1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 using namespace clang;
35 using namespace CodeGen;
36 
37 /***/
38 
39 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
40   switch (CC) {
41   default: return llvm::CallingConv::C;
42   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
43   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
44   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
45   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
46   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
47   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
48   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
49   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
50   // TODO: add support for CC_X86Pascal to llvm
51   }
52 }
53 
54 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
55 /// qualification.
56 /// FIXME: address space qualification?
57 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
58   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
59   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
60 }
61 
62 /// Returns the canonical formal type of the given C++ method.
63 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
64   return MD->getType()->getCanonicalTypeUnqualified()
65            .getAs<FunctionProtoType>();
66 }
67 
68 /// Returns the "extra-canonicalized" return type, which discards
69 /// qualifiers on the return type.  Codegen doesn't care about them,
70 /// and it makes ABI code a little easier to be able to assume that
71 /// all parameter and return types are top-level unqualified.
72 static CanQualType GetReturnType(QualType RetTy) {
73   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
74 }
75 
76 /// Arrange the argument and result information for a value of the given
77 /// unprototyped freestanding function type.
78 const CGFunctionInfo &
79 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
80   // When translating an unprototyped function type, always use a
81   // variadic type.
82   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
83                                  false, None, FTNP->getExtInfo(),
84                                  RequiredArgs(0));
85 }
86 
87 /// Arrange the LLVM function layout for a value of the given function
88 /// type, on top of any implicit parameters already stored.
89 static const CGFunctionInfo &
90 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool IsInstanceMethod,
91                         SmallVectorImpl<CanQualType> &prefix,
92                         CanQual<FunctionProtoType> FTP) {
93   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
94   // FIXME: Kill copy.
95   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
96     prefix.push_back(FTP->getParamType(i));
97   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
98   return CGT.arrangeLLVMFunctionInfo(resultType, IsInstanceMethod, prefix,
99                                      FTP->getExtInfo(), required);
100 }
101 
102 /// Arrange the argument and result information for a value of the
103 /// given freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
106   SmallVector<CanQualType, 16> argTypes;
107   return ::arrangeLLVMFunctionInfo(*this, false, argTypes, FTP);
108 }
109 
110 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
111   // Set the appropriate calling convention for the Function.
112   if (D->hasAttr<StdCallAttr>())
113     return CC_X86StdCall;
114 
115   if (D->hasAttr<FastCallAttr>())
116     return CC_X86FastCall;
117 
118   if (D->hasAttr<ThisCallAttr>())
119     return CC_X86ThisCall;
120 
121   if (D->hasAttr<PascalAttr>())
122     return CC_X86Pascal;
123 
124   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
125     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
126 
127   if (D->hasAttr<PnaclCallAttr>())
128     return CC_PnaclCall;
129 
130   if (D->hasAttr<IntelOclBiccAttr>())
131     return CC_IntelOclBicc;
132 
133   if (D->hasAttr<MSABIAttr>())
134     return IsWindows ? CC_C : CC_X86_64Win64;
135 
136   if (D->hasAttr<SysVABIAttr>())
137     return IsWindows ? CC_X86_64SysV : CC_C;
138 
139   return CC_C;
140 }
141 
142 static bool isAAPCSVFP(const CGFunctionInfo &FI, const TargetInfo &Target) {
143   switch (FI.getEffectiveCallingConvention()) {
144   case llvm::CallingConv::C:
145     switch (Target.getTriple().getEnvironment()) {
146     case llvm::Triple::EABIHF:
147     case llvm::Triple::GNUEABIHF:
148       return true;
149     default:
150       return false;
151     }
152   case llvm::CallingConv::ARM_AAPCS_VFP:
153     return true;
154   default:
155     return false;
156   }
157 }
158 
159 /// Arrange the argument and result information for a call to an
160 /// unknown C++ non-static member function of the given abstract type.
161 /// (Zero value of RD means we don't have any meaningful "this" argument type,
162 ///  so fall back to a generic pointer type).
163 /// The member function must be an ordinary function, i.e. not a
164 /// constructor or destructor.
165 const CGFunctionInfo &
166 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
167                                    const FunctionProtoType *FTP) {
168   SmallVector<CanQualType, 16> argTypes;
169 
170   // Add the 'this' pointer.
171   if (RD)
172     argTypes.push_back(GetThisType(Context, RD));
173   else
174     argTypes.push_back(Context.VoidPtrTy);
175 
176   return ::arrangeLLVMFunctionInfo(
177       *this, true, argTypes,
178       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
179 }
180 
181 /// Arrange the argument and result information for a declaration or
182 /// definition of the given C++ non-static member function.  The
183 /// member function must be an ordinary function, i.e. not a
184 /// constructor or destructor.
185 const CGFunctionInfo &
186 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
187   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
188   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
189 
190   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
191 
192   if (MD->isInstance()) {
193     // The abstract case is perfectly fine.
194     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
195     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
196   }
197 
198   return arrangeFreeFunctionType(prototype);
199 }
200 
201 /// Arrange the argument and result information for a declaration
202 /// or definition to the given constructor variant.
203 const CGFunctionInfo &
204 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
205                                                CXXCtorType ctorKind) {
206   SmallVector<CanQualType, 16> argTypes;
207   argTypes.push_back(GetThisType(Context, D->getParent()));
208 
209   GlobalDecl GD(D, ctorKind);
210   CanQualType resultType =
211     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
212 
213   CanQual<FunctionProtoType> FTP = GetFormalType(D);
214 
215   // Add the formal parameters.
216   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
217     argTypes.push_back(FTP->getParamType(i));
218 
219   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
220 
221   RequiredArgs required =
222       (D->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
223 
224   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
225   return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo, required);
226 }
227 
228 /// Arrange a call to a C++ method, passing the given arguments.
229 const CGFunctionInfo &
230 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
231                                         const CXXConstructorDecl *D,
232                                         CXXCtorType CtorKind,
233                                         unsigned ExtraArgs) {
234   // FIXME: Kill copy.
235   SmallVector<CanQualType, 16> ArgTypes;
236   for (const auto &Arg : args)
237     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
238 
239   CanQual<FunctionProtoType> FPT = GetFormalType(D);
240   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
241   GlobalDecl GD(D, CtorKind);
242   CanQualType ResultType =
243       TheCXXABI.HasThisReturn(GD) ? ArgTypes.front() : Context.VoidTy;
244 
245   FunctionType::ExtInfo Info = FPT->getExtInfo();
246   return arrangeLLVMFunctionInfo(ResultType, true, ArgTypes, Info, Required);
247 }
248 
249 /// Arrange the argument and result information for a declaration,
250 /// definition, or call to the given destructor variant.  It so
251 /// happens that all three cases produce the same information.
252 const CGFunctionInfo &
253 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
254                                    CXXDtorType dtorKind) {
255   SmallVector<CanQualType, 2> argTypes;
256   argTypes.push_back(GetThisType(Context, D->getParent()));
257 
258   GlobalDecl GD(D, dtorKind);
259   CanQualType resultType =
260     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
261 
262   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
263 
264   CanQual<FunctionProtoType> FTP = GetFormalType(D);
265   assert(FTP->getNumParams() == 0 && "dtor with formal parameters");
266   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
267 
268   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
269   return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo,
270                                  RequiredArgs::All);
271 }
272 
273 /// Arrange the argument and result information for the declaration or
274 /// definition of the given function.
275 const CGFunctionInfo &
276 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
277   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
278     if (MD->isInstance())
279       return arrangeCXXMethodDeclaration(MD);
280 
281   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
282 
283   assert(isa<FunctionType>(FTy));
284 
285   // When declaring a function without a prototype, always use a
286   // non-variadic type.
287   if (isa<FunctionNoProtoType>(FTy)) {
288     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
289     return arrangeLLVMFunctionInfo(noProto->getReturnType(), false, None,
290                                    noProto->getExtInfo(), RequiredArgs::All);
291   }
292 
293   assert(isa<FunctionProtoType>(FTy));
294   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
295 }
296 
297 /// Arrange the argument and result information for the declaration or
298 /// definition of an Objective-C method.
299 const CGFunctionInfo &
300 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
301   // It happens that this is the same as a call with no optional
302   // arguments, except also using the formal 'self' type.
303   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
304 }
305 
306 /// Arrange the argument and result information for the function type
307 /// through which to perform a send to the given Objective-C method,
308 /// using the given receiver type.  The receiver type is not always
309 /// the 'self' type of the method or even an Objective-C pointer type.
310 /// This is *not* the right method for actually performing such a
311 /// message send, due to the possibility of optional arguments.
312 const CGFunctionInfo &
313 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
314                                               QualType receiverType) {
315   SmallVector<CanQualType, 16> argTys;
316   argTys.push_back(Context.getCanonicalParamType(receiverType));
317   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
318   // FIXME: Kill copy?
319   for (const auto *I : MD->params()) {
320     argTys.push_back(Context.getCanonicalParamType(I->getType()));
321   }
322 
323   FunctionType::ExtInfo einfo;
324   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
325   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
326 
327   if (getContext().getLangOpts().ObjCAutoRefCount &&
328       MD->hasAttr<NSReturnsRetainedAttr>())
329     einfo = einfo.withProducesResult(true);
330 
331   RequiredArgs required =
332     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
333 
334   return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), false,
335                                  argTys, einfo, required);
336 }
337 
338 const CGFunctionInfo &
339 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
340   // FIXME: Do we need to handle ObjCMethodDecl?
341   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
342 
343   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
344     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
345 
346   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
347     return arrangeCXXDestructor(DD, GD.getDtorType());
348 
349   return arrangeFunctionDeclaration(FD);
350 }
351 
352 /// Arrange a call as unto a free function, except possibly with an
353 /// additional number of formal parameters considered required.
354 static const CGFunctionInfo &
355 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
356                             CodeGenModule &CGM,
357                             const CallArgList &args,
358                             const FunctionType *fnType,
359                             unsigned numExtraRequiredArgs) {
360   assert(args.size() >= numExtraRequiredArgs);
361 
362   // In most cases, there are no optional arguments.
363   RequiredArgs required = RequiredArgs::All;
364 
365   // If we have a variadic prototype, the required arguments are the
366   // extra prefix plus the arguments in the prototype.
367   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
368     if (proto->isVariadic())
369       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
370 
371   // If we don't have a prototype at all, but we're supposed to
372   // explicitly use the variadic convention for unprototyped calls,
373   // treat all of the arguments as required but preserve the nominal
374   // possibility of variadics.
375   } else if (CGM.getTargetCodeGenInfo()
376                 .isNoProtoCallVariadic(args,
377                                        cast<FunctionNoProtoType>(fnType))) {
378     required = RequiredArgs(args.size());
379   }
380 
381   return CGT.arrangeFreeFunctionCall(fnType->getReturnType(), args,
382                                      fnType->getExtInfo(), required);
383 }
384 
385 /// Figure out the rules for calling a function with the given formal
386 /// type using the given arguments.  The arguments are necessary
387 /// because the function might be unprototyped, in which case it's
388 /// target-dependent in crazy ways.
389 const CGFunctionInfo &
390 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
391                                       const FunctionType *fnType) {
392   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 0);
393 }
394 
395 /// A block function call is essentially a free-function call with an
396 /// extra implicit argument.
397 const CGFunctionInfo &
398 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
399                                        const FunctionType *fnType) {
400   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1);
401 }
402 
403 const CGFunctionInfo &
404 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
405                                       const CallArgList &args,
406                                       FunctionType::ExtInfo info,
407                                       RequiredArgs required) {
408   // FIXME: Kill copy.
409   SmallVector<CanQualType, 16> argTypes;
410   for (const auto &Arg : args)
411     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
412   return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes,
413                                  info, required);
414 }
415 
416 /// Arrange a call to a C++ method, passing the given arguments.
417 const CGFunctionInfo &
418 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
419                                    const FunctionProtoType *FPT,
420                                    RequiredArgs required) {
421   // FIXME: Kill copy.
422   SmallVector<CanQualType, 16> argTypes;
423   for (const auto &Arg : args)
424     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
425 
426   FunctionType::ExtInfo info = FPT->getExtInfo();
427   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getReturnType()), true,
428                                  argTypes, info, required);
429 }
430 
431 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
432     QualType resultType, const FunctionArgList &args,
433     const FunctionType::ExtInfo &info, bool isVariadic) {
434   // FIXME: Kill copy.
435   SmallVector<CanQualType, 16> argTypes;
436   for (auto Arg : args)
437     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
438 
439   RequiredArgs required =
440     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
441   return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes, info,
442                                  required);
443 }
444 
445 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
446   return arrangeLLVMFunctionInfo(getContext().VoidTy, false, None,
447                                  FunctionType::ExtInfo(), RequiredArgs::All);
448 }
449 
450 /// Arrange the argument and result information for an abstract value
451 /// of a given function type.  This is the method which all of the
452 /// above functions ultimately defer to.
