreExpr *CRE
3452         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3453     assert(getLangOpts().ObjCAutoRefCount);
3454     assert(getContext().hasSameUnqualifiedType(E->getType(), type));
3455     return emitWritebackArg(*this, args, CRE);
3456   }
3457 
3458   assert(type->isReferenceType() == E->isGLValue() &&
3459          "reference binding to unmaterialized r-value!");
3460 
3461   if (E->isGLValue()) {
3462     assert(E->getObjectKind() == OK_Ordinary);
3463     return args.add(EmitReferenceBindingToExpr(E), type);
3464   }
3465 
3466   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3467 
3468   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3469   // However, we still have to push an EH-only cleanup in case we unwind before
3470   // we make it to the call.
3471   if (HasAggregateEvalKind &&
3472       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3473     // If we're using inalloca, use the argument memory.  Otherwise, use a
3474     // temporary.
3475     AggValueSlot Slot;
3476     if (args.isUsingInAlloca())
3477       Slot = createPlaceholderSlot(*this, type);
3478     else
3479       Slot = CreateAggTemp(type, "agg.tmp");
3480 
3481     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3482     bool DestroyedInCallee =
3483         RD && RD->hasNonTrivialDestructor() &&
3484         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
3485     if (DestroyedInCallee)
3486       Slot.setExternallyDestructed();
3487 
3488     EmitAggExpr(E, Slot);
3489     RValue RV = Slot.asRValue();
3490     args.add(RV, type);
3491 
3492     if (DestroyedInCallee) {
3493       // Create a no-op GEP between the placeholder and the cleanup so we can
3494       // RAUW it successfully.  It also serves as a marker of the first
3495       // instruction where the cleanup is active.
3496       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3497                                               type);
3498       // This unreachable is a temporary marker which will be removed later.
3499       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3500       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3501     }
3502     return;
3503   }
3504 
3505   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3506       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3507     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3508     assert(L.isSimple());
3509     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
3510       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
3511     } else {
3512       // We can't represent a misaligned lvalue in the CallArgList, so copy
3513       // to an aligned temporary now.
3514       Address tmp = CreateMemTemp(type);
3515       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
3516       args.add(RValue::getAggregate(tmp), type);
3517     }
3518     return;
3519   }
3520 
3521   args.add(EmitAnyExprToTemp(E), type);
3522 }
3523 
3524 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3525   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3526   // implicitly widens null pointer constants that are arguments to varargs
3527   // functions to pointer-sized ints.
3528   if (!getTarget().getTriple().isOSWindows())
3529     return Arg->getType();
3530 
3531   if (Arg->getType()->isIntegerType() &&
3532       getContext().getTypeSize(Arg->getType()) <
3533           getContext().getTargetInfo().getPointerWidth(0) &&
3534       Arg->isNullPointerConstant(getContext(),
3535                                  Expr::NPC_ValueDependentIsNotNull)) {
3536     return getContext().getIntPtrType();
3537   }
3538 
3539   return Arg->getType();
3540 }
3541 
3542 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3543 // optimizer it can aggressively ignore unwind edges.
3544 void
3545 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3546   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3547       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3548     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3549                       CGM.getNoObjCARCExceptionsMetadata());
3550 }
3551 
3552 /// Emits a call to the given no-arguments nounwind runtime function.
3553 llvm::CallInst *
3554 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3555                                          const llvm::Twine &name) {
3556   return EmitNounwindRuntimeCall(callee, None, name);
3557 }
3558 
3559 /// Emits a call to the given nounwind runtime function.
3560 llvm::CallInst *
3561 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3562                                          ArrayRef<llvm::Value*> args,
3563                                          const llvm::Twine &name) {
3564   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3565   call->setDoesNotThrow();
3566   return call;
3567 }
3568 
3569 /// Emits a simple call (never an invoke) to the given no-arguments
3570 /// runtime function.
3571 llvm::CallInst *
3572 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3573                                  const llvm::Twine &name) {
3574   return EmitRuntimeCall(callee, None, name);
3575 }
3576 
3577 // Calls which may throw must have operand bundles indicating which funclet
3578 // they are nested within.
3579 static void
3580 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad,
3581                      SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
3582   // There is no need for a funclet operand bundle if we aren't inside a
3583   // funclet.
