1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/MC/SubtargetFeature.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 /***/
37 
38 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
39   switch (CC) {
40   default: return llvm::CallingConv::C;
41   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
42   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
43   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
44   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
45   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
46   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
47   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
48   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
49   // TODO: add support for CC_X86Pascal to llvm
50   }
51 }
52 
53 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
54 /// qualification.
55 /// FIXME: address space qualification?
56 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
57   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
58   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
59 }
60 
61 /// Returns the canonical formal type of the given C++ method.
62 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
63   return MD->getType()->getCanonicalTypeUnqualified()
64            .getAs<FunctionProtoType>();
65 }
66 
67 /// Returns the "extra-canonicalized" return type, which discards
68 /// qualifiers on the return type.  Codegen doesn't care about them,
69 /// and it makes ABI code a little easier to be able to assume that
70 /// all parameter and return types are top-level unqualified.
71 static CanQualType GetReturnType(QualType RetTy) {
72   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
73 }
74 
75 /// Arrange the argument and result information for a value of the given
76 /// unprototyped freestanding function type.
77 const CGFunctionInfo &
78 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
79   // When translating an unprototyped function type, always use a
80   // variadic type.
81   return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
82                                  None, FTNP->getExtInfo(), RequiredArgs(0));
83 }
84 
85 /// Arrange the LLVM function layout for a value of the given function
86 /// type, on top of any implicit parameters already stored.  Use the
87 /// given ExtInfo instead of the ExtInfo from the function type.
88 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
89                                        SmallVectorImpl<CanQualType> &prefix,
90                                              CanQual<FunctionProtoType> FTP,
91                                               FunctionType::ExtInfo extInfo) {
92   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
93   // FIXME: Kill copy.
94   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
95     prefix.push_back(FTP->getArgType(i));
96   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
97   return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
98 }
99 
100 /// Arrange the argument and result information for a free function (i.e.
101 /// not a C++ or ObjC instance method) of the given type.
102 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
103                                       SmallVectorImpl<CanQualType> &prefix,
104                                             CanQual<FunctionProtoType> FTP) {
105   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
106 }
107 
108 /// Arrange the argument and result information for a free function (i.e.
109 /// not a C++ or ObjC instance method) of the given type.
110 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
111                                       SmallVectorImpl<CanQualType> &prefix,
112                                             CanQual<FunctionProtoType> FTP) {
113   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
114   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
115 }
116 
117 /// Arrange the argument and result information for a value of the
118 /// given freestanding function type.
119 const CGFunctionInfo &
120 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
121   SmallVector<CanQualType, 16> argTypes;
122   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
123 }
124 
125 static CallingConv getCallingConventionForDecl(const Decl *D) {
126   // Set the appropriate calling convention for the Function.
127   if (D->hasAttr<StdCallAttr>())
128     return CC_X86StdCall;
129 
130   if (D->hasAttr<FastCallAttr>())
131     return CC_X86FastCall;
132 
133   if (D->hasAttr<ThisCallAttr>())
134     return CC_X86ThisCall;
135 
136   if (D->hasAttr<PascalAttr>())
137     return CC_X86Pascal;
138 
139   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
140     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
141 
142   if (D->hasAttr<PnaclCallAttr>())
143     return CC_PnaclCall;
144 
145   if (D->hasAttr<IntelOclBiccAttr>())
146     return CC_IntelOclBicc;
147 
148   return CC_C;
149 }
150 
151 /// Arrange the argument and result information for a call to an
152 /// unknown C++ non-static member function of the given abstract type.
153 /// (Zero value of RD means we don't have any meaningful "this" argument type,
154 ///  so fall back to a generic pointer type).
155 /// The member function must be an ordinary function, i.e. not a
156 /// constructor or destructor.
157 const CGFunctionInfo &
158 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
159                                    const FunctionProtoType *FTP) {
160   SmallVector<CanQualType, 16> argTypes;
161 
162   // Add the 'this' pointer.
163   if (RD)
164     argTypes.push_back(GetThisType(Context, RD));
165   else
166     argTypes.push_back(Context.VoidPtrTy);
167 
168   return ::arrangeCXXMethodType(*this, argTypes,
169               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
170 }
171 
172 /// Arrange the argument and result information for a declaration or
173 /// definition of the given C++ non-static member function.  The
174 /// member function must be an ordinary function, i.e. not a
175 /// constructor or destructor.
176 const CGFunctionInfo &
177 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
178   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
179   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
180 
181   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
182 
183   if (MD->isInstance()) {
184     // The abstract case is perfectly fine.
185     const CXXRecordDecl *ThisType =
186         CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
187     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
188   }
189 
190   return arrangeFreeFunctionType(prototype);
191 }
192 
193 /// Arrange the argument and result information for a declaration
194 /// or definition to the given constructor variant.
195 const CGFunctionInfo &
196 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
197                                                CXXCtorType ctorKind) {
198   SmallVector<CanQualType, 16> argTypes;
199   argTypes.push_back(GetThisType(Context, D->getParent()));
200 
201   GlobalDecl GD(D, ctorKind);
202   CanQualType resultType =
203     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
204 
205   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
206 
207   CanQual<FunctionProtoType> FTP = GetFormalType(D);
208 
209   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
210 
211   // Add the formal parameters.
212   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
213     argTypes.push_back(FTP->getArgType(i));
214 
215   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
216   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
217 }
218 
219 /// Arrange the argument and result information for a declaration,
220 /// definition, or call to the given destructor variant.  It so
221 /// happens that all three cases produce the same information.
222 const CGFunctionInfo &
223 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
224                                    CXXDtorType dtorKind) {
225   SmallVector<CanQualType, 2> argTypes;
226   argTypes.push_back(GetThisType(Context, D->getParent()));
227 
228   GlobalDecl GD(D, dtorKind);
229   CanQualType resultType =
230     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
231 
232   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
233 
234   CanQual<FunctionProtoType> FTP = GetFormalType(D);
235   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
236   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
237 
238   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
239   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
240                                  RequiredArgs::All);
241 }
242 
243 /// Arrange the argument and result information for the declaration or
244 /// definition of the given function.
245 const CGFunctionInfo &
246 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
247   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
248     if (MD->isInstance())
249       return arrangeCXXMethodDeclaration(MD);
250 
251   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
252 
253   assert(isa<FunctionType>(FTy));
254 
255   // When declaring a function without a prototype, always use a
256   // non-variadic type.
257   if (isa<FunctionNoProtoType>(FTy)) {
258     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
259     return arrangeLLVMFunctionInfo(noProto->getResultType(), None,
260                                    noProto->getExtInfo(), RequiredArgs::All);
261   }
262 
263   assert(isa<FunctionProtoType>(FTy));
264   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
265 }
266 
267 /// Arrange the argument and result information for the declaration or
268 /// definition of an Objective-C method.
269 const CGFunctionInfo &
270 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
271   // It happens that this is the same as a call with no optional
272   // arguments, except also using the formal 'self' type.
273   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
274 }
275 
276 /// Arrange the argument and result information for the function type
277 /// through which to perform a send to the given Objective-C method,
278 /// using the given receiver type.  The receiver type is not always
279 /// the 'self' type of the method or even an Objective-C pointer type.
280 /// This is *not* the right method for actually performing such a
281 /// message send, due to the possibility of optional arguments.
282 const CGFunctionInfo &
283 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
284                                               QualType receiverType) {
285   SmallVector<CanQualType, 16> argTys;
286   argTys.push_back(Context.getCanonicalParamType(receiverType));
287   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
288   // FIXME: Kill copy?
289   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
290          e = MD->param_end(); i != e; ++i) {
291     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
292   }
293 
294   FunctionType::ExtInfo einfo;
295   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
296 
297   if (getContext().getLangOpts().ObjCAutoRefCount &&
298       MD->hasAttr<NSReturnsRetainedAttr>())
299     einfo = einfo.withProducesResult(true);
300 
301   RequiredArgs required =
302     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
303 
304   return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
305                                  einfo, required);
306 }
307 
308 const CGFunctionInfo &
309 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
310   // FIXME: Do we need to handle ObjCMethodDecl?
311   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
312 
313   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
314     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
315 
316   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
317     return arrangeCXXDestructor(DD, GD.getDtorType());
318 
319   return arrangeFunctionDeclaration(FD);
320 }
321 
322 /// Arrange a call as unto a free function, except possibly with an
323 /// additional number of formal parameters considered required.
324 static const CGFunctionInfo &
325 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
326                             const CallArgList &args,
327                             const FunctionType *fnType,
328                             unsigned numExtraRequiredArgs) {
329   assert(args.size() >= numExtraRequiredArgs);
330 
331   // In most cases, there are no optional arguments.
332   RequiredArgs required = RequiredArgs::All;
333 
334   // If we have a variadic prototype, the required arguments are the
335   // extra prefix plus the arguments in the prototype.
336   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
337     if (proto->isVariadic())
338       required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
339 
340   // If we don't have a prototype at all, but we're supposed to
341   // explicitly use the variadic convention for unprototyped calls,
342   // treat all of the arguments as required but preserve the nominal
343   // possibility of variadics.
344   } else if (CGT.CGM.getTargetCodeGenInfo()
345                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
346     required = RequiredArgs(args.size());
347   }
348 
349   return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
350                                      fnType->getExtInfo(), required);
351 }
352 
353 /// Figure out the rules for calling a function with the given formal
354 /// type using the given arguments.  The arguments are necessary
355 /// because the function might be unprototyped, in which case it's
356 /// target-dependent in crazy ways.
357 const CGFunctionInfo &
358 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
359                                       const FunctionType *fnType) {
360   return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
361 }
362 
363 /// A block function call is essentially a free-function call with an
364 /// extra implicit argument.
365 const CGFunctionInfo &
366 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
367                                        const FunctionType *fnType) {
368   return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
369 }
370 
371 const CGFunctionInfo &
372 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
373                                       const CallArgList &args,
374                                       FunctionType::ExtInfo info,
375                                       RequiredArgs required) {
376   // FIXME: Kill copy.