453 const CGFunctionInfo &
454 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
455                                       bool IsInstanceMethod,
456                                       ArrayRef<CanQualType> argTypes,
457                                       FunctionType::ExtInfo info,
458                                       RequiredArgs required) {
459 #ifndef NDEBUG
460   for (ArrayRef<CanQualType>::const_iterator
461          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
462     assert(I->isCanonicalAsParam());
463 #endif
464 
465   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
466 
467   // Lookup or create unique function info.
468   llvm::FoldingSetNodeID ID;
469   CGFunctionInfo::Profile(ID, IsInstanceMethod, info, required, resultType,
470                           argTypes);
471 
472   void *insertPos = nullptr;
473   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
474   if (FI)
475     return *FI;
476 
477   // Construct the function info.  We co-allocate the ArgInfos.
478   FI = CGFunctionInfo::create(CC, IsInstanceMethod, info, resultType, argTypes,
479                               required);
480   FunctionInfos.InsertNode(FI, insertPos);
481 
482   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
483   assert(inserted && "Recursively being processed?");
484 
485   // Compute ABI information.
486   getABIInfo().computeInfo(*FI);
487 
488   // Loop over all of the computed argument and return value info.  If any of
489   // them are direct or extend without a specified coerce type, specify the
490   // default now.
491   ABIArgInfo &retInfo = FI->getReturnInfo();
492   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
493     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
494 
495   for (auto &I : FI->arguments())
496     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
497       I.info.setCoerceToType(ConvertType(I.type));
498 
499   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
500   assert(erased && "Not in set?");
501 
502   return *FI;
503 }
504 
505 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
506                                        bool IsInstanceMethod,
507                                        const FunctionType::ExtInfo &info,
508                                        CanQualType resultType,
509                                        ArrayRef<CanQualType> argTypes,
510                                        RequiredArgs required) {
511   void *buffer = operator new(sizeof(CGFunctionInfo) +
512                               sizeof(ArgInfo) * (argTypes.size() + 1));
513   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
514   FI->CallingConvention = llvmCC;
515   FI->EffectiveCallingConvention = llvmCC;
516   FI->ASTCallingConvention = info.getCC();
517   FI->InstanceMethod = IsInstanceMethod;
518   FI->NoReturn = info.getNoReturn();
519   FI->ReturnsRetained = info.getProducesResult();
520   FI->Required = required;
521   FI->HasRegParm = info.getHasRegParm();
522   FI->RegParm = info.getRegParm();
523   FI->ArgStruct = nullptr;
524   FI->NumArgs = argTypes.size();
525   FI->getArgsBuffer()[0].type = resultType;
526   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
527     FI->getArgsBuffer()[i + 1].type = argTypes[i];
528   return FI;
529 }
530 
531 /***/
532 
533 void CodeGenTypes::GetExpandedTypes(QualType type,
534                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
535   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
536     uint64_t NumElts = AT->getSize().getZExtValue();
537     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
538       GetExpandedTypes(AT->getElementType(), expandedTypes);
539   } else if (const RecordType *RT = type->getAs<RecordType>()) {
540     const RecordDecl *RD = RT->getDecl();
541     assert(!RD->hasFlexibleArrayMember() &&
542            "Cannot expand structure with flexible array.");
543     if (RD->isUnion()) {
544       // Unions can be here only in degenerative cases - all the fields are same
545       // after flattening. Thus we have to use the "largest" field.
546       const FieldDecl *LargestFD = nullptr;
547       CharUnits UnionSize = CharUnits::Zero();
548 
549       for (const auto *FD : RD->fields()) {
550         assert(!FD->isBitField() &&
551                "Cannot expand structure with bit-field members.");
552         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
553         if (UnionSize < FieldSize) {
554           UnionSize = FieldSize;
555           LargestFD = FD;
556         }
557       }
558       if (LargestFD)
559         GetExpandedTypes(LargestFD->getType(), expandedTypes);
560     } else {
561       for (const auto *I : RD->fields()) {
562         assert(!I->isBitField() &&
563                "Cannot expand structure with bit-field members.");
564         GetExpandedTypes(I->getType(), expandedTypes);
565       }
566     }
567   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
568     llvm::Type *EltTy = ConvertType(CT->getElementType());
569     expandedTypes.push_back(EltTy);
570     expandedTypes.push_back(EltTy);
571   } else
572     expandedTypes.push_back(ConvertType(type));
573 }
574 
575 void CodeGenFunction::ExpandTypeFromArgs(
576     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
577   assert(LV.isSimple() &&
578          "Unexpected non-simple lvalue during struct expansion.");
579 
580   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
581     unsigned NumElts = AT->getSize().getZExtValue();
582     QualType EltTy = AT->getElementType();
583     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
584       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
585       LValue LV = MakeAddrLValue(EltAddr, EltTy);
586       ExpandTypeFromArgs(EltTy, LV, AI);
587     }
588     return;
589   }
590   if (const RecordType *RT = Ty->getAs<RecordType>()) {
591     RecordDecl *RD = RT->getDecl();
592     if (RD->isUnion()) {
593       // Unions can be here only in degenerative cases - all the fields are same
594       // after flattening. Thus we have to use the "largest" field.
595       const FieldDecl *LargestFD = nullptr;
596       CharUnits UnionSize = CharUnits::Zero();
597 
598       for (const auto *FD : RD->fields()) {
599         assert(!FD->isBitField() &&
600                "Cannot expand structure with bit-field members.");
601         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
602         if (UnionSize < FieldSize) {
603           UnionSize = FieldSize;
604           LargestFD = FD;
605         }
606       }
607       if (LargestFD) {
608         // FIXME: What are the right qualifiers here?
609         LValue SubLV = EmitLValueForField(LV, LargestFD);
610         ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
611       }
612     } else {
613       for (const auto *FD : RD->fields()) {
614         QualType FT = FD->getType();
615         // FIXME: What are the right qualifiers here?
616         LValue SubLV = EmitLValueForField(LV, FD);
617         ExpandTypeFromArgs(FT, SubLV, AI);
618       }
619     }
620     return;
621   }
622   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
623     QualType EltTy = CT->getElementType();
624     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
625     EmitStoreThroughLValue(RValue::get(*AI++), MakeAddrLValue(RealAddr, EltTy));
626     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
627     EmitStoreThroughLValue(RValue::get(*AI++), MakeAddrLValue(ImagAddr, EltTy));
628     return;
629   }
630   EmitStoreThroughLValue(RValue::get(*AI++), LV);
631 }
632 
633 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
634 /// accessing some number of bytes out of it, try to gep into the struct to get
635 /// at its inner goodness.  Dive as deep as possible without entering an element
636 /// with an in-memory size smaller than DstSize.
637 static llvm::Value *
638 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
639                                    llvm::StructType *SrcSTy,
640                                    uint64_t DstSize, CodeGenFunction &CGF) {
641   // We can't dive into a zero-element struct.
642   if (SrcSTy->getNumElements() == 0) return SrcPtr;
643 
644   llvm::Type *FirstElt = SrcSTy->getElementType(0);
645 
646   // If the first elt is at least as large as what we're looking for, or if the
647   // first element is the same size as the whole struct, we can enter it.
648   uint64_t FirstEltSize =
649     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
650   if (FirstEltSize < DstSize &&
651       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
652     return SrcPtr;
653 
654   // GEP into the first element.
655   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
656 
657   // If the first element is a struct, recurse.
658   llvm::Type *SrcTy =
659     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
660   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
661     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
662 
663   return SrcPtr;
664 }
665 
666 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
667 /// are either integers or pointers.  This does a truncation of the value if it
668 /// is too large or a zero extension if it is too small.
669 ///
670 /// This behaves as if the value were coerced through memory, so on big-endian
671 /// targets the high bits are preserved in a truncation, while little-endian
672 /// targets preserve the low bits.
673 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
674                                              llvm::Type *Ty,
675                                              CodeGenFunction &CGF) {
676   if (Val->getType() == Ty)
677     return Val;
678 
679   if (isa<llvm::PointerType>(Val->getType())) {
680     // If this is Pointer->Pointer avoid conversion to and from int.
681     if (isa<llvm::PointerType>(Ty))
682       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
683 
684     // Convert the pointer to an integer so we can play with its width.
685     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
686   }
687 
688   llvm::Type *DestIntTy = Ty;
689   if (isa<llvm::PointerType>(DestIntTy))
690     DestIntTy = CGF.IntPtrTy;
691 
692   if (Val->getType() != DestIntTy) {
693     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
694     if (DL.isBigEndian()) {
695       // Preserve the high bits on big-endian targets.
696       // That is what memory coercion does.
697       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
698       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
699 
700       if (SrcSize > DstSize) {
701         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
702         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
703       } else {
704         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
705         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
706       }
707     } else {
708       // Little-endian targets preserve the low bits. No shifts required.
709       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
710     }
711   }
712 
713   if (isa<llvm::PointerType>(Ty))
714     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
715   return Val;
716 }
717 
718 
719 
720 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
721 /// a pointer to an object of type \arg Ty.
722 ///
723 /// This safely handles the case when the src type is smaller than the
724 /// destination type; in this situation the values of bits which not
725 /// present in the src are undefined.
726 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
727                                       llvm::Type *Ty,
728                                       CodeGenFunction &CGF) {
729   llvm::Type *SrcTy =
730     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
731 
732   // If SrcTy and Ty are the same, just do a load.
733   if (SrcTy == Ty)
734     return CGF.Builder.CreateLoad(SrcPtr);
735 
736   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
737 
738   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
739     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
740     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
741   }
742 
743   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
744 
745   // If the source and destination are integer or pointer types, just do an
746   // extension or truncation to the desired type.
747   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
748       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
749     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
750     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
751   }
752 
753   // If load is legal, just bitcast the src pointer.
754   if (SrcSize >= DstSize) {
755     // Generally SrcSize is never greater than DstSize, since this means we are
756     // losing bits. However, this can happen in cases where the structure has
757     // additional padding, for example due to a user specified alignment.
758     //
759     // FIXME: Assert that we aren't truncating non-padding bits when have access
760     // to that information.
761     llvm::Value *Casted =
762       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
763     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
764     // FIXME: Use better alignment / avoid requiring aligned load.
765     Load->setAlignment(1);
766     return Load;
767   }
768 
769   // Otherwise do coercion through memory. This is stupid, but
770   // simple.
771   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
772   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
773   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
774   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
775   // FIXME: Use better alignment.
776   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
777       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
778       1, false);
779   return CGF.Builder.CreateLoad(Tmp);
780 }
781 
782 // Function to store a first-class aggregate into memory.  We prefer to
783 // store the elements rather than the aggregate to be more friendly to
784 // fast-isel.
785 // FIXME: Do we need to recurse here?
786 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
787                           llvm::Value *DestPtr, bool DestIsVolatile,
788                           bool LowAlignment) {
789   // Prefer scalar stores to first-class aggregate stores.
790   if (llvm::StructType *STy =
791         dyn_cast<llvm::StructType>(Val->getType())) {
792     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
793       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
794       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
795       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
796                                                     DestIsVolatile);
797       if (LowAlignment)
798         SI->setAlignment(1);
799     }
800   } else {
801     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
802     if (LowAlignment)
803       SI->setAlignment(1);
804   }
805 }
806 
807 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
808 /// where the source and destination may have different types.
809 ///
810 /// This safely handles the case when the src type is larger than the
811 /// destination type; the upper bits of the src will be lost.
812 static void CreateCoercedStore(llvm::Value *Src,
813                                llvm::Value *DstPtr,
814                                bool DstIsVolatile,
815                                CodeGenFunction &CGF) {
816   llvm::Type *SrcTy = Src->getType();
817   llvm::Type *DstTy =
818     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
819   if (SrcTy == DstTy) {
820     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
821     return;
822   }
823 
824   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
825 
826   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
827     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
828     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
829   }
830 
831   // If the source and destination are integer or pointer types, just do an
832   // extension or truncation to the desired type.
833   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
834       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
835     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
836     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
837     return;
838   }
839 
840   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
841 
842   // If store is legal, just bitcast the src pointer.
843   if (SrcSize <= DstSize) {
844     llvm::Value *Casted =
845       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
846     // FIXME: Use better alignment / avoid requiring aligned store.
847     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
848   } else {
849     // Otherwise do coercion through memory. This is stupid, but
850     // simple.
851 
852     // Generally SrcSize is never greater than DstSize, since this means we are
853     // losing bits. However, this can happen in cases where the structure has
854     // additional padding, for example due to a user specified alignment.
855     //
856     // FIXME: Assert that we aren't truncating non-padding bits when have access
857     // to that information.
858     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
859     CGF.Builder.CreateStore(Src, Tmp);
860     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
861     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
862     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
863     // FIXME: Use better alignment.
