1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/MC/SubtargetFeature.h" 31 #include "llvm/Support/CallSite.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 /***/ 37 38 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 39 switch (CC) { 40 default: return llvm::CallingConv::C; 41 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 42 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 43 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 44 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 45 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 46 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 47 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 48 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 49 // TODO: add support for CC_X86Pascal to llvm 50 } 51 } 52 53 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 54 /// qualification. 55 /// FIXME: address space qualification? 56 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 57 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 58 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 59 } 60 61 /// Returns the canonical formal type of the given C++ method. 62 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 63 return MD->getType()->getCanonicalTypeUnqualified() 64 .getAs<FunctionProtoType>(); 65 } 66 67 /// Returns the "extra-canonicalized" return type, which discards 68 /// qualifiers on the return type. Codegen doesn't care about them, 69 /// and it makes ABI code a little easier to be able to assume that 70 /// all parameter and return types are top-level unqualified. 71 static CanQualType GetReturnType(QualType RetTy) { 72 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 73 } 74 75 /// Arrange the argument and result information for a value of the given 76 /// unprototyped freestanding function type. 77 const CGFunctionInfo & 78 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 79 // When translating an unprototyped function type, always use a 80 // variadic type. 81 return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(), 82 None, FTNP->getExtInfo(), RequiredArgs(0)); 83 } 84 85 /// Arrange the LLVM function layout for a value of the given function 86 /// type, on top of any implicit parameters already stored. Use the 87 /// given ExtInfo instead of the ExtInfo from the function type. 88 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT, 89 SmallVectorImpl<CanQualType> &prefix, 90 CanQual<FunctionProtoType> FTP, 91 FunctionType::ExtInfo extInfo) { 92 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 93 // FIXME: Kill copy. 94 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 95 prefix.push_back(FTP->getArgType(i)); 96 CanQualType resultType = FTP->getResultType().getUnqualifiedType(); 97 return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required); 98 } 99 100 /// Arrange the argument and result information for a free function (i.e. 101 /// not a C++ or ObjC instance method) of the given type. 102 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT, 103 SmallVectorImpl<CanQualType> &prefix, 104 CanQual<FunctionProtoType> FTP) { 105 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo()); 106 } 107 108 /// Arrange the argument and result information for a free function (i.e. 109 /// not a C++ or ObjC instance method) of the given type. 110 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT, 111 SmallVectorImpl<CanQualType> &prefix, 112 CanQual<FunctionProtoType> FTP) { 113 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 114 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo); 115 } 116 117 /// Arrange the argument and result information for a value of the 118 /// given freestanding function type. 119 const CGFunctionInfo & 120 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 121 SmallVector<CanQualType, 16> argTypes; 122 return ::arrangeFreeFunctionType(*this, argTypes, FTP); 123 } 124 125 static CallingConv getCallingConventionForDecl(const Decl *D) { 126 // Set the appropriate calling convention for the Function. 127 if (D->hasAttr<StdCallAttr>()) 128 return CC_X86StdCall; 129 130 if (D->hasAttr<FastCallAttr>()) 131 return CC_X86FastCall; 132 133 if (D->hasAttr<ThisCallAttr>()) 134 return CC_X86ThisCall; 135 136 if (D->hasAttr<PascalAttr>()) 137 return CC_X86Pascal; 138 139 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 140 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 141 142 if (D->hasAttr<PnaclCallAttr>()) 143 return CC_PnaclCall; 144 145 if (D->hasAttr<IntelOclBiccAttr>()) 146 return CC_IntelOclBicc; 147 148 return CC_C; 149 } 150 151 /// Arrange the argument and result information for a call to an 152 /// unknown C++ non-static member function of the given abstract type. 153 /// (Zero value of RD means we don't have any meaningful "this" argument type, 154 /// so fall back to a generic pointer type). 155 /// The member function must be an ordinary function, i.e. not a 156 /// constructor or destructor. 157 const CGFunctionInfo & 158 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 159 const FunctionProtoType *FTP) { 160 SmallVector<CanQualType, 16> argTypes; 161 162 // Add the 'this' pointer. 163 if (RD) 164 argTypes.push_back(GetThisType(Context, RD)); 165 else 166 argTypes.push_back(Context.VoidPtrTy); 167 168 return ::arrangeCXXMethodType(*this, argTypes, 169 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 170 } 171 172 /// Arrange the argument and result information for a declaration or 173 /// definition of the given C++ non-static member function. The 174 /// member function must be an ordinary function, i.e. not a 175 /// constructor or destructor. 176 const CGFunctionInfo & 177 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 178 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); 179 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 180 181 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 182 183 if (MD->isInstance()) { 184 // The abstract case is perfectly fine. 185 const CXXRecordDecl *ThisType = 186 CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 187 return arrangeCXXMethodType(ThisType, prototype.getTypePtr()); 188 } 189 190 return arrangeFreeFunctionType(prototype); 191 } 192 193 /// Arrange the argument and result information for a declaration 194 /// or definition to the given constructor variant. 195 const CGFunctionInfo & 196 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D, 197 CXXCtorType ctorKind) { 198 SmallVector<CanQualType, 16> argTypes; 199 argTypes.push_back(GetThisType(Context, D->getParent())); 200 201 GlobalDecl GD(D, ctorKind); 202 CanQualType resultType = 203 TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy; 204 205 TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes); 206 207 CanQual<FunctionProtoType> FTP = GetFormalType(D); 208 209 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size()); 210 211 // Add the formal parameters. 212 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 213 argTypes.push_back(FTP->getArgType(i)); 214 215 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 216 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required); 217 } 218 219 /// Arrange the argument and result information for a declaration, 220 /// definition, or call to the given destructor variant. It so 221 /// happens that all three cases produce the same information. 222 const CGFunctionInfo & 223 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D, 224 CXXDtorType dtorKind) { 225 SmallVector<CanQualType, 2> argTypes; 226 argTypes.push_back(GetThisType(Context, D->getParent())); 227 228 GlobalDecl GD(D, dtorKind); 229 CanQualType resultType = 230 TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy; 231 232 TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes); 233 234 CanQual<FunctionProtoType> FTP = GetFormalType(D); 235 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); 236 assert(FTP->isVariadic() == 0 && "dtor with formal parameters"); 237 238 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 239 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, 240 RequiredArgs::All); 241 } 242 243 /// Arrange the argument and result information for the declaration or 244 /// definition of the given function. 245 const CGFunctionInfo & 246 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 247 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 248 if (MD->isInstance()) 249 return arrangeCXXMethodDeclaration(MD); 250 251 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 252 253 assert(isa<FunctionType>(FTy)); 254 255 // When declaring a function without a prototype, always use a 256 // non-variadic type. 257 if (isa<FunctionNoProtoType>(FTy)) { 258 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 259 return arrangeLLVMFunctionInfo(noProto->getResultType(), None, 260 noProto->getExtInfo(), RequiredArgs::All); 261 } 262 263 assert(isa<FunctionProtoType>(FTy)); 264 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 265 } 266 267 /// Arrange the argument and result information for the declaration or 268 /// definition of an Objective-C method. 269 const CGFunctionInfo & 270 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 271 // It happens that this is the same as a call with no optional 272 // arguments, except also using the formal 'self' type. 273 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 274 } 275 276 /// Arrange the argument and result information for the function type 277 /// through which to perform a send to the given Objective-C method, 278 /// using the given receiver type. The receiver type is not always 279 /// the 'self' type of the method or even an Objective-C pointer type. 280 /// This is *not* the right method for actually performing such a 281 /// message send, due to the possibility of optional arguments. 282 const CGFunctionInfo & 283 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 284 QualType receiverType) { 285 SmallVector<CanQualType, 16> argTys; 286 argTys.push_back(Context.getCanonicalParamType(receiverType)); 287 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 288 // FIXME: Kill copy? 289 for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), 290 e = MD->param_end(); i != e; ++i) { 291 argTys.push_back(Context.getCanonicalParamType((*i)->getType())); 292 } 293 294 FunctionType::ExtInfo einfo; 295 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); 296 297 if (getContext().getLangOpts().ObjCAutoRefCount && 298 MD->hasAttr<NSReturnsRetainedAttr>()) 299 einfo = einfo.withProducesResult(true); 300 301 RequiredArgs required = 302 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 303 304 return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys, 305 einfo, required); 306 } 307 308 const CGFunctionInfo & 309 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 310 // FIXME: Do we need to handle ObjCMethodDecl? 311 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 312 313 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 314 return arrangeCXXConstructorDeclaration(CD, GD.getCtorType()); 315 316 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 317 return arrangeCXXDestructor(DD, GD.getDtorType()); 318 319 return arrangeFunctionDeclaration(FD); 320 } 321 322 /// Arrange a call as unto a free function, except possibly with an 323 /// additional number of formal parameters considered required. 324 static const CGFunctionInfo & 325 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 326 const CallArgList &args, 327 const FunctionType *fnType, 328 unsigned numExtraRequiredArgs) { 329 assert(args.size() >= numExtraRequiredArgs); 330 331 // In most cases, there are no optional arguments. 332 RequiredArgs required = RequiredArgs::All; 333 334 // If we have a variadic prototype, the required arguments are the 335 // extra prefix plus the arguments in the prototype. 