3584   if (!CurrentFuncletPad)
3585     return;
3586 
3587   // Skip intrinsics which cannot throw.
3588   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3589   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3590     return;
3591 
3592   BundleList.emplace_back("funclet", CurrentFuncletPad);
3593 }
3594 
3595 /// Emits a simple call (never an invoke) to the given runtime function.
3596 llvm::CallInst *
3597 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3598                                  ArrayRef<llvm::Value*> args,
3599                                  const llvm::Twine &name) {
3600   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3601   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3602 
3603   llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name);
3604   call->setCallingConv(getRuntimeCC());
3605   return call;
3606 }
3607 
3608 /// Emits a call or invoke to the given noreturn runtime function.
3609 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3610                                                ArrayRef<llvm::Value*> args) {
3611   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3612   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3613 
3614   if (getInvokeDest()) {
3615     llvm::InvokeInst *invoke =
3616       Builder.CreateInvoke(callee,
3617                            getUnreachableBlock(),
3618                            getInvokeDest(),
3619                            args,
3620                            BundleList);
3621     invoke->setDoesNotReturn();
3622     invoke->setCallingConv(getRuntimeCC());
3623   } else {
3624     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3625     call->setDoesNotReturn();
3626     call->setCallingConv(getRuntimeCC());
3627     Builder.CreateUnreachable();
3628   }
3629 }
3630 
3631 /// Emits a call or invoke instruction to the given nullary runtime function.
3632 llvm::CallSite
3633 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3634                                          const Twine &name) {
3635   return EmitRuntimeCallOrInvoke(callee, None, name);
3636 }
3637 
3638 /// Emits a call or invoke instruction to the given runtime function.
3639 llvm::CallSite
3640 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3641                                          ArrayRef<llvm::Value*> args,
3642                                          const Twine &name) {
3643   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3644   callSite.setCallingConv(getRuntimeCC());
3645   return callSite;
3646 }
3647 
3648 /// Emits a call or invoke instruction to the given function, depending
3649 /// on the current state of the EH stack.
3650 llvm::CallSite
3651 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3652                                   ArrayRef<llvm::Value *> Args,
3653                                   const Twine &Name) {
3654   llvm::BasicBlock *InvokeDest = getInvokeDest();
3655   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3656   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3657 
3658   llvm::Instruction *Inst;
3659   if (!InvokeDest)
3660     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3661   else {
3662     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3663     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3664                                 Name);
3665     EmitBlock(ContBB);
3666   }
3667 
3668   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3669   // optimizer it can aggressively ignore unwind edges.
3670   if (CGM.getLangOpts().ObjCAutoRefCount)
3671     AddObjCARCExceptionMetadata(Inst);
3672 
3673   return llvm::CallSite(Inst);
3674 }
3675 
3676 /// \brief Store a non-aggregate value to an address to initialize it.  For
3677 /// initialization, a non-atomic store will be used.
3678 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3679                                         LValue Dst) {
3680   if (Src.isScalar())
3681     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3682   else
3683     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3684 }
3685 
3686 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3687                                                   llvm::Value *New) {
3688   DeferredReplacements.push_back(std::make_pair(Old, New));
3689 }
3690 
3691 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3692                                  const CGCallee &Callee,
3693                                  ReturnValueSlot ReturnValue,
3694                                  const CallArgList &CallArgs,
3695                                  llvm::Instruction **callOrInvoke) {
3696   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3697 
3698   assert(Callee.isOrdinary());
3699 
3700   // Handle struct-return functions by passing a pointer to the
3701   // location that we would like to return into.
3702   QualType RetTy = CallInfo.getReturnType();
3703   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3704 
3705   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3706 
3707   // 1. Set up the arguments.
3708 
3709   // If we're using inalloca, insert the allocation after the stack save.
3710   // FIXME: Do this earlier rather than hacking it in here!
3711   Address ArgMemory = Address::invalid();
3712   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3713   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3714     const llvm::DataLayout &DL = CGM.getDataLayout();
3715     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3716     llvm::Instruction *IP = CallArgs.getStackBase();
3717     llvm::AllocaInst *AI;
3718     if (IP) {
3719       IP = IP->getNextNode();
3720       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3721                                 "argmem", IP);
3722     } else {
3723       AI = CreateTempAlloca(ArgStruct, "argmem");
3724     }
3725     auto Align = CallInfo.getArgStructAlignment();
3726     AI->setAlignment(Align.getQuantity());
3727     AI->setUsedWithInAlloca(true);
3728     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3729     ArgMemory = Address(AI, Align);
3730   }
3731 
3732   // Helper function to drill into the inalloca allocation.