377   SmallVector<CanQualType, 16> argTypes;
378   for (CallArgList::const_iterator i = args.begin(), e = args.end();
379        i != e; ++i)
380     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
381   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
382                                  required);
383 }
384 
385 /// Arrange a call to a C++ method, passing the given arguments.
386 const CGFunctionInfo &
387 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
388                                    const FunctionProtoType *FPT,
389                                    RequiredArgs required) {
390   // FIXME: Kill copy.
391   SmallVector<CanQualType, 16> argTypes;
392   for (CallArgList::const_iterator i = args.begin(), e = args.end();
393        i != e; ++i)
394     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
395 
396   FunctionType::ExtInfo info = FPT->getExtInfo();
397   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
398                                  argTypes, info, required);
399 }
400 
401 const CGFunctionInfo &
402 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
403                                          const FunctionArgList &args,
404                                          const FunctionType::ExtInfo &info,
405                                          bool isVariadic) {
406   // FIXME: Kill copy.
407   SmallVector<CanQualType, 16> argTypes;
408   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
409        i != e; ++i)
410     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
411 
412   RequiredArgs required =
413     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
414   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
415                                  required);
416 }
417 
418 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
419   return arrangeLLVMFunctionInfo(getContext().VoidTy, None,
420                                  FunctionType::ExtInfo(), RequiredArgs::All);
421 }
422 
423 /// Arrange the argument and result information for an abstract value
424 /// of a given function type.  This is the method which all of the
425 /// above functions ultimately defer to.
426 const CGFunctionInfo &
427 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
428                                       ArrayRef<CanQualType> argTypes,
429                                       FunctionType::ExtInfo info,
430                                       RequiredArgs required) {
431 #ifndef NDEBUG
432   for (ArrayRef<CanQualType>::const_iterator
433          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
434     assert(I->isCanonicalAsParam());
435 #endif
436 
437   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
438 
439   // Lookup or create unique function info.
440   llvm::FoldingSetNodeID ID;
441   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
442 
443   void *insertPos = 0;
444   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
445   if (FI)
446     return *FI;
447 
448   // Construct the function info.  We co-allocate the ArgInfos.
449   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
450   FunctionInfos.InsertNode(FI, insertPos);
451 
452   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
453   assert(inserted && "Recursively being processed?");
454 
455   // Compute ABI information.
456   getABIInfo().computeInfo(*FI);
457 
458   // Loop over all of the computed argument and return value info.  If any of
459   // them are direct or extend without a specified coerce type, specify the
460   // default now.
461   ABIArgInfo &retInfo = FI->getReturnInfo();
462   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
463     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
464 
465   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
466        I != E; ++I)
467     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
468       I->info.setCoerceToType(ConvertType(I->type));
469 
470   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
471   assert(erased && "Not in set?");
472 
473   return *FI;
474 }
475 
476 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
477                                        const FunctionType::ExtInfo &info,
478                                        CanQualType resultType,
479                                        ArrayRef<CanQualType> argTypes,
480                                        RequiredArgs required) {
481   void *buffer = operator new(sizeof(CGFunctionInfo) +
482                               sizeof(ArgInfo) * (argTypes.size() + 1));
483   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
484   FI->CallingConvention = llvmCC;
485   FI->EffectiveCallingConvention = llvmCC;
486   FI->ASTCallingConvention = info.getCC();
487   FI->NoReturn = info.getNoReturn();
488   FI->ReturnsRetained = info.getProducesResult();
489   FI->Required = required;
490   FI->HasRegParm = info.getHasRegParm();
491   FI->RegParm = info.getRegParm();
492   FI->NumArgs = argTypes.size();
493   FI->getArgsBuffer()[0].type = resultType;
494   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
495     FI->getArgsBuffer()[i + 1].type = argTypes[i];
496   return FI;
497 }
498 
499 /***/
500 
501 void CodeGenTypes::GetExpandedTypes(QualType type,
502                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
503   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
504     uint64_t NumElts = AT->getSize().getZExtValue();
505     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
506       GetExpandedTypes(AT->getElementType(), expandedTypes);
507   } else if (const RecordType *RT = type->getAs<RecordType>()) {
508     const RecordDecl *RD = RT->getDecl();
509     assert(!RD->hasFlexibleArrayMember() &&
510            "Cannot expand structure with flexible array.");
511     if (RD->isUnion()) {
512       // Unions can be here only in degenerative cases - all the fields are same
513       // after flattening. Thus we have to use the "largest" field.
514       const FieldDecl *LargestFD = 0;
515       CharUnits UnionSize = CharUnits::Zero();
516 
517       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
518            i != e; ++i) {
519         const FieldDecl *FD = *i;
520         assert(!FD->isBitField() &&
521                "Cannot expand structure with bit-field members.");
522         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
523         if (UnionSize < FieldSize) {
524           UnionSize = FieldSize;
525           LargestFD = FD;
526         }
527       }
528       if (LargestFD)
529         GetExpandedTypes(LargestFD->getType(), expandedTypes);
530     } else {
531       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
532            i != e; ++i) {
533         assert(!i->isBitField() &&
534                "Cannot expand structure with bit-field members.");
535         GetExpandedTypes(i->getType(), expandedTypes);
536       }
537     }
538   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
539     llvm::Type *EltTy = ConvertType(CT->getElementType());
540     expandedTypes.push_back(EltTy);
541     expandedTypes.push_back(EltTy);
542   } else
543     expandedTypes.push_back(ConvertType(type));
544 }
545 
546 llvm::Function::arg_iterator
547 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
548                                     llvm::Function::arg_iterator AI) {
549   assert(LV.isSimple() &&
550          "Unexpected non-simple lvalue during struct expansion.");
551 
552   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
553     unsigned NumElts = AT->getSize().getZExtValue();
554     QualType EltTy = AT->getElementType();
555     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
556       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
557       LValue LV = MakeAddrLValue(EltAddr, EltTy);
558       AI = ExpandTypeFromArgs(EltTy, LV, AI);
559     }
560   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
561     RecordDecl *RD = RT->getDecl();
562     if (RD->isUnion()) {
563       // Unions can be here only in degenerative cases - all the fields are same
564       // after flattening. Thus we have to use the "largest" field.
565       const FieldDecl *LargestFD = 0;
566       CharUnits UnionSize = CharUnits::Zero();
567 
568       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
569            i != e; ++i) {
570         const FieldDecl *FD = *i;
571         assert(!FD->isBitField() &&
572                "Cannot expand structure with bit-field members.");
573         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
574         if (UnionSize < FieldSize) {
575           UnionSize = FieldSize;
576           LargestFD = FD;
577         }
578       }
579       if (LargestFD) {
580         // FIXME: What are the right qualifiers here?
581         LValue SubLV = EmitLValueForField(LV, LargestFD);
582         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
583       }
584     } else {
585       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
586            i != e; ++i) {
587         FieldDecl *FD = *i;
588         QualType FT = FD->getType();
589 
590         // FIXME: What are the right qualifiers here?
591         LValue SubLV = EmitLValueForField(LV, FD);
592         AI = ExpandTypeFromArgs(FT, SubLV, AI);
593       }
594     }
595   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
596     QualType EltTy = CT->getElementType();
597     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
598     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
599     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
600     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
601   } else {
602     EmitStoreThroughLValue(RValue::get(AI), LV);
603     ++AI;
604   }
605 
606   return AI;
607 }
608 
609 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
610 /// accessing some number of bytes out of it, try to gep into the struct to get
611 /// at its inner goodness.  Dive as deep as possible without entering an element
612 /// with an in-memory size smaller than DstSize.
613 static llvm::Value *
614 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
615                                    llvm::StructType *SrcSTy,
616                                    uint64_t DstSize, CodeGenFunction &CGF) {
617   // We can't dive into a zero-element struct.
618   if (SrcSTy->getNumElements() == 0) return SrcPtr;
619 
620   llvm::Type *FirstElt = SrcSTy->getElementType(0);
621 
622   // If the first elt is at least as large as what we're looking for, or if the
623   // first element is the same size as the whole struct, we can enter it.
624   uint64_t FirstEltSize =
625     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
626   if (FirstEltSize < DstSize &&
627       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
628     return SrcPtr;
629 
630   // GEP into the first element.
631   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
632 
633   // If the first element is a struct, recurse.
634   llvm::Type *SrcTy =
635     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
636   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
637     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
638 
639   return SrcPtr;
640 }
641 
642 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
643 /// are either integers or pointers.  This does a truncation of the value if it
644 /// is too large or a zero extension if it is too small.
645 ///
646 /// This behaves as if the value were coerced through memory, so on big-endian
647 /// targets the high bits are preserved in a truncation, while little-endian
648 /// targets preserve the low bits.
649 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
650                                              llvm::Type *Ty,
651                                              CodeGenFunction &CGF) {
652   if (Val->getType() == Ty)
653     return Val;
654 
655   if (isa<llvm::PointerType>(Val->getType())) {
656     // If this is Pointer->Pointer avoid conversion to and from int.
657     if (isa<llvm::PointerType>(Ty))
658       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
659 
660     // Convert the pointer to an integer so we can play with its width.
661     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
662   }
663 
664   llvm::Type *DestIntTy = Ty;
665   if (isa<llvm::PointerType>(DestIntTy))
666     DestIntTy = CGF.IntPtrTy;
667 
668   if (Val->getType() != DestIntTy) {
669     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
670     if (DL.isBigEndian()) {
671       // Preserve the high bits on big-endian targets.
672       // That is what memory coercion does.
673       uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType());
674       uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy);
675       if (SrcSize > DstSize) {
676         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
677         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
678       } else {
679         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
680         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
681       }
682     } else {
683       // Little-endian targets preserve the low bits. No shifts required.
684       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
685     }
686   }
687 
688   if (isa<llvm::PointerType>(Ty))
689     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
690   return Val;
691 }
692 
693 
694 
695 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
696 /// a pointer to an object of type \arg Ty.
697 ///
698 /// This safely handles the case when the src type is smaller than the
699 /// destination type; in this situation the values of bits which not
700 /// present in the src are undefined.