864     CGF.Builder.CreateMemCpy(DstCasted, Casted,
865         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
866         1, false);
867   }
868 }
869 
870 /***/
871 
872 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
873   return FI.getReturnInfo().isIndirect();
874 }
875 
876 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
877   return ReturnTypeUsesSRet(FI) &&
878          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
879 }
880 
881 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
882   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
883     switch (BT->getKind()) {
884     default:
885       return false;
886     case BuiltinType::Float:
887       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
888     case BuiltinType::Double:
889       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
890     case BuiltinType::LongDouble:
891       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
892     }
893   }
894 
895   return false;
896 }
897 
898 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
899   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
900     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
901       if (BT->getKind() == BuiltinType::LongDouble)
902         return getTarget().useObjCFP2RetForComplexLongDouble();
903     }
904   }
905 
906   return false;
907 }
908 
909 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
910   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
911   return GetFunctionType(FI);
912 }
913 
914 llvm::FunctionType *
915 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
916 
917   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
918   assert(Inserted && "Recursively being processed?");
919 
920   bool SwapThisWithSRet = false;
921   SmallVector<llvm::Type*, 8> argTypes;
922   llvm::Type *resultType = nullptr;
923 
924   const ABIArgInfo &retAI = FI.getReturnInfo();
925   switch (retAI.getKind()) {
926   case ABIArgInfo::Expand:
927     llvm_unreachable("Invalid ABI kind for return argument");
928 
929   case ABIArgInfo::Extend:
930   case ABIArgInfo::Direct:
931     resultType = retAI.getCoerceToType();
932     break;
933 
934   case ABIArgInfo::InAlloca:
935     if (retAI.getInAllocaSRet()) {
936       // sret things on win32 aren't void, they return the sret pointer.
937       QualType ret = FI.getReturnType();
938       llvm::Type *ty = ConvertType(ret);
939       unsigned addressSpace = Context.getTargetAddressSpace(ret);
940       resultType = llvm::PointerType::get(ty, addressSpace);
941     } else {
942       resultType = llvm::Type::getVoidTy(getLLVMContext());
943     }
944     break;
945 
946   case ABIArgInfo::Indirect: {
947     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
948     resultType = llvm::Type::getVoidTy(getLLVMContext());
949 
950     QualType ret = FI.getReturnType();
951     llvm::Type *ty = ConvertType(ret);
952     unsigned addressSpace = Context.getTargetAddressSpace(ret);
953     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
954 
955     SwapThisWithSRet = retAI.isSRetAfterThis();
956     break;
957   }
958 
959   case ABIArgInfo::Ignore:
960     resultType = llvm::Type::getVoidTy(getLLVMContext());
961     break;
962   }
963 
964   // Add in all of the required arguments.
965   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
966   if (FI.isVariadic()) {
967     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
968   } else {
969     ie = FI.arg_end();
970   }
971   for (; it != ie; ++it) {
972     const ABIArgInfo &argAI = it->info;
973 
974     // Insert a padding type to ensure proper alignment.
975     if (llvm::Type *PaddingType = argAI.getPaddingType())
976       argTypes.push_back(PaddingType);
977 
978     switch (argAI.getKind()) {
979     case ABIArgInfo::Ignore:
980     case ABIArgInfo::InAlloca:
981       break;
982 
983     case ABIArgInfo::Indirect: {
984       // indirect arguments are always on the stack, which is addr space #0.
985       llvm::Type *LTy = ConvertTypeForMem(it->type);
986       argTypes.push_back(LTy->getPointerTo());
987       break;
988     }
989 
990     case ABIArgInfo::Extend:
991     case ABIArgInfo::Direct: {
992       // If the coerce-to type is a first class aggregate, flatten it.  Either
993       // way is semantically identical, but fast-isel and the optimizer
994       // generally likes scalar values better than FCAs.
995       // We cannot do this for functions using the AAPCS calling convention,
996       // as structures are treated differently by that calling convention.
997       llvm::Type *argType = argAI.getCoerceToType();
998       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
999       if (st && !isAAPCSVFP(FI, getTarget())) {
1000         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1001           argTypes.push_back(st->getElementType(i));
1002       } else {
1003         argTypes.push_back(argType);
1004       }
1005       break;
1006     }
1007 
1008     case ABIArgInfo::Expand:
1009       GetExpandedTypes(it->type, argTypes);
1010       break;
1011     }
1012   }
1013 
1014   // Add the inalloca struct as the last parameter type.
1015   if (llvm::StructType *ArgStruct = FI.getArgStruct())
1016     argTypes.push_back(ArgStruct->getPointerTo());
1017 
1018   if (SwapThisWithSRet)
1019     std::swap(argTypes[0], argTypes[1]);
1020 
1021   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1022   assert(Erased && "Not in set?");
1023 
1024   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
1025 }
1026 
1027 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1028   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1029   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1030 
1031   if (!isFuncTypeConvertible(FPT))
1032     return llvm::StructType::get(getLLVMContext());
1033 
1034   const CGFunctionInfo *Info;
1035   if (isa<CXXDestructorDecl>(MD))
1036     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
1037   else
1038     Info = &arrangeCXXMethodDeclaration(MD);
1039   return GetFunctionType(*Info);
1040 }
1041 
1042 namespace {
1043 
1044 /// Encapsulates information about the way function arguments from
1045 /// CGFunctionInfo should be passed to actual LLVM IR function.
1046 class ClangToLLVMArgMapping {
1047   static const unsigned InvalidIndex = ~0U;
1048   unsigned InallocaArgNo;
1049   unsigned SRetArgNo;
1050   unsigned TotalIRArgs;
1051 
1052   /// Arguments of LLVM IR function corresponding to single Clang argument.
1053   struct IRArgs {
1054     unsigned PaddingArgIndex;
1055     // Argument is expanded to IR arguments at positions
1056     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1057     unsigned FirstArgIndex;
1058     unsigned NumberOfArgs;
1059 
1060     IRArgs()
1061         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1062           NumberOfArgs(0) {}
1063   };
1064 
1065   SmallVector<IRArgs, 8> ArgInfo;
1066 
1067 public:
1068   ClangToLLVMArgMapping(CodeGenModule &CGM, const CGFunctionInfo &FI)
1069       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1070         ArgInfo(FI.arg_size()) {
1071     construct(CGM, FI);
1072   }
1073 
1074   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1075   unsigned getInallocaArgNo() const {
1076     assert(hasInallocaArg());
1077     return InallocaArgNo;
1078   }
1079 
1080   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1081   unsigned getSRetArgNo() const {
1082     assert(hasSRetArg());
1083     return SRetArgNo;
1084   }
1085 
1086   unsigned totalIRArgs() const { return TotalIRArgs; }
1087 
1088   bool hasPaddingArg(unsigned ArgNo) const {
1089     assert(ArgNo < ArgInfo.size());
1090     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1091   }
1092   unsigned getPaddingArgNo(unsigned ArgNo) const {
1093     assert(hasPaddingArg(ArgNo));
1094     return ArgInfo[ArgNo].PaddingArgIndex;
1095   }
1096 
1097   /// Returns index of first IR argument corresponding to ArgNo, and their
1098   /// quantity.
1099   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1100     assert(ArgNo < ArgInfo.size());
1101     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1102                           ArgInfo[ArgNo].NumberOfArgs);
1103   }
1104 
1105 private:
1106   void construct(CodeGenModule &CGM, const CGFunctionInfo &FI);
1107 };
1108 
1109 void ClangToLLVMArgMapping::construct(CodeGenModule &CGM,
1110                                       const CGFunctionInfo &FI) {
1111   unsigned IRArgNo = 0;
1112   bool SwapThisWithSRet = false;
1113   const ABIArgInfo &RetAI = FI.getReturnInfo();
1114 
1115   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1116     SwapThisWithSRet = RetAI.isSRetAfterThis();
1117     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1118   }
1119 
1120   unsigned ArgNo = 0;
1121   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1122                                           E = FI.arg_end();
1123        I != E; ++I, ++ArgNo) {
1124     QualType ArgType = I->type;
1125     const ABIArgInfo &AI = I->info;
1126     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1127     auto &IRArgs = ArgInfo[ArgNo];
1128 
1129     if (AI.getPaddingType())
1130       IRArgs.PaddingArgIndex = IRArgNo++;
1131 
1132     switch (AI.getKind()) {
1133     case ABIArgInfo::Extend:
1134     case ABIArgInfo::Direct: {
1135       // FIXME: handle sseregparm someday...
1136       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1137       if (!isAAPCSVFP(FI, CGM.getTarget()) && STy) {
1138         IRArgs.NumberOfArgs = STy->getNumElements();
1139       } else {
1140         IRArgs.NumberOfArgs = 1;
1141       }
1142       break;
1143     }
1144     case ABIArgInfo::Indirect:
1145       IRArgs.NumberOfArgs = 1;
1146       break;
1147     case ABIArgInfo::Ignore:
1148     case ABIArgInfo::InAlloca:
1149       // ignore and inalloca doesn't have matching LLVM parameters.
1150       IRArgs.NumberOfArgs = 0;
1151       break;
1152     case ABIArgInfo::Expand: {
1153       SmallVector<llvm::Type*, 8> Types;
1154       // FIXME: This is rather inefficient. Do we ever actually need to do
1155       // anything here? The result should be just reconstructed on the other
1156       // side, so extension should be a non-issue.
1157       CGM.getTypes().GetExpandedTypes(ArgType, Types);
1158       IRArgs.NumberOfArgs = Types.size();
1159       break;
1160     }
1161     }
1162 
1163     if (IRArgs.NumberOfArgs > 0) {
1164       IRArgs.FirstArgIndex = IRArgNo;
1165       IRArgNo += IRArgs.NumberOfArgs;
1166     }
1167 
1168     // Skip over the sret parameter when it comes second.  We already handled it
1169     // above.
1170     if (IRArgNo == 1 && SwapThisWithSRet)
1171       IRArgNo++;
1172   }
1173   assert(ArgNo == FI.arg_size());
1174 
1175   if (FI.usesInAlloca())
1176     InallocaArgNo = IRArgNo++;
1177 
1178   TotalIRArgs = IRArgNo;
1179 }
1180 }  // namespace
1181 
1182 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1183                                            const Decl *TargetDecl,
1184                                            AttributeListType &PAL,
1185                                            unsigned &CallingConv,
1186                                            bool AttrOnCallSite) {
1187   llvm::AttrBuilder FuncAttrs;
1188   llvm::AttrBuilder RetAttrs;
1189 
1190   CallingConv = FI.getEffectiveCallingConvention();
1191 
1192   if (FI.isNoReturn())
1193     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1194 
1195   // FIXME: handle sseregparm someday...
1196   if (TargetDecl) {
1197     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1198       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1199     if (TargetDecl->hasAttr<NoThrowAttr>())
1200       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1201     if (TargetDecl->hasAttr<NoReturnAttr>())
1202       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1203     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1204       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1205 
1206     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1207       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1208       if (FPT && FPT->isNothrow(getContext()))
1209         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1210       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1211       // These attributes are not inherited by overloads.
1212       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1213       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1214         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1215     }
1216 
1217     // 'const' and 'pure' attribute functions are also nounwind.
1218     if (TargetDecl->hasAttr<ConstAttr>()) {
1219       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1220       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1221     } else if (TargetDecl->hasAttr<PureAttr>()) {
1222       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1223       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1224     }
1225     if (TargetDecl->hasAttr<MallocAttr>())
1226       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1227     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1228       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1229   }
1230 
1231   if (CodeGenOpts.OptimizeSize)
1232     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1233   if (CodeGenOpts.OptimizeSize == 2)
1234     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1235   if (CodeGenOpts.DisableRedZone)
1236     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1237   if (CodeGenOpts.NoImplicitFloat)
1238     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1239   if (CodeGenOpts.EnableSegmentedStacks &&
1240       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1241     FuncAttrs.addAttribute("split-stack");
1242 
1243   if (AttrOnCallSite) {
1244     // Attributes that should go on the call site only.
1245     if (!CodeGenOpts.SimplifyLibCalls)
1246       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1247   } else {
1248     // Attributes that should go on the function, but not the call site.