336 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 337 if (proto->isVariadic()) 338 required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs); 339 340 // If we don't have a prototype at all, but we're supposed to 341 // explicitly use the variadic convention for unprototyped calls, 342 // treat all of the arguments as required but preserve the nominal 343 // possibility of variadics. 344 } else if (CGT.CGM.getTargetCodeGenInfo() 345 .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) { 346 required = RequiredArgs(args.size()); 347 } 348 349 return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args, 350 fnType->getExtInfo(), required); 351 } 352 353 /// Figure out the rules for calling a function with the given formal 354 /// type using the given arguments. The arguments are necessary 355 /// because the function might be unprototyped, in which case it's 356 /// target-dependent in crazy ways. 357 const CGFunctionInfo & 358 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 359 const FunctionType *fnType) { 360 return arrangeFreeFunctionLikeCall(*this, args, fnType, 0); 361 } 362 363 /// A block function call is essentially a free-function call with an 364 /// extra implicit argument. 365 const CGFunctionInfo & 366 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 367 const FunctionType *fnType) { 368 return arrangeFreeFunctionLikeCall(*this, args, fnType, 1); 369 } 370 371 const CGFunctionInfo & 372 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 373 const CallArgList &args, 374 FunctionType::ExtInfo info, 375 RequiredArgs required) { 376 // FIXME: Kill copy. 377 SmallVector<CanQualType, 16> argTypes; 378 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 379 i != e; ++i) 380 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 381 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 382 required); 383 } 384 385 /// Arrange a call to a C++ method, passing the given arguments. 386 const CGFunctionInfo & 387 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 388 const FunctionProtoType *FPT, 389 RequiredArgs required) { 390 // FIXME: Kill copy. 391 SmallVector<CanQualType, 16> argTypes; 392 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 393 i != e; ++i) 394 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 395 396 FunctionType::ExtInfo info = FPT->getExtInfo(); 397 return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()), 398 argTypes, info, required); 399 } 400 401 const CGFunctionInfo & 402 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType, 403 const FunctionArgList &args, 404 const FunctionType::ExtInfo &info, 405 bool isVariadic) { 406 // FIXME: Kill copy. 407 SmallVector<CanQualType, 16> argTypes; 408 for (FunctionArgList::const_iterator i = args.begin(), e = args.end(); 409 i != e; ++i) 410 argTypes.push_back(Context.getCanonicalParamType((*i)->getType())); 411 412 RequiredArgs required = 413 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 414 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 415 required); 416 } 417 418 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 419 return arrangeLLVMFunctionInfo(getContext().VoidTy, None, 420 FunctionType::ExtInfo(), RequiredArgs::All); 421 } 422 423 /// Arrange the argument and result information for an abstract value 424 /// of a given function type. This is the method which all of the 425 /// above functions ultimately defer to. 426 const CGFunctionInfo & 427 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 428 ArrayRef<CanQualType> argTypes, 429 FunctionType::ExtInfo info, 430 RequiredArgs required) { 431 #ifndef NDEBUG 432 for (ArrayRef<CanQualType>::const_iterator 433 I = argTypes.begin(), E = argTypes.end(); I != E; ++I) 434 assert(I->isCanonicalAsParam()); 435 #endif 436 437 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 438 439 // Lookup or create unique function info. 440 llvm::FoldingSetNodeID ID; 441 CGFunctionInfo::Profile(ID, info, required, resultType, argTypes); 442 443 void *insertPos = 0; 444 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 445 if (FI) 446 return *FI; 447 448 // Construct the function info. We co-allocate the ArgInfos. 449 FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required); 450 FunctionInfos.InsertNode(FI, insertPos); 451 452 bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted; 453 assert(inserted && "Recursively being processed?"); 454 455 // Compute ABI information. 456 getABIInfo().computeInfo(*FI); 457 458 // Loop over all of the computed argument and return value info. If any of 459 // them are direct or extend without a specified coerce type, specify the 460 // default now. 461 ABIArgInfo &retInfo = FI->getReturnInfo(); 462 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0) 463 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 464 465 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); 466 I != E; ++I) 467 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) 468 I->info.setCoerceToType(ConvertType(I->type)); 469 470 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 471 assert(erased && "Not in set?"); 472 473 return *FI; 474 } 475 476 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 477 const FunctionType::ExtInfo &info, 478 CanQualType resultType, 479 ArrayRef<CanQualType> argTypes, 480 RequiredArgs required) { 481 void *buffer = operator new(sizeof(CGFunctionInfo) + 482 sizeof(ArgInfo) * (argTypes.size() + 1)); 483 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 484 FI->CallingConvention = llvmCC; 485 FI->EffectiveCallingConvention = llvmCC; 486 FI->ASTCallingConvention = info.getCC(); 487 FI->NoReturn = info.getNoReturn(); 488 FI->ReturnsRetained = info.getProducesResult(); 489 FI->Required = required; 490 FI->HasRegParm = info.getHasRegParm(); 491 FI->RegParm = info.getRegParm(); 492 FI->NumArgs = argTypes.size(); 493 FI->getArgsBuffer()[0].type = resultType; 494 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 495 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 496 return FI; 497 } 498 499 /***/ 500 501 void CodeGenTypes::GetExpandedTypes(QualType type, 502 SmallVectorImpl<llvm::Type*> &expandedTypes) { 503 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { 504 uint64_t NumElts = AT->getSize().getZExtValue(); 505 for (uint64_t Elt = 0; Elt < NumElts; ++Elt) 506 GetExpandedTypes(AT->getElementType(), expandedTypes); 507 } else if (const RecordType *RT = type->getAs<RecordType>()) { 508 const RecordDecl *RD = RT->getDecl(); 509 assert(!RD->hasFlexibleArrayMember() && 510 "Cannot expand structure with flexible array."); 511 if (RD->isUnion()) { 512 // Unions can be here only in degenerative cases - all the fields are same 513 // after flattening. Thus we have to use the "largest" field. 514 const FieldDecl *LargestFD = 0; 515 CharUnits UnionSize = CharUnits::Zero(); 516 517 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 518 i != e; ++i) { 519 const FieldDecl *FD = *i; 520 assert(!FD->isBitField() && 521 "Cannot expand structure with bit-field members."); 522 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 523 if (UnionSize < FieldSize) { 524 UnionSize = FieldSize; 525 LargestFD = FD; 526 } 527 } 528 if (LargestFD) 529 GetExpandedTypes(LargestFD->getType(), expandedTypes); 530 } else { 531 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 532 i != e; ++i) { 533 assert(!i->isBitField() && 534 "Cannot expand structure with bit-field members."); 535 GetExpandedTypes(i->getType(), expandedTypes); 536 } 537 } 538 } else if (const ComplexType *CT = type->getAs<ComplexType>()) { 539 llvm::Type *EltTy = ConvertType(CT->getElementType()); 540 expandedTypes.push_back(EltTy); 541 expandedTypes.push_back(EltTy); 542 } else 543 expandedTypes.push_back(ConvertType(type)); 544 } 545 546 llvm::Function::arg_iterator 547 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 548 llvm::Function::arg_iterator AI) { 549 assert(LV.isSimple() && 550 "Unexpected non-simple lvalue during struct expansion."); 551 552 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 553 unsigned NumElts = AT->getSize().getZExtValue(); 554 QualType EltTy = AT->getElementType(); 555 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 556 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt); 557 LValue LV = MakeAddrLValue(EltAddr, EltTy); 558 AI = ExpandTypeFromArgs(EltTy, LV, AI); 559 } 560 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 561 RecordDecl *RD = RT->getDecl(); 562 if (RD->isUnion()) { 563 // Unions can be here only in degenerative cases - all the fields are same 564 // after flattening. Thus we have to use the "largest" field. 565 const FieldDecl *LargestFD = 0; 566 CharUnits UnionSize = CharUnits::Zero(); 567 568 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 569 i != e; ++i) { 570 const FieldDecl *FD = *i; 571 assert(!FD->isBitField() && 572 "Cannot expand structure with bit-field members."); 573 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 574 if (UnionSize < FieldSize) { 575 UnionSize = FieldSize; 576 LargestFD = FD; 577 } 578 } 579 if (LargestFD) { 580 // FIXME: What are the right qualifiers here? 581 LValue SubLV = EmitLValueForField(LV, LargestFD); 582 AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI); 583 } 584 } else { 585 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 586 i != e; ++i) { 587 FieldDecl *FD = *i; 588 QualType FT = FD->getType(); 589 590 // FIXME: What are the right qualifiers here? 591 LValue SubLV = EmitLValueForField(LV, FD); 592 AI = ExpandTypeFromArgs(FT, SubLV, AI); 593 } 594 } 595 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 596 QualType EltTy = CT->getElementType(); 597 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real"); 598 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); 599 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag"); 600 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); 601 } else { 602 EmitStoreThroughLValue(RValue::get(AI), LV); 603 ++AI; 604 } 605 606 return AI; 607 } 608 609 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 610 /// accessing some number of bytes out of it, try to gep into the struct to get 611 /// at its inner goodness. Dive as deep as possible without entering an element 612 /// with an in-memory size smaller than DstSize. 613 static llvm::Value * 614 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 615 llvm::StructType *SrcSTy, 616 uint64_t DstSize, CodeGenFunction &CGF) { 617 // We can't dive into a zero-element struct. 618 if (SrcSTy->getNumElements() == 0) return SrcPtr; 619 620 llvm::Type *FirstElt = SrcSTy->getElementType(0); 621 622 // If the first elt is at least as large as what we're looking for, or if the 623 // first element is the same size as the whole struct, we can enter it. 624 uint64_t FirstEltSize = 625 CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt); 626 if (FirstEltSize < DstSize && 627 FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy)) 628 return SrcPtr; 629 630 // GEP into the first element. 631 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 632 633 // If the first element is a struct, recurse. 634 llvm::Type *SrcTy = 635 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 636 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 637 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 638 639 return SrcPtr; 640 } 641 642 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 643 /// are either integers or pointers. This does a truncation of the value if it 644 /// is too large or a zero extension if it is too small. 