701 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
702                                       llvm::Type *Ty,
703                                       CodeGenFunction &CGF) {
704   llvm::Type *SrcTy =
705     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
706 
707   // If SrcTy and Ty are the same, just do a load.
708   if (SrcTy == Ty)
709     return CGF.Builder.CreateLoad(SrcPtr);
710 
711   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
712 
713   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
714     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
715     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
716   }
717 
718   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
719 
720   // If the source and destination are integer or pointer types, just do an
721   // extension or truncation to the desired type.
722   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
723       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
724     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
725     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
726   }
727 
728   // If load is legal, just bitcast the src pointer.
729   if (SrcSize >= DstSize) {
730     // Generally SrcSize is never greater than DstSize, since this means we are
731     // losing bits. However, this can happen in cases where the structure has
732     // additional padding, for example due to a user specified alignment.
733     //
734     // FIXME: Assert that we aren't truncating non-padding bits when have access
735     // to that information.
736     llvm::Value *Casted =
737       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
738     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
739     // FIXME: Use better alignment / avoid requiring aligned load.
740     Load->setAlignment(1);
741     return Load;
742   }
743 
744   // Otherwise do coercion through memory. This is stupid, but
745   // simple.
746   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
747   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
748   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
749   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
750   // FIXME: Use better alignment.
751   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
752       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
753       1, false);
754   return CGF.Builder.CreateLoad(Tmp);
755 }
756 
757 // Function to store a first-class aggregate into memory.  We prefer to
758 // store the elements rather than the aggregate to be more friendly to
759 // fast-isel.
760 // FIXME: Do we need to recurse here?
761 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
762                           llvm::Value *DestPtr, bool DestIsVolatile,
763                           bool LowAlignment) {
764   // Prefer scalar stores to first-class aggregate stores.
765   if (llvm::StructType *STy =
766         dyn_cast<llvm::StructType>(Val->getType())) {
767     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
768       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
769       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
770       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
771                                                     DestIsVolatile);
772       if (LowAlignment)
773         SI->setAlignment(1);
774     }
775   } else {
776     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
777     if (LowAlignment)
778       SI->setAlignment(1);
779   }
780 }
781 
782 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
783 /// where the source and destination may have different types.
784 ///
785 /// This safely handles the case when the src type is larger than the
786 /// destination type; the upper bits of the src will be lost.
787 static void CreateCoercedStore(llvm::Value *Src,
788                                llvm::Value *DstPtr,
789                                bool DstIsVolatile,
790                                CodeGenFunction &CGF) {
791   llvm::Type *SrcTy = Src->getType();
792   llvm::Type *DstTy =
793     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
794   if (SrcTy == DstTy) {
795     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
796     return;
797   }
798 
799   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
800 
801   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
802     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
803     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
804   }
805 
806   // If the source and destination are integer or pointer types, just do an
807   // extension or truncation to the desired type.
808   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
809       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
810     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
811     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
812     return;
813   }
814 
815   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
816 
817   // If store is legal, just bitcast the src pointer.
818   if (SrcSize <= DstSize) {
819     llvm::Value *Casted =
820       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
821     // FIXME: Use better alignment / avoid requiring aligned store.
822     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
823   } else {
824     // Otherwise do coercion through memory. This is stupid, but
825     // simple.
826 
827     // Generally SrcSize is never greater than DstSize, since this means we are
828     // losing bits. However, this can happen in cases where the structure has
829     // additional padding, for example due to a user specified alignment.
830     //
831     // FIXME: Assert that we aren't truncating non-padding bits when have access
832     // to that information.
833     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
834     CGF.Builder.CreateStore(Src, Tmp);
835     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
836     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
837     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
838     // FIXME: Use better alignment.
839     CGF.Builder.CreateMemCpy(DstCasted, Casted,
840         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
841         1, false);
842   }
843 }
844 
845 /***/
846 
847 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
848   return FI.getReturnInfo().isIndirect();
849 }
850 
851 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
852   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
853     switch (BT->getKind()) {
854     default:
855       return false;
856     case BuiltinType::Float:
857       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
858     case BuiltinType::Double:
859       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
860     case BuiltinType::LongDouble:
861       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
862     }
863   }
864 
865   return false;
866 }
867 
868 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
869   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
870     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
871       if (BT->getKind() == BuiltinType::LongDouble)
872         return getTarget().useObjCFP2RetForComplexLongDouble();
873     }
874   }
875 
876   return false;
877 }
878 
879 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
880   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
881   return GetFunctionType(FI);
882 }
883 
884 llvm::FunctionType *
885 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
886 
887   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
888   assert(Inserted && "Recursively being processed?");
889 
890   SmallVector<llvm::Type*, 8> argTypes;
891   llvm::Type *resultType = 0;
892 
893   const ABIArgInfo &retAI = FI.getReturnInfo();
894   switch (retAI.getKind()) {
895   case ABIArgInfo::Expand:
896     llvm_unreachable("Invalid ABI kind for return argument");
897 
898   case ABIArgInfo::Extend:
899   case ABIArgInfo::Direct:
900     resultType = retAI.getCoerceToType();
901     break;
902 
903   case ABIArgInfo::Indirect: {
904     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
905     resultType = llvm::Type::getVoidTy(getLLVMContext());
906 
907     QualType ret = FI.getReturnType();
908     llvm::Type *ty = ConvertType(ret);
909     unsigned addressSpace = Context.getTargetAddressSpace(ret);
910     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
911     break;
912   }
913 
914   case ABIArgInfo::Ignore:
915     resultType = llvm::Type::getVoidTy(getLLVMContext());
916     break;
917   }
918 
919   // Add in all of the required arguments.
920   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
921   if (FI.isVariadic()) {
922     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
923   } else {
924     ie = FI.arg_end();
925   }
926   for (; it != ie; ++it) {
927     const ABIArgInfo &argAI = it->info;
928 
929     // Insert a padding type to ensure proper alignment.
930     if (llvm::Type *PaddingType = argAI.getPaddingType())
931       argTypes.push_back(PaddingType);
932 
933     switch (argAI.getKind()) {
934     case ABIArgInfo::Ignore:
935       break;
936 
937     case ABIArgInfo::Indirect: {
938       // indirect arguments are always on the stack, which is addr space #0.
939       llvm::Type *LTy = ConvertTypeForMem(it->type);
940       argTypes.push_back(LTy->getPointerTo());
941       break;
942     }
943 
944     case ABIArgInfo::Extend:
945     case ABIArgInfo::Direct: {
946       // If the coerce-to type is a first class aggregate, flatten it.  Either
947       // way is semantically identical, but fast-isel and the optimizer
948       // generally likes scalar values better than FCAs.
949       llvm::Type *argType = argAI.getCoerceToType();
950       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
951         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
952           argTypes.push_back(st->getElementType(i));
953       } else {
954         argTypes.push_back(argType);
955       }
956       break;
957     }
958 
959     case ABIArgInfo::Expand:
960       GetExpandedTypes(it->type, argTypes);
961       break;
962     }
963   }
964 
965   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
966   assert(Erased && "Not in set?");
967 
968   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
969 }
970 
971 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
972   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
973   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
974 
975   if (!isFuncTypeConvertible(FPT))
976     return llvm::StructType::get(getLLVMContext());
977 
978   const CGFunctionInfo *Info;
979   if (isa<CXXDestructorDecl>(MD))
980     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
981   else
982     Info = &arrangeCXXMethodDeclaration(MD);
983   return GetFunctionType(*Info);
984 }
985 
986 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
987                                            const Decl *TargetDecl,
988                                            AttributeListType &PAL,
989                                            unsigned &CallingConv,
990                                            bool AttrOnCallSite) {
991   llvm::AttrBuilder FuncAttrs;
992   llvm::AttrBuilder RetAttrs;
993 
994   CallingConv = FI.getEffectiveCallingConvention();
995 
996   if (FI.isNoReturn())
997     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
998 
999   // FIXME: handle sseregparm someday...
1000   if (TargetDecl) {
1001     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1002       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1003     if (TargetDecl->hasAttr<NoThrowAttr>())
1004       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1005     if (TargetDecl->hasAttr<NoReturnAttr>())
1006       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1007 
1008     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1009       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1010       if (FPT && FPT->isNothrow(getContext()))
1011         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1012       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1013       // These attributes are not inherited by overloads.
1014       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1015       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1016         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1017     }
1018 
1019     // 'const' and 'pure' attribute functions are also nounwind.
1020     if (TargetDecl->hasAttr<ConstAttr>()) {
1021       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1022       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1023     } else if (TargetDecl->hasAttr<PureAttr>()) {
1024       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1025       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1026     }
1027     if (TargetDecl->hasAttr<MallocAttr>())
1028       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1029   }
1030 
1031   if (CodeGenOpts.OptimizeSize)
1032     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1033   if (CodeGenOpts.OptimizeSize == 2)
1034     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1035   if (CodeGenOpts.DisableRedZone)
1036     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1037   if (CodeGenOpts.NoImplicitFloat)
1038     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1039 
1040   if (AttrOnCallSite) {
1041     // Attributes that should go on the call site only.
1042     if (!CodeGenOpts.SimplifyLibCalls)
1043       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1044   } else {
1045     // Attributes that should go on the function, but not the call site.