3733   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3734     auto FieldOffset =
3735       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3736     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3737   };
3738 
3739   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3740   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3741 
3742   // If the call returns a temporary with struct return, create a temporary
3743   // alloca to hold the result, unless one is given to us.
3744   Address SRetPtr = Address::invalid();
3745   size_t UnusedReturnSize = 0;
3746   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3747     if (!ReturnValue.isNull()) {
3748       SRetPtr = ReturnValue.getValue();
3749     } else {
3750       SRetPtr = CreateMemTemp(RetTy);
3751       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3752         uint64_t size =
3753             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3754         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3755           UnusedReturnSize = size;
3756       }
3757     }
3758     if (IRFunctionArgs.hasSRetArg()) {
3759       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3760     } else if (RetAI.isInAlloca()) {
3761       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3762       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3763     }
3764   }
3765 
3766   Address swiftErrorTemp = Address::invalid();
3767   Address swiftErrorArg = Address::invalid();
3768 
3769   // Translate all of the arguments as necessary to match the IR lowering.
3770   assert(CallInfo.arg_size() == CallArgs.size() &&
3771          "Mismatch between function signature & arguments.");
3772   unsigned ArgNo = 0;
3773   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3774   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3775        I != E; ++I, ++info_it, ++ArgNo) {
3776     const ABIArgInfo &ArgInfo = info_it->info;
3777     RValue RV = I->RV;
3778 
3779     // Insert a padding argument to ensure proper alignment.
3780     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3781       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3782           llvm::UndefValue::get(ArgInfo.getPaddingType());
3783 
3784     unsigned FirstIRArg, NumIRArgs;
3785     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3786 
3787     switch (ArgInfo.getKind()) {
3788     case ABIArgInfo::InAlloca: {
3789       assert(NumIRArgs == 0);
3790       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3791       if (RV.isAggregate()) {
3792         // Replace the placeholder with the appropriate argument slot GEP.
3793         llvm::Instruction *Placeholder =
3794             cast<llvm::Instruction>(RV.getAggregatePointer());
3795         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3796         Builder.SetInsertPoint(Placeholder);
3797         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3798         Builder.restoreIP(IP);
3799         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3800       } else {
3801         // Store the RValue into the argument struct.
3802         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3803         unsigned AS = Addr.getType()->getPointerAddressSpace();
3804         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3805         // There are some cases where a trivial bitcast is not avoidable.  The
3806         // definition of a type later in a translation unit may change it's type
3807         // from {}* to (%struct.foo*)*.
3808         if (Addr.getType() != MemType)
3809           Addr = Builder.CreateBitCast(Addr, MemType);
3810         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3811         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3812       }
3813       break;
3814     }
3815 
3816     case ABIArgInfo::Indirect: {
3817       assert(NumIRArgs == 1);
3818       if (RV.isScalar() || RV.isComplex()) {
3819         // Make a temporary alloca to pass the argument.
3820         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3821         IRCallArgs[FirstIRArg] = Addr.getPointer();
3822 
3823         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3824         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3825       } else {
3826         // We want to avoid creating an unnecessary temporary+copy here;
3827         // however, we need one in three cases:
3828         // 1. If the argument is not byval, and we are required to copy the
3829         //    source.  (This case doesn't occur on any common architecture.)
3830         // 2. If the argument is byval, RV is not sufficiently aligned, and
3831         //    we cannot force it to be sufficiently aligned.
3832         // 3. If the argument is byval, but RV is located in an address space
3833         //    different than that of the argument (0).
3834         Address Addr = RV.getAggregateAddress();
3835         CharUnits Align = ArgInfo.getIndirectAlign();
3836         const llvm::DataLayout *TD = &CGM.getDataLayout();
3837         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3838         const unsigned ArgAddrSpace =
3839             (FirstIRArg < IRFuncTy->getNumParams()
3840                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3841                  : 0);
3842         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3843             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3844              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3845                                               Align.getQuantity(), *TD)
3846                < Align.getQuantity()) ||
3847             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3848           // Create an aligned temporary, and copy to it.