1249     if (!CodeGenOpts.DisableFPElim) {
1250       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1251     } else if (CodeGenOpts.OmitLeafFramePointer) {
1252       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1253       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1254     } else {
1255       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1256       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1257     }
1258 
1259     FuncAttrs.addAttribute("less-precise-fpmad",
1260                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1261     FuncAttrs.addAttribute("no-infs-fp-math",
1262                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1263     FuncAttrs.addAttribute("no-nans-fp-math",
1264                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1265     FuncAttrs.addAttribute("unsafe-fp-math",
1266                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1267     FuncAttrs.addAttribute("use-soft-float",
1268                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1269     FuncAttrs.addAttribute("stack-protector-buffer-size",
1270                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1271 
1272     if (!CodeGenOpts.StackRealignment)
1273       FuncAttrs.addAttribute("no-realign-stack");
1274   }
1275 
1276   ClangToLLVMArgMapping IRFunctionArgs(*this, FI);
1277 
1278   QualType RetTy = FI.getReturnType();
1279   const ABIArgInfo &RetAI = FI.getReturnInfo();
1280   switch (RetAI.getKind()) {
1281   case ABIArgInfo::Extend:
1282     if (RetTy->hasSignedIntegerRepresentation())
1283       RetAttrs.addAttribute(llvm::Attribute::SExt);
1284     else if (RetTy->hasUnsignedIntegerRepresentation())
1285       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1286     // FALL THROUGH
1287   case ABIArgInfo::Direct:
1288     if (RetAI.getInReg())
1289       RetAttrs.addAttribute(llvm::Attribute::InReg);
1290     break;
1291   case ABIArgInfo::Ignore:
1292     break;
1293 
1294   case ABIArgInfo::InAlloca:
1295   case ABIArgInfo::Indirect: {
1296     // inalloca and sret disable readnone and readonly
1297     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1298       .removeAttribute(llvm::Attribute::ReadNone);
1299     break;
1300   }
1301 
1302   case ABIArgInfo::Expand:
1303     llvm_unreachable("Invalid ABI kind for return argument");
1304   }
1305 
1306   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1307     QualType PTy = RefTy->getPointeeType();
1308     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1309       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1310                                         .getQuantity());
1311     else if (getContext().getTargetAddressSpace(PTy) == 0)
1312       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1313   }
1314 
1315   // Attach return attributes.
1316   if (RetAttrs.hasAttributes()) {
1317     PAL.push_back(llvm::AttributeSet::get(
1318         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1319   }
1320 
1321   // Attach attributes to sret.
1322   if (IRFunctionArgs.hasSRetArg()) {
1323     llvm::AttrBuilder SRETAttrs;
1324     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1325     if (RetAI.getInReg())
1326       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1327     PAL.push_back(llvm::AttributeSet::get(
1328         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1329   }
1330 
1331   // Attach attributes to inalloca argument.
1332   if (IRFunctionArgs.hasInallocaArg()) {
1333     llvm::AttrBuilder Attrs;
1334     Attrs.addAttribute(llvm::Attribute::InAlloca);
1335     PAL.push_back(llvm::AttributeSet::get(
1336         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1337   }
1338 
1339 
1340   unsigned ArgNo = 0;
1341   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1342                                           E = FI.arg_end();
1343        I != E; ++I, ++ArgNo) {
1344     QualType ParamType = I->type;
1345     const ABIArgInfo &AI = I->info;
1346     llvm::AttrBuilder Attrs;
1347 
1348     // Add attribute for padding argument, if necessary.
1349     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1350       if (AI.getPaddingInReg())
1351         PAL.push_back(llvm::AttributeSet::get(
1352             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1353             llvm::Attribute::InReg));
1354     }
1355 
1356     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1357     // have the corresponding parameter variable.  It doesn't make
1358     // sense to do it here because parameters are so messed up.
1359     switch (AI.getKind()) {
1360     case ABIArgInfo::Extend:
1361       if (ParamType->isSignedIntegerOrEnumerationType())
1362         Attrs.addAttribute(llvm::Attribute::SExt);
1363       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1364         Attrs.addAttribute(llvm::Attribute::ZExt);
1365       // FALL THROUGH
1366     case ABIArgInfo::Direct:
1367       if (AI.getInReg())
1368         Attrs.addAttribute(llvm::Attribute::InReg);
1369       break;
1370 
1371     case ABIArgInfo::Indirect:
1372       if (AI.getInReg())
1373         Attrs.addAttribute(llvm::Attribute::InReg);
1374 
1375       if (AI.getIndirectByVal())
1376         Attrs.addAttribute(llvm::Attribute::ByVal);
1377 
1378       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1379 
1380       // byval disables readnone and readonly.
1381       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1382         .removeAttribute(llvm::Attribute::ReadNone);
1383       break;
1384 
1385     case ABIArgInfo::Ignore:
1386     case ABIArgInfo::Expand:
1387       continue;
1388 
1389     case ABIArgInfo::InAlloca:
1390       // inalloca disables readnone and readonly.
1391       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1392           .removeAttribute(llvm::Attribute::ReadNone);
1393       continue;
1394     }
1395 
1396     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1397       QualType PTy = RefTy->getPointeeType();
1398       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1399         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1400                                        .getQuantity());
1401       else if (getContext().getTargetAddressSpace(PTy) == 0)
1402         Attrs.addAttribute(llvm::Attribute::NonNull);
1403     }
1404 
1405     if (Attrs.hasAttributes()) {
1406       unsigned FirstIRArg, NumIRArgs;
1407       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1408       for (unsigned i = 0; i < NumIRArgs; i++)
1409         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1410                                               FirstIRArg + i + 1, Attrs));
1411     }
1412   }
1413   assert(ArgNo == FI.arg_size());
1414 
1415   if (FuncAttrs.hasAttributes())
1416     PAL.push_back(llvm::
1417                   AttributeSet::get(getLLVMContext(),
1418                                     llvm::AttributeSet::FunctionIndex,
1419                                     FuncAttrs));
1420 }
1421 
1422 /// An argument came in as a promoted argument; demote it back to its
1423 /// declared type.
1424 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1425                                          const VarDecl *var,
1426                                          llvm::Value *value) {
1427   llvm::Type *varType = CGF.ConvertType(var->getType());
1428 
1429   // This can happen with promotions that actually don't change the
1430   // underlying type, like the enum promotions.
1431   if (value->getType() == varType) return value;
1432 
1433   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1434          && "unexpected promotion type");
1435 
1436   if (isa<llvm::IntegerType>(varType))
1437     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1438 
1439   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1440 }
1441 
1442 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1443                                          llvm::Function *Fn,
1444                                          const FunctionArgList &Args) {
1445   // If this is an implicit-return-zero function, go ahead and
1446   // initialize the return value.  TODO: it might be nice to have
1447   // a more general mechanism for this that didn't require synthesized
1448   // return statements.
1449   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1450     if (FD->hasImplicitReturnZero()) {
1451       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1452       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1453       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1454       Builder.CreateStore(Zero, ReturnValue);
1455     }
1456   }
1457 
1458   // FIXME: We no longer need the types from FunctionArgList; lift up and
1459   // simplify.
1460 
1461   ClangToLLVMArgMapping IRFunctionArgs(CGM, FI);
1462   // Flattened function arguments.
1463   SmallVector<llvm::Argument *, 16> FnArgs;
1464   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1465   for (auto &Arg : Fn->args()) {
1466     FnArgs.push_back(&Arg);
1467   }
1468   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1469 
1470   // If we're using inalloca, all the memory arguments are GEPs off of the last
1471   // parameter, which is a pointer to the complete memory area.
1472   llvm::Value *ArgStruct = nullptr;
1473   if (IRFunctionArgs.hasInallocaArg()) {
1474     ArgStruct = FnArgs[IRFunctionArgs.getInallocaArgNo()];
1475     assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1476   }
1477 
1478   // Name the struct return parameter.
1479   if (IRFunctionArgs.hasSRetArg()) {
1480     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1481     AI->setName("agg.result");
1482     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1483                                         llvm::Attribute::NoAlias));
1484   }
1485 
1486   // Get the function-level nonnull attribute if it exists.
1487   const NonNullAttr *NNAtt =
1488     CurCodeDecl ? CurCodeDecl->getAttr<NonNullAttr>() : nullptr;
1489 
1490   // Track if we received the parameter as a pointer (indirect, byval, or
1491   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1492   // into a local alloca for us.
1493   enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1494   typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1495   SmallVector<ValueAndIsPtr, 16> ArgVals;
1496   ArgVals.reserve(Args.size());
1497 
1498   // Create a pointer value for every parameter declaration.  This usually
1499   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1500   // any cleanups or do anything that might unwind.  We do that separately, so
1501   // we can push the cleanups in the correct order for the ABI.
1502   assert(FI.arg_size() == Args.size() &&
1503          "Mismatch between function signature & arguments.");
1504   unsigned ArgNo = 0;
1505   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1506   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1507        i != e; ++i, ++info_it, ++ArgNo) {
1508     const VarDecl *Arg = *i;
1509     QualType Ty = info_it->type;
1510     const ABIArgInfo &ArgI = info_it->info;
1511 
1512     bool isPromoted =
1513       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1514 
1515     unsigned FirstIRArg, NumIRArgs;
1516     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1517 
1518     switch (ArgI.getKind()) {
1519     case ABIArgInfo::InAlloca: {
1520       assert(NumIRArgs == 0);
1521       llvm::Value *V = Builder.CreateStructGEP(
1522           ArgStruct, ArgI.getInAllocaFieldIndex(), Arg->getName());
1523       ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1524       break;
1525     }
1526 
1527     case ABIArgInfo::Indirect: {
1528       assert(NumIRArgs == 1);
1529       llvm::Value *V = FnArgs[FirstIRArg];
1530 
1531       if (!hasScalarEvaluationKind(Ty)) {
1532         // Aggregates and complex variables are accessed by reference.  All we
1533         // need to do is realign the value, if requested
1534         if (ArgI.getIndirectRealign()) {
1535           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1536 
1537           // Copy from the incoming argument pointer to the temporary with the
1538           // appropriate alignment.
1539           //
1540           // FIXME: We should have a common utility for generating an aggregate
1541           // copy.
1542           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1543           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1544           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1545           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1546           Builder.CreateMemCpy(Dst,
1547                                Src,
1548                                llvm::ConstantInt::get(IntPtrTy,
1549                                                       Size.getQuantity()),
1550                                ArgI.getIndirectAlign(),
1551                                false);
1552           V = AlignedTemp;
1553         }
1554         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1555       } else {
1556         // Load scalar value from indirect argument.
1557         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1558         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1559                              Arg->getLocStart());
1560 
1561         if (isPromoted)
1562           V = emitArgumentDemotion(*this, Arg, V);
1563         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1564       }
1565       break;
1566     }
1567 
1568     case ABIArgInfo::Extend:
1569     case ABIArgInfo::Direct: {
1570 
1571       // If we have the trivial case, handle it with no muss and fuss.
1572       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1573           ArgI.getCoerceToType() == ConvertType(Ty) &&
1574           ArgI.getDirectOffset() == 0) {
1575         assert(NumIRArgs == 1);
1576         auto AI = FnArgs[FirstIRArg];
1577         llvm::Value *V = AI;
1578 
1579         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1580           if ((NNAtt && NNAtt->isNonNull(PVD->getFunctionScopeIndex())) ||
1581               PVD->hasAttr<NonNullAttr>())
1582             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1583                                                 AI->getArgNo() + 1,
1584                                                 llvm::Attribute::NonNull));
1585 
1586           QualType OTy = PVD->getOriginalType();
1587           if (const auto *ArrTy =
1588               getContext().getAsConstantArrayType(OTy)) {
1589             // A C99 array parameter declaration with the static keyword also
1590             // indicates dereferenceability, and if the size is constant we can
1591             // use the dereferenceable attribute (which requires the size in
1592             // bytes).
1593             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1594               QualType ETy = ArrTy->getElementType();
1595               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1596               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1597                   ArrSize) {
1598                 llvm::AttrBuilder Attrs;
1599                 Attrs.addDereferenceableAttr(
1600                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1601                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1602                                                     AI->getArgNo() + 1, Attrs));
1603               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1604                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1605                                                     AI->getArgNo() + 1,
1606                                                     llvm::Attribute::NonNull));
1607               }
1608             }
1609           } else if (const auto *ArrTy =
1610                      getContext().getAsVariableArrayType(OTy)) {
1611             // For C99 VLAs with the static keyword, we don't know the size so
1612             // we can't use the dereferenceable attribute, but in addrspace(0)
1613             // we know that it must be nonnull.
1614             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1615                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1616               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1617                                                   AI->getArgNo() + 1,
1618                                                   llvm::Attribute::NonNull));
1619           }
1620         }
1621 
1622         if (Arg->getType().isRestrictQualified())
1623           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1624                                               AI->getArgNo() + 1,
1625                                               llvm::Attribute::NoAlias));
1626 
1627         // Ensure the argument is the correct type.
1628         if (V->getType() != ArgI.getCoerceToType())
1629           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1630 
1631         if (isPromoted)
1632           V = emitArgumentDemotion(*this, Arg, V);
1633 
1634         if (const CXXMethodDecl *MD =
1635             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1636           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1637             V = CGM.getCXXABI().
1638                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1639         }
1640 
1641         // Because of merging of function types from multiple decls it is
1642         // possible for the type of an argument to not match the corresponding
1643         // type in the function type. Since we are codegening the callee
1644         // in here, add a cast to the argument type.
1645         llvm::Type *LTy = ConvertType(Arg->getType());
1646         if (V->getType() != LTy)
1647           V = Builder.CreateBitCast(V, LTy);
1648 
1649         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1650         break;
1651       }
1652 
1653       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1654 
1655       // The alignment we need to use is the max of the requested alignment for
1656       // the argument plus the alignment required by our access code below.