1046     if (!CodeGenOpts.DisableFPElim) {
1047       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1048     } else if (CodeGenOpts.OmitLeafFramePointer) {
1049       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1050       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1051     } else {
1052       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1053       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1054     }
1055 
1056     FuncAttrs.addAttribute("less-precise-fpmad",
1057                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1058     FuncAttrs.addAttribute("no-infs-fp-math",
1059                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1060     FuncAttrs.addAttribute("no-nans-fp-math",
1061                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1062     FuncAttrs.addAttribute("unsafe-fp-math",
1063                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1064     FuncAttrs.addAttribute("use-soft-float",
1065                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1066     FuncAttrs.addAttribute("stack-protector-buffer-size",
1067                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1068 
1069     if (!CodeGenOpts.StackRealignment)
1070       FuncAttrs.addAttribute("no-realign-stack");
1071   }
1072 
1073   QualType RetTy = FI.getReturnType();
1074   unsigned Index = 1;
1075   const ABIArgInfo &RetAI = FI.getReturnInfo();
1076   switch (RetAI.getKind()) {
1077   case ABIArgInfo::Extend:
1078     if (RetTy->hasSignedIntegerRepresentation())
1079       RetAttrs.addAttribute(llvm::Attribute::SExt);
1080     else if (RetTy->hasUnsignedIntegerRepresentation())
1081       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1082     // FALL THROUGH
1083   case ABIArgInfo::Direct:
1084     if (RetAI.getInReg())
1085       RetAttrs.addAttribute(llvm::Attribute::InReg);
1086     break;
1087   case ABIArgInfo::Ignore:
1088     break;
1089 
1090   case ABIArgInfo::Indirect: {
1091     llvm::AttrBuilder SRETAttrs;
1092     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1093     if (RetAI.getInReg())
1094       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1095     PAL.push_back(llvm::
1096                   AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
1097 
1098     ++Index;
1099     // sret disables readnone and readonly
1100     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1101       .removeAttribute(llvm::Attribute::ReadNone);
1102     break;
1103   }
1104 
1105   case ABIArgInfo::Expand:
1106     llvm_unreachable("Invalid ABI kind for return argument");
1107   }
1108 
1109   if (RetAttrs.hasAttributes())
1110     PAL.push_back(llvm::
1111                   AttributeSet::get(getLLVMContext(),
1112                                     llvm::AttributeSet::ReturnIndex,
1113                                     RetAttrs));
1114 
1115   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1116          ie = FI.arg_end(); it != ie; ++it) {
1117     QualType ParamType = it->type;
1118     const ABIArgInfo &AI = it->info;
1119     llvm::AttrBuilder Attrs;
1120 
1121     if (AI.getPaddingType()) {
1122       if (AI.getPaddingInReg())
1123         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1124                                               llvm::Attribute::InReg));
1125       // Increment Index if there is padding.
1126       ++Index;
1127     }
1128 
1129     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1130     // have the corresponding parameter variable.  It doesn't make
1131     // sense to do it here because parameters are so messed up.
1132     switch (AI.getKind()) {
1133     case ABIArgInfo::Extend:
1134       if (ParamType->isSignedIntegerOrEnumerationType())
1135         Attrs.addAttribute(llvm::Attribute::SExt);
1136       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1137         Attrs.addAttribute(llvm::Attribute::ZExt);
1138       // FALL THROUGH
1139     case ABIArgInfo::Direct:
1140       if (AI.getInReg())
1141         Attrs.addAttribute(llvm::Attribute::InReg);
1142 
1143       // FIXME: handle sseregparm someday...
1144 
1145       if (llvm::StructType *STy =
1146           dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1147         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1148         if (Attrs.hasAttributes())
1149           for (unsigned I = 0; I < Extra; ++I)
1150             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1151                                                   Attrs));
1152         Index += Extra;
1153       }
1154       break;
1155 
1156     case ABIArgInfo::Indirect:
1157       if (AI.getInReg())
1158         Attrs.addAttribute(llvm::Attribute::InReg);
1159 
1160       if (AI.getIndirectByVal())
1161         Attrs.addAttribute(llvm::Attribute::ByVal);
1162 
1163       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1164 
1165       // byval disables readnone and readonly.
1166       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1167         .removeAttribute(llvm::Attribute::ReadNone);
1168       break;
1169 
1170     case ABIArgInfo::Ignore:
1171       // Skip increment, no matching LLVM parameter.
1172       continue;
1173 
1174     case ABIArgInfo::Expand: {
1175       SmallVector<llvm::Type*, 8> types;
1176       // FIXME: This is rather inefficient. Do we ever actually need to do
1177       // anything here? The result should be just reconstructed on the other
1178       // side, so extension should be a non-issue.
1179       getTypes().GetExpandedTypes(ParamType, types);
1180       Index += types.size();
1181       continue;
1182     }
1183     }
1184 
1185     if (Attrs.hasAttributes())
1186       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1187     ++Index;
1188   }
1189   if (FuncAttrs.hasAttributes())
1190     PAL.push_back(llvm::
1191                   AttributeSet::get(getLLVMContext(),
1192                                     llvm::AttributeSet::FunctionIndex,
1193                                     FuncAttrs));
1194 }
1195 
1196 /// An argument came in as a promoted argument; demote it back to its
1197 /// declared type.
1198 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1199                                          const VarDecl *var,
1200                                          llvm::Value *value) {
1201   llvm::Type *varType = CGF.ConvertType(var->getType());
1202 
1203   // This can happen with promotions that actually don't change the
1204   // underlying type, like the enum promotions.
1205   if (value->getType() == varType) return value;
1206 
1207   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1208          && "unexpected promotion type");
1209 
1210   if (isa<llvm::IntegerType>(varType))
1211     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1212 
1213   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1214 }
1215 
1216 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1217                                          llvm::Function *Fn,
1218                                          const FunctionArgList &Args) {
1219   // If this is an implicit-return-zero function, go ahead and
1220   // initialize the return value.  TODO: it might be nice to have
1221   // a more general mechanism for this that didn't require synthesized
1222   // return statements.
1223   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1224     if (FD->hasImplicitReturnZero()) {
1225       QualType RetTy = FD->getResultType().getUnqualifiedType();
1226       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1227       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1228       Builder.CreateStore(Zero, ReturnValue);
1229     }
1230   }
1231 
1232   // FIXME: We no longer need the types from FunctionArgList; lift up and
1233   // simplify.
1234 
1235   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1236   llvm::Function::arg_iterator AI = Fn->arg_begin();
1237 
1238   // Name the struct return argument.
1239   if (CGM.ReturnTypeUsesSRet(FI)) {
1240     AI->setName("agg.result");
1241     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1242                                         AI->getArgNo() + 1,
1243                                         llvm::Attribute::NoAlias));
1244     ++AI;
1245   }
1246 
1247   assert(FI.arg_size() == Args.size() &&
1248          "Mismatch between function signature & arguments.");
1249   unsigned ArgNo = 1;
1250   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1251   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1252        i != e; ++i, ++info_it, ++ArgNo) {
1253     const VarDecl *Arg = *i;
1254     QualType Ty = info_it->type;
1255     const ABIArgInfo &ArgI = info_it->info;
1256 
1257     bool isPromoted =
1258       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1259 
1260     // Skip the dummy padding argument.
1261     if (ArgI.getPaddingType())
1262       ++AI;
1263 
1264     switch (ArgI.getKind()) {
1265     case ABIArgInfo::Indirect: {
1266       llvm::Value *V = AI;
1267 
1268       if (!hasScalarEvaluationKind(Ty)) {
1269         // Aggregates and complex variables are accessed by reference.  All we
1270         // need to do is realign the value, if requested
1271         if (ArgI.getIndirectRealign()) {
1272           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1273 
1274           // Copy from the incoming argument pointer to the temporary with the
1275           // appropriate alignment.
1276           //
1277           // FIXME: We should have a common utility for generating an aggregate
1278           // copy.
1279           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1280           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1281           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1282           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1283           Builder.CreateMemCpy(Dst,
1284                                Src,
1285                                llvm::ConstantInt::get(IntPtrTy,
1286                                                       Size.getQuantity()),
1287                                ArgI.getIndirectAlign(),
1288                                false);
1289           V = AlignedTemp;
1290         }
1291       } else {
1292         // Load scalar value from indirect argument.
1293         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1294         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1295 
1296         if (isPromoted)
1297           V = emitArgumentDemotion(*this, Arg, V);
1298       }
1299       EmitParmDecl(*Arg, V, ArgNo);
1300       break;
1301     }
1302 
1303     case ABIArgInfo::Extend:
1304     case ABIArgInfo::Direct: {
1305 
1306       // If we have the trivial case, handle it with no muss and fuss.
1307       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1308           ArgI.getCoerceToType() == ConvertType(Ty) &&
1309           ArgI.getDirectOffset() == 0) {
1310         assert(AI != Fn->arg_end() && "Argument mismatch!");
1311         llvm::Value *V = AI;
1312 
1313         if (Arg->getType().isRestrictQualified())
1314           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1315                                               AI->getArgNo() + 1,
1316                                               llvm::Attribute::NoAlias));
1317 
1318         // Ensure the argument is the correct type.
1319         if (V->getType() != ArgI.getCoerceToType())
1320           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1321 
1322         if (isPromoted)
1323           V = emitArgumentDemotion(*this, Arg, V);
1324 
1325         if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1326           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1327             V = CGM.getCXXABI().adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1328         }
1329 
1330         // Because of merging of function types from multiple decls it is
1331         // possible for the type of an argument to not match the corresponding
1332         // type in the function type. Since we are codegening the callee
1333         // in here, add a cast to the argument type.
1334         llvm::Type *LTy = ConvertType(Arg->getType());
1335         if (V->getType() != LTy)
1336           V = Builder.CreateBitCast(V, LTy);
1337 
1338         EmitParmDecl(*Arg, V, ArgNo);
1339         break;
1340       }
1341 
1342       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1343 
1344       // The alignment we need to use is the max of the requested alignment for
1345       // the argument plus the alignment required by our access code below.
1346       unsigned AlignmentToUse =
1347         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1348       AlignmentToUse = std::max(AlignmentToUse,
1349                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1350 
1351       Alloca->setAlignment(AlignmentToUse);
1352       llvm::Value *V = Alloca;
1353       llvm::Value *Ptr = V;    // Pointer to store into.
1354 
1355       // If the value is offset in memory, apply the offset now.
1356       if (unsigned Offs = ArgI.getDirectOffset()) {
1357         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1358         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1359         Ptr = Builder.CreateBitCast(Ptr,
1360                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1361       }
1362 
1363       // If the coerce-to type is a first class aggregate, we flatten it and
1364       // pass the elements. Either way is semantically identical, but fast-isel
1365       // and the optimizer generally likes scalar values better than FCAs.