3849           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3850           IRCallArgs[FirstIRArg] = AI.getPointer();
3851           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3852         } else {
3853           // Skip the extra memcpy call.
3854           IRCallArgs[FirstIRArg] = Addr.getPointer();
3855         }
3856       }
3857       break;
3858     }
3859 
3860     case ABIArgInfo::Ignore:
3861       assert(NumIRArgs == 0);
3862       break;
3863 
3864     case ABIArgInfo::Extend:
3865     case ABIArgInfo::Direct: {
3866       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3867           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3868           ArgInfo.getDirectOffset() == 0) {
3869         assert(NumIRArgs == 1);
3870         llvm::Value *V;
3871         if (RV.isScalar())
3872           V = RV.getScalarVal();
3873         else
3874           V = Builder.CreateLoad(RV.getAggregateAddress());
3875 
3876         // Implement swifterror by copying into a new swifterror argument.
3877         // We'll write back in the normal path out of the call.
3878         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
3879               == ParameterABI::SwiftErrorResult) {
3880           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
3881 
3882           QualType pointeeTy = I->Ty->getPointeeType();
3883           swiftErrorArg =
3884             Address(V, getContext().getTypeAlignInChars(pointeeTy));
3885 
3886           swiftErrorTemp =
3887             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3888           V = swiftErrorTemp.getPointer();
3889           cast<llvm::AllocaInst>(V)->setSwiftError(true);
3890 
3891           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
3892           Builder.CreateStore(errorValue, swiftErrorTemp);
3893         }
3894 
3895         // We might have to widen integers, but we should never truncate.
3896         if (ArgInfo.getCoerceToType() != V->getType() &&
3897             V->getType()->isIntegerTy())
3898           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3899 
3900         // If the argument doesn't match, perform a bitcast to coerce it.  This
3901         // can happen due to trivial type mismatches.
3902         if (FirstIRArg < IRFuncTy->getNumParams() &&
3903             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3904           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3905 
3906         IRCallArgs[FirstIRArg] = V;
3907         break;
3908       }
3909 
3910       // FIXME: Avoid the conversion through memory if possible.
3911       Address Src = Address::invalid();
3912       if (RV.isScalar() || RV.isComplex()) {
3913         Src = CreateMemTemp(I->Ty, "coerce");
3914         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3915         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3916       } else {
3917         Src = RV.getAggregateAddress();
3918       }
3919 
3920       // If the value is offset in memory, apply the offset now.
3921       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3922 
3923       // Fast-isel and the optimizer generally like scalar values better than
3924       // FCAs, so we flatten them if this is safe to do for this argument.
3925       llvm::StructType *STy =
3926             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3927       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3928         llvm::Type *SrcTy = Src.getType()->getElementType();
3929         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3930         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3931 
3932         // If the source type is smaller than the destination type of the
3933         // coerce-to logic, copy the source value into a temp alloca the size
3934         // of the destination type to allow loading all of it. The bits past
3935         // the source value are left undef.
3936         if (SrcSize < DstSize) {
3937           Address TempAlloca
3938             = CreateTempAlloca(STy, Src.getAlignment(),
3939                                Src.getName() + ".coerce");
3940           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3941           Src = TempAlloca;
3942         } else {
3943           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3944         }
3945 
3946         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3947         assert(NumIRArgs == STy->getNumElements());
3948         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3949           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3950           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3951           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3952           IRCallArgs[FirstIRArg + i] = LI;
3953         }
3954       } else {
3955         // In the simple case, just pass the coerced loaded value.
3956         assert(NumIRArgs == 1);
3957         IRCallArgs[FirstIRArg] =
3958           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3959       }
3960 
3961       break;
3962     }
3963 
3964     case ABIArgInfo::CoerceAndExpand: {
3965       auto coercionType = ArgInfo.getCoerceAndExpandType();
3966       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
3967 
3968       llvm::Value *tempSize = nullptr;
3969       Address addr = Address::invalid();
3970       if (RV.isAggregate()) {
3971         addr = RV.getAggregateAddress();
3972       } else {
3973         assert(RV.isScalar()); // complex should always just be direct
3974 
3975         llvm::Type *scalarType = RV.getScalarVal()->getType();
3976         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
3977         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
3978 
3979         tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize);
3980 
3981         // Materialize to a temporary.