1657       unsigned AlignmentToUse =
1658         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1659       AlignmentToUse = std::max(AlignmentToUse,
1660                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1661 
1662       Alloca->setAlignment(AlignmentToUse);
1663       llvm::Value *V = Alloca;
1664       llvm::Value *Ptr = V;    // Pointer to store into.
1665 
1666       // If the value is offset in memory, apply the offset now.
1667       if (unsigned Offs = ArgI.getDirectOffset()) {
1668         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1669         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1670         Ptr = Builder.CreateBitCast(Ptr,
1671                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1672       }
1673 
1674       // If the coerce-to type is a first class aggregate, we flatten it and
1675       // pass the elements. Either way is semantically identical, but fast-isel
1676       // and the optimizer generally likes scalar values better than FCAs.
1677       // We cannot do this for functions using the AAPCS calling convention,
1678       // as structures are treated differently by that calling convention.
1679       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1680       if (!isAAPCSVFP(FI, getTarget()) && STy && STy->getNumElements() > 1) {
1681         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1682         llvm::Type *DstTy =
1683           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1684         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1685 
1686         if (SrcSize <= DstSize) {
1687           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1688 
1689           assert(STy->getNumElements() == NumIRArgs);
1690           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1691             auto AI = FnArgs[FirstIRArg + i];
1692             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1693             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1694             Builder.CreateStore(AI, EltPtr);
1695           }
1696         } else {
1697           llvm::AllocaInst *TempAlloca =
1698             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1699           TempAlloca->setAlignment(AlignmentToUse);
1700           llvm::Value *TempV = TempAlloca;
1701 
1702           assert(STy->getNumElements() == NumIRArgs);
1703           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1704             auto AI = FnArgs[FirstIRArg + i];
1705             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1706             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1707             Builder.CreateStore(AI, EltPtr);
1708           }
1709 
1710           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1711         }
1712       } else {
1713         // Simple case, just do a coerced store of the argument into the alloca.
1714         assert(NumIRArgs == 1);
1715         auto AI = FnArgs[FirstIRArg];
1716         AI->setName(Arg->getName() + ".coerce");
1717         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
1718       }
1719 
1720 
1721       // Match to what EmitParmDecl is expecting for this type.
1722       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1723         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
1724         if (isPromoted)
1725           V = emitArgumentDemotion(*this, Arg, V);
1726         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1727       } else {
1728         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1729       }
1730       break;
1731     }
1732 
1733     case ABIArgInfo::Expand: {
1734       // If this structure was expanded into multiple arguments then
1735       // we need to create a temporary and reconstruct it from the
1736       // arguments.
1737       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1738       CharUnits Align = getContext().getDeclAlign(Arg);
1739       Alloca->setAlignment(Align.getQuantity());
1740       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1741       ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
1742 
1743       auto FnArgIter = FnArgs.begin() + FirstIRArg;
1744       ExpandTypeFromArgs(Ty, LV, FnArgIter);
1745       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
1746       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
1747         auto AI = FnArgs[FirstIRArg + i];
1748         AI->setName(Arg->getName() + "." + Twine(i));
1749       }
1750       break;
1751     }
1752 
1753     case ABIArgInfo::Ignore:
1754       assert(NumIRArgs == 0);
1755       // Initialize the local variable appropriately.
1756       if (!hasScalarEvaluationKind(Ty)) {
1757         ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
1758       } else {
1759         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
1760         ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
1761       }
1762       break;
1763     }
1764   }
1765 
1766   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1767     for (int I = Args.size() - 1; I >= 0; --I)
1768       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1769                    I + 1);
1770   } else {
1771     for (unsigned I = 0, E = Args.size(); I != E; ++I)
1772       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1773                    I + 1);
1774   }
1775 }
1776 
1777 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1778   while (insn->use_empty()) {
1779     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1780     if (!bitcast) return;
1781 
1782     // This is "safe" because we would have used a ConstantExpr otherwise.
1783     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1784     bitcast->eraseFromParent();
1785   }
1786 }
1787 
1788 /// Try to emit a fused autorelease of a return result.
1789 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1790                                                     llvm::Value *result) {
1791   // We must be immediately followed the cast.
1792   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1793   if (BB->empty()) return nullptr;
1794   if (&BB->back() != result) return nullptr;
1795 
1796   llvm::Type *resultType = result->getType();
1797 
1798   // result is in a BasicBlock and is therefore an Instruction.
1799   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1800 
1801   SmallVector<llvm::Instruction*,4> insnsToKill;
1802 
1803   // Look for:
1804   //  %generator = bitcast %type1* %generator2 to %type2*
1805   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1806     // We would have emitted this as a constant if the operand weren't
1807     // an Instruction.
1808     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1809 
1810     // Require the generator to be immediately followed by the cast.
1811     if (generator->getNextNode() != bitcast)
1812       return nullptr;
1813 
1814     insnsToKill.push_back(bitcast);
1815   }
1816 
1817   // Look for:
1818   //   %generator = call i8* @objc_retain(i8* %originalResult)
1819   // or
1820   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1821   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1822   if (!call) return nullptr;
1823 
1824   bool doRetainAutorelease;
1825 
1826   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1827     doRetainAutorelease = true;
1828   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1829                                           .objc_retainAutoreleasedReturnValue) {
1830     doRetainAutorelease = false;
1831 
1832     // If we emitted an assembly marker for this call (and the
1833     // ARCEntrypoints field should have been set if so), go looking
1834     // for that call.  If we can't find it, we can't do this
1835     // optimization.  But it should always be the immediately previous
1836     // instruction, unless we needed bitcasts around the call.
1837     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1838       llvm::Instruction *prev = call->getPrevNode();
1839       assert(prev);
1840       if (isa<llvm::BitCastInst>(prev)) {
1841         prev = prev->getPrevNode();
1842         assert(prev);
1843       }
1844       assert(isa<llvm::CallInst>(prev));
1845       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1846                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1847       insnsToKill.push_back(prev);
1848     }
1849   } else {
1850     return nullptr;
1851   }
1852 
1853   result = call->getArgOperand(0);
1854   insnsToKill.push_back(call);
1855 
1856   // Keep killing bitcasts, for sanity.  Note that we no longer care
1857   // about precise ordering as long as there's exactly one use.
1858   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1859     if (!bitcast->hasOneUse()) break;
1860     insnsToKill.push_back(bitcast);
1861     result = bitcast->getOperand(0);
1862   }
1863 
1864   // Delete all the unnecessary instructions, from latest to earliest.
1865   for (SmallVectorImpl<llvm::Instruction*>::iterator
1866          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1867     (*i)->eraseFromParent();
1868 
1869   // Do the fused retain/autorelease if we were asked to.
1870   if (doRetainAutorelease)
1871     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1872 
1873   // Cast back to the result type.
1874   return CGF.Builder.CreateBitCast(result, resultType);
1875 }
1876 
1877 /// If this is a +1 of the value of an immutable 'self', remove it.
1878 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1879                                           llvm::Value *result) {
1880   // This is only applicable to a method with an immutable 'self'.
1881   const ObjCMethodDecl *method =
1882     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1883   if (!method) return nullptr;
1884   const VarDecl *self = method->getSelfDecl();
1885   if (!self->getType().isConstQualified()) return nullptr;
1886 
1887   // Look for a retain call.
1888   llvm::CallInst *retainCall =
1889     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1890   if (!retainCall ||
1891       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1892     return nullptr;
1893 
1894   // Look for an ordinary load of 'self'.
1895   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1896   llvm::LoadInst *load =
1897     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1898   if (!load || load->isAtomic() || load->isVolatile() ||
1899       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1900     return nullptr;
1901 
1902   // Okay!  Burn it all down.  This relies for correctness on the
1903   // assumption that the retain is emitted as part of the return and
1904   // that thereafter everything is used "linearly".
1905   llvm::Type *resultType = result->getType();
1906   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1907   assert(retainCall->use_empty());
1908   retainCall->eraseFromParent();
1909   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1910 
1911   return CGF.Builder.CreateBitCast(load, resultType);
1912 }
1913 
1914 /// Emit an ARC autorelease of the result of a function.
1915 ///
1916 /// \return the value to actually return from the function
1917 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1918                                             llvm::Value *result) {
1919   // If we're returning 'self', kill the initial retain.  This is a
1920   // heuristic attempt to "encourage correctness" in the really unfortunate
1921   // case where we have a return of self during a dealloc and we desperately
1922   // need to avoid the possible autorelease.
1923   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1924     return self;
1925 
1926   // At -O0, try to emit a fused retain/autorelease.
1927   if (CGF.shouldUseFusedARCCalls())
1928     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1929       return fused;
1930 
1931   return CGF.EmitARCAutoreleaseReturnValue(result);
1932 }
1933 
1934 /// Heuristically search for a dominating store to the return-value slot.
1935 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1936   // If there are multiple uses of the return-value slot, just check
1937   // for something immediately preceding the IP.  Sometimes this can
1938   // happen with how we generate implicit-returns; it can also happen
1939   // with noreturn cleanups.
1940   if (!CGF.ReturnValue->hasOneUse()) {
1941     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1942     if (IP->empty()) return nullptr;
1943     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1944     if (!store) return nullptr;
1945     if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
1946     assert(!store->isAtomic() && !store->isVolatile()); // see below
1947     return store;
1948   }
1949 
1950   llvm::StoreInst *store =
1951     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
1952   if (!store) return nullptr;
1953 
1954   // These aren't actually possible for non-coerced returns, and we
1955   // only care about non-coerced returns on this code path.
1956   assert(!store->isAtomic() && !store->isVolatile());
1957 
1958   // Now do a first-and-dirty dominance check: just walk up the
1959   // single-predecessors chain from the current insertion point.
1960   llvm::BasicBlock *StoreBB = store->getParent();
1961   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1962   while (IP != StoreBB) {
1963     if (!(IP = IP->getSinglePredecessor()))
1964       return nullptr;
1965   }
1966 
1967   // Okay, the store's basic block dominates the insertion point; we
1968   // can do our thing.
1969   return store;
1970 }
1971 
1972 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1973                                          bool EmitRetDbgLoc,
1974                                          SourceLocation EndLoc) {
1975   // Functions with no result always return void.
1976   if (!ReturnValue) {
1977     Builder.CreateRetVoid();
1978     return;
1979   }
1980 
1981   llvm::DebugLoc RetDbgLoc;
1982   llvm::Value *RV = nullptr;
1983   QualType RetTy = FI.getReturnType();
1984   const ABIArgInfo &RetAI = FI.getReturnInfo();
1985 
1986   switch (RetAI.getKind()) {
1987   case ABIArgInfo::InAlloca:
1988     // Aggregrates get evaluated directly into the destination.  Sometimes we
1989     // need to return the sret value in a register, though.
1990     assert(hasAggregateEvaluationKind(RetTy));
1991     if (RetAI.getInAllocaSRet()) {
1992       llvm::Function::arg_iterator EI = CurFn->arg_end();
1993       --EI;
1994       llvm::Value *ArgStruct = EI;
1995       llvm::Value *SRet =
1996           Builder.CreateStructGEP(ArgStruct, RetAI.getInAllocaFieldIndex());
1997       RV = Builder.CreateLoad(SRet, "sret");
1998     }
1999     break;
2000 
2001   case ABIArgInfo::Indirect: {
2002     auto AI = CurFn->arg_begin();
2003     if (RetAI.isSRetAfterThis())
2004       ++AI;
2005     switch (getEvaluationKind(RetTy)) {
2006     case TEK_Complex: {
2007       ComplexPairTy RT =
2008         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
2009                           EndLoc);
2010       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
2011                          /*isInit*/ true);
2012       break;
2013     }
2014     case TEK_Aggregate:
2015       // Do nothing; aggregrates get evaluated directly into the destination.
2016       break;
2017     case TEK_Scalar:
2018       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2019                         MakeNaturalAlignAddrLValue(AI, RetTy),
2020                         /*isInit*/ true);
2021       break;
2022     }
2023     break;
2024   }
2025 
2026   case ABIArgInfo::Extend:
2027   case ABIArgInfo::Direct:
2028     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2029         RetAI.getDirectOffset() == 0) {
2030       // The internal return value temp always will have pointer-to-return-type
2031       // type, just do a load.
2032 
2033       // If there is a dominating store to ReturnValue, we can elide
2034       // the load, zap the store, and usually zap the alloca.
2035       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
2036         // Reuse the debug location from the store unless there is
2037         // cleanup code to be emitted between the store and return
2038         // instruction.
2039         if (EmitRetDbgLoc && !AutoreleaseResult)
2040           RetDbgLoc = SI->getDebugLoc();
2041         // Get the stored value and nuke the now-dead store.