645 /// 646 /// This behaves as if the value were coerced through memory, so on big-endian 647 /// targets the high bits are preserved in a truncation, while little-endian 648 /// targets preserve the low bits. 649 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 650 llvm::Type *Ty, 651 CodeGenFunction &CGF) { 652 if (Val->getType() == Ty) 653 return Val; 654 655 if (isa<llvm::PointerType>(Val->getType())) { 656 // If this is Pointer->Pointer avoid conversion to and from int. 657 if (isa<llvm::PointerType>(Ty)) 658 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 659 660 // Convert the pointer to an integer so we can play with its width. 661 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 662 } 663 664 llvm::Type *DestIntTy = Ty; 665 if (isa<llvm::PointerType>(DestIntTy)) 666 DestIntTy = CGF.IntPtrTy; 667 668 if (Val->getType() != DestIntTy) { 669 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 670 if (DL.isBigEndian()) { 671 // Preserve the high bits on big-endian targets. 672 // That is what memory coercion does. 673 uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType()); 674 uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy); 675 if (SrcSize > DstSize) { 676 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 677 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 678 } else { 679 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 680 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 681 } 682 } else { 683 // Little-endian targets preserve the low bits. No shifts required. 684 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 685 } 686 } 687 688 if (isa<llvm::PointerType>(Ty)) 689 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 690 return Val; 691 } 692 693 694 695 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 696 /// a pointer to an object of type \arg Ty. 697 /// 698 /// This safely handles the case when the src type is smaller than the 699 /// destination type; in this situation the values of bits which not 700 /// present in the src are undefined. 701 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 702 llvm::Type *Ty, 703 CodeGenFunction &CGF) { 704 llvm::Type *SrcTy = 705 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 706 707 // If SrcTy and Ty are the same, just do a load. 708 if (SrcTy == Ty) 709 return CGF.Builder.CreateLoad(SrcPtr); 710 711 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 712 713 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 714 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 715 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 716 } 717 718 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 719 720 // If the source and destination are integer or pointer types, just do an 721 // extension or truncation to the desired type. 722 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 723 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 724 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 725 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 726 } 727 728 // If load is legal, just bitcast the src pointer. 729 if (SrcSize >= DstSize) { 730 // Generally SrcSize is never greater than DstSize, since this means we are 731 // losing bits. However, this can happen in cases where the structure has 732 // additional padding, for example due to a user specified alignment. 733 // 734 // FIXME: Assert that we aren't truncating non-padding bits when have access 735 // to that information. 736 llvm::Value *Casted = 737 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 738 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 739 // FIXME: Use better alignment / avoid requiring aligned load. 740 Load->setAlignment(1); 741 return Load; 742 } 743 744 // Otherwise do coercion through memory. This is stupid, but 745 // simple. 746 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 747 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 748 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 749 llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy); 750 // FIXME: Use better alignment. 751 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 752 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 753 1, false); 754 return CGF.Builder.CreateLoad(Tmp); 755 } 756 757 // Function to store a first-class aggregate into memory. We prefer to 758 // store the elements rather than the aggregate to be more friendly to 759 // fast-isel. 760 // FIXME: Do we need to recurse here? 761 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 762 llvm::Value *DestPtr, bool DestIsVolatile, 763 bool LowAlignment) { 764 // Prefer scalar stores to first-class aggregate stores. 765 if (llvm::StructType *STy = 766 dyn_cast<llvm::StructType>(Val->getType())) { 767 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 768 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 769 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 770 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 771 DestIsVolatile); 772 if (LowAlignment) 773 SI->setAlignment(1); 774 } 775 } else { 776 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 777 if (LowAlignment) 778 SI->setAlignment(1); 779 } 780 } 781 782 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 783 /// where the source and destination may have different types. 784 /// 785 /// This safely handles the case when the src type is larger than the 786 /// destination type; the upper bits of the src will be lost. 787 static void CreateCoercedStore(llvm::Value *Src, 788 llvm::Value *DstPtr, 789 bool DstIsVolatile, 790 CodeGenFunction &CGF) { 791 llvm::Type *SrcTy = Src->getType(); 792 llvm::Type *DstTy = 793 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 794 if (SrcTy == DstTy) { 795 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 796 return; 797 } 798 799 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 800 801 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 802 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 803 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 804 } 805 806 // If the source and destination are integer or pointer types, just do an 807 // extension or truncation to the desired type. 808 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 809 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 810 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 811 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 812 return; 813 } 814 815 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 816 817 // If store is legal, just bitcast the src pointer. 818 if (SrcSize <= DstSize) { 819 llvm::Value *Casted = 820 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 821 // FIXME: Use better alignment / avoid requiring aligned store. 822 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 823 } else { 824 // Otherwise do coercion through memory. This is stupid, but 825 // simple. 826 827 // Generally SrcSize is never greater than DstSize, since this means we are 828 // losing bits. However, this can happen in cases where the structure has 829 // additional padding, for example due to a user specified alignment. 830 // 831 // FIXME: Assert that we aren't truncating non-padding bits when have access 832 // to that information. 833 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 834 CGF.Builder.CreateStore(Src, Tmp); 835 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 836 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 837 llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy); 838 // FIXME: Use better alignment. 839 CGF.Builder.CreateMemCpy(DstCasted, Casted, 840 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 841 1, false); 842 } 843 } 844 845 /***/ 846 847 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 848 return FI.getReturnInfo().isIndirect(); 849 } 850 851 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 852 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 853 switch (BT->getKind()) { 854 default: 855 return false; 856 case BuiltinType::Float: 857 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 858 case BuiltinType::Double: 859 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 860 case BuiltinType::LongDouble: 861 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 862 } 863 } 864 865 return false; 866 } 867 868 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 869 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 870 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 871 if (BT->getKind() == BuiltinType::LongDouble) 872 return getTarget().useObjCFP2RetForComplexLongDouble(); 873 } 874 } 875 876 return false; 877 } 878 879 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 880 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 881 return GetFunctionType(FI); 882 } 883 884 llvm::FunctionType * 885 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 886 887 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; 888 assert(Inserted && "Recursively being processed?"); 889 890 SmallVector<llvm::Type*, 8> argTypes; 891 llvm::Type *resultType = 0; 892 893 const ABIArgInfo &retAI = FI.getReturnInfo(); 894 switch (retAI.getKind()) { 895 case ABIArgInfo::Expand: 896 llvm_unreachable("Invalid ABI kind for return argument"); 897 898 case ABIArgInfo::Extend: 899 case ABIArgInfo::Direct: 900 resultType = retAI.getCoerceToType(); 901 break; 902 903 case ABIArgInfo::Indirect: { 904 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 905 resultType = llvm::Type::getVoidTy(getLLVMContext()); 906 907 QualType ret = FI.getReturnType(); 908 llvm::Type *ty = ConvertType(ret); 909 unsigned addressSpace = Context.getTargetAddressSpace(ret); 910 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 911 break; 912 } 913 914 case ABIArgInfo::Ignore: 915 resultType = llvm::Type::getVoidTy(getLLVMContext()); 916 break; 917 } 918 919 // Add in all of the required arguments. 920 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie; 921 if (FI.isVariadic()) { 922 ie = it + FI.getRequiredArgs().getNumRequiredArgs(); 923 } else { 924 ie = FI.arg_end(); 925 } 926 for (; it != ie; ++it) { 927 const ABIArgInfo &argAI = it->info; 928 929 // Insert a padding type to ensure proper alignment. 930 if (llvm::Type *PaddingType = argAI.getPaddingType()) 931 argTypes.push_back(PaddingType); 932 933 switch (argAI.getKind()) { 934 case ABIArgInfo::Ignore: 935 break; 936 937 case ABIArgInfo::Indirect: { 938 // indirect arguments are always on the stack, which is addr space #0. 939 llvm::Type *LTy = ConvertTypeForMem(it->type); 940 argTypes.push_back(LTy->getPointerTo()); 941 break; 942 } 943 944 case ABIArgInfo::Extend: 945 case ABIArgInfo::Direct: { 946 // If the coerce-to type is a first class aggregate, flatten it. Either 947 // way is semantically identical, but fast-isel and the optimizer 948 // generally likes scalar values better than FCAs. 949 llvm::Type *argType = argAI.getCoerceToType(); 950 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { 951 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 952 argTypes.push_back(st->getElementType(i)); 953 } else { 954 argTypes.push_back(argType); 955 } 956 break; 957 } 958 959 case ABIArgInfo::Expand: 960 GetExpandedTypes(it->type, argTypes); 961 break; 962 } 963 } 964 965 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 966 assert(Erased && "Not in set?"); 967 968 return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic()); 969 } 970 971 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 972 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 973 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 974 975 if (!isFuncTypeConvertible(FPT)) 976 return llvm::StructType::get(getLLVMContext()); 977 978 const CGFunctionInfo *Info; 979 if (isa<CXXDestructorDecl>(MD)) 980 Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 981 else 982 Info = &arrangeCXXMethodDeclaration(MD); 983 return GetFunctionType(*Info); 984 } 985 986 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 987 const Decl *TargetDecl, 988 AttributeListType &PAL, 989 unsigned &CallingConv, 990 bool AttrOnCallSite) { 991 llvm::AttrBuilder FuncAttrs; 992 llvm::AttrBuilder RetAttrs; 993 994 CallingConv = FI.getEffectiveCallingConvention(); 995 996 if (FI.isNoReturn()) 997 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 998 999 // FIXME: handle sseregparm someday... 