3982         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
3983                  CharUnits::fromQuantity(std::max(layout->getAlignment(),
3984                                                   scalarAlign)));
3985         EmitLifetimeStart(scalarSize, addr.getPointer());
3986 
3987         Builder.CreateStore(RV.getScalarVal(), addr);
3988       }
3989 
3990       addr = Builder.CreateElementBitCast(addr, coercionType);
3991 
3992       unsigned IRArgPos = FirstIRArg;
3993       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3994         llvm::Type *eltType = coercionType->getElementType(i);
3995         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
3996         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
3997         llvm::Value *elt = Builder.CreateLoad(eltAddr);
3998         IRCallArgs[IRArgPos++] = elt;
3999       }
4000       assert(IRArgPos == FirstIRArg + NumIRArgs);
4001 
4002       if (tempSize) {
4003         EmitLifetimeEnd(tempSize, addr.getPointer());
4004       }
4005 
4006       break;
4007     }
4008 
4009     case ABIArgInfo::Expand:
4010       unsigned IRArgPos = FirstIRArg;
4011       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
4012       assert(IRArgPos == FirstIRArg + NumIRArgs);
4013       break;
4014     }
4015   }
4016 
4017   llvm::Value *CalleePtr = Callee.getFunctionPointer();
4018 
4019   // If we're using inalloca, set up that argument.
4020   if (ArgMemory.isValid()) {
4021     llvm::Value *Arg = ArgMemory.getPointer();
4022     if (CallInfo.isVariadic()) {
4023       // When passing non-POD arguments by value to variadic functions, we will
4024       // end up with a variadic prototype and an inalloca call site.  In such
4025       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4026       // the callee.
4027       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4028       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4029       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4030     } else {
4031       llvm::Type *LastParamTy =
4032           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4033       if (Arg->getType() != LastParamTy) {
4034 #ifndef NDEBUG
4035         // Assert that these structs have equivalent element types.
4036         llvm::StructType *FullTy = CallInfo.getArgStruct();
4037         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4038             cast<llvm::PointerType>(LastParamTy)->getElementType());
4039         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4040         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4041                                                 DE = DeclaredTy->element_end(),
4042                                                 FI = FullTy->element_begin();
4043              DI != DE; ++DI, ++FI)
4044           assert(*DI == *FI);
4045 #endif
4046         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4047       }
4048     }
4049     assert(IRFunctionArgs.hasInallocaArg());
4050     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4051   }
4052 
4053   // 2. Prepare the function pointer.
4054 
4055   // If the callee is a bitcast of a non-variadic function to have a
4056   // variadic function pointer type, check to see if we can remove the
4057   // bitcast.  This comes up with unprototyped functions.
4058   //
4059   // This makes the IR nicer, but more importantly it ensures that we
4060   // can inline the function at -O0 if it is marked always_inline.
4061   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4062     llvm::FunctionType *CalleeFT =
4063       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4064     if (!CalleeFT->isVarArg())
4065       return Ptr;
4066 
4067     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4068     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4069       return Ptr;
4070 
4071     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4072     if (!OrigFn)
4073       return Ptr;
4074 
4075     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4076 
4077     // If the original type is variadic, or if any of the component types
4078     // disagree, we cannot remove the cast.
4079     if (OrigFT->isVarArg() ||
4080         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4081         OrigFT->getReturnType() != CalleeFT->getReturnType())
4082       return Ptr;
4083 
4084     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4085       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4086         return Ptr;
4087 
4088     return OrigFn;
4089   };
4090   CalleePtr = simplifyVariadicCallee(CalleePtr);
4091 
4092   // 3. Perform the actual call.
4093 
4094   // Deactivate any cleanups that we're supposed to do immediately before
4095   // the call.
4096   if (!CallArgs.getCleanupsToDeactivate().empty())
4097     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4098 
4099   // Assert that the arguments we computed match up.  The IR verifier
4100   // will catch this, but this is a common enough source of problems
4101   // during IRGen changes that it's way better for debugging to catch
4102   // it ourselves here.
4103 #ifndef NDEBUG
4104   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4105   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4106     // Inalloca argument can have different type.
4107     if (IRFunctionArgs.hasInallocaArg() &&
4108         i == IRFunctionArgs.getInallocaArgNo())
4109       continue;
4110     if (i < IRFuncTy->getNumParams())
4111       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4112   }
4113 #endif
4114 
4115   // Compute the calling convention and attributes.