2042         RV = SI->getValueOperand();
2043         SI->eraseFromParent();
2044 
2045         // If that was the only use of the return value, nuke it as well now.
2046         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
2047           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
2048           ReturnValue = nullptr;
2049         }
2050 
2051       // Otherwise, we have to do a simple load.
2052       } else {
2053         RV = Builder.CreateLoad(ReturnValue);
2054       }
2055     } else {
2056       llvm::Value *V = ReturnValue;
2057       // If the value is offset in memory, apply the offset now.
2058       if (unsigned Offs = RetAI.getDirectOffset()) {
2059         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
2060         V = Builder.CreateConstGEP1_32(V, Offs);
2061         V = Builder.CreateBitCast(V,
2062                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2063       }
2064 
2065       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2066     }
2067 
2068     // In ARC, end functions that return a retainable type with a call
2069     // to objc_autoreleaseReturnValue.
2070     if (AutoreleaseResult) {
2071       assert(getLangOpts().ObjCAutoRefCount &&
2072              !FI.isReturnsRetained() &&
2073              RetTy->isObjCRetainableType());
2074       RV = emitAutoreleaseOfResult(*this, RV);
2075     }
2076 
2077     break;
2078 
2079   case ABIArgInfo::Ignore:
2080     break;
2081 
2082   case ABIArgInfo::Expand:
2083     llvm_unreachable("Invalid ABI kind for return argument");
2084   }
2085 
2086   llvm::Instruction *Ret;
2087   if (RV) {
2088     if (SanOpts->ReturnsNonnullAttribute &&
2089         CurGD.getDecl()->hasAttr<ReturnsNonNullAttr>()) {
2090       SanitizerScope SanScope(this);
2091       llvm::Value *Cond =
2092           Builder.CreateICmpNE(RV, llvm::Constant::getNullValue(RV->getType()));
2093       llvm::Constant *StaticData[] = {
2094         EmitCheckSourceLocation(EndLoc)
2095       };
2096       EmitCheck(Cond, "nonnull_return", StaticData, ArrayRef<llvm::Value *>(),
2097                 CRK_Recoverable);
2098     }
2099     Ret = Builder.CreateRet(RV);
2100   } else {
2101     Ret = Builder.CreateRetVoid();
2102   }
2103 
2104   if (!RetDbgLoc.isUnknown())
2105     Ret->setDebugLoc(RetDbgLoc);
2106 }
2107 
2108 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2109   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2110   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2111 }
2112 
2113 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
2114   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2115   // placeholders.
2116   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2117   llvm::Value *Placeholder =
2118       llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2119   Placeholder = CGF.Builder.CreateLoad(Placeholder);
2120   return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
2121                                Ty.getQualifiers(),
2122                                AggValueSlot::IsNotDestructed,
2123                                AggValueSlot::DoesNotNeedGCBarriers,
2124                                AggValueSlot::IsNotAliased);
2125 }
2126 
2127 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2128                                           const VarDecl *param,
2129                                           SourceLocation loc) {
2130   // StartFunction converted the ABI-lowered parameter(s) into a
2131   // local alloca.  We need to turn that into an r-value suitable
2132   // for EmitCall.
2133   llvm::Value *local = GetAddrOfLocalVar(param);
2134 
2135   QualType type = param->getType();
2136 
2137   // For the most part, we just need to load the alloca, except:
2138   // 1) aggregate r-values are actually pointers to temporaries, and
2139   // 2) references to non-scalars are pointers directly to the aggregate.
2140   // I don't know why references to scalars are different here.
2141   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2142     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2143       return args.add(RValue::getAggregate(local), type);
2144 
2145     // Locals which are references to scalars are represented
2146     // with allocas holding the pointer.
2147     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2148   }
2149 
2150   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2151          "cannot emit delegate call arguments for inalloca arguments!");
2152 
2153   args.add(convertTempToRValue(local, type, loc), type);
2154 }
2155 
2156 static bool isProvablyNull(llvm::Value *addr) {
2157   return isa<llvm::ConstantPointerNull>(addr);
2158 }
2159 
2160 static bool isProvablyNonNull(llvm::Value *addr) {
2161   return isa<llvm::AllocaInst>(addr);
2162 }
2163 
2164 /// Emit the actual writing-back of a writeback.
2165 static void emitWriteback(CodeGenFunction &CGF,
2166                           const CallArgList::Writeback &writeback) {
2167   const LValue &srcLV = writeback.Source;
2168   llvm::Value *srcAddr = srcLV.getAddress();
2169   assert(!isProvablyNull(srcAddr) &&
2170          "shouldn't have writeback for provably null argument");
2171 
2172   llvm::BasicBlock *contBB = nullptr;
2173 
2174   // If the argument wasn't provably non-null, we need to null check
2175   // before doing the store.
2176   bool provablyNonNull = isProvablyNonNull(srcAddr);
2177   if (!provablyNonNull) {
2178     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2179     contBB = CGF.createBasicBlock("icr.done");
2180 
2181     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2182     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2183     CGF.EmitBlock(writebackBB);
2184   }
2185 
2186   // Load the value to writeback.
2187   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2188 
2189   // Cast it back, in case we're writing an id to a Foo* or something.
2190   value = CGF.Builder.CreateBitCast(value,
2191                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
2192                             "icr.writeback-cast");
2193 
2194   // Perform the writeback.
2195 
2196   // If we have a "to use" value, it's something we need to emit a use
2197   // of.  This has to be carefully threaded in: if it's done after the
2198   // release it's potentially undefined behavior (and the optimizer
2199   // will ignore it), and if it happens before the retain then the
2200   // optimizer could move the release there.
2201   if (writeback.ToUse) {
2202     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2203 
2204     // Retain the new value.  No need to block-copy here:  the block's
2205     // being passed up the stack.
2206     value = CGF.EmitARCRetainNonBlock(value);
2207 
2208     // Emit the intrinsic use here.
2209     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2210 
2211     // Load the old value (primitively).
2212     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2213 
2214     // Put the new value in place (primitively).
2215     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2216 
2217     // Release the old value.
2218     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2219 
2220   // Otherwise, we can just do a normal lvalue store.
2221   } else {
2222     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2223   }
2224 
2225   // Jump to the continuation block.
2226   if (!provablyNonNull)
2227     CGF.EmitBlock(contBB);
2228 }
2229 
2230 static void emitWritebacks(CodeGenFunction &CGF,
2231                            const CallArgList &args) {
2232   for (const auto &I : args.writebacks())
2233     emitWriteback(CGF, I);
2234 }
2235 
2236 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2237                                             const CallArgList &CallArgs) {
2238   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2239   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2240     CallArgs.getCleanupsToDeactivate();
2241   // Iterate in reverse to increase the likelihood of popping the cleanup.
2242   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2243          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2244     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2245     I->IsActiveIP->eraseFromParent();
2246   }
2247 }
2248 
2249 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2250   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2251     if (uop->getOpcode() == UO_AddrOf)
2252       return uop->getSubExpr();
2253   return nullptr;
2254 }
2255 
2256 /// Emit an argument that's being passed call-by-writeback.  That is,
2257 /// we are passing the address of
2258 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2259                              const ObjCIndirectCopyRestoreExpr *CRE) {
2260   LValue srcLV;
2261 
2262   // Make an optimistic effort to emit the address as an l-value.
2263   // This can fail if the the argument expression is more complicated.
2264   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2265     srcLV = CGF.EmitLValue(lvExpr);
2266 
2267   // Otherwise, just emit it as a scalar.
2268   } else {
2269     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2270 
2271     QualType srcAddrType =
2272       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2273     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2274   }
2275   llvm::Value *srcAddr = srcLV.getAddress();
2276 
2277   // The dest and src types don't necessarily match in LLVM terms
2278   // because of the crazy ObjC compatibility rules.
2279 
2280   llvm::PointerType *destType =
2281     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2282 
2283   // If the address is a constant null, just pass the appropriate null.
2284   if (isProvablyNull(srcAddr)) {
2285     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2286              CRE->getType());
2287     return;
2288   }
2289 
2290   // Create the temporary.
2291   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2292                                            "icr.temp");
2293   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2294   // and that cleanup will be conditional if we can't prove that the l-value
2295   // isn't null, so we need to register a dominating point so that the cleanups
2296   // system will make valid IR.
2297   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2298 
2299   // Zero-initialize it if we're not doing a copy-initialization.
2300   bool shouldCopy = CRE->shouldCopy();
2301   if (!shouldCopy) {
2302     llvm::Value *null =
2303       llvm::ConstantPointerNull::get(
2304         cast<llvm::PointerType>(destType->getElementType()));
2305     CGF.Builder.CreateStore(null, temp);
2306   }
2307 
2308   llvm::BasicBlock *contBB = nullptr;
2309   llvm::BasicBlock *originBB = nullptr;
2310 
2311   // If the address is *not* known to be non-null, we need to switch.
2312   llvm::Value *finalArgument;
2313 
2314   bool provablyNonNull = isProvablyNonNull(srcAddr);
2315   if (provablyNonNull) {
2316     finalArgument = temp;
2317   } else {
2318     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2319 
2320     finalArgument = CGF.Builder.CreateSelect(isNull,
2321                                    llvm::ConstantPointerNull::get(destType),
2322                                              temp, "icr.argument");
2323 
2324     // If we need to copy, then the load has to be conditional, which
2325     // means we need control flow.
2326     if (shouldCopy) {
2327       originBB = CGF.Builder.GetInsertBlock();
2328       contBB = CGF.createBasicBlock("icr.cont");
2329       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2330       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2331       CGF.EmitBlock(copyBB);
2332       condEval.begin(CGF);
2333     }
2334   }
2335 
2336   llvm::Value *valueToUse = nullptr;
2337 
2338   // Perform a copy if necessary.
2339   if (shouldCopy) {
2340     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2341     assert(srcRV.isScalar());
2342 
2343     llvm::Value *src = srcRV.getScalarVal();
2344     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2345                                     "icr.cast");
2346 
2347     // Use an ordinary store, not a store-to-lvalue.
2348     CGF.Builder.CreateStore(src, temp);
2349 
2350     // If optimization is enabled, and the value was held in a
2351     // __strong variable, we need to tell the optimizer that this
2352     // value has to stay alive until we're doing the store back.
2353     // This is because the temporary is effectively unretained,
2354     // and so otherwise we can violate the high-level semantics.
2355     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2356         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2357       valueToUse = src;
2358     }
2359   }
2360 
2361   // Finish the control flow if we needed it.
2362   if (shouldCopy && !provablyNonNull) {
2363     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2364     CGF.EmitBlock(contBB);
2365 
2366     // Make a phi for the value to intrinsically use.
2367     if (valueToUse) {
2368       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2369                                                       "icr.to-use");
2370       phiToUse->addIncoming(valueToUse, copyBB);
2371       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2372                             originBB);
2373       valueToUse = phiToUse;
2374     }
2375 
2376     condEval.end(CGF);
2377   }
2378 
2379   args.addWriteback(srcLV, temp, valueToUse);
2380   args.add(RValue::get(finalArgument), CRE->getType());
2381 }
2382 
2383 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2384   assert(!StackBase && !StackCleanup.isValid());
2385 
2386   // Save the stack.
2387   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2388   StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
2389 
2390   // Control gets really tied up in landing pads, so we have to spill the
2391   // stacksave to an alloca to avoid violating SSA form.
2392   // TODO: This is dead if we never emit the cleanup.  We should create the
2393   // alloca and store lazily on the first cleanup emission.
2394   StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2395   CGF.Builder.CreateStore(StackBase, StackBaseMem);
2396   CGF.pushStackRestore(EHCleanup, StackBaseMem);
2397   StackCleanup = CGF.EHStack.getInnermostEHScope();
2398   assert(StackCleanup.isValid());
2399 }
2400 
2401 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2402   if (StackBase) {
2403     CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2404     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2405     // We could load StackBase from StackBaseMem, but in the non-exceptional
2406     // case we can skip it.
2407     CGF.Builder.CreateCall(F, StackBase);
2408   }
2409 }
2410 
2411 void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2412                                    ArrayRef<QualType> ArgTypes,
2413                                    CallExpr::const_arg_iterator ArgBeg,
2414                                    CallExpr::const_arg_iterator ArgEnd,
2415                                    bool ForceColumnInfo) {
2416   CGDebugInfo *DI = getDebugInfo();
2417   SourceLocation CallLoc;
2418   if (DI) CallLoc = DI->getLocation();
2419 
2420   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2421   // because arguments are destroyed left to right in the callee.
2422   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2423     // Insert a stack save if we're going to need any inalloca args.
2424     bool HasInAllocaArgs = false;
2425     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2426          I != E && !HasInAllocaArgs; ++I)
2427       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2428     if (HasInAllocaArgs) {
2429       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2430       Args.allocateArgumentMemory(*this);
2431     }
2432 
2433     // Evaluate each argument.