1000 if (TargetDecl) { 1001 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1002 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1003 if (TargetDecl->hasAttr<NoThrowAttr>()) 1004 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1005 if (TargetDecl->hasAttr<NoReturnAttr>()) 1006 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1007 1008 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1009 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 1010 if (FPT && FPT->isNothrow(getContext())) 1011 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1012 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1013 // These attributes are not inherited by overloads. 1014 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1015 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1016 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1017 } 1018 1019 // 'const' and 'pure' attribute functions are also nounwind. 1020 if (TargetDecl->hasAttr<ConstAttr>()) { 1021 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1022 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1023 } else if (TargetDecl->hasAttr<PureAttr>()) { 1024 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1025 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1026 } 1027 if (TargetDecl->hasAttr<MallocAttr>()) 1028 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1029 } 1030 1031 if (CodeGenOpts.OptimizeSize) 1032 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1033 if (CodeGenOpts.OptimizeSize == 2) 1034 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1035 if (CodeGenOpts.DisableRedZone) 1036 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1037 if (CodeGenOpts.NoImplicitFloat) 1038 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1039 1040 if (AttrOnCallSite) { 1041 // Attributes that should go on the call site only. 1042 if (!CodeGenOpts.SimplifyLibCalls) 1043 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1044 } else { 1045 // Attributes that should go on the function, but not the call site. 1046 if (!CodeGenOpts.DisableFPElim) { 1047 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1048 } else if (CodeGenOpts.OmitLeafFramePointer) { 1049 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1050 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1051 } else { 1052 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1053 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1054 } 1055 1056 FuncAttrs.addAttribute("less-precise-fpmad", 1057 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1058 FuncAttrs.addAttribute("no-infs-fp-math", 1059 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1060 FuncAttrs.addAttribute("no-nans-fp-math", 1061 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1062 FuncAttrs.addAttribute("unsafe-fp-math", 1063 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1064 FuncAttrs.addAttribute("use-soft-float", 1065 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1066 FuncAttrs.addAttribute("stack-protector-buffer-size", 1067 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1068 1069 if (!CodeGenOpts.StackRealignment) 1070 FuncAttrs.addAttribute("no-realign-stack"); 1071 } 1072 1073 QualType RetTy = FI.getReturnType(); 1074 unsigned Index = 1; 1075 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1076 switch (RetAI.getKind()) { 1077 case ABIArgInfo::Extend: 1078 if (RetTy->hasSignedIntegerRepresentation()) 1079 RetAttrs.addAttribute(llvm::Attribute::SExt); 1080 else if (RetTy->hasUnsignedIntegerRepresentation()) 1081 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1082 // FALL THROUGH 1083 case ABIArgInfo::Direct: 1084 if (RetAI.getInReg()) 1085 RetAttrs.addAttribute(llvm::Attribute::InReg); 1086 break; 1087 case ABIArgInfo::Ignore: 1088 break; 1089 1090 case ABIArgInfo::Indirect: { 1091 llvm::AttrBuilder SRETAttrs; 1092 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1093 if (RetAI.getInReg()) 1094 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1095 PAL.push_back(llvm:: 1096 AttributeSet::get(getLLVMContext(), Index, SRETAttrs)); 1097 1098 ++Index; 1099 // sret disables readnone and readonly 1100 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1101 .removeAttribute(llvm::Attribute::ReadNone); 1102 break; 1103 } 1104 1105 case ABIArgInfo::Expand: 1106 llvm_unreachable("Invalid ABI kind for return argument"); 1107 } 1108 1109 if (RetAttrs.hasAttributes()) 1110 PAL.push_back(llvm:: 1111 AttributeSet::get(getLLVMContext(), 1112 llvm::AttributeSet::ReturnIndex, 1113 RetAttrs)); 1114 1115 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1116 ie = FI.arg_end(); it != ie; ++it) { 1117 QualType ParamType = it->type; 1118 const ABIArgInfo &AI = it->info; 1119 llvm::AttrBuilder Attrs; 1120 1121 if (AI.getPaddingType()) { 1122 if (AI.getPaddingInReg()) 1123 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, 1124 llvm::Attribute::InReg)); 1125 // Increment Index if there is padding. 1126 ++Index; 1127 } 1128 1129 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1130 // have the corresponding parameter variable. It doesn't make 1131 // sense to do it here because parameters are so messed up. 1132 switch (AI.getKind()) { 1133 case ABIArgInfo::Extend: 1134 if (ParamType->isSignedIntegerOrEnumerationType()) 1135 Attrs.addAttribute(llvm::Attribute::SExt); 1136 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 1137 Attrs.addAttribute(llvm::Attribute::ZExt); 1138 // FALL THROUGH 1139 case ABIArgInfo::Direct: 1140 if (AI.getInReg()) 1141 Attrs.addAttribute(llvm::Attribute::InReg); 1142 1143 // FIXME: handle sseregparm someday... 1144 1145 if (llvm::StructType *STy = 1146 dyn_cast<llvm::StructType>(AI.getCoerceToType())) { 1147 unsigned Extra = STy->getNumElements()-1; // 1 will be added below. 1148 if (Attrs.hasAttributes()) 1149 for (unsigned I = 0; I < Extra; ++I) 1150 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I, 1151 Attrs)); 1152 Index += Extra; 1153 } 1154 break; 1155 1156 case ABIArgInfo::Indirect: 1157 if (AI.getInReg()) 1158 Attrs.addAttribute(llvm::Attribute::InReg); 1159 1160 if (AI.getIndirectByVal()) 1161 Attrs.addAttribute(llvm::Attribute::ByVal); 1162 1163 Attrs.addAlignmentAttr(AI.getIndirectAlign()); 1164 1165 // byval disables readnone and readonly. 1166 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1167 .removeAttribute(llvm::Attribute::ReadNone); 1168 break; 1169 1170 case ABIArgInfo::Ignore: 1171 // Skip increment, no matching LLVM parameter. 1172 continue; 1173 1174 case ABIArgInfo::Expand: { 1175 SmallVector<llvm::Type*, 8> types; 1176 // FIXME: This is rather inefficient. Do we ever actually need to do 1177 // anything here? The result should be just reconstructed on the other 1178 // side, so extension should be a non-issue. 1179 getTypes().GetExpandedTypes(ParamType, types); 1180 Index += types.size(); 1181 continue; 1182 } 1183 } 1184 1185 if (Attrs.hasAttributes()) 1186 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs)); 1187 ++Index; 1188 } 1189 if (FuncAttrs.hasAttributes()) 1190 PAL.push_back(llvm:: 1191 AttributeSet::get(getLLVMContext(), 1192 llvm::AttributeSet::FunctionIndex, 1193 FuncAttrs)); 1194 } 1195 1196 /// An argument came in as a promoted argument; demote it back to its 1197 /// declared type. 1198 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1199 const VarDecl *var, 1200 llvm::Value *value) { 1201 llvm::Type *varType = CGF.ConvertType(var->getType()); 1202 1203 // This can happen with promotions that actually don't change the 1204 // underlying type, like the enum promotions. 1205 if (value->getType() == varType) return value; 1206 1207 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1208 && "unexpected promotion type"); 1209 1210 if (isa<llvm::IntegerType>(varType)) 1211 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1212 1213 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1214 } 1215 1216 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1217 llvm::Function *Fn, 1218 const FunctionArgList &Args) { 1219 // If this is an implicit-return-zero function, go ahead and 1220 // initialize the return value. TODO: it might be nice to have 1221 // a more general mechanism for this that didn't require synthesized 1222 // return statements. 1223 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 1224 if (FD->hasImplicitReturnZero()) { 1225 QualType RetTy = FD->getResultType().getUnqualifiedType(); 1226 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1227 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1228 Builder.CreateStore(Zero, ReturnValue); 1229 } 1230 } 1231 1232 // FIXME: We no longer need the types from FunctionArgList; lift up and 1233 // simplify. 1234 1235 // Emit allocs for param decls. Give the LLVM Argument nodes names. 1236 llvm::Function::arg_iterator AI = Fn->arg_begin(); 1237 1238 // Name the struct return argument. 1239 if (CGM.ReturnTypeUsesSRet(FI)) { 1240 AI->setName("agg.result"); 1241 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1242 AI->getArgNo() + 1, 1243 llvm::Attribute::NoAlias)); 1244 ++AI; 1245 } 1246 1247 assert(FI.arg_size() == Args.size() && 1248 "Mismatch between function signature & arguments."); 1249 unsigned ArgNo = 1; 1250 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1251 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1252 i != e; ++i, ++info_it, ++ArgNo) { 1253 const VarDecl *Arg = *i; 1254 QualType Ty = info_it->type; 1255 const ABIArgInfo &ArgI = info_it->info; 1256 1257 bool isPromoted = 1258 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1259 1260 // Skip the dummy padding argument. 1261 if (ArgI.getPaddingType()) 1262 ++AI; 1263 1264 switch (ArgI.getKind()) { 1265 case ABIArgInfo::Indirect: { 1266 llvm::Value *V = AI; 1267 1268 if (!hasScalarEvaluationKind(Ty)) { 1269 // Aggregates and complex variables are accessed by reference. All we 1270 // need to do is realign the value, if requested 1271 if (ArgI.getIndirectRealign()) { 1272 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 1273 1274 // Copy from the incoming argument pointer to the temporary with the 1275 // appropriate alignment. 1276 // 1277 // FIXME: We should have a common utility for generating an aggregate 1278 // copy. 1279 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 1280 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1281 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 1282 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 1283 Builder.CreateMemCpy(Dst, 1284 Src, 1285 llvm::ConstantInt::get(IntPtrTy, 1286 Size.getQuantity()), 1287 ArgI.getIndirectAlign(), 1288 false); 1289 V = AlignedTemp; 1290 } 1291 } else { 1292 // Load scalar value from indirect argument. 