4116   unsigned CallingConv;
4117   CodeGen::AttributeListType AttributeList;
4118   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4119                              Callee.getAbstractInfo(),
4120                              AttributeList, CallingConv,
4121                              /*AttrOnCallSite=*/true);
4122   llvm::AttributeList Attrs =
4123       llvm::AttributeList::get(getLLVMContext(), AttributeList);
4124 
4125   // Apply some call-site-specific attributes.
4126   // TODO: work this into building the attribute set.
4127 
4128   // Apply always_inline to all calls within flatten functions.
4129   // FIXME: should this really take priority over __try, below?
4130   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4131       !(Callee.getAbstractInfo().getCalleeDecl() &&
4132         Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) {
4133     Attrs =
4134         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4135                            llvm::Attribute::AlwaysInline);
4136   }
4137 
4138   // Disable inlining inside SEH __try blocks.
4139   if (isSEHTryScope()) {
4140     Attrs =
4141         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4142                            llvm::Attribute::NoInline);
4143   }
4144 
4145   // Decide whether to use a call or an invoke.
4146   bool CannotThrow;
4147   if (currentFunctionUsesSEHTry()) {
4148     // SEH cares about asynchronous exceptions, so everything can "throw."
4149     CannotThrow = false;
4150   } else if (isCleanupPadScope() &&
4151              EHPersonality::get(*this).isMSVCXXPersonality()) {
4152     // The MSVC++ personality will implicitly terminate the program if an
4153     // exception is thrown during a cleanup outside of a try/catch.
4154     // We don't need to model anything in IR to get this behavior.
4155     CannotThrow = true;
4156   } else {
4157     // Otherwise, nounwind call sites will never throw.
4158     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4159                                      llvm::Attribute::NoUnwind);
4160   }
4161   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4162 
4163   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4164   getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList);
4165 
4166   // Emit the actual call/invoke instruction.
4167   llvm::CallSite CS;
4168   if (!InvokeDest) {
4169     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4170   } else {
4171     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4172     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4173                               BundleList);
4174     EmitBlock(Cont);
4175   }
4176   llvm::Instruction *CI = CS.getInstruction();
4177   if (callOrInvoke)
4178     *callOrInvoke = CI;
4179 
4180   // Apply the attributes and calling convention.
4181   CS.setAttributes(Attrs);
4182   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4183 
4184   // Apply various metadata.
4185 
4186   if (!CI->getType()->isVoidTy())
4187     CI->setName("call");
4188 
4189   // Insert instrumentation or attach profile metadata at indirect call sites.
4190   // For more details, see the comment before the definition of
4191   // IPVK_IndirectCallTarget in InstrProfData.inc.
4192   if (!CS.getCalledFunction())
4193     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4194                      CI, CalleePtr);
4195 
4196   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4197   // optimizer it can aggressively ignore unwind edges.
4198   if (CGM.getLangOpts().ObjCAutoRefCount)
4199     AddObjCARCExceptionMetadata(CI);
4200 
4201   // Suppress tail calls if requested.
4202   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4203     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4204     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4205       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4206   }
4207 
4208   // 4. Finish the call.
4209 
4210   // If the call doesn't return, finish the basic block and clear the
4211   // insertion point; this allows the rest of IRGen to discard
4212   // unreachable code.
4213   if (CS.doesNotReturn()) {
4214     if (UnusedReturnSize)
4215       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4216                       SRetPtr.getPointer());
4217 
4218     Builder.CreateUnreachable();
4219     Builder.ClearInsertionPoint();
4220 
4221     // FIXME: For now, emit a dummy basic block because expr emitters in
4222     // generally are not ready to handle emitting expressions at unreachable
4223     // points.
4224     EnsureInsertPoint();
4225 
4226     // Return a reasonable RValue.
4227     return GetUndefRValue(RetTy);
4228   }
4229 
4230   // Perform the swifterror writeback.
4231   if (swiftErrorTemp.isValid()) {
4232     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4233     Builder.CreateStore(errorResult, swiftErrorArg);
4234   }
4235 
4236   // Emit any call-associated writebacks immediately.  Arguably this
4237   // should happen after any return-value munging.