2434     size_t CallArgsStart = Args.size();
2435     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2436       CallExpr::const_arg_iterator Arg = ArgBeg + I;
2437       EmitCallArg(Args, *Arg, ArgTypes[I]);
2438       // Restore the debug location.
2439       if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2440     }
2441 
2442     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2443     // IR function.
2444     std::reverse(Args.begin() + CallArgsStart, Args.end());
2445     return;
2446   }
2447 
2448   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2449     CallExpr::const_arg_iterator Arg = ArgBeg + I;
2450     assert(Arg != ArgEnd);
2451     EmitCallArg(Args, *Arg, ArgTypes[I]);
2452     // Restore the debug location.
2453     if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2454   }
2455 }
2456 
2457 namespace {
2458 
2459 struct DestroyUnpassedArg : EHScopeStack::Cleanup {
2460   DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2461       : Addr(Addr), Ty(Ty) {}
2462 
2463   llvm::Value *Addr;
2464   QualType Ty;
2465 
2466   void Emit(CodeGenFunction &CGF, Flags flags) override {
2467     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2468     assert(!Dtor->isTrivial());
2469     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2470                               /*Delegating=*/false, Addr);
2471   }
2472 };
2473 
2474 }
2475 
2476 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2477                                   QualType type) {
2478   if (const ObjCIndirectCopyRestoreExpr *CRE
2479         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2480     assert(getLangOpts().ObjCAutoRefCount);
2481     assert(getContext().hasSameType(E->getType(), type));
2482     return emitWritebackArg(*this, args, CRE);
2483   }
2484 
2485   assert(type->isReferenceType() == E->isGLValue() &&
2486          "reference binding to unmaterialized r-value!");
2487 
2488   if (E->isGLValue()) {
2489     assert(E->getObjectKind() == OK_Ordinary);
2490     return args.add(EmitReferenceBindingToExpr(E), type);
2491   }
2492 
2493   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2494 
2495   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2496   // However, we still have to push an EH-only cleanup in case we unwind before
2497   // we make it to the call.
2498   if (HasAggregateEvalKind &&
2499       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2500     // If we're using inalloca, use the argument memory.  Otherwise, use a
2501     // temporary.
2502     AggValueSlot Slot;
2503     if (args.isUsingInAlloca())
2504       Slot = createPlaceholderSlot(*this, type);
2505     else
2506       Slot = CreateAggTemp(type, "agg.tmp");
2507 
2508     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2509     bool DestroyedInCallee =
2510         RD && RD->hasNonTrivialDestructor() &&
2511         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2512     if (DestroyedInCallee)
2513       Slot.setExternallyDestructed();
2514 
2515     EmitAggExpr(E, Slot);
2516     RValue RV = Slot.asRValue();
2517     args.add(RV, type);
2518 
2519     if (DestroyedInCallee) {
2520       // Create a no-op GEP between the placeholder and the cleanup so we can
2521       // RAUW it successfully.  It also serves as a marker of the first
2522       // instruction where the cleanup is active.
2523       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2524       // This unreachable is a temporary marker which will be removed later.
2525       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2526       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2527     }
2528     return;
2529   }
2530 
2531   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2532       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2533     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2534     assert(L.isSimple());
2535     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2536       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2537     } else {
2538       // We can't represent a misaligned lvalue in the CallArgList, so copy
2539       // to an aligned temporary now.
2540       llvm::Value *tmp = CreateMemTemp(type);
2541       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2542                         L.getAlignment());
2543       args.add(RValue::getAggregate(tmp), type);
2544     }
2545     return;
2546   }
2547 
2548   args.add(EmitAnyExprToTemp(E), type);
2549 }
2550 
2551 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2552 // optimizer it can aggressively ignore unwind edges.
2553 void
2554 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2555   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2556       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2557     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2558                       CGM.getNoObjCARCExceptionsMetadata());
2559 }
2560 
2561 /// Emits a call to the given no-arguments nounwind runtime function.
2562 llvm::CallInst *
2563 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2564                                          const llvm::Twine &name) {
2565   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2566 }
2567 
2568 /// Emits a call to the given nounwind runtime function.
2569 llvm::CallInst *
2570 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2571                                          ArrayRef<llvm::Value*> args,
2572                                          const llvm::Twine &name) {
2573   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2574   call->setDoesNotThrow();
2575   return call;
2576 }
2577 
2578 /// Emits a simple call (never an invoke) to the given no-arguments
2579 /// runtime function.
2580 llvm::CallInst *
2581 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2582                                  const llvm::Twine &name) {
2583   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2584 }
2585 
2586 /// Emits a simple call (never an invoke) to the given runtime
2587 /// function.
2588 llvm::CallInst *
2589 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2590                                  ArrayRef<llvm::Value*> args,
2591                                  const llvm::Twine &name) {
2592   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2593   call->setCallingConv(getRuntimeCC());
2594   return call;
2595 }
2596 
2597 /// Emits a call or invoke to the given noreturn runtime function.
2598 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2599                                                ArrayRef<llvm::Value*> args) {
2600   if (getInvokeDest()) {
2601     llvm::InvokeInst *invoke =
2602       Builder.CreateInvoke(callee,
2603                            getUnreachableBlock(),
2604                            getInvokeDest(),
2605                            args);
2606     invoke->setDoesNotReturn();
2607     invoke->setCallingConv(getRuntimeCC());
2608   } else {
2609     llvm::CallInst *call = Builder.CreateCall(callee, args);
2610     call->setDoesNotReturn();
2611     call->setCallingConv(getRuntimeCC());
2612     Builder.CreateUnreachable();
2613   }
2614   PGO.setCurrentRegionUnreachable();
2615 }
2616 
2617 /// Emits a call or invoke instruction to the given nullary runtime
2618 /// function.
2619 llvm::CallSite
2620 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2621                                          const Twine &name) {
2622   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2623 }
2624 
2625 /// Emits a call or invoke instruction to the given runtime function.
2626 llvm::CallSite
2627 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2628                                          ArrayRef<llvm::Value*> args,
2629                                          const Twine &name) {
2630   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2631   callSite.setCallingConv(getRuntimeCC());
2632   return callSite;
2633 }
2634 
2635 llvm::CallSite
2636 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2637                                   const Twine &Name) {
2638   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2639 }
2640 
2641 /// Emits a call or invoke instruction to the given function, depending
2642 /// on the current state of the EH stack.
2643 llvm::CallSite
2644 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2645                                   ArrayRef<llvm::Value *> Args,
2646                                   const Twine &Name) {
2647   llvm::BasicBlock *InvokeDest = getInvokeDest();
2648 
2649   llvm::Instruction *Inst;
2650   if (!InvokeDest)
2651     Inst = Builder.CreateCall(Callee, Args, Name);
2652   else {
2653     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2654     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2655     EmitBlock(ContBB);
2656   }
2657 
2658   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2659   // optimizer it can aggressively ignore unwind edges.
2660   if (CGM.getLangOpts().ObjCAutoRefCount)
2661     AddObjCARCExceptionMetadata(Inst);
2662 
2663   return Inst;
2664 }
2665 
2666 void CodeGenFunction::ExpandTypeToArgs(
2667     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
2668     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
2669   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2670     unsigned NumElts = AT->getSize().getZExtValue();
2671     QualType EltTy = AT->getElementType();
2672     llvm::Value *Addr = RV.getAggregateAddr();
2673     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2674       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2675       RValue EltRV = convertTempToRValue(EltAddr, EltTy, SourceLocation());
2676       ExpandTypeToArgs(EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
2677     }
2678   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2679     RecordDecl *RD = RT->getDecl();
2680     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2681     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2682 
2683     if (RD->isUnion()) {
2684       const FieldDecl *LargestFD = nullptr;
2685       CharUnits UnionSize = CharUnits::Zero();
2686 
2687       for (const auto *FD : RD->fields()) {
2688         assert(!FD->isBitField() &&
2689                "Cannot expand structure with bit-field members.");
2690         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2691         if (UnionSize < FieldSize) {
2692           UnionSize = FieldSize;
2693           LargestFD = FD;
2694         }
2695       }
2696       if (LargestFD) {
2697         RValue FldRV = EmitRValueForField(LV, LargestFD, SourceLocation());
2698         ExpandTypeToArgs(LargestFD->getType(), FldRV, IRFuncTy, IRCallArgs,
2699                          IRCallArgPos);
2700       }
2701     } else {
2702       for (const auto *FD : RD->fields()) {
2703         RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
2704         ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, IRCallArgPos);
2705       }
2706     }
2707   } else if (Ty->isAnyComplexType()) {
2708     ComplexPairTy CV = RV.getComplexVal();
2709     IRCallArgs[IRCallArgPos++] = CV.first;
2710     IRCallArgs[IRCallArgPos++] = CV.second;
2711   } else {
2712     assert(RV.isScalar() &&
2713            "Unexpected non-scalar rvalue during struct expansion.");
2714 
2715     // Insert a bitcast as needed.
2716     llvm::Value *V = RV.getScalarVal();
2717     if (IRCallArgPos < IRFuncTy->getNumParams() &&
2718         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
2719       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
2720 
2721     IRCallArgs[IRCallArgPos++] = V;
2722   }
2723 }
2724 
2725 /// \brief Store a non-aggregate value to an address to initialize it.  For
2726 /// initialization, a non-atomic store will be used.
2727 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
2728                                         LValue Dst) {
2729   if (Src.isScalar())
2730     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
2731   else
2732     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
2733 }
2734 
2735 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
2736                                                   llvm::Value *New) {
2737   DeferredReplacements.push_back(std::make_pair(Old, New));
2738 }
2739 
2740 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2741                                  llvm::Value *Callee,
2742                                  ReturnValueSlot ReturnValue,
2743                                  const CallArgList &CallArgs,
2744                                  const Decl *TargetDecl,
2745                                  llvm::Instruction **callOrInvoke) {
2746   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2747 
2748   // Handle struct-return functions by passing a pointer to the
2749   // location that we would like to return into.
2750   QualType RetTy = CallInfo.getReturnType();
2751   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2752 
2753   llvm::FunctionType *IRFuncTy =
2754     cast<llvm::FunctionType>(
2755                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2756 
2757   // If we're using inalloca, insert the allocation after the stack save.
2758   // FIXME: Do this earlier rather than hacking it in here!
2759   llvm::Value *ArgMemory = nullptr;
2760   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
2761     llvm::Instruction *IP = CallArgs.getStackBase();
2762     llvm::AllocaInst *AI;
2763     if (IP) {
2764       IP = IP->getNextNode();
2765       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
2766     } else {
2767       AI = CreateTempAlloca(ArgStruct, "argmem");
2768     }
2769     AI->setUsedWithInAlloca(true);
2770     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
2771     ArgMemory = AI;
2772   }
2773 
2774   ClangToLLVMArgMapping IRFunctionArgs(CGM, CallInfo);
2775   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
2776 
2777   // If the call returns a temporary with struct return, create a temporary
2778   // alloca to hold the result, unless one is given to us.
2779   llvm::Value *SRetPtr = nullptr;
2780   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
2781     SRetPtr = ReturnValue.getValue();
2782     if (!SRetPtr)
2783       SRetPtr = CreateMemTemp(RetTy);
2784     if (IRFunctionArgs.hasSRetArg()) {
2785       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr;
2786     } else {
2787       llvm::Value *Addr =
2788           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
2789       Builder.CreateStore(SRetPtr, Addr);
2790     }
2791   }
2792 
2793   assert(CallInfo.arg_size() == CallArgs.size() &&
2794          "Mismatch between function signature & arguments.");
2795   unsigned ArgNo = 0;
2796   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2797   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2798        I != E; ++I, ++info_it, ++ArgNo) {
2799     const ABIArgInfo &ArgInfo = info_it->info;
2800     RValue RV = I->RV;
2801 
2802     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2803 
2804     // Insert a padding argument to ensure proper alignment.
2805     if (IRFunctionArgs.hasPaddingArg(ArgNo))
2806       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2807           llvm::UndefValue::get(ArgInfo.getPaddingType());
2808 
2809     unsigned FirstIRArg, NumIRArgs;
2810     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2811 
2812     switch (ArgInfo.getKind()) {
2813     case ABIArgInfo::InAlloca: {
2814       assert(NumIRArgs == 0);
2815       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2816       if (RV.isAggregate()) {
2817         // Replace the placeholder with the appropriate argument slot GEP.
2818         llvm::Instruction *Placeholder =
2819             cast<llvm::Instruction>(RV.getAggregateAddr());
2820         CGBuilderTy::InsertPoint IP = Builder.saveIP();
2821         Builder.SetInsertPoint(Placeholder);
2822         llvm::Value *Addr = Builder.CreateStructGEP(
2823             ArgMemory, ArgInfo.getInAllocaFieldIndex());
2824         Builder.restoreIP(IP);
2825         deferPlaceholderReplacement(Placeholder, Addr);
2826       } else {
2827         // Store the RValue into the argument struct.