1293 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1294 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); 1295 1296 if (isPromoted) 1297 V = emitArgumentDemotion(*this, Arg, V); 1298 } 1299 EmitParmDecl(*Arg, V, ArgNo); 1300 break; 1301 } 1302 1303 case ABIArgInfo::Extend: 1304 case ABIArgInfo::Direct: { 1305 1306 // If we have the trivial case, handle it with no muss and fuss. 1307 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1308 ArgI.getCoerceToType() == ConvertType(Ty) && 1309 ArgI.getDirectOffset() == 0) { 1310 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1311 llvm::Value *V = AI; 1312 1313 if (Arg->getType().isRestrictQualified()) 1314 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1315 AI->getArgNo() + 1, 1316 llvm::Attribute::NoAlias)); 1317 1318 // Ensure the argument is the correct type. 1319 if (V->getType() != ArgI.getCoerceToType()) 1320 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1321 1322 if (isPromoted) 1323 V = emitArgumentDemotion(*this, Arg, V); 1324 1325 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 1326 if (MD->isVirtual() && Arg == CXXABIThisDecl) 1327 V = CGM.getCXXABI().adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V); 1328 } 1329 1330 // Because of merging of function types from multiple decls it is 1331 // possible for the type of an argument to not match the corresponding 1332 // type in the function type. Since we are codegening the callee 1333 // in here, add a cast to the argument type. 1334 llvm::Type *LTy = ConvertType(Arg->getType()); 1335 if (V->getType() != LTy) 1336 V = Builder.CreateBitCast(V, LTy); 1337 1338 EmitParmDecl(*Arg, V, ArgNo); 1339 break; 1340 } 1341 1342 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); 1343 1344 // The alignment we need to use is the max of the requested alignment for 1345 // the argument plus the alignment required by our access code below. 1346 unsigned AlignmentToUse = 1347 CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType()); 1348 AlignmentToUse = std::max(AlignmentToUse, 1349 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1350 1351 Alloca->setAlignment(AlignmentToUse); 1352 llvm::Value *V = Alloca; 1353 llvm::Value *Ptr = V; // Pointer to store into. 1354 1355 // If the value is offset in memory, apply the offset now. 1356 if (unsigned Offs = ArgI.getDirectOffset()) { 1357 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1358 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1359 Ptr = Builder.CreateBitCast(Ptr, 1360 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1361 } 1362 1363 // If the coerce-to type is a first class aggregate, we flatten it and 1364 // pass the elements. Either way is semantically identical, but fast-isel 1365 // and the optimizer generally likes scalar values better than FCAs. 1366 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 1367 if (STy && STy->getNumElements() > 1) { 1368 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 1369 llvm::Type *DstTy = 1370 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 1371 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 1372 1373 if (SrcSize <= DstSize) { 1374 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1375 1376 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1377 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1378 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1379 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1380 Builder.CreateStore(AI++, EltPtr); 1381 } 1382 } else { 1383 llvm::AllocaInst *TempAlloca = 1384 CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); 1385 TempAlloca->setAlignment(AlignmentToUse); 1386 llvm::Value *TempV = TempAlloca; 1387 1388 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1389 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1390 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1391 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i); 1392 Builder.CreateStore(AI++, EltPtr); 1393 } 1394 1395 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); 1396 } 1397 } else { 1398 // Simple case, just do a coerced store of the argument into the alloca. 1399 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1400 AI->setName(Arg->getName() + ".coerce"); 1401 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 1402 } 1403 1404 1405 // Match to what EmitParmDecl is expecting for this type. 1406 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 1407 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); 1408 if (isPromoted) 1409 V = emitArgumentDemotion(*this, Arg, V); 1410 } 1411 EmitParmDecl(*Arg, V, ArgNo); 1412 continue; // Skip ++AI increment, already done. 1413 } 1414 1415 case ABIArgInfo::Expand: { 1416 // If this structure was expanded into multiple arguments then 1417 // we need to create a temporary and reconstruct it from the 1418 // arguments. 1419 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1420 CharUnits Align = getContext().getDeclAlign(Arg); 1421 Alloca->setAlignment(Align.getQuantity()); 1422 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1423 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); 1424 EmitParmDecl(*Arg, Alloca, ArgNo); 1425 1426 // Name the arguments used in expansion and increment AI. 1427 unsigned Index = 0; 1428 for (; AI != End; ++AI, ++Index) 1429 AI->setName(Arg->getName() + "." + Twine(Index)); 1430 continue; 1431 } 1432 1433 case ABIArgInfo::Ignore: 1434 // Initialize the local variable appropriately. 1435 if (!hasScalarEvaluationKind(Ty)) 1436 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); 1437 else 1438 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), 1439 ArgNo); 1440 1441 // Skip increment, no matching LLVM parameter. 1442 continue; 1443 } 1444 1445 ++AI; 1446 } 1447 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1448 } 1449 1450 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 1451 while (insn->use_empty()) { 1452 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 1453 if (!bitcast) return; 1454 1455 // This is "safe" because we would have used a ConstantExpr otherwise. 1456 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 1457 bitcast->eraseFromParent(); 1458 } 1459 } 1460 1461 /// Try to emit a fused autorelease of a return result. 1462 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1463 llvm::Value *result) { 1464 // We must be immediately followed the cast. 1465 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1466 if (BB->empty()) return 0; 1467 if (&BB->back() != result) return 0; 1468 1469 llvm::Type *resultType = result->getType(); 1470 1471 // result is in a BasicBlock and is therefore an Instruction. 1472 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1473 1474 SmallVector<llvm::Instruction*,4> insnsToKill; 1475 1476 // Look for: 1477 // %generator = bitcast %type1* %generator2 to %type2* 1478 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1479 // We would have emitted this as a constant if the operand weren't 1480 // an Instruction. 1481 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1482 1483 // Require the generator to be immediately followed by the cast. 1484 if (generator->getNextNode() != bitcast) 1485 return 0; 1486 1487 insnsToKill.push_back(bitcast); 1488 } 1489 1490 // Look for: 1491 // %generator = call i8* @objc_retain(i8* %originalResult) 1492 // or 1493 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1494 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1495 if (!call) return 0; 1496 1497 bool doRetainAutorelease; 1498 1499 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1500 doRetainAutorelease = true; 1501 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1502 .objc_retainAutoreleasedReturnValue) { 1503 doRetainAutorelease = false; 1504 1505 // If we emitted an assembly marker for this call (and the 1506 // ARCEntrypoints field should have been set if so), go looking 1507 // for that call. If we can't find it, we can't do this 1508 // optimization. But it should always be the immediately previous 1509 // instruction, unless we needed bitcasts around the call. 1510 if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) { 1511 llvm::Instruction *prev = call->getPrevNode(); 1512 assert(prev); 1513 if (isa<llvm::BitCastInst>(prev)) { 1514 prev = prev->getPrevNode(); 1515 assert(prev); 1516 } 1517 assert(isa<llvm::CallInst>(prev)); 1518 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 1519 CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker); 1520 insnsToKill.push_back(prev); 1521 } 1522 } else { 1523 return 0; 1524 } 1525 1526 result = call->getArgOperand(0); 1527 insnsToKill.push_back(call); 1528 1529 // Keep killing bitcasts, for sanity. Note that we no longer care 1530 // about precise ordering as long as there's exactly one use. 1531 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1532 if (!bitcast->hasOneUse()) break; 1533 insnsToKill.push_back(bitcast); 1534 result = bitcast->getOperand(0); 1535 } 1536 1537 // Delete all the unnecessary instructions, from latest to earliest. 1538 for (SmallVectorImpl<llvm::Instruction*>::iterator 1539 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1540 (*i)->eraseFromParent(); 1541 1542 // Do the fused retain/autorelease if we were asked to. 1543 if (doRetainAutorelease) 1544 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1545 1546 // Cast back to the result type. 1547 return CGF.Builder.CreateBitCast(result, resultType); 1548 } 1549 1550 /// If this is a +1 of the value of an immutable 'self', remove it. 1551 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 1552 llvm::Value *result) { 1553 // This is only applicable to a method with an immutable 'self'. 1554 const ObjCMethodDecl *method = 1555 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 1556 if (!method) return 0; 1557 const VarDecl *self = method->getSelfDecl(); 1558 if (!self->getType().isConstQualified()) return 0; 1559 1560 // Look for a retain call. 1561 llvm::CallInst *retainCall = 1562 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 1563 if (!retainCall || 1564 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 1565 return 0; 1566 1567 // Look for an ordinary load of 'self'. 1568 llvm::Value *retainedValue = retainCall->getArgOperand(0); 1569 llvm::LoadInst *load = 1570 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 1571 if (!load || load->isAtomic() || load->isVolatile() || 1572 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 1573 return 0; 1574 1575 // Okay! Burn it all down. This relies for correctness on the 1576 // assumption that the retain is emitted as part of the return and 1577 // that thereafter everything is used "linearly". 1578 llvm::Type *resultType = result->getType(); 1579 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 1580 assert(retainCall->use_empty()); 1581 retainCall->eraseFromParent(); 1582 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 1583 1584 return CGF.Builder.CreateBitCast(load, resultType); 1585 } 1586 1587 /// Emit an ARC autorelease of the result of a function. 1588 /// 1589 /// \return the value to actually return from the function 1590 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1591 llvm::Value *result) { 1592 // If we're returning 'self', kill the initial retain. This is a 1593 // heuristic attempt to "encourage correctness" in the really unfortunate 1594 // case where we have a return of self during a dealloc and we desperately 1595 // need to avoid the possible autorelease. 1596 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 1597 return self; 1598 1599 // At -O0, try to emit a fused retain/autorelease. 1600 if (CGF.shouldUseFusedARCCalls()) 1601 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1602 return fused; 1603 1604 return CGF.EmitARCAutoreleaseReturnValue(result); 1605 } 1606 1607 /// Heuristically search for a dominating store to the return-value slot. 1608 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 1609 // If there are multiple uses of the return-value slot, just check 1610 // for something immediately preceding the IP. Sometimes this can 1611 // happen with how we generate implicit-returns; it can also happen 1612 // with noreturn cleanups. 1613 if (!CGF.ReturnValue->hasOneUse()) { 1614 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1615 if (IP->empty()) return 0; 1616 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); 1617 if (!store) return 0; 1618 if (store->getPointerOperand() != CGF.ReturnValue) return 0; 1619 assert(!store->isAtomic() && !store->isVolatile()); // see below 1620 return store; 1621 } 1622 1623 llvm::StoreInst *store = 1624 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back()); 1625 if (!store) return 0; 1626 1627 // These aren't actually possible for non-coerced returns, and we 1628 // only care about non-coerced returns on this code path. 1629 assert(!store->isAtomic() && !store->isVolatile()); 1630 1631 // Now do a first-and-dirty dominance check: just walk up the 1632 // single-predecessors chain from the current insertion point. 