4238   if (CallArgs.hasWritebacks())
4239     emitWritebacks(*this, CallArgs);
4240 
4241   // The stack cleanup for inalloca arguments has to run out of the normal
4242   // lexical order, so deactivate it and run it manually here.
4243   CallArgs.freeArgumentMemory(*this);
4244 
4245   // Extract the return value.
4246   RValue Ret = [&] {
4247     switch (RetAI.getKind()) {
4248     case ABIArgInfo::CoerceAndExpand: {
4249       auto coercionType = RetAI.getCoerceAndExpandType();
4250       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4251 
4252       Address addr = SRetPtr;
4253       addr = Builder.CreateElementBitCast(addr, coercionType);
4254 
4255       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4256       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4257 
4258       unsigned unpaddedIndex = 0;
4259       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4260         llvm::Type *eltType = coercionType->getElementType(i);
4261         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4262         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4263         llvm::Value *elt = CI;
4264         if (requiresExtract)
4265           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4266         else
4267           assert(unpaddedIndex == 0);
4268         Builder.CreateStore(elt, eltAddr);
4269       }
4270       // FALLTHROUGH
4271     }
4272 
4273     case ABIArgInfo::InAlloca:
4274     case ABIArgInfo::Indirect: {
4275       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4276       if (UnusedReturnSize)
4277         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4278                         SRetPtr.getPointer());
4279       return ret;
4280     }
4281 
4282     case ABIArgInfo::Ignore:
4283       // If we are ignoring an argument that had a result, make sure to
4284       // construct the appropriate return value for our caller.
4285       return GetUndefRValue(RetTy);
4286 
4287     case ABIArgInfo::Extend:
4288     case ABIArgInfo::Direct: {
4289       llvm::Type *RetIRTy = ConvertType(RetTy);
4290       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4291         switch (getEvaluationKind(RetTy)) {
4292         case TEK_Complex: {
4293           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4294           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4295           return RValue::getComplex(std::make_pair(Real, Imag));
4296         }
4297         case TEK_Aggregate: {
4298           Address DestPtr = ReturnValue.getValue();
4299           bool DestIsVolatile = ReturnValue.isVolatile();
4300 
4301           if (!DestPtr.isValid()) {
4302             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4303             DestIsVolatile = false;
4304           }
4305           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4306           return RValue::getAggregate(DestPtr);
4307         }
4308         case TEK_Scalar: {
4309           // If the argument doesn't match, perform a bitcast to coerce it.  This
4310           // can happen due to trivial type mismatches.
4311           llvm::Value *V = CI;
4312           if (V->getType() != RetIRTy)
4313             V = Builder.CreateBitCast(V, RetIRTy);
4314           return RValue::get(V);
4315         }
4316         }
4317         llvm_unreachable("bad evaluation kind");
4318       }
4319 
4320       Address DestPtr = ReturnValue.getValue();
4321       bool DestIsVolatile = ReturnValue.isVolatile();
4322 
4323       if (!DestPtr.isValid()) {
4324         DestPtr = CreateMemTemp(RetTy, "coerce");
4325         DestIsVolatile = false;
4326       }
4327 
4328       // If the value is offset in memory, apply the offset now.
4329       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4330       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4331 
4332       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4333     }
4334 
4335     case ABIArgInfo::Expand:
4336       llvm_unreachable("Invalid ABI kind for return argument");
4337     }
4338 
4339     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4340   } ();
4341 
4342   // Emit the assume_aligned check on the return value.
4343   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4344   if (Ret.isScalar() && TargetDecl) {
4345     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4346       llvm::Value *OffsetValue = nullptr;
4347       if (const auto *Offset = AA->getOffset())
4348         OffsetValue = EmitScalarExpr(Offset);
4349 
4350       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4351       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4352       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4353                               OffsetValue);
4354     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4355       llvm::Value *ParamVal =
4356           CallArgs[AA->getParamIndex() - 1].RV.getScalarVal();
4357       EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal);
4358     }
4359   }
4360 
4361   return Ret;
4362 }
4363 
4364 /* VarArg handling */
4365 
4366 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4367   VAListAddr = VE->isMicrosoftABI()
4368                  ? EmitMSVAListRef(VE->getSubExpr())
4369                  : EmitVAListRef(VE->getSubExpr());
4370   QualType Ty = VE->getType();
4371   if (VE->isMicrosoftABI())
4372     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4373   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4374 }
4375