1366       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1367       if (STy && STy->getNumElements() > 1) {
1368         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1369         llvm::Type *DstTy =
1370           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1371         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1372 
1373         if (SrcSize <= DstSize) {
1374           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1375 
1376           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1377             assert(AI != Fn->arg_end() && "Argument mismatch!");
1378             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1379             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1380             Builder.CreateStore(AI++, EltPtr);
1381           }
1382         } else {
1383           llvm::AllocaInst *TempAlloca =
1384             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1385           TempAlloca->setAlignment(AlignmentToUse);
1386           llvm::Value *TempV = TempAlloca;
1387 
1388           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1389             assert(AI != Fn->arg_end() && "Argument mismatch!");
1390             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1391             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1392             Builder.CreateStore(AI++, EltPtr);
1393           }
1394 
1395           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1396         }
1397       } else {
1398         // Simple case, just do a coerced store of the argument into the alloca.
1399         assert(AI != Fn->arg_end() && "Argument mismatch!");
1400         AI->setName(Arg->getName() + ".coerce");
1401         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1402       }
1403 
1404 
1405       // Match to what EmitParmDecl is expecting for this type.
1406       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1407         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1408         if (isPromoted)
1409           V = emitArgumentDemotion(*this, Arg, V);
1410       }
1411       EmitParmDecl(*Arg, V, ArgNo);
1412       continue;  // Skip ++AI increment, already done.
1413     }
1414 
1415     case ABIArgInfo::Expand: {
1416       // If this structure was expanded into multiple arguments then
1417       // we need to create a temporary and reconstruct it from the
1418       // arguments.
1419       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1420       CharUnits Align = getContext().getDeclAlign(Arg);
1421       Alloca->setAlignment(Align.getQuantity());
1422       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1423       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1424       EmitParmDecl(*Arg, Alloca, ArgNo);
1425 
1426       // Name the arguments used in expansion and increment AI.
1427       unsigned Index = 0;
1428       for (; AI != End; ++AI, ++Index)
1429         AI->setName(Arg->getName() + "." + Twine(Index));
1430       continue;
1431     }
1432 
1433     case ABIArgInfo::Ignore:
1434       // Initialize the local variable appropriately.
1435       if (!hasScalarEvaluationKind(Ty))
1436         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1437       else
1438         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1439                      ArgNo);
1440 
1441       // Skip increment, no matching LLVM parameter.
1442       continue;
1443     }
1444 
1445     ++AI;
1446   }
1447   assert(AI == Fn->arg_end() && "Argument mismatch!");
1448 }
1449 
1450 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1451   while (insn->use_empty()) {
1452     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1453     if (!bitcast) return;
1454 
1455     // This is "safe" because we would have used a ConstantExpr otherwise.
1456     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1457     bitcast->eraseFromParent();
1458   }
1459 }
1460 
1461 /// Try to emit a fused autorelease of a return result.
1462 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1463                                                     llvm::Value *result) {
1464   // We must be immediately followed the cast.
1465   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1466   if (BB->empty()) return 0;
1467   if (&BB->back() != result) return 0;
1468 
1469   llvm::Type *resultType = result->getType();
1470 
1471   // result is in a BasicBlock and is therefore an Instruction.
1472   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1473 
1474   SmallVector<llvm::Instruction*,4> insnsToKill;
1475 
1476   // Look for:
1477   //  %generator = bitcast %type1* %generator2 to %type2*
1478   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1479     // We would have emitted this as a constant if the operand weren't
1480     // an Instruction.
1481     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1482 
1483     // Require the generator to be immediately followed by the cast.
1484     if (generator->getNextNode() != bitcast)
1485       return 0;
1486 
1487     insnsToKill.push_back(bitcast);
1488   }
1489 
1490   // Look for:
1491   //   %generator = call i8* @objc_retain(i8* %originalResult)
1492   // or
1493   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1494   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1495   if (!call) return 0;
1496 
1497   bool doRetainAutorelease;
1498 
1499   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1500     doRetainAutorelease = true;
1501   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1502                                           .objc_retainAutoreleasedReturnValue) {
1503     doRetainAutorelease = false;
1504 
1505     // If we emitted an assembly marker for this call (and the
1506     // ARCEntrypoints field should have been set if so), go looking
1507     // for that call.  If we can't find it, we can't do this
1508     // optimization.  But it should always be the immediately previous
1509     // instruction, unless we needed bitcasts around the call.
1510     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1511       llvm::Instruction *prev = call->getPrevNode();
1512       assert(prev);
1513       if (isa<llvm::BitCastInst>(prev)) {
1514         prev = prev->getPrevNode();
1515         assert(prev);
1516       }
1517       assert(isa<llvm::CallInst>(prev));
1518       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1519                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1520       insnsToKill.push_back(prev);
1521     }
1522   } else {
1523     return 0;
1524   }
1525 
1526   result = call->getArgOperand(0);
1527   insnsToKill.push_back(call);
1528 
1529   // Keep killing bitcasts, for sanity.  Note that we no longer care
1530   // about precise ordering as long as there's exactly one use.
1531   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1532     if (!bitcast->hasOneUse()) break;
1533     insnsToKill.push_back(bitcast);
1534     result = bitcast->getOperand(0);
1535   }
1536 
1537   // Delete all the unnecessary instructions, from latest to earliest.
1538   for (SmallVectorImpl<llvm::Instruction*>::iterator
1539          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1540     (*i)->eraseFromParent();
1541 
1542   // Do the fused retain/autorelease if we were asked to.
1543   if (doRetainAutorelease)
1544     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1545 
1546   // Cast back to the result type.
1547   return CGF.Builder.CreateBitCast(result, resultType);
1548 }
1549 
1550 /// If this is a +1 of the value of an immutable 'self', remove it.
1551 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1552                                           llvm::Value *result) {
1553   // This is only applicable to a method with an immutable 'self'.
1554   const ObjCMethodDecl *method =
1555     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1556   if (!method) return 0;
1557   const VarDecl *self = method->getSelfDecl();
1558   if (!self->getType().isConstQualified()) return 0;
1559 
1560   // Look for a retain call.
1561   llvm::CallInst *retainCall =
1562     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1563   if (!retainCall ||
1564       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1565     return 0;
1566 
1567   // Look for an ordinary load of 'self'.
1568   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1569   llvm::LoadInst *load =
1570     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1571   if (!load || load->isAtomic() || load->isVolatile() ||
1572       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1573     return 0;
1574 
1575   // Okay!  Burn it all down.  This relies for correctness on the
1576   // assumption that the retain is emitted as part of the return and
1577   // that thereafter everything is used "linearly".
1578   llvm::Type *resultType = result->getType();
1579   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1580   assert(retainCall->use_empty());
1581   retainCall->eraseFromParent();
1582   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1583 
1584   return CGF.Builder.CreateBitCast(load, resultType);
1585 }
1586 
1587 /// Emit an ARC autorelease of the result of a function.
1588 ///
1589 /// \return the value to actually return from the function
1590 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1591                                             llvm::Value *result) {
1592   // If we're returning 'self', kill the initial retain.  This is a
1593   // heuristic attempt to "encourage correctness" in the really unfortunate
1594   // case where we have a return of self during a dealloc and we desperately
1595   // need to avoid the possible autorelease.
1596   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1597     return self;
1598 
1599   // At -O0, try to emit a fused retain/autorelease.
1600   if (CGF.shouldUseFusedARCCalls())
1601     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1602       return fused;
1603 
1604   return CGF.EmitARCAutoreleaseReturnValue(result);
1605 }
1606 
1607 /// Heuristically search for a dominating store to the return-value slot.
1608 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1609   // If there are multiple uses of the return-value slot, just check
1610   // for something immediately preceding the IP.  Sometimes this can
1611   // happen with how we generate implicit-returns; it can also happen
1612   // with noreturn cleanups.
1613   if (!CGF.ReturnValue->hasOneUse()) {
1614     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1615     if (IP->empty()) return 0;
1616     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1617     if (!store) return 0;
1618     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1619     assert(!store->isAtomic() && !store->isVolatile()); // see below
1620     return store;
1621   }
1622 
1623   llvm::StoreInst *store =
1624     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1625   if (!store) return 0;
1626 
1627   // These aren't actually possible for non-coerced returns, and we
1628   // only care about non-coerced returns on this code path.
1629   assert(!store->isAtomic() && !store->isVolatile());
1630 
1631   // Now do a first-and-dirty dominance check: just walk up the
1632   // single-predecessors chain from the current insertion point.
1633   llvm::BasicBlock *StoreBB = store->getParent();
1634   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1635   while (IP != StoreBB) {
1636     if (!(IP = IP->getSinglePredecessor()))
1637       return 0;
1638   }
1639 
1640   // Okay, the store's basic block dominates the insertion point; we
1641   // can do our thing.
1642   return store;
1643 }
1644 
1645 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1646                                          bool EmitRetDbgLoc) {
1647   // Functions with no result always return void.
1648   if (ReturnValue == 0) {
1649     Builder.CreateRetVoid();
1650     return;
1651   }
1652 
1653   llvm::DebugLoc RetDbgLoc;
1654   llvm::Value *RV = 0;
1655   QualType RetTy = FI.getReturnType();
1656   const ABIArgInfo &RetAI = FI.getReturnInfo();
1657 
1658   switch (RetAI.getKind()) {
1659   case ABIArgInfo::Indirect: {
1660     switch (getEvaluationKind(RetTy)) {
1661     case TEK_Complex: {
1662       ComplexPairTy RT =
1663         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy));
1664       EmitStoreOfComplex(RT,
1665                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1666                          /*isInit*/ true);
1667       break;
1668     }
1669     case TEK_Aggregate:
1670       // Do nothing; aggregrates get evaluated directly into the destination.
1671       break;
1672     case TEK_Scalar:
1673       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1674                         MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1675                         /*isInit*/ true);
1676       break;
1677     }
1678     break;
1679   }
1680 
1681   case ABIArgInfo::Extend:
1682   case ABIArgInfo::Direct:
1683     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1684         RetAI.getDirectOffset() == 0) {
1685       // The internal return value temp always will have pointer-to-return-type
1686       // type, just do a load.