1633 llvm::BasicBlock *StoreBB = store->getParent(); 1634 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1635 while (IP != StoreBB) { 1636 if (!(IP = IP->getSinglePredecessor())) 1637 return 0; 1638 } 1639 1640 // Okay, the store's basic block dominates the insertion point; we 1641 // can do our thing. 1642 return store; 1643 } 1644 1645 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 1646 bool EmitRetDbgLoc) { 1647 // Functions with no result always return void. 1648 if (ReturnValue == 0) { 1649 Builder.CreateRetVoid(); 1650 return; 1651 } 1652 1653 llvm::DebugLoc RetDbgLoc; 1654 llvm::Value *RV = 0; 1655 QualType RetTy = FI.getReturnType(); 1656 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1657 1658 switch (RetAI.getKind()) { 1659 case ABIArgInfo::Indirect: { 1660 switch (getEvaluationKind(RetTy)) { 1661 case TEK_Complex: { 1662 ComplexPairTy RT = 1663 EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy)); 1664 EmitStoreOfComplex(RT, 1665 MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy), 1666 /*isInit*/ true); 1667 break; 1668 } 1669 case TEK_Aggregate: 1670 // Do nothing; aggregrates get evaluated directly into the destination. 1671 break; 1672 case TEK_Scalar: 1673 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 1674 MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy), 1675 /*isInit*/ true); 1676 break; 1677 } 1678 break; 1679 } 1680 1681 case ABIArgInfo::Extend: 1682 case ABIArgInfo::Direct: 1683 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1684 RetAI.getDirectOffset() == 0) { 1685 // The internal return value temp always will have pointer-to-return-type 1686 // type, just do a load. 1687 1688 // If there is a dominating store to ReturnValue, we can elide 1689 // the load, zap the store, and usually zap the alloca. 1690 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { 1691 // Reuse the debug location from the store unless there is 1692 // cleanup code to be emitted between the store and return 1693 // instruction. 1694 if (EmitRetDbgLoc && !AutoreleaseResult) 1695 RetDbgLoc = SI->getDebugLoc(); 1696 // Get the stored value and nuke the now-dead store. 1697 RV = SI->getValueOperand(); 1698 SI->eraseFromParent(); 1699 1700 // If that was the only use of the return value, nuke it as well now. 1701 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1702 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1703 ReturnValue = 0; 1704 } 1705 1706 // Otherwise, we have to do a simple load. 1707 } else { 1708 RV = Builder.CreateLoad(ReturnValue); 1709 } 1710 } else { 1711 llvm::Value *V = ReturnValue; 1712 // If the value is offset in memory, apply the offset now. 1713 if (unsigned Offs = RetAI.getDirectOffset()) { 1714 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1715 V = Builder.CreateConstGEP1_32(V, Offs); 1716 V = Builder.CreateBitCast(V, 1717 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1718 } 1719 1720 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1721 } 1722 1723 // In ARC, end functions that return a retainable type with a call 1724 // to objc_autoreleaseReturnValue. 1725 if (AutoreleaseResult) { 1726 assert(getLangOpts().ObjCAutoRefCount && 1727 !FI.isReturnsRetained() && 1728 RetTy->isObjCRetainableType()); 1729 RV = emitAutoreleaseOfResult(*this, RV); 1730 } 1731 1732 break; 1733 1734 case ABIArgInfo::Ignore: 1735 break; 1736 1737 case ABIArgInfo::Expand: 1738 llvm_unreachable("Invalid ABI kind for return argument"); 1739 } 1740 1741 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1742 if (!RetDbgLoc.isUnknown()) 1743 Ret->setDebugLoc(RetDbgLoc); 1744 } 1745 1746 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1747 const VarDecl *param) { 1748 // StartFunction converted the ABI-lowered parameter(s) into a 1749 // local alloca. We need to turn that into an r-value suitable 1750 // for EmitCall. 1751 llvm::Value *local = GetAddrOfLocalVar(param); 1752 1753 QualType type = param->getType(); 1754 1755 // For the most part, we just need to load the alloca, except: 1756 // 1) aggregate r-values are actually pointers to temporaries, and 1757 // 2) references to non-scalars are pointers directly to the aggregate. 1758 // I don't know why references to scalars are different here. 1759 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1760 if (!hasScalarEvaluationKind(ref->getPointeeType())) 1761 return args.add(RValue::getAggregate(local), type); 1762 1763 // Locals which are references to scalars are represented 1764 // with allocas holding the pointer. 1765 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1766 } 1767 1768 args.add(convertTempToRValue(local, type), type); 1769 } 1770 1771 static bool isProvablyNull(llvm::Value *addr) { 1772 return isa<llvm::ConstantPointerNull>(addr); 1773 } 1774 1775 static bool isProvablyNonNull(llvm::Value *addr) { 1776 return isa<llvm::AllocaInst>(addr); 1777 } 1778 1779 /// Emit the actual writing-back of a writeback. 1780 static void emitWriteback(CodeGenFunction &CGF, 1781 const CallArgList::Writeback &writeback) { 1782 const LValue &srcLV = writeback.Source; 1783 llvm::Value *srcAddr = srcLV.getAddress(); 1784 assert(!isProvablyNull(srcAddr) && 1785 "shouldn't have writeback for provably null argument"); 1786 1787 llvm::BasicBlock *contBB = 0; 1788 1789 // If the argument wasn't provably non-null, we need to null check 1790 // before doing the store. 1791 bool provablyNonNull = isProvablyNonNull(srcAddr); 1792 if (!provablyNonNull) { 1793 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 1794 contBB = CGF.createBasicBlock("icr.done"); 1795 1796 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1797 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 1798 CGF.EmitBlock(writebackBB); 1799 } 1800 1801 // Load the value to writeback. 1802 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 1803 1804 // Cast it back, in case we're writing an id to a Foo* or something. 1805 value = CGF.Builder.CreateBitCast(value, 1806 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 1807 "icr.writeback-cast"); 1808 1809 // Perform the writeback. 1810 1811 // If we have a "to use" value, it's something we need to emit a use 1812 // of. This has to be carefully threaded in: if it's done after the 1813 // release it's potentially undefined behavior (and the optimizer 1814 // will ignore it), and if it happens before the retain then the 1815 // optimizer could move the release there. 1816 if (writeback.ToUse) { 1817 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 1818 1819 // Retain the new value. No need to block-copy here: the block's 1820 // being passed up the stack. 1821 value = CGF.EmitARCRetainNonBlock(value); 1822 1823 // Emit the intrinsic use here. 1824 CGF.EmitARCIntrinsicUse(writeback.ToUse); 1825 1826 // Load the old value (primitively). 1827 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV); 1828 1829 // Put the new value in place (primitively). 1830 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 1831 1832 // Release the old value. 1833 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 1834 1835 // Otherwise, we can just do a normal lvalue store. 1836 } else { 1837 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 1838 } 1839 1840 // Jump to the continuation block. 1841 if (!provablyNonNull) 1842 CGF.EmitBlock(contBB); 1843 } 1844 1845 static void emitWritebacks(CodeGenFunction &CGF, 1846 const CallArgList &args) { 1847 for (CallArgList::writeback_iterator 1848 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) 1849 emitWriteback(CGF, *i); 1850 } 1851 1852 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 1853 const CallArgList &CallArgs) { 1854 assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee()); 1855 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 1856 CallArgs.getCleanupsToDeactivate(); 1857 // Iterate in reverse to increase the likelihood of popping the cleanup. 1858 for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator 1859 I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) { 1860 CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP); 1861 I->IsActiveIP->eraseFromParent(); 1862 } 1863 } 1864 1865 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 1866 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 1867 if (uop->getOpcode() == UO_AddrOf) 1868 return uop->getSubExpr(); 1869 return 0; 1870 } 1871 1872 /// Emit an argument that's being passed call-by-writeback. That is, 1873 /// we are passing the address of 1874 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 1875 const ObjCIndirectCopyRestoreExpr *CRE) { 1876 LValue srcLV; 1877 1878 // Make an optimistic effort to emit the address as an l-value. 1879 // This can fail if the the argument expression is more complicated. 1880 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 1881 srcLV = CGF.EmitLValue(lvExpr); 1882 1883 // Otherwise, just emit it as a scalar. 1884 } else { 1885 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 1886 1887 QualType srcAddrType = 1888 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 1889 srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType); 1890 } 1891 llvm::Value *srcAddr = srcLV.getAddress(); 1892 1893 // The dest and src types don't necessarily match in LLVM terms 1894 // because of the crazy ObjC compatibility rules. 1895 1896 llvm::PointerType *destType = 1897 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 1898 1899 // If the address is a constant null, just pass the appropriate null. 1900 if (isProvablyNull(srcAddr)) { 1901 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 1902 CRE->getType()); 1903 return; 1904 } 1905 1906 // Create the temporary. 1907 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 1908 "icr.temp"); 1909 // Loading an l-value can introduce a cleanup if the l-value is __weak, 1910 // and that cleanup will be conditional if we can't prove that the l-value 1911 // isn't null, so we need to register a dominating point so that the cleanups 1912 // system will make valid IR. 1913 CodeGenFunction::ConditionalEvaluation condEval(CGF); 1914 1915 // Zero-initialize it if we're not doing a copy-initialization. 1916 bool shouldCopy = CRE->shouldCopy(); 1917 if (!shouldCopy) { 1918 llvm::Value *null = 1919 llvm::ConstantPointerNull::get( 1920 cast<llvm::PointerType>(destType->getElementType())); 1921 CGF.Builder.CreateStore(null, temp); 1922 } 1923 1924 llvm::BasicBlock *contBB = 0; 1925 llvm::BasicBlock *originBB = 0; 1926 1927 // If the address is *not* known to be non-null, we need to switch. 1928 llvm::Value *finalArgument; 1929 1930 bool provablyNonNull = isProvablyNonNull(srcAddr); 1931 if (provablyNonNull) { 1932 finalArgument = temp; 1933 } else { 1934 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1935 1936 finalArgument = CGF.Builder.CreateSelect(isNull, 1937 llvm::ConstantPointerNull::get(destType), 1938 temp, "icr.argument"); 1939 1940 // If we need to copy, then the load has to be conditional, which 1941 // means we need control flow. 1942 if (shouldCopy) { 1943 originBB = CGF.Builder.GetInsertBlock(); 1944 contBB = CGF.createBasicBlock("icr.cont"); 1945 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 1946 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 1947 CGF.EmitBlock(copyBB); 1948 condEval.begin(CGF); 1949 } 1950 } 1951 1952 llvm::Value *valueToUse = 0; 1953 1954 // Perform a copy if necessary. 