2828         llvm::Value *Addr =
2829             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
2830         unsigned AS = Addr->getType()->getPointerAddressSpace();
2831         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
2832         // There are some cases where a trivial bitcast is not avoidable.  The
2833         // definition of a type later in a translation unit may change it's type
2834         // from {}* to (%struct.foo*)*.
2835         if (Addr->getType() != MemType)
2836           Addr = Builder.CreateBitCast(Addr, MemType);
2837         LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
2838         EmitInitStoreOfNonAggregate(*this, RV, argLV);
2839       }
2840       break;
2841     }
2842 
2843     case ABIArgInfo::Indirect: {
2844       assert(NumIRArgs == 1);
2845       if (RV.isScalar() || RV.isComplex()) {
2846         // Make a temporary alloca to pass the argument.
2847         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2848         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2849           AI->setAlignment(ArgInfo.getIndirectAlign());
2850         IRCallArgs[FirstIRArg] = AI;
2851 
2852         LValue argLV = MakeAddrLValue(AI, I->Ty, TypeAlign);
2853         EmitInitStoreOfNonAggregate(*this, RV, argLV);
2854       } else {
2855         // We want to avoid creating an unnecessary temporary+copy here;
2856         // however, we need one in three cases:
2857         // 1. If the argument is not byval, and we are required to copy the
2858         //    source.  (This case doesn't occur on any common architecture.)
2859         // 2. If the argument is byval, RV is not sufficiently aligned, and
2860         //    we cannot force it to be sufficiently aligned.
2861         // 3. If the argument is byval, but RV is located in an address space
2862         //    different than that of the argument (0).
2863         llvm::Value *Addr = RV.getAggregateAddr();
2864         unsigned Align = ArgInfo.getIndirectAlign();
2865         const llvm::DataLayout *TD = &CGM.getDataLayout();
2866         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2867         const unsigned ArgAddrSpace =
2868             (FirstIRArg < IRFuncTy->getNumParams()
2869                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
2870                  : 0);
2871         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2872             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2873              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2874              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2875           // Create an aligned temporary, and copy to it.
2876           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2877           if (Align > AI->getAlignment())
2878             AI->setAlignment(Align);
2879           IRCallArgs[FirstIRArg] = AI;
2880           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2881         } else {
2882           // Skip the extra memcpy call.
2883           IRCallArgs[FirstIRArg] = Addr;
2884         }
2885       }
2886       break;
2887     }
2888 
2889     case ABIArgInfo::Ignore:
2890       assert(NumIRArgs == 0);
2891       break;
2892 
2893     case ABIArgInfo::Extend:
2894     case ABIArgInfo::Direct: {
2895       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2896           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2897           ArgInfo.getDirectOffset() == 0) {
2898         assert(NumIRArgs == 1);
2899         llvm::Value *V;
2900         if (RV.isScalar())
2901           V = RV.getScalarVal();
2902         else
2903           V = Builder.CreateLoad(RV.getAggregateAddr());
2904 
2905         // If the argument doesn't match, perform a bitcast to coerce it.  This
2906         // can happen due to trivial type mismatches.
2907         if (FirstIRArg < IRFuncTy->getNumParams() &&
2908             V->getType() != IRFuncTy->getParamType(FirstIRArg))
2909           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
2910         IRCallArgs[FirstIRArg] = V;
2911         break;
2912       }
2913 
2914       // FIXME: Avoid the conversion through memory if possible.
2915       llvm::Value *SrcPtr;
2916       if (RV.isScalar() || RV.isComplex()) {
2917         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2918         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2919         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
2920       } else
2921         SrcPtr = RV.getAggregateAddr();
2922 
2923       // If the value is offset in memory, apply the offset now.
2924       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2925         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2926         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2927         SrcPtr = Builder.CreateBitCast(SrcPtr,
2928                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2929 
2930       }
2931 
2932       // If the coerce-to type is a first class aggregate, we flatten it and
2933       // pass the elements. Either way is semantically identical, but fast-isel
2934       // and the optimizer generally likes scalar values better than FCAs.
2935       // We cannot do this for functions using the AAPCS calling convention,
2936       // as structures are treated differently by that calling convention.
2937       llvm::StructType *STy =
2938             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
2939       if (STy && !isAAPCSVFP(CallInfo, getTarget())) {
2940         llvm::Type *SrcTy =
2941           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2942         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2943         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2944 
2945         // If the source type is smaller than the destination type of the
2946         // coerce-to logic, copy the source value into a temp alloca the size
2947         // of the destination type to allow loading all of it. The bits past
2948         // the source value are left undef.
2949         if (SrcSize < DstSize) {
2950           llvm::AllocaInst *TempAlloca
2951             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2952           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2953           SrcPtr = TempAlloca;
2954         } else {
2955           SrcPtr = Builder.CreateBitCast(SrcPtr,
2956                                          llvm::PointerType::getUnqual(STy));
2957         }
2958 
2959         assert(NumIRArgs == STy->getNumElements());
2960         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2961           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2962           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2963           // We don't know what we're loading from.
2964           LI->setAlignment(1);
2965           IRCallArgs[FirstIRArg + i] = LI;
2966         }
2967       } else {
2968         // In the simple case, just pass the coerced loaded value.
2969         assert(NumIRArgs == 1);
2970         IRCallArgs[FirstIRArg] =
2971             CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), *this);
2972       }
2973 
2974       break;
2975     }
2976 
2977     case ABIArgInfo::Expand:
2978       unsigned IRArgPos = FirstIRArg;
2979       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
2980       assert(IRArgPos == FirstIRArg + NumIRArgs);
2981       break;
2982     }
2983   }
2984 
2985   if (ArgMemory) {
2986     llvm::Value *Arg = ArgMemory;
2987     if (CallInfo.isVariadic()) {
2988       // When passing non-POD arguments by value to variadic functions, we will
2989       // end up with a variadic prototype and an inalloca call site.  In such
2990       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
2991       // the callee.
2992       unsigned CalleeAS =
2993           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
2994       Callee = Builder.CreateBitCast(
2995           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
2996     } else {
2997       llvm::Type *LastParamTy =
2998           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
2999       if (Arg->getType() != LastParamTy) {
3000 #ifndef NDEBUG
3001         // Assert that these structs have equivalent element types.
3002         llvm::StructType *FullTy = CallInfo.getArgStruct();
3003         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3004             cast<llvm::PointerType>(LastParamTy)->getElementType());
3005         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3006         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3007                                                 DE = DeclaredTy->element_end(),
3008                                                 FI = FullTy->element_begin();
3009              DI != DE; ++DI, ++FI)
3010           assert(*DI == *FI);
3011 #endif
3012         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3013       }
3014     }
3015     assert(IRFunctionArgs.hasInallocaArg());
3016     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3017   }
3018 
3019   if (!CallArgs.getCleanupsToDeactivate().empty())
3020     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3021 
3022   // If the callee is a bitcast of a function to a varargs pointer to function
3023   // type, check to see if we can remove the bitcast.  This handles some cases
3024   // with unprototyped functions.
3025   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3026     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3027       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3028       llvm::FunctionType *CurFT =
3029         cast<llvm::FunctionType>(CurPT->getElementType());
3030       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3031 
3032       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3033           ActualFT->getReturnType() == CurFT->getReturnType() &&
3034           ActualFT->getNumParams() == CurFT->getNumParams() &&
3035           ActualFT->getNumParams() == IRCallArgs.size() &&
3036           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3037         bool ArgsMatch = true;
3038         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3039           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3040             ArgsMatch = false;
3041             break;
3042           }
3043 
3044         // Strip the cast if we can get away with it.  This is a nice cleanup,
3045         // but also allows us to inline the function at -O0 if it is marked
3046         // always_inline.
3047         if (ArgsMatch)
3048           Callee = CalleeF;
3049       }
3050     }
3051 
3052   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3053   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3054     // Inalloca argument can have different type.
3055     if (IRFunctionArgs.hasInallocaArg() &&
3056         i == IRFunctionArgs.getInallocaArgNo())
3057       continue;
3058     if (i < IRFuncTy->getNumParams())
3059       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3060   }
3061 
3062   unsigned CallingConv;
3063   CodeGen::AttributeListType AttributeList;
3064   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
3065                              CallingConv, true);
3066   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3067                                                      AttributeList);
3068 
3069   llvm::BasicBlock *InvokeDest = nullptr;
3070   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3071                           llvm::Attribute::NoUnwind))
3072     InvokeDest = getInvokeDest();
3073 
3074   llvm::CallSite CS;
3075   if (!InvokeDest) {
3076     CS = Builder.CreateCall(Callee, IRCallArgs);
3077   } else {
3078     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3079     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
3080     EmitBlock(Cont);
3081   }
3082   if (callOrInvoke)
3083     *callOrInvoke = CS.getInstruction();
3084 
3085   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3086       !CS.hasFnAttr(llvm::Attribute::NoInline))
3087     Attrs =
3088         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3089                            llvm::Attribute::AlwaysInline);
3090 
3091   CS.setAttributes(Attrs);
3092   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3093 
3094   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3095   // optimizer it can aggressively ignore unwind edges.
3096   if (CGM.getLangOpts().ObjCAutoRefCount)
3097     AddObjCARCExceptionMetadata(CS.getInstruction());
3098 
3099   // If the call doesn't return, finish the basic block and clear the
3100   // insertion point; this allows the rest of IRgen to discard
3101   // unreachable code.
3102   if (CS.doesNotReturn()) {
3103     Builder.CreateUnreachable();
3104     Builder.ClearInsertionPoint();
3105 
3106     // FIXME: For now, emit a dummy basic block because expr emitters in
3107     // generally are not ready to handle emitting expressions at unreachable
3108     // points.
3109     EnsureInsertPoint();
3110 
3111     // Return a reasonable RValue.
3112     return GetUndefRValue(RetTy);
3113   }
3114 
3115   llvm::Instruction *CI = CS.getInstruction();
3116   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3117     CI->setName("call");
3118 
3119   // Emit any writebacks immediately.  Arguably this should happen
3120   // after any return-value munging.
3121   if (CallArgs.hasWritebacks())
3122     emitWritebacks(*this, CallArgs);
3123 
3124   // The stack cleanup for inalloca arguments has to run out of the normal
3125   // lexical order, so deactivate it and run it manually here.
3126   CallArgs.freeArgumentMemory(*this);
3127 
3128   switch (RetAI.getKind()) {
3129   case ABIArgInfo::InAlloca:
3130   case ABIArgInfo::Indirect:
3131     return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3132 
3133   case ABIArgInfo::Ignore:
3134     // If we are ignoring an argument that had a result, make sure to
3135     // construct the appropriate return value for our caller.
3136     return GetUndefRValue(RetTy);
3137 
3138   case ABIArgInfo::Extend:
3139   case ABIArgInfo::Direct: {
3140     llvm::Type *RetIRTy = ConvertType(RetTy);
3141     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3142       switch (getEvaluationKind(RetTy)) {
3143       case TEK_Complex: {
3144         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3145         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3146         return RValue::getComplex(std::make_pair(Real, Imag));
3147       }
3148       case TEK_Aggregate: {
3149         llvm::Value *DestPtr = ReturnValue.getValue();
3150         bool DestIsVolatile = ReturnValue.isVolatile();
3151 
3152         if (!DestPtr) {
3153           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3154           DestIsVolatile = false;
3155         }
3156         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
3157         return RValue::getAggregate(DestPtr);
3158       }
3159       case TEK_Scalar: {
3160         // If the argument doesn't match, perform a bitcast to coerce it.  This
3161         // can happen due to trivial type mismatches.
3162         llvm::Value *V = CI;
3163         if (V->getType() != RetIRTy)
3164           V = Builder.CreateBitCast(V, RetIRTy);
3165         return RValue::get(V);
3166       }
3167       }
3168       llvm_unreachable("bad evaluation kind");
3169     }
3170 
3171     llvm::Value *DestPtr = ReturnValue.getValue();
3172     bool DestIsVolatile = ReturnValue.isVolatile();
3173 
3174     if (!DestPtr) {
3175       DestPtr = CreateMemTemp(RetTy, "coerce");
3176       DestIsVolatile = false;
3177     }
3178 
3179     // If the value is offset in memory, apply the offset now.
3180     llvm::Value *StorePtr = DestPtr;
3181     if (unsigned Offs = RetAI.getDirectOffset()) {
3182       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
3183       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
3184       StorePtr = Builder.CreateBitCast(StorePtr,
3185                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
3186     }
3187     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3188 
3189     return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3190   }
3191 
3192   case ABIArgInfo::Expand:
3193     llvm_unreachable("Invalid ABI kind for return argument");
3194   }
3195 
3196   llvm_unreachable("Unhandled ABIArgInfo::Kind");
3197 }
3198 
3199 /* VarArg handling */
3200 
3201 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
3202   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
3203 }
3204