1687 
1688       // If there is a dominating store to ReturnValue, we can elide
1689       // the load, zap the store, and usually zap the alloca.
1690       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1691         // Reuse the debug location from the store unless there is
1692         // cleanup code to be emitted between the store and return
1693         // instruction.
1694         if (EmitRetDbgLoc && !AutoreleaseResult)
1695           RetDbgLoc = SI->getDebugLoc();
1696         // Get the stored value and nuke the now-dead store.
1697         RV = SI->getValueOperand();
1698         SI->eraseFromParent();
1699 
1700         // If that was the only use of the return value, nuke it as well now.
1701         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1702           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1703           ReturnValue = 0;
1704         }
1705 
1706       // Otherwise, we have to do a simple load.
1707       } else {
1708         RV = Builder.CreateLoad(ReturnValue);
1709       }
1710     } else {
1711       llvm::Value *V = ReturnValue;
1712       // If the value is offset in memory, apply the offset now.
1713       if (unsigned Offs = RetAI.getDirectOffset()) {
1714         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1715         V = Builder.CreateConstGEP1_32(V, Offs);
1716         V = Builder.CreateBitCast(V,
1717                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1718       }
1719 
1720       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1721     }
1722 
1723     // In ARC, end functions that return a retainable type with a call
1724     // to objc_autoreleaseReturnValue.
1725     if (AutoreleaseResult) {
1726       assert(getLangOpts().ObjCAutoRefCount &&
1727              !FI.isReturnsRetained() &&
1728              RetTy->isObjCRetainableType());
1729       RV = emitAutoreleaseOfResult(*this, RV);
1730     }
1731 
1732     break;
1733 
1734   case ABIArgInfo::Ignore:
1735     break;
1736 
1737   case ABIArgInfo::Expand:
1738     llvm_unreachable("Invalid ABI kind for return argument");
1739   }
1740 
1741   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1742   if (!RetDbgLoc.isUnknown())
1743     Ret->setDebugLoc(RetDbgLoc);
1744 }
1745 
1746 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1747                                           const VarDecl *param) {
1748   // StartFunction converted the ABI-lowered parameter(s) into a
1749   // local alloca.  We need to turn that into an r-value suitable
1750   // for EmitCall.
1751   llvm::Value *local = GetAddrOfLocalVar(param);
1752 
1753   QualType type = param->getType();
1754 
1755   // For the most part, we just need to load the alloca, except:
1756   // 1) aggregate r-values are actually pointers to temporaries, and
1757   // 2) references to non-scalars are pointers directly to the aggregate.
1758   // I don't know why references to scalars are different here.
1759   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1760     if (!hasScalarEvaluationKind(ref->getPointeeType()))
1761       return args.add(RValue::getAggregate(local), type);
1762 
1763     // Locals which are references to scalars are represented
1764     // with allocas holding the pointer.
1765     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1766   }
1767 
1768   args.add(convertTempToRValue(local, type), type);
1769 }
1770 
1771 static bool isProvablyNull(llvm::Value *addr) {
1772   return isa<llvm::ConstantPointerNull>(addr);
1773 }
1774 
1775 static bool isProvablyNonNull(llvm::Value *addr) {
1776   return isa<llvm::AllocaInst>(addr);
1777 }
1778 
1779 /// Emit the actual writing-back of a writeback.
1780 static void emitWriteback(CodeGenFunction &CGF,
1781                           const CallArgList::Writeback &writeback) {
1782   const LValue &srcLV = writeback.Source;
1783   llvm::Value *srcAddr = srcLV.getAddress();
1784   assert(!isProvablyNull(srcAddr) &&
1785          "shouldn't have writeback for provably null argument");
1786 
1787   llvm::BasicBlock *contBB = 0;
1788 
1789   // If the argument wasn't provably non-null, we need to null check
1790   // before doing the store.
1791   bool provablyNonNull = isProvablyNonNull(srcAddr);
1792   if (!provablyNonNull) {
1793     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1794     contBB = CGF.createBasicBlock("icr.done");
1795 
1796     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1797     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1798     CGF.EmitBlock(writebackBB);
1799   }
1800 
1801   // Load the value to writeback.
1802   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1803 
1804   // Cast it back, in case we're writing an id to a Foo* or something.
1805   value = CGF.Builder.CreateBitCast(value,
1806                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1807                             "icr.writeback-cast");
1808 
1809   // Perform the writeback.
1810 
1811   // If we have a "to use" value, it's something we need to emit a use
1812   // of.  This has to be carefully threaded in: if it's done after the
1813   // release it's potentially undefined behavior (and the optimizer
1814   // will ignore it), and if it happens before the retain then the
1815   // optimizer could move the release there.
1816   if (writeback.ToUse) {
1817     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
1818 
1819     // Retain the new value.  No need to block-copy here:  the block's
1820     // being passed up the stack.
1821     value = CGF.EmitARCRetainNonBlock(value);
1822 
1823     // Emit the intrinsic use here.
1824     CGF.EmitARCIntrinsicUse(writeback.ToUse);
1825 
1826     // Load the old value (primitively).
1827     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV);
1828 
1829     // Put the new value in place (primitively).
1830     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
1831 
1832     // Release the old value.
1833     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
1834 
1835   // Otherwise, we can just do a normal lvalue store.
1836   } else {
1837     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
1838   }
1839 
1840   // Jump to the continuation block.
1841   if (!provablyNonNull)
1842     CGF.EmitBlock(contBB);
1843 }
1844 
1845 static void emitWritebacks(CodeGenFunction &CGF,
1846                            const CallArgList &args) {
1847   for (CallArgList::writeback_iterator
1848          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1849     emitWriteback(CGF, *i);
1850 }
1851 
1852 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
1853                                             const CallArgList &CallArgs) {
1854   assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee());
1855   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
1856     CallArgs.getCleanupsToDeactivate();
1857   // Iterate in reverse to increase the likelihood of popping the cleanup.
1858   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
1859          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
1860     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
1861     I->IsActiveIP->eraseFromParent();
1862   }
1863 }
1864 
1865 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
1866   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
1867     if (uop->getOpcode() == UO_AddrOf)
1868       return uop->getSubExpr();
1869   return 0;
1870 }
1871 
1872 /// Emit an argument that's being passed call-by-writeback.  That is,
1873 /// we are passing the address of
1874 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1875                              const ObjCIndirectCopyRestoreExpr *CRE) {
1876   LValue srcLV;
1877 
1878   // Make an optimistic effort to emit the address as an l-value.
1879   // This can fail if the the argument expression is more complicated.
1880   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
1881     srcLV = CGF.EmitLValue(lvExpr);
1882 
1883   // Otherwise, just emit it as a scalar.
1884   } else {
1885     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1886 
1887     QualType srcAddrType =
1888       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1889     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
1890   }
1891   llvm::Value *srcAddr = srcLV.getAddress();
1892 
1893   // The dest and src types don't necessarily match in LLVM terms
1894   // because of the crazy ObjC compatibility rules.
1895 
1896   llvm::PointerType *destType =
1897     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1898 
1899   // If the address is a constant null, just pass the appropriate null.
1900   if (isProvablyNull(srcAddr)) {
1901     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1902              CRE->getType());
1903     return;
1904   }
1905 
1906   // Create the temporary.
1907   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1908                                            "icr.temp");
1909   // Loading an l-value can introduce a cleanup if the l-value is __weak,
1910   // and that cleanup will be conditional if we can't prove that the l-value
1911   // isn't null, so we need to register a dominating point so that the cleanups
1912   // system will make valid IR.
1913   CodeGenFunction::ConditionalEvaluation condEval(CGF);
1914 
1915   // Zero-initialize it if we're not doing a copy-initialization.
1916   bool shouldCopy = CRE->shouldCopy();
1917   if (!shouldCopy) {
1918     llvm::Value *null =
1919       llvm::ConstantPointerNull::get(
1920         cast<llvm::PointerType>(destType->getElementType()));
1921     CGF.Builder.CreateStore(null, temp);
1922   }
1923 
1924   llvm::BasicBlock *contBB = 0;
1925   llvm::BasicBlock *originBB = 0;
1926 
1927   // If the address is *not* known to be non-null, we need to switch.
1928   llvm::Value *finalArgument;
1929 
1930   bool provablyNonNull = isProvablyNonNull(srcAddr);
1931   if (provablyNonNull) {
1932     finalArgument = temp;
1933   } else {
1934     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1935 
1936     finalArgument = CGF.Builder.CreateSelect(isNull,
1937                                    llvm::ConstantPointerNull::get(destType),
1938                                              temp, "icr.argument");
1939 
1940     // If we need to copy, then the load has to be conditional, which
1941     // means we need control flow.
1942     if (shouldCopy) {
1943       originBB = CGF.Builder.GetInsertBlock();
1944       contBB = CGF.createBasicBlock("icr.cont");
1945       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1946       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1947       CGF.EmitBlock(copyBB);
1948       condEval.begin(CGF);
1949     }
1950   }
1951 
1952   llvm::Value *valueToUse = 0;
1953 
1954   // Perform a copy if necessary.
1955   if (shouldCopy) {
1956     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1957     assert(srcRV.isScalar());
1958 
1959     llvm::Value *src = srcRV.getScalarVal();
1960     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1961                                     "icr.cast");
1962 
1963     // Use an ordinary store, not a store-to-lvalue.
1964     CGF.Builder.CreateStore(src, temp);
1965 
1966     // If optimization is enabled, and the value was held in a
1967     // __strong variable, we need to tell the optimizer that this
1968     // value has to stay alive until we're doing the store back.
1969     // This is because the temporary is effectively unretained,
1970     // and so otherwise we can violate the high-level semantics.
1971     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1972         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
1973       valueToUse = src;
1974     }
1975   }
1976 
1977   // Finish the control flow if we needed it.
1978   if (shouldCopy && !provablyNonNull) {
1979     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
1980     CGF.EmitBlock(contBB);
1981 
1982     // Make a phi for the value to intrinsically use.