1955 if (shouldCopy) { 1956 RValue srcRV = CGF.EmitLoadOfLValue(srcLV); 1957 assert(srcRV.isScalar()); 1958 1959 llvm::Value *src = srcRV.getScalarVal(); 1960 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 1961 "icr.cast"); 1962 1963 // Use an ordinary store, not a store-to-lvalue. 1964 CGF.Builder.CreateStore(src, temp); 1965 1966 // If optimization is enabled, and the value was held in a 1967 // __strong variable, we need to tell the optimizer that this 1968 // value has to stay alive until we're doing the store back. 1969 // This is because the temporary is effectively unretained, 1970 // and so otherwise we can violate the high-level semantics. 1971 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 1972 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 1973 valueToUse = src; 1974 } 1975 } 1976 1977 // Finish the control flow if we needed it. 1978 if (shouldCopy && !provablyNonNull) { 1979 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 1980 CGF.EmitBlock(contBB); 1981 1982 // Make a phi for the value to intrinsically use. 1983 if (valueToUse) { 1984 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 1985 "icr.to-use"); 1986 phiToUse->addIncoming(valueToUse, copyBB); 1987 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 1988 originBB); 1989 valueToUse = phiToUse; 1990 } 1991 1992 condEval.end(CGF); 1993 } 1994 1995 args.addWriteback(srcLV, temp, valueToUse); 1996 args.add(RValue::get(finalArgument), CRE->getType()); 1997 } 1998 1999 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 2000 QualType type) { 2001 if (const ObjCIndirectCopyRestoreExpr *CRE 2002 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 2003 assert(getLangOpts().ObjCAutoRefCount); 2004 assert(getContext().hasSameType(E->getType(), type)); 2005 return emitWritebackArg(*this, args, CRE); 2006 } 2007 2008 assert(type->isReferenceType() == E->isGLValue() && 2009 "reference binding to unmaterialized r-value!"); 2010 2011 if (E->isGLValue()) { 2012 assert(E->getObjectKind() == OK_Ordinary); 2013 return args.add(EmitReferenceBindingToExpr(E), type); 2014 } 2015 2016 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 2017 2018 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 2019 // However, we still have to push an EH-only cleanup in case we unwind before 2020 // we make it to the call. 2021 if (HasAggregateEvalKind && 2022 CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) { 2023 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2024 if (RD && RD->hasNonTrivialDestructor()) { 2025 AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp"); 2026 Slot.setExternallyDestructed(); 2027 EmitAggExpr(E, Slot); 2028 RValue RV = Slot.asRValue(); 2029 args.add(RV, type); 2030 2031 pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject, 2032 /*useEHCleanupForArray*/ true); 2033 // This unreachable is a temporary marker which will be removed later. 2034 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 2035 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 2036 return; 2037 } 2038 } 2039 2040 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 2041 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 2042 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 2043 assert(L.isSimple()); 2044 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 2045 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 2046 } else { 2047 // We can't represent a misaligned lvalue in the CallArgList, so copy 2048 // to an aligned temporary now. 2049 llvm::Value *tmp = CreateMemTemp(type); 2050 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(), 2051 L.getAlignment()); 2052 args.add(RValue::getAggregate(tmp), type); 2053 } 2054 return; 2055 } 2056 2057 args.add(EmitAnyExprToTemp(E), type); 2058 } 2059 2060 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2061 // optimizer it can aggressively ignore unwind edges. 2062 void 2063 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 2064 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 2065 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 2066 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 2067 CGM.getNoObjCARCExceptionsMetadata()); 2068 } 2069 2070 /// Emits a call to the given no-arguments nounwind runtime function. 2071 llvm::CallInst * 2072 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2073 const llvm::Twine &name) { 2074 return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name); 2075 } 2076 2077 /// Emits a call to the given nounwind runtime function. 2078 llvm::CallInst * 2079 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2080 ArrayRef<llvm::Value*> args, 2081 const llvm::Twine &name) { 2082 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 2083 call->setDoesNotThrow(); 2084 return call; 2085 } 2086 2087 /// Emits a simple call (never an invoke) to the given no-arguments 2088 /// runtime function. 2089 llvm::CallInst * 2090 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2091 const llvm::Twine &name) { 2092 return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name); 2093 } 2094 2095 /// Emits a simple call (never an invoke) to the given runtime 2096 /// function. 2097 llvm::CallInst * 2098 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2099 ArrayRef<llvm::Value*> args, 2100 const llvm::Twine &name) { 2101 llvm::CallInst *call = Builder.CreateCall(callee, args, name); 2102 call->setCallingConv(getRuntimeCC()); 2103 return call; 2104 } 2105 2106 /// Emits a call or invoke to the given noreturn runtime function. 2107 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2108 ArrayRef<llvm::Value*> args) { 2109 if (getInvokeDest()) { 2110 llvm::InvokeInst *invoke = 2111 Builder.CreateInvoke(callee, 2112 getUnreachableBlock(), 2113 getInvokeDest(), 2114 args); 2115 invoke->setDoesNotReturn(); 2116 invoke->setCallingConv(getRuntimeCC()); 2117 } else { 2118 llvm::CallInst *call = Builder.CreateCall(callee, args); 2119 call->setDoesNotReturn(); 2120 call->setCallingConv(getRuntimeCC()); 2121 Builder.CreateUnreachable(); 2122 } 2123 } 2124 2125 /// Emits a call or invoke instruction to the given nullary runtime 2126 /// function. 2127 llvm::CallSite 2128 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2129 const Twine &name) { 2130 return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name); 2131 } 2132 2133 /// Emits a call or invoke instruction to the given runtime function. 2134 llvm::CallSite 2135 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2136 ArrayRef<llvm::Value*> args, 2137 const Twine &name) { 2138 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 2139 callSite.setCallingConv(getRuntimeCC()); 2140 return callSite; 2141 } 2142 2143 llvm::CallSite 2144 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2145 const Twine &Name) { 2146 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); 2147 } 2148 2149 /// Emits a call or invoke instruction to the given function, depending 2150 /// on the current state of the EH stack. 2151 llvm::CallSite 2152 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2153 ArrayRef<llvm::Value *> Args, 2154 const Twine &Name) { 2155 llvm::BasicBlock *InvokeDest = getInvokeDest(); 2156 2157 llvm::Instruction *Inst; 2158 if (!InvokeDest) 2159 Inst = Builder.CreateCall(Callee, Args, Name); 2160 else { 2161 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 2162 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 2163 EmitBlock(ContBB); 2164 } 2165 2166 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2167 // optimizer it can aggressively ignore unwind edges. 2168 if (CGM.getLangOpts().ObjCAutoRefCount) 2169 AddObjCARCExceptionMetadata(Inst); 2170 2171 return Inst; 2172 } 2173 2174 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 2175 llvm::FunctionType *FTy) { 2176 if (ArgNo < FTy->getNumParams()) 2177 assert(Elt->getType() == FTy->getParamType(ArgNo)); 2178 else 2179 assert(FTy->isVarArg()); 2180 ++ArgNo; 2181 } 2182 2183 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 2184 SmallVectorImpl<llvm::Value *> &Args, 2185 llvm::FunctionType *IRFuncTy) { 2186 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2187 unsigned NumElts = AT->getSize().getZExtValue(); 2188 QualType EltTy = AT->getElementType(); 2189 llvm::Value *Addr = RV.getAggregateAddr(); 2190 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 2191 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 2192 RValue EltRV = convertTempToRValue(EltAddr, EltTy); 2193 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); 2194 } 2195 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 2196 RecordDecl *RD = RT->getDecl(); 2197 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 2198 LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty); 2199 2200 if (RD->isUnion()) { 2201 const FieldDecl *LargestFD = 0; 2202 CharUnits UnionSize = CharUnits::Zero(); 2203 2204 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2205 i != e; ++i) { 2206 const FieldDecl *FD = *i; 2207 assert(!FD->isBitField() && 2208 "Cannot expand structure with bit-field members."); 2209 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 2210 if (UnionSize < FieldSize) { 2211 UnionSize = FieldSize; 2212 LargestFD = FD; 2213 } 2214 } 2215 if (LargestFD) { 2216 RValue FldRV = EmitRValueForField(LV, LargestFD); 2217 ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy); 2218 } 2219 } else { 2220 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2221 i != e; ++i) { 2222 FieldDecl *FD = *i; 2223 2224 RValue FldRV = EmitRValueForField(LV, FD); 2225 ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy); 2226 } 2227 } 2228 } else if (Ty->isAnyComplexType()) { 2229 ComplexPairTy CV = RV.getComplexVal(); 2230 Args.push_back(CV.first); 2231 Args.push_back(CV.second); 2232 } else { 2233 assert(RV.isScalar() && 2234 "Unexpected non-scalar rvalue during struct expansion."); 2235 2236 // Insert a bitcast as needed. 2237 llvm::Value *V = RV.getScalarVal(); 2238 if (Args.size() < IRFuncTy->getNumParams() && 2239 V->getType() != IRFuncTy->getParamType(Args.size())) 2240 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 2241 2242 Args.push_back(V); 2243 } 2244 } 2245 2246 2247 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 2248 llvm::Value *Callee, 2249 ReturnValueSlot ReturnValue, 2250 const CallArgList &CallArgs, 2251 const Decl *TargetDecl, 2252 llvm::Instruction **callOrInvoke) { 2253 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 2254 SmallVector<llvm::Value*, 16> Args; 2255 2256 // Handle struct-return functions by passing a pointer to the 2257 // location that we would like to return into. 2258 QualType RetTy = CallInfo.getReturnType(); 2259 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 2260 2261 // IRArgNo - Keep track of the argument number in the callee we're looking at. 2262 unsigned IRArgNo = 0; 2263 llvm::FunctionType *IRFuncTy = 2264 cast<llvm::FunctionType>( 2265 cast<llvm::PointerType>(Callee->getType())->getElementType()); 2266 2267 // If the call returns a temporary with struct return, create a temporary 2268 // alloca to hold the result, unless one is given to us. 2269 if (CGM.ReturnTypeUsesSRet(CallInfo)) { 2270 llvm::Value *Value = ReturnValue.getValue(); 2271 if (!Value) 2272 Value = CreateMemTemp(RetTy); 2273 Args.push_back(Value); 2274 checkArgMatches(Value, IRArgNo, IRFuncTy); 2275 } 2276 2277 assert(CallInfo.arg_size() == CallArgs.size() && 2278 "Mismatch between function signature & arguments."); 2279 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 2280 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 2281 I != E; ++I, ++info_it) { 2282 const ABIArgInfo &ArgInfo = info_it->info; 2283 RValue RV = I->RV; 2284 2285 CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty); 2286 2287 // Insert a padding argument to ensure proper alignment. 2288 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) { 2289 Args.push_back(llvm::UndefValue::get(PaddingType)); 2290 ++IRArgNo; 2291 } 2292 2293 switch (ArgInfo.getKind()) { 2294 case ABIArgInfo::Indirect: { 2295 if (RV.isScalar() || RV.isComplex()) { 2296 // Make a temporary alloca to pass the argument. 2297 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2298 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 2299 AI->setAlignment(ArgInfo.getIndirectAlign()); 2300 Args.push_back(AI); 2301 2302 LValue argLV = 2303 MakeAddrLValue(Args.back(), I->Ty, TypeAlign); 2304 2305 if (RV.isScalar()) 2306 EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true); 2307 else 2308 EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true); 2309 2310 // Validate argument match. 2311 checkArgMatches(AI, IRArgNo, IRFuncTy); 2312 } else { 2313 // We want to avoid creating an unnecessary temporary+copy here; 2314 // however, we need one in three cases: 2315 // 1. If the argument is not byval, and we are required to copy the 2316 // source. (This case doesn't occur on any common architecture.) 2317 // 2. If the argument is byval, RV is not sufficiently aligned, and 2318 // we cannot force it to be sufficiently aligned. 2319 // 3. If the argument is byval, but RV is located in an address space 2320 // different than that of the argument (0). 2321 llvm::Value *Addr = RV.getAggregateAddr(); 2322 unsigned Align = ArgInfo.getIndirectAlign(); 2323 const llvm::DataLayout *TD = &CGM.getDataLayout(); 2324 const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace(); 2325 const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ? 2326 IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0); 2327 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 2328 (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align && 2329 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) || 2330 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 2331 // Create an aligned temporary, and copy to it. 2332 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2333 if (Align > AI->getAlignment()) 2334 AI->setAlignment(Align); 2335 Args.push_back(AI); 2336 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 2337 2338 // Validate argument match. 2339 checkArgMatches(AI, IRArgNo, IRFuncTy); 2340 } else { 2341 // Skip the extra memcpy call. 2342 Args.push_back(Addr); 2343 2344 // Validate argument match. 2345 checkArgMatches(Addr, IRArgNo, IRFuncTy); 2346 } 2347 } 2348 break; 2349 } 2350 2351 case ABIArgInfo::Ignore: 2352 break; 2353 2354 case ABIArgInfo::Extend: 2355 case ABIArgInfo::Direct: { 2356 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 2357 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 2358 ArgInfo.getDirectOffset() == 0) { 2359 llvm::Value *V; 2360 if (RV.isScalar()) 2361 V = RV.getScalarVal(); 2362 else 2363 V = Builder.CreateLoad(RV.getAggregateAddr()); 2364 2365 // If the argument doesn't match, perform a bitcast to coerce it. This 2366 // can happen due to trivial type mismatches. 2367 if (IRArgNo < IRFuncTy->getNumParams() && 2368 V->getType() != IRFuncTy->getParamType(IRArgNo)) 2369 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 2370 Args.push_back(V); 2371 2372 checkArgMatches(V, IRArgNo, IRFuncTy); 2373 break; 2374 } 2375 2376 // FIXME: Avoid the conversion through memory if possible. 2377 llvm::Value *SrcPtr; 2378 if (RV.isScalar() || RV.isComplex()) { 2379 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 2380 LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign); 2381 if (RV.isScalar()) { 2382 EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true); 2383 } else { 2384 EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true); 2385 } 2386 } else 2387 SrcPtr = RV.getAggregateAddr(); 2388 2389 // If the value is offset in memory, apply the offset now. 2390 if (unsigned Offs = ArgInfo.getDirectOffset()) { 2391 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 2392 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 2393 SrcPtr = Builder.CreateBitCast(SrcPtr, 2394 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 2395 2396 } 2397 2398 // If the coerce-to type is a first class aggregate, we flatten it and 2399 // pass the elements. Either way is semantically identical, but fast-isel 2400 // and the optimizer generally likes scalar values better than FCAs. 2401 if (llvm::StructType *STy = 2402 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 2403 llvm::Type *SrcTy = 2404 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 2405 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 2406 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 2407 2408 // If the source type is smaller than the destination type of the 2409 // coerce-to logic, copy the source value into a temp alloca the size 2410 // of the destination type to allow loading all of it. The bits past 2411 // the source value are left undef. 2412 if (SrcSize < DstSize) { 2413 llvm::AllocaInst *TempAlloca 2414 = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce"); 2415 Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0); 2416 SrcPtr = TempAlloca; 2417 } else { 2418 SrcPtr = Builder.CreateBitCast(SrcPtr, 2419 llvm::PointerType::getUnqual(STy)); 2420 } 2421 2422 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2423 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 2424 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 2425 // We don't know what we're loading from. 2426 LI->setAlignment(1); 2427 Args.push_back(LI); 2428 2429 // Validate argument match. 2430 checkArgMatches(LI, IRArgNo, IRFuncTy); 2431 } 2432 } else { 2433 // In the simple case, just pass the coerced loaded value. 2434 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 2435 *this)); 2436 2437 // Validate argument match. 2438 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 2439 } 2440 2441 break; 2442 } 2443 2444 case ABIArgInfo::Expand: 2445 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 2446 IRArgNo = Args.size(); 2447 break; 2448 } 2449 } 2450 2451 if (!CallArgs.getCleanupsToDeactivate().empty()) 2452 deactivateArgCleanupsBeforeCall(*this, CallArgs); 2453 2454 // If the callee is a bitcast of a function to a varargs pointer to function 2455 // type, check to see if we can remove the bitcast. This handles some cases 2456 // with unprototyped functions. 2457 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 2458 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 2459 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 2460 llvm::FunctionType *CurFT = 2461 cast<llvm::FunctionType>(CurPT->getElementType()); 2462 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 2463 2464 if (CE->getOpcode() == llvm::Instruction::BitCast && 2465 ActualFT->getReturnType() == CurFT->getReturnType() && 2466 ActualFT->getNumParams() == CurFT->getNumParams() && 2467 ActualFT->getNumParams() == Args.size() && 2468 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 2469 bool ArgsMatch = true; 2470 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 2471 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 2472 ArgsMatch = false; 2473 break; 2474 } 2475 2476 // Strip the cast if we can get away with it. This is a nice cleanup, 2477 // but also allows us to inline the function at -O0 if it is marked 2478 // always_inline. 2479 if (ArgsMatch) 2480 Callee = CalleeF; 2481 } 2482 } 2483 2484 unsigned CallingConv; 2485 CodeGen::AttributeListType AttributeList; 2486 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, 2487 CallingConv, true); 2488 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 2489 AttributeList); 2490 2491 llvm::BasicBlock *InvokeDest = 0; 2492 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 2493 llvm::Attribute::NoUnwind)) 2494 InvokeDest = getInvokeDest(); 2495 2496 llvm::CallSite CS; 2497 if (!InvokeDest) { 2498 CS = Builder.CreateCall(Callee, Args); 2499 } else { 2500 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 2501 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); 2502 EmitBlock(Cont); 2503 } 2504 if (callOrInvoke) 2505 *callOrInvoke = CS.getInstruction(); 2506 2507 CS.setAttributes(Attrs); 2508 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2509 2510 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2511 // optimizer it can aggressively ignore unwind edges. 2512 if (CGM.getLangOpts().ObjCAutoRefCount) 2513 AddObjCARCExceptionMetadata(CS.getInstruction()); 2514 2515 // If the call doesn't return, finish the basic block and clear the 2516 // insertion point; this allows the rest of IRgen to discard 2517 // unreachable code. 2518 if (CS.doesNotReturn()) { 2519 Builder.CreateUnreachable(); 2520 Builder.ClearInsertionPoint(); 2521 2522 // FIXME: For now, emit a dummy basic block because expr emitters in 2523 // generally are not ready to handle emitting expressions at unreachable 2524 // points. 2525 EnsureInsertPoint(); 2526 2527 // Return a reasonable RValue. 2528 return GetUndefRValue(RetTy); 2529 } 2530 2531 llvm::Instruction *CI = CS.getInstruction(); 2532 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 2533 CI->setName("call"); 2534 2535 // Emit any writebacks immediately. Arguably this should happen 2536 // after any return-value munging. 2537 if (CallArgs.hasWritebacks()) 2538 emitWritebacks(*this, CallArgs); 2539 2540 switch (RetAI.getKind()) { 2541 case ABIArgInfo::Indirect: 2542 return convertTempToRValue(Args[0], RetTy); 2543 2544 case ABIArgInfo::Ignore: 2545 // If we are ignoring an argument that had a result, make sure to 2546 // construct the appropriate return value for our caller. 2547 return GetUndefRValue(RetTy); 2548 2549 case ABIArgInfo::Extend: 2550 case ABIArgInfo::Direct: { 2551 llvm::Type *RetIRTy = ConvertType(RetTy); 2552 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 2553 switch (getEvaluationKind(RetTy)) { 2554 case TEK_Complex: { 2555 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 2556 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 2557 return RValue::getComplex(std::make_pair(Real, Imag)); 2558 } 2559 case TEK_Aggregate: { 2560 llvm::Value *DestPtr = ReturnValue.getValue(); 2561 bool DestIsVolatile = ReturnValue.isVolatile(); 2562 2563 if (!DestPtr) { 2564 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 2565 DestIsVolatile = false; 2566 } 2567 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 2568 return RValue::getAggregate(DestPtr); 2569 } 2570 case TEK_Scalar: { 2571 // If the argument doesn't match, perform a bitcast to coerce it. This 2572 // can happen due to trivial type mismatches. 2573 llvm::Value *V = CI; 2574 if (V->getType() != RetIRTy) 2575 V = Builder.CreateBitCast(V, RetIRTy); 2576 return RValue::get(V); 2577 } 2578 } 2579 llvm_unreachable("bad evaluation kind"); 2580 } 2581 2582 llvm::Value *DestPtr = ReturnValue.getValue(); 2583 bool DestIsVolatile = ReturnValue.isVolatile(); 2584 2585 if (!DestPtr) { 2586 DestPtr = CreateMemTemp(RetTy, "coerce"); 2587 DestIsVolatile = false; 2588 } 2589 2590 // If the value is offset in memory, apply the offset now. 2591 llvm::Value *StorePtr = DestPtr; 2592 if (unsigned Offs = RetAI.getDirectOffset()) { 2593 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 2594 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 2595 StorePtr = Builder.CreateBitCast(StorePtr, 2596 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 2597 } 2598 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 2599 2600 return convertTempToRValue(DestPtr, RetTy); 2601 } 2602 2603 case ABIArgInfo::Expand: 2604 llvm_unreachable("Invalid ABI kind for return argument"); 2605 } 2606 2607 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 2608 } 2609 2610 /* VarArg handling */ 2611 2612 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 2613 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 2614 } 2615