1983     if (valueToUse) {
1984       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
1985                                                       "icr.to-use");
1986       phiToUse->addIncoming(valueToUse, copyBB);
1987       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
1988                             originBB);
1989       valueToUse = phiToUse;
1990     }
1991 
1992     condEval.end(CGF);
1993   }
1994 
1995   args.addWriteback(srcLV, temp, valueToUse);
1996   args.add(RValue::get(finalArgument), CRE->getType());
1997 }
1998 
1999 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2000                                   QualType type) {
2001   if (const ObjCIndirectCopyRestoreExpr *CRE
2002         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2003     assert(getLangOpts().ObjCAutoRefCount);
2004     assert(getContext().hasSameType(E->getType(), type));
2005     return emitWritebackArg(*this, args, CRE);
2006   }
2007 
2008   assert(type->isReferenceType() == E->isGLValue() &&
2009          "reference binding to unmaterialized r-value!");
2010 
2011   if (E->isGLValue()) {
2012     assert(E->getObjectKind() == OK_Ordinary);
2013     return args.add(EmitReferenceBindingToExpr(E), type);
2014   }
2015 
2016   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2017 
2018   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2019   // However, we still have to push an EH-only cleanup in case we unwind before
2020   // we make it to the call.
2021   if (HasAggregateEvalKind &&
2022       CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
2023     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2024     if (RD && RD->hasNonTrivialDestructor()) {
2025       AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp");
2026       Slot.setExternallyDestructed();
2027       EmitAggExpr(E, Slot);
2028       RValue RV = Slot.asRValue();
2029       args.add(RV, type);
2030 
2031       pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject,
2032                   /*useEHCleanupForArray*/ true);
2033       // This unreachable is a temporary marker which will be removed later.
2034       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2035       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2036       return;
2037     }
2038   }
2039 
2040   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2041       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2042     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2043     assert(L.isSimple());
2044     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2045       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2046     } else {
2047       // We can't represent a misaligned lvalue in the CallArgList, so copy
2048       // to an aligned temporary now.
2049       llvm::Value *tmp = CreateMemTemp(type);
2050       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2051                         L.getAlignment());
2052       args.add(RValue::getAggregate(tmp), type);
2053     }
2054     return;
2055   }
2056 
2057   args.add(EmitAnyExprToTemp(E), type);
2058 }
2059 
2060 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2061 // optimizer it can aggressively ignore unwind edges.
2062 void
2063 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2064   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2065       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2066     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2067                       CGM.getNoObjCARCExceptionsMetadata());
2068 }
2069 
2070 /// Emits a call to the given no-arguments nounwind runtime function.
2071 llvm::CallInst *
2072 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2073                                          const llvm::Twine &name) {
2074   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2075 }
2076 
2077 /// Emits a call to the given nounwind runtime function.
2078 llvm::CallInst *
2079 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2080                                          ArrayRef<llvm::Value*> args,
2081                                          const llvm::Twine &name) {
2082   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2083   call->setDoesNotThrow();
2084   return call;
2085 }
2086 
2087 /// Emits a simple call (never an invoke) to the given no-arguments
2088 /// runtime function.
2089 llvm::CallInst *
2090 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2091                                  const llvm::Twine &name) {
2092   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2093 }
2094 
2095 /// Emits a simple call (never an invoke) to the given runtime
2096 /// function.
2097 llvm::CallInst *
2098 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2099                                  ArrayRef<llvm::Value*> args,
2100                                  const llvm::Twine &name) {
2101   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2102   call->setCallingConv(getRuntimeCC());
2103   return call;
2104 }
2105 
2106 /// Emits a call or invoke to the given noreturn runtime function.
2107 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2108                                                ArrayRef<llvm::Value*> args) {
2109   if (getInvokeDest()) {
2110     llvm::InvokeInst *invoke =
2111       Builder.CreateInvoke(callee,
2112                            getUnreachableBlock(),
2113                            getInvokeDest(),
2114                            args);
2115     invoke->setDoesNotReturn();
2116     invoke->setCallingConv(getRuntimeCC());
2117   } else {
2118     llvm::CallInst *call = Builder.CreateCall(callee, args);
2119     call->setDoesNotReturn();
2120     call->setCallingConv(getRuntimeCC());
2121     Builder.CreateUnreachable();
2122   }
2123 }
2124 
2125 /// Emits a call or invoke instruction to the given nullary runtime
2126 /// function.
2127 llvm::CallSite
2128 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2129                                          const Twine &name) {
2130   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2131 }
2132 
2133 /// Emits a call or invoke instruction to the given runtime function.
2134 llvm::CallSite
2135 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2136                                          ArrayRef<llvm::Value*> args,
2137                                          const Twine &name) {
2138   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2139   callSite.setCallingConv(getRuntimeCC());
2140   return callSite;
2141 }
2142 
2143 llvm::CallSite
2144 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2145                                   const Twine &Name) {
2146   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2147 }
2148 
2149 /// Emits a call or invoke instruction to the given function, depending
2150 /// on the current state of the EH stack.
2151 llvm::CallSite
2152 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2153                                   ArrayRef<llvm::Value *> Args,
2154                                   const Twine &Name) {
2155   llvm::BasicBlock *InvokeDest = getInvokeDest();
2156 
2157   llvm::Instruction *Inst;
2158   if (!InvokeDest)
2159     Inst = Builder.CreateCall(Callee, Args, Name);
2160   else {
2161     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2162     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2163     EmitBlock(ContBB);
2164   }
2165 
2166   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2167   // optimizer it can aggressively ignore unwind edges.
2168   if (CGM.getLangOpts().ObjCAutoRefCount)
2169     AddObjCARCExceptionMetadata(Inst);
2170 
2171   return Inst;
2172 }
2173 
2174 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2175                             llvm::FunctionType *FTy) {
2176   if (ArgNo < FTy->getNumParams())
2177     assert(Elt->getType() == FTy->getParamType(ArgNo));
2178   else
2179     assert(FTy->isVarArg());
2180   ++ArgNo;
2181 }
2182 
2183 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2184                                        SmallVectorImpl<llvm::Value *> &Args,
2185                                        llvm::FunctionType *IRFuncTy) {
2186   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2187     unsigned NumElts = AT->getSize().getZExtValue();
2188     QualType EltTy = AT->getElementType();
2189     llvm::Value *Addr = RV.getAggregateAddr();
2190     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2191       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2192       RValue EltRV = convertTempToRValue(EltAddr, EltTy);
2193       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2194     }
2195   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2196     RecordDecl *RD = RT->getDecl();
2197     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2198     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2199 
2200     if (RD->isUnion()) {
2201       const FieldDecl *LargestFD = 0;
2202       CharUnits UnionSize = CharUnits::Zero();
2203 
2204       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2205            i != e; ++i) {
2206         const FieldDecl *FD = *i;
2207         assert(!FD->isBitField() &&
2208                "Cannot expand structure with bit-field members.");
2209         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2210         if (UnionSize < FieldSize) {
2211           UnionSize = FieldSize;
2212           LargestFD = FD;
2213         }
2214       }
2215       if (LargestFD) {
2216         RValue FldRV = EmitRValueForField(LV, LargestFD);
2217         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2218       }
2219     } else {
2220       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2221            i != e; ++i) {
2222         FieldDecl *FD = *i;
2223 
2224         RValue FldRV = EmitRValueForField(LV, FD);
2225         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2226       }
2227     }
2228   } else if (Ty->isAnyComplexType()) {
2229     ComplexPairTy CV = RV.getComplexVal();
2230     Args.push_back(CV.first);
2231     Args.push_back(CV.second);
2232   } else {
2233     assert(RV.isScalar() &&
2234            "Unexpected non-scalar rvalue during struct expansion.");
2235 
2236     // Insert a bitcast as needed.
2237     llvm::Value *V = RV.getScalarVal();
2238     if (Args.size() < IRFuncTy->getNumParams() &&
2239         V->getType() != IRFuncTy->getParamType(Args.size()))
2240       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2241 
2242     Args.push_back(V);
2243   }
2244 }
2245 
2246 
2247 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2248                                  llvm::Value *Callee,
2249                                  ReturnValueSlot ReturnValue,
2250                                  const CallArgList &CallArgs,
2251                                  const Decl *TargetDecl,
2252                                  llvm::Instruction **callOrInvoke) {
2253   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2254   SmallVector<llvm::Value*, 16> Args;
2255 
2256   // Handle struct-return functions by passing a pointer to the
2257   // location that we would like to return into.
2258   QualType RetTy = CallInfo.getReturnType();
2259   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2260 
2261   // IRArgNo - Keep track of the argument number in the callee we're looking at.
2262   unsigned IRArgNo = 0;
2263   llvm::FunctionType *IRFuncTy =
2264     cast<llvm::FunctionType>(
2265                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2266 
2267   // If the call returns a temporary with struct return, create a temporary
2268   // alloca to hold the result, unless one is given to us.
2269   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
2270     llvm::Value *Value = ReturnValue.getValue();
2271     if (!Value)
2272       Value = CreateMemTemp(RetTy);
2273     Args.push_back(Value);
2274     checkArgMatches(Value, IRArgNo, IRFuncTy);
2275   }
2276 
2277   assert(CallInfo.arg_size() == CallArgs.size() &&
2278          "Mismatch between function signature & arguments.");
2279   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2280   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2281        I != E; ++I, ++info_it) {
2282     const ABIArgInfo &ArgInfo = info_it->info;
2283     RValue RV = I->RV;
2284 
2285     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2286 
2287     // Insert a padding argument to ensure proper alignment.
2288     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2289       Args.push_back(llvm::UndefValue::get(PaddingType));
2290       ++IRArgNo;
2291     }
2292 
2293     switch (ArgInfo.getKind()) {
2294     case ABIArgInfo::Indirect: {
2295       if (RV.isScalar() || RV.isComplex()) {
2296         // Make a temporary alloca to pass the argument.
2297         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2298         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2299           AI->setAlignment(ArgInfo.getIndirectAlign());
2300         Args.push_back(AI);
2301 
2302         LValue argLV =
2303           MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2304 
2305         if (RV.isScalar())
2306           EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
2307         else
2308           EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
2309 
2310         // Validate argument match.
2311         checkArgMatches(AI, IRArgNo, IRFuncTy);
2312       } else {
2313         // We want to avoid creating an unnecessary temporary+copy here;
2314         // however, we need one in three cases:
2315         // 1. If the argument is not byval, and we are required to copy the
2316         //    source.  (This case doesn't occur on any common architecture.)
2317         // 2. If the argument is byval, RV is not sufficiently aligned, and
2318         //    we cannot force it to be sufficiently aligned.
2319         // 3. If the argument is byval, but RV is located in an address space
2320         //    different than that of the argument (0).
2321         llvm::Value *Addr = RV.getAggregateAddr();
2322         unsigned Align = ArgInfo.getIndirectAlign();
2323         const llvm::DataLayout *TD = &CGM.getDataLayout();
2324         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2325         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2326           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2327         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2328             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2329              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2330              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2331           // Create an aligned temporary, and copy to it.
2332           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2333           if (Align > AI->getAlignment())
2334             AI->setAlignment(Align);
2335           Args.push_back(AI);
2336           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2337 
2338           // Validate argument match.
2339           checkArgMatches(AI, IRArgNo, IRFuncTy);
2340         } else {
2341           // Skip the extra memcpy call.
2342           Args.push_back(Addr);
2343 
2344           // Validate argument match.
2345           checkArgMatches(Addr, IRArgNo, IRFuncTy);
2346         }
2347       }
2348       break;
2349     }
2350 
2351     case ABIArgInfo::Ignore:
2352       break;
2353 
2354     case ABIArgInfo::Extend:
2355     case ABIArgInfo::Direct: {
2356       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2357           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2358           ArgInfo.getDirectOffset() == 0) {
2359         llvm::Value *V;
2360         if (RV.isScalar())
2361           V = RV.getScalarVal();
2362         else
2363           V = Builder.CreateLoad(RV.getAggregateAddr());
2364 
2365         // If the argument doesn't match, perform a bitcast to coerce it.  This
2366         // can happen due to trivial type mismatches.
2367         if (IRArgNo < IRFuncTy->getNumParams() &&
2368             V->getType() != IRFuncTy->getParamType(IRArgNo))
2369           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2370         Args.push_back(V);
2371 
2372         checkArgMatches(V, IRArgNo, IRFuncTy);
2373         break;
2374       }
2375 
2376       // FIXME: Avoid the conversion through memory if possible.
2377       llvm::Value *SrcPtr;
2378       if (RV.isScalar() || RV.isComplex()) {
2379         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2380         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2381         if (RV.isScalar()) {
2382           EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
2383         } else {
2384           EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
2385         }
2386       } else
2387         SrcPtr = RV.getAggregateAddr();
2388 
2389       // If the value is offset in memory, apply the offset now.
2390       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2391         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2392         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2393         SrcPtr = Builder.CreateBitCast(SrcPtr,
2394                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2395 
2396       }
2397 
2398       // If the coerce-to type is a first class aggregate, we flatten it and
2399       // pass the elements. Either way is semantically identical, but fast-isel
2400       // and the optimizer generally likes scalar values better than FCAs.
2401       if (llvm::StructType *STy =
2402             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2403         llvm::Type *SrcTy =
2404           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2405         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2406         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2407 
2408         // If the source type is smaller than the destination type of the
2409         // coerce-to logic, copy the source value into a temp alloca the size
2410         // of the destination type to allow loading all of it. The bits past
2411         // the source value are left undef.
2412         if (SrcSize < DstSize) {
2413           llvm::AllocaInst *TempAlloca
2414             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2415           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2416           SrcPtr = TempAlloca;
2417         } else {
2418           SrcPtr = Builder.CreateBitCast(SrcPtr,
2419                                          llvm::PointerType::getUnqual(STy));
2420         }
2421 
2422         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2423           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2424           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2425           // We don't know what we're loading from.
2426           LI->setAlignment(1);
2427           Args.push_back(LI);
2428 
2429           // Validate argument match.
2430           checkArgMatches(LI, IRArgNo, IRFuncTy);
2431         }
2432       } else {
2433         // In the simple case, just pass the coerced loaded value.
2434         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2435                                          *this));
2436 
2437         // Validate argument match.
2438         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2439       }
2440 
2441       break;
2442     }
2443 
2444     case ABIArgInfo::Expand:
2445       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2446       IRArgNo = Args.size();
2447       break;
2448     }
2449   }
2450 
2451   if (!CallArgs.getCleanupsToDeactivate().empty())
2452     deactivateArgCleanupsBeforeCall(*this, CallArgs);
2453 
2454   // If the callee is a bitcast of a function to a varargs pointer to function
2455   // type, check to see if we can remove the bitcast.  This handles some cases
2456   // with unprototyped functions.
2457   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2458     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2459       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2460       llvm::FunctionType *CurFT =
2461         cast<llvm::FunctionType>(CurPT->getElementType());
2462       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2463 
2464       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2465           ActualFT->getReturnType() == CurFT->getReturnType() &&
2466           ActualFT->getNumParams() == CurFT->getNumParams() &&
2467           ActualFT->getNumParams() == Args.size() &&
2468           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2469         bool ArgsMatch = true;
2470         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2471           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2472             ArgsMatch = false;
2473             break;
2474           }
2475 
2476         // Strip the cast if we can get away with it.  This is a nice cleanup,
2477         // but also allows us to inline the function at -O0 if it is marked
2478         // always_inline.
2479         if (ArgsMatch)
2480           Callee = CalleeF;
2481       }
2482     }
2483 
2484   unsigned CallingConv;
2485   CodeGen::AttributeListType AttributeList;
2486   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2487                              CallingConv, true);
2488   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2489                                                      AttributeList);
2490 
2491   llvm::BasicBlock *InvokeDest = 0;
2492   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2493                           llvm::Attribute::NoUnwind))
2494     InvokeDest = getInvokeDest();
2495 
2496   llvm::CallSite CS;
2497   if (!InvokeDest) {
2498     CS = Builder.CreateCall(Callee, Args);
2499   } else {
2500     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2501     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2502     EmitBlock(Cont);
2503   }
2504   if (callOrInvoke)
2505     *callOrInvoke = CS.getInstruction();
2506 
2507   CS.setAttributes(Attrs);
2508   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2509 
2510   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2511   // optimizer it can aggressively ignore unwind edges.
2512   if (CGM.getLangOpts().ObjCAutoRefCount)
2513     AddObjCARCExceptionMetadata(CS.getInstruction());
2514 
2515   // If the call doesn't return, finish the basic block and clear the
2516   // insertion point; this allows the rest of IRgen to discard
2517   // unreachable code.
2518   if (CS.doesNotReturn()) {
2519     Builder.CreateUnreachable();
2520     Builder.ClearInsertionPoint();
2521 
2522     // FIXME: For now, emit a dummy basic block because expr emitters in
2523     // generally are not ready to handle emitting expressions at unreachable
2524     // points.
2525     EnsureInsertPoint();
2526 
2527     // Return a reasonable RValue.
2528     return GetUndefRValue(RetTy);
2529   }
2530 
2531   llvm::Instruction *CI = CS.getInstruction();
2532   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2533     CI->setName("call");
2534 
2535   // Emit any writebacks immediately.  Arguably this should happen
2536   // after any return-value munging.
2537   if (CallArgs.hasWritebacks())
2538     emitWritebacks(*this, CallArgs);
2539 
2540   switch (RetAI.getKind()) {
2541   case ABIArgInfo::Indirect:
2542     return convertTempToRValue(Args[0], RetTy);
2543 
2544   case ABIArgInfo::Ignore:
2545     // If we are ignoring an argument that had a result, make sure to
2546     // construct the appropriate return value for our caller.
2547     return GetUndefRValue(RetTy);
2548 
2549   case ABIArgInfo::Extend:
2550   case ABIArgInfo::Direct: {
2551     llvm::Type *RetIRTy = ConvertType(RetTy);
2552     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2553       switch (getEvaluationKind(RetTy)) {
2554       case TEK_Complex: {
2555         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2556         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2557         return RValue::getComplex(std::make_pair(Real, Imag));
2558       }
2559       case TEK_Aggregate: {
2560         llvm::Value *DestPtr = ReturnValue.getValue();
2561         bool DestIsVolatile = ReturnValue.isVolatile();
2562 
2563         if (!DestPtr) {
2564           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2565           DestIsVolatile = false;
2566         }
2567         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2568         return RValue::getAggregate(DestPtr);
2569       }
2570       case TEK_Scalar: {
2571         // If the argument doesn't match, perform a bitcast to coerce it.  This
2572         // can happen due to trivial type mismatches.
2573         llvm::Value *V = CI;
2574         if (V->getType() != RetIRTy)
2575           V = Builder.CreateBitCast(V, RetIRTy);
2576         return RValue::get(V);
2577       }
2578       }
2579       llvm_unreachable("bad evaluation kind");
2580     }
2581 
2582     llvm::Value *DestPtr = ReturnValue.getValue();
2583     bool DestIsVolatile = ReturnValue.isVolatile();
2584 
2585     if (!DestPtr) {
2586       DestPtr = CreateMemTemp(RetTy, "coerce");
2587       DestIsVolatile = false;
2588     }
2589 
2590     // If the value is offset in memory, apply the offset now.
2591     llvm::Value *StorePtr = DestPtr;
2592     if (unsigned Offs = RetAI.getDirectOffset()) {
2593       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2594       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2595       StorePtr = Builder.CreateBitCast(StorePtr,
2596                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2597     }
2598     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2599 
2600     return convertTempToRValue(DestPtr, RetTy);
2601   }
2602 
2603   case ABIArgInfo::Expand:
2604     llvm_unreachable("Invalid ABI kind for return argument");
2605   }
2606 
2607   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2608 }
2609 
2610 /* VarArg handling */
2611 
2612 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2613   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2614 }
2615